
Chapter 9:
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wrapper generation
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Introduction
A large amount of information on the Web is 
contained in regularly structured data objects. 

often data records retrieved from databases. 
Such Web data records are important: lists of 
products and services.
Applications: e.g., 

Comparative shopping, meta-search, meta-query, 
etc. 

We introduce:
Wrapper induction (supervised learning)
automatic extraction (unsupervised learning)
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Two types of data rich pages

List pages
Each such page contains one or more lists of data 
records. 
Each list in a specific region in the page
Two types of data records: flat and nested

Detail pages
Each such page focuses on a single object.
But can have a lot of related and unrelated 
information
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Extraction results
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The data model
Most Web data can be modeled as nested 
relations

typed objects allowing nested sets and tuples. 
An instance of a type T is simply an element of 
dom(T).
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An example nested tuple type

Classic flat relations are of un-nested or flat 
set types. 
Nested relations are of arbitrary set types. 
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Type tree
A basic type Bi is a leaf tree, 
A tuple type [T1, T2, …, Tn] is a tree rooted at a 
tuple node with n sub-trees, one for each Ti.
A set type {T} is a tree rooted at a set node with 
one sub-tree. 

Note: attribute names are not included in the type tree. 
We introduce a labeling of a type tree, which is 
defined recursively: 
If a set node is labeled φ, then its child is labeled 
φ.0, a tuple node. 
If a tuple node is labeled φ, then its n children are 
labeled φ.1, …, φ.n. 
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Instance tree
An instance (constant) of a basic type is a leaf tree.
A tuple instance [v1, v2, …, vn] forms a tree rooted 
at a tuple node with n children or sub-trees 
representing attribute values v1, v2, …, vn. 
A set instance {e1, e2, …, en} forms a set node with 
n children or sub-trees representing the set 
elements e1, e2, …, and en.

Note: A tuple instance is usually called a data record
in data extraction research.
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HTML mark-up encoding of data

There are no designated tags for each type as 
HTML was not designed as a data encoding 
language. Any HTML tag can be used for any type. 
For a tuple type, values (also called data items) of 
different attributes are usually encoded differently 
to distinguish them and to highlight important items. 
A tuple may be partitioned into several groups or 
sub-tuples. Each group covers a disjoint subset of 
attributes and may be encoded differently. 
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HTML encoding (cont …)
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More on HTML encoding
By no means, this mark-up encoding covers all 
cases in Web pages. 

In fact, each group of a tuple type can be further divided. 

We must also note that in an actual Web page the 
encoding may not be done by HTML tags alone. 

Words and punctuation marks can be used as well. 
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Wrapper induction
Using machine learning to generate extraction rules. 

The user marks the target items in a few training pages. 
The system learns extraction rules from these pages. 
The rules are applied to extract items from other pages. 

Many wrapper induction systems, e.g., 
WIEN (Kushmerick et al, IJCAI-97), 
Softmealy (Hsu and Dung, 1998), 
Stalker (Muslea et al. Agents-99), 
BWI (Freitag and Kushmerick, AAAI-00), 
WL2 (Cohen et al. WWW-02).

We will only focus on Stalker, which also has a 
commercial version, Fetch.
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Stalker: A hierarchical wrapper induction 
system

Hierarchical wrapper learning
Extraction is isolated at different levels of hierarchy
This is suitable for nested data records (embedded list)

Each item is extracted independent of others. 

Each target item is extracted using two rules
A start rule for detecting the beginning of the target item.
A end rule for detecting the ending of the target item.
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Hierarchical representation: type tree
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Data extraction based on EC tree
The extraction is done using a tree structure called the 
EC tree (embedded catalog tree). 
The EC tree is based on the type tree above.

To extract each target item (a node), the wrapper 
needs a rule that extracts the item from its parent.  
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Extraction using two rules
Each extraction is done using two rules, 

a start rule and a end rule. 
The start rule identifies the beginning of the 
node and the end rule identifies the end of 
the node. 

This strategy is applicable to both leaf nodes 
(which represent data items) and list nodes. 

For a list node, list iteration rules are 
needed to break the list into individual data 
records (tuple instances). 
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Rules use landmarks

The extraction rules are based on the idea of 
landmarks. 

Each landmark is a sequence of consecutive
tokens. 

Landmarks are used to locate the beginning 
and the end of a target item. 
Rules use landmarks
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An example
Let us try to extract the restaurant name “Good Noodles”. 
Rule R1 can to identify the beginning :

R1: SkipTo(<b>) // start rule
This rule means that the system should start from the 
beginning of the page and skip all the tokens until it sees the 
first <b> tag. <b> is a landmark. 
Similarly, to identify the end of the restaurant name, we use:

R2: SkipTo(</b>)  // end rule
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Rules are not unique
Note that a rule may not be unique. For example, 
we can also use the following rules to identify the 
beginning of the name:
R3: SkiptTo(Name _Punctuation_ _HtmlTag_)

or R4: SkiptTo(Name) SkipTo(<b>)

R3 means that we skip everything till the word 
“Name” followed by a punctuation symbol and then 
a HTML tag. In this case, “Name _Punctuation_
_HtmlTag_” together is a landmark. 

_Punctuation_ and _HtmlTag_ are wildcards. 
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Extract area codes
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Learning extraction rules
Stalker uses sequential covering to learn 
extraction rules for each target item. 

In each iteration, it learns a perfect rule that 
covers as many positive examples as possible 
without covering any negative example. 
Once a positive example is covered by a rule, it is 
removed. 
The algorithm ends when all the positive 
examples are covered. The result is an ordered 
list of all learned rules. 
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The top level algorithm
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Example: Extract area codes
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Learn disjuncts
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Example

For the example E2 of Fig. 9, the following 
candidate disjuncts are generated: 
D1: SkipTo( ( )
D2: SkipTo(_Punctuation_)

D1 is selected by BestDisjunct
D1 is a perfect disjunct. 
The first iteration of LearnRule() ends. E2 
and E4 are removed 



CS511, Bing Liu, UIC 32

The next iteration of LearnRule
The next iteration of LearnRule() is left with 
E1 and E3. 
LearnDisjunct() will select E1 as the Seed 
Two candidates are then generated: 

D3: SkipTo( <i> )
D4: SkipTo( _HtmlTag_ )

Both these two candidates match early in the 
uncovered examples, E1 and E3. Thus, they 
cannot uniquely locate the positive items. 
Refinement is needed. 
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Refinement
To specialize a disjunct by adding more
terminals to it. 
A terminal means a token or one of its 
matching wildcards. 
We hope the refined version will be able to 
uniquely identify the positive items in some 
examples without matching any negative item 
in any example in E. 
Two types of refinement

Landmark refinement 
Topology refinement 
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Landmark refinement

Landmark refinement: Increase the size of a 
landmark by concatenating a terminal. 

E.g.,
D5: SkipTo( - <i>)
D6: SkipTo( _Punctuation_ <i>)
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Topology refinement
Topology refinement: Increase the number of 
landmarks by adding 1-terminal landmarks, i.e., t
and its matching wildcards
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Refining, specializing
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The final solution
We can see that D5, D10, D12, D13, D14, D15, D18
and D21 match correctly with E1 and E3 and fail to 
match on E2 and E4. 
Using BestDisjunct in Fig. 13, D5 is selected as the 
final solution as it has longest last landmark (- <i>). 
D5 is then returned by LearnDisjunct(). 
Since all the examples are covered, LearnRule() 
returns the disjunctive (start) rule either D1 or D5

R7: either SkipTo( ( ) 
or SkipTo(- <i>)
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Summary

The algorithm learns by sequential covering
It is based on landmarks. 
The algorithm is by no mean the only 
possible algorithm. 
Many variations are possible. There are 
entirely different algorithms.
In our discussion, we used only the SkipTo() 
function in extraction rules. 

SkipUntil() is useful too.
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Identifying informative examples 

Wrapper learning needs manual labeling of training 
examples. 
To ensure accurate learning, a large number of 
training examples are needed. 
Manual labeling labor intensive and time consuming. 
Is it possible to automatically select (unlabelled) 
examples that are informative for the user to label. 

Clearly, examples of the same formatting are of limited use. 
Examples that represent exceptions are informative as they 
are different from already labeled examples. 
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Active learning

help identify informative unlabeled examples in 
learning automatically. 
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Active learning: co-testing

Co-testing exploits the fact that there are often 
multiple ways of extracting the same item. 
Thus, the system can learn different rules, forward
and backward rules, to locate the same item. 
Let us use learning of start rules as an example. 
The rules learned in Section 8.2.2 are called forward 
rules because they consume tokens from the 
beginning of the example to the end. 
In a similar way, we can also learn backward rules
that consume tokens from the end of the example to 
the beginning. 
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Co-testing (cont …)

Given an unlabeled example, both the forward rule 
and backward rule are applied. 
If the two rules disagree on the beginning of a target 
item in the example, this example is given to the 
user to label. 
Intuition: When the two rules agree, the extraction is 
very likely to be correct. 

When the two rules do not agree on the example, one of 
them must be wrong. 
By giving the user the example to label, we obtain an 
informative training example. 
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Wrapper maintenance 

Wrapper verification: If the site changes, does the 
wrapper know the change? 
Wrapper repair: If the change is correctly detected, 
how to automatically repair the wrapper? 
One way to deal with both problems is to learn the 
characteristic patterns of the target items. 
These patterns are then used to monitor the 
extraction to check whether the extracted items 
are correct. 
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Wrapper maintenance (cont …)

Re-labeling: If they are incorrect, the same patterns 
can be used to locate the correct items assuming 
that the page changes are minor formatting changes. 
Re-learning: re-learning produces a new wrapper. 

Difficult problems: These two tasks are extremely 
difficult because it often needs contextual and 
semantic information to detect changes and to find 
the new locations of the target items. 
Wrapper maintenance is still an active research area. 
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Automatic wrapper generation

Wrapper induction (supervised) has two main 
shortcomings:

It is unsuitable for a large number of sites due to 
the manual labeling effort. 
Wrapper maintenance is very costly. The Web is a 
dynamic environment. Sites change constantly. 
Since rules learnt by wrapper induction systems 
mainly use formatting tags, if a site changes its 
formatting templates, existing extraction rules for 
the site become invalid. 
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Unsupervised learning is possible

Due to these problems, automatic (or 
unsupervised) extraction has been studied. 
Automatic extraction is possible because 
data records (tuple instances) in a Web site 
are usually encoded using a very small 
number of fixed templates. 
It is possible to find these templates by 
mining repeated patterns. 
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Two data extraction problems

In Sections 8.1.2 and 8.2.3, we described an 
abstract model of structured data on the Web 
(i.e., nested relations), and a HTML mark-up 
encoding of the data model respectively. 
The general problem of data extraction is to 
recover the hidden schema from the HTML 
mark-up encoded data. 
We study two extraction problems, which are 
really quite similar. 
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Problem 1: Extraction given a single list 
page 

Input: A single HTML string S, which contain k non-
overlapping substrings s1, s2, …, sk with each si
encoding an instance of a set type. That is, each si
contains a collection Wi of mi (≥ 2) non-overlapping 
sub-substrings encoding mi instances of a tuple type. 
Output: k tuple types σ1, σ2, …, σk, and k collections 
C1, C2, …, Ck, of instances of the tuple types such 
that for each collection Ci there is a HTML encoding 
function enci such that enci: Ci → Wi is a bijection. 
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Problem 2: Data extraction given multiple 
pages 

Input: A collection W of k HTML strings, 
which encode k instances of the same type. 
Output: A type σ, and a collection C of 
instances of type σ, such that there is a 
HTML encoding enc such that enc: C → W is 
a bijection. 
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Templates as regular expressions

A regular expression can be naturally used to 
model the HTML encoded version of a nested 
type. 
Given an alphabet of symbols Σ and a 
special token "#text" that is not in Σ, 

a regular expression over Σ is a string over Σ ∪
{#text, *, ?, |, (, )} defined as follows:
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Regular expressions
The empty string ε and all elements of Σ ∪ {#text} 
are regular expressions. 
If A and B are regular expressions, then AB, (A|B) 
and (A)? are regular expressions, where (A|B) 
stands for A or B and (A)? stands for (A|ε). 
If A is a regular expression, (A)* is a regular 
expression, where (A)* stands for ε or A or AA
or ... 

We also use (A)+ as a shortcut for A(A)*, which can be 
used to model the set type of a list of tuples. (A)?

indicates that A is optional. (A|B) represents a 
disjunction. 
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Regular expressions and extraction
Regular expressions are often employed to 
represent templates (or encoding functions). 
However, templates can also be represented 
as string or tree patterns as we will see later. 
Extraction: 

Given a regular expression, a nondeterministic 
finite-state automaton can be constructed and 
employed to match its occurrences in string 
sequences representing Web pages. 
In the process, data items can be extracted, which 
are text strings represented by #text.



CS511, Bing Liu, UIC 54

Road map
Introduction
Data Model and HTML encoding
Wrapper induction
Automatic Wrapper Generation: Two Problems 
String Matching and Tree Matching
Multiple Alignments
Building DOM Trees 
Extraction Given a List Page: Flat Data Records 
Extraction Given a List Page: Nested Data Records 
Extraction Given Multiple Pages 
Summary



CS511, Bing Liu, UIC 55

Some useful algorithms

The key is to finding the encoding template 
from a collection of encoded instances of the 
same type. 
A natural way to do this is to detect repeated 
patterns from HTML encoding strings. 
String edit distance and tree edit distance are 
obvious techniques for the task. We describe 
these techniques. 
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String edit distance

String edit distance: the most widely used 
string comparison technique. 
The edit distance of two strings, s1 and s2, 
is defined as the minimum number of point 
mutations required to change s1 into s2, 
where a point mutation is one of:

(1) change a letter, 
(2) insert a letter, and 
(3) delete a letter. 
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String edit distance (definition)
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Dynamic programming
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An example

The edit distance matrix and 
back trace path

alignment



CS511, Bing Liu, UIC 60

Tree Edit Distance 

Tree edit distance between two trees A and B
(labeled ordered rooted trees) is the cost 
associated with the minimum set of 
operations needed to transform A into B. 
The set of operations used to define tree edit 
distance includes three operations: 

node removal,
node insertion, and 
node replacement.

A cost is assigned to each of the operations. 
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Definition
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Simple tree matching
In the general setting, 

mapping can cross levels, e.g., node a in tree A and node a
in tree B. 
Replacements are also allowed, e.g., node b in A and node 
h in B. 

We describe a restricted matching algorithm, called 
simple tree matching (STM), which has been 
shown quite effective for Web data extraction. 

STM is a top-down algorithm. 
Instead of computing the edit distance of two trees, it 
evaluates their similarity by producing the maximum 
matching through dynamic programming. 
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Simple Tree Matching algo
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An example



CS511, Bing Liu, UIC 65

Road map
Introduction
Data Model and HTML encoding
Wrapper induction
Automatic Wrapper Generation: Two Problems 
String Matching and Tree Matching 
Multiple Alignments
Building DOM Trees 
Extraction Given a List Page: Flat Data Records 
Extraction Given a List Page: Nested Data Records 
Extraction Given Multiple Pages 
Summary



CS511, Bing Liu, UIC 66

Multiple alignment

Pairwise alignment is not sufficient because a 
web page usually contain more than one data 
records. 
We need multiple alignment. 
We discuss two techniques

Center Star method
Partial tree alignment. 
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Center star method
This is a classic technique, and quite simple. It 
commonly used for multiple string alignments, but 
can be adopted for trees. 
Let the set of strings to be aligned be S. In the 
method, a string sc that minimizes,

is first selected as the center string. d(sc, si) is the 
distance of two strings. 
The algorithm then iteratively computes the 
alignment of rest of the strings with sc. 

∑ ∈Ss ic
i

ssd ),( (3)
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The algorithm



CS511, Bing Liu, UIC 69

An example
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The shortcomings
Assume there are k strings in S and all strings have 
length n, finding the center takes O(k2n2) time and 
the iterative pair-wise alignment takes O(kn2) time. 
Thus, the overall time complexity is O(k2n2). 
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Shortcomings (cont …)
Giving the cost of 1 for “changing a letter” in edit 
distance is problematic (e.g., A and X in the first and 
second strings in the final result) because of 
optional data items in data records. 
The problem can be partially dealt with by 
disallowing “changing a letter” (e.g., giving it a larger 
cost). However, this introduces another problem. 
For example, if we align only ABC and XBC, it is not 
clear which of the following alignment is better.
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The partial tree alignment method

Choose a seed tree: A seed tree, denoted by Ts, is 
picked with the maximum number of data items. 
The seed tree is similar to center string, but without 
the O(k2n2) pair-wise tree matching to choose it. 
Tree matching: 
For each unmatched tree Ti (i ≠ s), 

match Ts and Ti. 
Each pair of matched nodes are linked (aligned). 
For each unmatched node nj in Ti do 

expand Ts by inserting nj into Ts if a position for insertion 
can be uniquely determined in Ts. 

The expanded seed tree Ts is then used in 
subsequent matching. 
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p p
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Insertion is possible
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possible

Partial tree alignment of two trees
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Partial alignment of two trees 
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T2 is matched again

A complete 
example



CS511, Bing Liu, UIC 76

Output Data Table

11111T3

11111T2

111…T1

gkhdcnbx…
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Building DOM trees

We now start to talk about actual data extraction. 
The usual first step is to build a DOM tree (tag tree) 
of a HTML page. 

Most HTML tags work in pairs. Within each corresponding 
tag-pair, there can be other pairs of tags, resulting in a 
nested structure. 
Building a DOM tree from a page using its HTML code is 
thus natural. 

In the tree, each pair of tags is a node, and the 
nested tags within it are the children of the node. 
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Two steps to build a tree

HTML code cleaning: 
Some tags do not require closing tags (e.g., <li>, <hr> and 
<p>) although they have closing tags. 
Additional closing tags need to be inserted to ensure all 
tags are balanced. 
Ill-formatted tags need to be fixed. One popular program is 
called Tidy, which can be downloaded from 
http://tidy.sourceforge.net/. 

Tree building: simply follow the nested blocks of 
the HTML tags in the page to build the DOM tree. It 
is straightforward. 
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Building tree using tags & visual cues 

Correcting errors in HTML can be hard. 
There are also dynamically generated pages 
with scripts.
Visual information comes to the rescue.
As long as a browser can render a page 
correct, a tree can be built correctly. 

Each HTML element is rendered as a rectangle.
Containments of rectangles representing nesting.  
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An example
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Extraction Given a List Page: Flat Data 
Records 

Given a single list page with multiple data 
records, 

Automatically segment data records
Extract data from data records. 

Since the data records are flat (no nested 
lists), string similarity or tree matching can be 
used to find similar structures.

Computation is a problem
A data record can start anywhere and end 
anywhere
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Two important observations

Observation 1: A group of data records that 
contains descriptions of a set of similar 
objects are typically presented in a 
contiguous region of a page and are 
formatted using similar HTML tags. Such a 
region is called a data region. 
Observation 2: A set of data records are 
formed by some child sub-trees of the same 
parent node. 
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An example
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The DOM tree
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The Approach
Given a page, three steps:

Building the HTML Tag Tree
Erroneous tags, unbalanced tags, etc

Mining Data Regions 
Spring matching or tree matching

Identifying Data Records

Rendering (or visual) information is very useful 
in the whole process
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Mining a set of similar structures
Definition: A generalized node (a node 
combination) of length r consists of r (r ≥ 1) nodes in 
the tag tree with the following two properties:     

the nodes all have the same parent.    
the nodes are adjacent.

Definition: A data region is a collection of two or 
more generalized nodes with the following 
properties:

the generalized nodes all have the same parent.
the generalized nodes all have the same length.
the generalized nodes are all adjacent.
the similarity between adjacent generalized nodes is 
greater than a fixed threshold. 
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Mining Data Regions

1

3

10

2

7 8 9

Region 2

5 6

4

11 12

14 15 16 17 191813 20

Region 1

Region 3
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Mining data regions

We need to find where each generalized 
node starts and where it ends. 

perform string or tree matching
Computation is not a problem anymore

Due to the two observations, we only need to 
perform comparisons among the children nodes 
of a parent node. 
Some comparisons done for earlier nodes are 
the same as for later nodes (see the example 
below). 
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Comparison
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Comparison (cont …)
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The MDR algorithm
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Find data records from generalized nodes 

A generalized node may 
not represent a data 
record. 
In the example on the right, 
each row is found as a 
generalized node.
This step needs to identify 
each of the 8 data record. 

Not hard
We simply run the MDR 
algorithm given each 
generalized node as input

There are some 
complications (read the 
notes)
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2.  Extract Data from Data Records 

Once a list of data records is identified, we 
can align and extract data items from them.
Approaches (align multiple data records):

Multiple string alignment
Many ambiguities due to pervasive use of table related 
tags. 

Multiple tree alignment (partial tree alignment)
Together with visual information is effective
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Generating extraction patterns and data 
extraction

Once data records in each data region are 
discovered, we align them to produce an 
extraction pattern that can be used to extract 
data from the current page and also other 
pages that use the same encoding template. 
Partial tree alignment algorithm is just for 
the purpose.
Visual information can help in various ways 
(read the notes)
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Extraction Given a List Page: 
Nested Data Records 

We now deal with the most general case
Nested data records

Problem with the previous method
not suitable for nested data records, i.e., data 
records containing nested lists. 
Since the number of elements in the list of each 
data record can be different, using a fixed 
threshold to determine the similarity of data 
records will not work. 
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Solution idea
The problem, however, can be dealt with as follows. 

Instead of traversing the DOM tree top down, we can 
traverse it post-order. 
This ensures that nested lists at lower levels are found first 
based on repeated patterns before going to higher levels. 
When a nested list is found, its records are collapsed to 
produce a single template. 
This template replaces the list of nested data records. 

When comparisons are made at a higher level, the 
algorithm only sees the template. Thus it is treated 
as a flat data record. 
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The NET algorithm
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The MATCH algorithm
It performs tree matching on child sub-trees of Node and 
template generation. τ is the threshold for a match of two 
trees to be considered sufficiently similar. 
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An example
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GenNodeTemplate

It generates a node template for all the 
nodes (including their sub-trees) that match 
ChildFirst. 

It first gets the set of matched nodes ChildRs
then calls PartialTreeAlignment to produce a 
template which is the final seed tree. 

Note: AlignAndLink aligns and links all 
matched data items in ChildFirst and ChildR. 
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GenRecordPattern

This function produces a regular expression 
pattern for each data record. 
This is a grammar induction problem.
Grammar induction in our context is to infer a 
regular expression given a finite set of 
positive and negative example strings. 

However, we only have a single positive example. 
Fortunately, structured data in Web pages are 
usually highly regular which enables heuristic 
methods to generate “simple” regular expressions.
We need to make some assumptions 
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Assumptions

Three assumptions
The nodes in the first data record at each level 
must be complete.
The first node of every data record at each level 
must be present.
Nodes within a flat data record (no nesting) do not 
match one another.

On the Web, these are not strong 
assumptions. In fact, they work well in 
practice. 
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Generating NFA
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An example
Line 1 simply produces a string for generating a 
regular expression. 

The final NFA and the regular expression
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Example (cont …)
We finally obtain the following



CS511, Bing Liu, UIC 109

Data extraction
The function PutDataInTables (line 3 of NET) 
outputs data items in a table, which is simple after 
the data record templates are found. 
An example
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An more complete example
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Summary
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Extraction Given Multiple Pages 

We now discuss the second extraction problem
described in Section 8.3.1. 

Given multiple pages with the same encoding template, the 
system finds patterns from them to extract data from other 
similar pages. 
The collection of input pages can be a set of list pages or 
detail pages. 

Below, we first see how the techniques described so 
far can be applied in this setting, and then 

describe a technique specifically designed for this setting.
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Using previous techniques
Given a set of list pages

The techniques described in previous sections are 
for a single list page.
They can clearly be used for multiple list pages. 

If multiple list pages are available, they may 
help improve the extraction. 

For example, templates from all input pages may 
be found separately and merged to produce a 
single refined pattern. 
This can deal with the situation where a single 
page may not contain the complete information. 
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Given a set of detail pages 
In some applications, one needs to extract data from 
detail pages as they contain more information on the 
object. Information in list pages are quite brief. 
For extraction, we can treat each detail page as a 
data record, and extract using the algorithm 
described in Section 8.7 and/or Section 8.8. 

For instance, to apply the NET algorithm, we simply create 
a rooted tree as the input to NET as follows: 

create an artificial root node, and 
make the DOM tree of each page as a child sub-tree of the 
artificial root node. 
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Difficulty with many detail pages

Although a detail page focuses on a single object, 
the page may contain a large amount of “noise”, at 
the top, on the left and right and at the bottom. 
Finding a set of detail pages automatically is non-
trivial. 

List pages can be found automatically due to repeated 
patterns in each page. 
Some domain heuristics may be used to find detail pages. 
We can find list pages and go to detail pages from there
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An example page (a lot of noise)
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The RoadRunner System

Given a set of positive examples (multiple sample 
pages). Each contains one or more data records.
From these pages, generate a wrapper as a union-
free regular expression (i.e., no disjunction). 
Support nested data records.

The approach
To start, a sample page is taken as the wrapper.
The wrapper is then refined by solving mismatches 
between the wrapper and each sample page, which 
generalizes the wrapper. 

A mismatch occurs when some token in the sample does 
not match the grammar of the wrapper. 



CS511, Bing Liu, UIC 118

Different types of mismatches and 
wrapper generalization

Text string mismatches: indicate data fields 
(or items). 
Tag mismatches: indicate 

optional elements, or 
Iterators, list of repeated patterns 

Mismatch occurs at the beginning of a repeated pattern 
and the end of the list. 
Find the last token of the mismatch position and identify 
some candidate repeated patterns from the wrapper and 
sample by searching forward. 
Compare the candidates with upward portion of the 
sample to confirm.
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Computation issues

The match algorithm is exponential in the 
input string length as it has to explore all 
different alternatives. 
Heuristic pruning strategies are used to lower 
the complexity. 

Limit the space to explore
Limit backtracking
Pattern (iterator or optional) cannot be delimited 
on either side by an optional pattern (the 
expressiveness is reduced). 
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Many other issues in data extraction 

Extraction from other pages.
Disjunction or optional 
A set type or a tuple type 
Labeling and Integration 

(Read the notes)
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Summary

Wrapper induction
Advantages: 

Only the target data are extracted as the user can label 
only data items that he/she is interested in.  
Due to manual labeling, there is no integration issue for 
data extracted from multiple sites as the problem is solved 
by the user.

Disadvantages: 
It is not scalable to a large number of sites due to 
significant manual efforts. Even finding the pages to label is 
non-trivial. 
Wrapper maintenance (verification and repair) is very costly 
if the sites change frequently. 
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Summary (cont …)

Automatic extraction
Advantages: 

It is scalable to a huge number of sites due to the 
automatic process. 
There is little maintenance cost. 

Disadvantages: 
It may extract a large amount of unwanted data because 
the system does not know what is interesting to the user. 
Domain heuristics or manual filtering may be needed to 
remove unwanted data. 
Extracted data from multiple sites need integration, i.e., 
their schemas need to be matched.  



CS511, Bing Liu, UIC 125

Summary (cont…)

In terms of extraction accuracy, it is reasonable to 
assume that wrapper induction is more accurate 
than automatic extraction. However, there is no 
reported comparison. 
Applications

Wrapper induction should be used in applications in which 
the number of sites to be extracted and the number of 
templates in these sites are not large. 
Automatic extraction is more suitable for large scale 
extraction tasks which do not require accurate labeling or 
integration. 

Still an active research area.


