
4. Database Objects 4-1

DBA Certification Course

(Summer 2008)

Chapter 4: Database Objects

• Data Types

• Integrity Constraints

• Generated Columns

• Temporary Tables

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-2

Objectives

After completing this chapter, you should be able to:

• write CREATE TABLE statements in DB2

• use generated columns in DB2

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-3

Literature (1)

• Hana Curtis: DB2 9 Fundamentals exam 730 prep,

Part 5: Working with DB2 objects

[http://www.ibm.com/developerworks/edu/dm-dw-db2-cert7305.html]

• Clara Liu, Raul Chong, Dwaine Snow, Sylvia Qi:

Understanding DB2:

Learning Visually with Examples

IBM Press/Pearson, 2005, ISBN 0-13-185916-1, 895 pages.

• DB2 for Linux, UNIX, and Windows Version 9

Information Center

[http://publib.boulder.ibm.com/infocenter/db2luw/v9//index.jsp]

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-4

Literature (2)

• Don Chamberlin:

A Complete Guide to DB2 Universal Database

Morgan Kaufmann, 1998, ISBN 1-55860-482-0, 795 pages.

• Roger E. Sanders: DB2 Universal Database V8.1

Certification Exam 700 Study Guide

Prentice Hall / IBM Press, 2004, ISBN 0-13-142465-3, 416 pages.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-5

Overview

1. Data Types

'

&

$

%
2. Tables

3. Indexes

4. Triggers

5. Typed Tables

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-6

Built-in Data Types (1)

Numeric Types:

• DECIMAL(p,s): Decimal number with p digits in total,

of these p places to the right of the decimal point.

E.g. DECIMAL(2,1) permits values from -9.9 to +9.9. NUMERIC(p,s) is
a synonym for DECIMAL(p,s). If s is omitted, it defaults to 0. If p is
omitted, it defaults to 5. One can also write DEC or NUM instead of
DECIMAL. Values of type DECIMAL(p,s) are stored in b p/2c+ 1 bytes.

• SMALLINT: 16 bit binary integer (-32768 to +32767)

• INTEGER: 32 bit (-2147483648 to +2147483647)

• BIGINT: 64 bit (more than 18 decimal places)

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-7

Built-in Data Types (2)

Numeric Types, continued:

• REAL: 32 bit floating point number

FLOAT(n) with 1 ≤ n ≤ 24 is a synonym for REAL. The parameter n is
the minimum number of bits for the mantissa.

• DOUBLE: 64 bit floating point number

FLOAT(n) with 25 ≤ n ≤ 53 is a synonym for DOUBLE. One can also
write DOUBLE PRECISION or simply DOUBLE.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-8

Built-in Data Types (3)

String Types:

• CHAR(n): Fixed length single-byte character string.
A value of type CHAR(n) needs n bytes. The length n can be at
most 254. It defaults to 1.

• VARCHAR(n): Variable-length single-byte string.
A value of type VARCHAR(n) needs m + 4 bytes, where m is the actual
length (m ≤ n). The maximum VARCHAR-length is 32672 (but a row
must fit in one page, and VARCHAR arguments in SYSFUN functions are
restricted to 4000 bytes).

• GRAPHIC(n): Double byte, fixed length string.
E.g. for asian languages. Maximum n is 127.

• VARGRAPHIC(n): Double byte, variable length string.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-9

Built-in Data Types (4)

Codepage:

• When a database is created, a codepage and a ter-

ritory are specified:

CREATE DATABASE MYDB ON D:

USING CODESET 1252 TERRITORY US

COLLATE USING SYSTEM

CATALOG TABLESPACE MANAGED BY DATABASE

(FILE ’E:\SYSCAT.DAT’, 5000)

• All string data is encoded in the specified codepage.
If this is a single byte codepage, the database is called a single byte
database, and the GRAPHIC/VARGRAPHIC types cannot be used. If it is
a double byte codepage, types like VARCHAR can be used, but they
contain a mixture of single byte and double byte characters.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-10

Built-in Data Types (5)

Unicode in DB2:

• New databases should be created as Unicode da-

tabases (parameter CODEPAGE should be UTF-8), be-

cause this is required for XML support.

• Then CHAR, VARCHAR, LONG VARCAHR, CLOB are stored in

UTF-8, and GRAPHIC, VARGRAPHIC, LONG VARGRAPHIC,

DBCLOB are stored in UCS-2.

UCS-2 means that all characters have a fixed length of 16 bit (this
normally means that only characters of the “Basic Multiligual Pa-
ne” can be represented, not arbitrary Unicode characters. However, it
seems that surrogate pairs can be safely stored, they are only treated
as two characters in some contexts.)

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-11

Built-in Data Types (6)

Unicode in DB2, continued:

• In UTF-8, one character needs 1 to 4 bytes.

One byte is needed for ASCII characters, 2 bytes suffice e.g. for ISO
Latin-1 characters (and more).

• The parameter n in e.g. VARCHAR(n) specifies the

maximal length in bytes.

• Functions like CHARACTER_LENGTH have a second para-

meter with values OCTETS, CODEUNITS16, CODEUNITS32.

E.g. VALUES(CHARACTER_LENGTH(’Jörg’, OCTETS)) gives 5.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-12

Built-in Data Types (7)

Binary Data:

• For character data, the DBMS might do a conver-

sion if client and server use different encodings.

• This would destroy binary data.

• Therefore, it is important to add “FOR BIT DATA” to

CHAR-types that are actually used for binary data:

CREATE TABLE PROFESSOR(

NAME VARCHAR(40) NOT NULL PRIMARY KEY,

PICTURE VARCHAR(4000) FOR BIT DATA)

4000 bytes might be too restricted, see BLOB below.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-13

Built-in Data Types (8)

Long Objects:

• It is possible to store very long data values (files)

in the database as one of the large object types:

� CLOB(n): Character Large Object

� DBCLOB(n): Double Byte Character Large Object

� BLOB(n): Binary Large Object

• The parameter n defines the maximal size in bytes,

e.g., 500K, 10M, or 1G. The maximal size is 2G.
Of course, only the necessary space is actually used, so the maximal
size is mainly a constraint. But see also Slide 4-16.

• LONG VARCHAR/VARGRAPHIC: Old types for long data.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-14

Built-in Data Types (9)

Long Objects, continued:

• Limitations for working with long objects:

� One cannot do direct comparisons with =, <>, <,

>, <=, >=, IN, BETWEEN. However, one can use LIKE.

� For this reason, also duplicate elimination with

DISTINCT, als well as GROUP BY, ORDER BY, and keys

cannot be used.

� No aggregation functions can be used.

� Only UNION ALL can be used (not UNION etc.).

� Indexes cannot be created on LOB columns.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-15

Built-in Data Types (10)

Long Objects, continued:

• LOB values are stored separately from the other

data of the row, possibly in a different tablespace:

CREATE TABLE PROFESSOR(

NAME VARCHAR(40) NOT NULL PRIMARY KEY,

PICTURE BLOB(10M))

IN TBSP1

INDEX IN TBSP2

LONG IN TBSP3

Note that if different tablespaces are used for the different parts of
a table, these must be DMS tablespaces. The tablespace used for
LOBs (LONG data) must be a large tablespace.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-16

Built-in Data Types (11)

Long Objects, continued:

• Inside the table row, a LOB descriptor is stored

that permits to locate the real data.
The size of the descriptor depends on the declared maximum size n:
It varies from 72 bytes (n < 1K) to 316 bytes (n = 2G).

• Application programs can work with LOB locators

and thereby avoid to transfer the complete large

object between server and client.
Locators help to do as much as possible of the processing on the ser-
ver, and also to defer the work, and actually avoid it for intermediate
results: E.g. if one concatenates two LOBs, the locator refers to a
data structure that describes this concatenation, but it is not actually
done unless the value is stored as a new LOB in the database.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-17

Built-in Data Types (12)

Long Objects, continued:

• A LOB column can be excluded from logging:

CREATE TABLE PROFESSOR(

NAME VARCHAR(40) NOT NULL PRIMARY KEY,

PICTURE BLOB(10M) NOT LOGGED)

• Normal ROLLBACK and crash recovery is still possible.
This works with shadow pages: The old pages are only overwritten
after the successful end of the transaction, when the new value is
safely stored in new pages.

• However, in case of a disk failure, when the rollfor-

ward is done from an old backup copy, these LOB

values are replaced by binary zero bytes.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-18

Built-in Data Types (13)

Long Objects, continued:

• One can request compact storage of LOB values:

CREATE TABLE PROFESSOR(

NAME VARCHAR(40) NOT NULL PRIMARY KEY,

PICTURE BLOB(10M) COMPACT)

• This means that only the really needed space (roun-

ded to the next multiple of 1K) is used.

It seems that otherwise the next power of 2 (between 1K and 64M)
is used. Note that COMPACT is not a compression.

• The price to pay is that updates to LOB values are

less efficient with COMPACT.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-19

Built-in Data Types (14)

Date and Time Types:

• DATE: Day, Month, Year.

4 Byte. There are no special DATE constants, strings of the form
’DD.MM.YYYY’, ’MM/DD/YYYY’ and ’YYYY-MM-DD’ are automatically con-
verted. The output format depends on the declared territory for the
database, one can also use the DATETIME option of the BIND command.

• TIME: Hour, Minute, Second.

3 Byte. DB2 understands e.g. ’20:15:00’, 20:15’, ’20.15.00’, ’20.15’
and ’8:15 PM’.

• TIMESTAMP: Date and Time (including Microsecond).

10 Byte. This has only a single format: ’YYYY-MM-DD-HH.MI.SS.SSSSSS’.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-20

Built-in Data Types (15)

Date and Time Types, continued:

• There are “special registers” (functions without pa-

rameters) that return the current date and time:

� CURRENT DATE

� CURRENT TIME

� CURRENT TIMESTAMP

This returns the current date and time when the processing of the
query began. If the same special register is accessed several times
during the evaluation of one query, the same value is returned.

� CURRENT TIMEZONE

Difference between Coordinated Universal Time (UTC) and local
time on the server as a decimal number of the form HHMMSS.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-21

Built-in Data Types (16)

Date and Time Types, continued:

• If one subtracts a DATE value from a DATE value,

one gets a DECIMAL(8,0) value that encodes a date

duration in the form YYYYMMDD.

In the same way, one can subtract a TIME value from a TIME value (gives
a DECIMAL(6,0), format HHMMSS), or a TIMESTAMP from a TIMESTAMP (gives
a DECIMAL(20,6), format YYYYMMDDHHMISS.SSSSSS).

• A special syntax is available to add or subtract du-

rations to/from the date/time types, e.g.

DATE_DUE + 7 DAYS > CURRENT DATE

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-22

Distinct Types (1)

• Distinct types are one form of user-defined types

(UDTs). They are defined based on a built-in type:

CREATE DISTINCT TYPE EX_NO

AS INTEGER WITH COMPARISONS

The keywords “WITH COMPARISONS” are required for all types that sup-
port the standard comparison operators =, <>, <, >, <=, >= (i.e. all types
except the LOB and LONG types). The keywords are supposed to
remind the user that the comparison operators are inherited from the
base type. Other operations like “+” are not automatically inherited.

• This means that EX_NO will internally have the same

set of values as the built-in type INTEGER.
It is not possible to exclude e.g. negative numbers.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-23

Distinct Types (2)

• The values of the new type EX_NO are considered as

distinct from the values of the source type INTEGER,

and the values of any other distinct type:

CREATE DISTINCT TYPE POINTS

AS INTEGER WITH COMPARISONS

It is possible to have a column and a distinct type with the same name.
But it might be clearer to name types e.g. with the suffix “_T”.

• Table columns can be declared with a distinct type:

CREATE TABLE EXERCISES (

NO EX_NO NOT NULL PRIMARY KEY,

TOPIC VARCHAR(40) NOT NULL,

MAXPT POINTS NOT NULL)

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-24

Distinct Types (3)

• Now a meaningless comparison between exercise

number and points gives a type error:

SELECT *

FROM EXERCISES

WHERE POINTS < NO -- Type Error

Note that this would be possible if both columns were of type INTEGER.

• So distinct types help to detect errors and make

the semantics of columns clearer.
Furthermore, the source type is defined only in one place. If we later
in the design think that a SMALLINT would suffice, this can be easily
changed in the schema creation SQL script. However, once the tables
are created and filled, this change is not possible.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-25

Distinct Types (4)

• EX_NO values are distinct from INTEGER values:

SELECT POINTS

FROM EXERCISES

WHERE NO = 1 -- Type Error

• DB2 automatically creates casting functions which

must be explicitly called here:

� FUNCTION EX_NO(INTEGER) RETURNS EX_NO

� FUNCTION INTEGER(EX_NO) RETURNS INTEGER

• The WHERE-condition can be written: NO = EX_NO(1).

• Alternatively, this is also possible: INTEGER(NO) = 1.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-26

Distinct Types (5)

• If the source type were SMALLINT, DB2 would gene-

rate three casting functions:

� FUNCTION EX_NO(SMALLINT) RETURNS EX_NO

� FUNCTION EX_NO(INTEGER) RETURNS EX_NO

� FUNCTION SMALLINT(EX_NO) RETURNS SMALLINT

The reason is that constants like 1 are considered to be of type INTEGER

(even if they would fit into a SMALLINT), but the conversion to an
EX_NO must of course be possible. The automatic promotion of func-
tion arguments is only done in the direction SMALLINT → INTEGER →
DECIMAL → REAL → DOUBLE. Also for source type CHAR(n) three casting
functions are constructed, because string constants are supposed to
have type VARCHAR(n). Automatic type promotion: CHAR → VARCHAR →
LONG VARCHAR → CLOB. Note also that type name synonyms are repla-
ced, e.g. for base type NUMERIC, the casting function is called DECIMAL.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-27

Distinct Types (6)

• Of course, an explicit type conversion can also be

used (this invokes the casting function):

SELECT POINTS

FROM EXERCISES

WHERE NO = CAST(1 AS EX_NO) -- ok

• For assignments, e.g. in an UPDATE or INSERT state-

ment, or in the INTO clause of a SELECT query, the

rules are more liberal: Here a conversion between

base type and distinct type is done automatically.

This simplifies application programs, where the host variables can only
have a type that corresponds to a built-in type of DB2.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-28

Distinct Types (7)

• No data type functions (except =, <, . . .) are inhe-

rited from the source type to the distinct type.

• E.g. one cannot add exercise numbers (which is

good, because this would not make sense).

• However, it would make sense to add points.

• Then it is necessary to explicitly declare a user-

defined function that performs addition of points.

This function can be named "+", so that the infix operator + can
also be used for points. DB2 supports the function call syntax al-
so for operators when these are put into "...", e.g. one can write
SELECT "+"(1,2) FROM

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-29

Distinct Types (8)

• One does not have to define a function implemen-

tation, but declares that the function "+" for inte-

gers can be used (“sourced function”).

CREATE FUNCTION "+"(POINTS, POINTS) RETURNS POINTS

SOURCE "+"(INTEGER, INTEGER)

DB2 permits function overloading: There can be any number of func-
tions with the same name in the same schema, provided that the list
of argument types differ (when ignoring the parameters of types like
VARCHAR). When a function is called, because of type promotions (see
Slide 4-26) the argument types do not have to match exactly. The
function is selected with the minimal promotion in the leftmost argu-
ment where there is a difference. After that, position of the schema
on the function search path is used as a tie breaker.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-30

Distinct Types (9)

• When the new function "+" is called,

� the arguments are cast from POINTS to INTEGER,

� the source function is called (the built-in function

"+" for integers)

� and the result is cast to the return type POINTS.

It is not required that the specified source function operates exactly
on the source type of the distinct type, it suffices if the required casts
are possible. It is also not required that the two functions have the
same name.

• One can write VARCHAR() and DECIMAL(), then the

limits from the source function are taken.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-31

Distinct Types (10)

• If one wants to multiply a POINTS value with a DOUBLE

(e.g. for computing a percentage), one must either

use explicit casts or declare a function:

CREATE FUNCTION "*"(POINTS, DOUBLE) RETURNS POINTS

SOURCE "*"(DOUBLE, DOUBLE)

• Also the required aggregation functions must be

specifically declared for the new type:

CREATE FUNCTION AVG(POINTS) RETURNS DOUBLE

SOURCE AVG(DOUBLE)

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-32

Distinct Types (11)

• Relevant data dictionary tables (schema SYSCAT):

DATATYPES, FUNCTIONS, FUNCPARMS.

• Functions are uniquely identified by schema, name,

and argument type list.

• Because in commands like “DROP FUNCTION” the ar-

gument list is not given, a second name, the “spe-

cific name” is assigned to each function.

Functions cannot be called with the specific name. One can defi-
ne a specific name after the return type with the keyword SPECIFIC.
Otherwise the DBMS chooses one (see data dictionary).

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-33

User-Defined Functions

• One can also define external user-defined functions

in languages like C or Java.

• Then also a CREATE FUNCTION statement is needed

that refers to the object file and entry point:

CREATE FUNCTION COMP_GRADE(POINTS) RETURNS GRADE

EXTERNAL NAME ’/db/udf/points!comp_grade’

DETERMINISTIC

NO EXTERNAL ACTION

LANGUAGE C

PARAMETER STYLE DB2SQL

NO SQL

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-34

Overview

1. Data Types

2. Tables

'

&

$

%
3. Indexes

4. Triggers

5. Typed Tables

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-35

CREATE TABLE: Repetition

• The basic syntax of the CREATE TABLE statement was

explained in the course “Databases I”:

CREATE TABLE COURSE(

CRN NUMERIC(5) NOT NULL PRIMARY KEY,

TITLE VARCHAR(80) NOT NULL,

PROF_FNAME VARCHAR(20),

PROF_LNAME VARCHAR(20),

CREDITS NUMERIC(2) CHECK(CREDITS >= 0)

DEFAULT 3,

FOREIGN KEY (PROF_FNAME, PROF_LNAME)

REFERENCES FACULTY ON DELETE CASCADE)

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-36

Default Values (1)

• In DB2, one can write WITH DEFAULT instead of only

DEFAULT (as in the standard), but the keyword WITH

is optional.

• In DB2, it is possible not to write a value after the

keyword DEFAULT. Then the number 0, the empty

string etc. is chosen (“system default value”).

For CHAR(n), the empty string means of course n blanks. For date/time
columns, the earlierst possible value is taken.

• However, if one does not use the DEFAULT specifica-

tion at all, the default value is NULL.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-37

Default Values (2)

• Note that specifying a non-null default value does

not prevent the insertion of a null value, one only

has to explicitly specify NULL in the VALUES list.

• The only safe way to prevent null values is to use

the NOT NULL column constraint.

One could also use a CHECK-constraint with an “IS NOT NULL” conditi-
on, but then DB2 still does not allow to use the column in a primary
or unique key (which requires that the column is not nullable).

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-38

Generated Columns (1)

• One can let DB2 automatically generate values for

an artificial key:

CREATE TABLE T(

ID NUMERIC(4) NOT NULL PRIMARY LEY

GENERATED ALWAYS AS IDENTITY

(START WITH 1000 INCREMENT BY 1),

A VARCHAR(10))

• Now insertions cannot specify a value for the co-

lumn “ID”, i.e. one must write

INSERT INTO T(A) VALUES (’First’)

• This will insert the row (1000, ’First’).

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-39

Generated Columns (2)

• Each table can have at most one identity column.
Identity columns must have type SMALLINT, INTEGER, BIGINT, or DECIMAL

without fractional part (i.e. a whole number, not necessarily positive).

• One can also use “GENERATED BY DEFAULT”:

� Useful if the table is unloaded and loaded again.

� A value is generated only when the insertion

command does not specify one.

� Each table has a counter for the next value to

be generated. This is not changed if a value is

explicitly specified. Thus, values generated in the

future might violate the uniqueness.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-40

Generated Columns (3)

• Besides START WITH and INCREMENT BY, there are:

� MAXVALUE n: No value greater than n is generated.

The default is NO MAXVALUE. There is also a MINVALUE. Sequences
can be descending if INCREMENT BY is negative.

� CYCLE: If the maximum value is reached, the ge-

nerator starts again with the minimum value.

The default is NO CYCLE: Trying to generate another value after
the MAXVALUE was reached gives an error.

� ORDER: Specifies that identity values must be ge-

nerated in the order of request.

The default is NO ORDER.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-41

Generated Columns (4)

• Identity generation parameters, continued:

� CACHE n: The DBMS pre-allocates n values of the

sequence (and stores them in memory).
Then only one log entry is necessary per n values (furthermore,
it might be possible to avoid synchronous writes, where the app-
lication must wait until the write succeeded). However, when the
system crashes or a decativation occurs because the last appli-
cation disconnects, the cashed values are lost, i.e. there can be
bigger holes in the generated sequence. The default is CACHE 20.
One can turn this feature off with NO CACHE.

• Note that holes in the sequences are also possible

when a transaction is rolled back: Once a value was

generated, it is not recycled.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-42

Generated Columns (5)

• One can also define computed columns:

CREATE TABLE T(

TAG INTEGER NOT NULL,

TAG_NAME VARCHAR(10) GENERATED ALWAYS AS

(CASE A WHEN 1 THEN ’Monday’

... END))

• However, it seems that a view would be preferable

in this example.

It is possible to call user-defined functions to compute the generated
value (under certain conditions, e.g. without external action). If that
function needs a lot of runtime, the generated column might be the
better alternative. The defining expression cannot use subqueries or
special registers (e.g. CURRENT DATE is not allowed).

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-43

Generated Columns (6)

• One important application of generated columns is

that one can define indexes on them.
E.g. if queries contain conditions of the form f(A) = 100, it is not
possible to use an index on A, unless the system knows the reverse
function. But one can define a column B generated as f(A), and define
an index on B. The DB2 optimizer notes that it can apply this index
for the condition f(A) = 100, and even for certain conditions on A.

• If a column is generated with an expression, it must

be GENERATED ALWAYS (not GENERATED BY DEFAULT).

• Generated identity columns are always considered

NOT NULL, even if this is not explicitly specified.
And even if it is only generated BY DEFAULT.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-44

Sequences (1)

• A sequence works like the generator for identity

columns, but it is not tied to a specific table.

• Thus, the generated values can be used in a more

flexible way.

• When a sequence is created, the same parameters

as for identity columns can be specified:

CREATE SEQUENCE S AS DECIMAL(5)

START WITH 100

INCREMENT BY 1

• If AS 〈Type〉 is left out, INTEGER is assumed.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-45

Sequences (2)

• One gets the next value for a sequence with the

expression:

NEXT VALUE FOR S

(where S is the name of the sequence).

• The last generated value is returned by

PREVIOUS VALUE FOR S

This is helpful if the same value must be entered in two or more places
(e.g. an invoice numer is needed also in all line items).

• A sequence can be altered, e.g. with

ALTER SEQUENCE S RESTART WITH 200

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-46

Row Length (1)

• For the normal storage format the maximal row

length is calculated as follows:

� The lengths of the datatypes of the columns are

added,

See above. E.g.: char(n) needs n bytes, varchar(n) needs up
to n +4 bytes (depending on actual string length), integer needs
4 bytes, smallint needs 2 bytes, decimal(p,s) needs b p/2c+1 bytes
(b. . .c means “round down”, e.g. decimal(1) needs 1 byte).

� plus one additional byte for each column that

can be null.

• Maximum row length for 4K pages: 4005 Byte.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-47

Row Length (2)

• There is an alternative storage format, which can

be chosen by adding “VALUE COMPRESSION” to the

table declaration:

CREATE TABLE COURSE(

CRN NUMERIC(5) NOT NULL PRIMARY KEY,

...)

VALUE COMPRESSION

• This storage format permits to store null values

and empty strings in a more compact way.
It is not real value compression, only a different stoarge format for
rows. In the meantime, DB2 also has a real compression.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-48

Row Length (3)

Advantages of VALUE COMPRESSION:

• With VALUE COMPRESSION, a column that is null al-

ways needs 3 Byte, and empty VARCHAR, VARGRAPHIC

and LOB columns need only 2 Byte.

Without VALUE COMPRESSION, a nullable CHAR(10) column would always
need 11 Byte, even if it is null.

• Variable-length data types are stored in a more

compact way. E.g. a VARCHAR(n) column needs at

most n + 2 Byte, even if it is nullable.

Without VALUE COMPRESSION, it needs n + 4 Byte if it is not nullable,
and n + 5 Byte if it can be NULL.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-49

Row Length (4)

Disadvantages of VALUE COMPRESSION:

• If a null or empty column is later updated, the row

grows, which might lead to migrated rows.

• The storage format for fixed-length data types like

INTEGER and CHAR(n) needs two additional bytes, no

matter whether the column is nullable or not.

The normal storage format seems to assume that most columns have
a fixed size, and variable-sized columns like VARCHAR(n) need an addi-
tional overhead. In the VALUE COMPRESSION storage format all columns
are variable-size.

• Plus there is an overhead of 2 bytes per row.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-50

Row Length (5)

Example:

• Consider the following table:

CREATE TABLE T(

A INTEGER NOT NULL,

B CHAR(10))

• Without VALUE COMPRESSION, this table has a fixed

rowsize of 4 + 10 + 1 = 15 Byte.

• With VALUE COMPRESSION, the rowsize is

� normally 2 + 6 + 12 = 20 Byte,

� but only 2 + 6 + 3 = 11 Byte if B is null.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-51

Row Length (6)

COMPRESS SYSTEM DEFAULT:

• In the VALUE COMPRESSION row format, one can add

“COMPRESS SYSTEM DEFAULT” to specific columns, e.g.

A INTEGER NOT NULL COMPRESS SYSTEM DEFAULT

COMPRESS SYSTEM DEFAULT can only be used when VALUE COMPRESSION is
specified for the table.

• Then the value 0 (the system default for numeric

columns) is stored with only 3 Byte (instead of 6).
For variable length string columns, this has no effect, since there the
empty string is anyway stored in only 2 Byte. However, for CHAR(n),
COMPRESS SYSTEM DEFAULT permits storage of the empty string in 3 Byte
(compared to n Byte).

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-52

Space Requirements: Tables

• The DBMS needs 68 Bytes of overhead for each

page. For 4K pages, this gives 4096− 68 = 4028.

The overhead is the same for all page sizes. I do not understand why
the maximum row size is 4005 for 4K pages. Even with the overhead
of 10 Bytes per row (see below) it should be 4018.

• Number of rows per 4K page:

b4028/(average row size + 10)c

• Number of pages needed for a table (estimate):

(number of rows/number of rows per page) ∗ 1.1

The factor 1.1 is for overhead. This is only an estimate. E.g., if row
size varies significantly, more space may be needed.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-53

Row Compression (1)

• Since Version 9, DB2 has also the possibility to

compress table rows with a static dictionary-based

compression algorithm.

The advantages are disk space savings, and improved I/O and buffer
performance (at the expense of more work for the CPU). Also log
entries are compressed.

• Compression of up to 80% has been reported.

It seems that even groups of columns can be compressed to a single
byte. The size of the dictionary is relatively small, typically about
100 KB. It is normally kept in memory.

• Long, LOB and XML data cannot be compressed.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-54

Row Compression (2)

• Compression is enabled with

ALTER TABLE T COMPRESS YES

• But this has no effect until a dictionary is built:

REORG TABLE T

If there is already a dictionary, one can choose KEEPDICTIONARY or
RESETDICTIONARY. A dictionary can also be built with the INSPECT com-
mand (gives an estimate for the compression rate).

• A table can have compressed and uncompressed

rows. E.g. after ALTER TABLE COMPRESS NO, only new

or updated rows are uncompressed.
REORG TABLE T RESETDICTIONARY: uncompress all rows, delete dictionary.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-55

Append Mode

• Tables can be placed in append mode:

ALTER TABLE T APPEND ON

• Then rows will only be inserted at the end.

Otherwise, the free space map is searched and a first fit algorithm is
used.

• This speeds up insertions and saves the disk space

for the free space map.

• Furthermore, it leads to a clustering on the inser-

tion order (e.g. on a generated key value).

• Of course, if rows are deleted, holes remain.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-56

Restrict on Drop

• One can make accidental deletion of a table a bit

more difficult:

CREATE TABLE T (...) WITH RESTRICT ON DROP

If the table exists already, use: ALTER TABLE T ADD RESTRICT ON DROP.

• Then “DROP TABLE T” gives an error message (and

the table is not deleted).

• However, one can enter

ALTER TABLE T DROP RESTRICT ON DROP

and then drop the table.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-57

Not Logged Initially (1)

• One can specify that changes to the table in the

same transaction (unit of work) as the table crea-

tion are not written to the log:

CREATE TABLE T (...) NOT LOGGED INITIALLY

I.e. changes via INSERT, UPDATE, DELETE, ALTER TABLE, CREATE INDEX,
DROP INDEX are not recorded in the log. However, catalog changes
and storage reservations are logged.

• This is especially useful if a large table is to be filled

from an external file.
Then the data might be too large for the log. Furthermore, if some-
thing goes wrong, the external file still exists and the operation could
be easily be repeated.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-58

Not Logged Initially (2)

• If something goes wrong, the table is marked as

inaccessible and can only be dropped.
Of course, if the transaction is rolled back, the table creation is also
rolled back, i.e. table is deleted. However, if there is a disk error later,
and the rest of the database is restored from a backup (done before
this transaction) and rollforward (using the log), then the table exists
in the catalog, but the data is missing.

• After the transaction, one should do a backup.
Then no rollforward with the missing log entries will be necessary.

• Note that all further transations are automatically

recorded in the log.
It is not necessary to explicitly stop the NOT LOGGED mode.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-59

Not Logged Initially (3)

• If an error occurs during the execution of a com-

mand, the entire transaction is rolled back.

E.g.. this happens if an insertion violates a key. Normally, one only
gets an error message. The problem is that when the error is detected,
the command might already be partially executed. With logging, the
DBMS can execute something like ROLLBACK TO SAVEPOINT. This is not
possible without logging.

• If one later wants this mode again, one can use

ALTER TABLE T ACTIVATE NOT LOGGED INITIALLY.

Note that if something goes wrong, the entire table is destroyed,
including the old data. One can add “WITH EMPTY TABLE” if one wants
to delete the table contents before the new data is inserted.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-60

Create Table Like (1)

• One can create a table with the same schema as

an existing table or view:

CREATE TABLE T LIKE S

• Then the new table T will have the same columns

as the existing table/view S, with the same data

types, nullability, and default values.

One can add “EXCLUDING COLUMN DEFAULTS” if one does not want to
copy this column characteristic. “INCLUDING ...” is the default.

The LBAC security policy and protected columns are also inherited
by the new table.

• The data is not copied. T will be empty.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-61

Create Table Like (2)

• No other table charactistics are copied, e.g. T will

not have any primary, unique, or foreign keys, and

no indexes or triggers.
Also physical specifications like the tablespace are not copied, they
must be explicitly specified or the default is taken.

• It is possible to copy the settings for generated

identity columns from the original table. This is

done with

INCLUDING IDENTITY COLUMN ATTRIBUTES

The last two keywords are optional. Here, the default is EXCLUDING
Then it will be a normal numeric column in the cloned table.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-62

Create Table As

• It is also possible to specify the columns of a table

by means of a query:

CREATE TABLE T AS

(SELECT A, B FROM S)

WITH NO DATA

Instead of “WITH NO DATA” one can also write “DEFINITION ONLY”.

• This is very similar to “CREATE TABLE LIKE”.

Of course, here, one can choose also a subset of the columns, or
combine columns from different tables in a join query. “CREATE TABLE

AS” is also used for defining materialized queries (views).

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-63

Temporary Tables (1)

• Temporary tables are local to a session.

• Even if parallel sessions declare temporary tables

with the same name, each has its own instance.

• Therefore, no locking is needed.

• Temporary tables are automatically deleted when

the session terminates.

Or the database connection is interrupted.

• Temporary tables are not entered into the system

catalog (data dictionary).

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-64

Temporary Tables (2)

• A session can contain several transactions.

• One can choose between ON COMMIT PRESERVE ROWS

and ON COMMIT DELETE ROWS (the default).

• One can request that changes to temporary tables

are not logged. This increases the efficiency.

This is not the default, although it is very common for temporary
tables. If changes are logged, a ROLLBACK works as for normal tables. If
NOT LOGGED is specified, one has the choice between ON ROLLBACK DELETE

ROWS and ON ROLLBACK PRESERVE ROWS (updates in the transaction are
not undone for the temporary table, because the log information is
missing). The creation or dropping of a temporary table is logged in
any case, and this action is undone on ROLLBACK, however, without log
information, the table will still be empty after undoning a DROP TABLE.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-65

Temporary Tables (3)

• Temporary tables are declared, not created (proba-

bly because they are not persistent):

DECLARE GLOBAL TEMPORARY TABLE T (

A INTEGER NOT NULL)

ON COMMIT PRESERVE ROWS

NOT LOGGED

• There are no local temporary tables in DB2.

Even if a temporary table is declared in the code between BEGIN and
END, it exists for the entire session, not only the block. Furthermore,
the system sometimes uses internally temporary tables for the evalua-
tion of a query (exist only locally during evaluation of a single query).
Another explanation might be that this syntax conforms to the SQL
standard, and the standard has also other forms of temporary tables.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-66

Temporary Tables (4)

• A user temporary tablespace must exist before glo-

bal temporary tables can be declared.

And one must have the USE privilege for that tablespace, or DBADM or
SYSADM authority. One can select a specific tablespace with IN as for
normal tables.

• A temporary table is always in the schema “SESSION”.

• So after the above temporary table was declared

(even without explicit schema), data must be in-

serted in the form

INSERT INTO SESSION.T VALUES (1)

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-67

Temporary Tables (5)

• If the clause “WITH REPLACE” is added to the table

declaration, a temporary table with the same name

is automatically dropped, if one should exist.

• Keys and foreign keys cannot be used for temporary

tables.

• Columns of temporary tables cannot be of long,

LOB, or XML type.

• One can declare a temporary table LIKE another

table, or AS the result schema of a query.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-68

ALTER TABLE (1)

• The purpose of the ALTER TABLE command is to mo-

dify the schema of an existing table.

• In principle, one could copy the data to a temporary

location, drop the table, create the table again with

the modified schema, and copy the data back. But:

� Copying the data is impractical for large tables.

� Table entries may be referenced in foreign keys:

One might end up recreating the entire DB.
Also indexes, grants, views, triggers, stored procedures etc. refe-
rence tables. Some of this information will be lost when the table
is dropped.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-69

ALTER TABLE (2)

• Examples for table schema changes:

� New columns can be added to a table.

Because columns can be added, it is safer to specify columns in
application programs instead of SELECT *.

� The width of existing columns can be increased.

E.g. from VARCHAR(20) to VARCHAR(30).
This is actually not possible in the SQL-92 standard, but in all
three DBMS (Oracle, DB2, SQL Server).

� Constraints can be removed or added.

Some systems also have the possibility to disable a constraint, so
that it is no longer checked, but still stored in the system. It can
then later be enabled again.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-70

ALTER TABLE (3)

• ALTER TABLE was not contained in SQL-86.

• It is contained in the SQL-92 standard, but con-

crete DBMS implementations differ quite heavily

in the syntax and in what exactly can be changed.

• The SQL-92 standard offers these possibilities:

� Columns can be added to or dropped from ta-

bles.

� The default column value can be changed, but

the data type cannot.

� Constraints can be added or removed.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-71

ALTER TABLE (4)

Adding Columns:

• E.g. add a column “EXTRA_PT” to “STUDENTS”:

ALTER TABLE STUDENTS

ADD COLUMN EXTRA_PT NUMERIC(4,1)

CHECK(EXTRA_PT >= 0)

• The keyword “COLUMN” is optional.

• The new column will first be null for all existing

rows.

• It can then be updated to some other value.
It might, however, create efficiency problems if the rows become much
longer than they were when the were inserted.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-72

ALTER TABLE (5)

• If a default value is specified, the new column can

be NOT NULL:
ALTER TABLE STUDENTS

ADD EXTRA_PT NUMERIC(4,1) DEFAULT 0 NOT NULL

• The new column is added as the last (rightmost)

column of the table.
There is no way to add it at any other position.

• Views (stored queries) are not affected, because

SELECT * is replaced by by an explicit column list

when the view definition is processed.

• There is no way to drop or rename a column.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-73

ALTER TABLE (6)

Modifying Columns (SQL-92 and DB2):

• In SQL-92, the only allowed modification of a co-

lumn is to change its default value:

ALTER TABLE EXERCISES

ALTER COLUMN MAXPT SET DEFAULT 12

• The default can be set to null also with this syntax:

ALTER TABLE EXERCISES

ALTER COLUMN MAXPT DROP DEFAULT

• In SQL-92, it is not possible to change the data

type of a column. In DB2, it is (see next slide).

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-74

ALTER TABLE (7)

Modifying Columns (DB2):

• Earlier, the only modification of a column data type

was to increase the size of a VARCHAR-column:

ALTER TABLE EXERCISES
ALTER TOPIC SET DATA TYPE VARCHAR(100)

• In the meantime, DB2 has become very generous

with changing the data type of columns (still only

larger types can be selected).

• E.g., one can change a SMALLINT column to INTEGER.

However, after such changes a reorganization is recommended.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-75

ALTER TABLE (8)

Adding/Removing Constraints:

• Add a constraint:
ALTER TABLE STUDENTS

ADD CONSTRAINT EXTRA_DEFINED
CHECK(EXTRA_PT >= 0)

Only table constraints can be added, but column constraints are any-
way only syntactic shorthands.

• Remove a named constraint:
ALTER TABLE STUDENTS

DROP CONSTRAINT EXTRA_DEFINED

In SQL-92, one must add the keyword RESTRICT or CASCADE (makes
sense only for keys referenced in foreign keys: CASCADE means to remove
those foreign keys, too).

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-76

ALTER TABLE (9)

• In DB2, the NULL/NOT NULL status of a column can

be changed with this syntax:

� Excluding null values:
ALTER TABLE EXERCISES

ALTER TOPIC SET NOT NULL

� Allowing null values:
ALTER TABLE EXERCISES

ALTER TOPIC DROP NOT NULL

• In DB2, a primary key can be dropped even without

name:

ALTER TABLE STUDENTS DROP PRIMARY KEY

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-77

Overview

1. Data Types

2. Tables

3. Indexes

'

&

$

%
4. Triggers

5. Typed Tables

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-78

Indexes (1)

• Indexes permit to access rows with a given value

for a column without scanning all rows in the table.

• Indexes are created on a specific column or column

combination of a specific table:

CREATE INDEX X ON T(A)

• A typical data structure for indexes are B+ trees.
The leaf nodes contain all values of the column in sorted order to-
gether with pointers to the corresponding rows (RIDs). RIDs are also
called ROWIDs or TIDs (tuple identifier).

• Indexes and their use in query evaluation have been

discussed in the course “Databases IIB”.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-79

Indexes (2)

• As usual, indexes can be declared as unique, mea-

ning that there can be only one RID for every di-

stinct column value:

CREATE UNIQUE INDEX X ON T(A)

• A unique index can be created on a column that

permits null values, Then there can be only a single

row where the column is null.

I.e. the null value is treated like any other value. In contrast, primary
keys and unique (alternative) keys can be created only on columns
that are declared as NOT NULL. If the table already contains duplicates,
the CREATE UNIQUE INDEX statement fails.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-80

Indexes (3)

• Unique indexes are created internally for keys de-

clared in the CREATE TABLE statement.
If one wants to select specific parameters for the index, one must first
declare the table without the key, then create the necessary index, and
then use ALTER TABLE to add the key. It checks whether there is already
an index that can be used.

• One can add columns to the index that are not

used in the search, e.g. that are not considered in

the uniqueness condition:

CREATE UNIQUE INDEX X ON T(A) INCLUDE (B)

This permits more queries to be answered directly from the index,
without fetching the rows via the RID.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-81

Indexes (4)

• The leaf nodes of a B+-tree index contain all co-

lumn values in sorted order.

This can be used for merge joins, and for ORDER BY or GROUP BY.

• As in the ORDER BY statement, one can specify for

each column, whether the smallest value is listed

first (ASC) or last (DESC):

CREATE INDEX X ON T(A ASC, B DESC)

Normally, the leaf nodes are linked in both directions, so that reverse
scans are possible (although this is the default, ALLOW REVERSE SCANS is
often explicitly specified). If this is not needed, use DISALLOW REVERSE

SCANS (probably saves one pointer, simplifies query optimization).

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-82

Indexes (5)

• Indexes are identified by schema and name (just

like tables).

Different tables cannot have indexes with the same name (in the same
schema). A table and its index can be in different schemas.

• Indexes and tables are in different namespaces: an

index and a table with the same name are possible.

• Each index entry including all overhead can be at

most 25% of the page size.

An index entry needs the same space as a row with the index columns
would need plus typically 11 Bytes (for the RID).

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-83

Clustering Indexes (1)

• At most one index per table can be declared as

clustered index:

CREATE INDEX X ON T(A) CLUSTER

• Then DB2 will try to store the rows in the table

ordered by the index column(s).
E.g. rows with the same value for A will probably be in the same or
in nearby blocks. Also a range scan (given an interval of values for A)
will be very efficient.

• However, when there is no space in the same or

a nearby block, the rows might still be stored far

away. The clustered index is only a suggestion/hint.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-84

Clustering Indexes (2)

• Unless the rows are inserted in the sort order of

the cluster column(s), the clustering property will

degrade over time.

If the rows are inserted in sort order, one can also put the table into
APPEND mode.

• Then one can do a table reorganization. This stores

the rows again in perfect sort order:

REORG TABLE T

This command has many parameters, see the manual. Access to the
table might be restricted during the reorganization. For large tables,
the reorganization might need a lot of time and temporary disk space.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-85

Clustering Indexes (3)

• Before the reorganization, one should specify how

much space should remain in each block for future

insertions:

ALTER TABLE T PCTFREE 25

• Then during a reorganization or a load operation,

at least 25% of each block will remain free.

Unless already the first row is larger: One row is always inserted in a
block without restriction.

• Later insertions or updates can use this space.

Note that this is different from the parameter PCTFREE in Oracle: There
it is the space reserve for updates, not used by insertions.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-86

Further Index Parameters (1)

• Also indexes have a parameter PCTFREE:

CREATE INDEX X ON T(A) PCTFREE 50

• When the index is created or reorganized, 50% of

the space in the leaf blocks will remain free.

• Therefore, insertions are possible for some time wi-

thout splitting the leaf nodes.

• In this way, the leaf nodes remain in sequential order

on the disk (stored in contiguous blocks).

This improves the performance of range scans or using the index for
getting the column values in sorted order.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-87

Further Index Parameters (2)

• In non-leaf nodes, it is not so important to lea-

ve free space, since they will anyway not be read

sequentially.

• Therefore, normally the minimum of the PCTFREE

value and 10% is left as free space when the index

is built or reorganized.

I.e. if one uses a small PCTFREE value (e.g. 0), this applies also to the
non-leaf nodes. If one uses a large PCTFREE value (e.g. 50), only 10%
will remain free in the non-leaf nodes. But see LEVEL2 PCTFREE below.

• The default value for PCTFREE is 10.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-88

Further Index Parameters (3)

• Later, a parameter LEVEL2 PCTFREE was introduced,

which applies to the branching nodes just above the

leaf nodes (i.e. the second level of the B+-tree).

If this parameter ist set, all higher levels of the tree get the minimum
of 10 and the LEVEL2 PCTFREE value percent free space. So in that case,
PCTFREE applies only to the leaf nodes.

• If values are inserted in increasing order, it is not

good to split nodes in the middle, since this will

leave all nodes except the rightmost ones only half

full. Specify PAGE SPLIT HIGH in this case.

Alternatives: PAGE SPLIT SYMMETRIC (the default) and PAGE SPLIT LOW.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-89

Further Index Parameters (4)

• The official B+-tree algorithm ensures that all no-

des (except possibly the root) are at least half full.

When entries are deleted, and the used space becomes less than 50%,
entries are moved from a sibling node or the nodes are merged.

• This is seldom applied in practice.

• In DB2, one can define e.g. MINPCTUSED 30. If a leaf

node is filled less than 30%, it will be checked whe-

ther it can be merged with a sibling node.

However, for the new type 2 indexes, entries are only physically re-
moved from indexes when there is an exclusive table lock. Otherwise,
the entries are only marked as deleted and no merging is done.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-90

Further Index Parameters (5)

• Example with all discussed parameters:

CREATE UNIQUE INDEX X ON T(A ASC, B DESC)

INCLUDE (C)

CLUSTER

PCTFREE 50

LEVEL2 PCTFREE 0

MINPCTUSED 25

PAGE SPLIT SYMMETRIC

COLLECT DETAILED STATISTICS

After the table is filled with data, one should use RUNSTATS to collect
statistics for the optimizer. If the index is created when the table
already contains data, one can use COLLECT STATISTICS instead.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-91

MDC Tables (1)

• Multidimensional clustering (MDC) is a new stora-

ge structure for tables (introduced in Ver. 8).

• It is primarily intended for data warehouse applica-

tions (OLAP), but it may also be useful for classical

OLTP applications.

• Whereas the clustering implemented with cluster

indexes needs periodic table reorganizations, the

clustering in MDC tables is automatic.

• MDC tables apply block indexes which are smaller

than standard indexes.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-92

MDC Tables (2)

• A typical example is:

CREATE TABLE SALES(

ID INTEGER NOT NULL PRIMARY KEY,

PROD_NO INTEGER NOT NULL

REFERENCES PRODUCTS,

CUST_NO INTEGER NOT NULL

REFERENCES CUSTOMERS,

QUANTITY INTEGER NOT NULL,

ORD_DATE DATE NOT NULL,

ORD_MONTH INTEGER NOT NULL

GENERATED ALWAYS AS

(INTEGER(ORD_DATE)/100))

ORGANIZE BY DIMENSIONS(PROD_NO, ORD_MONTH)

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-93

MDC Tables (3)

• In the example, there are two dimensions:

� the product number

� month and year of the order
This is a coarsification of the order date: INTEGER(ORD_DATE) yields
a number like 20080829, dividing it by 100 gives 200808.

• MDC views tables as a multidimensional cube in

which each cell contains rows with the same values

for the clustering dimentions.

• If there are n values for PROD_NO and m values for

ORD_MONTH, there are n ∗m cells. Cells contain table

rows. Some of the cells may be empty.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-94

MDC Tables (4)

• Cells are stored in blocks. Blocks are a sequence of

contiguous disk pages.
Actually, blocks are extents. The block size is equal to the extent size
defined for the table space in which the MDC table is stored. The
minium size of a block/extent is two pages.

• Of course, prefetching should be used so that all

rows in a block are read together into main memory.

• Empty cells are stored in 0 blocks, i.e. do not need

disk space.

• When the first row of a cell is inserted, a new block

is allocated.

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-95

MDC Tables (5)

• An MDC table always has a composite block index

which maps each unique combination of values for

the dimension columns (i.e. each non-empty cell)

to one or more blocks.
A block index is smaller than a normal index, because it contains only
block addresses, not RIDs of single tuples.

• So when the next row of the cell is inserted, the

block is found via the composite block index and

the row is inserted into the same block.

• When the block is full, another block is allocated

for the same cell (not necessarily nearby).

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-96

MDC Tables (6)

• A slice is the set of all cells that has the same value

in one dimension column.

• An MDC table always has dimension block indexes

for each dimension. These map a dimension value

(i.e. a slice) to a set of blocks.

• The intersection and union of slices are efficiently

possible.

Probably the sets of blocks are stored in ordered sequence.

• One can also create normal RID indexes on MDC

tables (for non-dimension columns).

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

4. Database Objects 4-97

MDC Tables (7)

• Dimensions of MDC tables are typically columns

that contain not very many distinct values.

Compared to the number of table rows (“low cardinality columns”).

• For each non-empty cell, at least one block is allo-

cated.

• This makes only sense if there are normally enough

rows in a cell to make the block sufficiently full.

E.g. it would be a severe error to choose a key column as dimension.

• As shown in the example, it might be possible to

make the dimension granularity coarser (“rollup”).

Stefan Brass: DBA-Zertifizierung Universität Halle, 2008

