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Abstract. Since the advent of public data repositories for proteomics
data, readily accessible results from high-throughput experiments have
been accumulating steadily. Several large-scale projects in particular have
contributed substantially to the amount of identifications available to the
community. Despite the considerable body of information amassed, very
few successful analysis have been performed and published on this data,
levelling off the ultimate value of these projects far below their potential.
In order to illustrate that these repositories should be considered sources
of detailed knowledge instead of data graveyards, we here present a novel
way of analyzing the information contained in proteomics experiments
with a ’latent semantic analysis’. We apply this information retrieval
approach to the peptide identification data contributed by the Plasma
Proteome Project. Interestingly, this analysis is able to overcome the
fundamental difficulties of analyzing such divergent and heterogeneous
data emerging from large scale proteomics studies employing a vast spec-
trum of different sample treatment and mass-spectrometry technologies.
Moreover, it yields several concrete recommendations for optimizing pro-
teomics project planning as well as the choice of technologies used in the
experiments. It is clear from these results that the analysis of large bodies
of publicly available proteomics data holds great promise and is currently
underexploited.

1 Introduction

The field of proteomics has undergone several dramatic changes over the past
few years. Advances in instrumentation and separation technologies [1, 6] have
enabled the advent of high-throughput analysis methods that generate large
amounts of proteomics identifications per experiment. Many of these datasets
were initially only published as supplementary information in PDF format and,
while available, were not readily accessible to the community. Obviously, this



situation led to large-scale data loss and was perceived as a major problem in
the field [10,20].

Several public proteomics data repositories, including the Global Proteome
Machine (GPM) [2], the Proteomics Identifications Database (PRIDE) [12, 16]
and PeptideAtlas [5] were constructed to turn the available data into accessible
data, thereby reversing the trend of increasing data loss.

As a case in point, several large-scale proteomics projects that have recently
been undertaken by the Human Proteome Organization (HUPO), including the
Plasma Proteome Project (PPP) [19] and the Brain Proteome Project (BPP) [9],
have published all of their assembled data in one or more of these repositories.
As a result, their findings are readily accessible to interested researchers. It is
therefore remarkable to see that very little additional information has so far been
extracted from the available data. One of the rare examples where the analysis of
large proteomics datasets resulted in a practical application is the recent effort
by Mallick and co-workers in which several properties of a large amount of iden-
tified peptides were used to fine-tune an algorithm that can predict proteotypic
peptides from sequence databases [15].

We here present a novel way to reveal the information that lies hidden in
large bodies of proteomics data, by analyzing them for latent semantic patterns.
The analysis performed here focused on the HUPO PPP data as available in the
PRIDE database. Briefly, the HUPO PPP sent out a variety of plasma and serum
samples, collected from different ethnic groups and at different locales worldwide.
All of the five resulting plasma samples were additionally treated with one of
three distinct methods of anticoagulation: EDTA, citrate or heparin. The total
amount of distinct samples thus amounts to twenty: five serum samples, and
three times five plasma samples [19].

We used the original peptide sequences to evaluate experiment similarity by
performing a latent semantic analysis, a technique often employed in natural
language processing. Our results suggest that LSA can be considered a useful
analysis tool of such data yielding results which cannot easily be obtained by
conventional means.

2 Latent semantic analysis

In order to assess inter-experiment similarity in an all-against-all comparison,
an information retrieval method called latent semantic analysis (LSA; also re-
ferred to as latent semantic indexing, LSI) is employed. The fundamentals of
LSA are well understood and it has been widely used for various information
retrieval tasks. The general idea of LSA is to map document into some latent
semantic space, in which the dimensions consists of latent topics. The main task
is, to reduce the documents from a word-based representation to a topic-based
representation, which reduces the influence of noise (random words) during the
similarity computation between pairs of documents. Applied to the context of
proteomics, experiments take the role of documents while peptides identified in
one experiment (more precisely their amino acid sequence) act as terms. The



algorithm reports a similarity score for each pair of experiments, based on the
latent topics in peptide representation of the experiments.

2.1 Vector Space representation of proteomics data

LSA computes latent topics from a vector representation of the documents (vec-
tor space model). A term-document matrix W ∈ Rn,m represents a document
collection of m documents over a vocabulary of n terms. A value wi,j is the num-
ber of occurrences of a particular term i (rows of W ) within the jth document
(columns of W ). In case of proteomics experiments the words are peptides de-
tected by mass spectrometry. As no quantitative information about the peptides
is available but just the information about the occurrence, the document term
matrix is a bit-matrix in this case.

Each column-vector w·,j in W can be interpreted as a document-vector dj

which characterizes a document (proteomics experiment) by its terms (pep-
tides) [22]. The similarity between two documents a and b represented by their
documents vectors is determined by cosine similarity, which gives the cosine of
the angle between a and b:

sim(a, b) = cos α(a, b) =
a · b

‖a‖ · ‖b‖
=

∑n
i=1 aibi√∑n

i=1 a2
i

√∑n
i=1 b2

i

(1)

The similarity is between zero and one, due to the normalization. To counteract
poorly differentiating, often-occurring terms each row of W is weighted by the
inverse document frequency (IDF). IDF of a term t is defined as

IDFt = log
ND

dt
(2)

The effect of IDF-weighting is that poorly differentiating, often-occurring terms
will have a much lower weight than highly specific, rare terms.

The vector space model has several drawbacks. First, it relies on exact term
matching (because of the scalar product in (1)), thus making it impossible for
the model to detect synonyms. A proteomics example of a synonym is the sub-
stitution of the isobaric amino acids isoleucine and leucine within a peptide
sequence. A second problem is the sparseness of non-zero values in the obtained
document/term matrix [13]. The matrix is thus largely composed of zeroes, high-
lighting the fact that many peptides failed to be identified in more than one
experiment, which is a common situation in shotgun proteomics experiments.

2.2 Singular Value Decomposition

In order to reduce the sparseness of the document/term matrix and to detect
hidden (latent) term relations, LSA projects the original documents vectors into
a lower dimensional semantic space where documents which contain repeatedly
co-occurring terms will have a similar vector representation. This effectively



overcomes the fundamental deficiencies of the exact term-matching employed in
a VSM [14]. As such, LSA might predict that a given term should be associated
with a document, even though no such association was observed in the original
matrix [4]. The core principle for achieving this is the application of singular
value decomposition (SVD), a type of factor analysis which can be applied to
any rectangular matrix in the form of:

W = UΣV T (3)

where U ∈ Rn×n and V ∈ Rm×m are orthogonal matrices (i.e. UUT = I and
V V T = I) and Σ = diag(σ1, . . . , σr) is a diagonal matrix with σ1 ≥ σ2 ≥
. . . σr ≥ 0 and r = min(m,n). LSA makes use of the matrix approximation
theorem, which states that

argmin
Wk has rank k

‖W −Wk‖2 = UkΣkV T
k (4)

with Uk and Vk consist of the first k columns of U and V respectively and
Σk = diag(σ1, . . . , σk). So, for k ≤ r Wk is the best rank k approximation of
W in the least square sense. The approximation error is bounded with respect
to the Frobenius norm by ‖W −Wk‖F ≤ σk+1. The column vectors of (ΣkV T

k )
are the new document vectors in the latent space. The mapping of some original
document vector d into the latent space is described by U td.

The SVD alters the original values in the matrix W by new estimates, based
on the observed co-occurrences of terms and their ’true semantic meaning’ within
the whole corpus of documents [8]. The latter is achieved because terms with
a common meaning are roughly mapped to the same direction in the latent
space. By leaving out the smallest singular values, ’weak patterns’ or noise are
filtered out. The choice of k determines the degree of reduction, and it is therefore
important to note that a high k value (corresponding to a weak reduction) might
not be able to filter out noise or unimportant fluctuations in the source data,
while a very small k value (strong reduction) will retain too little information
from the original data structure [7].

2.3 Similarity score calculation and indexing of the HUPO PPP
dataset

The HUPO PPP dataset was obtained from the PRIDE database3, under acces-
sion numbers 4 to 98. These data sets are also accessible as PRIDE XML files
via FTP4.

All 95 Hupo PPP experiments and their corresponding peptides are directly
taken from the PRIDE database and give a term/document matrix of the di-
mensions 25, 052× 95. Entries of the term/document matrix are weighted using
IDF. In contrast to IR-applications on natural language, no further pruning of

3 http://www.ebi.ac.uk/pride
4 ftp://ftp.ebi.ac.uk/pub/databases/pride



unique terms was performed. A close look at the term/document matrix reveals
the following differences compared to natural language datasets: while in a cor-
pus of natural language text documents (for example the TREC Spanish AFP
collection or the TREC Volume 3 corpus) the amount of unique words is below
2% [3], the Hupo PPP data set has 14, 808 unique peptides (59%). This finding
seems to contradict the intuitive assumption that proteomics experiments from
the same tissue should yield highly similar results. The lack of reproducibility
across proteomics experiments plays a considerable role in this divergence of the
results [21]. This is illustrated for the HUPO PPP data by the fact that not even
a single peptide is seen in every experiment. Moreover, only 37 peptides out of
the 25, 052 peptides are found in at least half of the experiments. In contrast,
more than 70% of the reported proteins are only found in one or two exper-
iments. This effect can be further explained by the wide array of techniques
applied by the HUPO PPP contributors, with the express purpose of enhanc-
ing coverage and allowing subsequent method evaluation [19]. Furthermore, a
shotgun proteomics approach to analyze a complex mixture typically results in
approximately 30% of all proteins identified by only a single peptide [18].

As a result, non-zero entries constitute less than 4% of the document/term
matrix, which, although better than a typical natural language set, is still quite
poor, especially considering the fact that we analyzed a small experiment corpus
and that this data set describes the proteome of a single tissue, namely plasma.
In order to analyze the ability of LSA to compensate for this sparseness of the
document/term matrix, the similarity of pair of the 95 experiments is computed
using different values for k and the standard cosine measure, which gives 95(95−
1)/2 = 4, 465 similarity scores. The choice of k depends on the distribution of the
singular values of the original document/term matrix. A rapid drop of the values
in the sorted sequence of singular values (i.e. σl−σl+1 is large and σl+1 is small)
indicates that Wl is good approximation with low error. In our case, we used
k = 75 for small degree of compression and k = 15 for high compression. For
comparison, similarity scores are also directly computed from the vector space
representation.

3 RESULTS

As expected, the distribution of the similarity scores obtained for the HUPO
PPP experiments with the VSM shows a low overall similarity (93.5% pairs of
experiments have a similarity less or equal than 0.1).

Even the similarities for k=75 show no drastic improvements; the similarity
scores rise only slightly (88.5% pairs of experiments have a similarity less or equal
than 0.1). However, with a strong dimensionality reduction (k = 15) of the HUPO
PPP data, latent semantic relationships between terms as well as co-occurrences
of peptides within the replicate experiments are amplified. Consequently, the
inter-experiment similarities rise, resulting in the fact that now only 35% (in
contrast to 93.5% for the VSM) of the experiments pairs have a similarity of
0.1 or less. This effectively compensates for the sparseness of the matrix with all



entries are non-zero. To validate the results and show that LSA indeed resulted in
meaningful experiment similarity, the obtained scores were visualized in a gray-
scale map with white representing a score of 0, black a score of 1. The experiments
are grouped by metadata, i.e. used technology (depletion step(s) applied; protein
fractionation technique; search engine and finally mass spectrometer type). Since
all 95 experiments originate from the same tissue, it is reasonable to expect LSA
to amplify the intra-similarities within the same technology group.

3.1 Influence of Technologies in the Hupo PPP dataset
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Fig. 1. A visualization of the inter-experiment HUPO PPP similarity matrix, obtained
from an LSA with k =15. Dark indicates high similarity. The 95 experiments have been
grouped by depletion technique, search engine, separation method and mass spectrom-
eter (annotated above, to the left and below).



A gray-scale map of the similarity scores between all 95 experiments, ob-
tained after LSA with k = 15, is shown in figure 1. The experiments have been
grouped according to the four abovementioned technologies, and these have been
annotated above, below and to the left-hand side of the map. Obviously, an ex-
periment is identical to itself, which is why the top-left to lower-right diagonal
is black. A great amount of experiments have a high similarity (dark areas) as
expected when looking on one single tissue and using a low k, although some
experiments are less similar to the other experiments than expected. Those ex-
periments form distinct clusters, each with high internal similarity (I, II and IV).
The first cluster (I) represents only ESI FT-ICR5 experiments. This uniqueness
in the instrument used, together with the use of proprietary Viper search engine
most probably contributes to the dissimilarity from the rest of the experiments.
Cluster (II) is derived from a set of 2D-PAGE experiments, and these can be
compared to cluster (IV), because both represent experiments performed by the
same lab with the same technology. The only difference is the use of the top-6
protein depletion6 on the biological sample in cluster (IV), while no depletion
was employed in cluster (II). The very low similarity between these two clus-
ters (nearly white overlap regions) shows that removal of the six most abundant
proteins in plasma resulted in the detection of an almost completely different
part of the plasma proteome. Three experiments (III) have very low similar-
ity with the other experiments combined with a low similarity between each
other. The reason for this could be the combination of a CHO-affinity (aldehyde
affinity) fractionation and the Sequest search engine which no other experi-
ment employed. As all three experiments are from the same laboratory (which
only contributed these three experiments) and they have a rather low similarity
among themselves, it seems plausible that these experiments are outliers and
even might indicate suspect results. Another group of experiments also sticks
out (band a). This group comprises experiments that employed a peptide shot-
gun approach (with no protein separation technique) on top-6 depleted samples.
The shotgun experiments thus reveal very little similarity, both within the re-
peated experiments as well as compared to the rest of the experiments. The low
similarities of the three clusters (I,II,IV) and the shotgun experiments (none for
separation technique) with all other experiments indicates that they contribute
unique peptide identifications (i.e.: they cannot be semantically connected to
other peptide identifications). However, in contrast to the shotgun experiments,
the 2D-PAGE cluster (II,IV) are strongly internally consistent, hinting at a high
reproducibility of the method. The total number of peptide identifications for
the HUPO PPP data set reveal that shotgun experiments contributed a major
part of the overall unique peptide identifications. Finally, all observed clusters
in this analysis derive from differences introduced by the various methodologies
and technology platforms employed, rather than from differences between the
samples which shows that a strong bias is introduced.

5 EletroSpray Ionization Fourier-Transform Ion Cyclotron Resonance instrument
6 The six most frequent, known proteins are removed.



3.2 Sample Analysis

A second experimental setup was used to evaluate the performance of LSA
to compute meaningful similarities on proteomics data: instead of the natural
grouping of peptides by experiment, all peptides found by any number of ex-
periments of the same biological sample (plasma or serum) and anticoagulation
treatment (EDTA, citrate or heparin) where selected and grouped, which re-
sulted in a 5 × 25, 052 document term matrix. Again, a VSM approach is not
able to produce meaningful similarities, whereas LSA with k=2 (we would expect
the document/term matrix to capture two semantic topics: plasma and serum)
yields easily interpretable results. Those similarity scores are visualized and an-
notated in figure 2: VSM (on the left) only shows the (trivial) high similarities
of one sample/anticoagulation group with itself, whereas LSA is able to resolve
the similarity of the 4 groups of peptides originating from the plasma samples.
Obviously the very low similarity between plasma and serum is caused by the
fact that the serum samples do not contain any proteins (and therefore peptides)
associated with clotting, such as Fibrin.

Plasma Serum

sodium citrate

EDTA

heparin

prior coagulation

citrate-phosphate-dextrose

Plasma Serum

Fig. 2. : HUPO sample similarity matrices, for the VSM on the left and LSA with k =2
on the right. This grayscale map visualizes the differences in similarities resulting from
a VSM and LSA (k=2) analysis on all peptides from the HUPO PPP dataset. Peptides
found by any of the 95 experiments are grouped by the biological sample type (plasma
or serum) - annotated above - and the anticoagulation method used - annotated to the
left.

3.3 Interpretation of the peptide-based LSA

Literature suggests that a comparison based on exact matching of peptide se-
quences dramatically underestimates the overlap between experiments [17]. There-
fore, it is particularly interesting to see how LSA groups peptides to latent topics,
which are the dimensions of the latent space.



This analysis can be carried out by studying the term representation UkΣK .
A k-means clustering [23,24] performed on the rows of UkΣK allows detection of
these related terms. Upon analysis of the resulting groups, two distinct patterns
emerge. First of all, LSA resolves peptides distinguished only by the occurrence
of isobaric amino acids (e.g.: isoleucine/leucine). Since these amino acids are in-
distinguishable to the mass spectrometer, their substitution does not affect the
semantic representation of the containing peptide sequence. Second, peptides
that represent subsequences of longer peptides, either through missed cleavages
(e.g.: YLGNATAIFFLPDEGK and YLGNATAIFFLPDEGKLQHLENELT), in-
source decay or in vivo proteolytic degradation (e.g.: YLGNATAIFFLPDEGK-
LQHLENELT and YLGNATAIFFLPDEGKLQHLENELTHD) are all grouped
together with the longer sequence. These two effects can be compared to syn-
onyms in natural language.

4 Discussion/Conclusion

We have demonstrated a novel application of LSA by comparing peptide lists
derived from many different proteomics experiments performed on the same
tissue. By applying LSA to the data from the Hupo PPP study, we were able
to show that this method can handle the very diverse and heterogeneous data
arising from proteomics experiments and compute meaningful similarities.

A large amount of experiments have a high similarity after LSA, which shows
the strength of the method. However, some experimental setups, namely 2D-
PAGE and shotgun approaches, strongly bias the set of observed peptides, which
LSA cannot compensate for. Our results confirm visually, that if the goal of a
project is to achieve maximal proteome coverage for a particular sample, shotgun
proteomics experiments, repeated over multiple replicates achieve the most gain.
2D-PAGE analysis should not be disregarded as an analytical tool however, since
it can complement a substantial fraction of unique identifications. Due to the
high internal reproducibility of 2D-PAGE analyses as performed in the HUPO
PPP, it seems that carrying out many replicates of this technology does not
necessarily lead to a proportional increase in novel peptide identifications. In
the specific case of plasma, the influence of various depletion techniques is also
of interest. While methods employing top-6 depletion contributed more than
50% of the identifications, about 10% of all proteins were only found when no
depletion was used at all.

The relatively simple task of comparing different sample types demonstrates
that the fundamental difficulties arising from the origin of the data could be
overcome through the utilization of an LSA analysis and its key principle of pep-
tide/experiment association data representation in a lower dimensional ’latent
space’. It is important to consider that the latent semantic analysis employed
here greatly benefits from the large number of varying experimental repetitions
on the same sample.



4.1 Interpretation of the semantic associations

An interesting finding is the ability of LSA to detect semantic relationships
between apparently unrelated sets of peptide sequences, based solely on co-
occurrences within experiments. We have found that at least some of these
semantic links can be explained by underlying methodological or biological con-
cepts and can be compared to synonyms found in natural language. The applica-
tion of LSA to replicated shotgun experiments might help to alleviate one of the
primary caveats of peptide-centric proteomics: the protein inference problem.

Since the semantic structures underlying protein lists (at least in part) repre-
sent entities of biological interest, the nature of the semantic relationships that
occur at that level are also of considerable interest. Potential candidates of bio-
logical importance include protein complexes or protein components of the same
pathway.

4.2 Future perspectives

It is clear from these findings that large collections of heterogeneous proteomics
datasets can be mined relatively easily to obtain valuable information with LSA.
The analysis carried out opens many paths for further investigations. By ex-
tending the analysis to include other tissue data sets (for instance the HUPO
Brain Proteome Project (HUPO BPP) [9], and eventually any available pro-
teomics data) and by carefully choosing an appropriate value for k, the focus
of investigation could be shifted from the fine-grained effects resulting from the
application of different technology platforms, to the course-grained distinctions
derived from differences in tissue type, disease state or developmental stage.

It is of significant interest to get a better understanding of the semantic
similarities peptide share in the latent semantic space resulting from singular
value decomposition. Other methods, especially ’probabilistic latent semantic
indexing’ described in [11] which has a solid statistical foundation should be
examined.
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