
6. The Linker 6-1

Chapter 6: The Linker

References:

• Brian W. Kernighan / Dennis M. Ritchie:
The C Programming Language, 2nd Ed.
Prentice-Hall, 1988.

• Samuel P. Harbison / Guy L. Steele Jr.:
C — A Reference Manual, 4th Ed.
Prentice-Hall, 1995.

• Online Documentation of Microsoft Visual C++ 6.0 (Standard Edition):
MSDN Library: Visual Studio 6.0 release.

• Horst Wettstein: Assemblierer und Binder (in German).
Carl Hanser Verlag, 1979.

• Peter Rechenberg, Gustav Pomberger (Eds.):
Informatik-Handbuch (in German).
Carl Hanser Verlag, 1997.
Kapitel 12: Systemsoftware (H. Mössenböck).

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-2

Overview

1. Introduction (Overview)

'

&

$

%
2. Object Files, Libraries, and the Linker

3. Make

4. Dynamic Linking

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-3

Introduction (1)

• Often, a program consists of several modules which

are separately compiled. Reasons are:

� The program is large.
Even with fast computers, editing and compiling a single file with
a million lines leads to unnecessary delays.

� The program is developed by several people.
Different programmers cannot easily edit the same file at the same
time. (There is software for collaborative work that permits that,
but it is still a research topic.)

� A large program is easier to understand if it is

divided into natural units.
E.g. each module defines one data type with its operations.

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-4

Introduction (2)

• Reasons for splitting a program into several source

files (continued):

� The same module might be used in different pro-

grams (e.g. library functions, code reuse).

� Moduls might be written in different program-

ming languages, but used in the same program.

E.g. certain functions are coded in assembler (very performance-
critical functions, functions that directly access the hardware).
With C, this is seldom necessary. However, there might also be
legacy code (old modules) that must be integrated into a new
program.

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-5

Introduction (3)

• In C, separate compilation is the module mecha-

nism that restricts the visibility of symbols on a

higher level than single procedures:

� Static functions/variables are global within a mo-

dule, but not accessible from other modules.

� Extern functions/variables are exported, and can

be accessed in other modules.

• Types and macros are defined only while a single

module is compiled, but they can be written into

header files which are included by several modules.

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-6

Introduction (4)

• A C program nearly never defines all functions that

it calls:

� At least, it calls functions like printf that are

defined in a library.

� Such functions must be declared (e.g. by inclu-

ding stdio.h), so that the compiler can check

parameter and return types.

� However, these functions are not defined, i.e. no

function body is given, not even in stdio.h.

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-7

Introduction (5)

• Therefore, the compiler does not directly produce

an executable program. It produces an object file

(a file with object code).

• The object file contains machine code, but with

holes (for the addresses of unknown functions). It

is input to another program, the linker.

• The linker adds machine code for the needed func-

tions from a library (the standard C library). It puts

the addresses of these functions in the places where

they are called.

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-8

Introduction (6)

• As long as a project consists only of a single sour-

ce file, the linker is automatically called after the

compilation, so the differents might not be obvious.

In MS VC++, the message window first shows “Compiling . . . ” and
then “Linking . . . ”. Object files produced by the compiler are stored
in the configuration (version) directory, e.g. Debug.
Under UNIX, one uses the option “-c” if one wants only to compile,
e.g. gcc -c a.c. The result is then stored in a.o. It is easiest to call
the linker (ld) also via gcc, e.g. gcc -o prog a.o (-o specifies the name
of the output file which is by default a.out). Then gcc calls ld, but
automatically adds the standard C library and sets certain options.

• But it is possible (and indeed very common) to

write programs that consist of several source files.

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-9

Introduction (7)

Source File
(a.c)

?

Compiler

Object File
(a.obj)

HH
HHH

HHH
HHHj

Source File
(b.c)

?

Compiler

Object File
(b.obj)

?

Library
(libc.lib)

��
���

���
����

Linker

Executable Program
(x.exe)

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-10

Example (1)

• This is a legal C program (e.g. a.c) that will be

compiled (into a.obj) without error or warning:

(1) #include <stdio.h>
(2) int p(int n);
(3)
(4) int main()
(5) { int i;
(6) i = p(1);
(7) printf("The result is: %d\n", i);
(8) return 0;
(9) }

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-11

Example (2)

• The compiler knows the parameter and result type

of p (from line 2) when it compiles line 6.

• It compiles the procedure call as usual, only it leaves

the address in the CALL machine instruction open.

E.g. it writes the address 0 there, and notes in the object file that at
this place the address of p has to be put (besides the machine code,
the object file contains a table of used, but not yet defined symbols).

• But when one tries to link a.obj to an executable

program, one gets the following error message:

a.obj: unresolved external symbol _p

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-12

Example (3)

• For some (probably historic) reason, the C compiler

prefixes an underscore “_” to every external symbol

it writes to the object file.
This is called “name decoration”. It is also used to distinguish different
calling conventions. In C++, much more name decoration is done
because different classes can have methods with the same name, and
methods can be overloaded with different parameter types.

• If the declaration of p were missing, the compiler

would have printed a warning, but still would have

generated the object file a.obj.
For historic reasons, it is legal to call in C an undeclared function. The
compiler assumes the return type int and does not check parameters.

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-13

Example (4)

• The function p can be defined in another C source

file, e.g. b.c:

(1) int p(int n)
(2) {
(3) return n * 2;
(4) }

• This file is compiled into the object file “b.obj”.

• Then the linker creates an executable program out

of a.obj, b.obj and the standard C library.

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-14

Example (5)

• If one tries to link only b.obj, one gets the following

error message:
LIBCD.lib(crt0.obj):

unresolved external symbol _main

• The procedure “main” is not really where the execu-

tion starts: The standard library contains a routine

that interfaces with the operating system and then

calls your procedure main.

The real entry-point of the executable program is probably the pro-
cedure “mainCRTStartup” defined in the library module “crt0.obj”.
E.g. the command line arguments (argc, argv) must be set up.

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-15

Example (6)

• It is possible to declare different parameter and re-

turn types in b.c:

(1) void p(char c, char d)
(2) {
(3) printf("c = %c, d = %c\n", c, d);
(4) }

• The compiler will not notice any error, since it com-

piles a.c and b.c separately.

I.e. the user calls the compiler two times in different program invoca-
tions. When the compiler translates a.c, it knows nothing about b.c

(b.c does not even need to exist at that point) and vice versa.

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-16

Example (7)

• The linker also reports no error: It does not under-

stand C types (the same linker also links Assembler

programs, Fortran programs, etc.).

The type informations is not even contained in the object file that is
input to the linker (except possibly in debugging information).

• So the program compiles and links without any er-

ror, but will output strange results.

The procedure p will interpret the integer on the stack as two cha-
racters, in MS VC++ it prints the characters with codes 1 and 0 (a
smilie and a blank). The return value of p is whatever happens to
remain in the register EAX (in my case the number 13).

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-17

Example (8)

• In order for the C compiler to detect such errors,

one writes the declaration of all exported procedu-

res (variables, types, etc.) into header files that are

included in the defining and the referencing module.

• In the example, we create a header file b.h that

contains the declaration of p:

(1) int p(int n);

• Usually one also puts a comment in this file that

explains what p is supposed to do.

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-18

Example (9)

• This header file is now included in a.c (instead of

declaring p explicitly):

(1) #include <stdio.h>
(2) #include "b.h"
(3)
(4) int main()
(5) { int i;
(6) i = p(1);
(7) printf("The result is: %d\n", i);
(8) return 0;
(9) }

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-19

Example (10)

• The header file b.h is also included in b.c (in addi-

tion to defining p):

(1) #include "b.h"
(2) int p(int n)
(3) {
(4) return n * 2;
(5) }

• If the result or parameter types in line 2 should dif-

fer from the declaration of p that the compiler has

seen previously in b.h, it prints an error message.

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-20

Example (11)

• As often in C, a certain programming discipline

(good programming style) is necessary to have a

better protection against errors.

• One should avoid declaring the same function (va-

riable, type) independently in two places: If later

one of the two places is changed, the program be-

comes inconsistent.

• In old-style C, functions did not have to be declared

when they are called. However, the program “lint”

read all modules and checked them for consistency.

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-21

Example (12)

• The dependencies between the files can be depicted

as follows:

a.c

?

Compiler

a.obj
HH

HHH
HHHH

HHHj
Linker

b.h
�

���
���

���
���

H
HHH

HHH
HHH

HHj

b.c

?

Compiler

b.obj
���

���
���

����
libc.lib���������������9x.exe

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-22

Example (13)

• Splitting a large program into several modules also

has the advantage that not every change requires

a complete recompilation of all modules.

• In the example:

� If a.c is changed, only a.c must be compiled.

� If b.c is changed, only b.c must be compiled.

� If b.h is changed, a.c and b.c must both be com-

piled, since they both include b.h.

• After compiling the affected modules, the linker

must always be called.

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-23

Example (14)

• If there are more header files (and header files that

themselves include other header files), it is quite

difficult to decide which files need recompilation.

• Fortunately, the program development environment

automatically keeps track of the dependencies.

E.g. if one clicks on “Build x.exe” (F7) in VC++, it automatically
compiles only those source files that need recompilation. If one fears
that something went wrong (e.g. one adjusted the clock or copied
object files from a floppy disk), one can click on “Rebuild All”: This
deletes all intermediate files and recompiles everything from scratch.

• Under UNIX, the program make performs this task.

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-24

Overview

1. Introduction (Overview)

2. Object Files, Libraries, and the Linker

'

&

$

%
3. Make

4. Dynamic Linking

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-25

Object Files (1)

• An object file basically contains:

� Machine code for the defined functions (with ho-

les for the addresses of unknown functions).

� A table of defined symbols (functions, global va-

riables) together with their value (address).

� A table of used symbols together with the places

where their value (address) must be inserted.

� Information for code relocation (see below).

• However, besides program code, an object file con-

tains also information about data (see next slide).

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-26

Object Files (2)

• The object file (and the executable program) is

usually split into several sections/segments:

� The “text” segment contains the machine in-

structions.

� The “data” segment contains variables that are

explicitly initialized.

� The “bss” segment contains space for variables

that will be implicitly set to 0.

Whereas the executable program contains all initialized variables,
it contains only the size of te memory that must be reserved for
the uninitialized variables.

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-27

Object Files (3)

• Besides the standard data segment, there might

also be a read-only data segment (“rdata”).

E.g. for string constants that appear in the program or for variables
that are declared “const”. The computer hardware might be able
to protect the text segment (program code) and the read-only data
segment from changes. If the same program is executed several times,
the text segment and the read-only data segment can be shared.

• Finally, there may also be sections that contain de-

bugging information and other information (e.g. the

source filename, needed libraries, compiler options).

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-28

Object Files (4)

• Visual C++ comes with a program dumpbin that

can be used to show the contents of an object file.

It might be necessary to change the search path: dumpbin is stored in
C:\Program Files\Microsoft Visual Studio\VC98\Bin. It needs a DLL
in C:\Program Files\Microsoft Visual Studio\Common\MSDev98\Bin.
E.g. with the command “dumpbin /all /disasm /out:a.x a.obj” the
information in a.obj is written to the file a.x.
One can apply dumpbin in the same way to executable files.

• Under UNIX, the program nm shows the symbol ta-

ble of an object file.

Also the GNU program objdump might be available to show the con-
tents of the file.

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-29

Object Files (5)

• In the object file a.obj, the code for main looks

basically as follows (continued on next slide):
0000 push ebp

0001 mv ebp, esp

0003 sub esp, 4

0006 push 1

0008 call 00 /* Call of p */

0013 add esp, 4

0016 mv dword ptr [ebp-4],eax

0019 mv eax, dword ptr [ebp-4]

0022 push eax

0023 push 00 /* "The result is: %d\n" */

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-30

Object Files (6)

• Code for main in a.obj, continued:

0028 call 00 /* Call of printf */

0033 add esp, 8

0036 xor eax, eax

0038 mv esp, ebp

0040 pop ebp

0041 ret

• In addition, the object file contains the following

information (continued on next slide):

� The symbol _main is defined as address 0000 in

this text section.

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-31

Object Files (7)

• Additional information in the object file, continued:

� At address 0009 in this text section the value (ad-

dress) of the symbol _p must be stored.
The byte at address 0008 contains the call instruction. The follo-
wing four bytes contain the address of the procedure that is to be
called.

� At address 0024 the value of the symbol ??_C@_0..

must be stored.
This symbol is defined in the same object file, in the rdata section.
It is the string constant "The result is: %d\n".

� At address 0029, the value of _printf must be

stored.

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-32

Object Files (8)

• In the object file b.obj, the code for p looks basically

as follows:
0000 push ebp

0001 mv ebp, esp

0003 mv eax, dword ptr [ebp+8]

0006 shl eax, 1

0008 mv esp, ebp

0010 pop ebp

0011 ret

• It specifies that the symbol _p is defined as ad-

dress 0000 in this text section.

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-33

Code Relocation (1)

• The example shows that in order to produce a sin-

gle executable program, the linker must move the

machine code for e.g. the procedure _p from start

address 0000 to e.g. 0042 (just after _main).
Actually, the VC++ linker moves all code after the address 400000h

which is marked in the executable file as the image base address. The
executable program is then probably loaded at this address into main
memory, but it can again be relocated when it is loaded (modern
computer hardware usually does not require this).

• An alignment for program code might be requi-

red or useful, so that _p will probably start at ad-

dress 0048 (16 byte alignment).

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-34

Code Relocation (2)

• “Code Relocation” is to move machine code from

one memory address to another one.

• Of course, the linker then adjusts also the value of

the symbol _p to 0041.

• The linker must also modify other addresses in the

program, e.g. for jumps generated by conditional or

loop statements.

Some compilers avoid this by using PC-relative jumps (PC is the
program counter, i.e. the address of the current instruction).

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-35

Libraries (1)

• A library is basically only a collection of object files

that are archived in one file.

The standard C library libc.lib and its debugging version libcd.lib

are stored in C:\Program Files\Microsoft Visual Studio\VC98\Lib. The
command “lib libcd.lib /list >libcd.x” writes a list of all object
files in libcd.lib to the file libcd.x (the library contains 638 files).
Under UNIX, the program ar performs this task. E.g. in order to see
the components of the standard library, use ar t /usr/lib/libc.a.

• One can extract the object files from a library.

One can extract an object file from a library with the following
command: “lib 〈Library〉 /EXTRACT:〈MemberName〉 /OUT:〈File〉”. The
member file name must be exactly as specified in the library (including
the path). Under UNIX, use “ar x 〈Library〉 〈MemberName〉”.

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-36

Libraries (2)

• When the linker processes a library it extracts on-

ly the needed object files and links them with the

explicitly specified object files.
When you specify an object file as input to the linker, it always beco-
mes part of the executable program. When you specify a library, the
linker selects only the needed object files in the library.

• Needed means that at the point when the linker

processes the library, there is a referenced symbol

(function/variable) that is defined in this object file.
For this reason, libraries are usually mentioned on the command line
after the object files. Also the exact sequence of libraries may be
important if one library calls functions from the other library.

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-37

Libraries (3)

• In a library, each object file usually defines only a

single function (or one library function plus the au-

xillary functions that it calls).

This explains why there are so many different object files in the stan-
dard C library.

• The reason for this is that the object files and not

the functions are the unit for linking.

If the entire library were a single object file, it would always be linked
completely to the program. By splitting the library into many object
files, only the really required machine code is linked to the program.

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-38

Libraries (4)

• Of course, library functions often call other (lower

level) library functions. Therefore, not only the ob-

ject files for the functions that the user directly

called are linked to the executable program, but

also a lot of indirectly called ones.

In VC++, one can add the option /verbose to the field “Project
Options” under Project→Settings→Link. Then the linker gives detailed
information about which object files from which libraries are added to
the executable, and which object file referenced a function in this file.

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-39

Libraries (5)

• A library often contains an index (symbol table)

that tells the linker with object file defines which

symbols.

In this way, the linker does not have to read the entire library in
order to find the needed object files. Another advantage is that the
object files do not have to be in a specific order. Without the index,
linkers often require that functions in a library object file can only call
functions in object files that appear later in the library. Under UNIX,
the program ranlib creates the index.

• Today, programs are often dynamically linked with

libraries. Then the actually linking is done at runti-

me (see below).

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-40

Example: Using a Library (1)

• The compiler will tell the linker automatically that

it should link with the standard library.

• But suppose we want to compute
√

2:

(1) #include <stdio.h>
(2) #include <math.h>
(3)
(4) int main()
(5) { double r;
(6) r = sqrt(2.0);
(7) printf("The result is: %lf\n", r);
(8) return 0;
(9) }

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-41

Example: Using a Library (2)

• In C, the mathematical functions like sqrt are not

part of the standard library.
Actually, in MS VC++, they are.

• The “mathematics” library must be explicitly spe-

cified, or one gets an “undefined symbol” error.
Under UNIX, one adds the option “-lm”, e.g. “gcc a.c -lm”. In gene-
ral, the option -lx searches for a library called libx.a (or libx.so.* for
dynamic linking). Alternatively, one can explicitly mention the library:
“gcc a.c /usr/lib/libm.a” (but using -lm is much more common). If
the library is not contained in one of the standard directories, and one
wants to use -l, one can extend the search path for libraries with the
option -L, e.g. “gcc a.c -L/home/brass/lib -lxyz”. It will then find
/home/brass/lib/libxyz.a.

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-42

Overview

1. Introduction (Overview)

2. Object Files, Libraries, and the Linker

3. Make

'

&

$

%
4. Dynamic Linking

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-43

Make (1)

• Under UNIX, the program make is used to compile

only those source files that need recompilation.

MS VC++ comes with a program “nmake” that seems to have basi-
cally the same functionality. But most programmers probably use the
graphical development environment instead.

• make needs a file with dependency rules. This file is

normally called Makefile or makefile.

If both files exist, makefile is used. If the file has a non-standard name,
one must specify it, e.g. “make -f myprog.mk”.

• make is not bound to C or program development.

It can always be used when files can be generated from other files.

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-44

Make (2)

• The makefile consists of a list of dependency rules

and macro definitions. Each rule consists of

� a goal (or target) A

� the names of files B1 . . . Bn on which A depends

(the “dependents”),

� and a list of commands C1 . . . Ck:

A: B1 B2 . . . Bn

C1
...

Ck

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-45

Make (3)

• When make tries to construct the goal A, it will

first recursively try to make B1 to Bn.

• Then it will check whether the file A exists. If it

does not, it will execute the commands C1 to Ck.

• If the file A exists, it will compare the date/time of

last modification with the timestamp of B1 to Bn.

• If one of the files Bi was modified after A, it will

execute the commands C1 to Ck.

Otherwise (the file A exists and was created/modified after all Bi),
make will not execute the commands.

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-46

Make (4)

Example Makefile:

• Suppose that the program myprog consists of two

modules: main.c and stack.c. Both include stack.h.

This is a comment.

myprog: main.o stack.o

gcc main.o stack.o -o myprog

main.o: main.c stack.h

gcc -c main.c

stack.o: stack.c stack.h

gcc -c stack.c

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-47

Make (5)

Syntax details:

• The goal/target must start in the first column. No

spaces are permitted in front of it.

• The list of dependents extends to the end of the

line. If one wants to continue it on the next line,

one needs to terminate the first line with a backs-

lash “\”.

• The commands must be indented by tabulator cha-

racters. Alternatively, one can put a semicolon in

front of them.

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-48

Make (6)

• If one calls “make” without arguments, it tries to

make the first goal in the file.

Therefore the first (default) goal should be the program to be con-
structed. If one wants to build another goal, one can specify it as a
parameter, e.g. “make main.o”.

• Goals do not need to correspond to files.

If there is no file for a goal, make will always execute the associated
commands when it tries to make the goal.

• E.g. one can add to the makefile (at the end):

clean:

rm -f main.o stack.o myprog

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-49

Make (7)

• It is possible to define macros, e.g.

OBJECTS = main.o stack.o

• If one writes later “$(OBJECTS)”, it is replaced by

“main.o stack.o”

The parentheses are necessary unless the macro name is a single
letter.

• Some macros might be predefined.

Especially, under UNIX the environment variables are predefined as
macros.

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-50

Make (8)

• It is possible to define general rules based on the file

extension (suffix). Some such rules are predefined.

• E.g. make knows that x.o can be constructed from

x.c by calling the C-compiler:

$(CC) -c $(CFLAGS) x.c

• However, dependencies from include files still must

be specified.

For small projects, this can be done manually. For large projects,
the list of dependencies is generated by the compiler, e.g. with the
command “gcc -M main.c stack.c”. One can write a shellskript that
updates the makefile.

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-51

Make (9)

Example Makefile (Improved):

PROG = myprog

OBJECTS= main.o stack.o

CC = gcc

CFLAGS = -Wall -DDEBUG

$(PROG): $(OBJECTS)

gcc $(OBJECTS) -o $(PROG)

main.o: stack.h

stack.o: stack.h

clean:

rm -f $(OBJECTS) $(PROG)

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-52

Overview

1. Introduction (Overview)

2. Object Files, Libraries, and the Linker

3. Make

4. Dynamic Linking

'

&

$

%

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-53

Motivation (1)

• Linking as explained above (static linking) has a

number of disadvantages:

� Wasted Disk Space: If there are many executable

files linked with the same library (and using more

or less the same functions), each contains a copy

of that part of the library.

� Wasted Memory: If several programs containing

the same library functions execute at the same

time, each needs memory for its own copy of the

library function.

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-54

Motivation (2)

• Problems of static linking, continued:

� Less Flexibility: If a new version of the library is

published, applications that were linked with the

old version must be explicitly relinked.

So the user has to get an update of each application instead of
installing only an update of the library.

� More Difficult Configuration: If there are several

versions of a program that differ only in a few

modules, the vendor nevertheless must distribute

the complete executable for each version.

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-55

Motivation (3)

• Problems of static linking, continued:

� No user configuration: The user can choose only

one of the versions distributed by the software

vendor instead of combining the features in which

he/she is interested.

� No user extension: The user cannot extend the

program with functions he/she has developed.

• To be fair, the vendor could distribute the object

files and call the linker in the installation routine.

However, this may reveal too much confidential information.

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-56

Dynamic Linking (1)

• In dynamic linking, the library is not part of the

distributed executable program.
So the executable program is not complete (not really executable).

• The compiler will translate a call to a library pro-

cedure into an indirect jump via an “import table”.

• The executable program contains

� the names of the needed libraries and

� names/numbers of the called functions in these

libraries together with the corresponding index in

the import table.

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-57

Dynamic Linking (2)

• When the program starts, the operating system

� searches the libraries,

� loads them into memory (or gives the program

access to them if they are already loaded), and

When several programs share the same library, a problem is that
it must either get the same address or use some form of relative
addressing (so that it works at different addresses).

� fills the import table with the addresses of the

called functions.

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-58

Dynamic Linking (3)

• In this way, using a dynamic link library (DLL) is

not much different from using a classical (static)

library:

� When the program is linked, the linker will check

that the called functions exist in the library,

So any undefined functions are still found at link time.

� but it will not add the machine instructions for

them to the program.

� This only happens when the program is executed.

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-59

Dynamic Linking (4)

• Dynamic linking has also several drawbacks:

� When the program is started, the operation sy-

stem must be able to find the dynamic link library.

Windows searches: (1) the directory where the executable program
is stored, (2) the current directory, (3) the windows system direc-
tory, (C:\WINDOWS\SYSTEM), (4) the windows directory (C:\WINDOWS),
(5) the directories listed in the environment variable “PATH”.
UNIX uses the environment variable “LD_LIBRARY_PATH”.

� There may be version conflicts.

DLLs are updated, but a program that worked with an older version
of the DLL might crash when linked with a newer version. The DLL
vendor tries to avoid incompatible updates, but the program may
have used undocumented features that are no longer supported.

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-60

Dynamic Linking (5)

• There is also another kind of dynamic linking (cal-

led explicit linking in Windows) in which

� the program asks the operating system at runtime

to load a library (LoadLibrary),

� then queries the address of the procedure to be

called (GetProcAddress),

� and then calls the procedure via this pointer.

• In this way:

� The program can react to errors.

� The libraries to load may depend on user input.

Stefan Brass: Computer Science III Universität Giessen, 2001

6. The Linker 6-61

Dynamic Linking (6)

• In MS VC++, the program dumpbin can be used to

list dependencies from DLLs.

“dumpbin /dependents prog.exe” lists the DLLs that are required by
prog.exe. “dumpbin /imports prog.exe” lists the single functions (to-
gether with their identifying numbers). For DLLs, there is the corre-
sponding option “/exports”.

• In a sense, DLLs can be seen as extensions of the

operating system.

The operating system also contains a lot of procedures (OS calls)
that programs can use, and that are not part of the program.

Stefan Brass: Computer Science III Universität Giessen, 2001

