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Introduction

Observation: data points cannot fill the space  =>
Data lie on one or more low-dimensional manifolds
Real data exhibit patterns and regularities

Data ObjectsData Objects

Mapping into 
high-dimensional Feature Space

Vector Space Motivation

High-dimensional 
Feature Space
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Example
The red points form a 
1d manifold in the 2d 
space.

A low dimensional
manifold must contain
sufficient number of 
points that are densely
packed
• density-based methods? 
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Dimension Induced Clustering

How to separate river and lake
• River and lake have same density
• Both are spatially connected
• But they differ in dimensionality

Density is still necessary for separating lake from
surroundings
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Dimension Induced Clustering

• Problem
- Given a set of data objects with a distance function 
- Find dense subsets of objects with 
similar dimensionality
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Other Applications

Indexing
• efficient approximation of nearest neighbor 

for metric data, 
assumes bounded intrinsic dimensionality
[Krauthgammer & Lee, ICALP 2004]

Mixture Models of PCA
• needs average dimensionality as parameter

[Aggarwal & Yu, SIGMOD 2002], [P. Agarwal et al, PODS 2004]
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What is dimension?

Approach using representation
• dimension is the number of coordinates
• decompose data space into set of 

linear sub-spaces densely filled with points
Drawbacks
• assumes vector spaces
• only linear manifolds
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What is dimension?

Approach using relative distances
• use distances between objects only
• extend notion of fractal dimension

Advantages
• complex curved manifolds
• applicable to metric spaces
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Fractal Dimension

Correlation Dimension
• Set of objects  X, |X|=n

Distance function                          
Points in the ball of radius r around x

• Correlation Integral

• Correlation Dimension   
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Fractal Dimension

Intuition behind definition

dcorr = 1 dcorr = 2
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Fractal Dimension

In real life, datasets are finite

Calculation of correlation dimension:        
fit a line on the log-log plot of C(r)
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Fractal Dimension

1D Data

2D Data

d=
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Fractal Dimension

What if the data is non-homogeneous ?
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Local Fractal Dimension

However, looking at A and B individually
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Local Fractal Dimension

Local Growth Curve

Local Correlation Dimension

For finite data 
dx is estimated by fitting a line
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Local Fractal Dimension

Linear Growth Model of an object xi
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Linear Growth Model

di : rate of growth of log Gx(r) – dimensionality
bi : value of Lx(log r) at radius 1-- density
Lx(log r*) : density at radius r*

The model can be summarized with two values: 
di and ci = Lx(log r*)
• how do we select r* ?
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Idea: choose r* such that ci’s and di’s are 
un-correlated

Selecting r*
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Local Representation of point xi

Captures the view of the world for each
point

Local Representation
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The fitting interval

The linear growth model is defined over a 
subset of the neighbors of x

Clipping from above
Clipping from below
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Algorithm
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Experiments

Detection of m-flats in high-dimensional space

(a) 2d flat in 3d space
Classification error = 8.1%

(a) 40d flat in 50d space
Classification error = 1.2%
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Comparison to Optics

Optics: density based hierarchical clustering
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Low Rank Sub-Matrix
Combinatorial low-rank sub-matrix in a random Matrix
Apply DIC to set of columns and set of rows
Final Clusters are the Cartesian product of row and 
column clusters

Rank 2
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Experiments

Gene Expression Data (gene clustering)

Yeast data from George Church, Harvard
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Experiments
Gene Expression Data (gene clustering)

Neither density nor dimensionality alone 
can detect the structure
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Conclusion

Find subsets with low fractal dimensionality
Local Representation
• local fractal dimensionality
• local density

Visualization of the cluster structure


