
Range Restriction for General Formulas

Stefan Brass

Martin-Luther-Universität Halle-Wittenberg, Institut für Informatik,
Von-Seckendorff-Platz 1, D-06099 Halle (Saale), Germany

brass@informatik.uni-halle.de

Abstract. Deductive databases need general formulas in rule bodies,
not only conjuctions of literals. This is well known since the work of Lloyd
and Topor about extended logic programming. Of course, formulas must
be restricted in such a way that they can be effectively evaluated in finite
time, and produce only a finite number of new tuples (in each iteration
of the TP -operator: the fixpoint can still be infinite). It is also necessary
to respect binding restrictions of built-in predicates: many of these predi-
cates can be executed only when certain arguments are ground. Whereas
for standard logic programming rules, questions of safety, allowedness,
and range-restriction are relatively easy and well understood, the situa-
tion for general formulas is a bit more complicated. We give a syntactic
analysis of formulas that guarantees the necessary properties.

1 Introduction

Deductive databases have not yet been very successful in practice (at least in
terms of market share), although their basic idea is practically very important:
Deductive databases aim at an integrated system of database and programming
language that is based on the declarative paradigm which was so successful in
database languages. Currently, database programming is typically done in lan-
guages like PHP or Java. The programs construct SQL statements, send them to
the database server, fetch the results, and process them. The interface is not very
smooth, and although the situation can be improved with specific database lan-
guages like PL/SQL and server-side procedures / user-defined functions within
the DBMS, the language paradigms remain different. Object-oriented databases
were one approach to develop an integrated system based on a single paradigm,
but there the declarativity of the database query part was sacrificed, and they
did not get a significant market share, too. Nevertheless, there is an obvious de-
mand for integrated database/programming systems, and this demand has even
grown because of object-relational features that need programming inside the
database server, and because of web and XML applications.

As far as we know, the deductive database prototypes developed so far sup-
port only a Datalog variant, and do not support SQL. But SQL is a database
standard, and many practical programmers are trained in the SQL language. It
would certainly be helpful for the migration of people and projects to deductive
technology, if a deductive system can first be used like a standard SQL DBMS,

2 Stefan Brass

and only when one wants to use advanced features like recursive views, powerful
constraints, or stored procedures, one has to learn some form of Datalog.

However, supporting SQL in a deductive DBMS is not simply a matter of
hiring a good programmer — it still needs research. A requirement is of course
that everything that can be done in SQL can also be done in the deductive
language (so that e.g., SQL queries can be translated internally to the deductive
language, and then executed). But standard Datalog lacks some SQL features
that are important in practice.

One obvious difference between SQL and Datalog is that SQL permits general
formulas. Already Lloyd and Topor recommended that general formulas should
be allowed in rule bodies [LT84,LT85,Llo87], and developed a transformation
from these extended logic programming rules to standard rules (see also [LC05]).
Although this transformation is an important yardstick to which newer solutions
must be compared, it does not lead to a very efficient query evaluation. In case
of disjunctive conditions, rules are split, which might lead in the worst case to
exponentially many rules, and even in normal cases computation is duplicated.
Therefore, it is worth to consider direct support for general formulas in rules.
If a deductive database system should be successful, it must have performance
for SQL queries that is more or less comparable to standard DBMS. Splitting
complex conditions into many rules is not advantageous for that purpose.

In another paper we investigated how duplicates as in SQL can be supported
in extended Datalog rules [Bra09]. There the duplicates that Prolog would gen-
erate after the Lloyd/Topor transformation from a rule did not agree with the
duplicates from a very similar SQL query. This, too, shows that the Lloyd/Topor
transfomation does not solve all problems with regard to general formulas in rule
bodies.

In this paper we investigate a basic problem that every concrete deductive
database system must solve: At least each iteration of the TP -operator used
in bottom-up evaluation must be effectively computable. It might be that the
iteration does not terminate, but this is a quite different problem.

Furthermore, a concrete system has a lot of built-in predicates, for instance <
is essential for many database queries. In standard database systems (not apply-
ing a constraint solver), we must ensure that in a call to < both arguments are
ground. Since derived predicates can be called with different binding patterns,
the system must be able to automatically find a possible evaluation sequence.
This is not difficult for standard rules, where only the body literals must be
reordered, but it is technically a bit more complicated for general rules.

2 Standard Rules

Let us first quickly repeat the usual solution to range-restriction in the case of
standard rules with conjunctions of literals (positive and negative) in the body.
The predicates are classified into

Range Restriction for General Formulas 3

– EDB-predicates (“extensional database”), the given database relations: Of
course, these predicates have finite extensions, i.e. they are a finite set of
tuples.

– IDB-predicates (“intensional database”), the predicates defined by rules:
Only these predicates can appear in the rule heads. They have finite exten-
sions in each step of the fixpoint iteration with the TP -operator (computing
immediate consequences of rules). If the iteration does not terminate, the
extension might be infinite in the minimal model, but that is a different
problem (not subject of this paper).

– Built-in predicates like “<”, which are defined by program code inside the
DBMS. These predicates can have infinite extensions, i.e. they might be true
for an infinite number of argument values.

In bottom-up evaluation, which is the basis of deductive databases, all rules must
be range-restricted. In the most basic case, this means that every variable that is
used in a rule must appear at least once in a positive body literal with an EDB or
IDB predicate (not a built-in predicate with an infinite extension). In this way,
every variable is first bound to a finite set of possible values, and then negative
body literals and literals with built-in predicates like “<” can be evaluated. This
also ensures that every single rule application produces only finitely many result
tuples, containing only values that appeared in the finite database relations.

However, these restrictions are very severe. For instance, they do not permit
to give names to arbitrary subformulas, e.g. the following would not be range-
restricted:

lt(X, Y) :- X < Y.

Note that such a view also cannot be defined in SQL databases. However, deduc-
tive databases must offer features that go beyond SQL, and since derived pred-
icates are such an important construct in deductive databases, a much stronger
support can be expected.

The next step in the development was to adapt the definition of range-
restriction to the magic-set transformation. There, predicates are assigned bind-
ing patterns, which define which arguments are bound (given inputs), and which
are free (searched outputs) when a predicate is called. For instance, the above
rule would be legal when lt has only the binding pattern bb (both arguments
are bound).

Definition 1 (Binding Pattern). A binding pattern β for a predicate of ar-
ity n is a string over the alphabet {b, f} of length n.

A predicate with more interesting binding patterns is sum, where sum(X,Y,Z)
means X+Y=Z. This predicate supports binding patterns bbf, bfb, fbb and bbb.
I.e. given two arguments, the third can be computed.

In the following, we assume that terms are constants or variables. To some
degree, function symbols (term constructors) can be replaced by built-in predi-
cates. Consider for example the standard list append predicate:

4 Stefan Brass

append([], L, L).
append([F|R], L, [F|RL]) :- append(R, L, RL).

By introducing a new variable for each composed term, and using a predicate
cons(X,Y,Z) ≡ Z=[X|Y], one gets the following definition of append without
structured terms:

append([], L, L).
append(X, L, Y) :- cons(F,R,X), append(R,L,RL), cons(F,RL,Y).

The predicate cons supports the binding patterns bbf (list construction), and
ffb (splitting a list). Of course, structured terms are a useful and compact no-
tational convenience on the user level. However, internally, there terms can be
flattened as shown in the example. The advantage is that terms with evaluable
functions like + and terms with record constructors like [_|_] can be handled
in the same framework. For deductive databases this is important since SQL
programmers are used to terms with the standard arithmetic operators. The
disadvantage of this solution is that data structures with variables in them can-
not be handled conveniently. While there are nice applications of such terms
in logic programming, they are very uncommon in database applications (and
anyway cannot be stored in classical databases).

Definition 2 (Binding Pattern Specification, Valid Binding Patterns).
A binding pattern specification is a mapping bp which defines for each predicate p,
a set of binding patterns bp(p) 6= ∅, called the valid binding patterns for this
predicate. If A is an atomic formula with predicate p, we permit to write bp(A)
for bp(p).

Definition 3 (Allowed Interpretation). Given a binding pattern specifica-
tion bp, an interpretation I is called allowed if it satisfies the binding pattern
restrictions of bp in the following sense:

– Let n be the arity of p and 1 ≤ i1 < · · · < ik ≤ n be the index positions with
β(ij) = b.

– Then for all values c1, . . . , ck from the domain of I, the following set is finite:

{(d1, . . . , dn) ∈ I[[p]] | di1 = c1, . . . , dik = ck}

– Furthermore, it is possible to effectively compute this set for given c1, . . . , ck.

For built-in predicates, the valid binding patterns correspond to the implemented
variants of a predicate, e.g. bp(sum) = {bbf, bfb, fbb}. It is possible, but not
necessary to add bbb. E.g. if one has an implementation for bbf, one can execute
sum(1,2,3) like sum(1,2,X) ∧ X=3. Thus, a binding pattern β is more general
than a binding pattern β′ iff they have the same length n, and βi = b implies
β′i = b for i = 1, . . . , n.

For standard EDB predicates, it suffices to have one binding pattern ff . . . f.
This corresponds to the “full table scan”. If there are indexes, other binding
patterns might become interesting.

Range Restriction for General Formulas 5

For user-defined predicates, mode declarations or a program analysis defines
the valid binding patterns.

Now let vars(t) be the set of variables that appears in term t. Since terms are
only constants or variables, the set is a singleton or empty. For a formula ϕ, we
write vars(ϕ) for the free variables in that formula.

The following notion of “input variables” for a literal is helpful to define
range-restriction:

Definition 4 (Input Variables). Given an atomic formula A = p(t1, . . . , tn)
and a binding pattern β = β1 . . . βn for p, the set of input variables of A with
respect to β is

input(A, β) :=
⋃
{vars(ti) | 1 ≤ i ≤ n, βi = b}

(i.e. all variables that appear in bound arguments).

Input variables in body literals must be bound before the literal can be called.
Input variables in head literals are bound when the rule is executed. Now range
striction for standard rules can be defined as follows:

Definition 5 (Range-Restricted Standard Rule). A rule

A← B1 ∧ · · · ∧ Bn ∧ ¬Bn+1 ∧ · · · ∧ ¬Bm

is range-restricted given a binding pattern β for the head literal, iff there is a
permutation π of {1, . . . ,m} such that

– for every i ∈ {1, . . . ,m} with π(i) ≤ n there is βi ∈ bp(Bπ(i)) such that

input(Bπ(i), βi) ⊆ input(A, β) ∪ vars(Bπ(1) ∧ · · · ∧ Bπ(i−1)),

– for every i ∈ {1, . . . ,m} with π(i) > n it holds that

vars(Bπ(i)) ⊆ input(A, β) ∪ vars(Bπ(1) ∧ · · · ∧ Bπ(i−1)),

– and furthermore it holds that

vars(A) ⊆ vars(B1 ∧ · · · ∧ Bn ∧ ¬Bn+1 ∧ · · · ∧ ¬Bm) ∪ input(A, β).

The permutation π determines a possible evaluation sequence for the body
literals. Note that different binding patterns for the head literal might need
different evaluation sequences of the body literals. E.g., when append is called
with binding pattern bbf, the given order of body literals works fine:

append(X, L, Y) :- cons(F,R,X), append(R,L,RL), cons(F,RL,Y).

If, however, append is called with binding pattern ffb, the following evaluation
sequence is needed:

append(X, L, Y) :- cons(F,RL,Y), append(R,L,RL), cons(F,R,X).

In deductive databases, possible queries cannot be anticipated, therefore there
is a strong need to support different binding patterns for derived predicates.

Interestingly, when the magic set transformation is applied to the rules, the
result is a program in which each rule is range-restricted for the binding pat-
tern ff . . . f, thus bottom-up evaluation can be easily applied afterwards.

6 Stefan Brass

3 Extended Rules

In extended logic programming, the rule bodies can be arbitrary first order
formulas. Since a formula is a complex tree structure, we can no longer use a
simple permutation in order to define an evaluation sequence. Consider

p(X,Y) ∧ (q(Y,Z) ∧ r(X))

and suppose that the following binding restrictions are given: p: bf, q: bf, r: f.
Then the only possible evaluation sequence is r, p, q. Of course, one could re-
quire that the user writes the formula in a way that left-to-right evaluation
is possible. That would simplify the definition a bit, but it would contradict
the declarative paradigm. Furthermore, it would not be practical if the derived
predicate supports several binding patterns.

The first task is now to generalize the notion of binding patterns from pred-
icates to formulas:

Definition 6 (Generalized Binding Pattern). A generalized binding pattern
for a formula ϕ is a pair of sets of variables, written X1, . . . ,Xn −→ Y1, . . . ,Ym,
such that {X1, . . . ,Xn,Y1, . . . ,Ym} ⊆ vars(ϕ).

This should mean that given values for X1, . . . ,Xn, we can compute a finite set
of candidate values for Y1, . . . ,Ym. The final decision, whether the formula is
true or false in a given interpretation can usually be done only when we have
values for all free variables in the formula.

Generalized binding patterns are related to finiteness dependencies [RBS87].
Finiteness dependencies have first been studied for infinite relations (with at-
tributes instead of variables). The definition of when a finiteness dependency
is satisfied for a given relation in [RBS87] is a bit unclear: “If r(X1, . . . ,Xn) is
finite, then r(Y1, . . . ,Ym) is finite.” Finiteness dependencies have been used for
general formulas in [EHJ93], but there the definition of satisfaction is based on
the number of function applications that lead from X-values to Y-values.

Our own definition of the meaning of X1, . . . ,Xn −→ Y1, . . . ,Ym adds to the
basic finiteness requirement an important computability property (and links it
to the given binding patterns for the predicates). In order not to overload the
semantics of “finiteness dependency” further, we used a different name.

Definition 7 (Valid Generalized Binding Pattern). A generalized binding
pattern X1, . . . ,Xn −→ Y1, . . . ,Ym for a formula ϕ is valid iff for every allowed
interpretation I and all values d1, . . . , dn from the domain of I

– the set

{(A(Y1), . . . ,A(Ym)) | (I,A) |= ϕ, A(X1) = d1, . . . ,A(Xn) = dn}

is finite (i.e. there are only finitely many possible assignments to the Yi that
make the formula true, given values for the Xi), and

– a finite superset of this set is effectively computable.

Range Restriction for General Formulas 7

Consider again the case p(X,Y)∧ (q(Y,Z)∧ r(X)). The binding restrictions of the
subformula q(Y,Z)∧r(X) can be described with the generalized binding patterns:

– ∅ −→ X (because r supports binding pattern f)
– Y −→ Z (because q supports binding pattern bf)

When we have computed a set D = {d1, . . . , dn} of values for X according to the
first binding pattern, we cannot say yet whether the entire formula will be true
or false. But what has to be guaranteed is that the formula will be certainly false
if X has a value outside the set D, no matter what values the other variables will
have. The second binding pattern Y −→ Z means that when we already have
a single value (or finite set of values) for Y, then there are only finitely many
variable assignments for Z such that the formula is true, and Y has the given
value (or one from the finite set).

Since negation can be used everywhere inside a formula, not only before
atomic formulas, we also need to clarify the meaning of a generalized binding
pattern in negated context: In this case we are interested to get finitely many
values such that the formula is false. Again, computing a superset is possible.
It must only be guaranteed that the formula is true for every value outside the
computed set.

Given a set of generalized binding patters, the following closure operation
computes immediate consequences. This closure is for instance used after the
union of sets of binding patters done for a conjunction. Consider again the for-
mula p(X,Y)∧ (q(Y,Z)∧ r(X)). The left subformula p(X,Y) gives the generalized
binding pattern X −→ Y corresponding to the binding pattern bf for p (actually,
it also gives many more implied generalized binding patterns, see below). The
right subformula discussed above yields (among others) ∅ −→ X and Y −→ Z.
Given these three generalized binding patterns, we can compose them to get
∅ −→ X,Y,Z which means that the complete formula is evaluable with a finite
result. This composition is done by the closure operator defined in a minute. An
additional purpose of the closure operator is to add trivially implied generalized
binding patterns. E.g., when we have X −→ Y, this implies X −→ X,Y and
X,Y −→ X and X,Z −→ Y,Z. Such implied generalized binding patterns are
important e.g. for intersections done for disjunctive conditions.

Definition 8 (Closure of Sets of Generalized Binding Patterns). Let B
be a set of generalized binding patterns for a formula ϕ. Then

clϕ(B) := {X −→ Y | X ⊆ vars(ϕ),Y ⊆ vars(ϕ),
there are n ∈ lN0, X1 −→ Y1 , . . . , Xn −→ Yn ∈ B
such that for i = 1, . . . , n:

Xi ⊆ X ∪
⋃i−1
j=1 Yj ,

Y ⊆ X ∪
⋃n
j=1 Yj}

Theorem 1. If every generalized binding pattern in B is valid, then also every
binding pattern in clϕ(B) is valid.

8 Stefan Brass

It is known that the Armstrong axioms for functional dependencies are sound
and complete also for finiteness dependencies [RBS87]. Since generalized binding
patterns have a somewhat different semantics, this result does not automatically
carry over, but at least the soundness is obvious:

– If X ⊂ Y, then X −→ Y is valid (Reflexivity).
– If X −→ Y is valid, then X ∪ Z −→ Y ∪ Z is valid (Augmentation).
– If X −→ Y and Y −→ Z are valid, then X −→ Z is valid.

Definition 9 (Computation of Generalized Binding Patterns).
We need the following auxillary operation:

intersectϕ(B1,B2) := {X −→ Y | X ∈ vars(ϕ), Y ∈ vars(ϕ),
there are X1 −→ Y1 ∈ B1, X2 −→ Y2 ∈ B2

with X1 ∪ X2 ⊆ X , and Y ⊆ Y1 ∩ Y2}

The functions gbp+ and gbp− define sets of generalized binding patterns for
arbitrary formulas (in positive/negated context):

– If ϕ is an atomic formula p(t1, . . . , tn) (where p is not =):

gbp+(ϕ) := clϕ
(
{X −→ vars(ϕ) | there is β ∈ bp(p) with X =

⋃
β(i)=b ti}

)
gbp−(ϕ) := clϕ({vars(ϕ) −→ vars(ϕ)})

– If ϕ is an atomic formula t1 = t2:

gbp+(ϕ) := clϕ
(
{X −→ vars(ϕ) | X = vars(t1) or X = vars(t2)}

)
gbp−(ϕ) := clϕ({vars(ϕ) −→ vars(ϕ)})

– If ϕ is a negated formula ¬ϕ0:

gbp+(ϕ) := gbp−(ϕ0)
gbp−(ϕ) := gbp+(ϕ0)

– If ϕ is a conjunction ϕ1 ∧ ϕ2:

gbp+(ϕ) := clϕ
(
gbp+(ϕ1) ∪ gbp+(ϕ2)

)
gbp−(ϕ) := clϕ

(
intersect(gbp−(ϕ1), gbp−(ϕ2))

)
– If ϕ is a disjunction ϕ1 ∨ ϕ2:

gbp+(ϕ) := clϕ
(
intersect(gbp+(ϕ1), gbp+(ϕ2))

)
gbp−(ϕ) := clϕ

(
gbp−(ϕ1) ∪ gbp−(ϕ2)

)
– If ϕ has the form ∃X:ϕ0 or ∀X:ϕ0:

gbp+(ϕ) := clϕ({X −→ (Y − {X}) | X −→ Y ∈ gbp+(ϕ0), X 6∈ X})
gbp−(ϕ) := clϕ({X −→ (Y − {X}) | X −→ Y ∈ gbp−(ϕ0), X 6∈ X})

Range Restriction for General Formulas 9

Theorem 2.

– Every X1, . . . ,Xn −→ Y1, . . . ,Ym ∈ gbp+(ϕ) is valid.
– In the same way, for X1, . . . ,Xn −→ Y1, . . . ,Ym ∈ gbp−(ϕ) there are

only finitely many assignments for the Yi that make the formula false (given
values for the Xi), and finite supersets of these sets are effectively computable.

Up to now, we have computed only an upper bound for the values that make a
formula true. As explained above for the example p(X,Y)∧ (q(Y,Z)∧ r(X)), the
reason was that when we consider subformulas, we might not know values for
all variables yet that appear in the subformula. Of course, in the end, we want
to know the exact set of variable assignments that make the formula true.

This is possible when we have computed candidate assignments for all vari-
ables that occur in the formula. Then we can recursively step down the formula
and check for every given variable assignment whether the corresponding sub-
formula is true or false. For the atomic formulas this is obvious (our definition of
allowed interpretation implies that we can test whether a given tuple of values
is contained in the extension of a predicate). For ∧, ∨, ¬ it is also clear how the
truth values computed for the subformulas can be combined. The interesting
case are the quantifiers. Let us consider the example

p(X,Y) ∧ ∃Z: (q(Y,Z) ∧ r(X)).

Suppose that the valid binding patterns for the predicates are p: bf, q: bf, r: f.
Consider the subformula ∃Z: (q(Y,Z)∧ r(X)). In the first phase, we can compute
a set of possible values for X, i.e. we get the generalized binding pattern ∅ −→ X.
But we have no chance to check whether the existential condition is indeed true
without having a value for Y (which can only be computed after we have a value
for X). But from the finite set of candidate values for X we can compute a finite
number of assignments for (X,Y) which must be checked.

In the second phase, we can assume that we have values for all free variables
in a subformula. In the example, we must check whether ∃Z: (q(Y,Z) ∧ r(X)) is
indeed true, given values for X and Y. This is possible if there are only a finite
number of candidate values for the quantified variable Z which must be tried. So
we need that the generalized binding pattern X,Y −→ Z holds for the quantified
subformula q(Y,Z)∧r(X). This is indeed the case because q supports the binding
pattern bf.

Note how different the situation would be if q permitted only the binding
pattern bb. We could still compute a finite set of candidate assignments for X
and Y, i.e. be sure that the formula p(X,Y)∧∃Z: (q(Y,Z)∧ r(X)) is false outside
this set. But we had no possibility to check whether the existential condition is
indeed satisfied without “guessing” values for the quantified variable Z.

For universally quantified variables, we need that the quantified formula can
be false only for a finite set of values, so that it suffices to explicitly check this
set. E.g. consider

r(X) ∧ ∀Y: p(X,Y)→ r(Y).

10 Stefan Brass

(again with the binding patterns p: bf and r: f). For the universal quantifier to
be evaluable, the condition is X −→ Y ∈ gbp−(p(X,Y)→ r(Y)).

Definition 10 (Range-Restriction). A rule A ← ϕ is range-restricted for a
binding pattern β for A iff

1. X −→ Y ∈ gbp+(ϕ) where
– X := input(A, β) (variables occurring in bound arguments in the head)
– Y := vars(p(t1, . . . , tn) ← ϕ) (all variables in the rule except quantified

ones).
2. for every subformula ∃Z:ϕ0 in positive (unnegated) context, or subformula
∀Z:ϕ0 in negated context:

(vars(ϕ0)− {Z}) −→ Z ∈ gbp+(ϕ0),

3. for every subformula ∀Z:ϕ0 in positive context, or subformula ∃Z:ϕ0 in
negated context:

(vars(ϕ0)− {Z}) −→ Z ∈ gbp−(ϕ0).

Theorem 3. The immediate consequences of a range-restricted rule (according
to the TP -operator) can be effectively computed, given values for the input argu-
ments of the head literal.

As mentioned above, the magic set transformation turns a rule that is range-
restricted for a binding pattern β into a rule that is range-restricted for the
binding pattern ff . . . f (by adding a condition to the body that binds the input
arguments). Then the immediate consequences of the rule can be computed
without further restrictions on input arguments.

4 A Possible Extension

It is also possible to define a slightly more liberal version of range-restriction that
requires only that variables are bound in the subformula in which they are used.
E.g., p(X) ← q(X) ∨ r(X,Y) would not be range-restricted according to Defini-
tion 10. That is no real problem, since one can write p(X)← q(X)∨∃Y: r(X,Y),
or alternatively, p(X) ← (q(X) ∧ Y = nil) ∨ r(X,Y). Nevertheless, it would also
be possible (and an improvement for the user) to accept the original version of
the rule.

The important insight here is that for an existentially quantified variable
(including variables that are free in the rule, but appear only in the body) it is
not necessary, that the quantified formula is true only for a finite set of values. It
is only required that we have to check only a finite set of values. In the example,
q(X)∨ r(X,Y) might be true for an infinite set of Y-values (when q(X) is already
true). However, values outside the extension of r will all behave in the same way,
therefore it suffices to check a single such value.

In [Bra92] (page 21), we have solved the problem by computing bottom-up
not only sets of bound variables (in positive/negated context), but also unbound

Range Restriction for General Formulas 11

variables (in positive/negated context). In the critical condition q(X) ∨ r(X,Y)
the variable Y is neither bound nor unbound (while X is bound). A generalization
of this idea to the case with built-in predicates is subject of our further work.

Another idea is to have a weaker version of generalized binding patterns,
where X −→ Y means that given values for the X , it suffices to check a finite
set of values for the Y: If the formula is not true for any of these values, there
cannot be any assignment that makes it true (with the given values for the X).

5 Related Work

Of course, questions of domain independence and safety (finite answers) have
been studied for quite a long time, [Dem92] gives a good overview over earlier
work. [Dem92] generalizes this to arbitrary formulas, but does not consider built-
in predicates.

[RBS87] have finiteness dependencies, which are similar to our generalized
binding patterns, but consider only standard rules. As explained above, the main
difference between finiteness dependencies and generalized binding patterns is
our additional computability requirement.

[EHJ93] have finiteness dependencies and arbitrary formulae, but their se-
mantics of finiteness dependencies is again different: Their goal is to prove do-
main independence of a formula and a finiteness dependency X −→ Y means
that values for the Y can be only a bounded number of function applications
farther away from the active domain than values for the X . So they consider
computable functions, but the built-in predicates discussed here are more gen-
eral because they can support several binding patterns. The paper also aims at
computing the result of a formula, but the method is very different than ours.
They investigate the translation of formulas into relational algebra. The last
step is explained only by an example, and it seems that sometimes it might be
necessary to enumerate the entire active domain.

[Mah97] studies finiteness constraints, which have the form ϕ ⇒ X →fin Y
and mean that for each fixed assignment for the variables in X , there are only
finitely many values of the variables in Y in the tuples of p satisfying ϕ with the
given values of the variables in X . The paper mainly investigates the implication
problem for these dependencies and for constrained functional dependencies. One
might think that when p simply contains the free variables of ϕ as attributes,
then ϕ⇒ X →fin Y basically means the same as X −→ Y ∈ gbp+(ϕ). However,
the purpose is very different. For instance, in Maher’s approach, ϕ is restricted
by a constraint domain, with a typical case being linear arithmetic constraints
over integers. In our approach, ϕ is a more or less arbitrary first order formula.
It is also not clear how knowledge about binding patters for used predicates
can be specified in Maher’s approach: He considers only a single relation besides
the very special predicates in the condition ϕ. This is no fault of the approach,
the goals are simply different. Furthermore, we do not use a constraint solver
as Maher, but do a simple syntactic bottom-up computation. Of course, this
also gives different results. For instance, from 5 ≤ X ∧ X ≤ 5, Maher would

12 Stefan Brass

conclude that X has only a single possible value. In our approach, this formula
is evaluable only for a given value of X, since otherwise the binding restrictions
for the built-in predicate ≤ are not satisfied.

6 Conclusions

I am convinced that deductive databases can still become a serious competitor to
standard relational and object-relational databases for many practical projects.
Declarative programming has many advantages, and for single queries this is
already standard in the database field (SQL is a declarative language). Deductive
databases would lift the declarativity to the level of programs, but this is not
as easy as it was expected in the times when deductive databases were a hype
topic. More research is still needed.

In this paper, we attacked a very basic problem: Which formulas should be
allowed in rule bodies? Of course, we need that they have finite solutions, and
that the solutions are effectively computable. In a realistic setting, a deductive
database will have many built-in predicates with different binding restrictions.
The necessary definition is technically not very easy, but still natural and un-
derstandable.

Questions of domain independence and safety for general formulas have been
investigated before, and finiteness dependencies studied in the literature be-
have quite similar to our generalized binding patterns. However, the coupling of
finiteness conditions with the computability of an upper bound, and the two-step
approach to the evaluation of a formula are unique features of the current paper.

Our long-term goal is to develop a deductive database system that supports
stepwise migration from classical SQL.

References

[Bra92] S. Brass: Defaults in Deductive Databases (in German). Doctoral Thesis,
University of Hannover, 1992.

[Bra09] S. Brass: A Logic with Duplicates for an SQL-compatible Deductive
Database. Submitted for publication.

[Dem92] R. Demolombe: Syntactical characterization of a subset of domain-
independent formulas. Journal of the ACM (JACM) 39:1, 71–94, 1992.

[EHJ93] M. Escobar-Molano, R. Hull, D. Jacobs: Safety and translation of
calculus queries with scalar functions. In Proc. of the twelfth ACM
SIGACT-SIGMOD-SIGART symposium on Principles of database systems
(PODS’93), 253–264, ACM, 1993.

[LC05] M. Leuschel, S. Craig: A reconstruction of the Lloyd-Topor transformation
using partial evaluation. In P. Hill (ed.), Pre-Proceedings of LOPSTR’05,
Imperial College, London, UK, 2005.
http://eprints.ecs.soton.ac.uk/11198/.

[Llo87] J. W. Lloyd: Foundations of Logic Programming, 2nd edition. Springer-
Verlag, Berlin, 1987.

Range Restriction for General Formulas 13

[LT84] J. W. Lloyd, R. W. Topor: Making Prolog more expressive. The Journal
of Logic Programming 1 (1984), 225–240.

[LT85] J. W. Lloyd, R. W. Topor: A basis for deductive database systems. The
Journal of Logic Programming 2 (1985), 93–109.

[LTT99] V. Lifschitz, L. R. Tang, H. Turner: Nested expressions in logic programs.
Annals of Mathematics and Artificial Intelligence 25:3–4 (1999), 369–389.
http://citeseer.ist.psu.edu/lifschitz99nested.html.

[Mah97] M. J. Maher: Constrained Dependencies. Theoretical Computer Science
173 (1997), 113–149.
http://www.cse.unsw.edu.au/~mmaher/pubs/cdb/condep.ps.

[RBS87] R. Ramakrishnan, F. Bancilhon, A. Silberschatz: Safety of recursive
Horn clauses with infinite relations. In Proceedings of the sixth ACM
SIGACT-SIGMOD-SIGART symposium on Principles of database systems
(PODS’87), 328–339, ACM, 1987.

