
Motivation, Introduction The Framework An Example Conclusions

A Framework for
Goal-Directed Query Evaluation

with Negation

Stefan Brass

Martin-Luther-Universität Halle-Wittenberg
Germany

Stefan Brass: Goal-Directed Query Evaluation with Negation 1/18

Motivation, Introduction The Framework An Example Conclusions

Inhalt

1 Motivation, Introduction

2 The Framework

3 An Example

4 Conclusions

Stefan Brass: Goal-Directed Query Evaluation with Negation 2/18

Motivation, Introduction The Framework An Example Conclusions

Motivation (1)
SLDMagic (developed by the author) is a method for
goal-directed bottom-up query evaluation in deductive DBs.

It is a competitor to the well-known Magic Set Method.
Sometimes, SLDMagic is better, e.g. for tail recursions. + more advantages.

Using SLDMagic and new ideas for bottom-up evaluation,
we recently reached a factor 700 speedup over XSB in the
tc-bf benchmark (part of OpenRuleBench).

Small print: The system is still under development so that some parts were
manually crafted for executing the example. For other parts, already an
automatic translation from Datalog to C++ was used.

Thus SLDMagic is still interesting.

But: SLDMagic cannot handle negation.
Stefan Brass: Goal-Directed Query Evaluation with Negation 3/18

Motivation, Introduction The Framework An Example Conclusions

Motivation (2)
Together with Jürgen Dix, I also investigated negation
semantics based on elementary program transformations.

SLDMagic was not defined based on program transformations,
but as SLD-resolution, it can be seen as doing unfolding.

Now the (long-term) goal is to combine these two approaches
to get a fast goal-directed query evaluation method based
on such program transformations.

This approach directly computes only WFS, it might be a useful precomputation
step for other semantics permitting the transformations.

My previous attempts failed because I wanted a
source-to-source transformation like Magic Sets/SLDMagic.

But the result would still have negation, and the translation might even make
the evaluation of negation more difficult. Idea: Extend target language!

Stefan Brass: Goal-Directed Query Evaluation with Negation 4/18

Motivation, Introduction The Framework An Example Conclusions

Inhalt

1 Motivation, Introduction

2 The Framework

3 An Example

4 Conclusions

Stefan Brass: Goal-Directed Query Evaluation with Negation 5/18

Motivation, Introduction The Framework An Example Conclusions

Program Transformations for Query Evaluation (1)

The elementary program transformations studied in our
papers on negation semantics worked on ground programs.

In order to use them for directly computing answers,
we must lift the transformations to the non-ground level.

Most modern semantics are based on the ground
instantiation of the program, i.e. S(P) = S

(
ground(P)

)
.

Therefore, if a non-ground transformation corresponds to
(possibly multiple) transformations on the ground
instantiation, and the semantics permits the ground case,
also the non-ground version is equivalence-preserving.

Stefan Brass: Goal-Directed Query Evaluation with Negation 6/18

Motivation, Introduction The Framework An Example Conclusions

Program Transformations for Query Evaluation (2)
The query is represented as a rule with a special predicate
in the head:

answer(X)← p(X).

The real query goal is the body of the rule.

Because the query variables appear in the head, no separate
bookkeeping of the substitution for them is needed.

The program transformation “unfolding” corresponds to
SLD-Resolution.

E.g. unfolding with p(X)← q(a, X):
answer(X)← q(a, X).

E.g. unfolding with q(a, b) gives a solution:
answer(b).

Stefan Brass: Goal-Directed Query Evaluation with Negation 7/18

Motivation, Introduction The Framework An Example Conclusions

Program Transformations for Query Evaluation (3)

For goal-directed query evaluation, we cannot work with
the entire program.

The “relevance” property studied by Dix and Müller
ensures that it is sufficient to look only at literals which
are reachable from the query via the call-graph.

WFS has relevance, the stable model semantics has not, but it might be
possible to treat “odd loops over negation” separately (→ Galliwasp).

Instead of starting with all rules and removing irrelevant
ones, we start with only the query and ensure that
transformations (using rules from the program) remain
applicable as long as there is a relevant rule.

So relevance is formally applied at the end, after our other transformations
have removed many edges from the call graph.

Stefan Brass: Goal-Directed Query Evaluation with Negation 8/18

Motivation, Introduction The Framework An Example Conclusions

The Framework (1)

A rule is variable-normalized iff it contains only the
variables X1, X2, . . ., numbered in the order of first
occurrence. The function std(. . .) normalizes the variables.

We do not want multiple rules which differ only in the names of the variables.

A computation state is a pair (R , D) of sets of
variable-normalized rules such that D ⊆ R . A rule in
R − D is called active, a rule in D is called deleted.

By keeping deleted rules, we avoid non-termination by entering a rule again.
Some transformations also need to know that a rule was previously considered.

Let the query Q be answer(X1, . . . , Xm)← B1 ∧ · · · ∧ Bn.
The initial computation state is (R0, D0) with
R0 := {std(Q)} and D0 := ∅.

Stefan Brass: Goal-Directed Query Evaluation with Negation 9/18

Motivation, Introduction The Framework An Example Conclusions

The Framework (2)

We define transformations between computation states:
(R , D) 7→ (R ′, D′).

Then an implementation can follow any sequence of
computation states

(R0, D0) 7→ (R1, D1) 7→ · · · 7→ (Rn, Dn)
from the initial state to a final state, i.e. a state where no
further transformation is applicable.

The computed answers are then the tuples (c1, . . . , cm),
such that answer(c1, . . . , cm) ∈ Rn.

The transformation system is not confluent, i.e. one can
arrive at different final states, but they all contain the
correct answers.

Stefan Brass: Goal-Directed Query Evaluation with Negation 10/18

Motivation, Introduction The Framework An Example Conclusions

Termination

For each transformation (R , D) 7→ (R ′, D′) it holds that
R ⊆ R ′ and D ⊆ D′, and at least one inclusion is proper.

The length of the occurring rules is bounded:

Unfolding can be applied to a recursive body literal only
if it is the last/only positive body literal.

Negative body literals cannot have additional variables because all
occurring rules are range-restricted.

If a rule contains more than one recursive positive body
literal, or this execution sequence seems sub-optimal,
one can mark the positive body literal as call(B).

Such body literals are solved in a subproof.
Just as SLDNF-resolution calls itself recursively for negative body literals.

Stefan Brass: Goal-Directed Query Evaluation with Negation 11/18

Motivation, Introduction The Framework An Example Conclusions

Transformation List
Positive body literals:

Unfolding
Deletion after complete unfolding

Negative body literals:
Complement call
Positive reduction
Negative reduction

Call literals (simpler version):
Start of subproof
Return
End of subproof (includes loop check)

Stefan Brass: Goal-Directed Query Evaluation with Negation 12/18

Motivation, Introduction The Framework An Example Conclusions

Inhalt

1 Motivation, Introduction

2 The Framework

3 An Example

4 Conclusions

Stefan Brass: Goal-Directed Query Evaluation with Negation 13/18

Motivation, Introduction The Framework An Example Conclusions

An Example (1)
Program:

odd(Y)← succ(X , Y) ∧ ¬odd(X).
succ(0, 1).
succ(1, 2)....
succ(999999, 1000000).

Initial state (with query):
R0 := {answer(yes)← odd(1).}, D0 := ∅

Unfolding with rule about odd :
R1 − D1 := {answer(yes)← succ(X1, 1) ∧ ¬odd(X1).}
D1 := {answer(yes)← odd(1).}

Actually, unfolding with one program rule/fact, and removing the original
rule after complete unfolding are different steps to give more flexibility.

Stefan Brass: Goal-Directed Query Evaluation with Negation 14/18

Motivation, Introduction The Framework An Example Conclusions

An Example (2)
Unfolding with succ(0, 1):
R2 − D2 := {answer(yes)← ¬odd(0).}
D2 := {answer(yes)← odd(1).

answer(yes)← succ(X1, 1) ∧ ¬odd(X1).}

Complement Call (setting up a subquery):
R3 − D3 := {answer(yes)← ¬odd(0).

odd(0)← odd(0).}
D3 := D2

Unfolding with rule about odd :
R4 − D4 := {answer(yes)← ¬odd(0).

odd(0)← succ(X1, 0) ∧ ¬odd(X1).}
D4 := D3 ∪ {odd(0)← odd(0)}

Stefan Brass: Goal-Directed Query Evaluation with Negation 15/18

Motivation, Introduction The Framework An Example Conclusions

An Example (3)

Unfolding deletes the rule since there is no fact succ(X1, 0):

R5 − D5 := {answer(yes)← ¬odd(0).}
D5 := D4 ∪ {odd(0)← succ(X1, 0) ∧ ¬odd(X1)}

Positive Reduction evaluates the negative body literal to
“true” (deletes it), since there is no rule with matching
head in in active part:

R6 − D6 := {answer(yes).}
D6 := D5 ∪ {answer(yes)← ¬odd(0).}

answer(yes) has been proven.

No further transformation is applicable.
Stefan Brass: Goal-Directed Query Evaluation with Negation 16/18

Motivation, Introduction The Framework An Example Conclusions

Inhalt

1 Motivation, Introduction

2 The Framework

3 An Example

4 Conclusions

Stefan Brass: Goal-Directed Query Evaluation with Negation 17/18

Motivation, Introduction The Framework An Example Conclusions

Conclusions
This is work in progress. An implementation will have to

choose a transformation when several can be applied for
a given program, and
use data structures for representing rules or rule sets
so that the transformations can be applied efficiently.

With certain choices, one probably arrives at known
algorithms, such as SLG-resolution.

That is not necessarily bad (improved understanding, comparison of
different methods, faster tail recursion).

In deductive databases, there is an important distinction
between a (usually small) set of rules and a large set of facts.
My focus will be on precomputing as much as possible at
“compile time”, when only the rules are known (→SLDMagic).

Stefan Brass: Goal-Directed Query Evaluation with Negation 18/18

	Motivation, Introduction
	The Framework
	An Example
	Conclusions

