
4. Built-In Predicates 4-1

Deductive Databases and Logic Programming

(Winter 2003/2004)

Chapter 4: Built-In Predicates

• Binding Patterns (Modes)

• Range Restriction / Allowedness

• Prolog Built-In Predicates

• Built-In Predicates and Function Symbols

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-2

Objectives

After completing this chapter, you should be able to:

• define and explain binding pattern.

• check the allowedness of a clause.

• write Prolog programs using built-in predicates.

• explain how function symbols could be implemen-

ted with binding patterns.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-3

Overview

1. Built-In Predicates, Binding Patterns

'

&

$

%

2. Important Built-In Predicates in Prolog

3. Range-Restriction, Allowedness

4. Function Symbols and Built-In Predicates

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-4

Introduction (1)

• A very pure Prolog Program contains only predica-

tes that are defined by facts and rules.

• However, for larger, real-world applications, this is

not very realistic.

• Already for simulating SQL-queries in Prolog, needs

e.g. the standard arithmetic operators +, −, ∗, /,

and the comparison operators =, 6=, <, >, ≤, ≥.

• For real programs, one needs also a mechanism for

input/output etc.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-5

Introduction (2)

• Theoretically, it might be possible to define e.g. <

for all numbers that occur in the program by facts.

• But it would at least be tedious to enumerate all

facts X < Y that might be important for a program.

• Therefore, Prolog systems and deductive database

systems have certain predicates predefined by pro-

cedures in the system.

• E.g. for the query 3 < 5, the system does not look

up facts and rules, but calls a built-in procedure

written e.g. in C.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-6

Introduction (3)

• Since built-in predicates are defined in the system,

it is illegal to write a literal with a built-in predicate

in the head of a rule, e.g.

X ≤ Z ← X ≤ Y ∧ Y ≤ Z. Error!

• Rules contribute to the definition of the predicate in

their head, and the definition of built-in predicates

cannot be changed.
Typical error message: “Attempt to modify static procedure ≤ /2.”

• Of course, one can use built-in predicates in the

body of a rule (i.e. call them).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-7

Introduction (4)

• Built-in predicates often have restrictions on their

arguments: Certain arguments must not be (un-

bound) variables, but must be known values.
Whereas in Pure Prolog, predicates have no predefined input and out-
put arguments, now certain arguments can only be input arguments.

• E.g. the query X > 3 is not permitted: It would

immediately have infinitely many solutions.
A typical error message is “instantiation fault in X > 3”.

• But “p(X) ∧ X > 3” is permitted: When X > 3 is

executed, X has already a concrete value.
If p binds its argument to a value, e.g. “p(X)←” would not help.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-8

Binding Patterns (1)

Definition:

• A binding pattern for a predicate of arity n (i.e. a

predicate with n arguments) is a string over {b, f}
of length n.

• The binding pattern defines which arguments are

input arguments, and which are output arguments:

� b: “bound” (input argument)

� f: “free” (output argument)

• Binding patterns are not only important for built-in

predicates, but can be specified for any predicate.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-9

Binding Patterns (2)

• E.g. consider a predicate sum(X, Y, Z) that is true if

and only if X+ Y = Z.

Not every Prolog system has such a predicate, because Prolog uses
is for evaluating arithmetic expressions, see below.

• The predicate sum will typically support the bin-

ding pattern bbf. This corresponds e.g. to the call

sum(3,5, X).

• It can support also the binding patterns bfb, fbb

(and bbb, see below).

• E.g. sum(3, X,8) binds X to 8− 3 = 5.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-10

Binding Patterns (3)

• If all three binding patterns are supported, a deduc-

tive DBMS will internally have three procedures:

� sum_bbf(X, Y, var Z): begin Z := X + Y; end

� sum_bfb(X, var Y, Z): begin Y := Z - X; end

� sum_fbb(var X, Y, Z): begin X := Z - Y; end

• The compiler then selects the right procedure de-

pending on the arguments.

In Prolog, it is not always possible for the compiler to know whether
a variable will be bound or free, therefore, there might be a runtime
test to check which case applies.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-11

Binding Patterns (4)

• In the example, a predicate plus a binding pattern

corresponds to a classical procedure.

• However, in general, a predicate can still have mul-

tiple solutions or fail.

• Typically, built-in predicates can succeed only once.

This is not a strict requirement, but makes the interface simpler.
A procedure for a predicate that can fail has a boolean result value.

• Prolog systems and deductive DBMS can usually be

extended by adding new built-in predicates written

in C or similar languages.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-12

Binding Patterns (5)

Definition:

• A binding pattern α1 . . . αn is more general than

a binding pattern β1 . . . βn iff for all i ∈ {1, . . . , n}:
αi = b =⇒ βi = b.

Example/Remark:

• The binding pattern bbf is more general than bbb.

• One can always use a procedure for a more general

binding pattern.

• E.g. the compiler could transform sum(3,5,8) into

sum(3,5, X) ∧ X = 8 (with a new variable X).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-13

Binding Patterns (6)

Binding Patterns and Database Relations:

• Database relations have no binding restrictions, i.e.

they can be evaluated for the binding pattern f . . . f.

This is done by a full table scan. E.g. if the relation father(X, Y) is
stored as a heap file, even the literal father(arno, Y) is evaluated like
father(X, Y) ∧ X = arno: The system reads every tuple in the relation
and checks whether the first attribute has the value arno.

• If there is an index on the first attribute, the system

uses that index for the binding pattern bf (and bb).

Each index supports a specific binding pattern.

Since B-tree indexes support also e.g. <-conditions, indexes can more
generally be seen as parameterized pre-computed queries.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-14

Binding Patterns (7)

The meaning of “bound”:

• There are two different interpretations of what a

bound argument is:

� Weakly bound: Anything except a variable.

� Strongly bound: A ground term.

• Does a complex term with a variable somewhere

inside, e.g. “[1, X,2] count as “bound”?

• In deductive databases such “terms with holes” are

normally excluded (see “range restriction” below).

I.e. there is no difference between strongly bound and weakly bound.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-15

Binding Patterns (8)

• In Prolog, complex terms with holes are possible

and sometimes useful (e.g. for meta-programming).

Meta-programming means to process programs as data. This is espe-
cially easy in Prolog.

• But then it depends on the predicate where exactly

variables might appear.

E.g. a predicate length(L, N) that computes the length N of a list L

could process [1, X,2], but not [1,2 | X].

• Thus, it is safest to assume that “bound” means

“strongly bound”, but that exceptions are possible.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-16

Binding Patterns (9)

• In Prolog, the programmer usually knows the bin-

ding pattern for which a predicate is called.

In contrast to deductive databases, where very different queries must
be executed, a Prolog program typically has a “main” predicate that
calls (directly or indirectly) all other predicates.

• It is common to document this by writing a com-

ment line that lists the predicate with its argu-

ments, where each argument is prefixed with

� “+” for bound (input) arguments, and

� “-” for free (output) arguments, and

� “?” for unrestricted arguments.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-17

Binding Patterns (10)

• E.g.:

% length(+L, -N): N is the length of list L.

length([], 0).

length([_|R], N) :- length(R,M), N is M+1.

• I.e. the programmer assumes that the first argu-

ment is bound and the second argument is free.
The program might work in other cases, but there is no guarantee.
Since the binding pattern appears only in a comment, the Prolog sy-
stem does not check predicate calls. In some systems, “mode” decla-
rations (that specify binding patterns) help the compiler to optimize
the program. Some systems require mode declarations for exported
predicates (when modules are separately compiled).

• Ideal logic programs have no binding restrictions!

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-18

Semantics of Programs (1)

Formal Treatment of Built-In Predicates:

• Let a fixed interpretation IB be given that defines

the extensions IB[[p]] of all built-in predicates p.

Of course, this interpretation must also define the domain. Typically,
one considers only Herbrand interpretations. Then the base interpre-
tation defines the domain, the meaning of the function symbols, and
the meaning of the built-in predicates.

• Then one considers only interpretations I that are

extensions of IB, i.e. all interpretations must agree

with IB on the signature for which IB is defined.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-19

Semantics of Programs (2)

• One identifies an interpretation I with the set of

facts p(t1, . . . , tn) with I |= p(t1, . . . , tn), where p is

not a built-in predicate.

This is an extension of the corresponding convention for Herbrand
interpretations. Since built-in predicates nearly always have an infinite
extension, excluding them increases the chances that the set of facts
is finite (and thus can be explicitly written down or explicitly stored).
Of course, also predicates defined by rules can have infinite extensions.

• As before, the semantics of a program P is the least

fixed point of the TP -operator (see next slide).

This is the least model of P among the interpretations I that ex-
tend IB.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-20

Semantics of Programs (3)

• The definition of the immediate consequence ope-

rator TP does not have to be modified:

TP(I) := {F ∈ BΣ |There is a rule
A← B1 ∧ · · · ∧Bn in P
and a ground substitution θ,
such that
• I |= Bi θ for i = 1, . . . , n, and
• F = A θ}.

• Since the head literal A does not contain a built-in

predicate, one gets only facts about user-defined

predicates.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-21

Valid Binding Patterns (1)

• The designer of the logic programming system de-

fines for each built-in predicate p a set validB(p)

of valid binding patterns such that for all built-in

predicates p and all β ∈ validB(p):

� Suppose that p has arity n and let

{i1, . . . , ik} := {i | 1 ≤ i ≤ n, βi = b}.
� Then for all domain elements ti1, . . . , tik in IB,

the set

{(t′1, . . . , t′n) ∈ IB[[p]] | t′i1 = ti1, . . . , t
′
ik

= tik}
must be finite and computable.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-22

Valid Binding Patterns (2)

• I.e. the requirement is that given any values for the

bound arguments, it must be effectively possible to

compute values for the other arguments, and to

compute all such solutions.

• Together with the range-restriction defined below,

this ensures that each single application of the TP -

operator is computable and has a finite result.

Of course, in the limit (minimal model), it is still possible that user-
defined predicates have infinite extensions. Which is also bad, because
it means that the computation does not terminate.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-23

Overview

1. Built-In Predicates, Binding Patterns

2. Important Built-In Predicates in Prolog

'

&

$

%

3. Range-Restriction, Allowedness

4. Function Symbols and Built-In Predicates

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-24

Term Comparison (1)

• t1 = t2: t1 and t2 are unifiable.

• t1 == t2: t1 and t2 are textually identical.

E.g. X = a is true and has the side effect of binding X to a.
However, X == a is false (unless X was already bound to a).

• t1 \= t2: t1 and t2 are not unifiable.

• t1 \== t2: t1 and t2 are not textually identical.

• t1 @< t2: t1 is before t2 in the standard term order.

The standard order of terms is explained on the next slide.

• t1 @> t2: t1 is after t2 in the standard term order.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-25

Term Comparison (2)

• t1 @=< t2: Equivalent to t1 @< t2 or t1 == t2.

• t1 @>= t2: Equivalent to t1 @> t2 or t1 == t2.

• The standard order of terms is partially system de-

pendend (despite its name), but often one needs

only any order.

E.g. first variables (in undefined sequence), then atoms (alphabetical-
ly), then strings (alphabetically), then numbers (in the usual order),
then compound terms (first by arity, then by name, then recursively
by arguments from left to right).

• compare(o,t1,t2): Binds o to <, =, or >.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-26

Term Classification (1)

• Terms have different types, e.g. integers, atoms,

variables. There are various type test predicates:

� var(t): t is an unbound (free) variable.

� nonvar(t): t is not an unbound variable.

� atom(t): t is an atom, e.g. abc.

� atomic(t): t is an atom or a number.

Depending on the system, also strings might count as atomic.

� integer(t): t is an integer.

� float(t): t is a floating-point number.

Depending on the system, this might also be called real(t).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-27

Term Classification (2)

• Type test predicates, continued:

� number(t): t is integer or floating-point number.

� string(t): t is a string.
This exists only in systems that represent strings as a data type
of its own, not as lists of ASCII codes.

� compound(t): t is a compound term, e.g. f(X).

� callable(t): t is atom or compound term.

• The result depends on the current execution state,

e.g. var(X), X=2 succeeds, but X=2, var(X) fails.
If one uses such predicates, one cannot rely on the commutativity of
conjunction.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-28

Term Manipulation

• functor(t,f,n): t is a term with functor f , arity n.
This can be used either to extract the functor from a term (binding
pattern bff) or to construct a term with the given functor and n

distinct variables as arguments (binding pattern fbb).

• arg(n,t,a): a is the n-th argument of t.

• t =.. L: L is a list consisting of the functor and the

arguments of t. E.g. f(a,b) =.. [f,a,b].
This predicate is called “univ”. It can be used in both directions
(binding pattern bf and fb).

• name(A,L): Atom A consists of characters L.
E.g. name(abc,[97,98,99]). Binding patterns: bf and fb.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-29

Arithmetic Predicates (1)

• Arithmetic expressions can be evaluted with the

built-in predicate is, e.g. X is Y+1.

• is is defined as infix operator (xfx) of priority 700.

• The arithmetic expression can contain +, - (uniary

and binary), *, /, // (integer division), mod (modu-

lo), /\ (bit-and), \/ (bit-or), << (left shift), >> (right

shift), \ (bit complement).
Possibly also functions such as sin, cos, etc. can be used.

• The right argument must be variable-free, i.e. is

supports only the binding patterns fb and bb.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-30

Arithmetic Predicates (2)

• Arithmetic comparison operators first evaluate ex-

pressions on both sides before they do the compa-

rison. E.g. X + 1 < Y * 2 is possible.

• Both arguments must be variable-free (binding pat-

tern bb). Of course, bound variables are no problem.

• Arithmetic comparison operators are:

=:= (=), =\= (6=), < (<), > (>), =< (≤), >= (≥).
The equality test is written =:=, because = is already the unification
(which does not evaluate arithmetic expressions). In the same way,
inequality is written =\=, because \= means “does not unify with”.
Note that ≤ is written =<, because the Prolog designers wanted to
save the arrow <= for other purposes.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-31

String Functions (1)

• SWI-Prolog has strings as new datatype.

As explained above, classical Prolog systems represent strings as lst
of characters. ECLiPSe Prolog also has a string data type, but the
functions have different names.

• Conversion functions:

� string_to_atom(s, a): Conversion between string

and atom.

Despite its name, both directions are supported (binding patterns
bf and fb).

� string_to_list(s, L): Conversion between string

and list of ASCII codes.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-32

String Functions (2)

• Other string functions:

� string_length(s, n): Computes the number of

characters in s.

� string_concat(s1, s2, s3): String concatenation.

Supports binding patterns ffb, bbf. There is also atom_concat.

� sub_string(s1,n1,n2,n3,s2): s2 is substring of s1.

The substring starts at position n1 (i.e. there are n1 characters
before the match), it has length n2, and there are n3 characters
(in s1) after the match. There is also sub_atom.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-33

Exercises

• Define a predicate to compute the Fibonacci num-

bers:

f(n) :=

 1 n = 0, n = 1
f(n− 1) + f(n− 2) n ≥ 2.

• Define sum(X, Y, Z) that holds iff X + Y = Z and can

handle the binding patterns bbf, bfb, fbb, bbb.

• Define a predicate makeground(t) that binds all va-

riables that appear in t to x.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-34

Constructed Goals

• Proof goals can be dynamically constructed, i.e.

can be computed at runtime.

In purely compiled languages, that is not possible.

• call(A): Executes the literal A.

• In many Prolog systems, one can write simply X

instead of call(X).

But it might be clearer to use call.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-35

All Solutions (1)

• findall(X, A, L): L is the list of all X such that

A is true.

• E.g. given the facts p(a) and p(b),

findall(X, p(X), L)

returns L = [a, b].

• It is not required that the first argument is a varia-

ble, it could also be e.g. f(X,Y) if one is interested

in bindings for both variables.

I.e. in general, the result list contains the instantiation of the first
argument whenever a solution to the second argument was found.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-36

All Solutions (2)

• bagof(X, A, L): (similar to findall).

The different lies in the treatment of variables that occur in A, but
do not occur in X. findall treats them as existentially quantified,
i.e. it does not bind them, and findall can succeed only once. In
contrast, bagof binds such variables to a value and collects then only
solutions with this value. Upon backtracking, one can also get other
solutions. For example, suppose that p is defined by the facts p(a,1),
p(a,2), p(b,3). Then findall(X, p(Y,X), L) would bind L=[1,2,3]. Ho-
wever, bagof(X, p(Y,X), L) would succeed two times: One for Y=a and
L=[1,2], and once for Y=b and L=[3].

• setof(X, A, L): As bagof, but the result list is or-

dered and does not contain duplicates.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-37

Dynamic Database (1)

• Prolog systems permit that the definition of certain

predicates is modified at runtime.

• E.g. if a database relation is represented as a set

of facts, one can insert and delete facts.

• Such changes persist even when Prolog backtracks

to find another solution.

Input/output and modifications of the dynamic database are the only
changes that are not undone upon backtracking.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-38

Dynamic Database (2)

• Since modern Prolog systems normally compile pre-

dicates, one must explicitly declare predicates that

can be modified at runtime:

:- dynamic(p/n).

• assert(ϕ): The clause ϕ is inserted into the dyna-

mic database.

Normally, ϕ will be a fact, but it is also possible to assert rules. Some
Prolog systems guarantee that the new clause is appended at the end
of the predicate definition, but officially, there is no guarantee about
the order unless one uses asserta (insert at the beginning) or assertz

(insert at the end).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-39

Dynamic Database (3)

• retract(ϕ): Remove a clause from the database.

• retractall(A): All rules for which the head unifies

with A are removed from the database.

In ECLiPSe it is retract_all. The call retractall(A) succeeds also
when there are no facts/rules that match A.

• abolish(p, n): Remove the definition of p/n.

Then the predicate is no longer defined at all. A call to the predicate
would give an error.

• listing: Lists the dynamic database.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-40

Dynamic Database (4)

Exercise:

• Define a predicate next(N), that generates unique

numbers, i.e. the first call returns 1, the second call

returns 2, and so on.

• Define a predicate all_solutions that works like

findall.

Of course, you should not use findall or bagof, but the dynamic
database. For simplicity, you can assume that the goal does not call
recursively all_solutions. You need the predicate fail that is logically
false (triggers backtracking).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-41

Input/Output (1)

Input/Output of Terms:

• write(t): Print term t (using operators).

E.g. write(1+1) and write(+(1,1)) both print 1+1. The predicate write

does not know how the term was originally written, it only gets the
internal data structure as input. Normally also variable names are
lost when the term is represented internally, therefore output variable
names might appear strange (e.g. write(X) might print _G219, where
219 is probably a memory address).

• display(t): Print term t in standard syntax.

E.g. display(1+1) prints +(1, 1).

• writeq(t): Print t, put atoms in ’...’ (if necessary).

This guarantees that the term can be read again with read, see below.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-42

Input/Output (2)

Input/Output of Terms, continued:

• write_canonical(t): Print t in standard syntax, put

atoms in ’...’ (if necessary).

This is even safer than writeq for reading the term again, because
the current operator declarations are not needed. New Prologs have
a predicate write_term(t,O) that prints t with options O. Then write,
display, etc. are abbreviations for write_term with certain options.

• nl: Print a line break.

• read(X): Read a term, bind X to the result.

The input term must be terminated with “.〈Newline〉”. At the end of
the file, most Prolog systems return X = end_of_file. Together with
operator declarations, read is already a quite powerful parser.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-43

Input/Output (3)

Input/Output of Characters:

• put_code(C): Print character with ASCII-code C.

In older Prolog versions (compatible to DEC-10 Prolog), this is simply
called put. The newer put_code is contained in the ISO Standard.

• get_code(C): Read next character, unify C with its

ASCII-code.

At the end of file, C is set to −1. In older Prolog versions, this is
called get0. The predicate get first skipped spaces, and then unified
C with the next non-space character.

• peek_code(C): Unify C with ASCII-code of next in-

put character without actually reading it.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-44

Input/Output (4)

0 1 2 3 4 5 6 7 8 9

0 NULL SOH STX ETX EOT ENQ ACK BEL BS HT
10 LF VT FF CR SO SI DLE DC1 DC2 DC3
20 DC4 NAK SYN ETB CAN EM SUB ESC FS GS
30 RS US ! " # $ % & ’
40 () * + , - . / 0 1
50 2 3 4 5 6 7 8 9 : ;
60 < = > ? @ A B C D E
70 F G H I J K L M N O
80 P Q R S T U V W X Y
90 Z [\] ^ _ ‘ a b c

100 d e f g h i j k l m
110 n o p q r s t u v w
120 x y z { | } ~ DEL

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-45

Input/Output (5)

Input/Output of Characters, continued:

• It is also possible to work with one-character atoms

instead of ASCII-codes:

� put_char(C): Print atom as character.
E.g. to print a space one writes put_char(’ ’).

� get_char(C): Read next character, unify C with

corresponding atom.
E.g. if the user enters “a”, get_code(C) returns C=97, whereas
get_char(C) returns C=a. At the end of file, C is set to end_of_file.

� peek_char(C): Unify C next input character (as

atom) without actually reading it.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-46

Input/Output (6)

Input/Output of Characters, continued:

• The above get_*-predicates normally wait for an

entire line of input from the keyboard.

• In contrast to read, it is not necessary to finish the

input with “.”, Enter/Return suffices.

• Every Prolog system has a way to read characters

without buffering, but that is system dependent.

E.g. in SWI Prolog, use get_single_char. In GNU Prolog, use get_key.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-47

Input/Output (7)

File Input/Output:

• In Prolog, open files are called “streams”.

• Streams are actually a bit more general:

� Of course, also keyboard input and screen output

are streams (called user_input and user_output).

� Some Prolog systems support also pipes (for

inter-process communication), sockets (for net-

work communication), and I/O from atom na-

mes and ASCII-code lists/strings.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-48

Input/Output (8)

File Input/Output, continued:

• All of the above I/O predicates have also a version

with an additional argument for a stream.

• E.g. write(S, t) prints term t to stream S.

• open(F,M,S): Opens file F in mode M (read, write,

append, possibly update), and returns stream S.

The file name F should be an atom. At least SWI-Prolog also supports
pipe(C) with a command C. There is also open(F,M,S,O) that has
in addition a list O of options, e.g. [type(binary)]. One can also use
the option [alias(A)] to declare atom A as stream name which can
be used in calls to write etc. (instead of the stream object S itself).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-49

Input/Output (9)

File Input/Output, continued:

• Files open in binary mode must be read or written

with put_byte/get_byte/peek_byte instead of the

put_code/get_code/peek_code predicates.

The difference is that the Prolog system might do operating system
dependent translations for text files, e.g. map CR/LF to LF under
Windows, whereas binary files are read verbatim. At least GNU Prolog
produces a runtime error (exception) if one uses get_byte on a text
file or vice versa.

• close(S): Close stream S.

There is also close(S,O) with options O. If an output file is not closed,
the buffer might not be written, and data is lost.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-50

Input/Output (10)

File Input/Output, continued:

• flush_output/flush_output(S):

Flush pending (buffered) output.

• at_end_of_stream/at_end_of_stream(S):

Succeeds after the last character was read.

• set_input(S): Set the default input stream to S.

• set_output(S): Set the default output stream to S.

• get_input(S): Set S to the current input stream.

• get_output(S): Set S to the current output stream.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-51

Input/Output (11)

Exercises:

• DEC-10 Prolog had a predicate tab(N) that printed

N spaces. Please define it.

Since tab is still contained in some Prologs, it might be necssary to
use a different name, e.g. nspaces.

• Define a predicate calc that prints a prompt, reads

an arithmetic expression (without variables), eva-

luates it, prints the result, and so on until the user

enters “quit”.

You can assume that the user ends each input line with “.”. Further-
more, you do not have to handle syntax errors.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-52

Control (1)

• A, B: A and B (conjunction).

• A; B: A or B (disjunction).
Conjunction binds stronger than disjunction (“;” has priority 1100,
“,” has priority 1000). One can use parentheses if necessary. Disjunc-
tion is not strictly needed, one can use several rules instead.

• true: True (always succeeds).

• fail: False (always fails).
Obviously, this can only be interesting with previous side effects (or
the cut). Examples are shown in the next chapter.

• repeat: Always succeeds, also on backtracking.
This can be defined as repeat. repeat :- repeat.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-53

Control (2)

• !: Ignore all previous alternatives in this predicate

activation (cut, see next Chapter).

This means that no further rules for the same predicate will be tried,
and no further solutions for all body literals to the left of the cut.

• A -> B1; B2: If A, then B1, else B2.

This really means (A -> B1); B2. The arrow “->” has priority 1050,
disjunction “;” has priority 1100.

• A -> B: If A, then B, else fail.

This is equivalent to A, !, B.

• once(A): Compute only first solution for A.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-54

Control (3)

• \+ A: A is not provable (fails).

This is called negation as failure. It is not the logical negation, because
Prolog permits only to write down positive knowledge. Negation as
failure behaves non-monotonically, whereas classical predicate logic is
monotonic: If one adds formulas, one can at least prove everything
that was provable earlier. Some Prologs also understand not A.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-55

Prolog Environment (1)

• halt: Leave the Prolog system.

• abort: Stop the current Prolog program.
Control returns to the top-level Prolog prompt. This predicate is not
contained in the ISO standard.

• help(p/n): Show online manual for predicate p of

arity n (not in all Prolog systems).

• shell(C,E): Execute the operating system com-

mand C, unify E with the exit status.
This is not contained in the ISO standard. If the predicate is missing,
look for system/1, unix/1, and shell/1. There might be many more
predicates to give Prolog an operating system interface.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-56

Prolog Environment (2)

• statistics: Display statistics, such as used CPU

time, used size of various memory areas, etc.
This predicate is not contained in the ISO Prolog standard. There
might also be statistics/2 to query specific statistics.

• trace: Switch debugger on (in creep mode).
Creep mode means step by step execution.

• spy(p/n): Set a breakpoint on predicate p of arity n.

• debug: Switch debugger on (in leap mode).
Leap mode means that execution stops only at breakpoints.

• notrace/nodebug: Switch debugger off.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-57

Predicate Documentation (1)

Meaning of the Predicate:

• Purpose/Function of the predicate (“synopsis”).
If the predicate name is an abbreviation, what is the full version? Use
meaningful names for the arguments.

• Reasons for the truth value false (“fails”).
It is best to specify which mathematical relation is defined by the
predicate.

• Behaviour on backtracking (“resatisfiable?”).
Can there be several solutions?

• Side effects.
Input/output, changes of the data base, changes in system settings.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-58

Predicate Documentation (2)

Reasons for Error Messages (Exceptions):

• Type-restrictions for arguments.

E.g. it must be a number, a callable term, etc.

Which arguments must be free/bound?

Usually, arguments that must be bound are prefixed with “+”, and
arguments that should be unbound variables are marked with “-”.
“?” marks an argument without restrictions.

Further Information:

• Examples.

• Related predicates (“see also”).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-59

Overview

1. Built-In Predicates, Binding Patterns

2. Important Built-In Predicates in Prolog

3. Range-Restriction, Allowedness

'

&

$

%

4. Function Symbols and Built-In Predicates

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-60

Motivation (1)

• In deductive databases, query evaluation is done by

applying the TP -operator iteratively to compute the

minimal model (with certain optimizations).

Computing the entire minimal model would not be goal-directed. Of
course, one should compute only facts that are important for the
query. This problem is solved by the magic set transformation: Given
a logic program and a query, it computes a new logic program that
has the same answer, but implies only facts relevant to the query. See
Chapter 6.

• The allowed rules must be restricted so that imme-

diate consequences can effectively be computed.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-61

Motivation (2)

• For example, computing immediate consequences

for a rule like the following would be difficult:

p(X, Y)← q(X).

• The possible values for Y depend on the domain: All

data values can be inserted, often this set infinite,

and maybe not even explicitly known.

Normally, one works with the Herbrand universe that consists of all
terms which can be constructed from the constants and function
symbols appearing in the program. Then one can add a completely
unrelated fact, in which a new constant appears, and thereby change
the extension of p. That is a strange behaviour.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-62

Motivation (3)

• Given e.g. q(a), one could derive the “fact” p(a, Y).

• One problem with this is that variables cannot be

easily represented in database relations.
As long as one does not use function symbols, derived predicates
should correspond to views in relational databases. Furthermore, at
least some prototypes did actually use a relational database system for
query evaluation: Then storing an intermediate result in a temporary
relation for p is at least difficult.

• In contrast to Prolog, deductive databases normally

use only one-directional, restricted form of unifica-

tion (“matching”): Variables appear only in rules,

body literals are matched with variable-free facts.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-63

Allowed Rules (1)

Definition (Allowed Rule, First Try):

• A rule A ← B1 ∧ · · · ∧ Bn is called allowed iff every

variable that appears in the head literal A appears

also in at least one body literal Bi.

Note:

• This definition works only if the body literals have

no binding restrictions.

• E.g. one cannot compute all consequences of the

following rule, although it statisfies the condition:

less(X, Y) :- X < Y.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-64

Allowed Rules (2)

Definition (Allowed Rule with Built-In Predicates):

• A rule A ← B1 ∧ · · · ∧ Bn is called allowed iff every

variable that appears in the rule appears also in at

least one body literal Bi, the predicate of which is

not a built-in predicate.

Example:

• E.g. the following rule satisfies this condition:
teenager(X) :- person(X, BirthYear),

BirthYear < 1995,

BirthYear > 1984.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-65

Allowed Rules (3)

Note:

• If all rules are allowed in the above sense, one can

effectively compute every approximation TP ↑ i of

the minimal model.

Assuming that validB(p) is not empty for every built-in predicate p.
Built-in predicates without any valid (implemented) binding pattern
obviously make no sense.

• If in addition, the rules do not contain function

symbols, the minimal model itself can be computed.

It contains then only constants that appear in the program. Assuming
that programs are always finite, this means that the minimal model is
finite, and is reached after finitely many iterations of the TP -operator.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-66

Range Restriction (1)

• The notion of “allowed rule” above assumes that

we really want to compute the entire extension of

all derived predicates.

I.e. that all predicates should support the binding pattern f . . . f like
stored relations. This is not always required.

• Predicates that have binding restrictions are typi-

cally defined by rules that are not allowed:

append([], L, L).

append([F|R], L, [F|RL]) :-

append(R, L, RL).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-67

Range Restriction (2)

• The rule about less makes sense if it is called with

binding pattern bb:

less(X, Y) :- X < Y.

• Occurrences of variables in literals with built-in pre-

dicates can act as binding. This rule defines a pre-

dicate without any binding restriction:

price_with_vat(Prod, X) :- product(Prod, Price),

X is Price * 1.16.

• All this shows that the allowedness requirement is

too restrictive.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-68

Range Restriction (3)

Definition (Input Variables):

• Given a literal A = p(t1, . . . , tn) and a binding pat-

tern β = β1, . . . , βn for p, the set of input variables

of A with respect to β is

input(A, β) :=
⋃
{vars(ti) | 1 ≤ i ≤ n, βi = b}

(i.e. all variables that appear in bound arguments).

Note:

• Input variables in body literals must be bound be-

fore the literal can be called. Input variables in head

literals are bound when the rule is executed.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-69

Range Restriction (4)

Definition (Valid Binding Patterns):

• Let valid be a function that maps every predicate p

to a set valid(p) of binding patterns for p.

• For built-in predicates p: valid(p) = validB(p).

• valid is called a valid binding pattern specification.

Remark:

• We assume that the programmer defines valid bin-

ding patterns for every predicate.

In practice, it might be possible to compute the possible binding pat-
terns, but that would complicate the next definition.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-70

Range Restriction (5)

Definition (Range-Restricted Rule):

• A rule A ← B1 ∧ · · · ∧ Bn is range-restricted for a

binding-pattern β iff there is a sequence i1, . . . , in

of the body literals (i.e. {i1, . . . , in} = {1, . . . , n})
such that

� for every j ∈ {1, . . . , n} there is a binding pattern

βj ∈ valid(pred(Bij)) with

input(Bij, βj) ⊆ input(A, β)∪vars(Bi1∧· · ·∧Bij−1
)

� and furthermore it holds that

vars(A) ⊆ vars(B1, . . . , Bn) ∪ input(A, β).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-71

Range Restriction (6)

• The definition assumes the following evaluation:

� First, variables in the bound argument positions

of the head literal are assigned values (based on

the input arguments of the predicate call).

� Then the body literals are evaluated in some or-

der. For each literal, variables in bound argument

positions must already have a value. Variables in

other argument positions get a value by this call.

� In the end, a tuple is produced that corresponds

to the head literal. Therefore, all variables in the

head literal must now have a value.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-72

Range Restriction (7)

• The evaluation sequence of body literals may de-

pend on the binding pattern for the head literal.

• For instance, consider the following rule:

p(X,Y) :- sum(X,1,Z), prod(Z,2,Y).

• The given sequence of body literals is possible for

the binding pattern bf.

• For the binding pattern fb, the system should au-

tomatically switch the sequence of body literals.
The Datalog programmer does not necessarily know the binding pat-
tern. Furthermore, it would be bad style to double the rule.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-73

Range Restriction (8)

Definition (Range-Restricted Program):

• A program P is range-restricted with respect to

a binding pattern specification valid iff for every

rule A ← B1 ∧ · · · ∧ Bn and every binding pattern

β ∈ valid
(
pred(A)

)
, the rule is range-restricted for β.

• A program P is strictly range-restricted iff every

rule in P is range-restricted for the binding pat-

tern f . . . f.

Strict range restriction is the requirement for the TP -operator to be
directly executable. As we will see, the magic set transformation turns
a range-restricted program into a strictly range-restricted program.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-74

Overview

1. Built-In Predicates, Binding Patterns

2. Important Built-In Predicates in Prolog

3. Range-Restriction, Allowedness

4. Function Symbols and Built-In Predicates

'

&

$

%

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-75

Record Constructors (1)

• Function symbols in Prolog are record/structure

constructors.

• Let cons(E,N,L) be a built-in predicate for ma-

naging nodes L in a linked list (records with two

components: list element E and “next” pointer N).

• It can be called with two binding patterns:

� bbf: For constructing a list node.

� ffb: For selecting the components of a list node.

• Note that cons(E,N,L) actually means L=[E|N].

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-76

Record Constructors (2)

• Consider again the definition of append:

append([], L, L).

append([F|R], L, [F|RL]) :-

append(R, L, RL).

• Instead of using composed terms like [F|R], one

can also use the built-in predicate cons:

append([], L, L).

append(L1, L2, L3) :-

cons(F, R, L1), % Split L1 into F and R

append(R, L2, RL),

cons(F, RL, L3). % Compose F and RL to L3

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-77

Record Constructors (3)

• The right sequence of body literals in the above rule

depends on the binding pattern for the predicate.

• As written down, the rule works if append is called

with binding pattern bbf.

• If it is called e.g. with binding pattern ffb, the body

literals should be (automatically) reordered:

append(L1, L2, L3) :-

cons(F, RL, L3),

append(R, L2, RL),

cons(F, R, L1).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-78

Record Constructors (4)

• If for every function symbol f of arity n, one has

a built-in predicate pf of arity n + 1 that con-

structs/splits records of type f , composed terms

are not strictly necessary:

� As shown above for append, one can always re-

place them by a new variable and a call to the

built-in predicate.

• Of course, this assumes that there are no terms

with “holes” (variables) in them.

In deductive databases, this is normally the case.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-79

Evaluable Functions (1)

• Conversely, one could use funtional notation for

certain built-in predicates.

• E.g. consider
fib(0, 1).

fib(1, 1).

fib(N, F) :-

N > 1,

N1 is N-1, N2 is N-2,

fib(N1, F1), fib(N2, F2),

F is F1+F2.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-80

Evaluable Functions (2)

• One could now write the rule as (not correct in

Prolog, typical beginner’s error!):

fib(N, F) :-

N > 1,

fib(N-1, F1), fib(N-2, F2),

F is F1+F2.

• Even the following would be possible:

fib(N, fib(N-1)+fib(N-2)) :- N > 1.

• A preprocessor could translate both back to the

standard predicate notation.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-81

Evaluable Functions (3)

• So, why has Prolog only non-evaluable functions

(record constructors)?

• Record constructors are uniquely invertable.

• Consider e.g. the following rule:

p(X+Y, X, Y).

Compare it with this rule:

q([X|Y], X, Y).

• The first rule does not support the binding pat-

tern bff, the second does support it.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

4. Built-In Predicates 4-82

Evaluable Functions (4)

• As long as one has only record constructors, every

occurrence of a variable in a bound argument po-

sition in the head defines a value for the variable.

• For evaluable functions, this is not necessarily the

case. But e.g. the following rule supports bf:

p(X+1, X).

• However, new logic programming languages are still

being proposed, and everybody is free to define

(and implement) his/her own language.
There are many proposals for combined logic-functional languages.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

