
7. The Debugger 7-1

Chapter 7: The Debugger

References:

• Online Documentation of Microsoft Visual C++ 6.0 (Standard Edition):
MSDN Library: Visual Studio 6.0 release.

• Peter Rechenberg, Gustav Pomberger (Eds.):
Informatik-Handbuch (in German).
Carl Hanser Verlag, 1997.
Kapitel 12: Systemsoftware (H. Mössenböck).

• Brian W. Kernighan / Rob Pike: The Practice of Programming.
Addison-Wesley, 1999, ISBN 0-201-61586-X.

Stefan Brass: Computer Science III Universität Giessen, 2001



7. The Debugger 7-2

Introduction (1)

• Even if a program runs through compiler/linker wi-

thout error, it still may not work properly.

• Debugging is the process of finding such errors.

Errors in programs are also called “bugs”. In the early days of com-
puters, it might have been possible that small insects got inside the
hardware and caused a malfunction. However, already Edison used
the word “bug” for a problem in his phonograph (1889), and already
at that times the insect was only imaginary.

• “Good programmers know that they spend as much

time debugging as writing so they try to learn from

their mistakes.” [Kernighan/Pike]

Stefan Brass: Computer Science III Universität Giessen, 2001



7. The Debugger 7-3

Introduction (2)

• Classes of errors:

� The program may be aborted because of a run-

time error detected by the computer hardware or

a library function.

E.g. dereferencing a NIL-pointer or otherwise accessing an illegal
address (unfortunately, only addresses outside the memory alloca-
ted to the program cause a run-time error). E.g. a division by 0.

� The program may execute without error message,

but print wrong results, execute forever (or may

in some other way not behave as intended).

Stefan Brass: Computer Science III Universität Giessen, 2001



7. The Debugger 7-4

Introduction (3)

• “Debugging is hard and can take long and unpre-

dictable amounts of time, so the goal is to avo-

id having to do much of it. Techiques that help

reduce debugging time include good design, good

style, boundary condition tests, assertions and sa-

nity checks in the code, defensive programming,

well-designed interfaces, limited global data, and

checking tools. An ounce of prevention really is

worth a pound of cure.” [Kernighan/Pike]

Stefan Brass: Computer Science III Universität Giessen, 2001



7. The Debugger 7-5

Introduction (4)

• Put assertions in your program (conditions that

must be true and cause an error message if not).

E.g. every procedure should check its parameters.

• Procedures should not crash if called with wrong

parameters (“Defensive Programming”).

This is somewhat similar to assertions. E.g. some versions of printf

print “(null)” if a string to be printed is NIL, others crash.

• Consider extreme cases.

This is what Kernighan/Pike call “boundary condition tests”. E.g. if
you develop a loop, consider the case that it is never executed. If you
write data to an array, consider the case that the array is full.

Stefan Brass: Computer Science III Universität Giessen, 2001



7. The Debugger 7-6

Introduction (5)

• It might be useful to write procedures that dump

data structures in readable form, echo the input

read, etc. (debugging output).

If you put these procedures inside an #ifdef, you can easily activate
them if something went wrong and you want to see a bit more what
is going on internally.

• You should test each piece/module of the program

after it is developed, not only the complete program

at the end.

After every change, tests must be repeated. If might be possible to
collect test input files and the corresponding output files and write a
shellskript/batcg file that runs all the tests.

Stefan Brass: Computer Science III Universität Giessen, 2001



7. The Debugger 7-7

Introduction (6)

• If you detect a bug, immediately save the current

version of the program (source files and binary), the

input data, and any other information that might

be needed to reproduce the unwanted behaviour.

If a bug cannot be reproduced, it is very difficult to find it.

• Really clarify the source of each error!

Sometimes it might be possible to change the program so that the bug
no longer appears, but without really understanding why the program
did behave in the way it did. From this you don’t learn anything and
chances are that the bug will reappear in some other form or that the
changes you did created a new bug.

Stefan Brass: Computer Science III Universität Giessen, 2001



7. The Debugger 7-8

Introduction (7)

• It might be good to save older versions of the pro-

gram.

Often bugs were introduced by the most recent changes, so it is good
to know what these changes were. There are source code control
systems that keep track of changes.

• In rare circumstances, library routines contain bugs

or even the compiler may not work correctly.

Do not always think that it is your fault. You should be a bit critical
towards other people’s code, too. Of course, chances are much bigger
that it is your fault, so one has to keep the right balance in searching
the error.

Stefan Brass: Computer Science III Universität Giessen, 2001



7. The Debugger 7-9

Debuggers (1)

• Debuggers are programs that support the task of

debugging.

• One can use a debugger in two ways:

� One can analyse the main memory after the pro-

gram crashed (“Post mortem debugging”).

� One can run the program step by step under

the control of the debugger (“dynamic debug-

ger”/“tracing debugger”).

Stefan Brass: Computer Science III Universität Giessen, 2001



7. The Debugger 7-10

Debuggers (2)

• Whereas the compiler translates e.g. C into machi-

ne code, an important task of the debugger is to

relate the main memory contents (machine code,

data bytes) back to the original program.

It needs the help of the compiler/linker for this task: They might
make debugging information available.

• Program development environments usually con-

tain editor, compiler, linker, make, and a debugger.

Then the debugging information might only be understandable by this
debugger. However, there are also standards for debugging informati-
on (e.g. in COFF, the common object file format).

Stefan Brass: Computer Science III Universität Giessen, 2001



7. The Debugger 7-11

Post-Mortem Debugging (1)

• When a program crashes (i.e. causes a run-time

error), the operating system might

� write the contens of main memory to a file (“core

dump”) that can be analyzed with a debugger.
This is the UNIX solution. The file is called “core”. One can also
call the function “abort()” in the program to write the core file and
terminate program execution. If the program does not terminate,
sending it the signal SIGQUIT (e.g. by pressing Ctrl+\) performs
the same function. Common debuggers under UNIX include adb

(low-level), dbx, sdb, xdb, gdb.

� directly call a debugger.
This is done under Windows. The debugger might be “Dr. Watson”
or the debugger that comes with VC++.

Stefan Brass: Computer Science III Universität Giessen, 2001



7. The Debugger 7-12

Post-Mortem Debugging (2)

• If the executable file contains no debugging infor-

mation, the debugger may only show

� the runtime error (e.g. “segmentation fault”),

� the current values of registers,

This includes the instruction pointer/program counter and the
stack pointer.

� a stack backtrace,

If the program follows common conventions for stack management,
the single activation records may be listed. However, no function
names can be listed without debugging information (only return
addresses), and the parameters and local variables are probably
shown only as bytes (the debugger has no type information).

Stefan Brass: Computer Science III Universität Giessen, 2001



7. The Debugger 7-13

Post-Mortem Debugging (3)

• Output of the post-mortem debugger without de-

bugging information (continued):

� the machine code of the program,

The debugger might be able to disassemble it, i.e. show it in sym-
bolic form (but still as machine instructions).

� the contents of any main memory address.

Again, since there is no symbolic information, one does not know
exactly where the global variables are.

• This information is basically useless unless one has

access to the program source.

Stefan Brass: Computer Science III Universität Giessen, 2001



7. The Debugger 7-14

Post-Mortem Debugging (4)

• If the linker has preserved the global names in the

executable file, the debugger is able to show

� function names in the stack backtrace (especially

the function in which the crash happened),

This is not quite reliable since the names and addresses of func-
tions declared as “static” might be missing. If there are standard
procedure prologues and epilogues, the debugger might at least be
able to detect this.

� the contents of global variables.

The debugger now knows their addresses. It does not know their
types, so the user must himself/herself specify the type in the print
command.

Stefan Brass: Computer Science III Universität Giessen, 2001



7. The Debugger 7-15

Post-Mortem Debugging (5)

• Today, compilers have options to put debugging

information in the object code files.
And the linker has an option to copy it into the executable program.
Program files that do not include symbolic information are sometimes
called “stripped” (this may also mean that the relocation information
was removed).

• MS VC++ puts the debugging information into the

files that are separate from the executable program.
VC60.pdb contains information collected by the compiler for .obj files,
e.g. type information. 〈Project〉.pdb is created by the linker, and in-
cludes symbol information, function prototypes, and the information
from VC60.pdb. The absolute path of 〈Project〉.pdb is contained in the
executable program.

Stefan Brass: Computer Science III Universität Giessen, 2001



7. The Debugger 7-16

Post-Mortem Debugging (6)

• Debugging information includes:

� The names and machine code addresses of all

functions (including static ones).

� The correspondence between machine code ad-

dresses and source file lines.

� Names, offsets, and types for function parameters

and local variables.

� Names, types, and addresses for global variables.

� Names, types, and offsets of struct components.

� Names and values of enumeration type constants.

Stefan Brass: Computer Science III Universität Giessen, 2001



7. The Debugger 7-17

Post-Mortem Debugging (7)

• Now the debugger is able to show:

� In which line in which .c-file the error occurred.

� A stack backtrace, i.e. which line in which file

contained the function call for the function in

which the error occurred (and recursively all cal-

ling functions up to main).

� Values of parameters, and, if requested local and

global variables.
These are formatted according to the known types. It is also possi-
ble to browse complicated linked structures, i.e. to follow pointers
and show all components of structures.

Stefan Brass: Computer Science III Universität Giessen, 2001



7. The Debugger 7-18

Post-Mortem Debugging (8)

• If a program causes an error under Windows, one

gets the dialog box “Prog has caused an error in

PROG.EXE. Prog will now close. If you continue to

experience problems, try restarting your computer.”

In good operating systems, user programs can never confuse the ope-
rating systems such that a reboot is necessary.

• Then one can click on “Debug” to start the de-

bugger.

Alternatively, one can execute the program with Debug→Go (F5). Then
the program is directly executed under the debugger.

Stefan Brass: Computer Science III Universität Giessen, 2001



7. The Debugger 7-19

Post-Mortem Debugging (9)

• E.g., the stack backtrace may look as follows:
p(int 0x00000001) line 11 + 3 bytes

main() line 13 + 7 bytes

mainCRTStartup() line 206 + 25 bytes

KERNEL32! bff7b9e4()

KERNEL32! bff7b896()

KERNEL32! bff7a24f()

• This means that the error was detected in proce-

dure p at line 11.

The line was compiled into several machine instructions and it proba-
bly happend in the second one. This explains the offset of 3 bytes.

Stefan Brass: Computer Science III Universität Giessen, 2001



7. The Debugger 7-20

Post-Mortem Debugging (10)

• VC++ will open the source file and an puts a yellow

arrow in front of the line that caused the error.

• In the example, the procedure p was called with one

integer parameter that had the value 1.

• The procedure p was called from the procedure main

(line 13 in main contains the procedure call).

One can double-click on main in the stack backtrace and VC++ opens
the source file for it (this position is marked with a green triangle).

• main itself was called from mainCRTStartup.

Stefan Brass: Computer Science III Universität Giessen, 2001



7. The Debugger 7-21

Post-Mortem Debugging (11)

• There are three more return addresses on the stack,

but no symbolic information is available for them.

• In the “Watch” windows, one can enter the names

of variables and see their values.

In order to see local variables, the right function must be selected on
the stack backtrace (double-click on it if necessary). Pointers can be
dereferenced by clicking on the “+” sign near to them.

• Alternatively, one can open the “Variables” window

to see all variables of the selected function.

Debugger windows are opened under View→Debug Windows. There are
also windows that show registers, memory, or machine code.

Stefan Brass: Computer Science III Universität Giessen, 2001



7. The Debugger 7-22

Dynamic Debugger (1)

• A dynamic debugger (or tracing debugger) can exe-

cute the program step by step. In each step, it is

possible to view variable values.

In MS VC++, one can start the program under the debugger with
Build→Start Debug→Step Into. (the “Build” menu then changes to
“Debug”). By repeatedly selecting this (or pressing F10) one can exe-
cute every line of the program. However, the debugger will also “step
into” library procedures. If one wants to execute an entire procedure
call without stopping, one selects “Step Over”. If one wants to execute
the rest of the current procedure and stop only at the next statement
of the calling function, one selects “Step Out”.

Stefan Brass: Computer Science III Universität Giessen, 2001



7. The Debugger 7-23

Dynamic Debugger (2)

• One can also execute longer portions of the pro-

gram without stopping, e.g. everything until the

critical point.

• One does this by setting a breakpoint on the line

where one wants execution to be temporarily sus-

pended.

In MS VC++, one clicks with the right mouse button in front of
the line where one wants the breakpoint to be set. The context me-
nu contains “Insert/Remove Breakpoint”. The program is started
with Build→Start Debug→Go (then the Build menue changes to Debug,
which also contains Stop Debug).

Stefan Brass: Computer Science III Universität Giessen, 2001



7. The Debugger 7-24

Dynamic Debugger (3)

• A program can contain several breakpoints.

Execution then stops at each breakpoint that is reached.

• Instead of setting a breakpoint, one can also place

the cursor at the line where one wants to stop and

then select “Run to Cursor”.

• Experience shows that executing a program in this

way in a debugger can take a lot of time.

• It is better to first get the post mortem stack back-

trace and think about possible reasons for the error.

Stefan Brass: Computer Science III Universität Giessen, 2001


