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Abstract. In this paper, we present a method for bottom-up evalua-
tion of Datalog programs in deductive databases that “pushes” derived
facts immediately to other rules where they are used for deriving more
facts. In this way, the materialization of derived relations is avoided as
far as possible. Derived facts are represented by values in variables and
a location in the program, and not as explicitly constructed tuples. This
helps to avoid copying operations and to keep the actively used mem-
ory small to make better use of modern processors. The method can be
quite easily explained by translating Datalog to functions in a standard
programming language like C++ and then using optimizations of the C++

compiler like inlining. First performance tests with benchmarks from the
OpenRuleBench collection give good results. This is interesting because
systems based on SLD-resolution with tabling such as XSB have beaten
older deductive database implementations based on bottom-up evalua-
tion. Now it seems that bottom-up evaluation can be done in a very
competitive way.

1 Introduction

Database application programs usually consist of queries, written in a declar-
ative language (typically SQL), and surrounding program code, written in a
procedural language (like PHP or Java). The goal of deductive databases is to
write a larger part of the application, ideally the entire program, in a declarative
language based on Prolog/Datalog.

This has many aspects, e.g. the invention of new language constructs for
declarative output [4]. However, the classic task of improving the speed of query
evaluation is still important. The amount of data to be processed is ever growing.
We might also be able to make better use of new processor architectures. For our
approach, which is implemented by translating Datalog to C++, also the compiler
technology is very important. The optimization in a compiler has become more
powerful, so approaches that were too slow earlier can be very competitive now.

In this paper, we further develop the “Push Method” for bottom-up evalua-
tion introduced in [3,6]. It applies the rules from body to head (right to left) as
any form of bottom-up evaluation, but it immediately “pushes” a derived fact to
other rules with matching body literals. In contrast, the classic approach would
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first apply a rule completely before using the derived facts (which also requires
intermediate storage of these tuples). Our method has the following advantages:

– We try to avoid the materialization and storage of facts as far as possible,
and on a lower level the copying of values. For instance, consider the rule

p(X,Z)← q(X,Y ) ∧ r(Y,Z).

Suppose that we have derived a new fact q(a, b) and let r be a database
relation (defined by facts). Now if there are many facts r(b, Z), there is
no reason to copy the value a of X for each such fact. Actually, standard
implementations of SLD-resolution/Prolog would also not touch the value
of X while they backtrack over different solutions for the second body literal,
whereas standard implementations of bottom-up evaluation do this.

– By immediately using a derived fact, we can keep the data values near to
the CPU (in registers or the cache), and thereby speed up the computation.
Furthermore, memory is used for a shorter time and can be recycled earlier.

– Another feature of our method is that it does partial evaluation and rule
specialization at “compile time”. The method translates a given Datalog
program to C++ (which is then compiled by a standard compiler). We assume
that the rules defining derived predicates are known in this step, whereas the
facts for the database predicates (including user input) are known only at
runtime. Time invested in the compilation phase can later be redeemed over
many executions of the resulting program (with different database states).
Actually, it might pay off even in a single execution, because often there are
many more database facts than rules.

– Finally, if there is large number of mutually recursive rules, classic bottom-up
evaluation would iteratively apply all these rules until none produces a new
fact. If only a small number of these rules can actually fire in an iteration
(because only they have new matches for body literals), this is obviously
inefficient. Our “Push Method” does not look at rules unless there really is
a new matching fact for a body literal.

The main contribution of the current paper, compared with our older papers, is
that we now generate a set of recursive procedures and rely on the optimizations
of the compiler (in particular, inlining and copy propagation). Instead, the ver-
sion of [6] used C++ only as a portable assembler and generated a single large
procedure with a big switch. This implementation managed its own stack, but
only for recursive rules. We thought that the procedure call overhead would be
too large. However, because the compiler unfolds procedure calls (“inlining”),
this is not necessarily the case. We did compare the runtime on a number of
benchmarks from the OpenRuleBench collection [11], and the runtime was about
the same, sometimes even slightly faster. One reason for improved runtime might
be that the older version produced code for each specialized version of a predi-
cate only once, while a compiler that does aggressive inlining is stopped only by
recursions — it may inline several calls to the same procedure if the body is not
large. This saves jumps and stack usage. The new version of the method is also
much simpler to understand than the old one.
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2 Query Language

We consider basic Datalog, i.e. pure Prolog without negation and function sym-
bols. Thus, a logic program is a finite set of rules of the form A← B1 ∧ · · · ∧Bn

with atomic formulas A (the head literal of the rule) and B1, . . . , Bn (the body
literals of the rule). The atomic formulas have the form p(t1, . . . , tm) with a
predicate p and argument terms ti, which are variables or constants. As usual in
Prolog,← is written “:-”, ∧ is written “,”, and variables start with an uppercase
letter to distinguish them from constants. As an example, consider

parent(X, Y) :- mother(X, Y).

parent(X, Y) :- father(X, Y).

grandparent(X, Z) :- parent(X, Y), parent(Y, Z).

answer(Z) :- grandparent(sam, Z).

This logic program computes the grandparents of sam, given database rela-
tions mother and father. We assume that there is a “main” predicate answer,
for which we want to compute the derivable instances. All other predicates are
views or names for subexpressions of the query.

We require range-restriction (allowedness), i.e. all variables in the head of the
rule must also appear in a body literal. This ensures that when rules are applied
bottom-up (from right to left), only variable-free atomic formulas (facts) are
derived. As usual in deductive databases, the predicates are classified into

– EDB-predicates (“extensional database”), which are defined only by facts
(usually a large set of facts stored in a database or specially formatted files).
In the above example, mother and father are EDB predicates.

– IDB-predicates (“intensional database”), which are defined by rules. In the
above example, parent, grandparent and answer are IDB predicates.

We also say “EDB body literal” for a body literal with EDB-predicate, and “IDB
body literal” for one with IDB-predicate.

Since we use a compiler-based approach, one would probably not want to
compile the constant “sam” into the program, but to execute the compilation
result many times for computing the grandparents of different people. This can
easily be achieved by replacing the last rule by

answer(Z) :- input(X), grandparent(X, Z).

Here, input is a new EDB-predicate which is set before each execution, and
contains e.g. the single fact input(sam). The result of the compilation depends
only on the rules (and possibly facts) for the IDB-predicates. The database state,
i.e. the extensions of the EDB-predicates, can be arbitrarily updated.

3 Goal-Directed Query Evaluation with SLDMagic

Pure bottom-up evaluation is not goal-directed, i.e. it computes all derivable
facts without looking at the given query. It is standard to do the magic sets
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program transformation [1] first, which reduces the applicability of rules such
that only facts relevant to the given query can be derived. The output of this
transformation is again a Datalog program, which is then used as input for
bottom-up evaluation.

In our case, we use an improved “Magic Set” method, SLDMagic [2,5]. This
is interesting because it simulates SLD-resolution (the algorithm underlying Pro-
log) more precisely than Magic Sets (furthermore, the output is mostly linear
Datalog, which is good for the Push method, see below). Basically, the rules re-
sulting from the SLDMagic transformation compute the nodes of the SLD-tree.

Example 1. The result of the SLDMagic prototype1 for the above program is
(with slight renamings of variables):

p0(X) :- input(X).

p4(Y) :- p0(X), mother(X,Y).

p4(Y) :- p0(X), father(X,Y).

p7(Z) :- p4(Y), mother(Y,Z).

p7(Z) :- p4(Y), father(Y,Z).

answer(Z) :- p7(Z).

A fact of the form p0(X) corresponds to the goal grandparent(X,Z) in the
SLD-tree, where Z is the result variable (i.e. the variable appearing in the original
query). Since SLDMagic must produce range-restricted rules, only variables that
are bound to a constant appear as arguments in the generated predicates like p0.
A fact of the form p4(Y) corresponds to the goal parent(Y,Z) in the SLD-tree,
still with Z as result variable. I.e. if one finds a Z with parent(Y,Z), this Z is an
answer to the original query.

SLD-Resolution does several steps in between, which have been removed by
the “copy rule elimination” phase of the SLDMagic prototype (this explains
why there are holes in the predicate numbers). Finally, p7(Z) corresponds to
the empty goal in the SLD-tree, i.e. the query is proven, and Z is a result value.

4 The Push Method with Procedure Calls

Whereas Magic Sets and SLDMagic are translations from Datalog to Datalog,
the Push method is implemented here by a translation from Datalog to C++. The
resulting program is then compiled to machine code by a standard optimizing
compiler. In our tests, we have used g++. Because the C++ compiler performs
powerful optimizations, such as inlining and copy propagation, the code we gen-
erate from a Datalog program can be simple.

4.1 Basic Code Structure, Requirements

Because we want to “push” derived facts through rules (from a body literal to
the head), rules with a single IDB body literal (where derived facts can match)
are especially simple:

1 Available at http://users.informatik.uni-halle.de/~brass/sldmagic/

http://users.informatik.uni-halle.de/~brass/sldmagic/
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Definition 1 (Rule Classification). Rules in the given Datalog program are
classified into

– Start rules: Rules with only EDB-body literals,

– Simple (or “linear”) rules: Rules with exactly one IDB body literal,

– Complex rules: Rules with more than one IDB body literal.

A Datalog program without complex rules is a linear Datalog program. Our
SLDMagic transformation produces programs that are mostly linear (only for
rules that are recursive, but not tail recursive, complex rules are generated).

The C++ program that is generated from a given set of rules basically contains
for each IDB-predicate p of arity n a corresponding procedure p with n arguments
that is called (at least) once for each derivable fact p(c1, . . . , cn). If one looks at
the procedure calls ordered by the time when they occur, one gets the following
notion of a computation sequence:

Definition 2 (Computation Sequence). Let a Datalog program P with rules
defining IDB-predicates and a database D with facts for EDB-predicates be given.
LetM be the minimal Herbrand model of P∪D (i.e. the set of all derivable facts).
A computation-sequence is a sequence S of facts for IDB-predicates.

– The computation is correct iff all facts in S appear in M.

– It is complete iff all facts for IDB-predicates in M appear in S.

Any algorithm for bottom-up evaluation of a Datalog program computes the
facts of the minimal model in some such sequence. The specific order of the facts
can be very different, though, which also influences how long intermediate facts
must be stored. However, any reasonable computation sequence must have the
following property: All facts in the sequence must be derivable from previously
derived facts or given database facts. We call such computation sequences causal.

Definition 3 (Causal Computation Sequence). A computation sequence
S = F1, F2, . . . is causal iff for every fact Fi, i = 1, 2, . . . there is a rule
A← B1 ∧ · · · ∧Bn in P and a ground substitution θ for this rule such that

– Aθ = Fi and

– {B1θ, . . . , Bnθ} ⊆ D ∪ {F1, . . . , Fi−1}.

Lemma 1. Every causal computation sequence is correct.

The translation result of the “Push” method contains a procedure “start()”
which is basically the main program. It ensures that the start rules are applied
which then lead to further procedure calls. Start rules are easy to execute be-
cause they contain only EDB body literals. The extensions of these predicates
(database relations) are given, so the query corresponding to the rule body can
be executed and the calls for the head literal can be done.
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Definition 4 (Requirements for the start() procedure). Let a program P
and database D be given. The procedure start() ensures that for every start rule
A← B1 ∧ · · · ∧ Bn in P and every ground substitution θ for this rule such that
Biθ ∈ D for i = 1, . . . , n the procedure call corresponding to Aθ is executed,
i.e. the computation sequence contains this fact (under the assumption that the
sequence is finite).

Besides the start() procedure, the translation result contains one procedure
per predicate. It must ensure that when a fact p(c1, . . . , cn) is derived, all appli-
cable rule instances are fired that contain p(c1, . . . , cn) in the body. For simple
(linear) rules this is easy, because they contain only one IDB body literal, so
the true instances of the other body literals can be looked up in the database.
For instances of complex rules (containing more than one IDB body literal), we
must look at the global computation sequence: We can only require that the rule
instance is applied if the needed instances of the other IDB body literals have
already been derived earlier in the sequence. So in the case of complex rules, we
need temporary storage for previously derived instances of IDB body literals.

Definition 5 (Requirements for procedures implementing predicates).
Let a program P and database D be given. For every IDB-predicate p of arity n
there is a procedure p with n arguments that ensures the following condition for
the computation sequence S = F1, F2, . . .:

For each i = 1, 2 . . ., if Fi is the first occurrence of the fact (i.e. there is no
Fj with j < i and Fj = Fi), the following holds:

– For each rule A ← B1 ∧ · · · ∧ Bm and each ground substitution θ for that
rule such that there is a k ∈ {1, . . . ,m} with Bkθ = Fi and

{B1θ, . . . , Bmθ} ⊆ {F1, . . . , Fi} ∪D,

Aθ appears somewhere in the sequence, i.e. this fact also occurs in S (under
the assumption that the sequence is finite).

It is not required that the position of the fact is after i (e.g., if it was already
derivable with another rule instance).

This simply means that all rule instances that are applicable when Fi is
derived for the first time, are eventually applied. If we can ensure this condition,
the completeness easily follows:

Theorem 1 (Completeness). Let a program P and database D be given. If
a computation sequence S satisfies the conditions of Definitions 4 and 5, and
if it is finite, it is complete, i.e. contains all IDB-facts in the minimal model
of P ∪D.

After clarifying the general approach and the requirements for each proce-
dure, let us look a bit closer at the code that is generated. The overall code
structure can be visualized by means of a rule application graph:
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Definition 6 (Rule Application Graph). Let a Datalog program P be given
and let IDB(P ) be the set of IDB-predicates of this program, i.e. the predicates
appearing in rule heads. The rule application graph for P is a bipartite directed
graph (V, E) with

– V := V1 ∪ V2, where
• V1 := IDB(P ) are “predicate nodes”, and
• V2 :=

{
(A← B1 ∧ · · · ∧Bm, i)

∣∣A← B1 ∧ · · · ∧Bm ∈ P,
and Bi is a literal with IDB-predicate

}
are “rule activation nodes”.
(The “active literal” Bi will be shown underlined.)

– E := E1 ∪ E2 with
• E1 :=

{(
p, (A← B1 ∧ · · · ∧Bm, i)

) ∣∣ p is the predicate of Bi

}
,

• E2 :=
{(

(A← B1 ∧ · · · ∧Bm, i), p
) ∣∣ p is the predicate of A

}
.

p0(X) :- input(X).

6

�� �p0
PP

PP
PPi

p4(Y) :- p0(X), mother(X,Y).

��
��

��1

��
��

��1
p4(Y) :- p0(X), father(X,Y).

PP
PP

PPi

�� �p4
PP

PP
PPi

p7(Z) :- p4(Y), mother(Y,Z).

��
��

��1

��
��

��1
p7(Z) :- p4(Y), father(Y,Z).

PP
PP

PPi

�� �p7

6

answer(Z) :- p7(Z).

6

�� �answer

Fig. 1. Rule Application Graph for Example 1

The rule application graph for Example 1 is shown in Figure 1. Each predicate
node p corresponds to a procedure that contains a code block for each rule
activation node that has an incoming edge from the predicate node. This code
block ensures that the given fact for p is inserted for the active literal in that
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rule activation and the corresponding calls for the predicate in the head (to
which the outgoing edge leads) are done. Rule activation nodes without incoming
edges correspond to start rules. They are executed in the procedure start() and
initialize the stream of facts which is pushed along the edges through the nodes.
In each rule activation node, an incoming fact can lead to multiple outgoing
facts, but it can also be stopped if the actual data values do not match the
active literal or if it does not find a join partner for the other body literals.

4.2 Example, Data Structures for Query Evaluation

The generated code for Example 1 is shown in Figure 2. Loops over tuples
returned from relation data structures are shown in pseudocode, one would use
a cursor/iterator here.

void start()

{

// p0(X) :- input(X).

foreach X in input_f

p0(X);

}

inline void p0(int c1)

{

// p4(Y) :- p0(X), mother(X,Y).

// X = c1

foreach Y in mother_bf(c1)

p4(Y);

// p4(Y) :- p0(X), father(X,Y).

// X = c1

foreach Y in father_bf(c1)

p4(Y);

}

inline void p4(int c1)

{

// p7(Z) :- p4(Y), mother(Y,Z).

// Y = c1;

foreach Z in mother_bf(c1)

p7(Z);

// p7(Z) :- p4(Y), father(Y,Z).

// Y = c1;

foreach Z in father_bf(c1)

p7(Z);

}

inline void p7(int c1)

{

// answer(Z) :- p7(Z).

// Z = c1;

insert c1 into answer;

}

Fig. 2. Result of the Push Transformation for the Program from Example 1

The data structures for the relations (EDB predicates) are as follows:

– input_f is a list of input values (probably only one). The suffix f is a bind-
ing pattern, it indicates that the relation is accessed with a free variable
for the only column, i.e. the argument is an output argument. Our current
implementation first loads all data to main memory, so a vector/list data
structure is used in such cases, when only a full table scan is needed.

– mother_bf and father_bf support an access with a given (“bound”) first
argument, where the second (“free”) argument is required. A map/multimap
data structure is used in such cases.
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When the data is loaded, we construct for each EDB body literal a relation data
structure which just fits its use. I.e. if the literal contains constants or the same
variable more than once, these selections are already evaluated while the data
is loaded, and only matching tuples are stored. Variables which are bound when
the literal is accessed form the search key of the index, i.e. we do an index join.
Values for the other (“free”) variables are found with the index lookup. It might
seem that we need a lot of memory for this, but benchmarks so far have shown
that memory consumption is low compared to other systems and loading time
is quick. Of course, one can construct examples where using such an optimal
index for each body literal leads to a blowup. One should introduce a limit. It
is always possible to simply load all data for an EDB predicate into a list, and
then do the selection at runtime (which corresponds to a nested loop join).

For string data, we use a radix tree similar to the one in [9] to map each string
to a unique, sequential integer. In this way, later comparisons can be done in
one machine instruction, and index structures for relations are simpler and more
efficient. It is usual also in Prolog systems to have a hash table for atoms (which
are one type of strings). Therefore, the arguments and variables are shown with
type int in the code. However, this is not essential for the Push method and will
probably be relaxed in future versions of our implementation. Basically, one has
to define the types for all columns of the database relations (EDB-predicates)
and can then derive types of the IDB-predicate arguments.

4.3 Duplicate Elimination, Termination

We need to make sure that query evaluation terminates. Since there are only
finitely many constants in the program and the database, the only reason for
non-termination can be duplicates. In every recursive cycle, we must check for
duplicate facts at least once. Even for non-recursive predicates, if many dupli-
cates are generated for the predicate, it might greatly improve performance if
these are detected early and further computations with them are avoided.

Of course, there is also a price to pay in form of a hash table or similar
“set” data structure in which tuples must be inserted. Since the push method
intends to avoid materialization of tuples, this is not nice. Note, however, that
a data structure only for the purpose of duplicate elimination is still smaller
than storing a general relation with arbitrary access. Of course, if we should
know that tuples arrive in a sort order, duplicate elimination would be much
cheaper. Since the variables which make up a tuple are assigned to at different
frequencies (e.g., one in an outer loop, and one in an inner loop), we also intend
to experiment with nested hash tables.

The user of our system can select for which predicates duplicate elimination
is done (of course, recursive cycles must be broken). This is similar to switching
tabling on for a predicate in a logic programming system that uses tabling.

If duplicate elimination is selected for a predicate p, the first thing the proce-
dure for p does is to insert the argument tuple into a “set” data structure (e.g.,
a hash table). If this fails (because the tuple is already contained in the set), the
procedure immediately returns.
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4.4 Temporary Relations for Complex Rules

The Push method tries to use each fact immediately when it is derived. This
works nicely with simple rules which have only a single IDB body literal, and
therefore all other facts needed to apply the rule are available in the database.

For complex rules (with more than one IDB body literal) it is unavoidable
to keep derived facts matching a body literal until we have the matching facts
(join partners) for the other IDB body literals. A rule instance is applied as soon
as the last IDB fact used in this instance is derived (which is again the earliest
possible time).

Thus, for complex rules, we create temporary relations for each IDB body
literal. These relations contain all facts matching the respective body literal
which have previously been derived. The code ensures the following condition: All
ground instances of the rule where the instance of each body literal is contained in
its temporary relation have already been applied, or are currently being applied
(somewhere above in the recursion). Now, if for one of the body literals a new
instance is derived, only this new instance is joined with all facts in the temporary
relations for the other body literals. This new instance is also inserted into the
temporary relation for its own body literal.

This also works if the same fact is used for two body literals: It is tried first
for one of them, and then for the other. When it is tried for the first, the join
partner is still missing, but it is inserted into its temporary relation. When it is
matched with the second body literal, it is already stored in the relation for the
first one, so it finds its join partner, and the rule instance is applied. Basically,
this is seminäıve evaluation, where the “delta” consists of a single fact.

Note again that complex rules are an exceptional case in the output of the
SLDMagic transformation. If the program was not generated by SLDMagic, one
might eliminate some complex rules by unfolding. Furthermore, the above de-
scription works already in the most general case, where all IDB body literals
are potentially recursive. In other cases, when we know that facts are first pro-
duced for one body literal, and then for the other one, we might eliminate some
temporary relations. See subsection 4.6.

Example 2. As an example of a complex and recursive rule, consider this version
of the transitive closure:

tc(X, Y) :- edge(X, Y).

tc(X, Z) :- tc(X, Y), tc(Y, Z).

The corresponding code is shown in Figure 3. Note that when a foreach-loop
starts, the set of values over which it iterates must be fixed (insertions into the
temporary relation have no effect on already active iterators).

4.5 Code Block for a Rule Activation

Now we are ready to look at the code block for a rule activation

A← B1 ∧ · · · ∧Bi ∧ · · · ∧Bm
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void start()

{

// tc(X, Y) :- edge(X, Y).

foreach (X,Y) in edge_ff

tc(X, Y);

}

void tc(int c1, int c2)

{

// Duplicate check:

if(!tc_bb.insert(c1, c2))

return;

// tc(X,Z) :- tc(X,Y), tc(Y,Z).

// X=c1, Y=c2 (first body literal)

tc_1_fb.insert(c1, c2);

foreach Z in tc_2_bf(c2)

tc(c1, Z);

// tc(X,Z) :- tc(X,Y), tc(Y,Z).

// Y=c1, Z=c2 (second body literal)

tc_2_bf.insert(c1, c2);

foreach X in tc_1_fb(c1)

tc(X, c2);

}

Fig. 3. Result of the Push Transformation for the Program from Example 2

in a bit more detail. It is structured as follows:

– It first has to check whether the given fact p(c1, . . . , cn) really matches the
IDB body literal Bi = p(t1, . . . , tn), i.e. for j = 1, . . . , n
• if tj is a constant, then tj = cj must hold,
• if tj is a variable that appeared first in tk, k < j, then cj = ck must be

satisfied (otherwise, the following code block is skipped).
Note that if the procedure call contains constants as arguments, or the same
variable in different arguments, the compiler might be able to evaluate the
condition, and possibly remove the code block.

– If the rule is a complex rule, (c1, . . . , cn) is inserted into the temporary
relation for Bi. (One can improve this by storing only values of variables
that are later needed.)

– Then one executes the query B1 ∧ · · · ∧ Bi−1 ∧ Bi+1 ∧ · · · ∧ Bm with the
given values for the variables among the t1, . . . , tn. For simple rules, all these
literals are EDB literals, so there is a given database relation for them. For
complex rules, we created temporary relations for each IDB body literal in
them, which are used here. So in both cases, relations are given for all Bj ,
j 6= i, and it is a standard task to evaluate this query.

– The query result contains bindings for the remaining variables of the query.
So we now have a ground substitution θ for the rule such that (B1∧· · ·∧Bm)θ
is true. With these variable values, the corresponding instance of the head
literal A can be determined. Then the corresponding procedure call is done.

4.6 An Optimization for Complex Rules

Consider a rule with two IDB body literals, e.g. p(X) and q(X). When a start
rule is executed, only a subset of the nodes in the rule application graph are
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reachable from this start rule, i.e. only for some predicates facts are derived. If
the first start rule yields only p-facts, but no q-facts, it is clear that the temporary
relation for the second body literal is still empty. So the derived p-facts will be
stored in the temporary relation for the first body literal, but cannot be pushed
further. The corresponding code can be removed.

If for a later start rule p-facts are derived when q-facts have been derived
in the meantime, this code is needed. Thus two different versions of the proce-
dure are needed, which are used in the derivation for different start rules (also
predicate-procedures between the start rule and this rule must be duplicated).

Another interesting special case is when all start rules that yield p-facts are
executed before the first start rule with yields q-facts. In this case, the temporary
relation for the body literal q(X) is not needed, and its facts can be simply
pushed through the rule as if p were an EDB-predicate.

So in general, we have a sequence of components of the program, one for each
start rule. For this optimization of the complex rules evaluation, it is be useful
to distinguish three possible status values of a predicate p in component i:

– The predicate extension is empty, i.e. the predicate node for p is not reachable
from any start rule ≤ i.

– The predicate extension is partial, i.e. p is reachable in a component ≤ i and
p is also reachable in a component ≥ i.

– The predicate extension is complete, i.e. p is not reachable in components≥ i.

4.7 Remarks about Inlining

Of course, unfolding procedure calls through inlining often leads to an increased
code size, which might have negative effects on cache utilization and thus run-
time. Currently, we leave the decision which procedure calls are inlined to the
compiler (it does a cost-benefit estimation). With an analysis of the rules, we
might be able to do better in future and use __attribute__((always_inline))
or __forceinline on selected procedures.

5 Benchmark Results

We implemented our transformation and a supporting C++ library and checked
several benchmarks from the OpenRuleBench benchmark suite [11]. The cur-
rent version of our method can handle only basic Datalog without negation and
structured terms. So we could try only such benchmark problems. However, for
these we get encouraging results, often significantly faster than systems which are
well established in the community. We tried systems that were considered also
in the original OpenRuleBench test, namely XSB [15], YAP [8], and DLV [10].
Note that XSB is called a deductive database in [15], and clearly beats older,
well-known deductive database prototypes like CORAL [14]. The DLV system
is strong in answer set programming, but it only uses system modules necessary
for a given problem [10]. So it is not unfair to use it in a comparison for sim-
pler problems. Recently, the Soufflé system has been developed [16]. It is not
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advertised as a deductive database, but as a system for doing static program
analysis using Datalog. Nevertheless, it can be used to execute the benchmarks,
and does a compilation to C++ as we do, although the code structure is different
(it is based on relations and relational algebra). The performance results on the
benchmarks we tried are comparable to our system (we restricted Soufflé to one
core, because our prototype cannot do parallel evaluation yet). The significantly
lower memory consumption of Soufflé in the compiler version is probably due to
the use of a Trie data structure for relations (something we should try, too).

Of course, the above systems (except Soufflé) have been developed for more
than a decade, and offer many features which are needed for the practical devel-
opment of large projects. In contrast, our implementation is just a first prototype
in order to check the potential of our evaluation method.

For space reasons, we show here only the results of two benchmarks [11]:
The standard tail-recursive transitive closure program (with a cyclic graph with
1000 nodes and 50 000 edges), and a join of five relations with 10 000 rows each.

System Load Execution Total time Factor Memory

Push (Proc.) 0.005s 1.039s 1.044s 1.0 31.246 MB
Push (Switch) 0.005s 1.030s 1.033s 1.0 23.303 MB
Seminäıve 0.005s 1.670s 1.672s 1.6 31.210 MB
XSB 0.247s 4.740s 5.090s 4.9 135.925 MB
YAP 0.240s 10.549s 10.833s 10.4 147.601 MB
DLV (0.373s) — 52.300s 50.1 513.753 MB
Soufflé (SQlite) (0.113s) — 11.237s 10.8 43.083 MB

(compiled) (0.030s) — 0.790s 0.8 3.810 MB

Transitive Closure Benchmark with query tc( , ) [11]

System Load Execution Total Time Factor Memory

Push (Proc.) 0.004s 1.043s 1.043s 1.0 16.863 MB
Push (Switch) 0.004s 1.031s 1.032s 1.0 9.010 MB
XSB 0.128s 6.056s 6.460s 6.2 127.259 MB
YAP 0.207s 3.572s 3.840s 3.7 135.921 MB
DLV (0.253s) — 80.237s 76.9 603.141 MB
Soufflé (SQlite) (0.100s) — 12.680s 12.2 38.548 MB

(compiled) (0.040s) — 1.450s 1.4 4.264 MB

Join1 Benchmark with query a(X,Y) [11]

We compile to machine code, whereas XSB, YAP and DLV emulate an ab-
stract machine. This explains a factor of about 3, see, e.g. [7]. In case of Soufflé,
the compiled version uses an own implementation, whereas the interpreted ver-
sion uses SQLite. Thus, the factor of 10 is not only caused by compilation.

Our transformation and the compilation together take about 0.5s, which are
not included in the above numbers (because they are done only once).

The additional memory in the procedure version of the Push method is re-
quired because the query result needs to be stored, whereas the original version
could offer an iterator interface without having to store answer tuples.
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6 Related Work

The general idea of immediately using derived facts to derive more facts is not
new. For instance, variants of semi-naive evaluation have been studied which
work in this way [17,18]. Heribert Schütz proposed in his 1993 PhD thesis al-
ready a version of bottom-up evaluation that used procedures for each predicate
called when a new fact was derived. In contrast to our approach, the rules were
first normalized, and EDB predicates were not treated specially. There are dif-
ferences also in the data structures and the structure of the generated code (our
goal is doing partial evaluation). Furthermore, there was only a prototypical im-
plementation in Lisp (as part of the LOLA system), and benchmark comparisons
with established systems were not done or did not give the desired results.

The method is also related to the propagation of updates to materialized
views. In [12], compiling Datalog rules to program code was studied based on
incremental computation of the derived facts.

“Pushing” tuples through relational algebra expressions has also become an
attractive technique for standard databases [13].

7 Conclusion

In this paper, we have explained a new version of the Push method for bottom-up
evaluation in deductive databases. The main improvement is that the method is
much simpler to understand, and the program code resulting from the Datalog-
to-C++ transformation is much better structured. Current C++ compilers are
able to do many optimizations automatically that were explicitly built into the
old transformation. Our performance measurements on some benchmarks of the
OpenRuleBench collection are encouraging. It seems that we are able to be faster
than some well-established systems in the area. The current state of the project
is reported on the following web page:

http://users.informatik.uni-halle.de/~brass/push/
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