
1. XML Syntax 1-1

Chapter 1: XML Syntax

References:
• Boc DuCharme: XML — The Annotated Specification. Prentice Hall, 1999.

• Tim Bray, Jean Paoli, C.M. Sperberg-McQueen: Extensible Markup Language (XML)
1.0, 1998. [http://www.w3.org/TR/REC-xml] See also: [http://www.w3.org/XML].

• Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, François Yergeau, John
Cowan: Extensible Markup Language (XML) 1.1 (Second Edition),
W3C Recommendation 16 August 2006, edited in place 29 September 2006.
[http://www.w3.org/TR/xml11].

• Elliotte Rusty Harold, W. Scott Means:
XML in a Nutshell, A Desktop Quick Ref., 3rd Ed.
O’Reilly, Okt. 2004, ISBN 0-596-00764-7, 689 Seiten, 37 Euro.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-2

Objectives

After completing this chapter, you should be able to:

• write syntactically correct XML.

• check given XML documents for syntax errors.

• explain the tree-structure of XML data.

• read XML Document Type Definitions (DTDs).

• validate an XML document against a given DTD.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-3

Overview

1. Introduction

2. XML Documents (Syntax)

3. Document Type Definitions (DTDs)

4. DOCTYPE, XML Declaration

5. Entities, Notations, Marked Sections

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-4

Introduction (1)

• XML (“eXtensible Markup Language”) is basically

a simplification (subset) of SGML (“Standard Ge-

neralized Markup Language”).
SGML is an ISO-Standard since 1986. XML was developed mainly
1996, and became an W3C Recommendation on February 10, 1998.
The current version is XML 1.1 (2nd Ed.) from August 2006.

• XML/SGML has two levels:

� It is a syntax formalism, in which (X)HTML and

similar markup languages can be defined.

� For a given DTD (grammar), XML/SGML do-

cuments contain the data or the text.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-5

Introduction (2)

• XML/SGML is only a data format (syntax).

• It says nothing about the semantics of the data

that are coded in XML/SGML.

• In contrast to SGML, where a DTD is required,

XML can also be used without DTD:

� “Well-formed XML”: Basic syntax rules (proper

nesting of tags) are satisfied. No DTD is needed.

� “Valid XML”: In addition, only tags defined in a

DTD are used, and the content of each “tag”

(element) satisfies the constraints of the DTD.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-6

XHTML Example

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE html PUBLIC

"-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://ww.w3.org/1999/xhtml">

<head>

<title>My first XHTML document</title>

</head>

<body>

<h1>Greeting</h1>

<p>Hello, world!</p>

</body>
</html>

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-7

Database Example (1)

STUDENTS

SID FIRST LAST EMAIL

101 Ann Smith · · ·
102 Michael Jones (null)
103 Richard Turner · · ·
104 Maria Brown · · ·

EXERCISES

CAT ENO TOPIC MAXPT

H 1 Rel. Algeb. 10
H 2 SQL 10
M 1 SQL 14

RESULTS

SID CAT ENO POINTS

101 H 1 10
101 H 2 8
101 M 1 12
102 H 1 9
102 H 2 9
102 M 1 10
103 H 1 5
103 M 1 7

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-8

Database Example (2)

• Table rows can be directly translated to XML:

<?xml version=’1.0’ encoding=’ISO-8859-1’?>

<GRADES-DB>

<STUDENT SID=’101’ FIRST=’Ann’ LAST=’Smith’/>

<STUDENT SID=’102’ FIRST=’Michael’ LAST=’Jones’/>

...

<EXERCISE CAT=’H’ ENO=’1’ TOPIC=’Rel. Algeb.’/>

...

<RESULT SID=’101’ CAT=’H’ ENO=’1’ POINTS=’10’/>

...

</GRADES-DB>

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-9

Database Example (3)

• One can also use nested elements for table entries:

<?xml version=’1.0’ encoding=’ISO-8859-1’?>

<GRADES-DB>

<STUDENTS>

<STUDENT>

<SID>101</SID>

<FIRST>Ann</FIRST>

<LAST>Smith</LAST>

</STUDENT>
...

</STUDENTS>
...

</GRADES-DB>

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-10

DB Example with Nesting

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<COURSE-DB>

<PROFESSOR NAME=’Brass’ PHONE=’55-24740’>
<COURSE TERM=’Summer 2004’

TITLE=’Database Design’>
<CLASS DAY=’MON’ FROM=’10’ TO=’12’/>
<CLASS DAY=’THU’ FROM=’16’ TO=’18’/>

</COURSE>
<COURSE TERM=’Winter 2004’

TITLE=’Foundations of the WWW’>
<CLASS DAY=’WED’ FROM=’14’ TO=’16’/>

</COURSE>
</PROFESSOR>
...

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-11

Overview

1. Introduction

2. XML Documents (Syntax)

3. Document Type Definitions (DTDs)

4. DOCTYPE, XML Declaration

5. Entities, Notations, Marked Sections

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-12

Elements (1)

• An XML/SGML document is a text, in which words,

phrases, or sections are marked with “tags”, e.g.

<title>My first XHTML document</title>

• “<title>” is an example for a start-tag.

• “</title>” is an example for an end-tag.

• Specialized editors also use other symbols on the

screen, e.g.

title My first XHTML document title

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-13

Elements (2)

• The text part from the begin of a start tag to

the end of the corresponding end tag is called an

element.

• The name in the start tag and the end tag is called

the element type. In the example: “title”.

Some authors say “element name” instead of “element type”. That
avoids the problem that types are something different in XML Schema.

• Quite often, “tag” is used when “element” would

be formally right.

A tag is the string from “<” to “>” (inclusive).

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-14

Elements (3)

• Element types are declared in a DTD.
E.g. the “XHTML 1.0 strict” DTD declares a certain set of element
types for HTML documents that includes e.g. “title”.

• Names (identifiers, used e.g. as element types) can

contain letters, digits, periods “.”, hyphens “-”,

underscores “_”, and colons “:”.
Plus certain extended characters from the Unicode set. They must
start with a letter, an underscore “_”, or a colon “:”. The colon
should only be used in accordance with the namespace specification.
All names starting with “xml” are reserved.

• Names are case-sensitive.
In SGML, this can be selected in an SGML declaration.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-15

Elements (4)

• The contents of an element is the text between

start-tag and end-tag. E.g. the contents of the ex-

ample element (Slide 1-12) is

My first XHTML document

• For each element type, one can define in the DTD

what exactly is allowed as contents of these ele-

ments (“Content Model”).

• E.g. elements of the type title can contain only

pure text in XHTML (one cannot nest any other

elements inside).

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-16

Elements (5)

• The element type “ul” (unordered list) contains a

sequence of elements of the type “li” (list item):

FirstSecond

• Since elements can contain themselves elements,

one can understand an SGML document as a tree:

� Inner nodes are labelled with elements.

� Leaf nodes are labelled with text or with ele-

ments (which have empty contents in this case).

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-17

Elements (6)

• E.g. the unordered list above has this structure:

ul

li

”First”

li

”Second”

It is called “unordered list” because bullets are used for the list items,
not numbers, so presumably the exact sequence is not very important.
However, in SGML and XML, the child nodes of a node always have
a sequence from left to right (as given in the document). This is a
difference to relational databases, where the rows in a table have no
sequence.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-18

Elements (7)

• Structure of the XHTML example (Slide 1-6):

html

head

title

”My first XHTML
document”

body

p

”Hello, world!”

h1

”Greeting”

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-19

Elements (8)

• Elements cannot overlap only partially.
For each two elements A and B, either A is completely contained in
B, or B completely in A, or the two do not overlap at all.

• This means that opening and closing tags must be

nested correctly: E.g. the following is legal:

<h1><code>...</code></h1>

However, this is a syntax error:

<h1><code>...</h1></code>

• Begin and end tags work like parentheses of diffe-

rent types: ([]) is legal, but [(]) is not.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-20

Elements (9)

• Four kinds of element types can be distinguished:

� Element types that can only contain text.

� Element types that can only contain other ele-

ment types.
Of course, these other elements might contain text. The DTD
defines which element types are exactly valid inside the given ele-
ment type and in which sequence they must appear.

� Element types that can contain a mixture of text

and other elements (“mixed content model”):

<p>Hello, world!</p>

� Element types that always have empty contents.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-21

Elements (10)

• The tree representation of an element with mixed

content looks as follows:

p

”Hello, ” em

”world”

”!”

• Elements with empty contents work as markers.

E.g. “br” (break) does a line break in XHTML.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-22

Empty Elements

• In XML, for every opening tag there must be a

corresponding closing tag.

In contrast, SGML has “tag minimization” rules that permit to leave
out tags that can be uniquely reconstructed by the SGML parser.

• Since
</br> does not look very nice, and the

closing tag contains no additional information, em-

pty element tags were introduced in XML: “
”

is equivalent to “
</br>”.

This was one of the few points were XML was not a subset of SGML
at the beginning. Of course, SGML was/will be extended to permit
this syntax, too.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-23

Line Ends

• In SGML, line ends (record boundaries) directly af-

ter a start tag or directly before an end tag are

ignored (i.e. at the start or end of the content).

• In XML, line ends or empty space is not ignored.

The parser passes it to the application, which can of course ignore it.
E.g. a validating parser, which knows that an element contains pure
element content (not mixed content) will ignore whitespace between
the elements.

• In XML, line ends are normalized to a line feed.

Even on a Windows system (which uses CR, LF for line ends), the
XML application receives LF (ASCII 10) from the parser.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-24

Attributes (1)

• In the start tag, attribute-value pairs can be optio-

nally specified.

• E.g. in XHTML, links to other documents are mar-

ked with the element a (“anchor”):

XML was developed by the

W3C.

• The text of the reference is given in the element

content, the URI of the referenced web page is spe-

cified in the attribute “href”.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-25

Attributes (2)

Start-Tag:

< Element-Type

Space A-V-Pair

>

End-Tag:

< / Element-Type

Space

>

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-26

Attributes (3)

Empty Element Tag:

< Element-Type

Space A-V-Pair

/ >

• “Space” (white space) consists of one or more

space characters, carriage returns, line feeds, and

tabs (ASCII 32, 13, 10, 9).

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-27

Attributes (4)

A-V-Pair:

Attribute =

Space Space

Value

Value:

" Data String without " "

’ Data String without ’ ’

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-28

Attributes (5)

• Attribute values can be enclosed in " or ’.

The other sign can appear inside the string.

If one needs both quotation marks, one must use an entity or character
reference (see below).

• Attribute values cannot contain elements.

• The character “<” is forbidden in attribute values.

If necessary, one can include it with a character reference or an enti-
ty reference. Excluding “<” in attribute values helps to detect errors
earlier (such as a missing quote). To make this clear: “<” ist not
forbidden in the internal value of an attribute (which an XML par-
ser can pass to the application), it is only forbidden in the external
representation. But it never creates elements in attribute values.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-29

Attributes (6)

• The character “&” is treated special in attribute

values (character/entity reference, see below).

• Attribute values can extend over multiple lines. The

parser replaces tabs and line ends in the attribute

value by a space.

Depending on the type of the attribute, white space may be nor-
malized: It is then removed at the beginning and at the end of the
attribute value, and several consecutive spaces are merged into one.
However, this does not happen for normal “CDATA” attributes.

• The sequence in which several attribute-value-pairs

are listed in a tag is not important.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-30

Character References (1)

• One must distinguish between

� the repertoire of characters used internally (e.g.

data passed from XML parser to application)

� the encoding of these characters in bytes for ex-

changing documents (external representation).

• Internally, XML uses the Unicode character set.

• For exchanging documents, one can e.g. use the

ISO 8859-1 (ISO Latin 1) character codes, which

contains only a subset of all Unicode characters.

Other encodings contain e.g. cyrillic or japanese characters.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-31

Character References (2)

• The XML declaration at the beginning of the XML

file defines the encoding (see below).
The encoding can also be specified in the HTTP protocol.

• The characters in the ISO Latin 1 character set are

also contained in the Unicode character set and ha-

ve the same numeric codes in both character sets.
I.e. Unicode is upward compatible to ISO Latin 1. However, the en-
coding as sequence of bytes is different. At the beginning, Unicode
character numbers had 16 Bit, now there are 17 planes of 16 Bit
each. With the UTF-8 encoding of Unicode, at least the 7-bit ASCII
characters have the same encoding in ASCII, ISO Latin 1, and Uni-
code. However, for German national characters (ä, ö, ü, etc.) this is
no longer true: UTF-8 uses two bytes for them.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-32

Character References (3)

• Characters that cannot be directly entered, can be

written as a “character reference” using their nu-

meric code:

ä

is an “ä”. Hexadecimal notation can also be used:

ä

• The numbers refer to the repertoire (i.e. Unicode),

not to the encoding for exchange.

ISO Latin 1 codes can be used since Unicode is upward compatible
to ISO Latin 1.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-33

Character References (4)

Character Reference:

& # Decimal Digits ;

x Hexadecimal Digits

• In DTDs, abbreviations/macros (“entities”) can be

defined (see below).

• In this way, one does not have to remember cha-

racter codes.
E.g. in HTML, one would write “ä” for an “ä” (if one wants to
stick to pure ASCII). In XML, this is not predefined.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-34

Character References (5)

• Character references can also be used to “escape”

characters that otherwise would have special mea-

ning in SGML/XML.

The result of a character reference is always treated as data.

• E.g. if a double quote (ASCII 34) needs to be inclu-

ded in an attribute value that is enclosed in double

quotes, one can write it as “"”.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-35

Comments (1)

• Comments can be used to enter notes or explanati-

ons for a reader of the SGML/XML source file into

the document.

• Comments are ignored by programs that process

an SGML/XML file. E.g. they might not appear in

the formatted output.

The XML standard permits that an XML parser passes comments to
the application program, but it does not require this.

• A comment in SGML/XML has the form

<!-- This is a comment -->

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-36

Comments (2)

• Comments can extend over several lines.

I.e. they do not have to be closed on the same line.

• Within a comment, it is forbidden to write two con-

secutive hyphens “--”.

In SGML, the comment actually extends from “--” to “--”. However,
it can only be used in a markup declaration, which starts with “<!”
and ends with “>”.

• Tags within a comment are permitted, but confuse

many browsers.

Browsers try to correct syntax errors. When they see a tag, they might
assume that the author forgot the “end of comment” mark.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-37

Comments (3)

• Comments can be used anywhere in the document

outside other markup.

• They cannot be used within tags.

• In SGML (but not in XML), comments “-- ... --”

can appear in markup declarations at places permit-

ted by the grammar.
In modern programming languages, whitespace including comments
is allowed between tokens. SGML/XML are different: maybe because
they are languages for writing documents, not programs, maybe they
are a bit outdated in this aspect.

• XML supports only “<!-- ... -->”.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-38

Exercise

Please find syntax errors:

<?xml version="1.0" encoding="ISO-8859-1"?>

<GradesDB3>

<student sid=’101’ first=’Ann’ last="Smith"

<result cat=’H’ eno = 1 points=10>

<result cat=’H’ eno =’1’ points=’8’>

<result cat=’M" eno ="1" points=’12’

>

</ student >

<!------------ Exercises ------------>

<ex cat=’H’ eno=’1’ note=’difficult’>

Rela tional Algebra</ex>

</Grades-DB>

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-39

Software (1)

• Although browsers are very generous with syntax

errors in HTML documents, they show all errors in

XML documents.

E.g. Internet Explorer, Firefox.

• They check only the syntax of well-formed XML,

they do not validate documents against a DTD.

• If no style sheet is given, the document tree is dis-

played (child nodes are indented under the parent).

It is possible to collapse/expand subtrees by clicking on the -/+ in
front of the elements.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-40

Software (2)

• Xerces from the Apache Software Foundation is an

example for a validating parser for XML (supporting

DTDs and XML Schema).

See [http://xerces.apache.org/]. It has a DOM and a SAX interface
for accessing the parsed data. It comes with a test program domprint,
which can be used for checking the syntax (it is an unparser, i.e. it
outputs the result of parsing again as XML, but probably differently
formatted). There is a C++ and a Java version, and a Perl interface
to the C++ version.

• There are also validation services on the web, e.g.

� [http://www.xmlvalidation.com/]

� [http://www.validome.org/xml/]

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-41

Overview

1. Introduction

2. XML Documents (Syntax)

3. Document Type Definitions (DTDs)

4. DOCTYPE, XML Declaration

5. Entities, Notations, Marked Sections

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-42

Example

Simple DTD for a HTML-Subset:

<!ELEMENT html (head, body)>

<!ELEMENT head (title)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT body ((#PCDATA|p|em|ul)*)>

<!ELEMENT p ((#PCDATA|em|ul)*)>

<!ELEMENT em (#PCDATA)>

<!ELEMENT ul (li+)>

<!ELEMENT li ((#PCDATA|p|em|ul)*)>

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-43

Element-Type Declarations (1)

An Element-Type Declaration consists of:

• “<!” followed by the keyword “ELEMENT”.
In SGML, one could define a different string instead of “<!”. This
is the parameter MDO (“Markup Deklaration Open Delimiter”) in
the SGML declaration. Correspondingly, “>” is called MDC (“Mar-
kup Declaration Close Delimiter”). XML is based on a fixed SGML
declaration, so one cannot change these delimiters.

• Name of the element type to be declared.
Such names are officially called “Generic Identifiers”.

• Then one specifies what is permitted as content of

this type of elements (“content model”).

• “>”.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-44

Element-Type Declarations (2)

Element-Type Declaration:

<!ELEMENT Name Content >

White space is required between “<!ELEMENT” and the name, and between
the name and the content specification. It is permitted but not required
between content specification and the “>”.

Names in XML must start with a letter, an underscore “_” or a colon
“:”, and can otherwise contain letters, digits, periods “.”, hyphens “-”,
underscores “_”, colons “:”, or certain special Unicode characters. Names
starting with “xml” in any capitalization are reserved, the colon is treated
specially by the XML namespace standard.

The element type declaration is SGML is more complicated: There, also
specifications for markup minimization are required (if the markup mini-
mization parameter OMITTAG is set), “exclusions” and “inclusions” are
possible, several element types can be declared together, etc.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-45

Content Specifications (1)

• The building blocks of content specifications are

� Names X of element types: This pattern mat-

ches exactly one element of type X, i.e. basically

<X>...</X>.

� The keyword #PCDATA: Pure textual data without

tags (but possibly character/entity references).

#PCDATA stands for “Parsed Character Data”. The text is syntac-
tically analyzed in order to check that it does not contain tags
and in order to resolve entity and character references. In SGML
(but not in XML) there is also “CDATA”, which is not syntactically
analyzed (like “verbatim” in LATEX). The use of #PCDATA in model
groups is very restricted in XML, see below.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-46

Content Specifications (2)

• One can specify the optionality/multiplicity of ele-

ments and groups by attaching occurrence indica-

tors:

� A?: Optional, non repeatable (0 or 1 time).

� A*: Optional, repeatable (0 or more times).

� A+: Required, repeatable (1 or more times).

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-47

Content Specifications (3)

• Content specifications can be connected with

� (A | B): “A or B”.
The content must match A or B.

� (A , B): “First A, then B” (“A followed by B”).
A prefix of the content must match A, the rest B.

• In SGML, there is also (not supported in XML):

� (A & B): “A and B”.
A and B must both appear, but in arbitrary sequence. This is
equivalent to ((A,B) | (B,A)). Therefore, & is not strictly ne-
cessary. But rewriting an “and” with many components in this
way becomes clumsy. There are also restrictions because of the
deterministic parsing requirement, see below.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-48

Content Specifications (4)

• Model groups consisting of more than two com-

ponents are also possible:

� (A1|...|An): “Alternative”/“Choice”

(one of the Ai).

� (A1,...,An): “Sequence”

(all Ai in the given sequence).

• The Ai are

� An element type (possibly with ?/*/+).

� #PCDATA (in XML with restrictions, see below).

� A nested model group (possibly with ?, *, +).

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-49

Content Specifications (5)

• A content specification (“content model”) is

� A model group (possibly only of one element),

Element types must always be specified within parentheses.
XML has special restrictions for mixed content, see below.

� the keyword EMPTY: No content permitted.

� The keyword ANY: Character data and elements

of arbitrary type.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-50

Content Specifications (6)

Content:

Model Group

?

*

+

Text/Mixed

EMPTY

ANY

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-51

Content Specifications (7)

Text/Mixed:

(#PCDATA)

(#PCDATA) *

Element Type |

• In XML, the only content models that can contain

#PCDATA are (SGML has no such restriction):

� (#PCDATA)

� (#PCDATA | Element-Type | ... | Element-Type)*

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-52

Content Specifications (8)

Model Group:

(Group Element)

|

(Group Element)

,

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-53

Content Specifications (9)

Group Element:

Element Type

Model Group

?

*

+

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-54

Content Specifications (10)

• In SGML and XML, the possible occurrence of whi-

te space is defined by the grammar.

• It is permitted but not required between each two

tokens (“word symbols”) in content models, except

before the occurrence indicators “?”, *”, “+”.

• The keyword “#PCDATA” requires the symbol “#”

(RNI, “Reserved Name Indicator”) in order to di-

stinguish it from an element type named “PCDATA”.
Other keywords like “EMPTY” do not use it, since in the element type
declaration, they appear outside of parentheses, while user-defined
names must appear inside parentheses.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-55

Content Specifications (11)

• In SGML and in XML, content models must be not

ambiguous. E.g. the following is forbidden:

<!ELEMENT E ((A, B?), B)>

When the parser has read an A and sees a B, it is not

clear whether this is the optional B in the middle or

already the required B at the end.

The parser could solve this problem by looking ahead to see whether
after the B in question there is another B. However, the SGML standard
explicitly states: “an element or character string that occurs in the
document instance must be able to satisfy only one primitive content
token [in the content model] without looking ahead in the document
instance.” A primitive content token is an element type or #PCDATA.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-56

Content Specifications (12)

• Another example for an ambiguous content model:

<!ELEMENT E ((A, B) | (A, C))>

When the parser sees the element A, it does not

know which path to follow in the content model.

• This requirement simplifies the task of checking the

input with respect to a given DTD.
There are standard techniques for generating a nondeterministic finite
automaton for a given regular expression. Normally, one would need
to translate this into a deterministic automaton, which can lead to
an exponential increase in the number of states. SGML and XML are
restricted in such a way that the constructed automaton is already
deterministic.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-57

Attribute Declarations (1)

• Example (symbol used for marking list items):

<!ATTLIST UL type (disc|square|circle) #IMPLIED>

In HTML 4.01 Strict this attribute was removed.

• Several attributes (of one element type) can be

declared in a single ATTLIST command.

• E.g. some attributes of images in HTML:

<!ATTLIST IMG src CDATA #REQUIRED

alt CDATA #REQUIRED

width CDATA #IMPLIED

height CDATA #IMPLIED>

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-58

Attribute Declarations (2)

<!ATTLIST Element Type

Name Data Type Default >

• For each attribute, three things are defined:

Name, data type, and default value.
White space is required between each two components of the ATTLIST

command, except before the final “>”, where it is optional.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-59

Attribute Declarations (3)

• The same attribute name can appear in an ATTLIST

declaration only once.
This is clear: There cannot be conflicting definitions for an attribute
in the same declaration.

• If there are several ATTLIST declarations for the sa-

me element type, they are merged. The first decla-

ration for an attribute becomes effective, all other

declarations for the same attribute are ignored.
This might be useful if a DTD is constructed in several pieces. It is
however recommended (required in SGML?) that for every element
type, there is only one ATTLIST declaration which defines all its attri-
butes.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-60

Attribute Data Types (1)

• E.g. (yes|no): Enumeration type.

The attribute value must be one of the listed values. Each value is
a “name token” (NMTOKEN), i.e. a sequence of characters that
can appear anywhere in identifiers (letters, digits, and certain special
characters). E.g. a sequence of digits would be valid. In SGML, it
is forbidden that same enumeration type value is used for two attri-
butes of the same element type. In XML, this is recommended “for
interoperability”.

• CDATA: Sequence of arbitrary characters.

The character “&” is interpreted, i.e. one can use character and entity
references in the attribute values. In XML, “<” is forbidden in attri-
bute values (so that missing quotes are easier found), and “>” is not
interpreted (treated as data). In SGML, “<” and “>” are valid, but
not interpreted. Thus, attribute values still cannot contain elements.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-61

Attribute Data Types (2)

• ID: A name that uniquely identifies this element

(within the entire document).

The syntax is the same as for element type names (sequence of letters
and digits plus _, :, ., -, starting with letter or _, :, .). Two elements
must not have the same value for an attribute of type ID. This even
holds for elements of different type. The same element type cannot
have two attributes of type ID. One should use the same name for all
attributes of type ID, and the attribute name “ID” is very common.

• IDREF: A name that appears as value of an ID-

attribute somewhere in the document.

• IDREFS: List of IDREF-values.

The single values are separated by white space.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-62

Attribute Data Types (3)

• NMTOKEN: Sequence of name characters.
An arbitrary sequence of letters, digits, “_”, “-”, “.”, and “:”.

• NMTOKENS: List of NMTOKEN-values.

• ENTITY: Name of an entity.
Entities are a kind of macros or include files (see below). An attribute
of type ENTITY takes as value the name of a declared unparsed entity.

• ENTITIES: List of ENTITY-values.

• NOTATION (N1|...|Nm): One of the notations Ni.
The Ni must be declared as notations (data formats). Only one at-
tribute of an element type can have the type NOTATION. This attribute
defines the format of the content of the element.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-63

Attribute Data Types (4)

• In summary, XML supports the following attribute

data types:

� Enumeration types,

� CDATA,

� ID, IDREF, IDREFS,

� NMTOKEN, NMTOKENS,

� ENTITY, ENTITIES,

� enumerations of notations.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-64

Default Values (1)

• One must specify what should happen if an element

of the type has not defined a value for the attribute.

• One possibility is to specify a default value:

<!ATTLIST UL type (disc|square|circle) "disc">

The quotation marks around the default value are not required in
SGML, but they are required in XML. This is a bit inconsistent, sin-
ce in accordance with SGML, there are no quotation marks in the
enumeration of possible values. In SGML, attribute values that are
NMTOKENS do not need quotes.

• Then the tag in the document is equivalent to

<UL type="disc">.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-65

Default Values (2)

• Instead of a default value, one can also specify:

� #IMPLIED: The attribute is optional.
I.e. the default value is a “null value” different from all possible
normal values. The name for the keyword was chosen because it
is assumed that the application program can compute a value for
the attribute. E.g. a chapter number is usually the number of the
last chapter plus 1.

� #REQUIRED: An attribute value must be specified.

� #FIXED "Value": The attribute can have only this

single value that is specified in the DTD.
This is e.g. used when many/all element types have an attribu-
te with the same name, and for each element type a (possibly
different) value is declared in the DTD.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-66

Exercise (1)

Please find syntax errors:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE GradesDB4 [<!-- contains syntax errors -->

<!ELEMENT GradesDB4 (STUDENT, RESULT)*>

<!ELEMENT STUDENT RESULT+>

<!ATTLIST STUDENT FIRST CDATA #REQUIRED

LAST CDATA #REQUIRED>

<!ELEMENT RESULT #EMPTY>

<!ATTLIST RESULT EX_ID IDREF #REQUIRED

POINTS NMTOKEN #REQUIRED>

<!ELEMENT EXERCISE #PCDATA>

<!ATTLIST EXERCISE ID ID #REQUIRED>
]> <!-- continued on next slide -->

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-67

Exercise (2)

Please validate against DTD on last slide:

<GradesDB4>

<student sid=’101’ first=’Ann’ last=’Smith’>

<email>smith@acm.org</email>

<result ex_id=’H1’ points=’A+’/>

<result ex_id=’2’ points=’8’/>

<result ex_id=’M1’ points=’12 points’/>

</student>

<student first=’Maria’ last=’Brown’/>

<exercise id=’H1’>Relational Algebra</exercise>

<exercise id=’2’>SQL</exercise>

</GradesDB4>

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-68

Exercise (3)

Please develop a DTD for this document:

<?xml version="1.0" encoding="ISO-8859-1"?>

<smallbusiness>

<product id=’P01’ name=’Apple’ price=’0.40’>

Really deliciousApples!</product>

<product id=’P02’ name=’Banana’ price=’0.50’>

The best bananas!</product>

<order id=’R100’ customer=’Ann Smith’>

<item prodid=’P01’/>

<item prodid=’P02’ quantity=’5’/> </order>

<order id=’R100’ customer=’Maria Brown’>

<item prodid=’P01’ quantity=’3’/> </order>

</smallbusiness>

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-69

Overview

1. Introduction

2. XML Documents (Syntax)

3. Document Type Definitions (DTDs)

4. DOCTYPE, XML Declaration

5. Entities, Notations, Marked Sections

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-70

Well-Formed vs. Valid (1)

• In XML, the document type definition is optional.
In SGML, a DTD is required for every document. An SGML document
can normally not be parsed without knowing the DTD because of
markup minimization (optional start and end tags).

• There are two classes of XML documents:

� Well-formed documents satisfy the general ru-

les of the XML syntax (e.g. that tags must be

properly nested).

� Well-formed documents may in addition be valid

if they have an associated DTD and satisfy the

syntax rules of this DTD.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-71

Well-Formed vs. Valid (2)

• Checking the syntax of a document with respect to

a DTD is called “to validate” the document.

• Even if there is a DTD, not every XML processor

is required to read it and to validate the document.

Correspondingly, the XML specification distinguishes “validating” and
“non-validating XML processors”.

• Web browsers (e.g. Internet Explorer, Firefox) typi-

cally do not validate the displayed XML documents.

However, they do report an error if already the well-formed syntax
rules are not satisfied.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-72

System/Public Identifiers (1)

• In SGML/XML DTDs and other objects (e.g. en-

tities, notations, see below) can be identified by

system and public identifiers.

• In XML, the system identifier is more important.

• In XML, the system identifier must be a URI/URL

(without fragment identifier, i.e. without #).

• Local file names are relative URIs and are therefore

permitted.
In SGML, the system identifier typically was a local file name. Since
the directory structure can be different on different computers, the
system identifier was system dependent.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-73

System/Public Identifiers (2)

• Public identifiers are system-independent and very

stable.

They were especially important in SGML: Otherwise it was quite likely
that documents had to be changed when they were moved from one
system to another. For XML, this problem is much smaller, because
a URI is typically “global” and relatively stable (at least URIs for
globally used DTDs).

• However, public identifiers must be translated into

system identifiers.

In the end, there must be the possibility to retrieve the file with the
DTD (unless the DTD is built into the software, e.g. a web browser
does not need to read the HTML DTD). Normally, an SGML system
contains a configuration file that maps public IDs into system IDs.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-74

System/Public Identifiers (3)

• An advantage of public identifiers even in the Web

age is that the contents of the URI does not have

to be retrieved if there is a local copy and the public

identifier is mapped to that copy.

Otherwise one (probably) must retrieve the DTD via the URI each
time a document is validated against that URI (there is no guarantee
that the DTD stored under the URI does not change).

• In XML, a public ID can only be used in combinati-

on with a system ID. Thus, if an XML system does

not know the public identifier, it can use the URI.

SGML permits to specify only a public identifier.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-75

System/Public Identifiers (4)

• Public identifiers can be any string of letters, digits,

certain special characters, spaces and line breaks

(enclosed in single or double quotes: ’ or ").

Allowed special characters in XML: ’()+,-./:=?;!*#@$_%. Sequences
of line breaks and spaces are replaced by a single space, and ignored
at the very beginning or end.

• Example: "-//W3C//DTD HTML 4.01//EN"

• A subset of public identifiers are called “formal

public identifiers”. They have more structure and

must be composed from an owner identifier, a dou-

ble slash “//”, and a text identifier.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-76

System/Public Identifiers (5)

• The owner identifier starts with “ISO” for ISO pu-

blications, “+//” for registered owners, and “-//”

for unregistered owners.

• The text identifier starts with the public text class,

followed by a space, a description, a double slash

“//”, and the language of the text.

There are further optional parts, see The SGML Handbook, page 385.

• Public text classes are, e.g., DTD and NOTATION.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-77

DOCTYPE Declaration (1)

• One usually refers at the beginning of the docu-

ment to the corresponding DTD:

<?xml version="1.0"?>

<!DOCTYPE EMAIL SYSTEM "mail.dtd">

<EMAIL>

...

</EMAIL>

• The file “mail.dtd” contains the declaration of ele-

ments, attributes, and entities as described above.

<!ELEMENT EMAIL (TO, FROM, DATE, SUBJECT?,

CONTENTS)>
...

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-78

DOCTYPE Declaration (2)

• One can also specify public and system identifier:

<!DOCTYPE html PUBLIC

"-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html>

...

</html>

• The name of the DTD must always be identical

to the name of the outermost element (document

element, root of the element tree).

The DTD itself does not specify what is the root element.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-79

DOCTYPE Declaration (3)

• It is possible to declare the DTD in the document

itself:

<!DOCTYPE EMAIL [

<!ELEMENT EMAIL ...>

...

]>

<EMAIL> ... </EMAIL>

• Also a mixture of both is possible:

<!DOCTYPE EMAIL SYSTEM "mail.dtd" [...]>

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-80

DOCTYPE Declaration (4)

• The part in the document itself (“[...], “internal

DTD subset”) is processed before the DTD file

(“external subset”).

The same entity (a kind of macro, see below) can be declared several
times. Then the first declaration counts, all following declarations are
ignored. In this way, the external subset can declare a default value
for the entity, which can be overridden in the document.

• In XML, the constructs used in the internal subset

of the DTD are somewhat restricted, such that a

non-validating XML processor can easily skip it.

See parameter entity references, marked sections.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-81

DOCTYPE Declaration (5)

DOCTYPE Declaration:

<!DOCTYPE Name

SYSTEM SysID

PUBLIC PubID SysID

[Declarations] >

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-82

Processing Instructions (1)

• Processing instructions are instructions for the ap-

plication program that processes the XML/SGML

data.

• E.g. they were sometimes used to force a page

break at a specific point, but this of course con-

tradicts the idea of rule-based markup.

At least, as a processing declaration this is clearly separated from the
main contents of the file and refers only to the printing program, not
to other programs that process the same data.

• Processing instructions can contain any text, and

are system- and application-dependent.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-83

Processing Instructions (2)

• Processing instructions start with “<?” and end

with “?>”.

• Processing instructions must start with a name that

is the “target” for this instruction.

In this way, on can have processing instructions for different applicati-
ons in the file. Applications should ignore processing instructions that
are not intended for them. In SGML, a processing instruction can be
any string, but processing instructions must normally be exchanged
when the file is processed with a different application. In SGML, pro-
cessing declarations by default end with “>”, not “?>”. But of course,
SGML is so parameterized that the XML end marker can also be
selected.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-84

Processing Instructions (3)

• It is suggested (but not required) to use a notation

declaration for the target.

• The special target “xml” (in any capitalization) is

reserved (see XML Declaration below).

• One can e.g. use the attribute-value syntax in a

processing instruction, but this is not required.

• Processing instructions can appear more or less

anywhere in the document (in the same places as

comments).

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-85

XML Declaration (1)

• XML documents should start with an XML decla-

ration that specifies at least the XML version:

<?xml version="1.0"?>

• Version “1.0” is still the most widely used version,

but there is now also a version “1.1”.

There are new editions of the W3C recommendation for XML 1.0.
but they only clarify/correct a few points. The W3C recommendation
for XML 1.0 was published on February 10, 1998. The second edition
was published on October 6, 2000. The third edition of XML 1.0
was published on February 4, 2004, together with the first edition
of XML 1.1. The current, fourth edition of XML 1.0 was published
together with the second edition of XML 1.1 on August 16, 2006, both
were edited in place on September 29, 2006. [http://www.w3.org/XML/].

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-86

XML Declaration (2)

• The changes from version 1.0 to 1.1 are small:

� More characters are allowed in names.
In XML 1.0, the valid characters in names were specified. In
XML 1.1, the forbidden characters are specified (and characters
are forbidden only if there is a specific reason). This makes a
difference because the Unicode standard is developed further and
some new languages were discriminated by the old XML standard.

� Line ends in IBM mainframes are now permitted.

� The rules for control characters change a bit.
Character references to control characters in the range x01 to x1F

are now permitted, control characters in the range x7F to x9F
(except whitespace) must now be written as character references.

� Normalization rules permit binary comparison.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-87

XML Declaration (3)

• For SGML processors, the XML declaration is sim-

ply a processing instruction.

• The XML declaration is optional, but it can be only

the first command in an XML document.

Even comments and white space is not allowed in front of it.

• The reason for this is that it can help to automa-

tically detect the encoding used in the file.

XML processors must at least be able to read at least the UTF-8 and
UTF-16 encodings of Unicode. UTF-16 encoded files must start with
the “Byte Order Mark” (#xFeFF).

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-88

XML Declaration (4)

• If one uses a different encoding (not Unicode), the

XML declaration at the begin of the document is

required, and must specify the encoding:

<?xml version="1.0" encoding="ISO-8859-1"?>

• Also external parsed entities may begin with an

XML declaration.
There it is officially called “text declaration”, because in external
parsed entities the encoding part is mandatory (otherwise one would
not use it), while the XML version is optional. For the XML declaration
at the begin of the document entity, the version is mandatory and the
encoding part is optional. Also the standalone declaration below is only
permitted at the beginning of the document entity.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-89

XML Declaration (5)

• The XML declaration can also specify whether mar-

kup declarations that are not contained in the same

file (entity) may influence the information returned

from the parser to the application program.
<?xml version="1.0" encoding="ISO-8859-1"

standalone="yes"?>

• The default is “no” (if there are external markup

declarations), and this is normally correct.

E.g. default values for attributes, entities used in the document, even
element types with element content where white space is inserted in
the document would all require “no”.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-90

Summary: XML Document

• In summary, an XML document consists of:

� An XML declaration (optional, recommended).

� Comments, processing instructions, white space

(optional).

� A document type declaration (optional).

� Comments etc. (optional).

� An element (the document element, required).

� Comments etc. (optional).

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-91

Overview

1. Introduction

2. XML Documents (Syntax)

3. Document Type Definitions (DTDs)

4. DOCTYPE, XML Declaration

5. Entities, Notations, Marked Sections

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-92

Entities: Overview (1)

• Entities can be used as macros (abbreviations),

e.g. one can declare an entity “ora” with the value

“Oracle 8.1.6” (replacement text):

<!ENTITY ora "Oracle 8.1.6">

• When the entity is declared, the entity reference

&ora;

in the document is replaced by “Oracle 8.1.6”.

In SGML, the “;” is optional if a character follows that cannot be part
of the entity name, e.g. a space. In XML, the “;” is always required.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-93

Entities: Overview (2)

• There are different kinds of entities. The above

example is a general, internal, parsed entity.

• Entities can be classified as:

� General: Used in the document.

Parameter: Used in the DTD.

� Internal: The value is written in the declaration.

External: The value is contained in another file.

� Parsed: The value is SGML/XML text.

Unparsed: The value is e.g. binary data.
In SGML, parsed entities are also called SGML entities, other
entities are called Non-SGML or data entities.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-94

Entities: Overview (3)

• Of the eight theoretically possible combinations,

only five are permitted: Unparsed entities must al-

ways be external and general.

Non-SGML/XML data cannot be directly included in an SGML/XML
document and can certainly not be used in the DTD.

• In the SGML/XML literature, entities are seen as

the physical units (storage units) of a document.

I.e. entities are a generalization of files (e.g. they could also be ex-
tracted from a database or be computed by a program). Entities are
containers for SGML/XML and other data. The main file, where the
SGML/XML processing starts, is called the “document entity”. In
contrast, elements are seen as the logical units of a document.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-95

Entities: Motivation

• Entities reduce the typing effort (abbreviations).

• The entity name might be easier to remember than

its replacement text (e.g. ä stands for ä).

• Using entities permits simpler updates and leads to

higher uniformity.
If in the above example, the Oracle version changes, one must change
only the replacement text in the entity definition (at one place).

• One can also get several versions of a document

via differently defined entities.
E.g. if user interfaces are specified in XML, the language-dependent
parts can be defined in entities.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-96

General Entities: Details (1)

• General parsed entities can be referenced in:

� the content of an element,

� attribute value literals (inside quotes),
This includes default values of attributes defined in the DTD.
In XML, only internal (general parsed) entities are allowed in at-
tribute values. It seems that SGML does not have this restriction.

� the entity value in the definition of an entity.

• E.g. entity references cannot be used instead of an

element type or attribute name within a tag.

As with whitespace, the SGML/XML grammar specifies where entity
references can appear. They are not expanded in System/Public IDs.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-97

General Entities: Details (2)

• SGML/XML try to exclude unexpected parsing mo-

de changes after an entity is referenced.

• This is especially important for XML, because XML

can be parsed without DTD.

Then the replacement text for entities might not be known, but still
the general structure of the document should be clear.

• The opening delimiter of a tag, comment, etc.

must be in the same entity as the closing delimiter.

I.e. the replacement text of an entity that is referenced in the content
cannot contain an unmatched “<” or “>”. If the entity is referenced
in an attribute value, these characters have no special meaning.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-98

General Entities: Details (3)

• If an entity reference appears in an attribute value,

the delimiters (quotes) " and ’ are not interpreted

in the replacement text.

I.e. it is not possible that an entity reference in an attribute value
suddenly closes the attribute value.

• XML requires also that if the start tag of an ele-

ment is contained in an entity, the corresponding

end tag must be contained in the same entity.

In SGML, this is only a recommendation, except for elements with
content model “CDATA” and “RCDATA”, where it is required.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-99

General Entities: Details (4)

• Entities can be used in the definition of other en-

tities:
<!ENTITY A "xxx">

<!ENTITY B "yyy &A; zzz">

• When the entity declaration is processed, the re-

placement text is simply stored under the name of

the entity (including entity references within it).

• Only when “&B;” is called later in the document,

the replacement text is inserted, and recursively,

any entity references within it are substituted.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-100

General Entities: Details (5)

• Entities must be defined before they are used.

• However, because of the delayed (“lazy”) proces-

sing of references, this rule would even be satisfied

if the entities “A” and “B” would have been declared

in the opposite order.

Since general entities are declared in the DTD and normally only used
in the document, “definition before use” is seldom a problem.

• When an entity is referenced in the default value

for an attribute in an ATTLIST declaration, it is im-

mediately evaluated (and must already be defined).

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-101

General Entities: Details (6)

• Of course, recursive definitions are forbidden:

<!ENTITY X "This is not allowed &X;">

• If the same entity is defined several times, the first

definition counts.

The “internal subset of the DTD” is processed before the part in
external files. Then the external subset can contain a default value
for the entity, which can be overridden in the internal subset.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-102

General Entities: Details (7)

• The replacement of entities like “&” does not

lead to the generation of new entity references.

E.g. in “AT&T;”, after the first replacement, the parser does not
recursively try to replace “&T;”. This follows the general rule that
the replacement of entities does not lead to the generation of new
structures.

• Character references are already replaced when the

entity definition is processed (non-recursively).

E.g. the entity “amp” is defined as follows: <!ENTITY amp "&#38;">.
When this definition is processed, “&” is replaced by “&”. When
“&” is later used in the text, it is expanded to “&”, and this
is replaced by the character “&” which now has no special meaning.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-103

General Entities: Details (8)

• In XML, the following five entities are predefined:

� “&” for “&” (ampersand).

� “<” for “<” (less-than symbol).

� “>” for “>” (greater-than symbol).

� “'” for “ ’ ” (apostrophe).

� “"” for “"” (quotation mark).

• In SGML, these are not predefined. Therefore, they

should also be declared in XML.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-104

External Entities

• Entities can also be used as an “include” mecha-

nism for splitting a document into several files:

<!ENTITY copyr SYSTEM "copyr.xml">

• Then the entity reference “©r;” in the docu-

ment is replaced by by the contents of the file

“copyr.xml”.

The keyword “SYSTEM” indicates that the following string gives a
system-dependent way to retrieve the entity. In XML this must be
a URI, possibly a relative one. There are also public identifiers (see
below).

• This is a general, external, parsed entity.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-105

Parameter Entities (1)

• General entities are used in the document (data).

• However, macros are also useful in the DTD.

• But macros applied in the DTD are not relevant

for the user of the DTD, they might even confuse

him/her.

• Therefore, two distinct namespaces are used:

� General entities are substituted in the document.
And in the default attribute value in the DTD. They can also be
used in the declared value of other entities.

� Parameter entities are substituted in the DTD.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-106

Parameter Entities (2)

• The declaration of parameter entities contains an

additional “%”:

<!ENTITY % ltypes "(disc|square|circle)">

• Correspondingly, a parameter entity reference uses

a percent sign “%” instead of the ampersand “&”:

%ltypes;

• In the document itself, “%” has no special meaning.

• It is even possible to have a general entity and a

parameter entity with the same name.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-107

Parameter Entities (3)

• The replacement text of a parameter entity is ex-

tended by spaces at the beginning and the end.

This makes sure that no tokens can merge when parameter entities
are replaced.

• In XML, the use of parameter entities in the internal

subset of the DTD is quite restricted: A parameter

entity reference can only appear in places where an

entire declaration would be permitted.

I.e. there, parameter entities can contain only complete markup de-
clarations. This restriction does not hold for the external subset.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-108

Parameter Entities (4)

• In contrast to general entities (and like character

references), parameter entities are immediately re-

placed, even if they are used in the definition of

another entity.

• As for general entities, if a parameter entity repla-

cement text contains the start of a markup declara-

tion (“<”), it must also contain the corresponding

end.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-109

Parameter Entities (5)

• Of course, there are also external parameter enti-

ties:

<!ENTITY % tables SYSTEM "tab.xml">

• The contents of the file “tab.xml” is inserted in the

DTD where the parameter entity is referenced:

%tables;

• A large DTD can be constructed in this way out of

components stored in different files.

Also the same component might be reused for different DTDs.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-110

Notations (1)

• An SGML/XML-system can also manage entities

(files) that do not contain SGML/XML text.

• E.g. a document often includes pictures in formats

like GIF, JPG, PNG, TIFF.

• One can define in SGML/XML that e.g. GIF is a

name for a notation (data format).

• Then one can define external entities that use the

notation “GIF” (and are therefore not syntactically

analyzed).

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-111

Notations (2)

• A notation can be declared with a system identi-

fier, which might e.g. refer to a program that could

display the data (“helper application”):

<!NOTATION GIF SYSTEM "file:///local/bin/xv">

However, the SGML/XML parser only passes the system identifier to
the application program. It depends on this program, how it uses this
information.

• In XML, system identifiers must be URIs (without

#), enclosed in single or double quotes.
The standard only says “It is meant to be converted to a URI refe-
rence . . . ”. Entity references are not evaluated. The URI can possibly
be relative to the location of the entity that contains the declaration.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-112

Notations (3)

Notation Declaration:

<!NOTATION Name

SYSTEM SysID >

PUBLIC PubID SysID

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-113

Public Identifiers (1)

• Normally, public identifiers refer in some way to

further information:

<!NOTATION POSTSCRIPT PUBLIC

"+//ISBN 0-201-18127-4::Adobe//NOTATION

Postscript Language Ref. Manual//EN">

• There is no well-known and generally accepted list

of public identifiers for notations.
But see below for examples. There seems to be no central registry
for public identifiers.

• However, e.g. HTML versions have public identi-

fiers mentioned in the respective standards.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-114

Public Identifiers (2)

• In the XML Bible [p. 309] the following public iden-

tifier is used for GIF (this method could be gene-

ralized to arbitrary MIME types):

"-//IETF//NONSGML Media Type image/gif//EN"

• In my view, the keyword “NONSGML” is wrong and

must be replaced by “NOTATION”.

“NONSGML” means a non-SGML data entity.

• The XML Bible uses the following system identifier:
"http://www.isi.edu/in-notes/iana/assignments/

media-types/image/gif"

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-115

Public Identifiers (3)

• Public identifiers used in the DocBOOK DTD:

� BMP: "+//ISBN 0-7923-9432-1::Graphic Notation//NOTATION
Microsoft Windows bitmap//EN"

� EPS: "+//ISBN 0-201-18127-4::Adobe//NOTATION
PostScript Language Ref. Manual//EN"

� GIF87a: "-//CompuServe//NOTATION Graphics Interchange Format 87a//EN"

� GIF89a: "-//CompuServe//NOTATION Graphics Interchange Format 89a//EN"

� TeX: "+//ISBN 0-201-13448-9::Knuth//NOTATION The TeXbook//EN"

� WMF: "+//ISBN 0-7923-9432-1::Graphic Notation//NOTATION
Microsoft Windows Metafile//EN"

� SGML: "ISO 8879:1986//NOTATION Standard Generalized Markup Language//EN"

� FAX: "-//USA-DOD//NOTATION CCITT Group 4 Facsimile Type 1 Untiled Raster//EN"

� CGM-CHAR: "ISO 8632/2//NOTATION Character encoding//EN"

� CGM-BINARY: "ISO 8632/3//NOTATION Binary encoding//EN"

� CGM-CLEAR: "ISO 8632/4//NOTATION Clear text encoding//EN"

� PNG: "http://www.w3.org/TR/REC-png"

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-116

Unparsed Entities (1)

• An unparsed entity is declared in the following way:

<!ENTITY clown SYSTEM "clown.gif" NDATA GIF>

• The keyword “NDATA” (“Non-SGML Data”) must

always be followed by a declared notation name.

SGML has also the keywords “CDATA” and “SDATA” which are, however,
not supported in XML.

• In this way, the SGML/XML system “knows” the

data format (media type) of each entity and does

not have to guess it from file extensions etc.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-117

Unparsed Entities (2)

• Unparsed entities cannot be used in entity refe-

rences, but one can declare element types that take

entities as attributes:
<!ELEMENT IMAGE EMPTY>

<!ATTLIST IMAGE SRC ENTITY #REQUIRED>

• Then one can write e.g.:

<IMAGE SRC="clown"/>

The SGML parser then makes system/public identifier (public IDs can
normally be mapped to system IDs) of entity and notation available to
the application program. The application program can then retrieve
the data of the entity by means of the “entity manager” (the layer
below the SGML parser, also part of an SGML system).

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-118

Unparsed Entities (3)

• Of course, parsed general entities can also be used

as attribute values (not only unparsed entities).

Only general entities can appear as attribute values (parameter enti-
ties have no meaning in the document itself, i.e. the data).

• One cannot restrict the possible notations for en-

tities of an attribute in the attribute declaration.

• In HTML, one cannot define entities (the given

DTD cannot be extended). Therefore, the element

type “IMG” as an attribute of type “CDATA” which

directly contains the URI of the image file.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-119

Entity Declaration (1)

General Parsed Entity Declaration:

<!ENTITY Name

Literal >

SYSTEM SysID

PUBLIC PubID SysID

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-120

Entity Declaration (2)

• “Literal” is a string enclosed in single or double

quotes. (’ or ").

• Parameter entity references and general entity re-

ferences can be used in the literal.

Parameter entity references are immediately evaluated, general entity
references become part of the replacement text of the entity.

• Entity references are not evaluated in the system

and the public identifier.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-121

Entity Declaration (3)

Unparsed Entity Declaration:

<!ENTITY Name

SYSTEM SysID

PUBLIC PubID SysID

NDATA Notation >

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-122

Entity Declaration (4)

Parameter Entity Declaration:

<!ENTITY % Name

Literal >

SYSTEM SysID

PUBLIC PubID SysID

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-123

Marked Sections (1)

• The contents of an IGNORE-section is not processed:

<![IGNORE[...]]>

• In contrast, the contents of an INCLUDE-section is

processed normally:

<![INCLUDE[...]]>

• One can define an entity which has one of the two

values “IGNORE” and “INCLUDE” to get a feature si-

milar to “conditional compilation”, e.g.

<!ENTITY % solution "INCLUDE">

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-124

Marked Sections (2)

• Then one can mark sections that are to be included

only in certain versions of the document, e.g. solu-

tions are printed only in the edition for the teacher:

<![%solution;[...]]>

• In XML, conditional marked sections can only be

used in the external subset of the DTD and must

contain a sequence of complete markup declarati-

ons (not arbitrary text).
In SGML, marked sections can appear in the DTD and in content
(the body of the document).

• Conditional marked sections can be nested.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-125

Marked Sections (3)

• Besides these conditional sections, there are also

“verbatim” sections, in which markup is not eva-

luated.

• CDATA-sections can contain the characters “<”, “>”

and “&” as normal text. They are not interpreted

as markup:

<![CDATA[...]]>

• Of course, CDATA sections can only be used in the

document body, not in the DTD.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

1. XML Syntax 1-126

Marked Sections (4)

• CDATA sections cannot nest.

The only markup that is interpreted within a CDATA section is its end
delimiter “]]>”. The parser would not even notice the begin of another
such section.

• CDATA sections are normally used for showing exam-

ple XML/HTML code, which should not be inter-

preted as markup.

The alternative would be to escape the special characters “<” and “&”
one by one with entity or character references. Of course, within a
CDATA section, entity and character references are also not understood.

Stefan Brass: XML und Datenbanken Universität Halle, 2015

