
4. The Hypertext Transfer Protocol 4-1

Chapter 4: The Hypertext
Transfer Protocol (HTTP)

References:
• Erik Wilde: World Wide Web — Technische Grundlagen. Springer, 1999, ISBN 3-540-

64700-7, 641 Seiten.

• T. Berners-Lee, R. Fielding, H. Frystyk: Hypertext Transfer Protocol — HTTP/1.0.
RFC 1945, May 1996, 60 pages.

• R. Fielding et al.: Hypertext Transfer Protocol — HTTP/1.1. RFC 2616, June 1999,
176 pages.

• J. Franks et al.: HTTP Authentication: Basic and Digest Access Authentication. RFC
2617, June 1999, 34 pages.

• David H. Crocker (Ed.): Standard for the Format of ARPA Internet Text Messages.
RFC 822, August 1982, 47 pages.

• P. Wainwright: Professional Apache. Wrox Press, 1999, ISBN 1-861003-02-1, 617 pages.

• D. Kristol, L. Montulli: HTTP State Management Mechanism. RFC 2965, Oct. 2000,
26 pages.

• K. Moore, N. Freed: Use of HTTP State Management. RFC 2964, Oct. 2000, 8 pages.

• David M. Kristol: HTTP Cookies: Standards, privacy, and politics. ACM Transactions
on Internet Technology (TOIT), Volume 1 , Issue 2 (November 2001), Pages: 151 - 198

• S. Brass: Cookies. In R. Flynn (Ed.): Macmillan Computer Sciences. Macmillan, 2002.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-2

Objectives

After completing this chapter, you should be able to:

• explain what exactly happens when you click on a

link in a web page.
You should be able to write HTTP requests and interpret HTTP
responses. Why it is good to keep the TCP connection open for a
short time after the response?

• explain how language and format are selected.

• explain authentication for protected pages.

• explain cookies including privacy problems.

• understand many of the configuration options for

a web server.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-3

Overview

1. Requests and Responses

'

&

$

%
2. Content Negotiation

3. Access Control/Password-Protected Pages

4. Caching (Proxies)

5. State Management (Cookies)

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-4

HTTP Communication (1)

• Example: Suppose the following URL is requested:

http://www.informatik.uni-giessen.de/index.html

• The basic HTTP communication model has four

steps:

� Opening a TCP connection to the web server.

� Sending a request to the web server.

� Receiving a response from the web server (which

includes the data of the requested web page).

� Closing the connection (optional).

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-5

HTTP Communication (2)

First Step: Opening a TCP Connection

• The URL (web address) contains the name of the

web server: www.informatik.uni-giessen.de.

• The Browser asks a DNS server for the IP address.
If IP address lookup fails: “Netscape is unable to locate the server”.

• The Client (Browser) opens a TCP-connection to

port 80 of this machine (134.176.28.61).
80 is the default port number of HTTP. One can specify another
port number explicitly in the URL. If no process is listening on that
port, Netscape prints the error message “Connection refused”. If the
machine is switched off or not reachable via the network, it prints
“There was no response”.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-6

HTTP Communication (3)

Second Step: Request

• The client (browser) requests an object (file) from

the server.

• This is done with a human-readable message, e.g.
GET /index.html HTTP/1.0

(Empty Line)

• One can open a TCP connection with

telnet www.informatik.uni-giessen.de 80

and enter the request manually.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-7

HTTP Communication (4)

• Between the GET-line and the empty line many op-

tions (“Headers”) can be specified, see below.

The empty line is needed to mark the end of the GET-request. The
client does not immediately close the connection after it has sent the
request, therefore the server needs another means to know when the
request is complete. POST-requests contain data after the empty line,
but there a header specifies how many bytes the server must still read
after the empty line.

• In HTTP 0.9 the request was simply

GET 〈Filename〉

(without further options).

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-8

HTTP Communication (5)

• Example for a request sent by Netscape 4.76:

GET /index.html HTTP/1.0

Referer: http://www.informatik.uni-giessen.de/.../c3.html

Connection: Keep-Alive

User-Agent: Mozilla/4.76 [en] (X11; U; SunOS 5.8 sun4u)

Host: wega.informatik.uni-giessen.de:8080

Accept: image/gif, image/x-xbitmap, image/jpeg,

image/pjpeg, image/png, */*

Accept-Encoding: gzip

Accept-Language: en

Accept-Charset: iso-8859-1,*,utf-8

(Empty Line)

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-9

HTTP Communication (6)

• Example for a request sent by Internet Explorer:

GET /index.html HTTP/1.1

Accept: image/gif, image/x-xbitmap, image/jpeg,

image/pjpeg, application/vnd.ms-powerpoint,

application/vnd.ms-excel,

application/msword, */*

Referer: http://www.informatik.uni-giessen.de/.../c3.html

Accept-Language: en-us,de;q=0.5

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0

(compatible; MSIE 5.5; Windows 98; Win 9x 4.90)

Host: wega.informatik.uni-giessen.de:8080

Connection: Keep-Alive

(Empty Line)

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-10

HTTP Communication (7)

• Request of the web robot (spider, crawler):

GET /robots.txt HTTP/1.0

Host: www.informatik.uni-giessen.de

Accept: text/*

User-Agent: Slurp/si (slurp@inktomi.com;

http://www.inktomi.com/slurp.html)

From: slurp@inktomi.com

(Empty Line)

• Web robots are programs that “surf” on the web

and try to download as many as possible web pages,

e.g. for entering them into a search engine index.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-11

HTTP Communication (8)

• The request can contain data (e.g. from a form):

POST /db-cgi/grades?view HTTP/1.0
Referer: http://.../staff/brass/grades/view.html
Connection: Keep-Alive
User-Agent: Mozilla/4.73 [en] (X11; U; SunOS 5.7 sun4m)
Host: www.informatik.uni-giessen.de
Accept: image/gif, image/x-xbitmap, image/jpeg,

image/pjpeg, image/png, */*
Accept-Encoding: gzip
Accept-Language: en
Accept-Charset: iso-8859-1,*,utf-8
Content-type: application/x-www-form-urlencoded
Content-length: 46

first_name=Stefan&last_name=Brass&password=abc

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-12

HTTP Communication (9)

Third Step: Response

• The server answers with the requested document

(object, entity), e.g. it transfers an HTML file.
The contents of the HTML file is normally sent including comments
etc., i.e. it is not interpreted.

• Before the real data, a status code is sent (e.g.

200 “OK”), as well as information about the do-

cument (meta data) and about the server.

• These headers and the data are again separated by

an empty line.
In HTTP 0.9 only the document was sent.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-13

HTTP Communication (10)

• Example for a response from the Apache Server:

HTTP/1.1 200 OK

Date: Thu, 16 Nov 2000 18:52:10 GMT

Server: Apache/1.3.12 (Unix)

Last-Modified: Mon, 08 May 2000 09:22:58 GMT

ETag: "60304-46b-39168772"

Accept-Ranges: bytes

Content-Length: 1131

Connection: close

Content-Type: text/html

... HTML Document ...

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-14

HTTP Communication (11)

• Example for a response from the Microsoft Internet

Information Server (IIS):

HTTP/1.1 200 OK

Server: Microsoft-IIS/4.0

Content-Location: http://136.142.116.25/Default.htm

Date: Thu, 16 Nov 2000 19:00:39 GMT

Content-Type: text/html

Accept-Ranges: bytes

Last-Modified: Thu, 02 Mar 2000 23:41:04 GMT

ETag: "fca66ec6a084bf1:abe"

Content-Length: 4263

... HTML Document ...

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-15

HTTP Communication (12)

• In this way, arbitrary files can be transfered, not

only HTML:

HTTP/1.1 200 OK

Date: Fri, 17 Nov 2000 07:35:20 GMT

Server: Apache/1.3.12 (Unix)

Last-Modified: Tue, 18 Jul 2000 12:11:48 GMT

ETag: "9ac90-d2f-39744984"

Accept-Ranges: bytes

Content-Length: 3375

Connection: close

Content-Type: image/jpeg

... Binary Data of the JPEG-File (3375 Bytes) ...

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-16

HTTP Communication (13)

• Often, the data that the server sends are simply

the contents of a file stored on the server (“static

contents”).

• However, it is also possible that the data are com-

puted by an arbitrary program that runs on the

server (“dynamic contents”).

The WWW server communicates with this program via CGI (“Com-
mon gateway Interface”). Alternative: “Servlets” written in Java.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-17

HTTP Communication (14)

• It is also possible that an HTML file contains com-

mands or program pieces that are interpreted by the

server (Server Side Includes, Active Server Pages,

etc.).

• A program (e.g. a DBMS) can also directly have

an HTTP interface.

• Even my printer can be controlled with a brower

via a built-in HTTP interface.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-18

HTTP Communication (15)

Fourth Step: Closing the Connection

• Earlier, the server always closed the connection af-

ter it had transfered the requested data.

• But this turned out to be inefficient, since often fur-

ther files (images, frame contents, more web pages)

must be fetched from the same server.

TCP needs a three-way handshake for opening a connection, and for
closing a connection, even four packets must be sent. In addition,
the operating system must keep the data about the connection for a
short time in case the final acknowledgement was lost and the other
side resends a packet.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-19

HTTP Communication (16)

• Therefore, client and server can agree to keep the

TCP connection alive for a short time.

This is done via the header “Connection:”.

• If the client knows that it needs several documents

from the server, it can send the requests one after

the other without waiting for the response.

This is called “pipelining”. Earlier, browsers often opened many con-
current connections to the same server, but that creates an unneces-
sary load on the server. Today, the rule is that client should not open
more than two concurrent connections to the same server.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-20

Proxies (1)

• Sometimes client (browser) and server communica-

te via one or more proxy servers (caches):

Browser
-

Request

Response
�

Proxy
-

Request

Response
�

Server

• Browsers can be configured in such a way that they

send all requests to a fixed proxy server (e.g. ope-

rated by the ISP) instead of the real server.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-21

Proxies (2)

• The proxy then checks whether the requested page

is in its cache.

It also tries to check whether the page is still current, see below.

• If yes, the proxy answers the request from its cache.

• If not, the proxy sends the request to the real server

(“Origin Server”) or another proxy.

• It forwards the response that it gets to the client,

but in addition it saves the response in its cache

(for future requests to the same URL).

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-22

Syntax of a Request (1)

• A request consists of

� a command line,

� zero or more headers,

� an empty line,

� a body (entity, data) (optional).

• A request command line consists of

� A method, e.g. GET.

� An identification of the resource to which the

method should be applied (e.g. absolute path).

� The HTTP-version of the request, e.g. HTTP/1.1.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-23

Syntax of a Request (2)

• The most common resource identifications are:

� An absolute path.

� An absolute URI (Uniform Resource Identifier).

A URI can be a URL (“Uniform Resource Locator”, “web ad-
dress”) or a URN (“Uniform Resource Name”, not yet used, see
Chapter 3).

• Proxy servers require an absolute URI, for normal

web servers the absolute path suffices.

In HTTP/1.0, normal web servers only accepted an absolute path.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-24

Syntax of a Request (3)

• There are four classes of headers:

� General Header: In request and response,

no matter whether it contains data or not.

� Entity Header: In request and response,

but only if it contains data (an entity).

� Request Header: Only in a request.

� Response Header: Only in a response.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-25

Syntax of a Request (4)

- Method - SP
�
�

�
�- Abs. Path - SP

�
�

�
�- Version - CRLF

�
�

�
�

- Abs.URI

6

6

- General Header - CRLF
�
�

�
�-

- Request Header - CRLF
�
�

�
�-

- Entity Header - CRLF
�
�

�
�-

- CRLF
�
�

�
� -

- Data (Entity)

6

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-26

Syntax of Headers (1)

• The syntax of headers is the same as in Emails

(e.g. “From:”), see RFC 822.

• A header consists of:

� The name of the header (field).

� A colon “:”.

� The value of the header.

� Carriage Return and Linefeed (CRLF).

• On both sides of colon and after the value white

space (e.g. blanks, tabs) is permitted, but the name

of the header must start in the first column.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-27

Syntax of Headers (2)

• A header can be distributed over multiple lines.

Continuation lines must start with a blank or tab.

The syntactic analysis merges such white space to a single space.

• The sequence of headers is not important.

Exception: If the same header is repeated, the values are concatenated
(separated by commas). Then the sequence is important for the result
value. Headers can only be repeated if their value must be a comma-
separated list (e.g. Accept).

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-28

Methods (1)

• GET: The data stored under the given path/URI are

requested.
This can be the contents of a file on the server, but the path/URI
can also identify a program that computes the data. This depends
on the server configuration, and even a simple URL that looks like a
file name can actually be computed. Arguments/Parameters for the
program can be appended after a “?” to the path. For a GET request,
the program should not perform state changes on the server (GET
requests can be cached in a proxy, not all actually reach the server).

• HEAD: Like GET, but only the headers should be de-

livered, not the data (body).
E.g. in this way one gets the date of last change, the file size, the
media type (MIME type), etc. (meta data).

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-29

Methods (2)

• POST: Data are transfered from the client to the

server which should be assigned to the given URI.

� Most often this is applied for data the user ente-

red into a form. The URI then names a program

that should process the data.

Also the GET method can be used for transfering form data to the
server. But if the form data are stored on the server, and not only
used for computing a result web page (e.g. query forms), POST is
preferable.

� However, the URI could also name a newsgroup

in which the data/message should be posted.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-30

Methods (3)

• POST, continued:

� The URI can name also a database relation, in

which the data should be inserted as new row.

� Another possibility is that the URI names a do-

cument, to which the data should be attached

as annotation.

� What exactly happens, depends on the configu-

ration of the server (and the URI). HTTP does

not prescribe a specific action.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-31

Methods (4)

Further Methods (not always implemented):

• PUT: The data sent in the request body should be

saved on the server under the specified URI.
If a document exists under this path, it is overwritten. It depends
on the configuration of the server and the access rights of the client
whether the server actually performs the request. Not every server
understands “PUT”. The specification states that all methods except
GET and HEAD are optional. But POST is also very common.

• DELETE: The document stored under the given URI

should be deleted.
With PUT and DELETE, remote administration of the web server contents
is possible. Of course, only authenticated users with special access
rights should be allowed to do this.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-32

Methods (5)

• TRACE: The server sends the request back as data.

This can be interesting if one or more proxies are on the way from
the client to the server, which possibily modify the request. They also
add their address in a Via: header, which can be queried in this way.

• OPTIONS: The server sends back the methods that

would be acceptable for the given URI.

This is done in the Allow: Header. Instead of a path/URI, one can
also specify “*” in order to get all methods supported by the server.

• CONNECT: For SSL connections via a proxy.

• One can also define one’s own methods.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-33

General Headers (1)

• Cache-Control: Information for proxies, see below.

• Connection: Client/server can state whether they

want to keep the TCP-connection after sending the

request/resonse (Keep-Alive) or not (close).

• Date: Date and time when the request or response

was constructed.

• Pragma: Was used for proxy information, see below.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-34

General Headers (2)

• Trailer: Used for chunked encoding to specify hea-

ders that will be sent after the body, see below.

• Transfer-Encoding: Encoding of the body in order

to safely transfer it (e.g. chunked), see below.

• Upgrade: For changing to a different protocol.

• Via: Proxies between client and server add this hea-

der with their address to the request.

• Warning: Warning generated by a proxy.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-35

Request Headers (1)

• Headers for content negotiation (see below):

� Accept: Acceptable media types.

� Accept-Encoding: Acceptable encodings.

E.g. compression methods.

� TE: Acceptable transfer encodings.

� Accept-Charset: Acceptable character sets.

� Accept-Language: Acceptable languages.

• Authorization: For password-protected pages.

See below.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-36

Request Headers (2)

• Expect: The client uses the value “100-continue” to

state that after sending the headers it waits for an

acknowledgement before it will send the data.

• From: Email-address of the user who is responsible

for the request.

Earlier, browsers sent the users email address quite freely. Now the
specification recommends that the email address should only be sent
if the user explicitly agreed, which usually means that it is not sent.

• Host: Name of the web server.

Important for virtual servers. HTTP/1.1 requires that this header is
specified if the command line does not contain an absolute URI.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-37

Request Headers (3)

• Headers for conditional requests (important for pro-

xies and search engines which already have an old

version of the web page, see below):

� If-Match

� If-Modified-Since

� If-None-Match

� If-Range

� If-Unmodified-Since

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-38

Request Headers (4)

• Max-Forwards: Number of proxies that can still relay

the request on its way to the server.

Each proxy must decrement this value by 1. If it is 0, it must not
forward the request, but answer the client (normally with an error
message).

• Proxy-Authorization: If the proxy supports only se-

lected clients, this can be used to prove one’s iden-

tity.

• Range: Only a part of the entity is requested.

E.g. “Range: bytes=0-1023” returns only the first KB.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-39

Request Headers (5)

• Referer: URL of the web page that contains a re-

ference to the requested URI.

This is useful for statistical evaluations of the web traffic: E.g. which
web pages contain links to my web page, and from where most users
find my page? It also helps to find broken links: If the requested
path/URI does not exist, the referencing page is known and it can
either be repaired (it it is on my web server) or I can try to find out
who is responsible for the web page and send him/her an email.

• User-Agent: Information about the browser.

E.g. the server can deliver different versions based on which browser
requests the web page. The server can also collect statistics how often
which browser is used.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-40

Syntax of a Response (1)

• A response consists of:

� a status line,

� zero or more headers,

� an empty line,

� a body (entity, data, document) (optional).

• The status line consists of:

� the HTTP-version,

� a status code (three digits) (e.g. error number),

� a text that explains the status code.
Status code: for the computer, Text: for human user.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-41

Syntax of a Response (2)

- Version - SP
�
�

�
�- Status Code - SP

�
�

�
�- Text - CRLF

�
�

�
�

6

- General Header - CRLF
�
�

�
�-

- Request Header - CRLF
�
�

�
�-

- Entity Header - CRLF
�
�

�
�-

- CRLF
�
�

�
� -

- Data (Entity)

6

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-42

Status Codes (1)

• Status codes consist of three digits. The first digit

specifies the general class of the status code.

If the client does not know the specific status code, it can treat the
situation like the code 00 of the class.

• 1xx: Intermediate reply, additional response follows.

� 100: Continue (i.e. client should send data).

This is an answer to the Expect header.

� 101: Switching Protocols

The server accepts the protocol that the client suggested in the
Upgrade header.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-43

Status Codes (2)

• 2xx: Successful:

� 200: OK

The requested operation was executed successfully. E.g. one re-
quested a web page which is successfully returned in this response.

� 201: Created.

The operation created a new resource (e.g. answer to a PUT re-
quest). The location of the resource is returned in the body, and
the most specific URI also in a Location header.

� 202: Accepted.

The requested operation will be executed later.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-44

Status Codes (3)

• 2xx: Successful, continued:

� 203: Non-Authoritive Information.
Meta information was changed by the proxy.

� 204: No Content
The requested operation was executed, but answer is empty. The
browser should not change the document in the browser window
if it gets a 204 answer.

� 205: Reset Content.
The submitted form data were successfully processed. The form
should now be emptied so that the user can enter the next record.

� 206: Partial Content.
This is an answer to a Range request.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-45

Status Codes (4)

• 3xx: Redirection (requires another request).

� 300: Multiple Choices.
There are several variants for the resource. The body of the re-
sponse contains information about the variants. The browser may
choose automatically (e.g. GIF vs. JPEG).

� 301: Moved Permanently.
The web address of the resource has changed. The response con-
tains a Location header with the new URI. Hyperlinks and book-
marks should be updated.

� 302: Found (temporary redirect).
The resource was moved temporarily to a new URI which is given
in the Location header. 302 means officially the same as 307, but
many browsers interpret it like 303 (see below).

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-46

Status Codes (5)

• 3xx: Redirection, continued:

� 303: See Other.

This is also a temporary redirect, the browser should automatically
load the web page at the URI given in the Location header. The
new URI must be accessed with the method GET. E.g. this is
sometimes used when form data submitted with POST, and the
CGI program does not want to return the data of the result page,
but ask the browser instead to fetch it.

� 304: Not Modified.

This is an answer to conditional requests like If-Modified-Since.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-47

Status Codes (6)

• 3xx: Redirection, continued:

� 305: Use Proxy.

The resource may only be accessed via a proxy server. The address
of the proxy server is contained in the Location header.

� 307: Temporary Redirect.

This actually means the same as 302: The browser should auto-
matically access a different URI given in the Location header. In
contrast to 303, the new URI must be accessed with the same
method as the original request. Since many browsers interpreted
302 like 303, this status code was introduced to emphasize the
difference. E.g. if the address of a CGI program for processing
form data has changed, this status code should be used.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-48

Status Codes (7)

• 4xx: Client Error (error of browser/user).

� 400: Bad Request.

The request is syntactically invalid. E.g. HTTP/1.1 was specified
as protocol version, but the required Host header is missing.

� 401: Unauthorized.

E.g. this page is password protected. The normal reaction of the
browser is to ask the user for a user name and password, and then
try it again with a request that includes this data, see below.

� 402: Payment Required.

This is reserved for future use. There are already web pages that
can only be accessed for paying money. Today the user must
explicitly register, in future the browser may manage a small purse.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-49

Status Codes (8)

• 4xx: Client Error, continued:

� 403: Forbidden.

The server refuses to deliver the data. E.g. the file access rights
on the server might be wrong (Under UNIX, files normally must be
readable by everybody, otherwise the web server process cannot
access them. Depending on the “umask” that defines rights for
new files, the file access rights must be explicitly changed for the
web pages. If that was forgotten, this error occurs.). However,
it is also possible to configure the web server such that certain
pages can only be accessed from the local net.

� 404: Not Found.

The path specified in the request was wrong: There is no such
web page.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-50

Status Codes (9)

• 4xx: Client Error, continued:

� 405: Method not allowed.

The request method cannot be applied to this URI.

� 406: Not Acceptable.

There was no variant of the resource that could fulfill the cons-
traints specified in the Accept-headers of the request. E.g. the
browser specified that it only understands the GIF and JPEG pic-
ture formats, but the image exists only in a PNG version. However,
the server may simply deliver a different media type than requested
(and not give the 406 error).

� 407: Proxy Authentication Required.

� 408: Request Timeout.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-51

Status Codes (10)

• 4xx: Client Error, continued:

� 409: Conflict.

This might e.g. happen with PUT requests if two users indepen-
dently edited the same file.

� 410: Gone.

The web page was deleted, and is no longer offered (at least, no
forwarding address is known). Bookmarks to this URI should be
deleted.

� 411: Length Required.

A Content-Length header is required for this request.

� 412: Precondition Failed.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-52

Status Codes (11)

• 4xx: Client Error, continued:

� 413: Request Entity Too Large.

� 414: Request-URI Too Long.

� 415: Unsupported Media Type.

The server does not understand the format of the request body
as specified in the Content-Type header.

� 416: Requested Range Not Satisfiable.

A byte-range was requested with a start address that is larger
than the current size of the file.

� 417: Expectation Failed.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-53

Status Codes (12)

• 5xx: Server Error.

� 500: Internal Server Error.

This error code is e.g. returned when the CGI-program crashed
(that was supposed to compute the response).

� 501: Not Implemented.

The request method is not known to the server.

� 502: Bad Gateway.

This is an error message generated by a proxy server. It got an
invalid response from the original server.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-54

Status Codes (13)

• 5xx: Server Error, continued:

� 503: Service Unavailable.

E.g. the server is overloaded or currently not available because
of maintainance work. Status code 503 means that one can try
the request again after some time. A Retry-After header might
contain a suggestion when to try it again.

� 504: Gateway timed out.

This is an error message from a proxy server. It got no answer
from the original server. (or the DNS lookup timed out, etc.).

� 505: HTTP Version not supported.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-55

Response Headers (1)

• Accept-Ranges: The server may use this in order to

show whether it can process requests for partial

entities.

The value of this header can be bytes or none. However, clients can
request a partial entity with the Range header even if they did not yet
receive an Accept-Ranges from the server.

• Age: Age of the response in seconds.

A proxy should add this header to show how old the response is.

• ETag: Unique identifer of this version.

E.g. a proxy may use this to decide whether the version of the web
page it has in its cache is still current.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-56

Response Headers (2)

• Location: URI of the entity (e.g. in case of a redi-

rection).

• Proxy-Autheticate: The proxy requires a password

etc.

The header contains information about the method of authentication.

• Retry-After: Information when this request should

be tried again.

The contents of this header field can contain an integer (number of
seconds) or a date and time.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-57

Response Headers (3)

• Server: Information about the server software.

• Vary: Criteria used in the content negotiation.

If there are several variants for the same URI, a proxy must know
which Accept-headers were used in the selection, see below.

• WWW-Authenticate: Authentication method for pro-

tected pages (see below).

This method must be included in a response with status code 401

(“Unauthorized”).

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-58

Entity Headers (1)

• Allow: Methods that are applicable to this entity.

Required for resonses with status code 405 “Method Not Allowed”.

• Content-Encoding: Encoding (compression) of the

delivered entity, e.g. “gzip” (media type modifier).

• Content-Language: Language the intended audience

of the document should speak, e.g. “en” (English).

• Content-Type: Media type of the delivered entity,

e.g. “text/html”.

• Content-Length: Length of the data in bytes.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-59

Entity Headers (2)

• Content-Location: URI of the delivered entity.
E.g. if the requested URI denotes a set of variants (GIF, JPEG, etc.),
this might be the URI of the selected variant. The URI specified in
the Content-Location header is also used for the completion of relative
URIs in the document.

• Content-MD5: Checksum of the data.

• Content-Range: For transmission of partial entities.

• Expires: Date and time until which this request can

be used by proxies (see below).

• Last-Modified: Date and time of the last modifica-

tion of the document.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-60

Transmission of Entities (1)

• Normally the header “Content-Length” is used to

tell the recipient the number of data bytes in the

body of the request or response.

In this way the recipient knows when the body is complete.

• However, it might happen that the sender does not

know the size of the data beforehand (e.g. output

of a program) and does not want to buffer them.

In HTTP/1.0, the only possibility was to compute the complete re-
sponse, store it in a temporary file, and transmit the data only after
the file size was known. This is inefficient and must be used with
great care (can the disk get full?).

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-61

Transmission of Entities (2)

• Therefore, the “chunked encoding” was introduced

in HTTP/1.1: The data is sent as a sequence of

pieces (chunks).

• Each piece begins with a line that contains the size

of the piece in bytes (in hexadecimal notation).

• After this line (i.e. after carriage return and line

feed) this number of data bytes follow.

• Then the next piece follows (length, data) etc.

• The end is marked with a piece of length 0.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-62

Transmission of Entities (3)

• After the last piece, additional headers can be sent

in a trailer. The trailer ends with an empty line.

The empty line at the end is required in the chunked encoding, the use
of headers in the trailer is optional. The header “Trailer” contains the
names of the headers that will be contained in the trailer. The client
can tell the server with “TE: trailers” that it can process headers
in the trailer. Not all HTTP/1.1 clients must be able to process
non-empty trailers. If the server does not know whether the client
understands headers in the trailer, it may still send them, but the
client is allowed to ignore them. Otherwise, all HTTP/1.1 clients
must understand the chunked encoding (only trailers are optional).

• If the data are sent piecewise in this way, the header

“Transfer-Encoding: chunked” must be specified.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-63

Overview

1. Requests and Responses

2. Content Negotiation

'

&

$

%
3. Access Control/Password-Protected Pages

4. Caching (Proxies)

5. State Management (Cookies)

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-64

Media Types (1)

• HTTP can not only be used for transmitting HTML

documents, but also for arbitrary binary data.

• However, the browser must know what to do with

the data (how to interpret/display them).

• Therefore, the header Content-Type contains the

media type of the data sent in the body.
The standard specifies that any HTTP/1.1 message that contains a
body should contain a Content-Type header. If this header is missing,
the client is allowed to guess or treat the body as unknown binary
data (application/octet-stream). Often the file extension in the URL
helps, but e.g. .pl can be Perl or Prolog. Also, the URL might denote
a program that computes the data, the data can then be of any type.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-65

Media Types (2)

• Media types were introduced in the MIME stan-

dards (“Multipurpose Internet Mail Extensions”).

RFC 1590: Media Types Registration Procedure.
RFC 2045: MIME, Part One: Format of Internet Mail Bodies.
RFC 2046: MIME, Part Two: Media Types.
See also RFC 2047 to 2049.

• Media types consist of a general class and a subty-

pe, e.g. image/gif.

• If the client does not know the subtype, it might

guess from the class what to do with the data.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-66

Media Types (3)

• E.g., all text/* types should be such that the client

can show them directly to the user if it does not

understand the subtype.

E.g. text/postscript is wrong, it must be application/postscript.

• Besides class and subtype, also optional parameters

can be specified (separated by “;”), e.g.

text/html; charset=ISO-8859-4.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-67

Media Types (4)

• The currently defined classes are:

� text, e.g. text/plain, text/html, text/xml.

� multipart, e.g. multipart/mixed.

� message, e.g. message/rfc822, message/news.

� application, e.g. application/octet-stream,

application/postscript, application/pdf.

� image, e.g. image/jpeg, image/gif, image/png.

� audio, e.g. audio/basic, audio/mpeg.

� video, e.g. video/mpeg, video/quicktime.

� model, e.g. model/vrml.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-68

Media Types (5)

• Media types are registered by the IANA (Internet

Assigned Numbers Authority) [http://www.iana.org].

• The current list of media types is available at

[ftp://ftp.isi.edu/in-notes/iana/assignments/media-types]

• Non-registered media types should start with “x-”.

• In Netscape (under UNIX), one can specify under

Edit → Preferences → Navigator → Applications

what to do with the different media types.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-69

Media Types (6)

• E.g. one can specify that if a postscript file is recei-

ved, it is stored in a temporary file and the ghost-

script viewer is automatically started.

• It is also possible to extend the list of media types

and to specify rules for guessing the media type

from the file extension.

• Internet Explorer (under Windows) uses the Win-

dows settings for file types.
See Tools → Folder Options → File Types in any Windows Explorer
window. Internet Explorer is also available under UNIX, there it is
specified in Tools → Internet Options → Associations.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-70

Alternative Versions (1)

• The document denoted by the URL/URI might

exist on the server in different formats.

• E.g. Plain ASCII, HTML, LATEX, Postscript, PDF.
A URI does not necessarily denote a unique file. Normally, the format
can be derived from the file extension in the URL. However, the file
does not necessarily have an extension, or its meaning may be not
unique. Only the Content-Type header clearly specifies the data format.

• The server might also do certain transformations

“on the fly” when specific formats are requested.
E.g. the file is stored compressed (gzip) on the server. If the client
does not understand this compression, the server can uncompress it
and send the uncompressed version.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-71

Alternative Versions (2)

• It is also possible that the document exists in sever-

al different languages (e.g. German and English),

but the URI only denotes the document in general.

E.g. it would be possible that the university homepage under the
URI http://www.uni-giessen.de/ is delivered in English or in German
depending on the preferences of the client.

• The user of the HTTP client (browser) normally

has preferences for certain languages. These can be

specified in the request that is sent to the server.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-72

Alternative Versions (3)

• Preferences can also be defined on the server, based

e.g. on the relative quality of the different versions.

E.g. the original of the document is in French, the translation to Eng-
lish is also good, but for German there is only an automatic translation
done by a program. If the client has no preferences between French
and English, he/she gets the French original. The German version is
only delivered if the user understands neither French nor English.

• E.g. in the Apache server (with option Multiviews),

one can store files doc.html.en and doc.html.de.

• If the client requests the non-existent file doc.html,

Apache selects one of the two language versions.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-73

Alternative Versions (4)

• If a document exists in different versions, there is

normally

� one general URI where the content negotiation

between client and server is done, and

� one URI for each specific format/version (so that

the client can do the selection manually).

• When content negotiation is done, normally the

header Content-Location should be sent which con-

tains the URI of the selected version.

This is also important for proxies, see below.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-74

Alternative Versions (5)

• Apache also has “Type Maps”.
The URI points to a file that decribes the different versions.

• E.g. under doc.var the following can be stored:

URI: doc.html.en
Content-Type: text/html; qs=1
Content-Language: en
Description: "English Original"

URI: doc.html.de
Content-Type: text/html; qs=0.8
Content-Language: de
Description: "Deutsche Übersetzung"

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-75

Alternative Versions (6)

• The version selection described above is called

“Server-driven Content Negotiation”.

• It has certain disadvantages:

� There are seldom several variants, but the client

must always send its preferences.

� The selection criteria of the client can not always

be described with the HTTP headers.

� Caching is getting more complicated.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-76

Alternative Versions (7)

• Disadvantages of server-driven content negotiati-

on, continued:

� It might be considered a privacy violation that

the user must tell the server his/her selection

criteria and display possibilities.

• Therefore, work is done on

� “Agent-driven Negotiation” (at the Client)

� “Transparent Negotiation” (on a proxy).

• However, the proposals are not yet complete.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-77

Media Type Selection (1)

• The client can define which media types it can pro-

cess. This is done with the request header “Accept”.

If the requested resource is not available in one of these media types,
the server can answer with the error code 406, but it may also ignore
the media type specification and send whatever it has.

• The value of the Accept-header is a list of media

types (separated with commas “,”).

One can also specify parameters for the media types, e.g. text/html;
level=2. Note that the semicolon binds more strongly in this case than
the comma.

• One can also use wildcards, e.g. text/* or */*.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-78

Media Type Selection (2)

• The client can specify preferences between the pos-

sible media types (in case the resource is available

in different formats).

• This is done by means of quality factors which can

be between 0 (not usable) and 1 (perfect).

The numbers can have up to three digits after the decimal point. If a
media type is written without quality factor, the default 1 is assumed.

• E.g. this header would specify that the client prefers

HTML to PDF:

Accept: text/html;q=1, application/pdf;q=0.5

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-79

Media Type Selection (3)

• The syntax for parameters of a media type and for

quality factors is the same, but media type para-

meters must be specified first:

Accept: text/html ;level=1 ;q=1,

text/html ;level=2 ;q=0.9

• For each media type, the most specific case is used:

Accept: text/html;level=1;q=1, text/html;q=0.9,

text/*;q=0.8, */*;q=0.7

• Then e.g. text/plain has the quality factor 0.8 and

image/gif has the quality factor 0.7.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-80

Media Type Selection (4)

• The standard does not specify how the server se-

lects a variant of the resource based on the quality

factors.

• E.g. in the Apache type maps, one can specify

server-side quality factors for the variants of a re-

source (qs).

• If e.g. the PDF version contains more formatting

than the HTML version, the PDF version might

have a slightly higher quality factor on the server.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-81

Media Type Selection (5)

• The Apache server multiplies its own quality factors

with those of the client and delivers the variant with

the highest product.

E.g. if the client has a strong preference for HTML, it gets HTML,
otherwise PDF.

• Example:

Variant Client Server Product Selected

HTML 1.0 0.9 0.9 yes
PDF 0.5 1.0 0.5 no

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-82

Language Selection (1)

• The client can specify preferences for languages:

Accept-Language: de, en-US;q=0.8, en;q=0.7,

fr;q=0.3, *;q=0.1

• The syntax is similar to the media types, but lan-

guages have no parameters.

However, there is an optional specification of the region. Capitaliza-
tion in language names is not important.

• The Apache server first determines the best media

type. Only if there are still several variants, the

language is considered.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-83

Language Selection (2)

• In the response, the server can define with the

Content-Language header the language of the do-

cument.

• This might e.g. be important for search engines,

which try to select only documents of a language

the user knows.

But they must use also other methods for determining the document
language, since many servers do not send a Content-Language header.
There are various ways to specify the language in a HTML document,
e.g. some servers might evaluate the HTTP-EQUIV meta tag which per-
mits to specify arbitrary HTTP headers in the document itself (see
chapter 6).

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-84

Character Set Selection (1)

• The client can specify which character sets (enco-

dings) it can display:

Accept-Charset: ISO-8859-1, ISO-8859-5;q=0.8

• E.g. for cyrillic letters, there are several different

possible encodings (ISO-8859-5, windows-1251).

• The server could in principle translate between dif-

ferent character encodings.

The file is stored in one specific encoding on the server, but if the
client requests a different encoding (that is known to the server), the
server can deliver the translated file contents.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-85

Character Set Selection (2)

• In the response, there is no extra header to spe-

cify the character set encoding. This information is

appended as a parameter to the media type:

Content-Type: text/html; charset=windows-1251

• The default (no parameter) is ISO-8859-1.

However, the W3C HTML validator now requires that the character
set is explicitly specified. This can e.g. be done with

<META HTTP-EQUIV="Content-Type"
CONTENT="text/html; charset=iso-8859-1">

in the document head (see Chapter 6).

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-86

Compression Method (1)

• The client can specify which compression methods

it understands:

Accept-Encoding: gzip;q=1, identity;q=0.5

• Formats mentioned in the HTTP specification are:

� gzip (earlier x-gzip): GNU gzip (see RFC 1952).

� compress (earlier x-compress): UNIX compress.

� deflate: See RFC 1950 and RFC 1951.

� identity: No compression.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-87

Compression Method (2)

• E.g. gzip compresses Postscript files often to less

than half of their size, which reduces the download

time, the server load, and the required part of the

network bandwidth/transfer volume.
Modems also do a compression, which is not effective on already
compressed files. But this is only done over the modem connection.
The server load and the data transfer volume over the main part of
the internet is not affected by the modem compression.

• Vice versa, the server specifies the compression it

has applied to the resource (if not identity):

Content-Encoding: gzip

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-88

Overview

1. Requests and Responses

2. Content Negotiation

3. Access Control/Password-Protected Pages

'

&

$

%
4. Caching (Proxies)

5. State Management (Cookies)

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-89

Restriction by IP-Number (1)

• The web server knows the IP number of the cli-

ent machine (and then the name can normally be

determined via a DNS query).

• Web servers can be configured such that they per-

mit or reject access to certain directories depending

on the IP-number of the client.

E.g. some professors restrict access to course materials to the Uni-
versity net. E.g. the ACM digital library can be accessed from our
university net, because the university has paid for it. This does not
work for university members connecting from home via a general ISP.
In this case, one must use the university modem pool.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-90

Restriction by IP-Number (2)

• E.g. in the Apache server, one can specify in the

following way that access is permitted only from

the computer science subnet 134.176.28.*:

order deny,allow

deny from all

allow from 134.176.28

• “order deny,allow” means that allow-specifications

have a higher priority than deny-specifications.

Together with “deny from all”, this means that all requests are re-
jected that do not originate from one of the explicitly allowed machi-
nes. “order allow,deny” can be used to exclude only certain machines
(e.g. a robot).

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-91

Restriction by IP-Number (3)

• One can specify also a list of machines in the allow

and deny commands (or use several commands):

allow from 134.176.28.10 134.176.28.11

• One can also use symbolic names:

allow from informatik.uni-giessen.de

• Networks can be defined via the relevant bits in the

IP number:

allow from 134.176.28.0/24

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-92

Restriction by IP-Number (4)

• These settings can be included in a central confi-

guration file of the Apache server.

• However, the configuration can also be done in files

.htaccess that are stored in the directories which

contain the web pages to be protected.

The files .htaccess can contain in principle nearly arbitrary configu-
ration settings for the Apache server, not only allow and deny. Ho-
wever, with the directive AllowOverride the administrator can specify
in the central configuration files which directives are permitted in the
.htaccess files. Of course, also the name .htaccess is configurable.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-93

Restriction by IP-Number (5)

• The settings in .htaccess apply to all files in the

directory including all subdirectories in which they

are not overridden.

• All the above configuration information is specific

to the Apache server.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-94

Restricted Users (1)

• It is also possible to restrict web page access to

users that can identify themselves (e.g. with user-

name and password).

• The web server returns the status 401 “Unauthori-

zed” when one tries to access a protected page.

• In addition, it specifies the required authentication

method in the header WWW-Authenticate.

The HTTP protocol is not restricted to a specific method for authen-
ticating users. RFC 2617 defines the methods “Basic” and “Digest”.
“Basic” is most often used. However, it is unsafe because it transfers
username and password without encryption.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-95

Restricted Users (2)

• E.g. if one tries to access

http://hopper.computer.org/reviews/computer.nsf/$Searchform

one gets the response:

HTTP/1.1 401 Unauthorized Exception
Server: Lotus-Domino/Release-4.6.4
Date: Thu, 07 Dec 2000 17:57:25 GMT
Connection: close
Content-Type: text/html
Content-Length: 193
WWW-Authenticate: basic realm="/reviews"

<HTML><HEAD><TITLE>Error</TITLE> ...

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-96

Restricted Users (3)

• The parameter realm is used in order to distinguish

several protected areas on the same server.

• The browser normally does not show this response

but opens instead a dialog box for entering userna-

me and password.
Click on “cancel” in the dialog box to see (the body of) this response.

• Then the browser sends a second request for the

same URL/URI, which now includes this header:

Authorization: basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-97

Restricted Users (4)

• The data string in the Authorization header is the

Base-64 encoding of username, “:”, password, e.g.

Aladdin:open sesame

• The Base-64 encoding translates groups of three

input bytes each into four printable characters.

• Each result character encodes 6 data bits (i.e. num-

bers from 0 to 63) according to the following table:

0 · · · 25 26 · · · 51 52 · · · 61 62 63
A · · · Z a · · · z 0 · · · 9 + /

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-98

Restricted Users (5)

• If the last group contains less than three input

bytes, zero bytes are added. Characters generated

completely from the added bytes are printed as “=”.

If there are no “=” at the end, the last group was complete.
If there is one “= at the end, the last group had only two data bytes.
If there are two “= at the end, the last group had only one data byte.

• This means that from the encoded string, one can

easily get back username and password.

If somebody listens e.g. on an Ethernet, he/she might be able to see
all passwords sent from browsers on the local net (or to servers on
the local net).

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-99

Restricted Users (6)

• The authentication method “Digest” avoids the se-

curity problems of the “basic” method.
It is, however, not yet very often used.

• The server sends in the WWW-Authenticate “challen-

ge” a random number.

• In the “Authorization” header, the client sends the

MD5-checksum of username, password, the ran-

dom number, the HTTP method, and the URI.
The password itself is not sent. The client proves only that it knows
the password. Because method and URI are included, a hacker with
access to a router cannot modify an intercepted request.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-100

Restricted Users (7)

• Often not only a single URI is password-protected,

but an entire group of web pages.

• Browsers remember username and password and

use it automatically if they get a WWW-Authenticate

header with the same realm from the same server.

Normally the browser does not store the password on the disk (that
would be an important security problem: Other people might get
access to the computer, trojan horses might transmit it). If one starts
the browser again, one must again enter username and password.

• The requested data are transfered in clear text.

For really secret data, use an SSL connection.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-101

Restricted Users (8)

• For the Apache web server, one can store a user

list in a file which is managed with the program

htpassword. (Alternative: user list in database.)

• The configuration can e.g. look as follows:

<Location /confidential>
AuthName "Confidential Documents Realm"
AuthType Basic
AuthUserFile /usr/local/apache/auth/password
AuthGroupFile /usr/local/apache/auth/groups
require user1 user2 group1
AuthAuthoritative on
</Location>

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-102

Password Fields in Forms

• Also in web forms, often a username and a password

is requested. In this case, the data are processed by

programs that run on the server.

• This is a different mechanism that the HTTP au-

thentication.

In this case, HTTP only transfers the requested data. It depends on
the application what it does with them.

• The form data should be transfered encrypted (via

an SSL connection) if they contain passwords or

credit card numbers.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-103

Overview

1. Requests and Responses

2. Content Negotiation

3. Access Control/Password-Protected Pages

4. Caching (Proxies)

'

&

$

%
5. State Management (Cookies)

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-104

Caching: Overview (1)

• Goals:

� Reduction of the server load.

� Reduction of the network load (used bandwidth).

� Faster answers on the client.

• Observation:

� Relatively few pages get a relatively large per-

centage of all requests (uneven distribution).

� After a page was visited, it is often visited again

after a short time.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-105

Caching: Overview (2)

• A cache accepts the request from the client and

answers it. I.e. for the client, it looks like a server.

However, the complete URI must be specified in the request line.

• If the cache cannot answer the request itself, it

forwards it to the server (or another cache). For

the server, it looks like a client.

• Proxy servers (see above) are typical HTTP caches.

Many universities and ISPs have a proxy server in order to reduce the
traffic to other networks. Clients should be configured to use it.

• Browsers have a built-in cache.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-106

Caching: Overview (3)

• The cache stores responses it gets from the server

for some time.

• If there is another request for the same resource,

the cache delivers the stored copy of the response.

• The client should get from the cache the same

answer as it would have gotten from the original

server (“Semantical Transparency”).

HTTP/1.1 defines the header Warning, which can be used by a proxy
to state that there is a possible violation of the semantical transpa-
rency. E.g. if the origin server is not reachable, but the proxy still has
an old copy, it can send it with the warning 111 “Revalidation failed”.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-107

Caching: Overview (4)

• HTTP has two important mechanisms to ensure

the semantical transparency:

� The server should define a minimum lifespan (ex-

piration time) for the response.

During this time, the cache can assume that the response has not
changed and deliver the buffered version without asking the origin
server.

� The possibility to validate an earlier response

with the origin server (“Is this still current?”).

In the positive case, the validation transmits significantly less data
than the complete new response would have transmitted.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-108

Exclusion of Caching (1)

• A cache may only store responses with status codes

200, 203, 206, 300, 301, or 410 (unless the server

explicitly states that the response is cachable).

Error messages are normally not buffered.

• Normally, only responses to GET and HEAD requests

may be buffered.

The information contained in responses to HEAD requests can be used
for validating cache entries. POST requests may only be buffered if
the server has explicitly stated that it is cachable. For the methods
OPTIONS, PUT, DELETE, and TRACE caching is forbidden.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-109

Exclusion of Caching (2)

• HTTP/1.0 servers send the following header to ex-

clude caching of a response:

Pragma: no-cache

• HTTP/1.1 servers use this header:

Cache-Control: no-cache

For compatibility reasons, they often send both

headers.

• The header Cache-Control contains a list of instruc-

tions to the cache, separated by commas.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-110

Exclusion of Caching (3)

• The above headers only forbid to use a cached re-

sponse without revalidation.
I.e. the response is immediately expired, but not useless.

• The following header forbids to store the response

on any persistent media (e.g. disks):

Cache-Control: no-store

• This is useful for confidential information.
E.g. a superuser on the machine might be able to look at the contents
of the disk cache, and it might also be stored on backup tapes.
The header does not prevent the user to explicitly store the document
(with “Save As”).

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-111

Exclusion of Caching (4)

• The server can also state that the response may

only be buffered for this single user (e.g. in the

browser cache, but not on a public proxy server):

Cache-Control: private

• The private caching is also the default for responses

to requests that contain an Authorization header.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-112

Expiration Model (1)

• The server can specify an expiration date in the

response:

Expires: Sun, 24 Dec 2000 18:00:00 GMT

• This header defines until which date and time the

cache can deliver the response without revalidation

with the origin server.
If the expiration date is in the past (or the Expires header and the
Date header contain the same value), the cache will ask the origin
server each time it uses the response whether the page has changed.

• The server guarantees that until this date, the re-

source (web page) will not significantly change.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-113

Expiration Model (2)

• The Expires-header does not mean that the page

will certainly change at the given date.

• The Expires header also does not mean that the

browser should automatically reload the page.

Expires is only an instruction for the cache.

• Expiration dates should not be more than one year

in the future.

The standard suggests that if a resource never expires one should use
an expiration date approximately one year in the future.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-114

Expiration Model (3)

• Expires was already contained in HTTP/1.0.

• In the HTTP/1.1 header Cache-Control, one can

alternatively specify a maximal age in seconds:

Cache-Control: max-age=86400

The variant s-maxage applies only to “shared caches” (Proxies). It also
implies proxy-revalidate (see below).

• HTTP/1.1 caches also must specify the age of the

response if it taken from their buffer:

Age: 3600

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-115

Expiration Model (4)

• Caches can be configured such that they use expi-

red responses and clients can request them.

• Therefore the server can explicitly specify that the

cache must respect the expiration time:

Cache-Control: must-revalidate

proxy-revalidate applies only to “shared caches”.

• If the server does not specify an expiration time,

the cache can heuristically estimate it.
E.g. if the date of last modification is long in the past, one can assume
that the page is not likely to change soon. The guessed expiration time
should not be more than 24 hours after the response was generated.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-116

Expiration Model (5)

• In the Apache server, the module mod_expires ge-

nerates the Expires header.

• E.g. this would state that web pages normally expi-

re after one day, but GIF images after 1 week, and

everything in the archive directory after 4 weeks:

ExpiresActive on
ExpiresDefault A86400
ExpiresByType image/gif A604800
<Directory /www/archive>

ExpiresDefault A2419200
</Directory>

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-117

Expiration Model (6)

• In the above Apache configuration, the expiration

time is defined in seconds from the time of access.

I.e. from the current time when the response is computed. The letter
A means “Access”. If one uses the letter M, the time counts from the
date of last modification of the file. This is useful e.g. if one knows
that the files is modified every 24 hours.

• With the Apache module mod_headers one can set

arbitrary headers, e.g.

<Directory /www/news>

Header add Cache-Control: no-cache

</Directory>

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-118

Client Cache Instructions (1)

• The client can declare that it accepts responses

that have already expired (e.g. up to one day ago):

Cache-Control: max-stale=86400

• Vice versa, the client can request that the response

will not expire for a certain time (e.g. 1 hour):

Cache-Control: min-fresh=3600

• The Cache-Control instructions no-cache, no-store,

max-age=... can also be used by the client.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-119

Client Cache Instructions (2)

• The client can request that the origin server is as-

ked, and it does not get a cached copy:

Cache-Control: max-age=0

Or, in HTTP/1.0: Pragma: no-cache

In Netscape, this happens if one presses Shift while clicking on the
Reload button.

• The client can also state that it is interested only

in responses from the cache:

Cache-Control: only-if-cached

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-120

Validating Cache Entries (1)

• If the response has expired according to the date

specified with Expires or max-age, the cache does

not have to delete the response.

• However, in order to reuse the response, it must

check back with the origin server whether the re-

sponse is still valid.

• This is usually done by sending a conditional GET-

request to the server.

It would be possible to first send a HEAD request, and decide based on
the result whether the resource has changed. But in this case, two
requests are needed. This is avoided with a conditional request.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-121

Validating Cache Entries (2)

• E.g. if the response stored in the cache contains

the header

Last-Modified: Thu, 14 Dec 2000 13:20:00 GMT

the cache can include the following header in the

request:

If-Modified-Since: Thu, 14 Dec 2000 13:20:00 GMT

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-122

Validating Cache Entries (3)

• This makes the request conditional:

� If the files has not changed since the given date

and the status code would be 200 (Ok), the ser-

ver sends the status code 304 “Not Modified”,

but does not include the contents of the file.

The server may include headers, e.g. a new Expires header. The
cache must replace the corresponding headers in its copy by these
new headers.

� If the file has changed (or the status code would

not be 200 “Ok”), the server sends the complete

response.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-123

Validating Cache Entries (4)

• HTTP/1.1 has introduced “Entity Tag Validators”,

which replace the date of last modification.

If a resource can change more than once per second, Last-Modified

is not reliable. In addition, the date of last modification is not always
known. If there are several variants of a resource (content negotiati-
on), the date of last modification does not uniquely identify the entity
in the response.

• The server now sends in the header ETag an arbi-

trary string (enclosed in quotes):

ETag: "60304-46b-39168772"

• This tag identifies a unique version of the resource.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-124

Validating Cache Entries (5)

• If the resource changes, its ETag must change.

The data must be uniquely identified by URI and ETag. The same ETag

value may be used for files under different URIs. E.g. the date of last
modification can be used as ETag, if there are no variants.

• Again, there are conditional requests:

If-None-Match: "60304-46b-39168772"

If one would get this entity tag with the corresponding unconditional
GET-request, the server does not execute the request. Instead the ser-
ver returns 304 “Not Modified” if the method was GET or HEAD. Also
requests with other methods can be made conditional in this way,
then the server returns 412 “Precondition Failed” if the condition is
false (i.e. GET for the same URI would not return this tag).

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-125

Validating Cache Entries (6)

• Normal (“strong”) entity tags must change if any

bit of the resource changes.

• Weak entity tags (W/"...") only have to change if

the meaning of the entity changes.

E.g. the exact value of a counter for the number of access to a
web page might not be important, only the order of magnitude. So
the server could decide to use a weak entity tag for the image that
includes the counter value, and update the entity tag only every day
or every 500 accesses. In this way, the image can be delivered from
the proxy storage, and does not always have to be fetched from the
origin server. Of course, one would declare it as immediately expired,
so that the proxy must use a conditional request to the origin server
to validate its copy. The origin server can then count these requests.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-126

Further Conditional Requests

• Suppose the client got the first 1000 bytes of the

resource, but then the user pressed “Stop” or the

connection was terminated. Requesting the remai-

ning bytes is only useful if the resource has not

changed in the meantime:
Range: bytes 1000-

If-Range: "60304-46b-39168772"

If it has changed, it is completely retransmitted.

• If-Match/If-Unmodified-Since can e.g. be used for

PUT-requests, in order to avoid lost updates.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-127

Caching and Variants (1)

• If under one URI several variants are stored, the

response cannot always be used for future requests

for the same URI.

The server must tell the cache in some way that content negotiation
takes place or make the response immediately expired. Otherwise the
cache will deliver the response for requests for the same URI without
checking back with the client.

• For HTTP/1.0 clients, the Apache server sends

pragma: no-cache

if there are several variants for the requested URI.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-128

Caching and Variants (2)

• In HTTP/1.1, a new header “Vary” was introdu-

ced. The server can now specify which headers were

important for the selection of a resource variant:

Vary: Accept, Accept-Language

• Then the cache may use the response for future re-

quests in which the headers Accept, Accept-Language

have the same value as in the current request.

• “Vary: *” means that the cache must always ask

the origin server.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-129

Caching and Variants (3)

• If a variant selection is done, a cache might have

to store several responses for the same URI.

Since a new response for the same URI does now not always overwrite
the existing response, it becomes nontrivial when exactly a response
should be deleted from the cache: A cache should delete a response
from the cache if it gets a response for the same URI with the same
Content-Location, a different ETag, and a more recent Date. If the new
response has a different Content-Location, the old response does not
have to be deleted.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-130

Caching and Variants (4)

• Since the cache now might have several different

responses for the same URI, it can include all their

entity tags in a conditional request:

If-None-Match: "60304-46b-39168772",

"12345-67c-98765432"

• In the answer, the server includes the ETag of the

selected variant. The data is only sent if it has an

ETag value that is not included in the above list.

In this way, the content negotiation can still be done on the server,
but the data are delivered from the cache.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-131

Overview

1. Requests and Responses

2. Content Negotiation

3. Access Control/Password-Protected Pages

4. Caching (Proxies)

5. State Management (Cookies)

'

&

$

%

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-132

Stateless Protocol

• HTTP is a stateless protocol: Each request is trea-

ted in isolation. There are no “sessions” with “lo-

gin” and “logout”.

This reduces the server load: After it has answered a request, it can
completely forget about it. In contrast, sessions would need some
memory on the server for the entire duration of the session (which
can be long) in order to store state information.

• But this means that we get back to the times of

batch processing: The request must contain all ne-

cessary data, their are no “interactive programs”.

Except with Java/Javascript.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-133

Cookies (1)

• However, in many online shops, one can put items

into a “shopping cart”, and pay at the exit.

• Obviously, an entire series of requests is linked to-

gether on the server and treated like a session.

• This is normally done with “Cookies”, which are

pieces of data that

� the server sends to the client, and

� the client then basically includes with all future

requests to the same server.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-134

Cookies (2)

• A cookie can e.g. contain a user number or session

number.

• E.g. telnet www.altavista.com 80:

HTTP/1.0 200 OK

Date: Thu, 14 Dec 2000 16:12:20 GMT

Server: AV/1.0.1

MIME-Version: 1.0

Content-Length: 18713

Content-Type: text/html; CHARSET=ISO-8859-1

Set-Cookie: AV_USERKEY=AVSe36e6eef1b00004b0910ac0008d5f;

expires=Tuesday, 31-Dec-2013 12:00:00 GMT;

path=/; domain=.altavista.com;

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-135

Cookies (3)

• This means that the cookie should be sent to all

web servers in the domain .altavista.com when ac-

cessing arbirary pages (path=/).

• The browser then sends the data with the header

Cookie: AV_USERKEY=AVSe36e6eef1b00004b0910ac0008d5f;

• In this way the effort to keep state information is

moved from the server to the client.

But often the contents of a cookie is only a reference to state infor-
mation that is actually kept on the server.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-136

Cookies (4)

• Netscape stores cookies in ~/.netscape/cookies.

This file contains all information about cookies in clear text.

• Internet explorer stores them in C:\Windows\Cookies.

The files in these directory have lines that are terminated only with
a linefeed (as under UNIX). But one can look at them e.g. with
Wordpad or the MS-DOS edit. They contain the name of the cookie,
the contents of the cookie, the domain of the originating web server,
and some additional data (e.g. the expiration time). If several cookies
are stored in the same file, they are separated by a line containing
only an asterisk.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-137

Cookies (5)

• While the contents of a cookie often has a meaning

only to the server that processes it, somebody who

has access to these files can get a good impression

which web pages were visited.

Today, many servers send cookies, and the domain for which the
cookie is intended is contained in the above files.

• Some cookies contain passwords which are then

also contained in the cookie files of the browser.

So somebody who has access to your PC or can copy your cookie
files might be able to pretend that he/she is you for certain websites.
E.g. “one click” purchases depend on a cookie.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-138

Cookies (6)

• Cookies were invented by Netscape.

• A preliminary specification is contained in

[http://www.netscape.com/newsref/std/cookie_spec.html]

• A newer specification is contained in RFC 2965.

RFC 2964 treats privacy and security aspects.

• It is unclear why this name was chosen.

One reference says that “cookie” is a computer science term for an
opaque piece of data that a client (e.g. of a library) holds and adds
to future calls. I have also heard that an Apple operating system had
the notion of a cookie jar, originating from a real cookie jar that the
programmers kept on top of their computer containing little notes.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-139

Cookies (7)

• Browsers can be configured to ignore cookies.

Then they do not store them and do not include them in future
requests. E.g. under Netscape: Edit → Preferences → Advanced.
IE: Tools → Internet Options → Security → Custom Level.

• Some online shops do not work without cookies.

Often, unique numbers are also appended to URLs. However, this
works only as long as the user does not leave the pages of the shop
with the “back” button. Cookies are “more persistent”. Also the
server does not have to compute a different version of the web pages
for each user if it uses cookies (which also makes proxies useless).

• One can delete cookies from time to time.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-140

Privacy Problems (1)

• Cookies make it possible to identify a user even

when this is not really needed, e.g.

� An online bookstore sends a user number in a

cookie when a user first accesses the website.

� The browser sends this user ID back whenever it

accesses pages of the bookstore in future.

� When the user buys a book, the bookstore learns

name and address for the user ID.

� If the user later only looks at offers in the book-

store, he/she is already known by name.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-141

Privacy Problems (2)

• In this way, the bookstore may show each user a

different homepage which contains special offers for

books similar to books the customer has bought

earlier (“Personalization”).

• Search engines might use cookies to count the

number of distinct users they have.

As opposed to the total number of queries. This information is im-
portant for getting advertising customers. Also the search engine user
number can be linked to all search terms the user has looked at, which
can be used for putting advertisements on the web page that are in-
teresting to the user. The search engine normally will not know name
and address of the user, only a unique number (but see below).

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-142

Privacy Problems (3)

• A web advertizing agency can see in this way which

pages with advertisements the user has looked at.

This is helpful to show the user advertisements in which he/she is
interested.

• If an agency has advertisements on many web pa-

ges, it can build up a quite detailed profile of inte-

rests of the user.

• This might be acceptable as long as the advertising

agency does not know the name and the address

of the user (only a unique number).

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-143

Privacy Problems (4)

• If the pages of the bookstore contain advertise-

ments (maybe of the bookstore itself), the book-

store can pass its user ID to the advertizing agency.

• But if the corresponce between the user IDs of

the bookstore and the advertizing agency is known,

they can combine their data and know name and

address together with a large number of visited web

pages (that contain advertisements).

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-144

User Sessions (1)

• Although it is possible to implement something that

looks like a user session with cookies (or unique

numbers in URIs), one must be aware of certain

differences.

• The server only “hears something” from the brow-

ser when one sends a request.

It does not help to let a web page with a cheap flight offer in one’s
browser window open. If the server did not get a request from the
user for a certain amount of time (e.g. 20 min), it terminates the
“session”.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

4. The Hypertext Transfer Protocol 4-145

User Sessions (2)

• It is important that session numbers are not as-

signed sequentially or in another way easily pre-

dictable. Then a hacker could easily take over the

“session” of a customer.

The hacker can send arbitrary values for cookies. E.g. he/she can
open a session himself/herself, and then increment his/her session
number by one.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2003

