
Introduction The Push Method Abstract Machine Benchmark Results Conclusions Appendix: Output

An Abstract Machine for
Push Bottom-Up Evaluation

[with Declarative Output]

Stefan Brass

University of Halle, Germany

Declare 2017 (INAP: Int. Conf. on Applications of Declarative
Programming and Knowledge Management)

Stefan Brass: An Abstract Machine for Push Bottom-Up Evaluation 1/28

Introduction The Push Method Abstract Machine Benchmark Results Conclusions Appendix: Output

Contents

1 Introduction

2 The Push Method

3 Abstract Machine

4 Benchmark Results

5 Conclusions

6 Appendix: Output

Stefan Brass: An Abstract Machine for Push Bottom-Up Evaluation 2/28

Introduction The Push Method Abstract Machine Benchmark Results Conclusions Appendix: Output

Datalog: Motivation
Datalog ist a very pure and simple version of the logic
programming language Prolog.

But programming in Datalog feels different: The rules are applied “bottom-up”
to derive new facts from already known facts, whereas Prolog unfolds predicate
calls. Rule and body literal order are irrelevant. Termination is guaranteed.

Datalog ist more than SQL plus recursive views:
It permits declarative programming.

Of course, Datalog can be used for database queries. But it can also be used
for other computations on large data sets, e.g. static analysis of programs.

Declarative languages are good because they are
compact + simple (faster to program, even for non-experts),
logic-based (easier to verify),
not tied to a specific execution model (e.g., cloud computing).

Stefan Brass: An Abstract Machine for Push Bottom-Up Evaluation 3/28

Introduction The Push Method Abstract Machine Benchmark Results Conclusions Appendix: Output

The Push Method (1)
We (Heike Stephan and I) have developed a method
for bottom-up evaluation of Datalog (“Push Method”).

Actually, we just reinvented it: If formulated with procedures, it is very
similar to a method proposed by Heribert Schütz in his PhD-thesis (1993).
The original version of our method looked very different, it used C++ only
as a portable assembler and did a lot of partial evaluation (which the
procedure version does not have, but the C++ compiler does some
optimizations which might give something similar). There are differences in
the details, and we did very encouraging performance tests with benchmarks
from the OpenRuleBench collection (which was missing in the earlier work).

The idea is to immediately use a derived fact and “push”
it to rules where it matches a body literal.

Similar to seminaive evaluation with a delta consisting of one fact only.

Backtracking is done if there are several usages of a fact.
Stefan Brass: An Abstract Machine for Push Bottom-Up Evaluation 4/28

Introduction The Push Method Abstract Machine Benchmark Results Conclusions Appendix: Output

The Push Method (2)
The Push method reduces copying of data values and
materialization of tuples.

Materialization of tuples is needed for duplicate checks and for rules
containing more than one body literal with a derived predicate.
However, our SLDMagic transformation produces mostly “linear rules”.

Example:
p(X, Z) :- q(X, Y), r(Y, Z).

Suppose we derived a new fact q(a, b).
r is a database predicate with many facts r(b, Z).

There is no need to copy the value of X for each value of Z!

Keeping the set of actively used values small makes better
use of registers and caches. Memory is recycled earlier.

Push methods have become attractive also for classical relational DBMS.
Stefan Brass: An Abstract Machine for Push Bottom-Up Evaluation 5/28

Introduction The Push Method Abstract Machine Benchmark Results Conclusions Appendix: Output

Our Deductive Database Project
The method (before the abstract machine) translates Datalog
rules to C++, compiles the result, and links it with a library
for main-memory relations and an efficient data loader.

The first prototype produces only the main code part. Some manual work
is needed to embed it into a class frame. This is sufficient for benchmark
tests, but not for real applications. Also the library still has some restrictions.
The main program (using the computed facts) must be written by the user.

The resulting binary program can be executed many times
for different input data (database states).

A new version Datalog-to-C++ compiler is being developed
produces procedures (instead of the low-level switch).

A substantial part of it is written in Datalog.
It also uses “templates” for declarative output.

Stefan Brass: An Abstract Machine for Push Bottom-Up Evaluation 6/28

Introduction The Push Method Abstract Machine Benchmark Results Conclusions Appendix: Output

Advantages of Abstract Machine
Most Prolog-Systems started with an abstract machine,
some later added compilation to native machine code.

Typical speedup: Factor 3 (a paper by Costa reported between 1.3 and 5.6).

Why bother with abstract machine if we have native code?
Better comparison of benchmark results.
User does not need to install C++ compiler.
Reduction of compilation time.

Especially useful for development and debugging.

Better control over optimizations (partial evaluation again!).
Maybe first step to direct native code generation via LLVM library.

User must trust only the emulator, not the program.

Easier distribution of programs for multiple platforms.
Stefan Brass: An Abstract Machine for Push Bottom-Up Evaluation 7/28

Introduction The Push Method Abstract Machine Benchmark Results Conclusions Appendix: Output

Contents

1 Introduction

2 The Push Method

3 Abstract Machine

4 Benchmark Results

5 Conclusions

6 Appendix: Output

Stefan Brass: An Abstract Machine for Push Bottom-Up Evaluation 8/28

Introduction The Push Method Abstract Machine Benchmark Results Conclusions Appendix: Output

Example: Input Program

Transitive closure of a given binary relation “edge”:

db edge(int, int). % Declaration of DB predicate
path(X, Y) :- edge(X, Y).
path(X, Z) :- edge(X, Y) ∧ path(Y, Z).

In addition, one must specify the “query predicates”,
for which the derivable facts are stored.

In this case, it is path. Previously, we used a fixed predicate called “answer”.
With output templates, all predicates used there become query predicates.

We developed a fast data loader for facts. It will read the
input file with a large number of edge-facts.

Such as “edge(1, 2).” In future, we will develop also a data loader for
CSV-data, and possibly loaders for other formats (JSON, RDF: Turtle).

Stefan Brass: An Abstract Machine for Push Bottom-Up Evaluation 9/28

Introduction The Push Method Abstract Machine Benchmark Results Conclusions Appendix: Output

Example: Data Structures
Main memory relations are used for storing sets of tuples
with different access patterns:

ID Relation Comment
0 edge_ff Use of edge in first rule (list)
1 edge_fb Use of edge in second rule (multimap)
2 path_bb For duplicate check (set)
3 path_ff Result (list)
The suffix is a binding pattern, e.g. fb means that the first argument is
“free” (output), and the second argument is “bound” (input). For an
element test, both arguments are bound, for a full table scan, both are free.

Cursors are used for iterating over sets of tuples:
ID Relation Comment

0 edge_ff edge(X,Y) in rule 1 (full scan)
1 edge_fb edge(X,Y) in rule 2 (with given Y)

Stefan Brass: An Abstract Machine for Push Bottom-Up Evaluation 10/28

Introduction The Push Method Abstract Machine Benchmark Results Conclusions Appendix: Output

Example: Procedure “start”

void start() {

// path(X, Y) :- edge(X, Y):
cur_2_c lit_1(&edge_ff);
lit_1.open();
// Loop over (X,Y) with edge(X,Y):
while(lit_1.fetch()) {

int X = lit_1.col_1();
int Y = lit_1.col_2();
// Call procedure for new path-fact:
path(X, Y);

}
lit_1.close();

}
Stefan Brass: An Abstract Machine for Push Bottom-Up Evaluation 11/28

Introduction The Push Method Abstract Machine Benchmark Results Conclusions Appendix: Output

Example: Procedure “path”

void path(int c1, int c2) {
if(!path_bb.insert(c1, c2))// Duplicate Check

return;
path_ff.insert(c1, c2); // Store answer

// path(X, Z) :- edge(X, Y), path(Y, Z):
int Y = c1; // Call matches
int Z = c2; // body literal
cur_1_1_c lit_1(&edge_fb); // Cursor over edge_fb
lit_1.open(Y); // Y is known input
while(lit_1.fetch()) { // Loop over edge(X,Y)

int X = lit_1.out_1(); // X is output
path(X, Z); // Call for rule head

}
}

Stefan Brass: An Abstract Machine for Push Bottom-Up Evaluation 12/28

Introduction The Push Method Abstract Machine Benchmark Results Conclusions Appendix: Output

Contents

1 Introduction

2 The Push Method

3 Abstract Machine

4 Benchmark Results

5 Conclusions

6 Appendix: Output

Stefan Brass: An Abstract Machine for Push Bottom-Up Evaluation 13/28

Introduction The Push Method Abstract Machine Benchmark Results Conclusions Appendix: Output

Memory Areas of Abstract Machine

Code Area (machine instructions)

Program Counter (Instruction Pointer)

Registers (variables for data values: integers)

Stack (return addresses, saved registers/cursor states)

String Data (mapped to unique integers)

Relations

Cursors

Load Specifications (for data loader)

Stefan Brass: An Abstract Machine for Push Bottom-Up Evaluation 14/28

Introduction The Push Method Abstract Machine Benchmark Results Conclusions Appendix: Output

Design Principles (1)

Parameter values are passed in registers, not on the stack.
Only values that are overwritten in recursions are saved onto the stack and
later restored.

It is not required that the first parameter is in register 1.
There can be several specializations of the same predicate procedure
depending on where the parameters are stored or whether values of the
parameters are known constants.

E.g. a rule like
p(Y, X) :- q(X, Y), ...

would not require to swap the data values.

Stefan Brass: An Abstract Machine for Push Bottom-Up Evaluation 15/28

Introduction The Push Method Abstract Machine Benchmark Results Conclusions Appendix: Output

Design Principles (2)

Instructions should be compact (more cache-friendly):

This implies variable length,

special instructions for small operands.

Special instructions for common cases
(e.g. for accessing relations with only one or two columns).

This means that more constants are compiled into the code and loops unrolled.
The general case needs more work at runtime.

The granularity of the operations should be big,
e.g. entire loop control in one instruction.

This reduces the interpretation overhead.
(Of course, there must be an instruction at the begin and at the end of a loop,
but for each iteration, only one is executed.)

Stefan Brass: An Abstract Machine for Push Bottom-Up Evaluation 16/28

Introduction The Push Method Abstract Machine Benchmark Results Conclusions Appendix: Output

Example: Procedure “start”

// Procedure start: path(X, Y) :- edge(X, Y).
0: LOOP_LIST_2(0, 17) // Loop over edge_ff
4: GET_LIST_2_COL_1(0, 0) // R0 = X (Cursor 0)
7: GET_LIST_2_COL_2(0, 1) // R1 = Y

10: CALL(18) // Call path(R0, R1)
13: END_LOOP_LIST_2(0, 4) // If more edges goto 4
17: HALT // End of main procedure

The LOOP_LIST_2 instruction opens cursor 0 (over edge_ff)
and fetches the first tuple. If there is none, the cursor is
closed and execution jumps to the instruction at address 17.

The suffix 2 means that this is a special instruction for lists of rows with
two columns.

Stefan Brass: An Abstract Machine for Push Bottom-Up Evaluation 17/28

Introduction The Push Method Abstract Machine Benchmark Results Conclusions Appendix: Output

Example: Procedure “path”
// Procedure path(R0, R1):
18: DUPCHECK_2(2, 0, 1) // If(R0,R1)∈path_bb: ret.
21: INSERT_LIST_2(3, 0) // Store result: path_ff
// path(X, Z) :- edge(X, Y), path(Y, Z).
24: SAVE_VAR(0) // Will change R0
26: SAVE_MMAP_1_1_CUR(1) // Will change cursor 1
28: LOOP_MMAP_1_1(1, 43, 0) // edge(X,Y) given Y=R0
33: GET_MMAP_1_1_OUT_1(1, 0) // Store X in R0
36: CALL(18) // Rec. call: path(R0,R1)
39: END_LOOP_MMAP_1_1(1, 33) // If more edges: goto 33
43: RESTORE_MMAP_1_1_CUR(1) // Restore used cursor
45: RESTORE_VAR(0) // Restore R0
47: RETURN // End of procedure path

Note: Z (= R1) is not copied.
Stefan Brass: An Abstract Machine for Push Bottom-Up Evaluation 18/28

Introduction The Push Method Abstract Machine Benchmark Results Conclusions Appendix: Output

Contents

1 Introduction

2 The Push Method

3 Abstract Machine

4 Benchmark Results

5 Conclusions

6 Appendix: Output

Stefan Brass: An Abstract Machine for Push Bottom-Up Evaluation 19/28

Introduction The Push Method Abstract Machine Benchmark Results Conclusions Appendix: Output

Benchmark Results (1)

Transitive Closure Benchmark path(,), 50 000 edge-facts:

System Total time Factor Memory
Push (Switch) 1.147s 1.0 24 MB
Push (Proc.) 1.177s 1.0 31 MB
Push (Abstr.M.) 1.713s 1.5 31 MB
Seminäıve 2.227s 1.9 31 MB
XSB 5.103s 4.4 136 MB
YAP 10.840s 9.5 148 MB
DLV 51.660s 45.0 514 MB
Soufflé (SQlite) 11.240s 9.8 43 MB

(compiled) 0.797s 0.7 4 MB
Soufflé (compiled) uses a trie data structure (might explain small memory
and slightly better performance). We restricted it to one thread.

Stefan Brass: An Abstract Machine for Push Bottom-Up Evaluation 20/28

Introduction The Push Method Abstract Machine Benchmark Results Conclusions Appendix: Output

Benchmark Results (2)
Join1 Benchmark with query a(X,Y):

a(X, Y) :- b1(X, Z), b2(Z, Y).
b1(X, Y) :- c1(X, Z), c2(Z, Y).
b2(X, Y) :- c3(X, Z), c4(Z, Y).
c1(X, Y) :- d1(X, Z), d2(Z, Y).

The EDB predicates c2, c3, c4, d1, d2 have 10.000 rows each.
System Load Execution Total Time Factor
Push (Proc.) 0.004s 1.043s 1.043s 1.0
Push (Switch) 0.004s 1.031s 1.032s 1.0
Push (Abstr.M.) 0.004s 1.496s 1.498s 1.5
XSB 0.128s 6.056s 6.460s 6.2
YAP 0.207s 3.572s 3.840s 3.7
DLV (0.253s) — 80.237s 76.9
Soufflé (SQlite) (0.100s) — 12.680s 12.2

(compiled) (0.040s) — 1.450s 1.4
Stefan Brass: An Abstract Machine for Push Bottom-Up Evaluation 21/28

Introduction The Push Method Abstract Machine Benchmark Results Conclusions Appendix: Output

Contents

1 Introduction

2 The Push Method

3 Abstract Machine

4 Benchmark Results

5 Conclusions

6 Appendix: Output

Stefan Brass: An Abstract Machine for Push Bottom-Up Evaluation 22/28

Introduction The Push Method Abstract Machine Benchmark Results Conclusions Appendix: Output

Conclusions
The instructions of the abstract machine are basically
defined by identifying the building blocks of the previously
generated C++ code.

This combines the partial evaluation we used in the older approach with the
procedures from the newer version. But there are many details to think about.

It seems that the overhead for interpretation of “machine
instructions” is not big.

This supports our performance claims in comparison with WAM-based systems.

XSB has beaten older systems based on bottom-up evaluation
(such as Coral). Now it seems that bottom-up evaluation
can be implemented in a competitive way.

To be fair, we still have no complete system, only enough code to execute some
benchmarks. XSB has been developed over decades and is used in applications.
But our results show that we are working in a promising direction.

Stefan Brass: An Abstract Machine for Push Bottom-Up Evaluation 23/28

Introduction The Push Method Abstract Machine Benchmark Results Conclusions Appendix: Output

Future Work
The compiler from Datalog to C++ will soon be ready.

Datalog and output templates are used for the implementation.

Then there should be a version the generates code for the
abstract machine presented here.

Simple first cut: Only exchange output templates (much of the computed
Datalog facts describing the computation are the same). However, the
register assignment is something missing in the C++ procedure version.

We have many ideas, e.g. for more powerful templates.
E.g. it should be possible to use the output of one template as input for
another one. The separator string should be a special case of “hooks”.
Templates should be made conditional (alternative variants of a template).
Output to different files should be supported. Char maps. Modules.

ToDo: Negation, aggregation, arrays, keys, parallel evaluation.
Stefan Brass: An Abstract Machine for Push Bottom-Up Evaluation 24/28

Introduction The Push Method Abstract Machine Benchmark Results Conclusions Appendix: Output

Contents

1 Introduction

2 The Push Method

3 Abstract Machine

4 Benchmark Results

5 Conclusions

6 Appendix: Output

Stefan Brass: An Abstract Machine for Push Bottom-Up Evaluation 25/28

Introduction The Push Method Abstract Machine Benchmark Results Conclusions Appendix: Output

Declarative Output with Templates (1)
Output is needed for more or less every application.

The example templates are taken from our Datalog-to-C++ compiler.

Conceptionally, we

first compute the necessary data with Datalog rules, and

then use the facts to instantiate output templates.

A template can be seen as a procedure (with parameters)
that contains only

printing commands (of string constants and parameters), and

calls to other templates,
possibly with an iteration over solutions for Datalog queries.

One can define the sequence with a kind of “ORDER BY” clause, and
a separator string to be inserted between each two template instantiations.

Stefan Brass: An Abstract Machine for Push Bottom-Up Evaluation 26/28

Introduction The Push Method Abstract Machine Benchmark Results Conclusions Appendix: Output

Declarative Output with Templates (2)
Example (constructor of a class for representing tuples):
rel_class_constructor(Pred): [

’// Constructor:’ nl
rel_class(Pred) ’(’

constructor_arg(ArgNo,Type)<ArgNo>+’, ’ :-
constructor_arg(Pred, ArgNo, Type).

’) {’ nl
constructor_assign(ArgNo)<ArgNo> :-

arg_type(Pred, ArgNo, Type).
’}’ nl

].

<ArgNo> means that the calls of the head template are sorted by the value
of the variable ArgNo.
+’, ’ specifies that the string ’, ’ is inserted between each two such calls.

Stefan Brass: An Abstract Machine for Push Bottom-Up Evaluation 27/28

Introduction The Push Method Abstract Machine Benchmark Results Conclusions Appendix: Output

Declarative Output with Templates (3)

Besides this “code mode”, there is also a “verbatim mode”
(started and ended with “|”), where every character
besides “|” and “[” is copied to the output.

“[...]” used for switching to the standard “code mode”, e.g. for inserting
parameter values or template calls.

Example:

constructor_assign(ArgNo): [
| this->col_[ArgNo]= arg_[ArgNo];
|].

Termination is ensured because templates cannot call
themselves recursively.

Stefan Brass: An Abstract Machine for Push Bottom-Up Evaluation 28/28

	Introduction
	The Push Method
	Abstract Machine
	Benchmark Results
	Conclusions
	Appendix: Output

