
Bottom-Up Evaluation of Datalog:
Preliminary Report

Stefan Brass and Heike Stephan

Martin-Luther-Universität Halle-Wittenberg, Institut für Informatik,
Von-Seckendorff-Platz 1, D-06099 Halle (Saale), Germany

brass@informatik.uni-halle.de, stephan@informatik.uni-halle.de

Abstract. Bottom-up evaluation of Datalog has been studied for a long
time, and is standard material in textbooks. However, if one actually
wants to develop a deductive database system, it turns out that there
are many implementation options. For instance, the sequence in which
rule instances are applied is not given. In this paper, we study a method
that immediately uses a derived tuple to derive more tuples. In this
way, storage space for intermediate results can be reduced. The main
contribution of our method is the way in which we minimize the copying
of values at runtime, and do much work already at compile-time.

1 Introduction

The efficient evaluation of queries to logic programs remains an everlasting prob-
lem. Of course, big achievements have been made, but at the same time problem
size and complexity grows. Any further progress can increase the practical ap-
plicability of logic-based, declarative programming.

Our long-term goal is to develop a new deductive database system. This has
many aspects, for instance, language design. However, in the current paper, we
exclude all special language features, including negation, and focus on efficient
query evaluation for basic Datalog.

The magic set method is the standard textbook method for making bottom-
up evaluation goal-directed. Many optimizations have been proposed, including
our own SLDMagic method [1] and a method based on Earley deduction [3]. We
assume in the current paper that such a rewriting of the program has been done,
so we can concentrate on pure bottom-up evaluation.

As we understand it, bottom-up evaluation is an implementation of the TP -
operator that computes the minimal model of the program. However, an imple-
mentation is free in the order in which it applies the rule instances, while the
TP -operator first derives all facts that are derivable with a given set of known
facts, before the derived facts are used (in the next iteration). Furthermore, facts
do not have to be stored until the end of query evaluation, but can be deleted
as soon as all possible derivations using them have been done, except for the
facts that are relevant for the query. Therefore, the sequence of rule instance
application becomes important. If one computes predicate by predicate as the

standard textbook method, one of course needs to store the entire extension of
the predicates. However, if one uses derived tuples immediately, it might be pos-
sible to store only one tuple of the predicate during the evaluation. Of course,
for duplicate elimination and termination, it might still be necessary to store
extensions of a few selected predicates. It is also not given that tuples (facts)
must be represented explicitly as records or objects in the program. It suffices
if one knows where the values of single columns (predicate arguments) can be
found. In this way, a lot of copying can be saved because tuples for the rule
head are typically constructed from values bound in the rule body. Of course,
one must ensure that the values are not changed before all usages are finished.

Our plan is to translate Datalog to C++, and to generate executable code
from the resulting program. This permits to use existing compilers for low-level
optimizations and gives an interface for defining built-in predicates. In [2], we
already discussed implementation alternatives for bottom-up evaluation and did
performance comparisons for a few example programs. Now we will improve the
“push method” from that paper by changing the set of variables used to represent
intermediate facts. This is essential for reducing the amount of copying. It also
enables us to do more precomputation at “compile time”.

The idea of immediately using derived facts to derive more facts is not new.
For instance, variants of semi-naive evaluation have been studied which work
in this way [10, 12]. It also seems to be related to the propagation of updates
to materialized views. However, the representation of tuples at runtime and the
code structure is different from [10] (and this is essential for the reduction of
copying values). The paper [12] translates from a temporal Datalog extension to
Prolog, which makes any efficiency comparison dependend on implementation
details of the used Prolog compiler. We also believe that the rule application
graph introduced in our paper is a useful concept. Further literature about the
implementation of deductive database systems is, for instance, [8, 4, 9, 11, 7, 13].
A current commercial deductive DB system is Logicblox [5]. A benchmark col-
lection is OpenRuleBench [6].

2 Basic Definitions

In this paper, we consider basic Datalog, i.e. pure Prolog without negation and
without function symbols (i.e. terms can only be variables or constants). We also
assume without loss of generality that all rules have at most two body literals.
The output of our rewriting methods [1, 3] has this property. (But in any case,
it is no restriction since one can introduce intermediate predicates.) Finally, we
require range-restriction (allowedness), i.e. all variables in the head of the rule
must also appear in a body literal. For technical purposes, we assume that each
rule has a unique rule number.

As usual in deductive databases, we assume that EDB and IDB predicates are
distinguished (“extensional” and “intensional database”). EDB predicates are
defined by facts only, e.g. stored in a relational database or specially formatted
files. Also program input is represented in this way. IDB predicates are defined

by rules. There is a special IDB-predicate answer that only appears in the head
of one or more rules. The task is to compute the extension of this predicate in
the minimal model of the program.

We assume that the logic program for the IDB predicates as well as the
query (i.e. the answer-rules) are given at “compile time”, whereas the database
for the EDB predicates is only known at “runtime”. Since the same program
can be executed several times with different database states, any optimization
or precomputation we can do at compile time will pay off in most cases. It might
even be advantageous in a single execution because the database is large.

Since we want to generate C++ code, we assume that there is a data type
known for every argument of an EDB predicate. The method does not need type
information for IDB predicates (this is implicitly computed).

As mentioned above, our rewriting methods [1, 3] produce rules that have at
most two body literals. Furthermore the case of two IDB-literals is rare—it is
only used in special cases for translating complex recursions. Most rules have one
body literal with IDB-predicate and one with EDB-predicate. Of course, there
are also rules with only one body literal (EDB or IDB).

3 Accessing Database Relations

The approach we want to follow is to translate Datalog into C++, which can then
be compiled to machine code. Of course, we need an interface to access relations
for the EDB predicates. These relations can be stored in a standard relational
database, but it is also possible to program this part oneself (at the moment, we
do not consider concurrent updates and multi-user access).

We assume that it is possible to open a cursor (scan, iterator) over the re-
lation, which permits to loop over all tuples. We assume that for every EDB
predicate p there is a class p_cursor with the following methods:

– void open(): Open a scan over the relation, i.e. place the cursor before the
first tuple.

– bool fetch(): Move the cursor to the next tuple. This function must also
be called to access the first tuple. It returns true if there is a first/next
tuple, or false if the cursor is at the end of the relation.

– T col_i(): Get the value of the i-th column (attribute) in the current tuple.
Here T is the type of the i-th column.

– close(): Close the cursor.

For recursive rules, we will also need

– push(): Save the state of the cursor on a global stack.
– pop(): Restore the state of the cursor.

A relation may have special access structures (e.g. it might be stored in a B-tree
or an array). Then not only a full scan (corresponding to binding pattern ff . . . f)
is possible, but also scans only over tuples with given values for certain argu-
ments. We assume that in such cases there are additional cursor classes called

p_cursor_β, with a binding pattern β. These classes have the same methods
as the other cursor classes, only the open-method has parameters for the bound
arguments. E.g. if p is a predicate of arity 3 that permits particularly fast ac-
cess to tuples with a given value of the first argument, and if this argument has
type int, the class p_cursor_bff would have the method open(int x).

4 Duplicate Elimination and Termination

The main contribution of this paper is the way in which copying and material-
ization of tuples is avoided. Our method basically pushes newly derived facts to
body literals where they can be used to derive further facts.

However, in the presence of recursion, we must be able to notice whether a
derived tuple is new or not. Therefore, in each recursive cycle, at least one pred-
icate must be materialized (“tabled”) to ensure termination. A simple solution
is to create hash tables for the predicates in question.

This solution means that we materialize the extensions of some IDB pred-
icates (hopefully, only a few) and copy all data values for the tuples of these
predicates. In some cases, information about order or acyclicity might help to
avoid this. Information about keys and data distribution could be used to make
sensible optimization decisions. Furthermore, if tuples are produced in a sort
order, the duplicate check can be done very efficiently and without storing the
predicate extension. All this is subject of our future work.

It is also interesting that the data values in a derived tuple are stored at
different times in program variables. For instance, we might know that when
p(X,Y) is generated, X only seldom changes, and Y changes much more often.
Then a nested relation might be best for tabling the predicate for the purpose
of duplicate detection.

Of course, breaking each recursive cycle with a duplicate detection is only
the minimum we have to do to ensure termination. Also non-recursive rules can
generate duplicates, and in some cases it might be more efficient to detect these
duplicates early in order to avoid duplicate computations (since the price for
duplicate detection is quite high, in other cases it might be more efficient to
simply do the duplicate work).

5 Code Generation: Overall Structure

The result of the translation looks basically as shown in Figure 1. So there are
many small code pieces, each with a label that is suitable for a goto. Further-
more, when there are several things to do, e.g. a generated fact can be used in
more than one rule, a backtrack point is set up for the second rule, and then a
goto is done for the first. When an execution path reaches an end, the switch is
left with break, and one of the delayed tasks is taken from the stack. Therefore,
each code piece also has a unique number, which can be stored on the backtrack
stack, and used in the switch to reach the code piece.

〈Declaration Section〉;
〈Initialization Section〉; // Initializes backtrack_stack

while(!backtrack_stack.is_empty()) {

switch(backtrack_stack.pop()) {

case L1:

l1:

〈Code Piece 1〉;
// break or goto at end of Code Piece

case L2:

l2:

〈Code Piece 2〉;
...

}

}

Fig. 1. Overall structure of the generated code

Optimizations are possible, e.g. one can order the code pieces such that some
jumps can be eliminated, because the target is immediately following. Some
backtrack points can be avoided by finding a suitable code sequence.

5.1 Declaration Section

Data not known at compile time always originates from the database. In order
to minimize copying, we (usually) introduce a C++ variable only for Datalog
variables which

– occur in an EDB body literal,
– but do not occur in an IDB body literal of that rule (because then the value

comes from another rule, where a variable has been created, if the value is
not known at compile time),

– and occur in the head of that rule (because otherwise the value does not
really have to be processed in the program).

For instance, consider the following rule:

p(X,Y, a)← q(Y) ∧ r(X,Y,Z,Z).

If q is an IDB predicate and r an EDB predicate, we create a C++ variable only
for X. A variable or constant for Y exists already when the rule is activated.

In seldom cases of recursive rule applications (see Section 5.4 below) we create
C++ variables for all variables of the rule.

If the above condition shows the we must create a C++ variable for variable X
in rule ρ, we generate the following code line in the declaration section:

T vρ_X;

We use the prefix with the rule number so that there can be no name conflicts
between variables of different rules. T is the C++ data type for the database
column in which X occurs.

5.2 Symbolic Facts

A symbolic fact consists of an IDB predicate p and a tuple (t1, . . . , tn) of C++ vari-
ables (i.e. their identifiers) and constants, where n is the arity of p. So a symbolic
fact represents what is known at compile time about a fact that will be derived
at runtime. For some arguments, we might know the exact value (a constant),
for other arguments, we know the C++ variable which will contain the value.

An initial set of symbolic facts is derived by rules without IDB body literals.
Then our task is to pass each derived symbolic fact to matching IDB body literals
and to derive a symbolic fact for the rule head. For each such rule application,
a code piece is generated which does the remaining computation at runtime.

“Matching” between a symbolic fact and a body literal means that they are
unifiable. In general a full unification must be done (at compile time). Consider
e.g. the body literal p(X,X, a) and the symbolic fact p(b, v1 Y, v1 Y). The rule
cannot be applied to the symbolic fact, so no code is generated for this case.

5.3 Rule Application Graph

A “Symbolic Rule Application” is

– a rule from the logic program with one IDB body literal, together with a
symbolic fact matching this body literal,

– a rule without IDB body literals,
– a rule with two IDB body literals, together with a symbolic fact matching

one of them. (In the rare case of two IDB body literals, we use temporary
tables for facts matching each body literal. The symbolic fact in this rule
application describes the situation that we just computed a new fact for one
of the IDB body literals. For the other body literal we use the table with
previously computed facts.)

The result of a symbolic rule application is a symbolic fact. Let p(t1, . . . , tn) be
the head of the rule, and ρ be its rule number. If the rule has an IDB body
literal, let θ be a most general unifier with the input symbolic fact. We require
that variable-to-variable bindings are done such that logic variables are replaced
by C++ variables. Then the derived symbolic fact is p(u1, . . . , un), where ui is

– ti if ti is a constant.
– tiθ if ti is a variable which appears in the IDB body literal (if there is one).
– vρ X if ti is a variable X which does not appear in the IDB body literal.

Now we can do a standard fixpoint computation to compute all symbolic facts
which are derivable from the program. This process will come to an end, be-
cause the number of symbolic facts is bounded: There is only a finite number of
C++ variables (at most the number of variables in the given logic program, where
variables with the same name in different rules count as distinct). Furthermore,
only a finite number of constants occurs in the given logic program (constants
which appear only in the database are not known at “compile time” and not
used for computing symbolic facts).

The structure of the computation can be shown in a “rule application graph”.
It has two types of nodes, namely symbolic facts (“fact nodes”), and symbolic
rule applications (“rule nodes”). There is an edge from every symbolic fact to
every symbolic rule application which uses the symbolic fact. Furthermore, there
is an edge from every symbolic rule application to the symbolic fact it generates.

Of course, it is possible to show only the rule in nodes for symbolic rule
applications (since the symbolic fact is identified by the incoming edge, except
in the case of two IDB body literals). However, then there can be several nodes
marked with the same rule: It is possible that a single rule is compiled several
times for different symbolic facts matching its IDB body literal.

Note also that not every application of a recursive rule to a symbolic fact is
actually recursive: Only if the same symbolic fact can be generated by applying
this rule (maybe indirectly via other rules), we have to be prepared for recursive
invocations of the code piece for the symbolic rule application. This can be seen
from cycles in the graph.

Finally, nodes in the graph from which there is no path to an answer-node
can be eliminated: They do not contribute to the computation of the answer. If
the program is the result of a program transformation like magic sets, this path
will not be followed at runtime, but it is better not to generate code for it. An
example of such a program is

answer(X)← q(X, a).
q(X,Y) ← p(Y,X).
p(a,X) ← r(X).
p(b,X) ← s(X).

The rule application graph is shown in Figure 2. The right path is useless. In

p(a,X)← r(X).

6

p(a, v3 X)
�� �

6

q(X,Y)← p(Y,X).

6

q(v3 X, a)
�� �

6

answer(X)← q(X, a).

6

answer(v3 X)
�� �

p(b,X)← s(X).

6

p(b, v4 X)
�� �

6

q(X,Y)← p(Y,X).

6

q(v4 X, b)
�� �

Fig. 2. Rule Application Graph with Useless Part (to be eliminated).

the code generation below, we assume that this has been removed, i.e. every fact
node with a predicate different from “answer” has an outgoing edge.

5.4 Variable Conflicts

In rare cases of recursive rule applications, it is possible that a rule is applied
to a symbolic fact which contains already a variable generated for that rule. An
example is

p(X,Y)← r(X,Y).
p(Y,Z) ← p(X,Y) ∧ r(Y,Z).

The first rule generates the symbolic fact p(v1 X, v1 Y). When we insert this into
the second rule, we get p(v1 Y, v2 Z). Now we have to insert this again into the
second rule: v2 Z contains the input value for Y, but must also be set with a new
data value from r. In this case, some copying seems unavoidable. While there are
optimizations possible, the simplest solution is to create a C++ variable for each
logical variable of the rule, and to copy first the values from the input fact to
the right variable (which might need temporary variables, e.g. for swapping the
values of two variables). For recursive rule applications, the previous variable
values are also stored on a stack (see Section 5.6 below).

5.5 Labels for Code Pieces

We need a goto label and/or a case selector value (a unique number) for each
code piece implementing a symbolic rule application. We write

l_start(p(t1, . . . , tn), ρ, p(u1, . . . , un))

for the goto-label of the code piece for application of rule ρ with body lit-
eral p(u1, . . . , un) to the symbolic fact p(t1, . . . , tn). The implementation will
replace this by l_start_n with some unique number n. The symbolic constant
for the case-value is written as L_START(...) (and also made a legal C++ iden-
tifier by using the same unique number). Sometimes there are continuations or
other code pieces, therefore the label is marked as “start”.

5.6 Protection of Variable Values

Of course, when a code piece corresponding to a symbolic rule application is
executed, the C++ variables in the symbolic fact p(t1, . . . , tn) must still have the
same value as when this task was generated. It is possible that the ID/label of
the code piece was pushed on the backtrack stack and it is executed only later.

However, for every C++ variable, a new value is assigned only in code pieces
for the single rule for which the variable was introduced (to hold a data value
for an EDB literal in that rule).

Furthermore, it is important that the backtrack points are kept on a stack.
So we will return to that rule only after all backtrack points which use the value

(and are thus generated later) have been processed—unless the rule is recursive.
In this case, the variable value must be saved (on another stack suitable for the
data type), and we put the ID of a code piece on the backtrack stack which
restores the variable value. This is done whenever we enter a recursive rule, and
only for variables set in this rule (the derived fact might contain also variables
passed from elsewhere and not changed in the rule).

If the backtrack stack shrinks below this point, all usages of the new variable
value are done, and the old value is restored, so that older backtrack points find
the value which was current when the backtrack point was created.

6 Code Pieces

In this section, we define a number of code pieces which are translations of dif-
ferent types of rules. Each code piece corresponds to a symbolic rule application.
For simplicity, we do not consider variable conflicts (Section 5.4) here.

6.1 IDB-Facts

Suppose the program contains an IDB-fact p(c1, . . . , cn). Whenever this matches
a body literal p(t1, . . . , tn) of a rule ρ, the case selector value

L_START(p(c1, . . . , cn), ρ, p(t1, . . . , tn))

is pushed on the backtrack stack during initialization.

6.2 One EDB-Body Literal

Consider the rule p(t1, . . . , tn)← r(u1, . . . , um) where r is an EDB predicate. Let
ρ be the rule number. Let p(̄t1, . . . , t̄n) be the symbolic fact generated by the
rule (̄ti := ti if ti is a constant, and t̄i := vρ_X if ti is the variable X).

Among all possible cursors cursor_r_β for r choose one such that for all
bound argument positions i (i.e. βi = b), ui is a constant. This is always possi-
ble because every relation supports a full table scan, i.e. an access path with all
argument positions “free”. But obviously, if there are constants among the ui,
and there are available indexes, it is best to choose one with the smallest esti-
mated result size. In the declaration section, generate

cursor_r_β cρ;

Define symbolic constants L_INIT_ρ and L_CONT_ρ as unique numbers for cases
in the switch. Generate the following code in the initialization section:

backtrack_stack.push(L_INIT_ρ);

All following code is generated in the switch:

1. Generate
case L_INIT_ρ:

2. Let i1, . . . , ik be the bound argument positions in β. Generate:
cρ.open(ui1 , . . . , uik);

(Note that although another case follows, execution simply continues.).
3. Generate:

case L_CONT_ρ:

The following loop (item 4) is left with goto when the first fact is generated.
But before the jump, this case label is pushed on the backtrack stack, so
that the loop is continued later.

4. Generate
while(cρ.fetch()) {

5. Let ui1 , . . . , uik be the constants among the u1, . . . , um which correspond to
free argument positions in β. If k ≥ 1, generate

if(cρ.col_i1() != ui1 || · · · || cρ.col_ik() != uik)

continue;

I.e. if the current tuple of the EDB-predicate does not have the required
values for the constant arguments, we immediately start the next iteration
of the while-loop (i.e. fetch the next tuple).

6. For every variable Y, which appears more than once among the u1, . . . , um:
Let ui1 , . . . , uik be all equal to Y (note that k ≥ 2). Generate:

if(cρ.col_i1() != cρ.col_i2 || · · · ||
cρ.col_ik−1() != cρ.col_ik())

continue;

7. For every variable Xi in the head let uj be any occurrence of this variable
among the u1, . . . , um. Because of the range restriction (allowedness) condi-
tion on the rules, it must occur in the body. Generate for each Xi:

vρ_Xi = cρ.col_j();

8. In case the predicate p was selected for a duplicate check, the following must
be done here: The result tuple p(̄t1, . . . , t̄n) with the current values of the
C++ variables is entered into a hash table or other data structure. If the
tuple was already present, one simply does “continue;” to skip it.

9. Generate:
backtrack_stack.push(L_CONT_ρ);

Since this code piece will change the values of the variables introduced in
the rule, it must be on the stack below every task using the generated tuple.

10. Let ρ1, . . . , ρk be all rules with an IDB body literal Bi, i := 1, . . . , k, which
matches the generated symbolic fact p(̄t1, . . . , t̄n). For i := 2, . . . , k, generate

backtrack_stack.push(L_START(p(̄t1, . . . , t̄n), ρi, Bi));

Finally, generate
goto l_start(p(̄t1, . . . , t̄n), ρ1, B1);

11. Generate
} // End of while-loop
break;

The break; is important if the while-loop ends because no (further) match-
ing fact is found in the relation r. Otherwise, the loop is left with goto when
the first/next matching fact is found.

6.3 Two EDB-Body Literals

In the output of SLDMagic, this case does not occur. However, it is easy to
extend the above program code. One uses two cursors, one for each body literal,
and two nested while-loops. For simplicity, we implement all joins as “nested
loop join”. Later, sort orders might be used, so that also a “merge join” can be
generated (which is faster than the nested loop join).

6.4 One IDB-Body Literal

Consider the rule

p(t1, . . . , tn)← q(u1, . . . , um),

where q is an IDB-predicate. Let ρ be the number of this rule. There is one code
piece per symbolic fact q(ū1, . . . , ūm) which matches the body literal. Let θ be
a most general unifier, where variable-to-variable bindings are done such that
logic variables are replaced by C++ variables i.e. ui is replaced by ūi, if both are
variables. The generated symbolic fact is p(t1θ, . . . , tnθ). Note that because of
the range restriction requirement, every variable among the ti also appears as
an uj , and then it is unified with a constant or a C++ variable.

1. Generate
case L_START(q(ū1, . . . , ūm), ρ, q(u1, . . . , um)):
l_start(q(ū1, . . . , ūm), ρ, q(u1, . . . , um)):

2. Now the part of the unification which can only be done at runtime must be
generated. Let V1, . . . , Vk be all C++ variables which θ replaces by constants
or a different variable (i.e. Viθ 6= Vi). If k > 0, generate:

if(V1 != V1θ || · · · || Vk != Vkθ)
break;

So we simply stop executing this code piece if the current fact for q does not
unify with the body literal.

3. In case predicate p was selected for a duplicate check, the code to enter the
result tuple p(t1θ, . . . , tnθ) with the current values of the C++ variables into
a hash table would go here. If the tuple was already present (so we just
computed a duplicate), one simply does “break;” to end the code piece.
Then another task will be taken from the backtrack stack.

4. Let ρ1, . . . , ρk be all rules with an IDB body literal Bi, i := 1, . . . , k, which
matches the generated symbolic fact p(t1θ, . . . , tnθ). For i := 2, . . . , k, gen-
erate

backtrack_stack.push(L_START(p(t1θ, . . . , tnθ), ρi, Bi));

Finally, generate

goto l_start(p(t1θ, . . . , tnθ), ρ1, B1);

6.5 One IDB- and one EDB-Body Literal

Consider the rule

p(t1, . . . , tn)← q(u1, . . . , um) ∧ r(v1, . . . , vl),

where q is an IDB-predicate and r is an EDB-predicate. Let ρ be the number of
this rule. There is one code piece per symbolic fact q(ū1, . . . , ūm) which matches
the IDB body literal. Let θ be a most general unifier and p(̄t1, . . . , t̄n) be the
generated symbolic fact as defined in Section 5.3. As in Section 6.2, select a
binding pattern β for accessing the EDB-relation r. A value for vi is known
(i.e. βi can be “bound”) if vi is a constant or a variable which also appears
in q(u1, . . . , um) (when execution reaches this code piece, a concrete fact is given
for the IDB body literal). In the declaration section, generate

cursor_r_β cρ;

All following code is generated in the switch:

1. Generate
case L_START(q(ū1, . . . , ūm), ρ, q(u1, . . . , um)):
l_start(q(ū1, . . . , ūm), ρ, q(u1, . . . , um)):

2. Now the part of the unification of the given fact with the IDB body literal,
which can only be done at runtime, must be generated. Let V1, . . . , Vk be all
C++ variables with Viθ 6= Vi. If k > 0, generate:

if(V1 != V1θ || · · · || Vk != Vkθ)
break;

This ends the execution of this code piece if the rule is not applicable.
3. Now we must use a cursor to access the tuples for the EDB body lit-

eral r(v1, . . . , vl). In case this rule is recursive, it might be possible that
the state of the cursor and the values of the variables vρ_X set in this rule
are still needed by backtrack points on the stack (unless we know that there
are no such backtrack points, e.g. because the recursive rule application is
the last use of the fact). Therefore, we generate

cρ.push();
And for each variable vρ_X we generate

value_stack.push(vρ_X);
(There are probably several value stacks for different data types.) Finally we
generate a backtrack point:

backtrack_stack.push(L_RESTORE_ρ);
The code for this case in the switch simply restores the variable values
and the cursor state by popping them (in the inverse order). In this way, all
earlier backtrack points (below the one just generated) find the old cursor
state and variable values.

4. Let i1, . . . , ik be the bound argument positions in β. Generate:
cρ.open(v̄i1 , . . . , v̄ik);

where v̄ij is
– vij if this is a constant,
– vijθ if vij is a variable which appears in the IDB body literal q(. . .).

5. Generate:

case L_CONT_ρ:

When we are finished with using the computed fact, backtracking returns
here to continue the following loop.

6. Generate

while(cρ.fetch()) {

7. Let i1, . . . , ik be the free argument positions in β such that vij is a constant
or a variable which appears the the IDB body literal q(. . .). Let v̄ij be defined
as in 4 above. If k ≥ 1, generate

if(cρ.col_i1() != v̄i1 || · · · || cρ.col_ik() != v̄ik)
continue;

I.e. if the current tuple in the EDB relation does not have the required values,
we continue with the next iteration of the while-loop under 6.

8. For every variable Y, which appears more than once among the u1, . . . , um,
but not in the IDB literal q(. . .): Let ui1 , . . . , uik be all equal to Y (note that
k ≥ 2). Generate:

if(cρ.col_i1() != cρ.col_i2 || · · · ||
cρ.col_ik−1() != cρ.col_ik())

continue;

9. For every variable Xi in the head, which does not appear in the IDB body
literal q(. . .), let uj be any occurrence of this variable among the u1, . . . , um.
Because of the range restriction (allowedness) condition on the rules, it must
occur there. Generate for each Xi:

vρ_Xi = cρ.col_j();

10. In case predicate p was selected for a duplicate check, we again enter the
result tuple p(̄t1, . . . , t̄n) with the current values of the C++ variables into a
hash table. If the tuple was already present, one simply does “continue;”
to compute the next tuple.

11. Generate:

backtrack_stack.push(L_CONT_ρ);

12. Let ρ1, . . . , ρk be all rules with an IDB body literal Bi, i := 1, . . . , k, which
matches the generated symbolic fact p(̄t1, . . . , t̄n). For i := 2, . . . , k, generate

backtrack_stack.push(L_START(p(̄t1, . . . , t̄n), ρi, Bi));

Then generate

goto l_start(p(̄t1, . . . , t̄n), ρ1, B1);

13. Finally, we must close the open while-loop (6. above) and finish the code
piece in case the loop does not find any (further) matching tuple. Generate:

}

break;

In addition, there is a code piece for case L_RESTORE_ρ as explained under
item 3 above. It pops everything pushed there.

6.6 Two IDB-Body Literals

This is a complicated case and needs intermediate storage of tuples generated for
the body literals. Fortunately, this occurs rarely in the output of the SLDMagic
method (only when translating recursions that are not tail recursions).

A general solution, which does not need information about the order of gen-
erated tuples, is to have one set of tuples for each body literal. In the code piece
for the case that a new tuple has been derived for the left body literal, this tuple
is joined with all tuples in the current set for the right body literal. In the same
way, when a new tuple is generated for the right body literal, it is joined with
all existing tuples for the left body literal.

This means that we now need cursors also for the intermediate storage of
generated IDB facts, and these cursors must keep information about the last
fact when they were created (since new facts can be appended to the list while
the cursor is active—these facts must not be returned by the cursor).

Recursion can be handled in the same way as before: When a new fact is
generated for a body literal, we save the state of the cursor and all variables of
that code piece, continue with derivations using the new fact, and later return
to the old fact. However, since we anyway have intermediate storage now, it is
also possible to create a queue of facts for each body literal, which must still be
used in derivations.

If it is possible to generate all facts for the left body literal before the first
fact for the right body literal, one obviously needs intermediate storage only for
the left body literal. In this case it can later be treated like an EDB literal.

If one can generate facts for both literals in the sort order of the common
variables (the join attributes), we would need intermediate storage only for a
single tuple for each body literal (we would basically do a merge join).

6.7 Generated answer-Facts

For rules about the predicate answer, one can print the generated tuple or insert
it into a result relation whenever the above code would jump to a body literal
which uses the generated fact (there are no body literals with predicate answer).
One can also offer the cursor interface of Section 3.

7 Conclusion

We have presented a detailed description of the push method, an efficient bottom-
up evaluation algorithm for pure Datalog programs. In the push method, de-
rived facts are immediately used to derive new facts without generally mate-
rializing immediate results. A specific feature is the representation of derived
tuples which significantly reduces the amount of copying. The rule application
graph introduced here is useful for planning the evaluation. First performance
tests show some improvement over the previous version of the push method
from [2]. We plan to develop a more complete implementation and to investi-
gate further optimizations. The current state of the project will be reported at
http://www.informatik.uni-halle.de/~brass/botup/

References

1. Brass, S.: SLDMagic — the real magic (with applications to web queries). In:
Lloyd, W., et al. (eds.) First International Conference on Computational Logic
(CL’2000/DOOD’2000). pp. 1063–1077. No. 1861 in LNCS, Springer (2000)

2. Brass, S.: Implementation alternatives for bottom-up evaluation. In: Hermenegildo,
M., Schaub, T. (eds.) Technical Communications of the 26th International Con-
ference on Logic Programming (ICLP’10). Leibniz International Proceedings in
Informatics (LIPIcs), vol. 7, pp. 44–53. Schloss Dagstuhl (2010),
http://drops.dagstuhl.de/opus/volltexte/2010/2582

3. Brass, S., Stephan, H.: A variant of earley deduction with partial evaluation. In:
Faber, W., Lembo, D. (eds.) Web Reasoning and Rule Systems - 7th International
Conference, RR 2013. LNCS, vol. 7994, pp. 35–49. Springer-Verlag (2013),
http://dbs.informatik.uni-halle.de/Earley/

4. Derr, M.A., Morishita, S., Phipps, G.: The Glue-Nail deductive database system:
Design, implementation and evaluation. The VLDB Journal 3, 123–160 (1994)

5. Green, T.J., Aref, M., Karvounarakis, G.: Logicblox, platform and language: A
tutorial. In: Barceló, P., Pichler, R. (eds.) Datalog in Academica and Industry,
2nd Int. Workshop, Datalog 2.0. LNCS, vol. 7494, pp. 1–8. Springer-Verlag (2012),
https://developer.logicblox.com/2012/08/

6. Liang, S., Fodor, P., Wan, H., Kifer, M.: OpenRuleBench: An analysis of the per-
formance of rule engines. In: Proceedings of the 18th International Conference on
World Wide Web (WWW’09). pp. 601–610. ACM (2009),
http://rulebench.projects.semwebcentral.org/

7. Liu, M.: Design and implementation of the ROL system. Journal of Intelligent
Information Systems 14, 1–21 (2000),
http://www.scs.carleton.ca/~mengchi/papers/rol-JIIS00.ps

8. Ramamohanarao, K.: An implementation overview of the Aditi deductive database
system. In: Ceri, S., Tanaka, K., Tsur, S. (eds.) Deductive and Object-Oriented
Databases, Third Int. Conf., (DOOD’93). pp. 184–203. No. 760 in LNCS, Springer
(1993)

9. Sagonas, K., Swift, T., Warren, D.S.: XSB as an efficient deductive database en-
gine. In: Snodgrass, R.T., Winslett, M. (eds.) Proc. of the 1994 ACM SIGMOD
Int. Conf. on Management of Data (SIGMOD’94). pp. 442–453 (1994)

10. Schütz, H.: Tupelweise Bottom-up-Auswertung von Logikprogrammen (Tuple-wise
bottom-up evaluation of logic programs). Ph.D. thesis, TU München (1993)

11. Seshadri, P., Flisakowski, S., Hersh, S.: Coral: The inside story. Shocking hacks re-
vealed. Tech. rep., Department of Computer Sciences, The University of Wisconsin-
Madison (1996), http://ftp.cs.wisc.edu/coral/doc/Inside.ps

12. Smith, D.A., Utting, M.: Pseudo-naive evaluation. In: Australasian Database Con-
ference. pp. 211–223 (1999), http://www.cs.waikato.ac.nz/research/jstar/

1999-ADC-pseudo-naive-eval.pdf

13. Yang, G., Kifer, M.: FLORA: Implementing an efficient DOOD system using a
tabling logic engine. In: Lloyd, W., et al. (eds.) First International Conference on
Computational Logic (CL’2000/DOOD’2000). pp. 1078–1093. No. 1861 in LNCS,
Springer (2000)

