
1. Introduction 1-1

Deductive Databases and Logic Programming

(Summer 2011)

Chapter 1: Introduction

• What is Prolog? What are Deductive Databases?

• First Example.

• Motivation.

• Integrated Systems: DB + PL.

• History, State, and Future.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-2

Objectives

After completing this chapter, you should be able to:

• explain the difference between declarative (logic)

programming and imperative programming.

• explain what a deductive database is.

• explain the main strengths/advantages of deductive

databases compared with classical relational DBs.

• explain the current problems.

• develop simple Prolog/Datalog programs.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-3

Overview

1. What are Prolog and Deductive DBs?

'

&

$

%
2. How to use a Prolog System

3. DDBs as Integrated Systems: DB + PL

4. Strengths of Deductive Databases

5. History, Current Problems

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-4

Area / Context

Logic
�
�

�
�
�
�	

@
@
@
@
@
@R

HHH
HHH

HHH
HHH

HHj

Relational Databases Prolog Artificial Intelligence

Knowledge
Representation

@
@
@
@
@
@R

�
�

�
�
�
�	

Deductive Databases
'
&

$
%

@
@
@
@
@
@R

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
���

“Knowledge Bases”

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-5

Logic Programming (1)

• Ideal of logic/declarative programming:

� The program is a specification of the problem,

� and the system automatically computes a possi-

ble solution that satisfies the given conditions.

• I.e. the programmer specifies

� what is the problem, but not

� how to compute a solution.

• I.e. the program is a set of axioms, and computati-

on is a proof of a goal statement from the program.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-6

Logic Programming (2)

• SQL is a declarative query language. The user spe-

cifies only conditions for the requested data:

SELECT X.HOMEWORK, X.POINTS

FROM SOLVED X

WHERE X.STUDENT = ’Ann Smith’

• Advantages of declarative languages:

� Often simpler formulations: The user does not

have to think about efficient execution.

� Easier adaptation to changing environments.

� Better formalization, simpler verification.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-7

Logic Programming (3)

• Can this work also for programming languages, not

only query languages?

• Prolog (“Programming in Logic”) is

� a programming language based on these ideas.

� used in industry for real problems.

� not an ideal logic programming language.

Sometimes one must know how it is executed and give some
execution information. A Prolog program is not pure logic.

• Deductive databases are purer, but are still in the

research state.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-8

Logic Programming (4)

• Programming Inefficiency ∗ Runtime Inefficiency

≥ Constant (Robinson)

• In declarative languages,

� the productivity of the programmer is often grea-

ter than in imperative languages, but
E.g. Prolog program 10-fold shorter than similar C++ Program.

� the runtime of the program is often longer.

• Programmers are expensive (“software crisis”),

computers become faster and cheaper.
I.e. the constant in the above inequality shrinks because of advances
in hardware technology.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-9

Logic Programming (5)

• Algorithm = Logic + Control (Kowalski)
Imperative/Procedural Language: Explicit Control, Implicit Logic.
Declarative/Descriptive Language: Explicit Logic, Implicit Control.

• Imperative languages (e.g. C) are coupled to the

Von Neumann architecture of today’s computers.

• Declarative languages have a larger independence

of current hardware/software technology:

� Simpler Parallelization

� More powerful optimization
This includes using new algorithms: If the next version of Oracle
contains a new join algorithm, existing queries will profit from it.
Already using a new index is a new algorithm.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-10

Logic Programming (6)

• Naturally, logic programming languages are especi-

ally well-suited for knowledge-intensive tasks.
However, e.g. compilers for Prolog are normally written in Prolog.

• E.g. expert systems and natural language proces-

sing are typical applications of Prolog.

• Also problems, where only constraints for a solution

are given (development of time-tables, schedules)

are well treated by logic programming.
In Prolog or special “Constraint Logic Programming” languages.
For NP-complete problems, there is anyway no good algorithm, so
why bother to write one down?

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-11

Deductive Databases (1)

A Deductive Database is . . .

• An integrated system consisting of a DB and a

declarative programming language (Prolog-like).

• “Pure Prolog” with special support for managing

large sets of facts.

• A relational DB with a new query language (Data-

log) and the possibility to define recursive views.

• A restricted theorem prover: It can handle only

quite simple formulas, but very many of them.

“deduce” = “compute a logical consequence”.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-12

Deductive Databases (2)

A Deductive Database Consists of . . .

• a relational database (EDB),

which defines relations/predicates “extensionally”,

i.e. by enumerating all tuples, and

• a logic program (IDB),

which defines relations/predicates “intensionally”,

i.e. by giving rules (formulas of a particular kind).

Example for extensional vs. intensional:

time-table/schedule for busses (very regular data).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-13

Example Database (1)

parents

Child Father Mother

emil arno birgit

frida chris doris

gerd chris doris

ian emil frida

julia emil frida

klaus gerd helga

couple

Man Woman

arno birgit

chris doris

emil frida

gerd helga

klaus lena

man

Name

arno
...

woman

Name

birgit
...

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-14

Example Database (2)

◦◦arno birgit
J
J
J
J
J
J
J

◦◦emil frida















J
J
J
J
J
J
J

ian julia

◦◦chris doris















J
J
J
J
J
J
J

◦◦gerd helga

◦◦klaus lena

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-15

Identifiers in Prolog

• In Prolog, identifiers start with a lowercase letter.

Otherwise they contain uppercase and lowercase letters, as well as
digits and the underscore symbol “_”. The reason for this restriction
is that in Prolog, variables are distinguished from constants etc. by
starting them with an uppercase letter.

• Alternatively, one can use any sequence of charac-

ters enclosed in single quotes ’ (apostrophe).

• If one wants that the names in the example start

with an uppercase letter, quotes are needed: ’Arno’.

Of course, one must decide for one, arno and ’Arno’ are not the same
in Prolog (it is case-sensitive). However, arno and ’arno’ are the same.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-16

Predicates (1)

• Logic is the science of statements and their inter-

relationships, especially consequence.

• Consider a statement with placeholders,

e.g. “C is child of F (father) and M (mother)”.

• Let us abbreviate this to “parents(C,F,M)”.

• The statement can be true or false if concrete va-

lues are given for the placeholders.

• E.g. in the situation described in the above DB:

� parents(emil, arno, birgit) is true,

� parents(emil, chris, doris) is false.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-17

Predicates (2)

• “parents” is an example for a predicate symbol.

It has three arguments: child, father, mother.

• Formally, a predicate is a function that assigns true

or false to given values for the arguments.

• A predicate symbol is a name for such a function.
One could also choose another name, such as p or child_of. One only
has to use one name consistently. Logic and Prolog do not understand
the meaning of the name, they only know the specified facts and rules.

• Since logic analyses statements, it carefully distin-

guishes between symbols and their interpretation.
Relation names are defined in the DB schema, relations in the state.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-18

Predicates (3)

• The extension of a predicate is the set of argument

tuples for which the predicate is true.

(emil, arno, birgit) belongs to the extension of parents (in the situa-
tion of the above DB state), while (emil, chris, doris) does not.

• Predicates (with finite extension) are really the sa-

me as (database) relations.

E.g. given a relation, one can see it as predicate that is true for the
tuples in the relation, and false for all other arguments. In the opposite
direction, one chooses the extension of the predicate as the relation.

• In Prolog, one can define predicates with infinite

extension, e.g. odd(n) is true iff n is an odd number.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-19

Predicates (4)

• In logic and Prolog, the arguments of a predicate

are identified by position.
I.e. one must know that the first argument is the child, the second
the father, and the third the mother. The names of the placeholders
in the original statement (C, F , M) are not important.

• In SQL, the columns of a table (attributes of a

relation) are identified by name.

• However, one could also define a logic programming

language that uses argument names.
If there are few arguments, and one applies consistent style rules for
ordering the arguments, then the Prolog notation is quicker (more
concise). With many arguments, the SQL notation is safer.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-20

Example DB as Facts (1)

parents(emil, arno, birgit).
parents(frida, chris, doris).
parents(gerd, chris, doris).
parents(ian, emil, frida).
parents(julia, emil, frida).
parents(klaus, gerd, helga).

couple(arno, birgit).
couple(chris, doris).
couple(emil, frida).
couple(gerd, helga).
couple(klaus, lena).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-21

Example DB as Facts (2)

man(arno).
man(chris).
man(emil).
man(gerd).
man(ian).
man(klaus).

woman(birgit).
woman(doris).
woman(frida).
woman(helga).
woman(julia).
woman(lena).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-22

Logical Formulas (1)

• If there were only such elementary statements, logic

would not be very interesting.

• However, one can combine statements with logical

connectives, e.g.:

� ∧: logical “and” (conjunction)

� ∨: logical “or” (disjunction)

� ¬: logical “not” (negation)

� ←: logical “if”

� ↔: logical “iff” (if and only if)

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-23

Logical Formulas (2)

• One can also introduce variables:

� ∀X: “for all X” (universal quantification)

� ∃X: “there is an X” (existential quantification)

• In SQL, such formulas are used as query language.

SQL has no universal quantifier, except in a specific context: >= ALL.
However, one can simulate it with EXISTS-subqueries. Actually, it is a
result of mathematical logic that one kind of quantifier suffices.

• Prolog is a restricted automated theorem prover:

Knowledge can be specified not only as facts (as in

RDBs), but also as rules (special kind of formulas).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-24

Rules (1)

• One can define predicates not only by facts, but

also by “if-then” rules:

father(X, Y)← parents(X, Y, Z).

“If Y and Z are parents of X, then Y is father of X”.

• A rule has two parts:

� Rule Head: The left hand side, the conclusion.

� Rule Body: The right hand side, the condition.

• If the rule body is satisfied (for certain values of X,

Y, Z), the rule head can be derived (with the same

values of X, Y, Z).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-25

Rules (2)

• The above rule defines the predicate “father” and

uses the predicate “parents”.
I.e. it assumes that there is information about parents that can be used
to derive information about father. Prolog does not require a specific
sequence of declaration: One could also define “parents” below the
rule for “father”. This is also important because two predicates can
reference each other with mutual recursion (see below). In predicate
logic, there is no such distinction between definition and use.

• Derived predicates correspond to database views.

• A rule with the predicate p in the head is called a

“rule about p”.
E.g. the above rule is a rule about father.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-26

Rules (3)

• Names starting with a capital letter are variables:

One can insert any value for a variable.

I.e. the variables are universally quantified (“for all”, ∀) in front of
the rule. Of course, during a single rule application, one must replace
different occurrences of the same variable by the same value.

• E.g. when one replaces X with emil, Y with arno,

and Z with birgit, one gets:

father(emil, arno)← parents(emil, arno, birgit).

• The right hand side of the rule is true (it is given

as a fact), thus the left hand side is derived.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-27

Rules (4)

• Suppose one substitutes e.g. X with emil, Y with

chris, and Z with doris:

father(emil, chris)← parents(emil, chris, doris).

• The right hand side cannot be proven, thus nothing

can be derived with this rule instance (the condition

is false, nothing follows about the head).

This does not mean that the rule head must be false: There might
be another rule / rule instance that permits to derive it (see below).

• Of course, Prolog and deductive databases do not

simply try all possible values for the variables.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-28

Rules (5)

• Of course, one can choose better variable names

(they only have to start with an uppercase letter):

father(Child, Father)←
parent(Child, Father, Mother).

• This renaming of variables does not change the

meaning of the rule in any way.

• Variables are implicitly ∀-quantified in front of each

rule. I.e. the scope of each variable is the rule.

• Two different rules can have variables with the sa-

me name, but there is no connection between them.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-29

Multiple Rules (1)

• Of course, a predicate “mother” can be defined in

the same way: mother(X, Z)← parents(X, Y, Z).

• One can define several rules about a predicate:
(“parent” and “parents” are different predicate symbols.)

parent(X, Y) ← father(X, Y).
parent(X, Y) ← mother(X, Y).

• Both rules can be used to derive facts about parent:

� E.g. parent(emil, arno) follows from the first rule
Plus the rule about father and the fact parents(emil, arno, birgit).

� and parent(emil, birgit) from the second.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-30

Multiple Rules (2)

• Suppose that in the first rule, X is replaced by emil,

and Y by birgit:

parent(emil, birgit)← father(emil, birgit).

• The condition (rule body) is false in the intended in-

terpretation, and indeed, father(emil, birgit) can-

not be derived from the given facts and rules.

• However, the consequence (rule head) is true:

parent(emil, birgit) follows from the other rule.
If the rule body is true, the head must be true, too. If the rule body
is false, this rule alone does not say anything about the head (unless
we know that there is no other rule about the predicate).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-31

Multiple Body Literals

• A rule can have several conditions which are con-

junctively connected (logical “and”):

grandparent(X, Z) ← parent(X, Y) ∧
parent(Y, Z).

• E.g. one successful application of the rule is:
grandparent(ian, birgit) ← parent(ian, emil) ∧

parent(emil, birgit).

• Both conditions in the body (“body literals”) follow

from the given facts and rules.

• Then this rule can be applied and permits to derive

that birgit is grandparent of ian.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-32

Constants in Rules

• Of course, one can use also constants in rules (not

only variables):

person(X, m) ← man(X).
person(X, f) ← woman(X).

• Here the second argument of the predicate indica-

tes whether the person is male (m) or female (f).

• In this example, a constant appears in a body literal:

grandmother(X, Y) ← grandparent(X, Y),
person(Y, f).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-33

Example: Summary (1)

Facts (Database):

parents(emil, arno, birgit).
...

couple(arno, birgit).
...

man(arno).
...

woman(birgit).
...

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-34

Example: Summary (1)

Rules (Derived Predicates, Views):

father(X, Y) ← parents(X, Y, Z).

mother(X, Z) ← parents(X, Y, Z).

parent(X, Y) ← father(X, Y).
parent(X, Y) ← mother(X, Y).

grandparent(X, Z) ← parent(X, Y) ∧ parent(Y, Z).

person(X, m) ← man(X).
person(X, f) ← woman(X).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-35

Queries (1)

• Given the above program (“knowledge base”), one

can pose queries (goals for the theorem prover),

e.g.

� ? grandparent(ian, birgit).

−→ Yes.

� ? grandparent(klaus, arno).

−→ No.

� ? mother(frida, X).

−→ X = doris.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-36

Queries (2)

• Example queries (proof goals), continued:

� ? mother(X, doris).

−→ X = frida.
X = gerd.

� ? mother(X, Y).

−→ X = emil, Y = birgit.
X = frida, Y = doris.
X = gerd, Y = doris.

... ...
� ? father(emil, X) ∧ mother(emil, Y).

−→ X = arno, Y = birgit.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-37

Queries (3)

• Syntactically, queries are the same as rule bodies

(a conjunction of literals).

• Queries (Goals) are not very powerful, e.g. they

normally do not permit disjunction.

Actually, modern Prolog systems have disjunction in rule bodies and
queries. However, this is not really necessary.

• However, one can extend the knowledge base with

new rules that define temporary predicates. These

new predicates can also be used in the query.

SQL-99 permits to define temporary views in queries (WITH-clause).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-38

Exercises

• Define a predicate “married_with”.

This takes the information from “couple”, but should be symmetric:
If X is married with Y, then Y is married with X.

• Define a predicate “siblings”.

The condition X 6= Y can be used in the rule body.

• Define a predicate “uncle”.

• Define a predicate for consistency checks: Is there a

person which is male and female at the same time?

Define a predicate “inconsistent” that is derivable if there is such a
problem. Of course, additional predicates can be defined.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-39

Recursive Rules (1)

• It is possible to use a predicate in its own definition:
ancestor(X, Y) ← parent(X, Y).
ancestor(X, Z) ← parent(X, Y) ∧ ancestor(Y, Z).

• Initially, no facts about ancestor are known, thus

only the first rule is applicable.

• Then, ancestor(X, Y) is known if Y is parent of X.

• This can be inserted in the second rule, and it is

derived that grandparents are also ancestors.

• Another application of the second rule yields that

great-grandparents are ancestors, too. And so on.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-40

Recursive Rules (2)

• Finally, all ancestor relationships that hold in the

database are derived.
The example DB contains only three generations, so there are already
no great-grandparents. But the recursion works with any number n

of generations: After n− 2 iterations, no new facts are derived.

• Of course, a recursive rule like

p(X)← p(X).

is useless: It never yields anything new.
In Prolog, such a rule would actually create an infinite loop. This
shows that Prolog is not an ideal logic programming language. In
logic, the rule is a tautology: It is always trivially satisfied. Deductive
databases can process such rules without problems.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-41

Recursive Rules (3)

• The important point is that although one of the

rules that defines “ancestor” uses “ancestor”, it

never refers to the same fact as it tries to prove.

• As in other programming languages, in Prolog one

has to reduce the “problem size” in the recursive

call, or the recursion will not come to an end.

• E.g. given the query “? ancestor(julia, birgit)”,

Prolog will first try the nonrecursive rule.
Prolog tries the rules in the order they are written down. This depen-
dence on the rule order again violates the ideal of logic programming.
Deductive DBs are again better, but at the expense of performance.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-42

Recursive Rules (4)

• Using the nonrecursive rule, Prolog has to prove

parent(julia, birgit), but this fails.

• Now it uses the recursive rule. It inserts the data

from the query and finds that it has to prove

parent(julia, Y) ∧ ancestor(Y, birgit).

• Thus, it first finds the parents of julia, and then

processes the recursive calls:

� ancestor(emil, birgit).

� ancestor(frida, birgit).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-43

Recursive Rules (5)

• The recursive call ancestor(emil, birgit) is proven

with the nonrecursive rule: birgit is mother of emil.

Thus, the answer “Yes” is printed.

• The recursive call ancestor(frida, birgit) fails.

Prolog first tries to prove that birgit is parent of frida. This fails.
Then it creates again two recursive calls by inserting frida’s parents:
ancestor(chris, birgit) and ancestor(doris, birgit). These immedia-
tely fail since there are no parents of chris and doris in the database.

• The problem size is reduced because every recursive

call goes one generation up in the database and

somewhere, there are no further data.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-44

Recursion in SQL-99

• Ancestors cannot be computed in SQL-92

(one needs one more join for every generation).

• However, SQL-99 permits recursion:

WITH
RECURSIVE ancestor(Child, Anc) AS

SELECT Child, Par FROM parent
UNION
SELECT P.Child, A.Anc
FROM parent P, ancestor A
WHERE P.Par = A.Child

SELECT Anc FROM ancestor
WHERE Child = ’julia’

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-45

Datalog vs. Prolog (1)

Deductive DBs Permit Less Control, More Logic:

• Order of rules not relevant.

• Order of conditions in the rule body often not rele-

vant (depending on system/chosen optimizations).

• No cut (used in Prolog to prune the search tree).

The cut will be explained further below. Sometimes, the cut only
gives hints to the Prolog system for faster execution. But in practical
Prolog programming it is used also in a way that modifies the logical
meaning of the program. This violates the logic programming idea.

• Termination is guaranteed if no lists, term con-

structors or datatype functions are used.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-46

Datalog vs. Prolog (2)

Reason (Database vs. Programming Language):

• The Prolog programmer knows how predicates are

used (called): Which arguments are given (input),

and which are variables (output).
Closed system: There is only one main predicate, which calls all others.

• Databases allow very different queries.
When a predicate (view) is defined, one normally does not know how
it will be used in queries. Needs query optimizer.

• Query evaluation should be guaranteed to termina-

te, program execution cannot.
But modern DDB systems allow the complete Pure Prolog.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-47

Datalog vs. Prolog (3)

All Advantages of Databases:

• Persistence (Possibility to store data that live lon-

ger than a single program execution)

• Multi-User, Security, Access Control, Integrity.

• Transactions (Atomicity, Backup&Recovery,

Concurrency Control).

• But current DDB prototypes have not necessarily

all database functions.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-48

Datalog vs. Prolog (4)

Deductive DBs are Better for Large Sets of Facts:

• Prolog implementations are very inefficient if the

data does not fit into real main memory.

• If the data resides on disks, set-oriented evaluation

techniques are better, since one anyway has to read

whole blocks (e.g. Merge Join, B-Trees).

Efficiency is a Problem for Deductive DBs:

• If Prolog works for a program, the program is exe-

cuted at least 10 times faster in Prolog systems

than in current deductive database systems.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-49

Overview

1. What are Prolog and Deductive DBs?

2. How to use a Prolog System

'

&

$

%
3. DDBs as Integrated Systems: DB + PL

4. Strengths of Deductive Databases

5. History, Current Problems

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-50

More about Prolog Syntax

• In Prolog, every fact (or rule) must be terminated

with “.” (full stop).

It is required that the full stop is followed by white space (a space or
a line break). The reason is that “.” is also an operator in Prolog (list
constructor). If it is used that way, it is not followed by white space.

• One should avoid spaces between the predicate and

the opening parenthesis “(”.

This is used to distinguish operator syntax from the standard syntax.
Operator syntax is treated in a later chapter.

• Comments in Prolog start with “%” and extend to

the end of the line. (Alternative: /* ... */ as in C.)

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-51

No Declarations in Prolog

• Prolog is a concise language: One does not have

to declare predicates or constants.

Predicates are automatically declared by writing facts or rules about
them. This is a bit dangerous because typing errors might not be
detected. However, most Prolog systems require at least that (1)
facts and rules about one predicate are not interrupted by facts/rules
about another predicate (2) at least one fact/rule exists for every
predicate that is called. This gives already some protection.

• Prolog is untyped. However, many type systems ha-

ve been proposed and implemented for Prolog.

It is easy to write a type checker for Prolog in Prolog, because Prolog
has good metaprogramming facilities (processing programs as data).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-52

Rule Syntax

• In Prolog, one writes

� “:- ” instead of “←”,

� a comma “,” for conjunction (instead of “∧”).

• E.g. the rule that defines grandparent is written as:

grandparent(X, Z) :- parent(X, Y), parent(Y, Z).

• Where a space is permitted, one can use newline,

spaces, tabs (Prolog is free format):

grandparent(X, Z):-
parent(X, Y),
parent(Y, Z).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-53

Anonymous Variables (1)

• When a variable appears only once in a rule, its

name is not important.

• Prolog then permits to use an underscore “_” in-

stead of the variable name (“anonymous variable”).

I.e. each occurrence of the underscore stands for a new variable. Even
if the underscore appears twice in a rule, it is not the same variable.

• E.g. the rule about mother can be written as:

mother(Child, Mother) :- parents(Child, _, Mother).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-54

Anonymous Variables (2)

• I.e. the underscore can be used to fill in arguments

that are not needed.

This is necessary since arguments are identified by position. It corre-
sponds to a projection in databases.

• Most Prolog systems give a warning (“singleton va-

riables”) if a non-anonymous variable appears only

once in a rule.

This is intended to catch typing errors in variables. Variables do not
have to be declared, but a typing error will yield a variable that appears
only once. If one wants to have a meaningful name, one can start that
name with an underscore to switch off the warning.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-55

Using a Prolog System (1)

• Write the logic program into a file, e.g. “family.pl”.
The extension “.pl” is usual for Prolog sources. Unfortunately, it is
also used for Perl programs (Prolog was first!). Some Prolog systems
permit to choose the extension “.pro” during installation. Of course,
one can use any extension, but if it is not the standard extension, one
later has to specify it explicitly.

• Start the Prolog system (e.g. “pl” under UNIX).

• It should display the prompt “?-”.
This means that it is in query mode. Above, “?” was used for queries.

• Read the file with the command “[family].”.
The brackets are an abbreviation for the built-in predicate “consult”,
e.g. “consult(family).”. Commands are queries to special predicates.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-56

Using a Prolog System (2)

• Do not forget the full stop “.” at the end!

Every Prolog fact, rule, query, or command must be terminated with
a full stop. Otherwise, Prolog assumes that the command continues
on the next line and either silently waits for more input or displays a
prompt like “|”. Of course, one can then still write the full stop.

• If one has to specify a path (or a filename that is

not a Prolog identifier) one must put it in single

quotes ’ (to make it a Prolog identifier), e.g.

[’C:/stefan/courses/lp03/examples/family.pl’].

• Note that the backslash “\” is usually interpreted

as escape symbol, thus it must be doubled: “\\”.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-57

Using a Prolog System (3)

• If one wants to enter rules and facts interactively,

one can read the special file “user”, e.g. “[user].”.
The input usually ends with the UNIX end-of-file marker Crtl+D.

• Facts and rules can be distributed over several files,

e.g. “[myfacts,myrules1,myrules2].”
Most Prolog systems assume that rules about one predicate are stored
consecutively in the file. If one loads another file that contain rules
about the same predicate, the first rules are forgotten. Normally a
warning is printed in this case. However, it is possible (depending on
the system) that one reloads a file with the rules about a predicate
removed, and the old rules still remain in memory (until one exists
from the Prolog system). This is normally no problem, since one will
not call the old predicate.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-58

Using a Prolog System (4)

• Once facts and rules are defined, one can enter

queries (from the “?-” prompt), e.g.

grandparent(julia, X).

• Prolog prints only one solution at a time.

� If one wants more solutions, one must press the

“;” key (this stands in Prolog for “or”).
When there are no more solutions, Prolog will print “No”. This
“a tuple at a time” processing (which may also print duplicates)
is also a difference to deductive databases.

� If one does not want more solutions, one must

press the “Enter” key.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-59

Using a Prolog System (5)

• If a query should get into an infinite loop, one can

press “Crtl+C”.

This normally will enter the Prolog debugger. Pressing “a” (for “ab-
ort”) will stop the query and leave the debugger.

• One can leave the Prolog system with “halt.”.

“quit” and “exit” will not work in most systems. If one really wants,
one can of course define them by a rule. Again: Don’t forget the full
stop “.” at the end.

• For predicates with 0 arguments (like halt), one

does not write “()” in Prolog.

“halt().” is a syntax error.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-60

Using a Prolog System (6)

• Most systems have an online manual which docu-

ments at least all built-in predicates, e.g. try

help(consult/1).

• Note that the number of arguments usually has to

be specified.

In Prolog, different predicates can have the same name if they have
a different number of arguments. E.g. in SWI-Prolog, one can also
call “help.” to bring up the online manual. This is documented in
“help(help/0).”.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-61

Exercises (1)

• The Table DEPT has the columns

� DEPTNO (Department Number),

� DNAME (Department Name),

� LOC (Location):

DEPT

DEPTNO DNAME LOC

10 ACCOUNTING NEW YORK

20 RESEARCH DALLAS

30 SALES CHICAGO

40 OPERATIONS BOSTON

• How would these data look as Prolog facts?

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-62

Exercises (2)

EMP

EMPNO ENAME JOB MGR SAL DEPTNO

7369 SMITH CLERK 7902 800 20
7499 ALLEN SALESMAN 7698 1600 30
7521 WARD SALESMAN 7698 1250 30
7566 JONES MANAGER 7839 2975 20
7654 MARTIN SALESMAN 7698 1250 30
7698 BLAKE MANAGER 7839 2850 30
7782 CLARK MANAGER 7839 2450 10
7788 SCOTT ANALYST 7566 3000 20
7839 KING PRESIDENT 5000 10
7844 TURNER SALESMAN 7698 1500 30
7876 ADAMS CLERK 7788 1100 20
7900 JAMES CLERK 7698 950 30
7902 FORD ANALYST 7566 3000 20
7934 MILLER CLERK 7782 1300 10

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-63

Exercises (3)

Formulate These Queries in Prolog and in SQL:

• Print number, name of the department in Boston.

• List number and name of all employees in the re-

search department.

• List the names of all employees who are manager

or president of the company.

• List all employees who earn more than their direct

supervisor. One can use a condition like X > Y.

• List all employees who are directly or indirectly ma-

naged by “JONES”.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-64

Overview

1. What are Prolog and Deductive DBs?

2. How to use a Prolog System

3. DDBs as Integrated Systems: DB + PL

'

&

$

%
4. Strengths of Deductive Databases

5. History, Current Problems

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-65

Integrated DBMS+PL (1)

General Trend:

• Persistent Programming Languages:

Pascal/R, PJama.

• Object-Oriented Databases (C++ & Persistence)

• Stored Procedures: Oracle PL/SQL.

• Triggers in Databases (Active Databases)

• Fourth Generation Languages (4GL)

• Extensible DBMS, Universal Server.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-66

Integrated DBMS+PL (2)

Why?

• Any serious DB-application needs programs.

• SQL not computationally complete,

e.g. the following must be done outside SQL:

� complex calculations,

� complex business rules,

� user interface,

� interface with other systems.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-67

Integrated DBMS+PL (3)

Problems with Embedded SQL:

• Programmer needs to work with two different lan-

guages and compilers. (Plus e.g. HTML).

• Different type system in C and SQL.

• “Impedance Mismatch”: Set-oriented evaluation in

SQL, tuple-oriented evaluation in C.

• The DBMS optimizer can only optimize single SQL

statements in isolation (locally).

• Evaluation plans for queries in programs (external

to DBMS) must be kept for the next execution.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-68

Integrated DBMS+PL (4)

Integration is a Natural Development:

• Database management systems were used to put

all data of a company under one central control:

� to avoid redundancies and inconsistencies,

� to share the data, software, hardware, support,

� to simplify the development of new applications.

• Now is the time to do the same with procedu-

res/programs!

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-69

Integrated DBMS+PL (5)

A Subprogram-Library is not the Same:

• If a procedure in the library is changed, all applica-

tion programs must be linked with the new version.

• If the DB schema is changed, possible problems

(e.g. missing attributes or relations) will only be

detected when the critical program is executed.

• Application programs and the relations that they

access are not contained in the data dictionary.

• Such procedures cannot be used in queries or trig-

gers. They exist only outside the DBMS.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-70

Deductive Databases

• In contrast to other DBMS+PL-systems, deductive

databases use a declarative programming language.

• Declarativity is nothing new in databases:

SQL is a declarative query language.

• All other competitors give up declarativity and set-

orientation for queries, or have a gap between da-

tabase language and programming language.

• In deductive databases the integration is so tight

that it is usually not possible to say where the query

ends and the program begins.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-71

Overview

1. What are Prolog and Deductive DBs?

2. How to use a Prolog System

3. DDBs as Integrated Systems: DB + PL

4. Strengths of Deductive Databases

'

&

$

%
5. History, Current Problems

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-72

Deductive DBs: Features (1)

Recursion:

• Important for processing hierarchical data, and data

that has the form of a graph.

• E.g. the WWW is a directed graph of documents.

• Documents are hierarchically structured,

e.g. XML defines tree-structure (plus IDREF).
“Object Exchange Model”, Models for semistructured data: graphs.

• CAD: Parts are often hierarchically composed out

of smaller parts.

• CASE: Call structure of procedures is a graph.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-73

Deductive DBs: Features (2)

Rules:

• Expert Knowledge.

• For regularly structure data (e.g. bus schedules).

• Syntax rules.

• Integrity constraints.

• Knowledge Independence.

Data independence means that data is independent of application
programs. Now one wants to centrally collect more knowledge about
the application domain. Currently, this knowledge is only buried in
application program code.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-74

Deductive DBs: Features (3)

Views:

• Views/derived predicates are the basic concept of

deductive databases. In relational databases they

are only an addition.

• Deductive DBs allow also views which can only be

called with certain input arguments.

Important for computations, interfaces to external programs.

• Views are important for integrating several hetero-

geneous data sources (DDBs as “middleware”).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-75

Deductive DBs: Features (4)

Views, Continued:

• Analysis of large data sets with more abstract con-

cepts (“Data Mining”, “Decision Support”).

• Storing repeating queries.

→ collection of knowledge.

• Plus all standard advantages of views:

� Adaption of the schema to the wishes of different

users,

� logical data independence,

� security.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-76

Deductive DBs: Features (5)

Complex Objects:

• Lists, variant records, trees can be expressed as

Prolog terms and easily be processed in Prolog.

Pattern Matching:

• Prolog has terms with variables (data structures

with holes).

Several Solutions / Backtracking:

• Patterns can appear in texts several times.

• Hypothetical reasoning: Exploring alternatives.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-77

Overview

1. What are Prolog and Deductive DBs?

2. How to use a Prolog System

3. DDBs as Integrated Systems: DB + PL

4. Strengths of Deductive Databases

5. History, Current Problems

'

&

$

%

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-78

History of the Field (1)

∼322 BC Syllogisms [Aristoteles]
∼300 BC Axioms of Geometry [Euklid]
∼1700 Plan of Mathematical Logic [Leibniz]

1847 “Algebra of Logic” [Boole]
1879 “Begriffsschrift” (Early Logical Formulas)

[Frege]
∼1900 More natural formula syntax [Peano]

1910/13 Principia Mathematica (Collection of
formal proofs) [Whitehead/Russel]

1930 Completeness Theorem [Gödel/Herbrand]
1936 Undecidability [Church/Turing]

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-79

History of the Field (2)

1960 First Theorem Prover
[Gilmore/Davis/Putnam]

1963 Resolution-Method for Theorem proving
[Robinson]

∼1969 Question Answering Systems [Green et.al.]
1970 Linear Resolution [Loveland/Luckham]
1970 Relational Data Model [Codd]
∼1973 Prolog [Colmerauer, Roussel, et.al.]

(Started as Theorem Prover for Natural Language Understanding)

(Compare with: Fortran 1954, Lisp 1962, Pascal 1970, Ada 1979)

∼1973 Algorithm = Logic + Control [Kowalski]

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-80

History of the Field (3)

1976 Minimal Model Semantics
[van Emden, Kowalski]

1977 Conference “Logic and Databases”
[Gallaire, Minker]

1977 First Compiler for Prolog [Warren]
1982 Start of the “Fifth Generation Project”

in Japan (ended 1994)

1986 “Magic Sets”
1986 Perfect Model Semantics
1986 First Deductive DB Systems

1987 CLP(R): Arithmetic Constraints [Jaffar]

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-81

History of the Field (4)

1988 CHIP: Finite Domain Constraints
[Van Hentenryck]

1988 Well-Founded and Stable Model Semantics

∼1989 First Textbooks on Deductive DBs

∼1992 Second DDB Prototype System Generation

1996 ISO Standard for Prolog

1996 smodels: Answer Set Programming System
[Nimelä/Simons]

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-82

Deductive DBs: Problems (1)

• There are very many research papers.

• There are some prototype implementations.

However, they are used more or less only in acade-

mia (with some exceptions).

• There is no commercial deductive DBMS at the

moment (that is sold for general use).

• One company producing a DDBMS had to close.

Furthermore, at least one project aiming at a commercial DDBMS
was significantly modified in its goals.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-83

Deductive DBs: Problems (2)

• In a panel discussion on ICDE’93 (“Are we polis-

hing a round ball?”) the area of recursive query

evaluation was declared as no longer interesting.

• Ramakrishnan wrote 1995 that better implementa-

tions will solve the current problems.

Thus, in his view, there is no need for fundamentally new techniques,
i.e. more research.

• Ullman told me on PODS’99 that the area has no

future.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-84

Deductive DBs: Problems (3)

• There are not so many grants in this area anymore.

It is difficult to find professorships. More and more researchers move
to other areas.

• Prolog-Implementations are still much faster than

deductive databases (more than one order of ma-

gnitude).

• Whereas Prolog-compiler are typically written in

Prolog, Datalog is not used in implementing de-

ductive databases.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-85

Reasons Not to Give Up (1)

• Prolog is being successfully used in industry.

Boeing, British Airways, Kodak, Swiss Life, IBM (Machine Translati-
on), Philips Research, SRI (natural language).
Microsoft Windows NT uses a small Prolog interpreter in order to
generate optimal configurations for networks. Knowledgeware’s App-
lication Development Workbench (a CASE tool, 1995: 60.000 Licen-
ses sold) contains around 250.000 lines of Prolog code. The company
estimates that it would have been around 10 times larger if written
in C. [Frühwirth/Abdennadher 1997]

• At Ericsson a special deductive DBMS for their own

use has been developed.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-86

Reasons Not to Give Up (2)

• Constraint Logic Programming is very successful in

industry.

It is estimated that 1996 constraint technology for 100 million $ was
sold. (1996, data mining tools for 120 million $ were sold. Microsoft’s
turnover was 10.000 million $.) [Frühwirth/Abdennadher 1997]

• The logic programming community is still alive.

Many well-known database researchers have worked in the area of
deductive databases.

• Many ideas of deductive databases are now being

used in extensions of standard RBMS (recursion in

SQL-99, magic sets in DB2).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-87

Reasons Not to Give Up (3)

• Obviously, more research is necessary to ensure

that Datalog can really be used as a programming

language, not only as a query language.
The goals and promises of deductive databases are not yet reached,
because the problems turned out to be more complex than expected.
But when they will be reached, deductive DBs are very attractive.

• Object-oriented databases turned out to be a step

backwards in some respects. This lead to object-

relational systems, but DOOD-systems might be

even better.

• Deductive DBs and SQL do not exclude each other.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



1. Introduction 1-88

Reasons Not to Give Up (4)

• Query languages for the Web and for XML data,

as well as intelligent agents in the Web open new

and fruitful application areas.

• The “semantic web” needs artificial intelligence.

• Answer set programming is a new logic program-

ming formalism that was successfully used in a num-

ber of applications.

• Once more students who have learnt about deduc-

tive databases work in industry, the acceptance will

be greater.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011


