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Abstract. Searching and mining nuclear magnetic resonance (NMR)-
spectra of naturally occurring products is an important task to investi-
gate new potentially useful chemical compounds. We develop a set-based
similarity function, which, however, does not sufficiently capture more
abstract aspects of similarity. NMR-spectra are like documents, but con-
sists of continuous multi-dimensional points instead of words. Probabilis-
tic semantic indexing (PLSI) is an retrieval method, which learns hidden
topics. We develop several mappings from continuous NMR-spectra to
discrete text-like data. The new mappings include redundancies into the
discrete data, which proofs helpful for the PLSI-model used afterwards.
Our experiments show that PLSI, which is designed for text data cre-
ated by humans, can effectively handle the mapped NMR-data originat-
ing from natural products. Additionally, PLSI combined with the new
mappings is able to find meaningful ”topics” in the NMR-data.

1 Introduction

Nuclear magnetic resonance (NMR)-spectra are an important finger printing
method to investigate the chemical structure of organic compounds from plants
or other tissues. Two-dimensional-NMR spectroscopy is able to capture the in-
fluences of two different atom types at the same time (e.g. 1H, hydrogen and
13C carbon). The result of an 2D-NMR experiment can be seen as an inten-
sity function measured over two variables3. Regions of high intensity are called
peaks, which contain the real information about the underlying molecular struc-
ture. The usual visualizations of 2D-NMR spectra are contour plots as shown
in figure 1. An ideal peak would register as a small dot, however, due to the
limited resolution available (dependent on the strength of the magnetic field)
multiple peaks may appear as a single merged object with non-convex shape. In
the literature peaks are noted by their two-dimensional positions without any in-
formation about the shapes of the peaks. Content-based similarity search of 2D-
NMR spectra would be a valuable tool for structure investigation by comparing
spectra of unknown compounds with a set of spectra, for which the structures
are known. While the principle is already in use for 1D-NMR spectra [5,4,1],
3 The measurements are in parts per million (ppm).



Fig. 1. 2D-NMR spectrum of
quercetrin. The plots at the axes
are the corresponding 1D-NMR
spectra.

to the best of our knowledge, no effective sim-
ilarity search method is known for 2D-NMR-
spectra.

Simplified, a 2D-NMR spectrum is a set of
two-dimensional points. There is an analogy
to text retrieval, where documents are usu-
ally represented as sets of words. Latent space
models [3,2] were successfully used to model
documents and thus improved the quality of
text retrieval.

The contribution of this paper are meth-
ods to map 2D-NMR spectra to discrete
text-like data, which can be analyzed and
searched by any text retrieval method. Addi-
tionally, we propose a simple similarity func-
tion, which operates directly on the peaks of
the spectra and serves as bottom line benchmark in the experimental evaluation.
We demonstrate on real data that our mapping methods in combination with
PLSI [3] improve the quality of similarity search of 2D-NMR spectra. Our results
indicate at a larger scope that text retrieval and mining methods, designed for
text data created by humans, in combination with appropriate mapping func-
tions may yield the potential to be also successful for experimental data from
naturally occurring objects. In this paper we consider exemplarily 1H, 13C one-
bond heteronuclear shift correlation 2D-NMR spectra.

The paper is structured as follows: first, in section 2, we define 2D-NMR
spectra and propose a simple similarity function. In section 3, we propose the
new mapping functions for 2D-NMR spectra. In section 4, we describe our ex-
perimental evaluation and section 5 concludes the paper.

2 Directly Computing Similarity

A two-dimensional NMR-spectrum of an organic compound captures many struc-
tural characteristics like rings and chains. Most important are the positions of
the peaks. As the shape of a peak and its height (intensity) strongly varies over
different experiments with the same compound, the representation of a spec-
trum includes the peak positions only. A 2D NMR-spectrum A is defined as a
set of points {x1, . . . , xn} ⊂ R2. The |·| function denotes the size of the spectrum
|A| = n. A peak matches other peaks only within a certain spatial neighborhood,
which is defined by the ranges α and β. A peak x from spectrum A matches a
peak y from spectrum B, if |x.c− y.c| < α and |x.h− y.h| < β, where .c and .h
denote the NMR measurements for carbon and hydrogen respectively. Note that
a single peak of a spectrum can match several peaks from another spectrum.
Given two spectra A and B, the subset of peaks from A which find matching
partners in B is denoted as matches(A,B) = {x : x ∈ A,∃y ∈ B : x matches y}.
The function matches is not symmetric, but helps to define a symmetric sim-



ilarity measure Let be A and B two spectra and A′ = matches(A,B) and
B′ = matches(B, A), so the similarity is defined as sim(A,B) = |A′|+|B′|

|A|+|B| . The
measure is close to one if most peaks of both spectra are matching peaks. Oth-
erwise the similarity drops towards zero.

3 Mapping 2D-NMR-Spectra to Document-like Data

Like a 2D-NMR spectrum consists of a set of peaks, a document consists of
many words, which typically are modeled as a set. So assuming a 2D-NMR
spectrum can be transformed into a text-like object by mapping the continuous
2D peaks to discrete variables, a variety of text retrieval models can be applied.
However, it is an open question, whether models designed for quite different
data, namely texts created by humans, are effective on data which comes for
naturally occurring compounds and thus do not include human design patterns.
Because the patterns which are important to 2D-NMR spectra similarity search
might be quite different from pattern found in document collections, we chose
a retrieval model which is capable of learning relevant patterns from training
data. Probabilistic latent semantic indexing (PLSI) introduced in [3] is a model
for text retrieval with such a learning ability. For 2D-NMR spectra similarity
search it is not clear, what is the best way to map the peaks of a spectrum to
discrete words.

In this section we propose different methods to map the peaks of an NMR-
spectrum from the continuous space of measurements to a discrete space of
words. With the help of such a mapping, methods for text retrieval like PLSI
can be directly applied. However, the quality of the similarity search depend on
how the peaks are mapped to discrete words.

3.1 Grid-based Mapping

First, we introduce a simple grid-based method, on which we will build more
sophisticated methods. A simple grid-based method is to partition each of the
both axis of the two-dimensional peak space into intervals of same size. Thus,
an equidistant grid is induced in the two-dimensional peak space and a peak
is mapped to exactly one grid cell it belongs to. When a grid cell is identi-
fied by a discrete integer vector consisting of the cells coordinates the map-
ping of a peak x ∈ R2 is formalized as g(x) = (gc(x.c), gh(x.h)) with gc(x.c) =⌊

x.c
wc

⌋
, gh(x.h) =

⌊
x.h
wh

⌋
. The quantities wc and wh are the extensions of a cell

in the respective dimensions, which are parameters of the mapping. The grid is
centered at the origin of the peak space. The cells of the grid act as words. The
vocabulary generated by the mapped peaks consists of those grid cells which
contain at least one peak. Empty grid cells are not included in the vocabulary.
A word consists of a two-dimensional discrete integer vector.

Unfortunately the grid-based mapping has two disadvantages. First, close
peaks may be mapped to different grid cells. This may lead to poor matching
of related peaks in the discrete word space. Second, peaks of new query spectra



are ignored when they are mapped to grid cells not included in the vocabulary.
So some information from the query is not used for the similarity search which
may weaken the performance.

3.2 Redundant Mappings

We propose three mappings which introduce certain redundancies by mapping
a single peak to a set of grid cells. The redundancy in the new mappings shall
compensate for the drawbacks of the simple grid-based mapping.

Shifted Grids The first disadvantage of the simple grid-based method is that
peaks which are very close in the peak space may be mapped to different grid
cells, because a cell border is between them. So proximity of peaks does not
guaranty that they are mapped to the same discrete cell.

Instead of mapping a peak to a single grid cell, we propose to map it to a
set of overlapping grid cells. This is achieved by several shifted grids of the same
granularity. In addition to the base grid some grids are shifted into the three
directions (1, 0)(0, 1)(1, 1). One grid is shifted in each of the directions by half
of the extent of a cell. In general, there may be k − 1 grids shifted by fractions
of 1/k, 2/k, . . . , k−1/k of the extent of a cell in each direction respectively. For the
mapping of the peaks to words which consist of cells from the different grids,
two additional dimensions are needed to distinguish (a) the k − 1 grids in each
direction and (b) the directions themselves. The third coordinate represents the
fraction by which a cell is shifted and the fourth one represents the directions by
the following coding: value 0 is (0,0), 1 is (1,0), 2 is (0,1) and 3 is (1,1). So each
peak is mapped to a finite set of four-dimensional integer vectors. The mapping
of a peak x ∈ R2 is

s(x) = {(gc(x.c), gh(x.h), 0, 0)} ∪
k−1⋃

i=1

{
(gc(x.c + i/k · wc), gh(x.h), i, 1),

(gc(x.c), gh(x.h + i/k · wh), i, 2), (gc(x.c + i/k · wc), gh(x.h + i/k · wh), i, 3)
}

Thus, a single peak is mapped to 3(k − 1) + 1 words. A nice property of the
mapping is that there exists at least one grid cell for every pair of matching
peaks both peaks are mapped to.

Different Resolutions The second disadvantage of the simple grid-based map-
ping comes from the fact that empty grid cells (not occupied by at least one
peak from the set of training spectra) do not contribute to the representation
to be learned for similarity search. So peaks of new query spectra mapped to
those empty cells are ignored. That effect can be diminished by making the grid
cells larger. However, this is counterproductive for the precision of the similarity
search due to the coarser resolution. Thus, there are two contradicting goals,
namely (a) to have a fine resolution to handle subtle aspects in the data and (b)
to cover at the same time the whole peak space by a coarse resolution grid so
that no peaks of a new query spectrum have to be ignored.



Instead of finding a tradeoff for a single grid, both goals can be served by
combining simple grids with different resolutions. Given l different resolutions
{(w(1)

c , w
(1)
h ), . . . , (w(l)

c , w
(l)
h )} a peak is mapped to l grid cells of different sizes. In

order to distinguish between the different grids an additional discrete dimension
is needed. So the mapping function is r(x) =

⋃l
i=1{(g(i)

c (x), g(i)
h (x), i)}. with

g
(i)
c and g

(i)
h use w

(i)
c and w

(i)
h respectively. Note that a hierarchical, quad-tree

like partitioning is a special case of the proposed mapping function with w
(i)
c =

2i−1wc and w
(i)
h = 2i−1wh.

Combining shifted Grids with different Resolutions Both methods are
designed to compensate for different drawbacks of the simple grid mapping. So
it is natural to combine both mappings. The parameters of such a mapping are
the number of shifts k, the number of different grid cell sizes l and the actual
sizes {(w(1)

c , w
(1)
h ), . . . , (w(l)

c , w
(l)
h )}. Beside the two coordinates for the grid cells,

additional discrete dimensions are needed for the shift, the direction and the
grid resolution. Using the the definitions from above the mapping function of
the combined mapping of a peak is

c(x) =
l⋃

i=1

{(
g(i)

c (x.c), g(i)
h (x.h), 0, 0, i

)}∪
k−1⋃

j=1

{(
g(i)

c (x.c+i/k·w(i)
c ), g(i)

h (x.h), j, 1, i
)
,

(
g(i)

c (x.c), g(i)
h (x.h+i/k·w(i)

h ), j, 2, i
)
,
(
g(i)

c (x.c+i/k·w(i)
c

)
, g

(i)
h (x.h+i/k·w(i)

h ), j, 3, i
)}

Thus a single peak is mapped to l(3(k − 1) + 1) words. In the next section all
mappings are compared with respect to the effectiveness for similarity search.

4 Evaluation and Results

The data used are mostly secondary metabolites of plants and fungi. The sub-
stances cover a representative area of naturally occurring compounds The data-
base includes about 587 spectra, each has about 3 to 35 peaks. The total number
of peaks is 7029. Ten small groups of chemically similar compounds are included
in the database for controlled experiments. The groups with the number of spec-
tra and number of peaks are listed in figure 2 left. The peak space with all peaks
in the database is shown in figure 2 right.

Comparison The different methods for similarity search of 2D-NMR-spectra
are compared using recall-precision curves. The search quality is high, when both
– recall and precision – are high. So the upper curves are the best.

First, the direct similarity function is tested. Each spectrum from the ten
groups is used as a query while the rest of the respective group should be found
as answers. The plot in figure 3a shows averages over all queries. The size of
the matching neighborhood is varied over α = 4, 6, 8, 10 and β = 0.4, 0.6, 0.8, 1.0



Group #Spectra #Peaks

Pregnans 11 17–26
Anthrquinones 8 3–6
Aconitanes 8 22–26
Triterpenes 17 24–31
Flavonoids 18 5–8
Isoflavonoids 16 5–7
Aflatoxins 8 8–10
Steroids 12 16–23
Cardenolides 15 18–25
Coumarins 19 3–8
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Fig. 2. Left: Groups with number of spectra and range of peaks, Right: Distribution
of the peaks of all spectra with the distribution within the groups of flavonoids and
steroids.

respectively. As expected, the search quality is low. In fact on average, it fails
to deliver a spectrum from the answer set in the top ranks which is indicated by
the hill-like shape of the curves.

Next, a series of experiments is conducted using our proposed mapping func-
tions in combination with PLSI. All curves are averages from cross validation
over all groups. As the groups are very small the leave-one-out testing scheme is
employed. The results for the simple grid-based mapping are shown in figure 3b.
The sizes of the grid cells are varied over wc = 4, 6, 8, 10 and wh = 0.4, 0.6, 0.8, 1.0
respectively. The results are already much better than those for the direct sim-
ilarity function. Small sizes give the best results. The use of shifted grids im-
proves the performance substantially over simple grids, as shown in figure 3c,d.
The plots show the experiments for k = 2, 3. The quality of wc = 4 and wh = 0.4
with k = 2 and k = 3 are almost identical. However, the vocabulary for k = 2 is
much smaller, so the model has much less parameters to train. In practise, the
smaller model with k = 2 shifts is favored.

Also the mapping based on grids with different grid cell sizes are assessed.
Due to lack of space, only the results from combinations of w

(1)
c = 4, w

(1)
h = 0.4

with other sizes are reported, because those performed best among all combina-
tions. Figure 3e shows that also the mapping based on different grid cell sizes
outperforms the simple grid-based mapping. But the improvement is not as
much as for shifted grids. The set of resolutions {(w(1)

c = 4, w
(1)
h = 0.4), (w(2)

c =
12, w

(2)
h = 1.2)} performs best.

Last, experiments are performed with the combination of the previous two
mappings, namely a combination of shifted grids with those of different resolu-
tions. The performance results are shown in figure 3f which indicates that the
best combination, namely the resolution set {(w(1)

c = 4, w
(1)
h = 0.4), (w(2)

c =
10, w

(2)
h = 1.0)} with k = 2 shifts, outperforms both previous mappings. This

is more clearly seen in figure 3g which compares the best performing settings
from the above experiments. In summery, the mappings based on shifted grids
and those with different resolutions perform significantly better than the sim-
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Fig. 3. Average recall-precision curves from leave-one-out cross validation experiments

ple grid-based mapping. Finally, the combination of shifted grids and grids with
different resolutions is even better than the individual mappings.

The last point is the number of hidden aspects. For the experiments reported
so far, the PLSI model is used with 20 hidden aspects. Also different numbers
of aspects are tested using the best combination of mappings. Figure 3h shows
that the performance with 10 aspects drops a bit The increase in the num-
bers of aspects from 20 to 32 is only marginally reflected in increase of search
performance. So 20 is a reasonable number of aspects for the given data. In
conclusion, the results prove experimentally that the PLSI model, designed for
text retrieval, is indeed effective for similarity search of 2D-NMR spectra from
naturally occurring compounds.

Analysis of the latent Aspects We analyzed the latent aspects learned by
the PLSI model using the mapping based on the combination of shifted grids
with different resolutions. The grid cells (words) with high probability for a
given aspect are plotted together to describe the aspects meaning. Some aspects
specialized on certain regions in the peak space which are typical for distinct
molecule fragments like aromatic rings or alkane skeletons. However, also more
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Fig. 4. (a) Main aspect of the flavonoid group which includes the region of aromatic
rings (upper right cluster) and the region for oxygen substituents (lower left cluster).
The gray shades indicate the strength of the association between grid cell and as-
pect. (b) An example of an flavonoid (3’-Hydroxy-5,7,4’-trimethoxyflavone) where the
aromatic rings and the oxygen substituents (methoxy groups in this case) are marked.

subtle details of the data are captured by the aspect model. For example, the
main aspect for the group of flavonoids specializes not only on the region for
aromatic rings which are the main part of flavonoids. It also includes a smaller
region which indicates oxygen substitution. A closer inspection of the database
revealed that indeed many of the included flavonoids do have several oxygen
substituents. The main aspect for flavonoids with the respective peak distribu-
tion of the flavonoid group is shown in figure 4a. We believe a detailed analysis
of the aspects found by the model may help to investigate unknown structures
of new substances when their NMR-spectra are included in the training set.

5 Conclusion

We proposed redundant mappings from continuous 2D-NMR spectra to discrete
text-like data which can be processed by any text retrieval method. We demon-
strated experimentally the effectiveness of the our mappings in combination with
PLSI. Further analysis revealed that the aspects found by PLSI are chemically
relevant. In future research we will study more recent text models like LDA [2]
in combination with our mapping methods.
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