
Order in Datalog with Applications to Declarative Output 1

Order in Datalog

with Applications to

Declarative Output

Stefan Brass
University of Halle, Germany

Stefan Brass Datalog 2.0, 11.09.2012

Order in Datalog with Applications to Declarative Output 2

Overview

1. Motivation: Output, Ordered Predicates

'

&

$

%

2. Motivation: SQL, Ranking

3. Semantics

4. Aggregation (short)

5. Conclusions

Stefan Brass Datalog 2.0, 11.09.2012

Order in Datalog with Applications to Declarative Output 3

Motivation (1)

A deductive database is . . .

• not only a system permitting recursive queries,

That turned out to be no “quantum leap”.

• but a platform for developing database applications

using a declarative language for database queries

and programming (Datalog).

SQL is declarative, but lacks the programming part. Therefore, data-
base applications are developed today using a mixture of languages,
e.g. a combination with PHP or other non-declarative languages.

Stefan Brass Datalog 2.0, 11.09.2012

Order in Datalog with Applications to Declarative Output 4

Motivation (2)

• Output is an essential part of many database app-

lications. It should be done declaratively.

In this way they differ from programs that do a complicated computa-
tion and then print a short result. For such programs, a non-declarative
solution for output might be ok. For database applications, it is not.

• In Datalog it is natural to understand the rules ap-

plied from body to head (∼ bottom-up evaluation).

Therefore actions, such as output, should be done in the head.

• Database relations are specified as a set of facts.

Printing an entire relation should be a simple task

without findall to avoid backtracking over output.

Stefan Brass Datalog 2.0, 11.09.2012

Order in Datalog with Applications to Declarative Output 5

Ordered Predicates (1)

• In any programming language, output is done by

constructing a sequence of text pieces.

• We use “ordered predicates”, which have an addi-

tional argument defining the order (written <...>).

ordered output/1.

output<1>(’Hello, ’).

output<2>(Name) ← name(Name).

output<3>(’!\n’).

name(Nina’).

• Since the default value for the special argument is

the rule number, it can be left out in the example.

Stefan Brass Datalog 2.0, 11.09.2012

Order in Datalog with Applications to Declarative Output 6

Ordered Predicates (2)

• The ordering argument is list-valued to support se-

veral sorting criteria of different priority.

• In this way, also a tree structure of the document

can easily be defined:

ordered output/1.

output<1>(’\n’).

output<2,Name,1>(’’) ← programmer(Name).

output<2,Name,2>(Name) ← programmer(Name).

output<2,Name,3>(’\n’) ← programmer(Name).

output<3>(’\n’).

programmer(Name) ← emp(Name, ’Programmer’, Sal).

Stefan Brass Datalog 2.0, 11.09.2012

Order in Datalog with Applications to Declarative Output 7

Ordered Predicates (3)

• Not only the “main predicate” output is ordered,

but one can use auxillary ordered predicates:

ordered output/1, list_body/2, list_item/2.

output(’\n’).

output(Text) ← list_body(Text).

output(’\n’).

list_body<Name,i>(Text) ← list_item[i](Name, Text).

list_item(Name, ’’) ← programmer(Name).

list_item(Name, Name) ← programmer(Name).

list_item(Name, ’’) ← programmer(Name).

• Uses default order, except for sorting by name.

Stefan Brass Datalog 2.0, 11.09.2012

Order in Datalog with Applications to Declarative Output 8

Ordered Predicates (4)

• In the rule body, one can access the position of the

fact currently matched with the body literal:

list_body<Name,i>(Text) ← list_item[i](Name, Text).

• So the systems sorts the derivable facts and then

assigns array indexes.
The original list-valued ordering argument cannot be accessed in the
body. We try to make it unnecessary to construct the list explicitly.

• The default order specification consists of the rule

number, followed by the index positions of all bo-

dy literals with ordered predicates in the order of

appearance in the body (∼ Prolog computation).

Stefan Brass Datalog 2.0, 11.09.2012

Order in Datalog with Applications to Declarative Output 9

Note

• Of course, the additional argument is only an easy

way to explain the semantics.

• The syntax must be such that

� it is usually not necessary to write the ordering

argument explicitly (especially no numbers),

� larger portions of text can be written as they will

be printed (with markers for insertion places).

• Query evaluation should often be possible without

explicit construction of the ordering argument.

• We have (preliminary) solutions for both problems.

Stefan Brass Datalog 2.0, 11.09.2012

Order in Datalog with Applications to Declarative Output 10

Pattern Syntax for Output

• Permits a block of text to be written as it will ap-

pear in the output:

output(#

<#list_body>

#).

list_body<Name>(#

<$Name>

#) ← programmer(Name).

• Automatically translated into standard rules.

Stefan Brass Datalog 2.0, 11.09.2012

Order in Datalog with Applications to Declarative Output 11

Overview

1. Motivation: Output, Ordered Predicates

2. Motivation: SQL, Ranking

'

&

$

%

3. Semantics

4. Aggregation (short)

5. Conclusions

Stefan Brass Datalog 2.0, 11.09.2012

Order in Datalog with Applications to Declarative Output 12

Simple SQL Query in Datalog

• E.g. employees ordered by salary (highest first):

SELECT ENAME, SAL

FROM EMP

ORDER BY SAL DESC

• Same Query in Datalog with ordered predicates:

answer<^Sal>(EName, Sal) ← emp(EName, Sal, Job).

^Sal is an abbreviation for desc(Sal).

• The system has two possible main predicates:

� output/1: Simple concatenation of text pieces.

� answer/n: Produces tabular output.

Stefan Brass Datalog 2.0, 11.09.2012

Order in Datalog with Applications to Declarative Output 13

Motivation: SQL

• Because of top-N, ranking and window queries,

� order is also important semantically for the query

result itself,

� not only something cosmetic needed only at the

end for printing.
These constructs were recently added to SQL.
From SQL-2003 to SQL-2008, the ORDER BY clause was added to
view definitions (corresponding to derived predicates).

• Many different orders can be needed in one query.

• A deductive database system will not be successful

if it does not permit an easy transition from SQL.

Stefan Brass Datalog 2.0, 11.09.2012

Order in Datalog with Applications to Declarative Output 14

Example (1)

• E.g. jobs of the five employees with highest salary:

SELECT DISTINCT JOB

FROM (SELECT JOB, ROW_NUMBER() OVER

(ORDER BY SAL DESC) N

FROM EMP)

WHERE N <= 5

ORDER BY JOB

• This query needs to sort the data two times:

� First by salary to compute the position N,

� then by job to produce the sorted output.

Stefan Brass Datalog 2.0, 11.09.2012

Order in Datalog with Applications to Declarative Output 15

Example (2)

• Define a list/array of employee tuples ordered by

descending salary:

ordered emp_by_sal/3.

emp_by_sal<^Sal>(EName, Job, Sal) ←
emp(EName, Job, Sal).

• The system orders the derived facts by the special

argument and assigns positions (row numbers):

ordered answer/1.

answer<Job>(Job) ←
emp_by_sal[N](EName, Job, Sal) ∧ N≤ 5.

• For equal salaries: implementation chooses order.

Stefan Brass Datalog 2.0, 11.09.2012

Order in Datalog with Applications to Declarative Output 16

Ranking Functions

• In order to avoid the implementation-dependency,

different ranking functions can be used as in SQL:

EName Sal row_number rank dense_rank

Andrew 4000 1 1 1

Betty 3000 2 2 2

Chris 3000 3 2 2

Doris 2000 4 4 3

Eddy 1000 5 5 4

Fred 1000 6 5 4

Gerd 800 7 7 5

answer<Job>(Job) ←
emp_by_sal[rank:N](EName, Job, Sal) ∧ N≤ 5.

Stefan Brass Datalog 2.0, 11.09.2012

Order in Datalog with Applications to Declarative Output 17

Partitioning

• Sometimes, the row numbers or ranks are not nee-

ded for the entire predicate, but for a group of facts

with certain equal arguments (∼ multidim. array).

If one wants to pass bindings as in the magic set method, this is
helpful (of course, if the concrete index values are not needed, but
only there relative order, one can also avoid computing the entire
extension).

• E.g. top 3 earning employees for each job:

job_emp<Job|^Sal>(EName, Job, Sal) ←
emp(EName, Job, Sal).

answer<Job,N>(Job, N, EName) ←
job_emp[N](EName, Job, Sal) ∧ N≤ 3.

Stefan Brass Datalog 2.0, 11.09.2012

Order in Datalog with Applications to Declarative Output 18

Overview

1. Motivation: Output, Ordered Predicates

2. Motivation: SQL, Ranking

3. Semantics

'

&

$

%

4. Aggregation (short)

5. Conclusions

Stefan Brass Datalog 2.0, 11.09.2012

Order in Datalog with Applications to Declarative Output 19

Stratification (1)

• Negation can be simulated, e.g. by adding a dummy

element which will certainly be last and checking

whether it is also first.

• Therefore it is no surprise that one can write mea-

ningless programs (with “odd loops”):

ordered p/1.

p<10>(a) ← p[1](b).

p<20>(b).

If p(b) is the first element in the sorted list p, then p(a) is true, which
would then come first. But then p(b) is no longer the first element.

Stefan Brass Datalog 2.0, 11.09.2012

Order in Datalog with Applications to Declarative Output 20

Stratification (2)

• The solution is the same as for negation:

� Recursion through the determination of a row

number or rank is forbidden, i.e.

� it must be possible to assign levels to predicates

such that the level of the predicate in the head

is strictly greater than the level of a predicate

used with [...] in the body

(and the same for a predicate used negated in the body), and
of course the level of the predicate in the head must always be
greater than or equal to all predicate levels in the body.
Thus the extension of a predicate can be fully computed before
row numbers must be assigned.

Stefan Brass Datalog 2.0, 11.09.2012

Order in Datalog with Applications to Declarative Output 21

Semantics

• The rules are translated to standard Datalog with

two special predicates for each ordered predicate p:

� p_head has two additional list-valued arguments

for the partitioning and for the ordering value.

� p_body has four additional arguments, for row

number, rank, dense rank, and next row number.

• For each stratification level i:

� Standard fixpoint computation is done.

� For all ordered predicates p of level i, the derived

p_head facts are sorted, and the corresponding

p_body facts are computed.

Stefan Brass Datalog 2.0, 11.09.2012

Order in Datalog with Applications to Declarative Output 22

Overview

1. Motivation: Output, Ordered Predicates

2. Motivation: SQL, Ranking

3. Semantics

4. Aggregation (short)

'

&

$

%

5. Conclusions

Stefan Brass Datalog 2.0, 11.09.2012

Order in Datalog with Applications to Declarative Output 23

Computation of Aggregations

• The automatic numbering of facts permits to loop

over them and e.g. compute the sum of all salaries:

emp_list<EName>(EName, Sal) ←
emp(EName, Sal, Job).

sal_sum(1, 0).

sal_sum(N1, S1) ←
sal_sum(N, S),

emp_list[N,next:N1](EName, Sal),

S1 is S + Sal.

answer(S) ← sal_sum(nil, S).

Of course, standard aggregation functions should be directly suppor-
ted in the syntax, but this example is interesting for questions of
expressive power. Similar to solution in LDL (XY-stratification).

Stefan Brass Datalog 2.0, 11.09.2012

Order in Datalog with Applications to Declarative Output 24

Overview

1. Motivation: Output, Ordered Predicates

2. Motivation: SQL, Ranking

3. Semantics

4. Aggregation (short)

5. Conclusions

'

&

$

%
Stefan Brass Datalog 2.0, 11.09.2012

Order in Datalog with Applications to Declarative Output 25

Conclusions (1)

• My goal is to develop a deductive DBS that sup-

ports also programming, not only database queries.

• The plan is to do this by translation from Datalog

to C++.

• The deductive database system should be written

itself in Datalog.

Or at least an essential part of the system.

• Output is needed for this task.

Stefan Brass Datalog 2.0, 11.09.2012

Order in Datalog with Applications to Declarative Output 26

Conclusions (2)

• It seems obvious to me that more or less all features

of SQL must be supported in a deductive DBS that

aims at practical usage.

• Features shown here for ORDER BY and ranking are

needed for this.
Duplicates can be handled with the additional argument, too.

• Small prototype to try out the language:

http://www.informatik.uni-halle.de/˜brass/order/

• The task is important. I made a proposal. Discus-

sion on language syntax&semantics is welcome.

Stefan Brass Datalog 2.0, 11.09.2012

Order in Datalog with Applications to Declarative Output 27

Overview

1. Motivation: Output, Ordered Predicates

2. Motivation: SQL, Ranking

3. Semantics

4. Aggregation (short)

5. Conclusions

6. Appendix

'

&

$

%
Stefan Brass Datalog 2.0, 11.09.2012

Order in Datalog with Applications to Declarative Output 28

Syntax of Order Specification

Order-Specification:

- <
�
�
�
� -

- Part-El. - |
�
�
�
�

6

�,
�
�
�
�

6

Order-El. - >
�
�
�
�-

�,
�
�
�
�

6

Stefan Brass Datalog 2.0, 11.09.2012

Order in Datalog with Applications to Declarative Output 29

Syntax of Index (1)

Order-Position:
- [
�
�
�
� - Index -]

�
�
�
�-

-

?

,
�
�
�
�

?

�

- rank:
�
�

�
�- Index -

-dense_rank:
�
�

�
�- Index -

- last
�
�

�
� -

- next:
�
�

�
�- Index -

6

Stefan Brass Datalog 2.0, 11.09.2012

Order in Datalog with Applications to Declarative Output 30

Syntax of Index (2)

Index:
- Variable -

- Positive Integer

6

Stefan Brass Datalog 2.0, 11.09.2012

Order in Datalog with Applications to Declarative Output 31

Simulation of Negation

• Negation can be simulated, e.g. by adding a dummy

element which will certainly be last and checking

whether it is also first.

• E.g. the rule

p(X) ← q(X) ∧ ¬r(X).

can be expressed with order predicates as
not_r<X|2>(yes, X) ← q(X).

not_r<X|1>(no, X) ← r(X).

p(X) ← p_aux[1](yes, X).

Stefan Brass Datalog 2.0, 11.09.2012

Order in Datalog with Applications to Declarative Output 32

Order-Spec in the Body?

• Helps to avoid auxillary predicates:
answer(EName, Sal) ←

emp<^Sal>[N](EName, Sal, Job) ∧ N≤ 3.

• However, consider this case:
answer(EName, Sal) ←

emp<^Sal>[N](EName, Sal, Job) ∧
N≤ 3 ∧ programmer(Job).

programmer(’Programmer’).

The question is whether only programmers are considered when as-
signing row numbers, or row numbers are assigned first, and then
programmers are selected. The problem is that it is no longer suffi-
cient to consider a single assignment of values to variables when the
rule is applied (aggregation is done here in the body, ∼ findall).

Stefan Brass Datalog 2.0, 11.09.2012

Order in Datalog with Applications to Declarative Output 33

Declarative Output

Aren’t there good solutions?

• A typical declarative solution is to use an IO state

argument (accumulator pair):

main(IOState_in, IOState_out) :-

io.write_string("Hello, ", IOState_in,

IOState_1),

io.write_string("World!", IOState_1,

IOState_2),

io.nl(IOState_2, IOState_out).

This is from the Mecury Tutorial. Mecury has a special syntax that
simplyfies this a bit, and also checks for determinismn (one cannot
backtrack over IO).

Stefan Brass Datalog 2.0, 11.09.2012

Order in Datalog with Applications to Declarative Output 34

Efficient Evaluation (1)

• A tuple stream (cursor/iterator) interface for pre-

dicates/relations is used.
As usual, we try not to materialize intermediate relations in order to
save memory (unless the same relation is used several times and it is
cheaper to store it than to recompute it, or we need explicit sorting).

• A tuple stream can be ordered by given arguments.

• I.e. the task is to translate the given rules for a pre-

dicate into e.g. C++-code for iterators that produce

the tuples in the required order.
In the end, one wants the output-tuples ordered by first argument,
but it helps if the predicates used in the output-rules can be fetched
in a specific order.

Stefan Brass Datalog 2.0, 11.09.2012

Order in Datalog with Applications to Declarative Output 35

Efficient Evaluation (2)

• For several rules about one predicate, it is often

obvious that all tuples produced by one rule come

before all tuples produced by another rule.

homeworks_table<1>("<table>\n").

homeworks_table<2>("<tr><th>Points</th>...").

homeworks_table<3,X>(Y) ← homeworks_row[X](Y).

homeworks_table<4>("</table>").

• So we choose the rule evaluation sequence corre-

spondingly (avoids work at runtime).

• Otherwise ordered tuple streams for the single rules

can be efficiently merged.

Stefan Brass Datalog 2.0, 11.09.2012

Order in Datalog with Applications to Declarative Output 36

Efficient Evaluation (3)

• Also the nested loop join preserves certain orders.

The full version of the paper contains an unconventional variant that
does the sorting in groups, and helps to preserve more order.

• Base tables might have indexes or be stored in sor-

ted order (e.g., as a b-tree), then tuples can be

accessed in certain sorted orders.

• Sometimes, explicit sorting is unavoidable, and it is

an optimization task to find the optimal place(s).

It does not necessarily have to be at the very end. Sorting also helps
with merge joins.

Stefan Brass Datalog 2.0, 11.09.2012

