
5. Practical Prolog Programming 5-1

Deductive Databases and Logic Programming

(Winter 2003/2004)

Chapter 5: Practical Prolog
Programming

• The Cut and Related Constructs

• Prolog vs. Pascal

• Definite Clause Grammars

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

5. Practical Prolog Programming 5-2

Objectives

After completing this chapter, you should be able to:

• explain the effect of the cut.

• write Prolog programs for practical applications.

• use context-free grammars in Prolog.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

5. Practical Prolog Programming 5-3

Overview

1. The Cut and Related Constructs

'

&

$

%

2. Prolog vs. Pascal

3. Definite Clause Grammars

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

5. Practical Prolog Programming 5-4

The Cut: Effect (1)

• The cut, written “!” in Prolog, removes alterna-

tives that otherwise would have been tried during

backtracking. E.g. consider this rule:

p(t1, . . . , tk) :- A1, ..., Am, !, B1, ..., Bn.

• Until the cut is executed, processing is as usual.

• When the cut is reached, all previous alternatives

for this call to the predicate p are removed:

� No other rule about p will be tried.

� No other solutions to the literals A, . . . , Am will

be considered.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

5. Practical Prolog Programming 5-5

The Cut: Effect (2)

• Example:
p(X) :- q(X), !, r(X).

p(X) :- s(X).

q(a).

q(b).

r(X).

s(c).

• With the cut, the query p(X) returns only X=a.

• Without the cut, the solutions are X=a, X=b, X=c.

• Exercise: Can the second rule about p ever be used?

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

5. Practical Prolog Programming 5-6

The Cut: Effect (3)

Four-Port Model without Cut:

p(X)

CALL -

q(X)
-

�
r(X)

- EXIT

�

-

FAIL �
s(X)

6

REDO�v�

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

5. Practical Prolog Programming 5-7

The Cut: Effect (4)

Four-Port Model with Cut:

p(X)

CALL -

q(X)
-

!
-

�

-

6

r(X)
- EXIT

�

-

FAIL �
s(X)

6

REDO�v�

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

5. Practical Prolog Programming 5-8

The Cut: Effect (5)

• A call to the cut immediately succeeds (like true).

• Any try to redo the cut not only fails, but imme-

diately fails the entire predicate call.

• In the SLD-tree, the cut “cuts away” all still open

branches between

� the node where the cut was introduced (i.e. the

child of which contains the cut), and

� the node where the cut is the selected literal.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

5. Practical Prolog Programming 5-9

The Cut: Effect (6)

p(X)
�

���
����

q(X),!,r(X)

H
HHH

HHHH

s(X)

. . .

�
��

�
��

�
�

�
�

!,r(a)

@
@

@
@

!,r(b)

. . .

�
��

�
��

r(a)

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

5. Practical Prolog Programming 5-10

The Cut: Effect (7)

• Normal backtracking before and after the cut (only

not through the cut):

p(X,Y) :- q1(X), r1(X,Y).

p(X,Y) :- q1(X), q2(X), !, r1(X,Y), r2(Y).

p(X,Y) :- s(X,Y).

q1(a).

q1(b). q2(b).

r1(b,c).

r1(b,d). r2(d).

s(e,f).

• The query p(X,Y) has solutions X=b,Y=c and X=b,Y=d.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

5. Practical Prolog Programming 5-11

Cut: Improving Runtime (1)

• One application of the cut is to improve the runtime

of a program by eliminating parts of the proof tree

that cannot yield solutions or at least cannot yield

any new solutions.

• Consider the predicate abs that computes the ab-

solute value of a number:
abs(X,X) :- X >= 0.

abs(X,Y) :- X =< 0, Y is -X.

• When the first rule is successful, it is clear that the

second rule does not have to be tried.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

5. Practical Prolog Programming 5-12

Cut: Improving Runtime (2)

• Consider now the goal p(X), abs(X,Y), Y > 5

with the facts p(3), p(0), p(-7).

• First p(X) succeeds with X bound to 3, then abs(3,Y)

succeeds for Y=3, but then 3 > 5 fails.

• Now backtracking would normally first try to find

an alternative solution for abs(3,Y), since there is

another rule about abs that has not yet been tried.

• This is obviously useless, and the runtime can be

improved by immediately backtracking to p(X).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

5. Practical Prolog Programming 5-13

Cut: Improving Runtime (3)

• With the cut, one can tell the Prolog system that

when the first rule succeeds, the second rule cannot

give anything new:

abs(X,X) :- X >= 0, !.

abs(X,Y) :- X =< 0, Y is -X.

• Of course, one could have (should have) written

the condition in the second rule X < 0.

• Then some (but not all) Prolog systems are able

to discover themselves that the rules are mutually

exclusive.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

5. Practical Prolog Programming 5-14

Cut: Improving Space (1)

• Making clear that a predicate has no other solution

improves also the space (memory) efficiency.

• The Prolog system must keep a record (“choice-

point”) for each predicate call that is not yet com-

plete (for backtracking into the predicate call later).

• Even worse, certain data structures within the Pro-

log system must be “frozen” when it is necessary

to support later backtracking to this state.

• Then e.g. variable bindings must be logged (on the

“trail”) so that they can later be undone.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

5. Practical Prolog Programming 5-15

Cut: Improving Space (2)

• In imperative languages, when a procedure call re-

turns, its stack frame (containing local variables

and other information) can be reused.

• In Prolog, this is not always the case, because it

might be necessary to reactivate the procedure call

and search for another solution.

• E.g. consider the following program:
p(X) :- q(X), r(X).

q(X) :- s(X), t(X).

s(a). s(b). t(a). t(b). r(b).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

5. Practical Prolog Programming 5-16

Cut: Improving Space (3)

• The call q(X) first exits with X=a, but then r(a)

fails, thus the call q(X) is entered again, which in

turn reactives s(X).

Upon backtracking, also the binding of X must be undone.

• In the above example, not much can be improved,

because there really are alternative solutions.

• However, when a predicate call has only one solu-

tion, it should be executed like a procedure call in

an imperative language.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

5. Practical Prolog Programming 5-17

Cut: Improving Space (4)

• Predicate calls that can have at most one solution

are called deterministic.
Sometimes one calls the predicate itself deterministic, but then one
usually has a specific binding pattern in mind. E.g. append is determi-
nistic for the binding pattern bbf, but it is not deterministic for ffb.

• For efficient execution, it is important that the Pro-

log system understands that a predicate call is de-

terministic. Here a cut can help.
Actually, the cut in the definition of abs makes the predicate determi-
nistic. In general, it might be important that abs(0,X) succeeds “two
times”, Prolog is not allowed to automatically remove one solution.
Deductive databases are set-oriented, there more powerful optimizers
are possible.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

5. Practical Prolog Programming 5-18

Cut: Improving Space (5)

• Consider abs applied to a list:
abs_list([], []).

abs_list([X|R], [Y|S]) :- abs(X, Y),

abs_list(R, S).

• When the Prolog system thinks that abs is nonde-

terministic, it will keep the stackframe for each call

to abs (and for the calls to abs_list).

• When a predicate calls a nondeterministic predica-

te, it automatically becomes nondeterministic, too.
Only for the last body literal of the last rule about a predicate, the
stack frame of the predicate is reused (under certain conditions), and
thus does not remain, even when this body literal is non-deterministic.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

5. Practical Prolog Programming 5-19

Cut: Improving Space (6)

• In the above example, making abs deterministic (by

means of a cut) is a big improvement.

• Then most Prolog systems will automatically de-

duce that also abs_list is deterministic.

For the only possible binding patterns bf and bb.

• Usually, the outermost functor of the first argument

is considered: Since it is “[]” for the first rule, and

“.” for the second, always only one of the two rules

is applicable (if the first argument is bound).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

5. Practical Prolog Programming 5-20

Cut: Improving Space (7)

• It is also possible to remove unnecessary stack fra-

mes at a later point.

• E.g. suppose that abs (and thus abs_list) remain

nondeterministic, and consider the goal:

abs_list([-3,7,-4], X), !, p(X).

• The call to abs_list will leave many stack frames

behind, but these are deleted by the cut.

It is probably better style to avoid the nondeterminism at the place
where it occurs. However, one should not use too many cuts, and it
might be easier to clean up the stack only at a few places.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

5. Practical Prolog Programming 5-21

Cut: If-Then-Else (1)

• The cut is also used to encode an “if then else”.

• Consider the following predicate:
p(X, Y) :- q1(X), !, r1(X, Y).

p(X, Y) :- q2(X), !, r2(X, Y).

p(X, Y) :- r3(X, Y).

• This is equivalent to (assuming that q1 and q2 are

deterministic):

p(X, Y) :- q1(X), r1(X, Y).

p(X, Y) :- \+ q1(X), q2(X), r2(X, Y).

p(X, Y) :- \+ q1(X), \+ q2(X), r3(X, Y).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

5. Practical Prolog Programming 5-22

Cut: If-Then-Else (2)

• The formulation with the cut is a bit shorter.

The difference becomes the bigger, the more cases there are.

• Furthermore, the runtime is shorter: In the version

without the cut, q1(X) is computed up to three

times.

• But removing the cut in first version would com-

pletely change the semantics of the program.

The cut is no longer only an “optimizer hint”.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

5. Practical Prolog Programming 5-23

Cut: If-Then-Else (3)

• The logical semantics of programs with negation as

failure (“\+”) has be extensively studied and there

are good proposals.

• I do not know of successful tries to give the cut a

clear logical (declarative) semantics.

The cut can basically be understood only operationally. One problem
is that the cut is used for many different purposes, and it might be
difficult to automatically discover for which one.

• Pure logic programmers try to avoid the cut, at

least when it affects the logic of the program.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

5. Practical Prolog Programming 5-24

Cut: If-Then-Else (4)

• Prolog has an “if-then” operator -> that can be

used to have the advantages of the cut, while ma-

king the logical intention clear.

• E.g. one could write the above procedure as
p(X, Y) :- q1(X) -> r1(X,Y);

q2(X) -> r2(X,Y);

r3(X,Y).

• A -> B has basically the same effect as A, !, B.

However, if there should be further rules about p, this cut does not
remove the possibility to try these rules. It does remove alternative
solutions for A, and it does remove the possibility to try the disjunctive
alternatives within the rule.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

5. Practical Prolog Programming 5-25

Cut: Negation

• Conversely, one can implement negation as failure

with the cut (not is only another name for \+):

not(A) :- call(A), !, fail.

not(_).

• The first rule ensures that if A succeeds, not(A)

fails.

• The second rule makes not(A) true in all other cases

(i.e. when A fails).

Of course, if A should run into an infinite loop, also not(A) does not
terminate.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

5. Practical Prolog Programming 5-26

Cut: One Solution (1)

• Suppose that email addresses of professors are sto-

red as facts, and that the same person can have

several email addresses:

prof_email(brass, ’sbrass@sis.pitt.edu’).

prof_email(brass, ’brass@acm.org’).

prof_email(spring, ’mspring@sis.pitt.edu’).

...

• The cut can be used to select a single address of

a given professor:

prof_email(brass, E), !, send_email(E).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

5. Practical Prolog Programming 5-27

Cut: One Solution (2)

• Prolog has a built-in predicate once that can be

used instead of the cut:

once(prof_email(brass, E)), send_email(E).

• once is defined as:

once(A) :- call(A), !.

• In the example, the following is equivalent:

prof_email(brass, E) -> send_email(E).

However, the solution with once makes the intention

clearer.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

5. Practical Prolog Programming 5-28

Cut: Dangers (1)

• The cut can make programs wrong if predicates are

called with unexpected binding patterns.

• E.g. the predicate for the absolute value can also

be written as follows (using the cut as in the if-

then-else pattern):

abs(X,X) :- X >=0, !.

abs(X,Y) :- Y is -X.

• Since the second rule is executed only when the

first rule is not applicable, it might seem that the

test X =< 0 used earlier is superfluous.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

5. Practical Prolog Programming 5-29

Cut: Dangers (2)

• This is indeed true for the binding pattern bf, but

consider now the call abs(3,-3)!

• In general, the rule is that the cut must be exactly

at the point where it is clear that this is the right

rule: Not too early and not too late.

• Here the unification must happen after the cut:
abs(X,Y) :- X >= 0, !, X = Y.

abs(X,Y) :- Y is -X.

• This would work also with binding pattern bb.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

5. Practical Prolog Programming 5-30

Cut: Dangers (3)

• Consider this predicate:

person(X, male) :- man(X), !.

person(X, female) :- woman(X).

• Since man and woman are disjoint, the cut was only

added to improve the efficiency.

• It works if person is called with binding pattern bf

or bb. However, consider what happens if person is

called with binding pattern ff!

It is interesting that here the more general binding pattern poses a
problem, whereas in the abs example, the more specific binding pattern
is not handled.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

5. Practical Prolog Programming 5-31

Types of Cuts

• Cuts in Prolog programs are usually classified into

� Green Cuts: Do not modify the logical meaning

of the program, only improve the runtime/space

efficiency.

Some authors also distinguish blue cuts: In this case, a good Pro-
log system should be able to determine itself that there are no fur-
ther solutions. Blue cuts are intended only for very simple (dump)
Prolog systems. “Grue Cuts”: Green or blue cuts.

� Red cuts: Modify the declarative meaning of the

program.

Good Prolog programmers try to use red cuts only very seldom.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

5. Practical Prolog Programming 5-32

Cut: Summary, Outlook

• The cut is necessary for efficient Prolog program-

ming, but it destroys the declarative meaning of the

programs and can have unexpected consequences.

• The better Prolog implementations get, the less

important will be the cut.

• Newer logic programming languages usually try to

replace the cut by other constructs that have a

more declarative meaning.

• If possible, use ->, \+, once instead.

• Use the cut only as last resort.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

