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Introduction
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Vector Space Motivation

High-dimensional

i Feature Space

Mapping into
high-dimensional Feature Space

= QObservation: data points cannot fill the space =>
Data lie on one or more low-dimensional manifolds
» Real data exhibit patterns and regularities

Data Objects
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Example
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= The red points form a
1d manifold in the 2d
space.

= A low dimensional
manifold must contain
sufficient number of
points that are densely

X 3’1@,};&;'“’;5
packed i

* density-based methods?
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Dimension Induced Clustering
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= How to separate river and
+ River and lake have same density .

» Both are spatially connected : /-\/

+ But they differ in

= Density is still necessary for separating from
surroundings
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Dimension Induced Clustering
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* Problem
- Given a set of data objects with a distance function
- Find dense subsets of objects with
similar dimensionality
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Indexi

- efficient approximation of nearest neighbor

for metric data,

assumes bounded intrinsic dimensionality
[Krauthgammer & Lee, ICALP 2004]

= Mixture Models of PCA

* needs average dimensionality as parameter
[Aggarwal & Yu, SIGMOD 2002], [P. Agarwal et al, PODS 2004]
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What is dimension?

= Approach using representation

* dimension is the number of coordinates

» decompose data space into set of
linear sub-spaces densely filled with points

= Drawbacks
 assumes vector spaces
+ only linear manifolds
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What is dimension?
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= Approach using relative distances
* use distances between objects only
 extend notion of fractal dimension
= Advantages
« complex curved manifolds
 applicable to metric spaces
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= Correlation Dimension
« Set of objects X, |[X|=n

Distance function d: X x X — R
Points in the ball of radius » around x

B(x,r) = {y | y € X,d(z,y) < 7}
* Correlation Integral
- 1 | B(z, )|
C(r) = lim = y A
n z€X 7
 Correlation Dimension

log C(r)—log C(r")
log r—logr’

deorr = IiM
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Fractal Dimension

e
D D D S S P PR DR PO

= |ntuition behind definition
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Fractal Dimension
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= In real life, datasets are finite

C(r)= % Z—‘B(X’r]

xeX n

= Calculation of correlation dimension:
fit a line on the log-log plot of C(r)
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Fractal Dimension
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Ilog-log neighber count for 1-D data

1D Data | =109 C () ~log C (')
_— g log r—logr’
loar
log-log neighbor count for 2-D data
2D Data
—

log C{r)
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Fractal Dimension
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= What if the data is non-homogeneous ?

[ slope =
51
|
= ope =1
i
logr
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Local Fractal Dimension
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= However, looking at A and B individually

log|B(A.r)| and log|B(B,r)| vs. log r

*

>
w
log C(r)

' Iogr '
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Local Fractal Dimension
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= Local Growth Curve
Gu(r) = lim_S|B(a,r)|
n—00 n

= | ocal Correlation Dimension

log G (r)—log G (")
logr—logr/

r,r'—0

= For finite data G,(r)= %IB(x,")I
d. is estimated by fitting a line
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Local Fractal Dimension
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o ° o Iog Gflf(r)
. ’ log 3
# log 2 1
° ° log 1 }
bi-

logr

= Linear Growth Model of an object x;
Ly, (logr) = d;logr + b;
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Linear Growth Model
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L.,(logr) = d;logr + b;

= d. : rate of growth of log G,(r) — dimensionality
= b, :value of L (log r) at radius 1-- density
= L (log r*) : density at radius r*

= The model can be summarized with two values:
d;and c; = L (log r*)

« how do we select r* ?
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Selecting r*
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= |dea: choose r* such that ¢s and d;’s are
un-correlated

LEMMA 1. The choice of v* for which d; and ¢; are un-
correlated is given by

S™(di — d)(b; — b)

S(di —d)?

logr™ = —
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Local Representation

= Local Representation of point x;
l(aja) - (d?'-aci‘:)
Ci — L:L'-;_ (log T*)

= Captures the of the world for each
point
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The fitting interval
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Ly, (logr) = d;logr + b;

= The linear growth model is defined over a
subset of the neighbors of x

« Clipping from above '*“[ o4
= Clipping from below { o
1g®
— ' el
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Algorithm
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Algorithm 1 The DIC algorithm
Input: Dataset X of n points, number of clusters b
Ouput: Clustering of X into b clusters
I: for all i € {1,..., n} do
2:  Compute k-th NN of x;, for k = kmin . . . kmax
3:  Compute the local representation (d;,c¢;) of ;.
4: end for
5: Xor={(di,c1),..., (dn,cn)}
6: Cluster the set X g into b clusters,
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Experiments
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= Detection of m-flats in high-dimensional space

"

Dimensionality

 Dimensionality
(a) 40d flat in 50d space
Classification error = 1.2%
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(a) 2d flat in 3d space
Classification error = 8.1%
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Reachability density

Comparison to Optics
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= Optics: density based hierarchical clustering

OPTICS -- 2D In 3D OPTICS - 40D In 50D
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Ordering of the data points Ordering of the data points
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Low Rank Sub-Matrix
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= Combinatorial low-rank sub-matrix in a random Matrix
= Apply DIC to set of columns and set of rows

= Final Clusters are the Cartesian product of row and
column clusters

Rank 2
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Experiments

e
B B S S I S SR B I SV

= Gene Expression Data (gene clustering)

Yeast Data

‘Yeast Data, Density Contours

Density
Density

N " " " B 3 . [] " 7 [
Dimensionality Dimensionality

Yeast data from George Church, Harvard
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Experiments
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. Gene Expression Data (gene clusterlng)

Yeast Data, Density

Yea st Dala Dlmensm nall!y

Densﬂ)’ : DII’TIEI'ISIOHB[IW )

= Neither density nor dlmenS|onaI|ty alone
can detect the structure
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Conclusion
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» Find subsets with low fractal dimensionality

= | ocal Representation
* local fractal dimensionality
* local density

= Visualization of the cluster structure
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