
5. C Syntax III: The Preprocessor 5-1

Chapter 5: C Syntax III

(The Preprocessor)

References:

• Brian W. Kernighan / Dennis M. Ritchie:
The C Programming Language, 2nd Ed.
Prentice-Hall, 1988.

• Samuel P. Harbison / Guy L. Steele Jr.:
C — A Reference Manual, 4th Ed.
Prentice-Hall, 1995.

• Online Documentation of Microsoft Visual C++ 6.0 (Standard Edition):
MSDN Library: Visual Studio 6.0 release.

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-2

Overview

1. Introduction

'

&

$

%
2. Include Files

3. Macro Definitions

4. Conditional Compilation

5. Other Features

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-3

Introduction (1)

C Source File (.c)

?

Preprocessor (cpp)

Input for Compiler (.i)

?

Compiler (cc)

Object File (.o, .obj)

?

Linker (ld)

Executable Program (.exe)

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-4

Introduction (2)

• The C source file is first translated by the “C Pre-

processor” (or precompiler) into a kind of “core C”

(consisting of the constructs shown so far).

• The C compiler itself sees only the result of the

precompilation stage. It translates the program into

object code.

Object code is machine code, but with additional information for the
linker. The output of the compiler contains only machine code for the
functions in the source program, machine code for library functions
(or functions defined in other modules) must still be added.

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-5

Introduction (3)

• Today, the compiler and the preprocessor are usual-

ly combined in one program.

At least under UNIX, there exists also a separate preprocessor called
“cpp”. This can also be used for preprocessing extended versions of
other languages, not only C.

• However, the compiler usually has an option to do

only the preprocessing and save the output in a file

(normally with the extension “.i”).

Under Microsoft C++, this option is “/P”. It seems that there is no
special checkbox for it, but one can add it under “Project→Settings”
in the “Project Options” field. No object file is produced as long as
this option is set.

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-6

Introduction (4)

• The linker produces the executable program:

It combines modules and adds code from libraries.

• By default, the C compiler automatically calls the

linker for the generated object file (and the stan-

dard C library).
Thus, one might not notice that compiler and linker are actually two
separate programs. The linker can also link object files produced by
compilers for other languages.

• When one writes programs consisting of several,

separately compiled source files, the distinction of

compiler and linker becomes more obvious.

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-7

Preprocessor Commands (1)

• Preprocessor commands begin with a “#” in the

first column and extend to the end of the line.
Actually, only old-style C requires that the “#” is the first character
of the line. ANSI C (new style C) permits that it is preceded by
blanks and tabulator characters. ANSI C and some older compilers also
permit white space between the “#” and the preprocessor command
(e.g. “include”). However, it has remained common practice to write
the “#” in the first column.

• Example:

#include <stdio.h>

• Note that preprocessor commands do not end in a

semicolon “;”.

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-8

Preprocessor Commands (2)

• C has a general “line splicing” mechanism: If one

writes a backslash “\” as the last character of a

line, the backslash together with the line end are

removed.

This happens before tokens (lexical units) are built, so one can use
it in the middle of a token: E.g. it was earlier used in long string
constants (old-style C did not merge adjacent string constants).

• In this way, preprocessor commands can extend

over several lines, if each line except the last ends

in a backslash “\”.

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-9

Preprocessor Commands (3)

• The preprocessor understands the following com-

mands (“directives”):

� #include

� #define, #undef

� #if, #ifdef, #ifndef, #else, #elif, #endif

� #line

This command is actually processed in the compiler, not (only) in
the preprocessor (it sets the file name and line number for error
messages).

� #error

� #pragma

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-10

Preprocessor Commands (4)

• Preprocessor commands are evaluated after toke-

nization.
However, there are small differences in what constitutes a token: The
“<>” file name after “#include” is a single token for the preprocessor.
Characters that would be invalid for the compiler are accepted as
tokens by the preprocessor. Between the defined macro name and the
parameter-opening “(” no white space is allowed in the preprocessor.
Otherwise tokens of preprocessor and compiler are the same.

• Therefore, one can use C comments on preproces-

sor lines.
They are removed before the preprocessor sees the input. Also a line
break inside a comment does not end the preprocessor command: The
scanner replaces comments by a single space.

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-11

Preprocessor Commands (5)

• The syntax of preprocessor commands is relatively

independent of the syntax of the rest of the lan-

guage.

• E.g. macro definitions remain in effect until the

end of the file, even if they were defined inside a

function.

The preprocessor does not understand the C syntax of functions,
therefore it has no notion of “local commands”.

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-12

Overview

1. Introduction

2. Include Files

'

&

$

%
3. Macro Definitions

4. Conditional Compilation

5. Other Features

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-13

Include Files (1)

• If the preprocessor sees e.g. the line

#include <stdio.h>

it replaces this line by the contents of the file

“stdio.h” that is located in some system directory.
E.g. “C:\Program Files\Microsoft Visual Studio\VC98\Include” for
Microsoft Visual C++ or “/usr/include” under UNIX. There is a
compiler/preprocessor option to define additional directories where
include files are searched. In MS Visual C++, one can define them
under “Project→Settings→C/C++→Precompiler” (or directly with
/I"C:\myinclude").

• Files like stdio.h are called include files or header

files (or simply “headers”).

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-14

Include Files (2)

• One can also write

#include "stdio.h"

• In this case the preprocessor will first search the

current directory for a file called “stdio.h”.

• If it does not find it there, it will search the system

include directories.

So this variant will also work, but it takes a little longer. One should
use #include <xyz.h> for system include files and #include "xyz.h" for
one’s own include files.

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-15

Include Files (3)

• Of course, file names can contain directories:

#include "../headers/x.h"

The syntax of file names is implementation-defined. Even the Mi-
crosoft Visual C++ compiler understands “/” as delimiter between
directory and file name. After “#include”, the standard leaves the
effect of “\” undefined, so one really should use “/” or a compiler
option that extends the search path for include files.

• A final form (not in old-style C) is

#include FILE

where FILE is a macro that is replaced by one of

the previous forms.

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-16

Include Files (4)

• Header files usually contain

� Declarations of functions or global variables defi-

ned in one module and used in another module.

“Module” means “translation unit” (source file). The defining mo-
dule can also be contained in a library.

� Declarations of types used in several modules.

� Declarations of macros (see below).

• It is possible to put any C code into header files.

However, function definitions (with the body) in include files are un-
common and poor style. Include files are usually included in several
modules. Function definitions must be processed only once.

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-17

Include Files (5)

• Usually, the “#include” commands are written near

the top of the source file (before declarations and

function definitions).
Maybe, for this reason include files are called “headers”.

• Include files can (and often do) include other files.

• Of course, an include file cannot directly or indi-

rectly include itself, or the compiler may get into

an infinite loop.
The nesting depth for include files is probably limited in most compi-
lers, so the compiler will soon discover this error. At least 8 nesting
levels are guaranteed by the ISO standard.

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-18

Overview

1. Introduction

2. Include Files

3. Macro Definitions

'

&

$

%
4. Conditional Compilation

5. Other Features

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-19

Parameterless Macros (1)

• If the preprocessor sees e.g. the line

#define MAX_LINE_SIZE 80

it will replace the token “MAX_LINE_SIZE” in the re-

maining input by “80”.

• E.g. one can define an array as

char input[MAX_LINE_SIZE+1];

• The compiler will really see the declaration:

char input[80+1];

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-20

Parameterless Macros (2)

• In this way, the array size is a constant expression

that the compiler can evaluate.

C does not permit const-variables in constant expressions. In C++,
this is possible. In general, one of the design goals of C++ was to
remove the need for using “#define”.

• Note that MAX_LINE_SIZE is only replaced if it forms

a token in the source program: It is not replaced in

string constants or comments and not replaced if

it is only a part of a larger identifier.

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-21

Parameterless Macros (3)

• The replacement text for the macro can be any

sequence of tokens, e.g. the following definition is

legal (gives no error message):

#define MAX_LINE_SIZE = 80; /* ERROR */

• However, the array declaration will then look to the

compiler as

char input[= 80;+1];

This of course gives a syntax error.

But the source program contains an array declaration that looks com-
pletely right: char input[MAX_LINE_SIZE+1];

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-22

Parameterless Macros (4)

• It is common practice to use identifiers consisting

only of capital letters as macro names.

Variable, function, and type names are usually all lower case.

• Good programs should be easy to change: There-

fore constants that are not absolutely fixed should

appear only in a single place.

Otherwise there can easily be inconsistent changes: The constant is
changed in some places, but not in all. Some style guides require that
no numbers except 0 and 1 appear anywhere in a program except on
the right side of a #define.

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-23

Parameterless Macros (5)

• The replacement text can also be empty:

#define CHANGED_BY_SB

• This will remove the symbol from the program.

This works like a comment. But such tricks are bad style, because
they confuse other programmers who have to read the program.

• Such macros are often used as flags (boolean va-

lues) for conditional compilation: One can test with

#ifdef whether a macro is defined (see below).

In this case, the actual replacement text is not important and one
simply leaves it empty.

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-24

Parameterless Macros (6)

• Once a symbol was replaced in the program (“ex-

panded”), the replacement text is rescanned for

other symbols that must be replaced.

The compiler checks for infinite loops: A symbol that was already
explanded is not expanded again if it appears directly or indirectly in
its own replacement text.

• So the following replaces both N and M by 5, and

the sequence of the two lines is not important:

#define N 5

#define M N

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-25

Parameterless Macros (7)

• It is illegal to redefine a macro that is already de-

fined, unless the definition is exactly the same as

the already existing definition.

• However, one can delete the definition of e.g. the

macro N with

#undef N

• After that, one can redefine it (but having a macro

with two different values is bad style).

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-26

Macros with Parameters (1)

• Macros can have parameters, e.g.

#define max(N, M) N < M ? M : N

• E.g. if the program contains

j = max(i,0);

the compiler will really see

j = i < 0 ? 0 : i;

• So in contrast to procedures, the “macro body” is

inserted at each “macro call”.

This corresponds to a procedure call that is “unfolded”.

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-27

Macros with Parameters (2)

• Using a macro is more efficient (with respect to

CPU time) than using a real procedure: The over-

head for the procedure call is not needed.

For a procedure call, the parameters and the return address must
be pushed on the stack, then a jump to the start address of the
procedure is required, then several registers are saved on the stack.
For the return, all these things must be undone.

• The generated machine code might be slightly lar-

ger if the macro is often called.

However, if the replacement text is small, the generated machine
instructions may actually require less space than the procedure call.

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-28

Macros with Parameters (3)

• However, macros are not without problems.

There can be surprises. Good languages should minimize surprises.

• E.g. if the call of max looks as follows:

j = max(i++, 0);

this will be translated to:

j = i++ < 0 ? 0 : i++;

But now if i is not negative, it will be incremented

two times. This differs from a real function call.

Since one might actually not know whether something is a procedure
or a function, it is better to avoid side effects in function calls.

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-29

Macros with Parameters (4)

• Suppose we define:

#define double(X) X * 2

If the macro is called as follows:

n = double(i + 1);

The result performs not as expected:

n = i + 1 * 2;

Since * binds stronger than +, only 1 will be doubled,

not i + 1.

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-30

Macros with Parameters (5)

• This problem is easy to solve: In the macro defini-

tion, one should always put parentheses around the

parameters and around the whole expression:

#define double(X) ((X) * 2)

• The definition of max should really look as follows:

#define max(N, M) ((N)<(M) ? (M) : (N))

There is no good solution for the other problem

with max: Macros that access parameters more than

once (or never) behave different than functions if

arguments contain side effects.

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-31

Macros with Parameters (6)

• The replacement text can be any sequence of to-

kens, not only an expression:

#define assert(C) if(!(C)) error()

• This leads to a surprise in this context (why?):
if(isupper(c))

assert(c==’A’||...||c==’F’);

else

assert(isdigit(c));

• If c an upper case letter, one gets an error message

(even for A. . . F). Otherwise nothing is checked.

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-32

Macros with Parameters (7)

• Also the following definition does not help:

#define assert(C) { if(!(C)) error(); }

• Then one gets a syntax error for the else:
if(isupper(c))

assert(c==’A’||...||c==’F’);

else

...

• The problem is that the “;” after the assert beco-

mes a null statement after the block {...}. Then

one cannot add an else.

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-33

Macros with Parameters (8)

• The following is a correct definition of assert:
#define assert(C) \

((void) ((C) || error()))

If the replacement text for a macro is an expression, it behaves at
least syntactically similar to a function call.

• A complete if ... else ... would also work in the

above examples, but is slightly worse than the pre-

vious solution (it cannot be used in expressions):
#define assert(C) \

if(!(C)) error() \

else (void) 0

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-34

Macros with Parameters (9)

• An arbitrary block (including declarations) can be

quite safely packed into a do-loop:
#define assert(C) \

do { ... any code ... } while 0

This executes the block exactly once.

The declared variable names must be distinct from variables used in
the arguments, or there are new surprises.

• Developing macros can be a bit tricky (one has to

be careful).

But, as far as I know, the above examples show everything that can go
wrong. After you understood them, there should be no more surprises.

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-35

Macros with Parameters (10)

• But macros are a powerful tool. They have proven

effective in many successful C projects.

• Having functions without the price of a function

call improves the programming style: More code is

encapsulated in functions/macros.
Users of a data type should treat the data structure as a “black box”
and access it only via functions/methods/macros that form the offi-
cial interface (“abstract data type”). E.g. suppose that a linked list
type is defined as
typedef struct list_s { int data; struct list_s next; } list_t;

Even if the user of the linked list can do an insertion in a few state-
ments, he/she should call the official insert procedure, since later the
implementation might be changed, e.g. by adding a “back” link.

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-36

Macros with Parameters (11)

• Because of the above problems with macros, C++

has “inline functions”. They behave exactly like

normal functions, but the compiler translates them

by inserting the body for the function call.

• Inline functions and const-declarations in C++ eli-

minate most, but not all uses of #define.

Macros are still needed when the arguments are not expressions, as
e.g. in MY_MALLOC(TYPE), or when one uses e.g. #PAR to turn a macro
argument into a string (see below), or __FILE__ and __LINE__ to access
the current source file name and line number (see below).

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-37

Syntax Details (1)

• In the macro declaration, there may be no space

between the “define” and the opening “(”.

• The following defines a parameterless macro:

#define max (N, M) N < M ? M : N

• The macro call on slide 5-26 is replaced by

j = (N, M) N < M ? M : N (i,0);

• In calls of macros with parameters, spaces are al-

lowed between the macro name and the “(”.

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-38

Syntax Details (2)

• The actual arguments for a macro parameter can

be any sequence of tokens.
They do not have to be a syntactically well-formed expressions.

• However, commas must be put into parentheses.
Otherwise the preprocessor assumes that they separate arguments. Of
course, a comma in string or character constants is also no problem.

• Any macros in the arguments of a macro call are

only substituted after the arguments of this macro

call are collected.
Therefore, it is e.g. no problem if an argument expands further to
something that contains a comma.

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-39

Syntax Details (3)

• If the occurrence of a parameter in the replacement

text (in the #define) is immediately preceded by “#”

the actual argument will be put into string quotes.

• E.g. this macro can be used to print an error mes-

sage if a pointer variable is NIL:

#define CHECK_PTR(P) \

((void)((P)||error(#P "is nil!")))

• The call CHECK_PTR(list); is then expanded to

((void)((list)||error("list" "is nil!")));

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-40

Syntax Details (4)

• The replacement text for a macro may also contain

the special symbol “##”.

• Then, immediately after the actual arguments are

replaced for the formal parameters, the token be-

fore and after the “##” are merged into a single

token by deleting any white space between them.

The two special cases “#” and “##” are evaluated when macros in
the arguments are not yet expanded (and they normally will not be
expanded afterwards, although some further substitution of the token
that results from “##” is possible due to the rescanning of the sub-
stitution result). Macros in normal arguments are replaced before the
arguments are inserted in the replacement text.

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-41

Predefined Macros (1)

• __LINE__: Current line number.

I.e. the macro is replaced by the line number in the source file where
the macro call occurs. It is an integer constant.

• __FILE__: Current file name.

• __DATE__: Compilation date (e.g. "Dec 20, 2001").

• __TIME__: Compilation time (e.g. "15:45:00").

• __STDC__: Defined for ANSI/ISO C compilers.

It has the value 1 if it is defined. There is also __STDC_VERSION__ that
is defined (and has the value 199409L) if the compiler conforms to
Amendment 1 of ISO C (then it has the type wchar_t).

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-42

Predefined Macros (2)

• E.g. the assert-macro can put the file name, line

number and condition into the error message:

extern void __assert(const char *,

const char *, int);

#define assert(C) \

(void)((C)|| \

(__assert(#C, __FILE__, __LINE__), \

0))

This definition is from “assert.h”, which is part of the standard li-
brary. See below for the possibility to remove the assertions from the
program with conditional compilation. The function __assert prints a
message of the form: “Assertion failed: C, file F, line L” and the
calls abort to terminate the program.

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-43

Predefined Macros (3)

• Every compiler defines some additional macros to

identify itself for the purpose of conditional compi-

lation (see below).

• Microsoft Visual C++ defines e.g.

� _WIN32: Always defined.

� _MSC_VER: C compiler version (1200 for 6.0).

� _M_IX86: Defined for Intel x86 Processors.

The value 500 means that code for a Pentium processor is ge-
nerated, 300 means 386. _M_ALPHA is defined when code for DEC
Alpha processors is being generated. There are also corresponding
symbols for PowerPC and MIPS platforms.

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-44

Predefined Macros (4)

• The gcc compiler defines e.g. “__unix__” on UNIX

systems.

• For C++ source files, the macro “__cplusplus” is

defined.

This is used to write header files that work with C and with C++
compilers.

• Macros can also be defined in the compiler options

(compiler settings dialog box).

In this way, some parameters that are different from installation to in-
stallation (e.g. the directory in which the program data will be stored)
do not have to be written into the source files.

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-45

Overview

1. Introduction

2. Include Files

3. Macro Definitions

4. Conditional Compilation

'

&

$

%
5. Other Features

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-46

Conditional Compilation (1)

• Large software projects often need several versions

of the program code, e.g.:

� There is a debugging version and a version that

is distributed to the customers.

� There is a UNIX version and a Windows version.

• The C preprocessor makes it possible to compile

part of the program code only when certain condi-

tions are met.

In this way, the same source file can contain different versions.

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-47

Conditional Compilation (2)

• Example:

#ifdef DEBUG

printf("i = %d\n", i);

#endif

• If the macro DEBUG is not defined, the compiler will

ignore all lines between the #ifdef and the corre-

sponding #endif.

• Since it is only important whether the macro is

defined, it usually has an empty replacement text:

#define DEBUG

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-48

Conditional Compilation (3)

• For the debugging version, DEBUG must be defined

before the #ifdef, e.g. in a common header file, or

as a compiler option.

• One can switch to the non-debug version by putting

the #define line into a comment:

/* #define DEBUG */

It might be nicer to put this symbol into a compiler option in order
to avoid changing the source file. In MS VC++, this is done un-
der Project→Settings→C/C++→General. The input field “Preprocessor
Definitions” contains a comma-separated list of defined macros. One
can also use “=” to assign a value to the macro. Under UNIX, the
compiler option is “-DDEBUG” or in general “-D〈Name〉=〈Value〉”.

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-49

Conditional Compilation (4)

• #ifndef (“if not defined”) ignores program code if

the symbol is defined.

• #if can be used with a constant expression:

#if defined(_MSC_VER) && _MSC_VER >= 1200

... /* VC++ 6.0 and higher */

#else

... /* Version for other compilers */

#endif

• Of course, #else can also be used with #ifdef and

#ifndef.

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-50

Conditional Compilation (5)

• The constant expression after #if is quite restric-

ted. Since it is not evaluated by the C compiler

itself, it can only contain integer literals/constants,

arithmetic and logic operators, and the special con-

dition defined(Identifier).

Of course, it can contain macros: Macros in the #if-condition are
normally replaced before the condition is evaluated. The condition
cannot contain the sizeof operator, type casts, or enumeration con-
stants. All arithmetic is done with long or unsigned long values, even
if one writes “1” it is implicitly taken as “1L”. All identifiers that
remain after macro expansion are replaced by “0L”. Therefore, the
above condition does not give a syntax error when _MSC_VER is not
defined. Actually, the test defined(_MSC_VER) is not even necessary.

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-51

Conditional Compilation (6)

• “#ifdef X” is an abbreviation for “#if defined(X)”

and “#ifndef X” stands for “#if !defined(X)”.

“defined” is new in ANSI C, it was not contained in old-style C.

• “#ifdef”, “#ifndef”, and “#if” can be nested.

When the compiler skips source lines it does not simply stop at the
next “#endif”, but counts the number of open if’s in order to find
the matching “#endif”.

• For “#if”, there is also “#elif” (“else if”) to di-

stinguish more than two cases.

If one used “#else” and “#if” instead, one would have to put as many
“#endif” at the end as there were “#if”.

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-52

Applications (1)

• Include files often make sure that they are proces-

sed only once in a compiler run.

• E.g. we might develop a file “list.h” that defines a

type for linked lists of integers:

#ifndef LIST_INCLUDED

#define LIST_INCLUDED

typedef struct list_s { ... } *list_t;

...

#endif /* LIST_INCLUDED */

When the file is read for the first time, LIST_INCLUDED is not defined,
and the file contents is processed. But then LIST_INCLUDED is defined
so that the ifndef will be false if the file is included again.

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-53

Applications (2)

• Header files can include other header files that de-

fine needed types.

• E.g. suppose that we implement stacks as linked

lists. Then “stack.h” could look as follows:

#ifndef STACK_INCLUDED

#define STACK_INCLUDED

#include "list.h"

typedef list_t stack_t;

...

#endif /* STACK_INCLUDED */

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-54

Applications (3)

• In this way, the user of “stack.h” does not have to

include “list.h” first, but if he/she does (or some

other header file does), it is also no problem.

C permits that macros, variables, functions, and types are redeclared
if the redeclaration is exactly the same as the original declaration.
However, structure, union, and enumeration tags cannot be redeclared
(unless the previous declaration was incomplete). It also does not help
not to specify a tag, since then the type will by definition be new.

• Of course, if the same file is included multiple ti-

mes, the compilation takes slightly longer.

This is today not a big problem, since the computers are fast.

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-55

Applications (4)

• Macros can have alternative definitions. E.g. the

standard include file “assert.h” contains the follo-

wing definition:

#ifdef NDEBUG

#define assert(C) ((void)0)

#else

#define assert(C) \

(void)((C)|| \

(__assert(#C, __FILE__, __LINE__), \

0))

#endif

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-56

Applications (5)

• If the macro “NDEBUG” is defined when “assert.h”

is included, calls to “assert” are simply removed

from the program.

They are replaced by “((void)0)”, but a good compiler will produce
no code for this. One could replace “assert(C)” simply by the empty
token sequence, but then (1) syntax errors such as missing semicolons
after the assert are not caught, (2) in the rare case that assert is
used as part of a comma expression, one would get a syntax error.

• In this way, assertions help to find errors during

debugging, but cost no runtime in the final product.

Some important computer scientist (Hoare?) has said that this is like
leaving the safety belt off in a car once you finished the driving school.

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-57

Applications (6)

• Many C include files are today made C++ compa-

tible by adding a frame like this one:

#ifdef __cplusplus

extern "C" {

#endif

... /* Function Declarations */

#ifdef __cplusplus

}

#endif

• Since C++ has a different calling convention, func-

tions compiled by a C compiler must be marked.

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-58

Applications (7)

• extern "C" { ... } is C++ syntax.

A C compiler would produce a syntax error. But because of the con-
ditional compilation, the C compiler does not see this part.

• An alternative is to define a macro “EXTERN” that

is then put in front of every function declaration:

#ifdef __cplusplus

#define EXTERN extern "C"

#else

#define EXTERN extern

#endif

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-59

Overview

1. Introduction

2. Include Files

3. Macro Definitions

4. Conditional Compilation

5. Other Features

'

&

$

%
Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-60

Setting Line Numbers (1)

• Sometimes C programs are produced by other pro-

grams (generators) from some specification.

E.g. lex/flex, yacc/bison, precompilers for Embedded SQL.

• The specification may contain C code, which the

generator simply copies to the output. If that C co-

de contains errors, the programmer will get an error

message when compiling the generated program.

• Then the programmer has to look into the gene-

rated program, find the corresponding place in the

original specification, and correct the error there.

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-61

Setting Line Numbers (2)

• In order to simplify this, the generator may put lines

of the following form into the generated C program:

#line 25 "scanner.l"

• If an error appears in the immediately following li-

ne, the C compiler will print an error message that

refers to line 25 in “scanner.l”, and not to the real

line (e.g. 1000) in the real input file (e.g. lex.yy.c).

Also the macros __LINE__ and __FILE__ are set accordingly.

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-62

Setting Line Numbers (3)

• It is not explicitly mentioned in the C Reference,

but it seems that (some?) C compilers afterwards

count from the given line number. E.g. if there is an

error in the second but next line, the error message

will refer to line 26 in scanner.l.

This can be confusing. Of course, the generator expects that there
are no errors in its generated code but if e.g. the interfacing of the
specified code and the generated code does not work, one should
get a message that refers to the generated file. The generator should
switch back by a #line directive that mentions the generated file name
and the real line number.

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-63

Setting Line Numbers (4)

• One can leave the file name out in the #line di-

rective, then the compiler continues to use the last

file name.

• Macros are expanded in the arguments to #line.

• Note that #line looks like a preprocessor directive,

but it is really evaluated by the compiler.

If the preprocessor is a separate program (which is today very seldom),
it can also use #line commands to mark C code from include files.
Of course, the compiler should report errors in include files correctly.

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-64

Error Messages

• One can also generate compiler error messages,

e.g. in order to detect invalid settings for macros:

#if ELEMENTS > 32

#error "ELEMENTS can be at most 32!"

/* The set is implemented as a bitmap */

#endif

• The parameter of #error can be any sequence of

tokens. It is printed as part of the error message.

Macros are expanded. The #error directive is new in ANSI C.

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-65

Pragma (1)

• With #pragma, one can pass information to the com-

piler that depends on the specific compiler.

• E.g., it might be possible to

� Selectively turn off warnings.

� Set compiler options.

� Request specific optimizations.

• E.g. in MS VC++, the following directive switches

off warning 4514 (inline function not used):

#pragma warning(disable: 4514)

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-66

Pragma (2)

• E.g. in MS VC++, this pragma prints a message

during the compilation (not an error or warning):

#pragma message("CGI version selected!")

• The C standard does not define the syntax of the

#pragma arguments — this depends on the speci-

fic compiler. However, a compiler must ignore any

#pragma specification that it does not understand.

Still, it is possible that to compilers use the same syntax with different
meanings. Therefore, it is better style to put the #pragma into an #ifdef

that checks the compiler.

Stefan Brass: Computer Science III Universität Giessen, 2001

5. C Syntax III: The Preprocessor 5-67

Other Features

• It is legal to write a “#” without anything following

it, such lines are simply ignored (“Null Directive”).

• In case one uses C on a computer that does not

support the full ASCII character set, one can enco-

de certain special characters as sequences of cha-

racters starting with “??” (“Trigraph Sequences”):

??= # ??([??< {

??/ \ ??)] ??> }

??’ ^ ??! | ??- ~

Stefan Brass: Computer Science III Universität Giessen, 2001

