Dimension Induced Clustering

Aris Gionis Alexander Hinneburg Spiros Papadimitriou Panayiotis Tsaparas HIIT, University of Helsinki Martin Luther University, Halle Carnegie Melon University HIIT, University of Helsinki

SIGKDD 2005

Page 1

Linear Growth Model

Algorithm

Algorithm 1 The DIC algorithm

Input: Dataset X of n points, number of clusters b**Ouput:** Clustering of X into b clusters

1: for all $i \in \{1, ..., n\}$ do

- 2: Compute k-th NN of x_i , for $k = k_{\min} \dots k_{\max}$
- 3: Compute the local representation (d_i, c_i) of x_i .

Page 21

- 4: end for
- 5: $X_{LR} = \{(d_1, c_1), \dots, (d_n, c_n)\}$
- 6: Cluster the set X_{LR} into b clusters.

SIGKDD 2005

Conclusion

- Find subsets with low fractal dimensionality
- Local Representation
 - local fractal dimensionality
 - local density
- Visualization of the cluster structure

SIGKDD 2005

Page 27