
Chapter 9:
Structured Data Extraction

Supervised and unsupervised
wrapper generation

CS511, Bing Liu, UIC 2

Road map
Introduction
Data Model and HTML encoding
Wrapper induction
Automatic Wrapper Generation: Two Problems
String Matching and Tree Matching
Multiple Alignments
Building DOM Trees
Extraction Given a List Page: Flat Data Records
Extraction Given a List Page: Nested Data Records
Extraction Given Multiple Pages
Summary

CS511, Bing Liu, UIC 3

Introduction
A large amount of information on the Web is
contained in regularly structured data objects.

often data records retrieved from databases.
Such Web data records are important: lists of
products and services.
Applications: e.g.,

Comparative shopping, meta-search, meta-query,
etc.

We introduce:
Wrapper induction (supervised learning)
automatic extraction (unsupervised learning)

CS511, Bing Liu, UIC 4

Two types of data rich pages

List pages
Each such page contains one or more lists of data
records.
Each list in a specific region in the page
Two types of data records: flat and nested

Detail pages
Each such page focuses on a single object.
But can have a lot of related and unrelated
information

CS511, Bing Liu, UIC 5

CS511, Bing Liu, UIC 6

CS511, Bing Liu, UIC 7

CS511, Bing Liu, UIC 8

Extraction results

CS511, Bing Liu, UIC 9

Road map
Introduction
Data Model and HTML encoding
Wrapper induction
Automatic Wrapper Generation: Two Problems
String Matching and Tree Matching
Multiple Alignments
Building DOM Trees
Extraction Given a List Page: Flat Data Records
Extraction Given a List Page: Nested Data Records
Extraction Given Multiple Pages
Summary

CS511, Bing Liu, UIC 10

The data model
Most Web data can be modeled as nested
relations

typed objects allowing nested sets and tuples.
An instance of a type T is simply an element of
dom(T).

CS511, Bing Liu, UIC 11

An example nested tuple type

Classic flat relations are of un-nested or flat
set types.
Nested relations are of arbitrary set types.

CS511, Bing Liu, UIC 12

Type tree
A basic type Bi is a leaf tree,
A tuple type [T1, T2, …, Tn] is a tree rooted at a
tuple node with n sub-trees, one for each Ti.
A set type {T} is a tree rooted at a set node with
one sub-tree.

Note: attribute names are not included in the type tree.
We introduce a labeling of a type tree, which is
defined recursively:
If a set node is labeled φ, then its child is labeled
φ.0, a tuple node.
If a tuple node is labeled φ, then its n children are
labeled φ.1, …, φ.n.

CS511, Bing Liu, UIC 13

Instance tree
An instance (constant) of a basic type is a leaf tree.
A tuple instance [v1, v2, …, vn] forms a tree rooted
at a tuple node with n children or sub-trees
representing attribute values v1, v2, …, vn.
A set instance {e1, e2, …, en} forms a set node with
n children or sub-trees representing the set
elements e1, e2, …, and en.

Note: A tuple instance is usually called a data record
in data extraction research.

CS511, Bing Liu, UIC 14

HTML mark-up encoding of data

There are no designated tags for each type as
HTML was not designed as a data encoding
language. Any HTML tag can be used for any type.
For a tuple type, values (also called data items) of
different attributes are usually encoded differently
to distinguish them and to highlight important items.
A tuple may be partitioned into several groups or
sub-tuples. Each group covers a disjoint subset of
attributes and may be encoded differently.

CS511, Bing Liu, UIC 15

HTML encoding (cont …)

CS511, Bing Liu, UIC 16

More on HTML encoding
By no means, this mark-up encoding covers all
cases in Web pages.

In fact, each group of a tuple type can be further divided.

We must also note that in an actual Web page the
encoding may not be done by HTML tags alone.

Words and punctuation marks can be used as well.

CS511, Bing Liu, UIC 17

Road map
Introduction
Data Model and HTML encoding
Wrapper induction
Automatic Wrapper Generation: Two Problems
String Matching and Tree Matching
Multiple Alignments
Building DOM Trees
Extraction Given a List Page: Flat Data Records
Extraction Given a List Page: Nested Data Records
Extraction Given Multiple Pages
Summary

CS511, Bing Liu, UIC 18

Wrapper induction
Using machine learning to generate extraction rules.

The user marks the target items in a few training pages.
The system learns extraction rules from these pages.
The rules are applied to extract items from other pages.

Many wrapper induction systems, e.g.,
WIEN (Kushmerick et al, IJCAI-97),
Softmealy (Hsu and Dung, 1998),
Stalker (Muslea et al. Agents-99),
BWI (Freitag and Kushmerick, AAAI-00),
WL2 (Cohen et al. WWW-02).

We will only focus on Stalker, which also has a
commercial version, Fetch.

CS511, Bing Liu, UIC 19

Stalker: A hierarchical wrapper induction
system

Hierarchical wrapper learning
Extraction is isolated at different levels of hierarchy
This is suitable for nested data records (embedded list)

Each item is extracted independent of others.

Each target item is extracted using two rules
A start rule for detecting the beginning of the target item.
A end rule for detecting the ending of the target item.

CS511, Bing Liu, UIC 20

Hierarchical representation: type tree

CS511, Bing Liu, UIC 21

Data extraction based on EC tree
The extraction is done using a tree structure called the
EC tree (embedded catalog tree).
The EC tree is based on the type tree above.

To extract each target item (a node), the wrapper
needs a rule that extracts the item from its parent.

CS511, Bing Liu, UIC 22

Extraction using two rules
Each extraction is done using two rules,

a start rule and a end rule.
The start rule identifies the beginning of the
node and the end rule identifies the end of
the node.

This strategy is applicable to both leaf nodes
(which represent data items) and list nodes.

For a list node, list iteration rules are
needed to break the list into individual data
records (tuple instances).

CS511, Bing Liu, UIC 23

Rules use landmarks

The extraction rules are based on the idea of
landmarks.

Each landmark is a sequence of consecutive
tokens.

Landmarks are used to locate the beginning
and the end of a target item.
Rules use landmarks

CS511, Bing Liu, UIC 24

An example
Let us try to extract the restaurant name “Good Noodles”.
Rule R1 can to identify the beginning :

R1: SkipTo() // start rule
This rule means that the system should start from the
beginning of the page and skip all the tokens until it sees the
first tag. is a landmark.
Similarly, to identify the end of the restaurant name, we use:

R2: SkipTo() // end rule

CS511, Bing Liu, UIC 25

Rules are not unique
Note that a rule may not be unique. For example,
we can also use the following rules to identify the
beginning of the name:
R3: SkiptTo(Name _Punctuation_ _HtmlTag_)

or R4: SkiptTo(Name) SkipTo()

R3 means that we skip everything till the word
“Name” followed by a punctuation symbol and then
a HTML tag. In this case, “Name _Punctuation_
HtmlTag” together is a landmark.

Punctuation and _HtmlTag_ are wildcards.

CS511, Bing Liu, UIC 26

Extract area codes

CS511, Bing Liu, UIC 27

Learning extraction rules
Stalker uses sequential covering to learn
extraction rules for each target item.

In each iteration, it learns a perfect rule that
covers as many positive examples as possible
without covering any negative example.
Once a positive example is covered by a rule, it is
removed.
The algorithm ends when all the positive
examples are covered. The result is an ordered
list of all learned rules.

CS511, Bing Liu, UIC 28

The top level algorithm

CS511, Bing Liu, UIC 29

Example: Extract area codes

CS511, Bing Liu, UIC 30

Learn disjuncts

CS511, Bing Liu, UIC 31

Example

For the example E2 of Fig. 9, the following
candidate disjuncts are generated:
D1: SkipTo(()
D2: SkipTo(_Punctuation_)

D1 is selected by BestDisjunct
D1 is a perfect disjunct.
The first iteration of LearnRule() ends. E2
and E4 are removed

CS511, Bing Liu, UIC 32

The next iteration of LearnRule
The next iteration of LearnRule() is left with
E1 and E3.
LearnDisjunct() will select E1 as the Seed
Two candidates are then generated:

D3: SkipTo(<i>)
D4: SkipTo(_HtmlTag_)

Both these two candidates match early in the
uncovered examples, E1 and E3. Thus, they
cannot uniquely locate the positive items.
Refinement is needed.

CS511, Bing Liu, UIC 33

Refinement
To specialize a disjunct by adding more
terminals to it.
A terminal means a token or one of its
matching wildcards.
We hope the refined version will be able to
uniquely identify the positive items in some
examples without matching any negative item
in any example in E.
Two types of refinement

Landmark refinement
Topology refinement

CS511, Bing Liu, UIC 34

Landmark refinement

Landmark refinement: Increase the size of a
landmark by concatenating a terminal.

E.g.,
D5: SkipTo(- <i>)
D6: SkipTo(_Punctuation_ <i>)

CS511, Bing Liu, UIC 35

Topology refinement
Topology refinement: Increase the number of
landmarks by adding 1-terminal landmarks, i.e., t
and its matching wildcards

CS511, Bing Liu, UIC 36

Refining, specializing

CS511, Bing Liu, UIC 37

The final solution
We can see that D5, D10, D12, D13, D14, D15, D18
and D21 match correctly with E1 and E3 and fail to
match on E2 and E4.
Using BestDisjunct in Fig. 13, D5 is selected as the
final solution as it has longest last landmark (- <i>).
D5 is then returned by LearnDisjunct().
Since all the examples are covered, LearnRule()
returns the disjunctive (start) rule either D1 or D5

R7: either SkipTo(()
or SkipTo(- <i>)

CS511, Bing Liu, UIC 38

Summary

The algorithm learns by sequential covering
It is based on landmarks.
The algorithm is by no mean the only
possible algorithm.
Many variations are possible. There are
entirely different algorithms.
In our discussion, we used only the SkipTo()
function in extraction rules.

SkipUntil() is useful too.

CS511, Bing Liu, UIC 39

Identifying informative examples

Wrapper learning needs manual labeling of training
examples.
To ensure accurate learning, a large number of
training examples are needed.
Manual labeling labor intensive and time consuming.
Is it possible to automatically select (unlabelled)
examples that are informative for the user to label.

Clearly, examples of the same formatting are of limited use.
Examples that represent exceptions are informative as they
are different from already labeled examples.

CS511, Bing Liu, UIC 40

Active learning

help identify informative unlabeled examples in
learning automatically.

CS511, Bing Liu, UIC 41

Active learning: co-testing

Co-testing exploits the fact that there are often
multiple ways of extracting the same item.
Thus, the system can learn different rules, forward
and backward rules, to locate the same item.
Let us use learning of start rules as an example.
The rules learned in Section 8.2.2 are called forward
rules because they consume tokens from the
beginning of the example to the end.
In a similar way, we can also learn backward rules
that consume tokens from the end of the example to
the beginning.

CS511, Bing Liu, UIC 42

Co-testing (cont …)

Given an unlabeled example, both the forward rule
and backward rule are applied.
If the two rules disagree on the beginning of a target
item in the example, this example is given to the
user to label.
Intuition: When the two rules agree, the extraction is
very likely to be correct.

When the two rules do not agree on the example, one of
them must be wrong.
By giving the user the example to label, we obtain an
informative training example.

CS511, Bing Liu, UIC 43

Wrapper maintenance

Wrapper verification: If the site changes, does the
wrapper know the change?
Wrapper repair: If the change is correctly detected,
how to automatically repair the wrapper?
One way to deal with both problems is to learn the
characteristic patterns of the target items.
These patterns are then used to monitor the
extraction to check whether the extracted items
are correct.

CS511, Bing Liu, UIC 44

Wrapper maintenance (cont …)

Re-labeling: If they are incorrect, the same patterns
can be used to locate the correct items assuming
that the page changes are minor formatting changes.
Re-learning: re-learning produces a new wrapper.

Difficult problems: These two tasks are extremely
difficult because it often needs contextual and
semantic information to detect changes and to find
the new locations of the target items.
Wrapper maintenance is still an active research area.

CS511, Bing Liu, UIC 45

Road map
Introduction
Data Model and HTML encoding
Wrapper induction
Automatic Wrapper Generation: Two Problems
String Matching and Tree Matching
Multiple Alignments
Building DOM Trees
Extraction Given a List Page: Flat Data Records
Extraction Given a List Page: Nested Data Records
Extraction Given Multiple Pages
Summary

CS511, Bing Liu, UIC 46

Automatic wrapper generation

Wrapper induction (supervised) has two main
shortcomings:

It is unsuitable for a large number of sites due to
the manual labeling effort.
Wrapper maintenance is very costly. The Web is a
dynamic environment. Sites change constantly.
Since rules learnt by wrapper induction systems
mainly use formatting tags, if a site changes its
formatting templates, existing extraction rules for
the site become invalid.

CS511, Bing Liu, UIC 47

Unsupervised learning is possible

Due to these problems, automatic (or
unsupervised) extraction has been studied.
Automatic extraction is possible because
data records (tuple instances) in a Web site
are usually encoded using a very small
number of fixed templates.
It is possible to find these templates by
mining repeated patterns.

CS511, Bing Liu, UIC 48

Two data extraction problems

In Sections 8.1.2 and 8.2.3, we described an
abstract model of structured data on the Web
(i.e., nested relations), and a HTML mark-up
encoding of the data model respectively.
The general problem of data extraction is to
recover the hidden schema from the HTML
mark-up encoded data.
We study two extraction problems, which are
really quite similar.

CS511, Bing Liu, UIC 49

Problem 1: Extraction given a single list
page

Input: A single HTML string S, which contain k non-
overlapping substrings s1, s2, …, sk with each si
encoding an instance of a set type. That is, each si
contains a collection Wi of mi (≥ 2) non-overlapping
sub-substrings encoding mi instances of a tuple type.
Output: k tuple types σ1, σ2, …, σk, and k collections
C1, C2, …, Ck, of instances of the tuple types such
that for each collection Ci there is a HTML encoding
function enci such that enci: Ci → Wi is a bijection.

CS511, Bing Liu, UIC 50

Problem 2: Data extraction given multiple
pages

Input: A collection W of k HTML strings,
which encode k instances of the same type.
Output: A type σ, and a collection C of
instances of type σ, such that there is a
HTML encoding enc such that enc: C → W is
a bijection.

CS511, Bing Liu, UIC 51

Templates as regular expressions

A regular expression can be naturally used to
model the HTML encoded version of a nested
type.
Given an alphabet of symbols Σ and a
special token "#text" that is not in Σ,

a regular expression over Σ is a string over Σ ∪
{#text, *, ?, |, (,)} defined as follows:

CS511, Bing Liu, UIC 52

Regular expressions
The empty string ε and all elements of Σ ∪ {#text}
are regular expressions.
If A and B are regular expressions, then AB, (A|B)
and (A)? are regular expressions, where (A|B)
stands for A or B and (A)? stands for (A|ε).
If A is a regular expression, (A)* is a regular
expression, where (A)* stands for ε or A or AA
or ...

We also use (A)+ as a shortcut for A(A)*, which can be
used to model the set type of a list of tuples. (A)?

indicates that A is optional. (A|B) represents a
disjunction.

CS511, Bing Liu, UIC 53

Regular expressions and extraction
Regular expressions are often employed to
represent templates (or encoding functions).
However, templates can also be represented
as string or tree patterns as we will see later.
Extraction:

Given a regular expression, a nondeterministic
finite-state automaton can be constructed and
employed to match its occurrences in string
sequences representing Web pages.
In the process, data items can be extracted, which
are text strings represented by #text.

CS511, Bing Liu, UIC 54

Road map
Introduction
Data Model and HTML encoding
Wrapper induction
Automatic Wrapper Generation: Two Problems
String Matching and Tree Matching
Multiple Alignments
Building DOM Trees
Extraction Given a List Page: Flat Data Records
Extraction Given a List Page: Nested Data Records
Extraction Given Multiple Pages
Summary

CS511, Bing Liu, UIC 55

Some useful algorithms

The key is to finding the encoding template
from a collection of encoded instances of the
same type.
A natural way to do this is to detect repeated
patterns from HTML encoding strings.
String edit distance and tree edit distance are
obvious techniques for the task. We describe
these techniques.

CS511, Bing Liu, UIC 56

String edit distance

String edit distance: the most widely used
string comparison technique.
The edit distance of two strings, s1 and s2,
is defined as the minimum number of point
mutations required to change s1 into s2,
where a point mutation is one of:

(1) change a letter,
(2) insert a letter, and
(3) delete a letter.

CS511, Bing Liu, UIC 57

String edit distance (definition)

CS511, Bing Liu, UIC 58

Dynamic programming

CS511, Bing Liu, UIC 59

An example

The edit distance matrix and
back trace path

alignment

CS511, Bing Liu, UIC 60

Tree Edit Distance

Tree edit distance between two trees A and B
(labeled ordered rooted trees) is the cost
associated with the minimum set of
operations needed to transform A into B.
The set of operations used to define tree edit
distance includes three operations:

node removal,
node insertion, and
node replacement.

A cost is assigned to each of the operations.

CS511, Bing Liu, UIC 61

Definition

CS511, Bing Liu, UIC 62

Simple tree matching
In the general setting,

mapping can cross levels, e.g., node a in tree A and node a
in tree B.
Replacements are also allowed, e.g., node b in A and node
h in B.

We describe a restricted matching algorithm, called
simple tree matching (STM), which has been
shown quite effective for Web data extraction.

STM is a top-down algorithm.
Instead of computing the edit distance of two trees, it
evaluates their similarity by producing the maximum
matching through dynamic programming.

CS511, Bing Liu, UIC 63

Simple Tree Matching algo

CS511, Bing Liu, UIC 64

An example

CS511, Bing Liu, UIC 65

Road map
Introduction
Data Model and HTML encoding
Wrapper induction
Automatic Wrapper Generation: Two Problems
String Matching and Tree Matching
Multiple Alignments
Building DOM Trees
Extraction Given a List Page: Flat Data Records
Extraction Given a List Page: Nested Data Records
Extraction Given Multiple Pages
Summary

CS511, Bing Liu, UIC 66

Multiple alignment

Pairwise alignment is not sufficient because a
web page usually contain more than one data
records.
We need multiple alignment.
We discuss two techniques

Center Star method
Partial tree alignment.

CS511, Bing Liu, UIC 67

Center star method
This is a classic technique, and quite simple. It
commonly used for multiple string alignments, but
can be adopted for trees.
Let the set of strings to be aligned be S. In the
method, a string sc that minimizes,

is first selected as the center string. d(sc, si) is the
distance of two strings.
The algorithm then iteratively computes the
alignment of rest of the strings with sc.

∑ ∈Ss ic
i

ssd),((3)

CS511, Bing Liu, UIC 68

The algorithm

CS511, Bing Liu, UIC 69

An example

CS511, Bing Liu, UIC 70

The shortcomings
Assume there are k strings in S and all strings have
length n, finding the center takes O(k2n2) time and
the iterative pair-wise alignment takes O(kn2) time.
Thus, the overall time complexity is O(k2n2).

CS511, Bing Liu, UIC 71

Shortcomings (cont …)
Giving the cost of 1 for “changing a letter” in edit
distance is problematic (e.g., A and X in the first and
second strings in the final result) because of
optional data items in data records.
The problem can be partially dealt with by
disallowing “changing a letter” (e.g., giving it a larger
cost). However, this introduces another problem.
For example, if we align only ABC and XBC, it is not
clear which of the following alignment is better.

CS511, Bing Liu, UIC 72

The partial tree alignment method

Choose a seed tree: A seed tree, denoted by Ts, is
picked with the maximum number of data items.
The seed tree is similar to center string, but without
the O(k2n2) pair-wise tree matching to choose it.
Tree matching:
For each unmatched tree Ti (i ≠ s),

match Ts and Ti.
Each pair of matched nodes are linked (aligned).
For each unmatched node nj in Ti do

expand Ts by inserting nj into Ts if a position for insertion
can be uniquely determined in Ts.

The expanded seed tree Ts is then used in
subsequent matching.

CS511, Bing Liu, UIC 73

p p

a b e dc eb

dc e

pNew part of Ts

e ab x

p pTs Ti

a e

ba

Ts Ti

Insertion is possible

Insertion is not
possible

Partial tree alignment of two trees

CS511, Bing Liu, UIC 74

Partial alignment of two trees

CS511, Bing Liu, UIC 75

dx… b

p

c k gn

p

b

dx… b

p

kcx
…

b

p

d h

c k gn

p

b

nx… b

p

c d h k

No node inserted

T2 T3

T2

g

Ts

New Ts

d h kc

p

b

c, h, and k inserted

Ts = T1

T2 is matched again

A complete
example

CS511, Bing Liu, UIC 76

Output Data Table

11111T3

11111T2

111…T1

gkhdcnbx…

CS511, Bing Liu, UIC 77

Road map
Introduction
Data Model and HTML encoding
Wrapper induction
Automatic Wrapper Generation: Two Problems
String Matching and Tree Matching
Multiple Alignments
Building DOM Trees
Extraction Given a List Page: Flat Data Records
Extraction Given a List Page: Nested Data Records
Extraction Given Multiple Pages
Summary

CS511, Bing Liu, UIC 78

Building DOM trees

We now start to talk about actual data extraction.
The usual first step is to build a DOM tree (tag tree)
of a HTML page.

Most HTML tags work in pairs. Within each corresponding
tag-pair, there can be other pairs of tags, resulting in a
nested structure.
Building a DOM tree from a page using its HTML code is
thus natural.

In the tree, each pair of tags is a node, and the
nested tags within it are the children of the node.

CS511, Bing Liu, UIC 79

Two steps to build a tree

HTML code cleaning:
Some tags do not require closing tags (e.g., , <hr> and
<p>) although they have closing tags.
Additional closing tags need to be inserted to ensure all
tags are balanced.
Ill-formatted tags need to be fixed. One popular program is
called Tidy, which can be downloaded from
http://tidy.sourceforge.net/.

Tree building: simply follow the nested blocks of
the HTML tags in the page to build the DOM tree. It
is straightforward.

CS511, Bing Liu, UIC 80

Building tree using tags & visual cues

Correcting errors in HTML can be hard.
There are also dynamically generated pages
with scripts.
Visual information comes to the rescue.
As long as a browser can render a page
correct, a tree can be built correctly.

Each HTML element is rendered as a rectangle.
Containments of rectangles representing nesting.

CS511, Bing Liu, UIC 81

An example

CS511, Bing Liu, UIC 82

Road map
Introduction
Data Model and HTML encoding
Wrapper induction
Automatic Wrapper Generation: Two Problems
String Matching and Tree Matching
Multiple Alignments
Building DOM Trees
Extraction Given a List Page: Flat Data Records
Extraction Given a List Page: Nested Data Records
Extraction Given Multiple Pages
Summary

CS511, Bing Liu, UIC 83

Extraction Given a List Page: Flat Data
Records

Given a single list page with multiple data
records,

Automatically segment data records
Extract data from data records.

Since the data records are flat (no nested
lists), string similarity or tree matching can be
used to find similar structures.

Computation is a problem
A data record can start anywhere and end
anywhere

CS511, Bing Liu, UIC 84

Two important observations

Observation 1: A group of data records that
contains descriptions of a set of similar
objects are typically presented in a
contiguous region of a page and are
formatted using similar HTML tags. Such a
region is called a data region.
Observation 2: A set of data records are
formed by some child sub-trees of the same
parent node.

CS511, Bing Liu, UIC 85

An example

CS511, Bing Liu, UIC 86

The DOM tree

CS511, Bing Liu, UIC 87

The Approach
Given a page, three steps:

Building the HTML Tag Tree
Erroneous tags, unbalanced tags, etc

Mining Data Regions
Spring matching or tree matching

Identifying Data Records

Rendering (or visual) information is very useful
in the whole process

CS511, Bing Liu, UIC 88

Mining a set of similar structures
Definition: A generalized node (a node
combination) of length r consists of r (r ≥ 1) nodes in
the tag tree with the following two properties:

the nodes all have the same parent.
the nodes are adjacent.

Definition: A data region is a collection of two or
more generalized nodes with the following
properties:

the generalized nodes all have the same parent.
the generalized nodes all have the same length.
the generalized nodes are all adjacent.
the similarity between adjacent generalized nodes is
greater than a fixed threshold.

CS511, Bing Liu, UIC 89

Mining Data Regions

1

3

10

2

7 8 9

Region 2

5 6

4

11 12

14 15 16 17 191813 20

Region 1

Region 3

CS511, Bing Liu, UIC 90

Mining data regions

We need to find where each generalized
node starts and where it ends.

perform string or tree matching
Computation is not a problem anymore

Due to the two observations, we only need to
perform comparisons among the children nodes
of a parent node.
Some comparisons done for earlier nodes are
the same as for later nodes (see the example
below).

CS511, Bing Liu, UIC 91

Comparison

CS511, Bing Liu, UIC 92

Comparison (cont …)

CS511, Bing Liu, UIC 93

The MDR algorithm

CS511, Bing Liu, UIC 94

Find data records from generalized nodes

A generalized node may
not represent a data
record.
In the example on the right,
each row is found as a
generalized node.
This step needs to identify
each of the 8 data record.

Not hard
We simply run the MDR
algorithm given each
generalized node as input

There are some
complications (read the
notes)

CS511, Bing Liu, UIC 95

2. Extract Data from Data Records

Once a list of data records is identified, we
can align and extract data items from them.
Approaches (align multiple data records):

Multiple string alignment
Many ambiguities due to pervasive use of table related
tags.

Multiple tree alignment (partial tree alignment)
Together with visual information is effective

CS511, Bing Liu, UIC 96

Generating extraction patterns and data
extraction

Once data records in each data region are
discovered, we align them to produce an
extraction pattern that can be used to extract
data from the current page and also other
pages that use the same encoding template.
Partial tree alignment algorithm is just for
the purpose.
Visual information can help in various ways
(read the notes)

CS511, Bing Liu, UIC 97

Road map
Introduction
Data Model and HTML encoding
Wrapper induction
Automatic Wrapper Generation: Two Problems
String Matching and Tree Matching
Multiple Alignments
Building DOM Trees
Extraction Given a List Page: Flat Data Records
Extraction Given a List Page: Nested Data
Records
Extraction Given Multiple Pages
Summary

CS511, Bing Liu, UIC 98

Extraction Given a List Page:
Nested Data Records

We now deal with the most general case
Nested data records

Problem with the previous method
not suitable for nested data records, i.e., data
records containing nested lists.
Since the number of elements in the list of each
data record can be different, using a fixed
threshold to determine the similarity of data
records will not work.

CS511, Bing Liu, UIC 99

Solution idea
The problem, however, can be dealt with as follows.

Instead of traversing the DOM tree top down, we can
traverse it post-order.
This ensures that nested lists at lower levels are found first
based on repeated patterns before going to higher levels.
When a nested list is found, its records are collapsed to
produce a single template.
This template replaces the list of nested data records.

When comparisons are made at a higher level, the
algorithm only sees the template. Thus it is treated
as a flat data record.

CS511, Bing Liu, UIC 100

The NET algorithm

CS511, Bing Liu, UIC 101

The MATCH algorithm
It performs tree matching on child sub-trees of Node and
template generation. τ is the threshold for a match of two
trees to be considered sufficiently similar.

CS511, Bing Liu, UIC 102

An example

CS511, Bing Liu, UIC 103

GenNodeTemplate

It generates a node template for all the
nodes (including their sub-trees) that match
ChildFirst.

It first gets the set of matched nodes ChildRs
then calls PartialTreeAlignment to produce a
template which is the final seed tree.

Note: AlignAndLink aligns and links all
matched data items in ChildFirst and ChildR.

CS511, Bing Liu, UIC 104

GenRecordPattern

This function produces a regular expression
pattern for each data record.
This is a grammar induction problem.
Grammar induction in our context is to infer a
regular expression given a finite set of
positive and negative example strings.

However, we only have a single positive example.
Fortunately, structured data in Web pages are
usually highly regular which enables heuristic
methods to generate “simple” regular expressions.
We need to make some assumptions

CS511, Bing Liu, UIC 105

Assumptions

Three assumptions
The nodes in the first data record at each level
must be complete.
The first node of every data record at each level
must be present.
Nodes within a flat data record (no nesting) do not
match one another.

On the Web, these are not strong
assumptions. In fact, they work well in
practice.

CS511, Bing Liu, UIC 106

Generating NFA

CS511, Bing Liu, UIC 107

An example
Line 1 simply produces a string for generating a
regular expression.

The final NFA and the regular expression

CS511, Bing Liu, UIC 108

Example (cont …)
We finally obtain the following

CS511, Bing Liu, UIC 109

Data extraction
The function PutDataInTables (line 3 of NET)
outputs data items in a table, which is simple after
the data record templates are found.
An example

CS511, Bing Liu, UIC 110

An more complete example

CS511, Bing Liu, UIC 111

Road map
Introduction
Data Model and HTML encoding
Wrapper induction
Automatic Wrapper Generation: Two Problems
String Matching and Tree Matching
Multiple Alignments
Building DOM Trees
Extraction Given a List Page: Flat Data Records
Extraction Given a List Page: Nested Data Records
Extraction Given Multiple Pages
Summary

CS511, Bing Liu, UIC 112

Extraction Given Multiple Pages

We now discuss the second extraction problem
described in Section 8.3.1.

Given multiple pages with the same encoding template, the
system finds patterns from them to extract data from other
similar pages.
The collection of input pages can be a set of list pages or
detail pages.

Below, we first see how the techniques described so
far can be applied in this setting, and then

describe a technique specifically designed for this setting.

CS511, Bing Liu, UIC 113

Using previous techniques
Given a set of list pages

The techniques described in previous sections are
for a single list page.
They can clearly be used for multiple list pages.

If multiple list pages are available, they may
help improve the extraction.

For example, templates from all input pages may
be found separately and merged to produce a
single refined pattern.
This can deal with the situation where a single
page may not contain the complete information.

CS511, Bing Liu, UIC 114

Given a set of detail pages
In some applications, one needs to extract data from
detail pages as they contain more information on the
object. Information in list pages are quite brief.
For extraction, we can treat each detail page as a
data record, and extract using the algorithm
described in Section 8.7 and/or Section 8.8.

For instance, to apply the NET algorithm, we simply create
a rooted tree as the input to NET as follows:

create an artificial root node, and
make the DOM tree of each page as a child sub-tree of the
artificial root node.

CS511, Bing Liu, UIC 115

Difficulty with many detail pages

Although a detail page focuses on a single object,
the page may contain a large amount of “noise”, at
the top, on the left and right and at the bottom.
Finding a set of detail pages automatically is non-
trivial.

List pages can be found automatically due to repeated
patterns in each page.
Some domain heuristics may be used to find detail pages.
We can find list pages and go to detail pages from there

CS511, Bing Liu, UIC 116

An example page (a lot of noise)

CS511, Bing Liu, UIC 117

The RoadRunner System

Given a set of positive examples (multiple sample
pages). Each contains one or more data records.
From these pages, generate a wrapper as a union-
free regular expression (i.e., no disjunction).
Support nested data records.

The approach
To start, a sample page is taken as the wrapper.
The wrapper is then refined by solving mismatches
between the wrapper and each sample page, which
generalizes the wrapper.

A mismatch occurs when some token in the sample does
not match the grammar of the wrapper.

CS511, Bing Liu, UIC 118

Different types of mismatches and
wrapper generalization

Text string mismatches: indicate data fields
(or items).
Tag mismatches: indicate

optional elements, or
Iterators, list of repeated patterns

Mismatch occurs at the beginning of a repeated pattern
and the end of the list.
Find the last token of the mismatch position and identify
some candidate repeated patterns from the wrapper and
sample by searching forward.
Compare the candidates with upward portion of the
sample to confirm.

CS511, Bing Liu, UIC 119

CS511, Bing Liu, UIC 120

Computation issues

The match algorithm is exponential in the
input string length as it has to explore all
different alternatives.
Heuristic pruning strategies are used to lower
the complexity.

Limit the space to explore
Limit backtracking
Pattern (iterator or optional) cannot be delimited
on either side by an optional pattern (the
expressiveness is reduced).

CS511, Bing Liu, UIC 121

Many other issues in data extraction

Extraction from other pages.
Disjunction or optional
A set type or a tuple type
Labeling and Integration

(Read the notes)

CS511, Bing Liu, UIC 122

Road map
Introduction
Data Model and HTML encoding
Wrapper induction
Automatic Wrapper Generation: Two Problems
String Matching and Tree Matching
Multiple Alignments
Building DOM Trees
Extraction Given a List Page: Flat Data Records
Extraction Given a List Page: Nested Data Records
Extraction Given Multiple Pages
Summary

CS511, Bing Liu, UIC 123

Summary

Wrapper induction
Advantages:

Only the target data are extracted as the user can label
only data items that he/she is interested in.
Due to manual labeling, there is no integration issue for
data extracted from multiple sites as the problem is solved
by the user.

Disadvantages:
It is not scalable to a large number of sites due to
significant manual efforts. Even finding the pages to label is
non-trivial.
Wrapper maintenance (verification and repair) is very costly
if the sites change frequently.

CS511, Bing Liu, UIC 124

Summary (cont …)

Automatic extraction
Advantages:

It is scalable to a huge number of sites due to the
automatic process.
There is little maintenance cost.

Disadvantages:
It may extract a large amount of unwanted data because
the system does not know what is interesting to the user.
Domain heuristics or manual filtering may be needed to
remove unwanted data.
Extracted data from multiple sites need integration, i.e.,
their schemas need to be matched.

CS511, Bing Liu, UIC 125

Summary (cont…)

In terms of extraction accuracy, it is reasonable to
assume that wrapper induction is more accurate
than automatic extraction. However, there is no
reported comparison.
Applications

Wrapper induction should be used in applications in which
the number of sites to be extracted and the number of
templates in these sites are not large.
Automatic extraction is more suitable for large scale
extraction tasks which do not require accurate labeling or
integration.

Still an active research area.

