
3. Pure Prolog 3-1

Deductive Databases and Logic Programming

(Winter 2003/2004)

Chapter 3: Pure Prolog

• Prolog Syntax, Operators

• Minimal Herbrand Model

• SLD Resolution

• Four-Port/Box-Model of the Prolog Debugger

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-2

Objectives

After completing this chapter, you should be able to:

• write syntactically correct Prolog.

• use the operator syntax.

• determine the minimal Herbrand model of a given

program.

• explain the immediate consequence operator TP .

• develop an SQL-proof tree.

• understand the Prolog debugger output.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-3

Overview

1. Prolog Syntax

'

&

$

%
2. The Minimal Herbrand Model

3. The Immediate Consequence Operator TP

4. SLD Resolution

5. The Four-Port/Box Model of the Debugger

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-4

Introduction (1)

• A pure Prolog program is a set P of definite Horn

clauses (clauses with exactly one positive literal).
Prolog uses an un-sorted (or one-sorted) logic.

• A query or (proof) goal Q in Prolog is a conjunction

of positive literals.
I.e. its negation for refutation provers gives a Horn clause with only
negative literals.

• The purpose of a Prolog system is to compute sub-

stitutions θ such that P ` Q θ.
I.e. one wants values for the variables such that the query is true for
these values in each model of the program.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-5

Introduction (2)

• In Prolog it is possible that the computed substi-

tutions θ with P ` Q θ are not ground.

• E.g. consider the query q(X) for the program

q(X)← p(X).
p(X).

Then it is not necessary to replace X in the query by

any concrete value. The program implies ∀X q(X).
Then one is not interested in all substitutions with P ` Q θ, but only
in a set of substitutions that “subsumes” all other substitutions.

• In deductive DBs, rules and queries are restricted

such that only ground answers are computed.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-6

Introduction (3)

• While in mathematical logic, the concrete syntax

is not very important (e.g. one assumes any alpha-

bet), this chapter explains the exact Prolog syntax.

• In the next chapter, some features will be explained

that are necessary for many practical Prolog pro-

grams, but do not have a nice logical semantics.

• The classical “impure” feature is the cut, but also

arithmetic predicates and I/O make Prolog seman-

tics more complicated.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-7

Introduction (4)

• In contrast to the examples in Chapter 1, now func-

tion symbols are permitted.

• Function symbols are supported in Prolog and some

modern deductive database systems.

Originally, function symbols are not permitted in deductive databases,
because then termination of query evaluation cannot be guaranteed.

• Function symbols are interpreted as term construc-

tors, e.g. for lists. In logic programming, one basi-

cally considers only Herbrand interpretations.

I.e. function symbols are not interpreted (“free interpretation”).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-8

Lexical Syntax (1)

Prolog Atoms:

• Lowercase (Letter | Digit |)∗

E.g.: thisIsAnAtom, x27, also this is permitted.

• ’ (arbitrary characters)∗ ’
If the sequence of characters contains ’, one must escape it with “\”,
e.g. ’John\’s. Modern Prologs support many more escape sequences
starting with “\”. If one needs “\” itself, one must write “\\” instead.
Old Prologs used e.g. John’’s’. Note: ’a’ and a are the same atom.

• (#|$|&|*|+|-|.|/|:|<|=|>|?|@|\|^|~)+
But: “.” followed by a spaces marks the end of the clause.
Another exception is “/*”, which starts a comment.

• Special atoms: !, ;, [], {}.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-9

Lexical Syntax (2)

Constants in Prolog:

• Atoms (see above): e.g. red, green, . . . , monday, . . .

Atoms are internally represented as pointers to a symbol table.

• Integers: e.g. 23, -765, 16’1F (=31), 0’a (=97)

〈Radix〉’〈Number〉 is the Edinburgh Prolog syntax. The ISO-Standard
requires instead that hexadecimal numbers start with 0x, octal num-
bers with 0o, and binary numbers with 0b. It supports 0’ for the
ASCII-code. The Edinburgh Prolog syntax is probably more portable.

• Floating point numbers: e.g. -1.23E5.

• Strings: e.g. "abc".

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-10

Lexical Syntax (3)

Strings in Prolog:

• In classical Prolog systems, strings are represented

as lists of ASCII codes, e.g. "abc" is [97,98,99].

• This makes string processing easy and flexible, but

each character might need e.g. 16 bytes of storage.

Also, write("abc") prints [97,98,99].

• Modern Prologs often represent strings as arrays of

characters (as usual in other languages).

This creates, however, portability problems: Old programs might not
run. In ECLiPSe, the conversion is done with string_list(String,

List). In SWI Prolog, it is string_to_list(String, List).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-11

Lexical Syntax (4)

Atoms vs. Strings:

• Atoms are internally represented as pointers into a

symbol table (“dictionary”).

• Therefore comparing and copying them is very fast.

• However, creating a new atom takes some time.

• Also, once an atom is created, it is never deleted

from memory (depending on the Prolog system).

• It is possible to create atoms dynamically (at run-

time), but one should do this only if one expects

to reference them again and again.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-12

Lexical Syntax (5)

Predicates and Function Symbols in Prolog:

• Predicate and function symbol names are atoms.

• Prolog permits to use the same name with different

arities. These are different predicates, e.g.:

father(Y) :- father(X,Y).

• In the Prolog literature, one normally writes p/n for

a predicate with name p and arity n.

Remember that the arity is the number of arguments. E.g. the above
rule contains the predicate father/1 in the head, and the predicate
father/2 in the body. There is no link between these two distinct
predicates except what is explicitly specified with the rule.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-13

Lexical Syntax (6)

Variables in Prolog:

• (Uppercase | _) (Letter | Digit | _)∗

• Exception: “_” (anonymous variable): Each occur-

rence denotes a new system-generated variable.

• Many Prolog systems print a warning (“singleton

variable”) if a variable that appears only once in a

rule does not start with an underscore “_”.

This helps to protect against typing errors in variable names: If the
variable really appears only once, one could as well use the anonymous
variable.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-14

Lexical Syntax (7)

Comments in Prolog:

• From “%” to the line end (as in TEX).

• From “/*” to “*/” (as in C).

Logical Symbols in Prolog:

• “:-” for ←.

• “,” for ∧.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-15

Abstract Prolog Syntax (1)

• The abstract syntax describes the data structures

that the parser creates (e.g. operator tree).

• The concrete syntax defines e.g. operator priorities,

abbreviations, and special “syntactical sugar”.
E.g. the concrete input might contain parentheses and special deli-
miter characters that are not contained in the internal representation
of the program.

• Prolog was originally an interpreted language.
Today, it is typically compiled into byte code for the “WAM”.

• Then the abstract syntax describes the data struc-

tures on which the interpreter works.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-16

Abstract Prolog Syntax (2)

Program:

• A program is a sequence of clauses.

Clause:

• A clause is one of the following:

� Fact: A literal.

Literal means here always “positive literal”.

� Rule: Consists of a literal and a goal.

The literal is called the head of the rule, and the goal is called
the body of the rule.

� Query/Command: A goal.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-17

Abstract Prolog Syntax (3)

Goal (simple version, this chapter):

• A goal is a sequence of literals.

Goal (complex version, later):

• A goal is one of the following:

� A literal.

� A cut.

� A conjunction of two goals.

� A disjunction of two goals.

� If goal, then goal, possibly else goal.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-18

Abstract Prolog Syntax (4)

Literal (Positive Literal):

• A literal consists of

� An atom p, and

� n terms t1, . . . , tn, n ≥ 0.

• p/n is the predicate of the literal.

• ti is the i-th argument of the literal.

• If A is a literal, let pred(A) denote the predicate

of A.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-19

Abstract Prolog Syntax (5)

Term:

• A term is one of the following:

� Variable (the anonymous variable is treated specially)

� Atom

� A composed term consisting of an atom f and

n ≥ 1 terms t1, . . . , tn. (f/n is the functor of this term.)

� Number: integer, real, possibly rationals etc.

� String (if this is not a list of ASCII codes).

� Stream (open file).

� . . . (possibly other types of objects).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-20

Operator Syntax (1)

Example:

• +(1, 1) is a term in standard syntax.

Standard syntax is f(t1, . . . , tn) for a composed term with functor f/n

and arguments t1, . . . , tn.

• 1+1 is the same term in operator syntax.

• This is only a more convenient input syntax.

Internally, +(1,1) and 1+1 are the same term.

There is absolutely no difference in their meaning.

• Operator syntax can be used also for literals, e.g.

X \= Y, 5 < 7.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-21

Operator Syntax (2)

Operators:

• Many operators are predeclared, but the Prolog

user can declare new operators.

Declaring an operator only modifies the input syntax of Prolog (in
Prolog programs and user input read with the built-in predicate read).
By itself, it does not associate any specific meaning with the operator.

• An operator has

� Name: Any Prolog atom.

� Priority: From 1 (high priority) to 1200 (low).

E.g. ∗ (priority 400) binds more strongly than + (priority 500).

� Associativity: One of fx, fy, xf, yf, xfx, yfx, xfy.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-22

Operator Syntax (3)

Operator Types:

• fx, fy: Prefix operator, e.g. “-X”.

• xf, yf: Postfix operator, e.g. “7!”.

• xfx, yfx, xfy: Infix operator, e.g. “1 + 1”.

Associativity:

• x: term, the topmost operator of which has a nu-

merically lower priority (which means really higher

priority).

• y: term with numerically lower or equal priority.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-23

Operator Syntax (4)

Example for Associativity:

• + has type yfx, i.e. another + can be in the left ope-

rand, but not in the right (except inside “(...)”).

• Thus, the term 1+2+3 means +(+(1,2),3).

“+” is a left-associative operator.

Querying Declared Operators:

• “current_op(Prio, Type, Operator)” can be queried

to get a list of all declared operators.

“current_op” is one of many built-in predicates, i.e. predicates that are
not defined by clauses, but by a procedure inside the Prolog system.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-24

Operator Syntax (5)

Operator Declaration:

• A new operator is declared by calling/executing the

built-in predicate “op(Prio, Type, Operator)”.

• E.g. after executing the goal

op(700, xfx, is_child_of)

the following is a legal syntax for a fact:

emil is_child_of birgit.

• It is completely equivalent to

is_child_of(emil, birgit).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-25

Operator Syntax (6)

Note:

• Besides facts and rules, a Prolog program can con-

tain goals. One must write “:- op(...).”

Unless one enters “op(...)” interactively, in which case the Prolog
system is already in query mode. But if one should write “op(...)” as
a fact in a file, one will probably get an error message that one tries
to redefine a built-in predicate.

• The Prolog compiler executes this while compiling

the program. It modifies the internal parser tables.

• One can then use the operator in the rest of the

same input file and in later user input.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-26

Operator Syntax (7)

Examples for Predefined Operators (Logic, Control):

Op. Priority Type Meaning
:- 1200 xfx “if” in rules
:- 1200 fx marks a goal
--> 1200 xfx syntax rule
; 1100 xfy disjunction (or)
-> 1050 xfy then (for if-then-else)
, 1000 xfy conjunction (and)
\+ 900 xfy negation as failure
=.. 700 xfx convert term to list

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-27

Operator Syntax (8)

Operator Examples, Cont. (Arithmetic Comparisons):

Op. Priority Type Meaning
< 700 xfx is less than
> 700 xfx is greater than
>= 700 xfx greater than or equal
=< 700 xfx less than or equal
=:= 700 xfx is equal to
=\= 700 xfx is not equal to
is 700 xfx evaluate and assign

• These functions evaluate arithmetic expressions in

their arguments (is only on the right side).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-28

Operator Syntax (9)

Operator Examples, Cont. (Arithmetics):

Op. Priority Type Meaning
+ 500 yfx sum
+ 500 fx identify (monadic +)
- 500 yfx difference
- 500 fx sign inversion (monadic -)
* 400 yfx product
/ 400 yfx division (quotient)
// 400 yfx integer division
mod 300 xfx modulo (division rest)

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-29

Operator Syntax (10)

Operator Examples, Cont. (Bit Operations):

Op. Priority Type Meaning
/\ 500 yfx bitwise and
\/ 500 yfx bitwise or
>> 400 yfx right shift
<< 400 yfx left shift
\ 200 fx bitwise negation

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-30

Operator Syntax (11)

Operator Examples, Cont. (Term Comparisons):

Op. Priority Type Meaning
= 700 xfx does unify with
== 700 xfx is strictly equal to
\== 700 xfx is not strictly equal to
@< 700 xfx comes before
@> 700 xfx comes after
@=< 700 xfx comes before or is equal
@=> 700 xfx comes after or is equal

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-31

Operator Syntax (12)

Restrictions in Mixed Syntax:

• In standard syntax “f(t1, . . . , tn)”, one cannot put

a space between “f” and “(”.

A space is necessary, when the argument of a prefix operator starts
with a parenthesis, e.g. “-(X) mod 2” vs. “- (X) mod 2”.

• In standard syntax “f(t1, . . . , tn)”, the prioity of

operators in the argument terms ti must be < 1000.

“,” is an operator with priority 1000. Use parentheses if necessary.

• If a prefix-operator is used as atom without argu-

ments, it must be put into parentheses: (op).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-32

List Syntax (1)

• The functor “./2” is used as list constructor.

• The left argument is the first element of the list.

• The right argument is the rest of list.

• The atom “[]” is used to represent the empty list.

• E.g. the list 1,2,3 can be written as

.(1, .(2, .(3, []))).

• However, Prolog accepts the abbreviation [1, 2, 3]

for the above term.

It is uncommon that one ever uses “.” explicitly.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-33

List Syntax (2)

• I.e. [t1, . . ., tn] is an abbreviation for

.(t1, . . ., .(tn, []) . . .)

• One can also write “[X|Y]” for “.(X, Y)”.

• More generally, also the abbreviation

[t1, . . ., tn | tn+1]

for the following term is accepted:

.(t1, . . ., .(tn, tn+1) . . .)

I.e. after the vertical bar “|”, one writes the rest of the list. Before
it, the first list elements. [1 | 2, 3] is a syntax error. [1|2] is not a
syntax error, but it would be a type error if Prolog were typed.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-34

List Syntax (3)

• E.g. the following are different notations for the list

1,2,3:

� [1, 2, 3].

� .(1, .(2, .(3, []))).

� [1, 2, 3 | []].

� [1 | [2, 3]].

� .(1, [2, 3]).

• If one tries write(t) for each of these terms, the

system will always print [1, 2, 3].

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-35

List Syntax (4)

• Now list processing predicates are easy to define.

• E.g. append(X, Y, Z) is true iff the list Z is the con-

catenation of lists X and Y, e.g.

append([1, 2], [3, 4], [1, 2, 3, 4])

• It is defined as follows (some Prolog systems have

it as a built-in predicate):

append([], L, L).

append([F|R], L, [F|RL]) :-

append(R, L, RL).

• Exercise: Define member(X, L): X is an element of L.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-36

Formal Prolog Syntax (1)

• The input is a term of priority 1200, followed by a

“full stop”:

Term(1200) “.”

White space (a space, line break, etc.) must follow so that “.” is
recognized as “full stop”.

• The term is interpreted as clause: “:-” and “,” are

declared as operators.

• There are certain type restrictions, e.g. the head of

the clause cannot be a variable or number.

Prolog requires that the predicate is an atom, and e.g. not a variable.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-37

Formal Prolog Syntax (2)

Term(N):

• Operator(N,fx) Term(N-1)

Exception: “-1” is a numeric constant, not a composed term. Fur-
thermore, if “Term(N-1)” starts with “(”, a space is required.

• Operator(N,fy) Term(N)

• Term(N-1) Operator(N,xfx) Term(N-1)

• Term(N-1) Operator(N,xfy) Term(N)

• Term(N) Operator(N,yfx) Term(N-1)

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-38

Formal Prolog Syntax (3)

Term(N), continued:

• Term(N-1) Operator(N,xf)

• Term(N) Operator(N,yf)

• Operator(N,fx/fy)
Prefix-operators that are used as atom count as term of their priority,
and not as term of priority 0 as other operators.

• Term(N-1)
I.e. it is not required that Term(N) really contains an operator of prio-
rity N. It may also contain an operator of numerically lower priority
(which means higher binding strength), or contain no further opera-
tors outside parentheses (elementary terms are generated by Term(0)
below).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-39

Formal Prolog Syntax (4)

Term(0):

• Atom

The atom cannot be declared as prefix operator, see above.

• Variable

• Number

• String

• Atom “(” Arguments “)”

• “[” List “]”

• “(” Term(1200) “)”

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-40

Formal Prolog Syntax (5)

Arguments:

• Term(999)

• Term(999) “,” Arguments

List:

• Term(999)

• Term(999) “,” List

• Term(999) “|” Term(999)

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-41

More Syntax Examples

• The rule “p :- q, r.” can also be entered in stan-

dard syntax: :-(p, ’,’(q, r)).

• The following are all the same literal:

� X is Y+1

� is(X, Y+1)

� is(X, +(Y,1))

� X is +(Y,1)

I.e. one can use arbitrary mixtures of operator syntax and standard
syntax and even when an atom is defined as operator, one can use
the standard syntax.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-42

Example: A Riddle (1)

• Consider the following riddle:

� A man needs to transport a cabbage, a goat,

and a wolf from the left side of a river to the

right side.

� He has only a small boat, and can take only one

of the three with him when he crosses the river.

� When the wolf and the goat remain without the

man on one side of the river, the wolf will eat the

goat. Also the goat wants to eat the cabbage.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-43

Example: A Riddle (2)

• The goal is to compute a sequence of moves that

ends with all three on the riht side of the river.

• A state in the riddle can be encoded with terms of

the form

st(Man,Wolf,Goat,Cabbage)

where each of the arguments is left or right.

• One possibility is to define the allowed states by the

10 facts on the next slide (extensional definition).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-44

Example: A Riddle (3)

allowed(st(left, left, left, left)).

allowed(st(left, left, left, right)).

allowed(st(left, left, right, left)).

allowed(st(left, right, left, left)).

allowed(st(left, right, left, right)).

allowed(st(right, left, right, left)).

allowed(st(right, left, right, right)).

allowed(st(right, right, left, right)).

allowed(st(right, right, right, left)).

allowed(st(right, right, right, right)).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-45

Example: A Riddle (4)

• However, the following two rules suffice:
allowed(st(M,W,M,C)) :-

pos(M), pos(W), pos(C).

allowed(st(M,M,G,M)) :-

pos(M), pos(G), M \== G.

If the goat and the man are on the same side, nothing bad can happen.
If the man and the goat are on different sides, the wolf and the
cabbage must be with the man. “\==” means “not equals”.

• The auxillary predicate pos is defined by

pos(left).

pos(right).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-46

Example: A Riddle (5)

• The predicate “move(FromState, ToState, Action)”

defines the possible moves, where the third argu-

ment is a term of the form “act(Object,ToSide)”.

move(st(F,F,G,C), st(T,T,G,C), act(wolf,T)) :-

pos(F), pos(T), pos(G), pos(C), F \== T.

move(st(F,W,F,C), st(T,W,T,C), act(goat,T)) :-

pos(F), pos(T), pos(W), pos(C), F \== T.

move(st(F,W,G,F), st(T,W,G,T), act(cabbage,T)) :-

pos(F), pos(T), pos(W), pos(G), F \== T.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-47

Example: A Riddle (6)

• It would be tempting to define a predicate

reachable(State, ListOfActions)
as:

reachable(st(left,left,left,left), []).

reachable(S2, A2) :-

reachable(S1, A1),

move(S1, S2, A),

append(A1, [A], A2).

• However, this can produce infinitely long sequences

of moves (e.g. moving the goat back and forth).

• Furthermore, the left recursion creates an infinite

loop in Prolog.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-48

Example: A Riddle (7)

• Thus, a third argument is used for a list of states

that were already visited and may not be repeated:
reachable(st(left,left,left,left), [], _).
reachable(S2, A2, V) :-

move(S1, S2, A),
\+ member(S1, V),
reachable(S1, A1, [S1|V]),
append(A1, [A], A2).

• “\+ member(S1, V)” means that S1 is not contained

in the list V. (“\+P” means that P is not provable.)

• The sequence of body literals was chosen for Pro-

log’s left-to-right evaluation.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-49

Example: A Riddle (8)

• If one does not like the default negation “\+”, one

can define
not_member(X, []).

not_member(X, [F|R]) :-

X \== F,

not_member(X, R).

Defining a replacement for the built-in predicate \== (for the applica-
tion in this program) is left as an exercise for the reader.

• Finally, the solution is computed as:

solution(A) :-

reachable(st(right,right,right,right), A,
[st(right,right,right,right)]).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-50

Overview

1. Prolog Syntax

2. The Minimal Herbrand Model

'

&

$

%
3. The Immediate Consequence Operator TP

4. SLD Resolution

5. The Four-Port/Box Model of the Debugger

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-51

Logic Programs (1)

Definition:

• A Logic Program P is a set of definite Horn clauses,

i.e. formulas of the form

A← B1 ∧ · · · ∧Bn.

where A, B1, . . . , Bn are atomic formulas and n ≥ 0.

For Prolog execution, the sequence of the rules is important. Then a
Pure Prolog Program is a list of definite Horn clauses.

• Such formulas are called rules. A is called the head

of the rule, and B1 ∧ · · · ∧Bn the body of the rule.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-52

Logic Programs (2)

Note:

• In this Chapter, we assume that the signature is

one-sorted.

• This corresponds to Prolog being untyped, and ma-

kes the formalism simpler.

• Often, a signature is not explicitly given (Prolog

needs no declarations).

• However, given a logic program P , one can always

construct a signature Σ of the symbols that appear

in P .

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-53

Logic Programs (3)

Definition:

• A fact is a rule with empty body and without va-

riables. The empty body is seen as “true”.

A conjunction is true iff all its conjuncts are true. If there is none,
this is trivially satisfied.

• A fact is written as “A← .” or as “A.”.

• Sometimes facts are identified with the positive

ground literal in the head.

• One also sometimes says “fact” when one really

means “positive ground literal” (fact is shorter).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-54

Logic Programs (4)

Note:

• The definitions become simpler when facts are seen

as special cases of a rule.

• Of course, in deductive databases one separates

� predicates that are defined only by facts (EDB

predicates: classical relations).

� predicates that are defined by proper rules (IDB

predicates: views).
EDB: Extensional Data Base. IDB: Intensional Data Base.

• In deductive databases, often no function symbols

are permitted.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-55

Herbrand Interpretations (1)

• This is only a repetition. See Chapter 2.

• It is difficult to consider arbitrary interpretations.

• Herbrand interpretations have a

� fixed domain: Set of all ground terms.

� fixed interpretation of constants as themselves.

� fixed interpretation of function symbols as term

constructors (“free interpretation”).

• Thus, only the interpretation of the predicates can

be chosen in an Herbrand interpretation.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-56

Herbrand Interpretations (2)

Definition:

• The Herbrand universe UΣ for a signature Σ is the

set of all ground terms that can be constructed

with the constants and function symbols in Σ.
If the signature should contain no constant, one adds one constant a

(so that the Herbrand universe is not empty).

• For a logic program P , the Herbrand universe UP is

the set of ground terms that can be built with the

constants and function symbols that appear in P .
I.e. if a signature is not explicitly given, one assumes that the signature
contains only the constants and function symbols that appear in P .
Must must again add a constant if UP would otherwise be empty.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-57

Herbrand Interpretations (3)

Definition:

• The Herbrand base BΣ is the set of all positive

ground literals that can be built over Σ.
Again, one must ensure that the set is not empty be adding a constant
if Σ does not contain any constant.

• I.e. the Herbrand base is the set of all formulas

of the form p(t1, . . . , tn), where p is a predicate of

arity n in Σ, and t1, . . . , tn ∈ UΣ.

• Again, if instead of a signature Σ, a logic program P

is given, one constructs the signature of the sym-

bols that appear in P .

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-58

Herbrand Interpretations (4)

• A Herbrand interpretation I can be identified with

the set of all positive ground literals p(t1, . . . , tn)

that are true in I, i.e. with H := {A ∈ BΣ | I |= A}.

• Conversely, H ⊆ BΣ denotes the Herbrand interpre-

tation with

I[[p]] := {(t1, . . . , tn) ∈ Un
Σ | p(t1, . . . , tn) ∈ H}.

Otherwise, I is fixed, because it is a Herbrand interpretation: For the
single sort s, I[[s]] := UΣ, for constants c, I[[c]] := c, and for function
symbols f of arity n: I[[f]](t1, . . . , tn) := f(t1, . . . , tn).

• Thus, in the following, Herbrand interpretations are

subsets of BΣ.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-59

Herbrand Interpretations (5)

Definition:

• A Herbrand model of a logic program P is a Her-

brand interpretation I that is a model of P .

Exercise:

• Name two different Herbrand models of P :
p(a).
p(b).
q(a, b).
r(X)← p(X) ∧ q(X, Y).

• Please name also a Herbrand interpretation that is

not a Herbrand model of P .

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-60

Minimal Herbrand Model (1)

• A model of a logic program can be “too large”

(contain unnecessary ground literals).

• The rules enforce only that if the body is true, also

the head must be true.

• If the body is false, the rule is automatically satis-

fied. Nothing is required for the truth of the head.

That is important because there can be several rules with the same
head. If the body of this rule is false, the body of another rule with
the same head can be true. Thus, one cannot require that if the body
is false, the head must also be false.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-61

Minimal Herbrand Model (2)

• E.g. the entire Herbrand base (the interpretation

that makes everything true) is a model of every

logic program.

• Of course, one wants a model that contains only

those ground literals that must be true because of

the rules.

• That is the minimal Herbrand model. It is the de-

clarative semantics of a logic program.

At least in the area of deductive databases. As we will see, Prolog’s
SLD-Resolution corresponds more the to set of supported models.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-62

Minimal Herbrand Model (3)

Definition:

• A Herbrand interpretation I is called Minimal (Her-

brand) Model of a logic program P iff

� I is model of P (I |= P), and

� there is no smaller model of P , i.e. no Herbrand

interpretation I′ with I′ |= P and I′ ⊂ I (I′ 6= I).

Theorem:

• Every logic program has a unique minimal model.

It is the intersection of all Herbrand models.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-63

Minimal Herbrand Model (4)

Relation to Databases:

• As explained above, a relational database state is

an interpretation with finite interpretation of the

relation symbols and no function symbols.

For simplicity, we ignore datatype operations.

• If the logic program contains no function symbols,

the minimal model is a relational DB state.

• If a predicate is defined only by facts, it is interpre-

ted in the minimal model as exactly these facts.

• Rules then define views (derived predicates).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-64

Minimal Herbrand Model (5)

Theorem:

• Let I be the minimal Herbrand model of a logic

program P .

• For every positive ground literal A ∈ BΣ: If I |= A,

then P ` A.

Of course, the same holds for a conjunction of positive ground literals.

• For every positive ground literal A ∈ BΣ: If I 6|= A,

then P 6` A.

This is trivial.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-65

Minimal Herbrand Model (6)

Note:

• The above theorem explains the importance of the

minimal model for query evaluation: It is a prototy-

pical model and instead of logical consequence we

can talk about truth in this model.

• It does not hold for formulas that contain variables.

E.g. P = {p(a), p(b)}. If a and b are the only constants in Σ (and there
are no function symbols), ∀X p(X) is true in the minimal model, but
it is not implied.

• However, in deductive databases, one normally en-

sures that all variables in the query must be bound.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-66

Minimal Herbrand Model (7)

Exercise:

• What is the minimal model of this logic program?

mother(arno, birgit).
father(birgit, chris).
parent(X, Y)← mother(X, Y).
parent(X, Y)← father(X, Y).
ancestor(X, Y)← parent(X, Y).
ancestor(X, Z)← parent(X, Y) ∧ ancestor(Y, Z).

• Guess a model I and explain for each A ∈ I that

there cannot be a model without A.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-67

Minimal Herbrand Model (8)

Example:

• Consider the following logic program:
a_list([]).

a_list([a|X]) :- a_list(X).

• This program has an infinite minimal model:

I = {a_list([]), a_list([a]), a_list([a,a]), . . .}.

• This explains e.g. why Prolog answers

� a_list([a,a]) with “yes”,

� a_list([a,b]) with “no”.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-68

Overview

1. Prolog Syntax

2. The Minimal Herbrand Model

3. The Immediate Consequence Operator TP

'

&

$

%
4. SLD Resolution

5. The Four-Port/Box Model of the Debugger

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-69

Computing the Min. Model

• One can compute the minimal model by iteratively

inserting known facts for the body literals to com-

pute a new literal:

p(a, b)
↑

p(a, X)← q(X, Y) ∧ r(Y, a).

↑ ↑
q(b, c) r(c, a)

'

&

$

%

• This rule application is formalized by the immediate

consequence operator TP .

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-70

Substitutions (1)

• This is a repetition, see Chapter 2.

Here the definition is slightly simpler, because no sorts are considered.

• A substitution is a mapping θ:VARS → TEΣ, such

that the set {V ∈ VARS | θ(V) 6= V } is finite.

The restriction ensures that a substitution can be finitely represented.
It is not a real restriction because formulas anyway contain only finitely
many variables.

• A substitution is usually written down as a set of

variable/term-pairs in the form {X/a, Y/Z}.
This means the substitution θ with θ(X) = a, θ(Y) = Z, and θ(V) = V

for all other variables V .

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-71

Substitutions (2)

• The domain of a substitution can be extended from

the set of variables successively to terms, literals,

and rules (or arbitrary formulas).

• This is done by replacing the variables inside the

term, literal, rule as specified in the substitution

and leaving the rest unchanged.

• E.g. the substitution θ = {X/a, Y/Z} applied to the

literal p(X, Y, V, b) gives the literal p(a, Z, V, b).

• The postfix notation is often used for applying a

substitution, e.g. Aθ means θ(A).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-72

Substitutions (3)

• Note that a substitution is applied only once, not

iteratively. E.g. θ = {X/Y, Y/Z} maps p(X) to p(Y),

and not to p(Z).

• A substitution θ is a ground substitution for a rule ϕ

iff it replaces all variables that occur in ϕ by ground

terms.

• Thus, the result of applying a ground substitution

to a rule ϕ is a ground rule.

I.e. a ground substitution replaces all variables by concrete values.
For Herbrand interpretations, ground substitutions and variable assi-
gnments are basically the same.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-73

Ground Instances (1)

Definition:

• A rule ϕ1 is an instance of a rule ϕ2 iff there is a

substitution θ with ϕ1 = θ(ϕ2).

• A ground instance is an instance that is variable-

free (the result of applying a ground substitution).

• We write ground(P) for the set of all ground in-

stances of rules in P .

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-74

Ground Instances (2)

Example:

• E.g. parent(arno, birgit)← mother(arno, birgit)

is a ground instance of parent(X, Y)← mother(X, Y).

• The ground substitution is θ = {X/arno, Y/birgit}.

• E.g. parent(arno, chris)← mother(arno, chris)

is another ground instance of the same rule.

• E.g. parent(chris, birgit) ← mother(birgit, doris)

is not a ground instance of the above rule.
One must of course replace all occurrences of the same variable in a
rule by the same value (when computing a single ground instance of
a single rule).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-75

Ground Instances (3)

Exercise:

• Let the following rule be given:

p(a, X)← q(X, Y) ∧ r(Y, a).

• Which of the following rules are ground instances

of the given rule?

p(a, a)← q(a, a) ∧ r(a, a).

p(a, b)← q(a, b) ∧ r(b, a).

p(a, b)← q(b, c) ∧ r(c, a).

p(b, a)← q(a, a) ∧ r(a, a).

p(a, b)← q(b, Y) ∧ r(Y, a).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-76

TP -Operator (1)

• Let a logic program P be given.

• The immediate consequence operator TP maps Her-

brand interpretations to Herbrand interpretations:

TP(I) := {F ∈ BΣ |There is a rule
A← B1 ∧ · · · ∧Bn in P
and a ground substitution θ,
such that
• Bi θ ∈ I for i = 1, . . . , n, and
• F = A θ}.

• Note that the case n = 0 is possible, then the con-

dition about the body literals is trivially satisfied.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-77

TP -Operator (2)

• The input interpretation I consists of facts that are

already known (or assumed) to be true.

• The result TP(I) of the TP -operator consists of

those facts that are derivable in a single step from

the given facts and the rules in the program.

• I.e. for each ground instance A ← B1 ∧ · · · ∧ Bn of

a rule in P , if the precondition B1 ∧ · · · ∧Bn is true

in I (i.e. {B1, . . . , Bn} ⊆ I), then A ∈ TP(I).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-78

TP -Operator (3)

Exercise:

• Let the following logic program P be given:

p(a, b).
p(c, c).
q(X, Y)← p(X, Y).
q(Y, X)← p(X, Y).

• Let I0 := ∅.

• Please compute I1 := TP(I0), I2 := TP(I1), and

I3 := TP(I2).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-79

TP -Operator (4)

Theorem:

• Let P be any logic program and let

� I0 := ∅,

� Ii+1 := TP(Ii) for i = 0,1,

• If there is n ∈ lN0 with In+1 = In then In is the

minimal Herbrand model of P .

• If ground(P) is finite, there is always such an n.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-80

TP -Operator (5)

Exercise:

• Please compute the minimal model of the follo-

wing logic program P by iteratively applying the

TP -operator:

mother(arno, birgit).
father(birgit, chris).
parent(X, Y)← mother(X, Y).
parent(X, Y)← father(X, Y).
ancestor(X, Y)← parent(X, Y).
ancestor(X, Z)← parent(X, Y) ∧ ancestor(Y, Z).

• Does I ⊆ TP(I) hold for arbitrary I?

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-81

A Bit of Lattice Theory (1)

• Let a set M and a relation � ⊆ M×M be given.

• � is a partial order iff for all I, I1, I2, I3 ∈ M the

following holds:

� I � I.
I.e. � is reflexive.

� I1 � I2 and I2 � I3 implies I1 � I3.
I.e. � is transitive.

� I1 � I2 and I2 � I1 implies I1 = I2.
I.e. � is antisymmetric.

• (M,�) is then called a partially ordered set.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-82

A Bit of Lattice Theory (2)

• Let (M,�) be a partially ordered set.

• An element I ∈ M is an upper bound of a set

N ⊆M iff J � I for all J ∈ N .

• An element I ∈ M is called least upper bound of a

set N ⊆M iff

� it is an upper bound, i.e. J � I for all J ∈ N ,

� I � I′ for all I′ ∈ M that are an upper bound

of N .

• In the same way, one defines lower bound and grea-

test lower bound.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-83

A Bit of Lattice Theory (3)

Lemma:

• If the least upper bound exists, it is unique.

Definition (Complete Lattice):

• A partially ordered set (M,≺) is a complete lattice

if and only if

� for every N ⊆ M there is a least upper bound

and a greatest lower bound.

• Then one writes lub(N) for the least upper bound

and glb(N) for the greatest lower bound.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-84

A Bit of Lattice Theory (4)

Definition (Top and Bottom Elements):

• A complete lattice (M,≺) always contains

� a top element > := lub(M), and

� a bottom element ⊥ := glb(M).

Example:

• The set of all Herbrand interpretations (over a fixed

signature) together with ⊆ is a complete lattice:

lub(N) =
⋃
I∈N

I, glb(N) =
⋂
I∈N

I, ⊥ = ∅, > = BΣ.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-85

A Bit of Lattice Theory (5)

Definition (Properties of Mappings):

• Let T :M→M.

• T is monotonic iff T(I1) � T(I2) for all I1 � I2.

• T is continuous iff T
(
lub(N)

)
= lub

(
T(N)

)
for all

N ⊆ M such that every finite subset of N has an

upper bound in N . Here T(N) := {T(I) | I ∈ N}.

Lemma:

• If T is continuous, it is also monotonic.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-86

A Bit of Lattice Theory (6)

Definition (Fixpoints):

• I ∈ M is a fixpoint of T iff T (I) = I.

• I ∈ M is the least fixpoint of T iff T (I) = I and

I � J for al J ∈M with T (J) = J .

Theorem:

• A monotonic mapping T in a complete lattice has

always a least fixpoint, namely

glb
(
{I ∈ M | T (I) � I}

)
.

Let lfp(T) be the least fixpoint of T.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-87

A Bit of Lattice Theory (7)

Lemma:

• The immediate consequence operator TP is mono-

tonic and even continuous.

Lemma:

• I is a model of P iff TP(I) ⊆ I.

Theorem:

• The least fixpoint of TP is the minimal model of P .

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-88

A Bit of Lattice Theory (8)

Definition (Iteration of a Mapping):

• T ↑ 0 := ⊥.

• T ↑ (n + 1) := T(T ↑ n).

• T ↑ ω := lub
(
{T ↑ n | n ⊆ lN0}

)
.

Note:

• If there is n ∈ lN0 with T ↑ (n + 1) = T ↑ n, then

T ↑ m = T ↑ n for all m ≥ n and thus T ↑ ω = T ↑ n.

• T ↑ γ can be defined for arbitrary ordinal numbers γ.
T ↑ γ := T

(
T ↑ (γ − 1)

)
if γ is successor of γ − 1, and

T ↑ γ := lub
(
{T ↑ β | β < γ}

)
otherwise (γ is a limit ordinal).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-89

A Bit of Lattice Theory (9)

Lemma:

• If T is monotonic, T ↑ i � T ↑ (i + 1) for all i ∈ lN0.

Theorem:

• If T is continuous, it holds that lfp(T) = T ↑ ω.
This implies the theorem on page 3-79 (minimal model computation).
If T is only monotonic, there is an ordinal number γ with lfp(T) = T ↑ γ.

Corollary:

• Even when the iteration of the TP -operator does

not terminate, every fact that is true in the minimal

model is generated after finitely many iterations.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-90

Supported Models (1)

Supported Model:

• A Herbrand model I of P is called supported model

of P iff TP(I) = I (i.e. I is a fixpoint of TP).

Note:

• Thus, for every fact A that is true in I there is a

reason in form of a ground instance

A← B1 ∧ · · · ∧Bn

of a rule in P that permits to derive A (because

I |= Bi for i = 1, . . . , n).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-91

Supported Models (2)

Corollary:

• The minimal model is a supported model.

Note:

• The converse is not true: Consider e.g. the program

P := {p ← p}. The interpretation I := {p} is a

supported model of P , but it is not minimal.

Practical example: married_with(X, Y)← married_with(Y, X).

• However, non-recursive programs (see below) ha-

ve only one supported model, namely the minimal

model.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-92

Overview

1. Prolog Syntax

2. The Minimal Herbrand Model

3. The Immediate Consequence Operator TP

4. SLD Resolution

'

&

$

%
5. The Four-Port/Box Model of the Debugger

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-93

Unification (1)

• Unification is used in Prolog for parameter passing:

It matches the actual parameters with the formal

parameters of a predicate. It can fail.

• It can also be seen as an assignment that is that is

� symmetric: X = a and a = X are both legal and

have the same effect (X is bound to a),

� one-time: Once a variable is bound to a value,

it is always automatically replaced by that value.

It is impossible to assign a new value.

• Unification does pattern matching of trees.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-94

Unification (2)

Definition (Unifier):

• A unifier of two literals A and B is a substitution θ

with A θ = B θ.

• A and B are called unifiable if there is a unifier of A

and B.

• θ is a most general unifier of A and B if for every

other unifier θ′ of A and B there is a substitution σ

with θ′ = θ ◦ σ.

θ ◦ σ denotes the composition of θ and σ, i.e. (θ ◦ σ)(A) = σ(θ(A)).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-95

Unification (3)

Examples:

• p(X, b) and p(a, Y) are unifiable with most general

unifier {X/a, Y/b}.

• q(a) and q(b) are not unifiable.

• Consider q(X) and q(Y):

� {X/Y } is a most general unifier of these literals.

� {Y/X} is another most general unifier of these

literals. (It maps both literals to q(X)).

� {X/a, Y/a} is an example for a unifier that is not

a most general unifier.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-96

Unification (4)

Lemma:

• If there is a unifier of A and B, there is also a most

general unifier (MGU).

• The most general unifier is unique up to variable

renamings, i.e. if θ and θ′ are both most general

unifiers of A and B there is a substitution σ which

is a bijective mapping from variables to variables

such that θ′ = θ ◦ σ.

Notation:

• Let mgu(A, B) be a most general unifier of A and B.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-97

Unification (5)

unify(Literal/Term t, u): Substitution θ

if t = u then
θ := {};

elif t is a variable that does not occur in u then
θ := {t/u};

elif u is a variable that does not occur in t then
θ := {u/t};

elif t is f(t1, . . . , tn) and u is f(u1, . . . , un) then
θ := {};
for i := 1 to n do θ := θ ◦ unify(ti θ, ui θ);

else /* Different Functors/Constants */
θ := “not unifiable”;

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-98

Unification (6)

Example:

• p(X, X) and p(a, b) are not unifiable:

� The first argument is unified with X/a.

� However, then one has to unify p(a, a) and p(a, b).

That is not possible.

• p(X, X) and p(Y, f(Y)) are not unifiable:

� First, one unifies X and Y , e.g. with {X/Y }.
� Then one has to unify p(Y, Y) and p(Y, f(Y)).

It is not possible to bind Y to f(Y), because Y

occurs in f(Y).
{Y/f(Y)} would not make the terms equal.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-99

Unification (7)

Example:
p

��

f

X

@@

a

p
��

f

g

b c
�� @@

@@

Y

-

p
��

f

g
�� @@

b c

@@

a

p
��

f

g

b c
�� @@

@@

Y
6

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-100

Unification (8)

Example:

p
��

X
@@

X

p
��

f

Y

@@

f

a

-

p
��

f

Y

@@

f

Y

p
��

f

Y

@@

f

a
6

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-101

Unification (9)

Exercises:

Compute the most general unifier if possible:

• length([1,2,3], X) and length([],0).

• length([1,2,3], X) and length([E|R], N1).

• append(X, [2,3], [1,2,3]) and append([F |R], L, [F |A]).

• p(f(X), Z) and p(Y, a).

• p(f(a), g(X)) and p(Y, Y).

• q(X, Y, h(g(X))) and q(Z, h(Z), h(Z)).

• Use Prolog to check the solution.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-102

Occur Check (1)

• Suppose that the following to literals are unified:

� p(X1, . . . , Xn),

� p(f(X0, X0), . . . , f(Xn−1, Xn−1)).

• The unifier is
θ = {X1/f(X0, X0),

X2/f(f(X0, X0), f(X0, X0)),
. . .}.

• The test, whether Xk appears in tk (“occur check”)

costs exponential time.
An explicit representation of θ would cost exponential time, too. But
one normally uses pointers from variables to their values to represent a
substitution internally: Then common subterms are stored only once.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-103

Occur Check (2)

• Unification is the basic step in Prolog evaluation.

It is bad if it can take exponential time.

• Solutions:

� Unification without occur check: dangerous.
This can give wrong solutions: E.g. consider the program consi-
sting of p← q(X, X) and q(Y, f(Y)). Prolog systems without occur
check answer “p” with “yes”. It is also possible that unification
or the printing of terms get into infinite loops.

� With better data structures, the occur check has

linear runtime.

� Static analysis of a Program can show where no

occur check is needed.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-104

SLD-Resolution (1)

• SLD-resolution is the theoretical basis of Prolog

execution.

• It is a theorem proving procedure that is complete

for Horn clauses.

• SLD stands for “Linear resolution for Definite clau-

ses with Selection function”.

In resolution, the basic derivation step is to conclude A∨C from A∨B

and ¬B ∨ C: I.e. one matches complementary literals (with a unifier)
and composes the rests of the two clauses. It is a refutation proof
procedure that starts with the negation of the proof goal and ends
with the empty clause (the obvious contradiction). In linear resolution,
one of the two clauses is always the result of the previous step.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-105

SLD-Resolution (2)

• The idea of SLD-resolution is to simplify the query

(proof goal) step by step to “true”.

If seen as refutation proof procedure, the current clause is the negation
of the query, and one ends with “false”.

• Each step makes a literal from the query and a rule

head from the program equal with a unifier.

• Then literal in the query is replaced by the body of

the rule. This gives a new query (hopefully simpler).

• Facts are treated as rules with empty body. Using

facts makes the query shorter.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-106

SLD-Resolution (3)

Example:

• Consider the following program:

(1) ancestor(X, Y)← parent(X, Y).
(2) ancestor(X, Z)← parent(X, Y) ∧ ancestor(Y, Z).
(3) parent(X, Y)← mother(X, Y).
(4) parent(X, Y)← father(X, Y).
(5) father(julia, emil).
(6) mother(emil, birgit).

• Let the query be

ancestor(julia, birgit).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-107

SLD-Resolution (4)

• The given query is the first proof goal:

ancestor(julia, birgit).

• The only literal in the proof goal can be resolved

with rule (2).

• The most general unifier of query literal and rule

head is {X/julia, Z/birgit}.

• Now the new proof goal is

parent(julia, Y) ∧ ancestor(Y, birgit).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-108

SLD-Resolution (5)

• Prolog always works on the first literal of the proof

goal (this is a special selection function):

parent(julia, Y) ∧ ancestor(Y, birgit).

• It can be resolved with rule (4), this gives

father(julia, Y) ∧ ancestor(Y, birgit).

• Then the fact (5) is applied (with unifier {Y/emil}).
This gives the proof goal:

ancestor(emil, birgit).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-109

SLD-Resolution (6)

• For the proof goal ancestor(emil, birgit), one can

e.g. apply rule (1) and replace it by

parent(emil, birgit).

• Now one can apply rule (3) and get the proof goal

mother(emil, birgit).

• This is given as a fact (line (6) in the program),

and one gets the empty proof goal “ ”.

• Thus, the query indeed follows from the given pro-

gram, and the answer “yes” is printed.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-110

SLD-Resolution (7)

• A sequence of proof goals that starts with a query Q

and ends in the empty goal is called a derivation

of Q from the given program.

• In the above derivation, the right program rule was

“guessed” in each step. Prolog will try all possibi-

lities with backtracking.

• If a query contains variables, the answer computed

by a derivation is the composition of all substituti-

ons applied.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-111

SLD-Resolution (8)

Definition (Selection Function):

• A selection function is a mapping that, given a

proof goal A1 ∧ · · · ∧ An, returns an index i in the

range from 1 to n. (I.e. it selects a literal Ai.)

Note:

• Prolog uses the first literal selection rule, i.e. it

selects always A1 in A1 ∧ · · · ∧An.

• As we will see, in deductive databases, a good selec-

tion function is an important part of the optimizer.
The Prolog selection function also does not guarantee completeness
for the answer “no”. However, it is easy to implement with a stack.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-112

SLD-Resolution (9)

Definition (SLD-Resolution Derivation Step):

• Let A1 ∧ · · · ∧An be a proof goal (query).

• Suppose the selection function chooses Ai.

• Let B ← B1 ∧ · · · ∧Bm be a rule from the program.

• Replace the variables in the rule by new variables,

let the result be B′← B′1 ∧ · · · ∧B′m.

• Let Ai and B′ be unifiable, θ := mgu(Ai, B
′).

• Then the result of the SLD-resolution step is

(A1 ∧ · · · ∧Ai−1 ∧B′1 ∧ · · · ∧B′m ∧Ai+1 ∧ · · · ∧An)θ.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-113

SLD-Resolution (10)

Definition (Applicable Rule):

• In the above situation, the rule B ← B1 ∧ · · · ∧ Bm

is called applicable to the proof goal A1 ∧ · · · ∧An.

• I.e. after renaming the variables in the rule, giving

B′ ← B′1 ∧ · · · ∧ B′m, the head literal B′ unifies with

the selected literal Ai in the proof goal.

Note:

• Several rules in the program can be applicable to

the same proof goal.
This leads to branches in the SLD-tree explained below.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-114

SLD-Resolution (11)

• It is important that the variables of the rule are

renamed such that there is no name clash with a

variable in the proof goal.
Or a previous substitution, see computed answer substitution below.

• E.g. suppose the proof goal is p(X, a) and the rule

to be applied is p(b, X)←.

• There is no unifier of p(X, a) and p(b, X).

• However, variable names in rules are not important.

If the variable in the rule is renamed, e.g. to X1,

the MGU is {X/b, X1/a}.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-115

SLD-Derivations (1)

Definition (SLD-Derivation, Successful SLD-Deriv.):

• Let a logic program P , a query Q, and a selection

function be given.

• An SLD-derivation for Q is a (finite or infinite) se-

quence of proof goals Q0, Q1, . . . , Qn, . . . such that

� Q0 = Q and

� Qi for i ≥ 1 is the result of an SLD-derivation

step from Qi−1 and a rule from P .

• An SQL-derivation is successful iff it is finite and

ends in the empty clause .

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-116

SLD-Derivations (2)

Definition (Failed SLD-Derivation):

• An SLD-derivation Q0, . . . , Qn is failed iff it is finite,

the last goal Qn is not the empty clause , and

the given program does not contain a rule that is

applicable to Qn.

Summary: Classification of SLD-Derivations:

• Successful: Finite, ends in .

• Failed: Finite, ends not in , no applicable rule.

• Incomplete: Finite, there is an applicable rule.

• Infinite.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-117

SLD-Derivations (3)

Example (shown also on next page with applied rules):

• ancestor(julia, birgit).

• parent(julia, Y) ∧ ancestor(Y, birgit).

• father(julia, Y) ∧ ancestor(Y, birgit).

• ancestor(emil, birgit).

• parent(emil, birgit).

• mother(emil, birgit).

• .

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-118

SLD-Derivations (4)

ancestor(julia, birgit).
ancestor(X, Z)← parent(X, Y) ∧ ancestor(Y, Z).

parent(julia, Y) ∧ ancestor(Y, birgit).
parent(X, Y)← father(X, Y).

father(julia, Y) ∧ ancestor(Y, birgit).
father(julia, emil).

ancestor(emil, birgit).
ancestor(X, Y)← parent(X, Y).

parent(emil, birgit).
parent(X, Y)← mother(X, Y).

mother(emil, birgit).
mother(emil, birgit).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-119

SLD-Derivations (5)

Exercise:

• Let the following logic program be given:

append([], L, L).

append([F|R], L, [F|A]) ← append(R, L, A).

• Give a successful SLD-derivation for

append([1], [2], [1,2]).

• What are the applied rules and most general unifiers

in each step?

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-120

Computed Answers (1)

Definition (Computed Answer Substitution):

• Given a logic program P and a query Q, let

Q0 = Q, Q1, . . . , Qn

be a successful SLD-derivation for Q, and θ1, . . . , θn

be the most general unifiers applied in the SLD

resolution steps.

• Let θ be the composition θ1◦· · ·◦θn of these unifers,

restricted to the variables that occur in the query Q.

• Then θ is a computed answer substitution for Q.

Or: The answer substitution computed by this SLD-derivation.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-121

Computed Answers (2)

Example (For Program on Slide 3-106):

• A successful derivation for parent(X, Y) is as follows:

� Goal: parent(X, Y).
Rule: parent(X1, Y1)← mother(X1, Y1).
MGU: θ1 := {X/X1, Y/Y1}.

� Goal: mother(X1, Y1).
Rule: mother(emil, birgit).
MGU: θ2 := {X1/emil, Y1/birgit}.

� Goal: .

• θ1 ◦ θ2 = {X/emil, Y/birgit, X1/emil, Y1/birgit}.

• Computed answer substitution: {X/emil, Y/birgit}.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-122

Computed Answers (3)

Theorem (Correctness of SLD-Resolution):

• For every program P , query Q, and computed ans-

wer substitution θ: P ` Q θ.
I.e. the program (set of Horn clauses) logically implies the query (con-
junction of positive literals) after the answer substitution is applied to
the query. As always, variables are treated as universally quantified.

Theorem (Completeness of SLD-Resolution):

• For every program P , query Q, and substitution θ

with P ` Q θ, there is a computed answer substitu-

tion θ0 and a substitution θ1 such that θ = θ0 ◦ θ1.
I.e. for every correct answer substitution, SLD-resolution either com-
putes it, or it computes a more general substitution.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-123

Computed Answers (4)

Note (On the Completeness):

• E.g. consider the pogram consisting of the rule

p(f(X))← .

• Let the query be p(Y).

• The substitution θ := {Y/f(a)} is correct, i.e. it

satisfies P ` Q θ, but SLD-resolution computes the

more general substitution θ0 := {Y/f(X)}.

• θ0 is more general than θ, because it can be com-

posed with θ1 := {X/a} to give θ.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-124

Computed Answers (5)

Note (On Prolog):

• The correctness result holds only if the Prolog sy-

stem does the occur check, e.g. try the program P :

p ← q(X,X).

q(X, f(X)).

Prolog systems without occur check answer “p”

with “yes”, but p is not a logical consequence of P .

• The completeness result holds only if the Prolog

system terminates. Prolog might run into an infinite

loop before it finds all answers.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-125

SLD-Trees (1)

• There are usually more than one SLD-derivation for

a given query, because for every proof goal, more

than one rule might be applicable.

• Every successful SLD-derivation computes only one

answer substitution, but a query might have several

distinct correct answer substitutions.

Thus, it is important for the completeness of SLD-resolution, that
there can be several SLD-derivations for the same query.

• The different SLD-derivations for a given query are

usually displayed in form of a tree, the SLD-tree.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-126

SLD-Trees (2)

Definition (SLD-Tree):

• The SLD-tree for a program P and a query Q (and

a given selection function) is constructed as follows:

� Every node of the tree is labelled with a proof

goal (query). The root node is labelled with Q.

� Let a node N be labelled with the proof goal

A1∧ · · ·∧An, n ≥ 1. Then N has a child node for

every rule B ← B1∧· · ·∧Bm in P that is applicable

to A1 ∧ · · · ∧ An. The child node is labelled with

the result of the corresponding SLD-resolution

step.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-127

SLD-Trees (3)

Example:

• Consider the following program:

(1) parent(X, Y)← mother(X, Y).
(2) parent(X, Y)← father(X, Y).
(3) father(julia, emil).
(4) mother(julia, frida).
(5) father(ian, emil).
(6) mother(ian, frida).

• Let the query be

parent(julia, X).

• The SLD-Tree is shown on the next page.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-128

SLD-Trees (4)

SLD-Tree:

parent(julia, X)
�

���
���

��

H
HHH

HHH
HH

mother(julia, X) father(julia, X)

• Often, it is also useful to know the applied rules

and/or the computed answers. This information is

shown in the variant on the next page.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-129

SLD-Trees (5)

SLD-Tree (with applied rules and computed answers):

parent(julia, X)
�

���
���

��

parent(X, Y)← mother(X, Y).
H

HHH
HHH

HH

parent(X, Y)← mother(X, Y).

mother(julia, X)

mother(julia, frida).

X/frida

father(julia, X)

father(julia, emil).

X/emil

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-130

SLD-Trees (6)

Another Example (Is emil parent of julia?):

parent(julia, emil)
���

���
���

parent(X, Y)← mother(X, Y).
HHH

HHH
HHH

parent(X, Y)← mother(X, Y).

mother(julia, emil)

Fails.

father(julia, emil)

father(julia, emil).

yes.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-131

SLD-Trees (7)

Exercise:

• Consider again the program for list concatenation:

(1) append([], L, L).

(2) append([F|R], L, [F|A]) ← append(R, L, A).

• What is the SLD-tree for

append(X, Y, [1,2]).

• Which answers do the different paths in the SLD-

tree (i.e. the SLD-derivations) compute?

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-132

Infinite Paths (1)

• Consider the following program:
(1) p(X) ← p(X).
(2) p(a).

• The query p(X) has the following SLD-tree:
p(X)
�

�
�

@
@

@

X/ap(X)
�

�
�

@
@

@

X/ap(X)
�

�
�

@
@

@

X/a· · ·

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-133

Infinite Paths (2)

• Prolog searches the SLD-tree depth first.

It also uses alternative rules always in the order that they are written
down in the program.

• In this example, Prolog will get into an infinite loop

and will not compute the correct answer substitu-

tion {X/a}. Thus, Prolog is not complete.

• However, if one would search the SLD-tree breadth-

first, one would find all correct answer substitutions

(because of the completeness of SLD-resolution).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-134

Infinite Paths (3)

• But depth-first search is much more efficient to

implement (with a stack).

• One solution is iterative deepening.
First, one searches the SLD-tree depth-first, but e.g. only to depth 5.
Then, one searches the SLD-tree again up to depth 10 (printing only
answers below depth 5). And so on.

• In the XSB-system, it one can switch on “tabling”

for selected predicates. Then the system detects

when the same selected literal appears again.
Then infinite loops can happen only when more and more complicated
terms are constructed. For programs without function symbols (and
built-in predicates), termination is guaranteed.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-135

Overview

1. Prolog Syntax

2. The Minimal Herbrand Model

3. The Immediate Consequence Operator TP

4. SLD Resolution

5. The Four-Port/Box Model of the Debugger

'

&

$

%

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-136

Box Model (1)

• Prolog uses SLD-resolution with

� the first-literal selection function, and

� depth-first search of the SLD-tree.

• However, the Prolog debugger does not show the

entire proof goal (node label in the SLD-tree).

• Instead, it views predicates as nondeterministic pro-

cedures (procedures that can have more than one

solution).

• The four-port debugger model is standard among

Prolog systems.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-137

Box Model (2)

• Each predicate invocation (selected literal in the

SLD-tree) is represented as a box with four ports:

� CALL A: Call of A, find first solution.

� REDO A: Is there another solution for A?

� EXIT A: A solution was found, A is proven.

� FAIL A: There is no (more) solution for A.

father(X, emil)
CALL -

FAIL �

- EXIT
� REDO

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-138

Box Model (3)

• E.g. consider the following small program:

father(ian, emil).
father(julia, emil).
father(emil, arno).

• Debugger output for the query father(X, emil):

� CALL father(X, emil)

� EXIT father(ian, emil)

Note that the proven instance is shown.

� Then the solution X/ian is displayed.

Suppose one presses “;” to get more solutions.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-139

Box Model (4)

• Example debugger output, continued:

� REDO father(X, emil)

� EXIT father(julia, emil)

� The solution X/julia is displayed. Some systems

already know that there is no further solution.

Otherwise, one can press again “;”.

� REDO father(X, emil)

� FAIL father(X, emil)

� The system prints “no”.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-140

Box Model (5)

• Suppose the program is extended with the rule

siblings(X, Y)← father(X, Z) ∧ father(Y, Z) ∧ X \= Y.

• The box model is:

siblings(X, Z)

CALL -

FAIL �
father(X, Z)

-

�
father(Y, Z)

-

�
X \= Y

- EXIT

� REDO

E.g. when the first or second body literal exists, the next body literal
is called. When the last body literal is proven, siblings exits.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-141

Box Model (6)

Debugger Output for the query siblings(ian, Y):

(1) 0 CALL siblings(ian, Y).
(2) 1 CALL father(ian, Z).
(2) 1 EXIT father(ian, emil).
(3) 1 CALL father(Y, emil).
(3) 1 *EXIT father(ian, emil).
(4) 1 CALL ian \= ian.
(4) 1 FAIL ian \= ian.
(3) 1 REDO father(Y, emil).
(3) 1 EXIT father(julia, emil).
(5) 1 CALL julia \= ian.
(5) 1 EXIT julia \= ian.
(1) 0 CALL siblings(ian, julia).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-142

Box Model (7)

Remark:

• The exact form of the output depends on the Pro-

log system.

• The above output contains a box number in the

first column and a nesting depth (call stack depth)

in the second column.

• The asterisc “*” before EXIT marks that there are

possibly further solutions (nondeterministic exit).

Otherwise, the box is already removed, and not visited during back-
tracking (i.e. no REDO-FAIL will be shown). Because of such optimiza-
tions, the debugger output might violate the pure four-port model.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-143

Box Model (8)

• Consider now a predicate defined with two rules:

parent(X, Y) ← father(X, Y).
parent(X, Y) ← mother(X, Y).

• The box model for parent is shown on the next

page.

There, also a port NEXT appears. This is a speciality of ECLiPSe Pro-
log. It shows when execution moves to another rule for the same
predicate. In general, different Prolog systems have extended the ba-
sic Four-Port Model in various ways. E.g. SWI-Prolog can display a
port “UNIFY” that shows the called literal after unification with the
rule head.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-144

Box Model (9)

parent(X, Y)

FAIL �

CALL -

-

NEXT

REDO�

EXIT-

�

u

6

u
father(X, Y)

mother(X, Y)

REDO enters the inner box that was last left with EXIT.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-145

Using the Debugger (1)

• The debugger output is switched on by executing

the built-in predicate “trace” (as a query).

It is switched off with “notrace”. In SWI-Prolog, trace means only
that the next query is traced.

• The debugger then displays a line for every port

and waits for commands after each line.

• With “Return” one steps to the next port.

• Other commands are listed in the manual.

Often, they are displayed when one enters “?”. The command “a”
should stop execution of the query (“abort”).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

3. Pure Prolog 3-146

Using the Debugger (2)

• It is possible to produce debugger output only se-

lectively.

• One can set breakpoints (“spypoints”) on a predi-

cate with e.g.

spy father/2.

• If instead of “trace”, one uses “debug”, Prolog exe-

cutes the program without interruption until it re-

aches a predicate with a spypoint set.
Then one can continue debugging as above or “leap” to the next spy-
point (usually with the command “l”). Of course, there are “nodebug”
and “nospy”.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003

