
XML and Databases

Chapter 5: XML Schema

Prof. Dr. Stefan Brass

Martin-Luther-Universität Halle-Wittenberg

Winter 2019/20

http://www.informatik.uni-halle.de/˜brass/xml19/

5. XML Schema 1/82

http://www.informatik.uni-halle.de/~brass/xml19/


Objectives

After completing this chapter, you should be able to:

explain why DTDs are not sufficient for many
applications.

explain some XML schema concepts.

write an XML schema.

check given XML documents for validity according to a
given XML schema.

5. XML Schema 2/82



Inhalt

1 Introduction, First Example

2 Schema Styles

3 Attributes

4 Integrity Constraints

5 Advanced Constructs

5. XML Schema 3/82



Introduction (1)

Problems of DTDs:
The type system is very restricted.

E.g. one cannot specify that an element or an attribute must contain a number.

Concepts like keys and foreign keys (known from the
relational data model) cannot be specified.

The scope of ID and IDREF attributes is global to the entire document.
Furthermore, the syntax restrictions for IDs are quite severe.

A DTD is not itself an XML document (i.e. it does not
use the XML syntax for data).

No support for namespaces.

One cannot do everything with elements that can be done
with attributes (e.g. enumeration types, ID/IDREF).

5. XML Schema 4/82



Introduction (2)

DTDs were probably sufficient for the needs of the
document processing community, but do not satisfy the
expectations of the database community.

Therefore, a new way of describing the application-dependent
syntax of an XML document was developed: XML Schema.

In XML Schema, one can specify all syntax restrictions
that can be specified in DTDs, and more (i.e. XML
Schema is more expressive).

Only entities cannot be defined in XML Schema.

5. XML Schema 5/82



Introduction (3)

The W3C began work on XML Schema in 1998.

XML Schema 1.0 was published as a W3C standard
(“recommendation”) on May 2, 2001.

A second edition appeared October 28, 2004.

XML Schema 1.1 became a W3C recommendation on
April 5, 2012.

The Standard consists of:

Part 0: Tutorial introduction (non-normative).

Part 1: Structures.

Part 2: Datatypes.

5. XML Schema 6/82



Introduction (4)

A disadvantage of XML schema is that it is very complex,
and XML schemas are quite long (much longer than the
corresponding DTD).

Quite a number of competitors were developed.
E.g. XDR, SOX, Schematron, Relax NG.
See: D. Lee, W. Chu: Comparative Analysis of Six XML Schema
Languages. In ACM SIGMOD Record, Vol. 29, Nr. 3, Sept. 2000.

Relax NG is a relatively well-known alternative.
See: J. Clark, M. Makoto: RELAX NG Specification, OASIS Committee
Specification, 3 Dec. 2001.
[http://www.oasis-open.org/committees/relax-ng/spec-20011203.html]

5. XML Schema 7/82

http://www.oasis-open.org/committees/relax-ng/spec-20011203.html


Introduction (5)

Comparison with DBMS:

In a (relational) DBMS, data cannot be stored without a
schema.

An XML document is self-describing: It can exist and can
be processed without a schema.

In part, the role of a schema in XML is more like integrity
constraints in a relational DB.

It helps to detect input errors. Programs become simpler if they do not
have to handle the most general case.

But in any case, programs must use knowledge about the
names of at least certain elements.

5. XML Schema 8/82



Example Document (1)

STUDENTS
SID FIRST LAST EMAIL
101 Ann Smith · · ·
102 David Jones NULL
103 Paul Miller · · ·
104 Maria Brown · · ·

EXERCISES
CAT ENO TOPIC MAXPT
H 1 ER 10
H 2 SQL 10
M 1 SQL 14

RESULTS
SID CAT ENO POINTS
101 H 1 10
101 H 2 8
101 M 1 12
102 H 1 9
102 H 2 9
102 M 1 10
103 H 1 5
103 M 1 7

5. XML Schema 9/82



Example Document (2)

Translation to XML with data values in elements:

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<GRADES-DB>

<STUDENTS>
<STUDENT>

<SID>101</SID>
<FIRST>Ann</FIRST>
<LAST>Smith</LAST>

</STUDENT>
...

</STUDENTS>
...

</GRADES-DB>

5. XML Schema 10/82



Example: First Schema (1)

Part 1/4:

<?xml version="1.0" encoding="ISO-8859-1"?>
<xs:schema

xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="GRADES-DB">

<xs:complexType>
<xs:sequence>

<xs:element ref="STUDENTS"/>
<xs:element ref="EXERCISES"/>
<xs:element ref="RESULTS"/>

</xs:sequence>
</xs:complexType>

</xs:element>

5. XML Schema 11/82



Example: First Schema (2)

Part 2/4:

<xs:element name="STUDENTS">
<xs:complexType>

<xs:sequence>
<xs:element ref="STUDENT"

minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
</xs:element>

5. XML Schema 12/82



Example: First Schema (3)

Part 3/4:

<xs:element name="STUDENT">
<xs:complexType>

<xs:sequence>
<xs:element ref="SID"/>
<xs:element ref="FIRST"/>
<xs:element ref="LAST"/>
<xs:element ref="EMAIL" minOccurs="0"/>

</xs:sequence>
</xs:complexType>

</xs:element>

5. XML Schema 13/82



Example: First Schema (4)

Part 4/4:
<xs:element name="SID">

<xs:simpleType>
<xs:restriction base="xs:integer">

<xs:minInclusive value="100"/>
<xs:maxInclusive value="999"/>

</xs:restriction>
</xs:simpleType>

</xs:element>
<xs:element name="FIRST" type="xs:string"/>
<xs:element name="LAST" type="xs:string"/>
<xs:element name="EMAIL" type="xs:string"/>
...

</xs:schema>
5. XML Schema 14/82



Example: First Schema (5)

Namespace Prefix:
The prefix used for the namespace is not important.
E.g. sometimes one sees “xsd:” instead of “xs:”.

Simple vs. Complex Types:

A complex type is a type that contains elements and/or
attributes.

A simple type is something like a string or number.
A simple type can be used as the type of an attribute, and as the data type
of an element (content and attributes). A complex type can only be the
data type of an element (attributes cannot contain elements or have
themselves attributes). Instead of “element”, I should really say “element
type”, but that might be confusing (it is not an XML Schema type).

5. XML Schema 15/82



Example: First Schema (6)

In XML Schema, the sequence of declarations (and
definitions, see below) is not important.

The example contains many references to element types that are declared
later. Actually, a schema can contain references to elements that are not
declared at all, as long as these elements do not occur in the document,
i.e. they are not needed for validation. Some validators even in this case
print no error message: They use “lax validation” and check only for what
they have declarations.

It is necessary to use a one-element sequence (or choice)
in the declaration of STUDENTS.

One cannot use xs:element directly inside xs:complexType. This is
similar to the content model in DTDs, which always needs “(...)”.

5. XML Schema 16/82



Example: First Schema (7)

The default for minOccurs and maxOccurs is 1.

? in DTD: minOccurs="0" (maxOccurs is 1 by default)

+ in DTD: maxOccurs="unbounded" (minOccurs is 1)

* in DTD: minOccurs="0" maxOccurs="unbounded"

In XML Schema, one cannot define what must be the
root element type. E.g., a document consisting only of a
STUDENT-element would validate.

Every “globally” declared element type can be used. Global declarations are
declarations that appear directly below xs:schema. As explained below, it
is often possible to declare only the intended root element type globally,
then there is no problem. Otherwise the application must check the root
element type. Note that DTDs also do not define the root element type,
this happens only in the DOCTYPE-declaration.

5. XML Schema 17/82



Validation (1)

Online Validators:

Freeformatter
[http://www.freeformatter.com/xml-validator-xsd.html]

CoreFiling
[https://www.corefiling.com/opensource/schemaValidate/]

XML Validation
[http://www.xmlvalidation.com/?L=2]

5. XML Schema 18/82

http://www.freeformatter.com/xml-validator-xsd.html
https://www.corefiling.com/opensource/schemaValidate/
http://www.xmlvalidation.com/?L=2


Validation (2)

Validators for Local Installation:

Altova XML Community Edition
[http://www.softpedia.com/get/Internet/Other-Internet-Related/

AltovaXML.shtml]

XSV
[http://www.ltg.ed.ac.uk/˜ht/xsv-status.html]

BaseX
[http://basex.org/] See also: [http://docs.basex.org/wiki/Validation Module]
Enter e.g. validate:xsd-report("example.xml","example.xsd") in the
editor/query area and press the green execution arrow on top of this area.
validate:xsd-info(...) returns the same result as a list of strings.

5. XML Schema 19/82

http://www.softpedia.com/get/Internet/Other-Internet-Related/AltovaXML.shtml
http://www.softpedia.com/get/Internet/Other-Internet-Related/AltovaXML.shtml
http://www.ltg.ed.ac.uk/~ht/xsv-status.html
http://basex.org/
http://docs.basex.org/wiki/Validation_Module


Validation (3)

Validating parser libraries:

Apache Xerces
[http://xerces.apache.org/]

Libxml2
[http://xmlsoft.org/]

Oracle XDK
[http://www.oracle.com/technetwork/developer-tools/xmldevkit/]

Microsoft MSXML
[http://msdn2.microsoft.com/en-us/xml/default.aspx]

5. XML Schema 20/82

http://xerces.apache.org/
http://xmlsoft.org/
http://www.oracle.com/technetwork/developer-tools/xmldevkit/
http://msdn2.microsoft.com/en-us/xml/default.aspx


Validation (4)

Depending on the validator used, it is not necessary that
the XML data file (the instance of the schema) contains a
reference to the schema.

If one wants to refer to the schema, this can be done as
follows:
<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<GRADES-DB xmlns:xsi=

"http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="ex2.xsd">

...
</GRADES-DB>

5. XML Schema 21/82



Inhalt

1 Introduction, First Example

2 Schema Styles

3 Attributes

4 Integrity Constraints

5 Advanced Constructs

5. XML Schema 22/82



Schema Styles (1)

The same restrictions on XML documents can be
specified in different ways in XML.

I.e. there are equivalent, but very differently structured XML schemas.

The above XML schema is structured very similar to a DTD:
All element types are declared with global scope.
No named types (see below) are used.

This style is called “Salami Slice”.
The schema is constructed in small pieces on equal level.
“‘Salami slice’ caputes both the disassembly process, the resulting flat look
of the schema, and implies reassembly as well (into a sandwich).”
[http://www.xfront.com/GlobalVersusLocal.html]

5. XML Schema 23/82

http://www.xfront.com/GlobalVersusLocal.html


Schema Styles (2)

One can also nest element declarations.

Element declarations that are not defined as children of
xs:schema cannot be referenced.

They are local declarations in contrast to the global ones used above.

In this way, one can have elements with the same name,
but different content models in different contexts within
one document.

This is impossible with DTDs. It might be useful for complex documents,
especially if the schema is composed out of independently developed parts.
In relational DBs, different tables can have columns with the same name,
but different types. Then the above XML translation of a relational schema
cannot be done in “Salami Slice” style.

5. XML Schema 24/82



Schema Styles (3)

XML Schema in “Russian Doll” style:
<xs:element name="GRADES-DB">

<xs:complexType>
<xs:sequence>

<xs:element name="STUDENTS">
<xs:complexType>

<xs:sequence>
<xs:element name="STUDENT"

minOccurs="0"
maxOccurs="unbounded">

<xs:complexType>
<xs:sequence>

<xs:element name="SID">
...

5. XML Schema 25/82



Schema Styles (4)

Advantages of “Russian Doll” style:

The structure of the schema is similar to the structure of
the document.

In “Russian Doll” style, there is only one global element,
thus the root element type is enforced.

Disadvantages:

The declaration of equal subelements has to be
duplicated.

Recursive element types are not possible.

No reuse of schema components.

5. XML Schema 26/82



Schema Styles (5)

Actually, in XML schema, one

defines (data) types and

declares elements to have a (data) type.
A declaration binds names that occur in the XML data file (the
instance) to (data) types. A definition introduces names that can be
used only in the schema.

In the above examples, all types are anonymous.
In “Venetian Blind” design, explicit types are used.

At least for elements with similar content models. Elements are declared
locally as in the “Russian Doll” style.
“‘Venetian Blind’ captures the ability to expose or hide namespaces with a
simple switch, and the assembly of slats captures reuse of components.”
[http://www.xfront.com/GlobalVersusLocal.html]

5. XML Schema 27/82

http://www.xfront.com/GlobalVersusLocal.html


Schema Styles (6)

XML Schema in “Venetian Blind” style, Part 1/4:

<xs:simpleType name="SIDType">
<xs:restriction base="xs:integer">

<xs:minInclusive value="100"/>
<xs:maxInclusive value="999"/>

</xs:restriction>
</xs:simpleType>
<!-- Continued on next three slides -->

5. XML Schema 28/82



Schema Styles (7)

“Venetian Blind” Style, Part 2/4:

<xs:complexType name="StudentType">
<xs:sequence>

<xs:element name="SID" type="SIDType"/>
<xs:element name="FIRST" type="xs:string"/>
<xs:element name="LAST" type="xs:string"/>
<xs:element name="EMAIL" type="xs:string"

minOccurs="0"/>
</xs:sequence>

</xs:complexType>

5. XML Schema 29/82



Schema Styles (8)

“Venetian Blind” Style, Part 3/4:

<xs:complexType name="StType">
<xs:sequence>

<xs:element name="STUDENT" type="studentType"
minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

5. XML Schema 30/82



Schema Styles (9)

“Venetian Blind” Style, Part 4/4:

<xs:complexType name="GradesType">
<xs:sequence>

<xs:element name="STUDENTS" type="StType"/>
<xs:element name="EXERCISES" type="ExType"/>
<xs:element name="RESULTS" type="ResType"/>

</xs:sequence>
</xs:complexType>

<xs:element name="GRADES-DB" type="GradesType">

5. XML Schema 31/82



Schema Styles (10)

Remarks about “Venetian Blind” style:

There is only one global element declaration, thus the
root element type is enforced.

All other elements are known only locally within their type.

Probably, this is often the best style.
The content model (and attributes) of equal subelements is
specified only once (in the corresponding type). The components
(types) are resuable. The reusability is even better than in the
“Salami Slice” style, because the (data) types can be used with
different element (type) names.

It is possible to define types and elements with the same
name.

5. XML Schema 32/82



Schema Styles (11)

Summary:

Style Element Decl. Type Decl.
Salami Slice Global Anonymous, local

(except predefined
simple types)

Russian Doll Local Anonymous, local
(except root) (except predefined

simple types)
Venetian Blind Local Named, global

(except root)

5. XML Schema 33/82



Inhalt

1 Introduction, First Example

2 Schema Styles

3 Attributes

4 Integrity Constraints

5 Advanced Constructs

5. XML Schema 34/82



Example with Attributes (1)

Document:

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<GRADES-DB>

<STUDENT SID=’101’ FIRST=’Ann’ LAST=’Smith’/>
<STUDENT SID=’102’ FIRST=’David’ LAST=’Jones’/>
...
<EXERCISE CAT=’H’ ENO=’1’ TOPIC=’Rel. Algeb.’/>
...
<RESULT SID=’101’ CAT=’H’ ENO=’1’ POINTS=’10’/>
...

</GRADES-DB>

5. XML Schema 35/82



Example with Attributes (2)

Schema, Part 1/3:

<xs:element name="GRADES-DB">
<xs:complexType>

<xs:sequence>
<xs:element ref="STUDENT"

minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="EXERCISE"

minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="RESULT"

minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
</xs:element>

5. XML Schema 36/82



Example with Attributes (3)

Schema, Part 2/3:

<xs:element name="STUDENT">
<xs:complexType>

<xs:attribute name="SID" use="required">
<xs:simpleType>

<xs:restriction base="xs:integer">
<xs:minInclusive value="100"/>
<xs:maxInclusive value="999"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<!--- declaration continued on next slide -->

5. XML Schema 37/82



Example with Attributes (4)

Schema, Part 3/3:

<xs:attribute name="FIRST"
use="required"
type="xs:string"/>

<xs:attribute name="LAST"
use="required"
type="xs:string"/>

<xs:attribute name="EMAIL"
type="xs:string"/>

</xs:complexType>
</xs:element> <!-- STUDENT -->

5. XML Schema 38/82



Example with Attributes (5)

The same (simple) data type can be used for attributes
and for element content.

In contrast, DTDs had some data types for attributes, but basically no
data types for element content (only strings) (and of course content
models, but that is a separate issue).

In the example, the elements have empty content
(xs:complexType contained no content model).

If an element type has element content and attributes,
inside xs:complexType, one must specify

first the content model (e.g., with xs:sequence)

and then declare the attributes.

5. XML Schema 39/82



Example with Attributes (6)

Element types with attributes and simple types as
content, e.g.

<length unit="cm">12</length>

can be defined by extension of the simple type:

<xs:complexType name="lengthType">
<xs:simpleContent>

<xs:extension base="xs:integer">
<xs:attribute name="unit" type="xs:string">

</xs:extension>
</xs:simpleContent>

<xs:complexType>

5. XML Schema 40/82



Inhalt

1 Introduction, First Example

2 Schema Styles

3 Attributes

4 Integrity Constraints

5 Advanced Constructs

5. XML Schema 41/82



Integrity Constraints (1)

DTDs have ID/IDREF to permit a unique identification of
nodes and links between elements.

This mechanism is quite restricted:

The identification must be a single XML name.
A number cannot be used as identification. Composed keys are not
supported. DTDs do not allow further restrictions of the possible
values, e.g. one cannot enforce a certain format for the names.

The scope is global for the entire document.
One cannot state that the uniqueness only has to hold within an
element (e.g., representing a relation). One cannot specify any
constraints of the element type that is referenced with IDREF.

This works only for attributes, not for elements.

5. XML Schema 42/82



Integrity Constraints (2)

XML Schema has mechanisms corresponding to keys and
foreign keys in relational databases that solve the problems
of ID/IDREF.

They are more complex than the relational counterparts, because the
hierarchical structure of XML is more complex than the flat tables of the
relational model. The simplicity of the relational model was one of its big
achievements. This is given up in XML databases.

The facets correspond to CHECK-constraints that restrict
the value set of a single column.

Not all SQL conditions that refer to only one column can be expressed
with facets. On the other hand, patterns in XML Schema are much more
powerful than SQL’s LIKE-conditions. It is strange that patterns refer to
the external representation.

5. XML Schema 43/82



Integrity Constraints (3)

Otherwise, XML Schema 1.0 is not very powerful with
respect to constraints. This changed in Version 1.1.

E.g., CHECK-constraints in relational databases can state logical conditions
between the column values of a table row, e.g. if one column has a certain
value then another column must be not null. The facets of XML Schema
constrain only single values.

For example, XML Schema itself requires that the
type-attribute of element is mutually exclusive with
simpleType/complexType-child elements.

This constraint cannot be specified in XML Schema 1.0.
One would expect that the schema for XML Schema can express the
necessary requirements.

5. XML Schema 44/82



Integrity Constraints (4)

XML Schema 1.1 (released April 5, 2012) introduced an
Element assert that permits to specify arbitrary
conditions in XPath 2.0.

However, there are not very many XML Schema 1.1 implementations yet.

For instance, one can compare two attribute values of an
element (attribute min must be ≤ max):
<xs:complexType name="intRange">

<xs:attribute name="min" type="xs:int"/>
<xs:attribute name="max" type="xs:int"/>
<xs:assert test="@min le @max"/>

</xs:complexType>

[https://www.w3.org/TR/2012/REC-xmlschema11-1-20120405/]

5. XML Schema 45/82

https://www.w3.org/TR/2012/REC-xmlschema11-1-20120405/


Unique/Key Constraints (1)

Consider again the example:

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<GRADES-DB>

<STUDENTS>
<STUDENT>

<SID>101</SID>
<FIRST>Ann</FIRST>
<LAST>Smith</LAST>

</STUDENT>
...

</STUDENTS>
...

</GRADES-DB>
5. XML Schema 46/82



Unique/Key Constraints (2)

SID-values uniquely identify the children of STUDENTS:

<xs:element name="STUDENTS">
<xs:complexType>

<xs:sequence>
<xs:element ref="STUDENT"

minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
<xs:unique name="STUDENTS_KEY">

<xs:selector xpath="*"/>
<xs:field xpath="SID"/>

</xs:unique>
</xs:element>

5. XML Schema 47/82



Unique/Key Constraints (3)

There are three components to a unique-constraint
(basically corresponds to relation, row, column(s)):

The scope, which delimits the part of the XML
document, in which the uniqueness must hold.

Every element of the type in which the unique-constraint is defined
is one such scope.

The elements which are identified.
The XPath-expression in selector specifies how to get from a
scope-element to these elements (“target node set”).

The values which identify these elements.
The XPath-expressions in one or more field-elements specify how
to get from the identified elements to the identifying values.

5. XML Schema 48/82



Unique/Key Constraints (4)

In the example:

The scope is the STUDENTS-element.
In the example, there is only one STUDENTS-element. If there were
more than one, the uniqueness has to hold only within each single
element.

The elements that are identified are the children of
STUDENTS (the STUDENT-elements).

One could also write xpath="STUDENT".

The value that identifies the elements is the value of the
SID-child.

5. XML Schema 49/82



Unique/Key Constraints (5)

The correspondence of the scope to a relation is not exact:

In the example, it is also possible to define the entire
document as scope, but to select only STUDENT-elements
(see next slide).

In contrast to the ID-type, it is no problem if other keys
contain the same values.

Even if the scope is global, the uniqueness of values must hold only
within a key (i.e. one could say that the scope is the key).

Only values of simple types can be used for unique
identification.

5. XML Schema 50/82



Unique/Key Constraints (6)

SID-values uniquely identify STUDENT-elements:

<xs:element name="GRADES-DB">
<xs:complexType>

<xs:sequence>
<xs:element ref="STUDENTS"/>
<xs:element ref="EXERCISES"/>
<xs:element ref="RESULTS"/>

</xs:sequence>
</xs:complexType>
<xs:unique name="STUDENTS_KEY">

<xs:selector xpath="STUDENTS/STUDENT"/>
<xs:field xpath="SID"/>

</xs:unique>
</xs:element>

5. XML Schema 51/82



Unique/Key Constraints (7)

Example with composed key:

<xs:element name="GRADES-DB">
<xs:complexType>

<xs:sequence>
<xs:element ref="STUDENTS"/>
<xs:element ref="EXERCISES"/>
<xs:element ref="RESULTS"/>

</xs:sequence>
</xs:complexType>
<xs:unique name="EXERCISES_KEY">

<xs:selector xpath="EXERCISES/*"/>
<xs:field xpath="CAT"/>
<xs:field xpath="ENO"/>

</xs:unique>
</xs:element>

5. XML Schema 52/82



Unique/Key Constraints (8)

Suppose we store the data in attributes:
<EXERCISE CAT=’H’ ENO=’1’

TOPIC=’Rel. Algeb.’ MAXPT=’10’/>

Attributes as fields are marked with “@”:
<xs:element name="GRADES-DB">

...
<xs:unique name="EXERCISES_KEY">

<xs:selector xpath="EXERCISES/*"/>
<xs:field xpath="@CAT"/>
<xs:field xpath="@ENO"/>

</xs:unique>
</xs:element>

5. XML Schema 53/82



Unique/Key Constraints (9)

Example with exercise info nested in categories:
<EXERCISES>

<CATEGORY CAT="H">
<EX ENO="1" TOPIC="Rel. Algeb." MAXPT="10"/>
<EX ENO="2" TOPIC="SQL" MAXPT="10"/>

</CATEGORY>
<CATEGORY CAT="M">

<EX ENO="1" TOPIC="SQL" MAXPT="14"/>
</CATEGORY>

</EXERCISES>

XML Schema supports only a subset of XPath.
In particular, one cannot access ancestors in xs:field.
But the unique identification of EX needs CAT.

5. XML Schema 54/82



Unique/Key Constraints (10)

The problem is solved by defining two keys:

One key ensures that the CAT-value uniquely identifies
CATEGORY-elements.

The other key is defined within the CATEGORY element
type (thus, there is one instance of the key, i.e. scope,
for every category element). This key ensures the unique
identification of EX-elements by the ENO within each
CATEGORY element.

However, in this way no foreign keys can be specified that
reference EX-elements by CAT and ENO.

5. XML Schema 55/82



Unique/Key Constraints (11)

Key on CATEGORY:

<xs:element name="GRADES-DB">
...
<xs:unique name="CATEGORY_KEY">

<xs:selector xpath="EXERCISES/CATEGORY"/>
<xs:field xpath="@CAT"/>

</xs:unique>
</xs:element>

The XPath-expression in selector could also be EXERCISES/*

(because EXERCISES has only CATEGORY-elements as children).
One could define the key also under EXERCISES (instead of GRADES-DB)
since the document contains only one element of type EXERCISES, and all
elements to be identified are nested within this element.

5. XML Schema 56/82



Unique/Key Constraints (12)

Key on EX-elements within CATEGORY:

<xs:element name="CATEGORY">
...
<xs:unique name="EX_KEY">

<xs:selector xpath="*"/>
<xs:field xpath="@ENO"/>

</xs:unique>
</xs:element>

It is no problem that there are two EX-elements with the
same ENO (e.g., 1) as long as they are nested within
different CATEGORY-elements.

This is similar to a weak entity.

5. XML Schema 57/82



Unique/Key Constraints (13)

For a given “context node” (in which the key is defined),
the selector defines a “target node set”.

For each node in the target node set, the
XPath-expression in each field must return 0 or 1 values.
It is an error if more than one value is returned.

The target nodes, for which each field has a value (that is
not nil), form the “qualified node set”.

The unique identification is required only for the qualified
node set. Multiple elements with undefined or partially
defined key values can exist.

5. XML Schema 58/82



Unique/Key Constraints (14)

If one writes xs:key instead of xs:unique,
the fields must exist.

In this case, it is an error if the XPath-expression in
xs:field returns no values.

And it is always an error if it returns more than one value.
Furthermore, neither the identified nodes nor the identifying fields
may be nillable.

Note that value equality respects the type:

For a field of type integer, "03" and "3" are the same
(so the uniqueness would be violated).

For a field of type string, they are different.

5. XML Schema 59/82



Key References (1)

A “key reference” identity constraint corresponds to a
foreign key in relational databases.

It demands that certain (tuples of) values must appear as
identifying values in a key constraint.

“Key constraint” means key or unique.

Example: For each SID-value in a RESULT element, there
must be a STUDENT-element with the same SID (one can
store points only for known students).

As in relational databases, it is not required that the two fields have the
same name.

5. XML Schema 60/82



Key References (2)

SID-values in RESULT reference SID-values in STUDENT:

<xs:element name="GRADES-DB">
...

<xs:key name="STUDENT_KEY">
<xs:selector xpath="STUDENTS/STUDENT"/>
<xs:field xpath="SID"/>

</xs:key>

<xs:keyref name="RESULT_REF_STUDENT"
refer="STUDENT_KEY">

<xs:selector xpath="RESULTS/RESULT"/>
<xs:field xpath="SID"/>

</xs:keyref>

</xs:element>
5. XML Schema 61/82



Key References (3)

The referenced key must be defined in the same node or
in a descendant node (i.e. “below”) the node in which the
foreign key constraint is defined.

I would have required the opposite direction, because on the way up, there
could be only one instance of the referenced key, on the way down, there
can be several (see below). But the committee certainly had reasons,
probably related to the parsing/checking algorithms.

The standard explains that “node tables” which map key
values to the identified nodes are computed bottom-up.

The standard talks of “key sequence” instead of “key values” to include
also composed keys (with more than one field).

5. XML Schema 62/82



Key References (4)

It is possible that several instances of the referenced key
exist below the foreign key.

In that case, the union of the node tables is taken, with
conflicting entries removed.

I.e. if two instances of the referenced key contain the same key value with
different identified nodes, that key value is removed from the table: It
cannot be referenced (the reference would not be unique).
The situation is even more complicated, if the key is defined in an element
type that has descendants of the same type. Then key value-node pairs
originating in the current node take precedence over pairs that come from
below. Values that come from below are only entered in the node table if
they do not cause a conflict.

5. XML Schema 63/82



Key References (5)

Fields of key and foreign key are matched by position in
the identity constraint definition, not by name (as in
relational databases).

Normally, the types of corresponding fields (of the key
and the foreign key) should be the same.

However, if the types of both columns are derived from
the same primitive type, it might still work (for values in
the intersection of both types).

But values of unrelated types are never identical: E.g. the
string “1” is different from the number “1”.

5. XML Schema 64/82



Inhalt

1 Introduction, First Example

2 Schema Styles

3 Attributes

4 Integrity Constraints

5 Advanced Constructs

5. XML Schema 65/82



Derived Complex Types (1)

There are two ways to derive complex types:

by extension, e.g. adding new elements at the end of the
content model, or adding attributes,

by restriction, e.g. removing optional elements or
attributes, or restricting the data type of attributes, etc.

Derived simple types are always restrictions.
One can extend a simple type by adding attributes, but then it becomes a
complex type.

5. XML Schema 66/82



Derived Complex Types (2)

Extension looks very similar to subclass definitions in
object-oriented languages.

There all attributes from the superclass are inherited to the subclass, and
additional attributes can be added.

However, a basic principle in object-oriented languages is
that a value of a subclass can be used wherever a value of
the superclass is needed.

In XML, it depends on the application, whether it breaks
if there are additional elements/attributes.

Since XML Schema has this feature, future applications should be
developed in a way that tolerates possible extensions.

5. XML Schema 67/82



Derived Complex Types (3)

Additional attributes are probably seldom a problem, since
attributes are typically accessed by name (not in a loop).

It was tried to minimize the problems of additional child
elements by allowing them only at the end of the content
model.

Formally, the content model of the extended type is
always a sequence consisting of

the content model of the base type,

the added content model (new child elements).

5. XML Schema 68/82



Derived Complex Types (4)

Consider a type for STUDENT-elements:

<xs:complexType name="STUDENT_TYPE">
<xs:sequence>

<xs:element name="SID" type="SID_TYPE"/>
<xs:element name="FIRST" type="xs:string"/>
<xs:element name="LAST" type="xs:string"/>
<xs:element name="EMAIL" type="xs:string"

minOccurs="0"/>
</xs:sequence>

</xs:complexType>

Suppose that exchange students must in addition contain
the name of the partner university.

5. XML Schema 69/82



Derived Complex Types (5)

Example for type extension:
<xs:complexType name="EXCHANGE_STUDENT_TYPE">

<xs:complexContent>
<xs:extension base="STUDENT_TYPE">

<xs:sequence>
<xs:element name="PARTNER_UNIV"

type="UNIV_TYPE"/>
</xs:sequence>

</xs:extension>
</xs:complexContent>

</xs:complexType>

The effective content model is now:
((SID, FIRST, LAST, EMAIL?), (PARTNER_UNIV))

5. XML Schema 70/82



Derived Complex Types (6)

In the same way, one can add attributes. Suppose that
STUDENT_TYPE2 has attributes SID, FIRST, LAST, EMAIL
(and empty content).

Then a new attribute is added as follows:
<xs:complexType name="EXCHANGE_STUDENT_TYPE2">

<xs:complexContent>
<xs:extension base="STUDENT_TYPE2">

<xs:attribute name="PARTNER_UNIV"
type="UNIV_TYPE" use="required"/>

</xs:extension>
</xs:complexContent>

</xs:complexType>

5. XML Schema 71/82



Derived Complex Types (7)

Let us return to the case where STUDENT has child
elements SID, FIRST, LAST, EMAIL.

The type of EMAIL might be a simple type:
<xs:simpleType name="EMAIL_TYPE">

<xs:restriction base="xs:string">
<xs:maxLength value="80"/>

</xs:restriction>
</xs:simpleType>

Suppose that an attribute must be added that indicates
whether emails can be formatted in HTML or must be
plain text.

5. XML Schema 72/82



Derived Complex Types (8)

When an attribute is added to a simple type, one gets a
complex type:

<xs:complexType name="EMAIL_TYPE2">
<xs:simpleContent>

<xs:extension base="EMAIL_TYPE">
<xs:attribute name="HTML_OK"

type="xs:boolean" use="optional"/>
</xs:extension>

</xs:simpleContent>
</xs:complexType>

Example (element EMAIL of type EMAIL_TYPE2):

<EMAIL HTML_OK="false">brass@acm.org</EMAIL>

5. XML Schema 73/82



Derived Complex Types (9)

If one uses restriction to define a derived type, it is
guaranteed that every value of the derived type is also a
valid value of the original type.

If one wants to restrict a content model, one must repeat
the complete content model.

I.e. also the unmodified parts must be listed. The restricted content model
does not have to be structurally identical. E.g. groups with only a single
element can be eliminated (if minOccurs and maxOccurs are both 1), a
sequence group with minOccurs="1" and maxOccurs="1" can be merged
with an enclosing sequence group, the same for choice-groups. However,
for all and choice groups, subgroups must be listed in the same order,
although the sequence is semantically not important.

5. XML Schema 74/82



Derived Complex Types (10)

If one wants to restrict an attribute, it suffices to repeat
only this attribute.

Consider again STUDENT_TYPE2 with attributes SID,
FIRST, LAST, EMAIL. The optional attribute EMAIL can
be removed as follows:

<xs:complexType name="STUDENT_TYPE3">
<xs:complexContent>

<xs:restriction base="STUDENT_TYPE2">
<xs:attribute name="EMAIL"

use="prohibited"/>
</xs:restriction>

</xs:complexContent>
</xs:complexType>

5. XML Schema 75/82



Derived Complex Types (11)

The same change for the type STUDENT with child
elements SID, FIRST, LAST, EMAIL (minOccurs="0"):

<xs:complexType name="STUDENT_TYPE4">
<xs:complexContent>
<xs:restriction base="STUDENT_TYPE">

<xs:sequence>
<xs:element name="SID" type="SID_TYPE"/>
<xs:element name="FIRST" type="xs:string"/>
<xs:element name="LAST" type="xs:string"/>

</xs:sequence>
</xs:restriction>

</xs:complexContent>
</xs:complexType>

5. XML Schema 76/82



Derived Complex Types (12)

Possible restrictions for complex types:

Optional attribute becomes required/prohibited.

The cardinality of elements or model groups becomes
more restricted (minOccurs ↑, maxOccurs ↓).

Alternatives in choice-groups are reduced.

A restricted type can be chosen for an attribute or a
child element.

A default value can be changed.

An attribute or element can get a fixed value.

Mixed content can be forbidden.

5. XML Schema 77/82



Documentation, App. Info (1)

Documentation about the schema can be stored within
the XML Schema definition.

And not only as XML comments: Many XML tools suppress comments,
and very little formatting can be done there.

This is one purpose of the annotation element type,
which is allowed

as first child of every XML Schema element type
But it cannot be nested, i.e. it cannot be used within annotation or
its children documentation and appinfo.

anywhere as child of schema and redefine.
There, multiple annotation elements are allowed. Inside all other
element types, only one annotation element is permitted.

5. XML Schema 78/82



Documentation, App. Info (2)

Many relational databases also have the possibility to
store comments about tables and columns in the data
dictionary.

Of course, this is usually pure text, quite short and without formatting.

The other purpose of the annotation element is to store
information for tools (programs) that process XML
Schema information within the schema.

E.g. tools that compute a relational schema from an XML schema, and
map data between the two, or tools that generate form-based data entry
programs out of the schema data.

This makes XML Schema extensible.

5. XML Schema 79/82



Documentation, App. Info (3)

Example:
<xs:schema

xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:doc="http://doc.org/d1"
xmlns:xsi=

"http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation=

"http://doc.org/d1 doc.xsd">
<xs:element name="GRADES-DB">

<xs:annotation>
<xs:documentation xml:lang="en">

<doc:title>Grades Database</doc:title>
This is the root element.
...

<xs:complexType>
...

5. XML Schema 80/82



Visualization of Schema Structure

5. XML Schema 81/82



References

Harald Schöning, Walter Waterfeld: XML Schema.
In: Erhard Rahm, Gottfried Vossen: Web & Datenbanken, Seiten 33-64.
dpunkt.verlag, 2003, ISBN 3-89864-189-9.

Priscilla Walmsley: Definitive XML Schema.
Prentice Hall, 2001, ISBN 0130655678, 560 pages.

W3C Architecture Domain: XML Schema.
[http://www.w3.org/XML/Schema]

David C. Fallside, Priscilla Walmsley: XML Schema Part 0: Primer.
W3C, 28. October 2004, Second Edition.
[http://www.w3.org/TR/xmlschema-0/]

Henry S. Thompson, David Beech, Murray Maloney, Noah Mendelsohn:
XML Schema Part 1: Structures.
W3C, 28. October 2004, Second Edition
[http://www.w3.org/TR/xmlschema-1/]

Paul V. Biron, Ashok Malhotra: XML Schema Part 2: Datatypes.
W3C, 28. October 2004, Second Edition
[http://www.w3.org/TR/xmlschema-2/]

[http://www.w3schools.com/schema/]

5. XML Schema 82/82

http://www.w3.org/XML/Schema
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3schools.com/schema/

	Introduction, First Example
	Introduction

	Schema Styles
	Schema Styles

	Attributes
	Attributes

	Integrity Constraints
	Integrity Constraints

	Advanced Constructs
	Advanced Constructs
	References


