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Objectives

After completing this chapter, you should be able to:

• explain the basic notions: signature, interpretation,

variable assignment, term, formula, model, consi-

stent, implication.

• use some common equivalences to transform logical

formulas.

• write formulas for given specifications.

• check whether a formula is true in an interpretation,

• find models of a given formula (if consistent).
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Overview

1. Signature, Interpretation
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%
2. Formulas, Models

3. Implication, Equivalence

4. Clausal Form

5. Herbrand Interpretations
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Alphabet (1)
Definition:

• Let ALPH be some infinite, but enumerable set,

the elements of which are called symbols.
Formulas will be words over ALPH, i.e. sequences of symbols.

• ALPH must contain at least the logical symbols,

i.e. LOG ⊆ ALPH, where

LOG = {(, ), , , ∧, ∨, ←, →, ↔, ∀, ∃}.

• In addition, ALPH must contain an infinite subset

VARS ⊆ ALPH, the set of variables. This must be

disjoint to LOG (i.e. VARS ∩ LOG = ∅).
Some authors consider variables as logical symbols.
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Alphabet (2)

• E.g., the alphabet might consist of

� the special logical symbols LOG,

� variables starting with an uppercase letter and

consisting otherwise of letters, digits, and “_”,

� identifiers starting with a lowercase letter and

consisting otherwise of letters, digits, and “_”.

• Note that words like “father” are considered as

symbols (elements of the alphabet).
Compare with: lexical scanner vs. context-free parser in a compiler.

• In theory, the exact symbols are not important.
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Signatures (1)

Definition:

• A signature Σ = (S,P,F , α, ρ) consists of:

� A non-empty and finite set S, the elements of

which are called sorts (data type names).

� P ⊆ ALPH − (LOG ∪ VARS), the elements are

called predicate symbols.

� F ⊆ ALPH−(LOG∪VARS∪P), the elements are

called function symbols.

� α: (P∪F)→ S∗, which defines the argument sorts

of predicates and functions.

� ρ:F → S, this defines the result sort of functions.
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Signatures (2)

• If α(c) = ε for some c ∈ F (i.e. c has no arguments),

then c is called a constant.

• A predicate symbol p ∈ P with α(p) = ε is called a

propositional symbol.

• The length of the argument string (number of argu-

ments) is called the arity of the function/predicate.

• The above definition is for a multi-sorted (typed)

logic. One can also use an unsorted logic.
Unsorted means really one-sorted. Then S and ρ are not needed, and
α defines the arity, i.e. α: (P ∪F)→ lN0. E.g. Prolog uses an unsorted
logic. This is also common in textbooks about mathematical logic.
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Signatures (3)

Example:

• S = {person, string}.

• F consists of

� constants of sort person, e.g. arno, birgit, chris.

� infinitely many constants of sort string, e.g. ’’,

’a’, ’b’, . . . , ’Arno’, . . .

� function symbols first_name: person → string

and last_name: person→ string.

• P consists of

� a predicate married_with: person× person.
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Interpretations (1)

Definition:

• Let a signature Σ = (S,P,F , α, ρ) be given.

• A Σ-interpretation I defines:

� a non-empty set I(s) for every s ∈ S (domain),

� a relation I(p) ⊆ I(s1) × · · · × I(sn) for every

p ∈ P, where s1, . . . , sn := α(p),

� a function I(f): I(s1)×· · ·×I(sn)→ I(s) for eve-

ry f ∈ F, where s1, . . . , sn := α(f) and s := ρ(f).

• In the following, we write I[[. . .]] instead of I(. . .).
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Interpretations (2)

Example:

• I[[person]] is the set of Arno, Birgit, and Chris.

• I[[string]] is the set of all strings, e.g. ’a’.

• I[[arno]] is Arno.

• For the string constants, I is the identity mapping.
If one has \-escapes and octal codes as in C, several constants are
mapped to the same string. Or consider 0, −0, 00.

• I[[first_name]] maps e.g. Arno to ’Arno’.

• I[[last_name]] maps all three persons to ’Schmidt’.

• I[[married_with]] = {(Birgit,Chris), (Chris,Birgit)}.
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Relation to Databases (1)

• A DBMS defines a set of data types, such as strings

and numbers, together with constants, data type

functions (e.g. +) and predicates (e.g. <).

• For these, the DBMS defines names (in the signa-

ture) and their meaning (in the interpretation).

• The DB schema in the relational model then adds

further predicate symbols (relation symbols).

• The DB state interprets these by finite relations.
Whereas the interpretation of the data types is fixed and built into the
DBMS, the interpretation of the additional predicate symbols can be
modified by insertions, deletions, and updates. But it must be finite.
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Relation to Databases (2)

• In the Entity-Relationship-Model, the DB schema

can introduce

� new sorts (entity types),

� new functions of arity 1 from entity types to data

types (the attributes),

� new predicates between entity types, possibly re-

stricted to arity 2 (the relationships).

• The interpretation of the entity types (in the DB

state) must always be finite.

Thus, also attributes and relationships are finite.
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Overview

1. Signature, Interpretation

2. Formulas, Models
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3. Implication, Equivalence

4. Clausal Form
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Variable Declaration (1)

Definition:

• Let a signature Σ = (S,P,F , α, ρ) be given.

• A variable declaration for Σ is a partial mapping

ν:VARS → S (defined only for a finite subset of VARS).

Remark:

• The variable declaration is not part of the signature

because it is locally modified by quantifiers (see

below).

• The signature is fixed for the entire application, the

variable declaration changes even within a formula.
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Variable Declaration (2)

Definition:

• Let ν be a variable declaration, X ∈ VARS, and

s ∈ S.

• Then we write ν〈X/s〉 for the modified variable de-

claration ν′ with

ν′(V ) :=

 s if V = X
ν(V ) otherwise.

Remark:

• Both is possible: ν might have been defined before

for X or it might be undefined.
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Terms (1)

Definition:

• Let a signature Σ = (S,P,F , α, ρ) and a variable

declaration ν for Σ be given.

• The set TEΣ,ν(s) of terms of sort s is recursively

defined as follows:

� Every variable V ∈ VARS with ν(V ) = s is a term

of sort s (this of course requires that ν is defined for V ).

� If t1 is a term of sort s1, . . . , tn is a term of

sort sn, and f ∈ F with α(f) = s1 . . . sn and

ρ(f) = s, then f(t1, . . . , tn) is a term of sort s.

� Nothing else is a term.
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Terms (2)

• In particular every constant c of sort s is a term of

sort s. Formally, one would have to write “c()” for

the term, but one simplifies the notation to “c”.

• Certain functions are also written as infix operators,

e.g. X+1 instead of the official notation +(X, 1).

• Such “syntactic sugar” is not important for the

theory of logic.

In programming languages, there is sometimes a distinction between
“concrete syntax” and “abstract syntax” (the syntax tree).

• Let TEΣ,ν :=
⋃
s∈S TEΣ,ν(s) be the set of all terms.
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Atomic Formulas

Definition:

• Let a signature Σ = (S,P,F , α, ρ) and a variable

declaration ν for Σ be given.

• An atomic formula is an expression of the form

p(t1, . . . , tn)

where p ∈ P, α(p) = s1 . . . sn, and ti ∈ TEΣ,ν(si)

for i = 1, . . . , n.

Again, one sometimes uses infix notation in concrete syntax, e.g. X > 1.

• Let ATΣ,ν be the set of atomic formulas for Σ, ν.
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Formulas (1)

Definition:

• Let a signature Σ = (S,P,F , α, ρ) and a variable

declaration ν for Σ be given.

• The sets FOΣ,ν of (Σ, ν)-formulas are defined re-

cursively as follows:

� Every atomic formula ϕ ∈ ATΣ,ν is a formula.

� If ϕ and ψ are formulas, so are (¬ϕ), (ϕ ∧ ψ),

(ϕ ∨ ψ), (ϕ← ψ), (ϕ→ ψ), (ϕ↔ ψ).

� (∀X: s ϕ) and (∃X: s ϕ) are in FOΣ,ν if s ∈ S,
X ∈ VARS, and ϕ is a formula for Σ and ν〈X/s〉.

� Nothing else is a formula.
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Formulas (2)

• The intuitive meaning of the formulas is as follows:

� ¬ϕ: “Not ϕ” (ϕ is false).

� ϕ ∧ ψ: “ϕ and ψ” (ϕ and ψ are both true).

� ϕ∨ψ: “ϕ or ψ” (at least one of ϕ and ψ is true).

� ϕ← ψ: “ϕ if ψ” (if ψ is true, ϕ must be true).

� ϕ→ ψ: “if ϕ, then ψ”

� ϕ↔ ψ: “ϕ if and only if ψ”.

� ∀X: s ϕ: “for all X (of sort s), ϕ is true”.

� ∃X: s ϕ: “there is an X (of sort s) such that ϕ”.
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Formulas (3)

• A Σ-formula is a (Σ, ν)-formula for any variable

declaration ν.

The variable declaration is local to the formula. If one considers a set
of Σ-formulas, each formula can use a different variable declaration.

• Variants of predicate logic:

� One can add atomic formulas “true” and “false”

that are interpreted as true and false, resp.

� One can add atomic formulas of the form t1 = t2

and ensure that is is really interpreted as equality.
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Formulas (4)

• Above, many parentheses are used in order to ensu-

re that formulas have a unique syntactic structure.

For the formal definition, this is a simple solution, but for writing
formulas in practical applications, the syntax becomes clumsy.

• One uses the following rules to save parentheses:

� The outermost parentheses are never needed.

� ¬ binds strongest, then ∧, then ∨, then ←, →,

↔ (same binding strength), and last ∀, ∃.
� Since ∧ and ∨ are associative, no parentheses are

required for e.g. ϕ1 ∧ ϕ2 ∧ ϕ3.
Note that → and ← are not associative.
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Formulas (5)

Formal Treatment of Binding Strengths:

• A level 0 formula is an atomic formula or a level 5

formula enclosed in parentheses.
The level of a formula corresponds to the binding strength of its ou-
termost operator (smallest number means highest binding strength).
However, one can use a level i-formula like a level j-formula with j > i.
In the opposite direction, parentheses are required.

• A level 1 formula is a level 0 formula or a formula

of the form ¬ϕ with a level 1 formula ϕ.

• A level 2 formula is a level 1 formula or a formula

of the form ϕ1 ∧ ϕ2 with a level 2 formula ϕ1 and

a level 1 formula ϕ2.
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Formulas (6)

Formal Treatment of Binding Strengths, Continued:

• A level 3 formula is a level 2 formula or a formula

of the form ϕ1 ∨ ϕ2 with a level 3 formula ϕ1 and

a level 2 formula ϕ2.

• A level 4 formula is a level 3 formula or a formula

of the form ϕ1← ϕ2, ϕ1→ ϕ2, ϕ1↔ ϕ2 with level 3

formulas ϕ1 and ϕ2.

• A level 5 formula is a level 4 formula or a formula of

the form ∀X: sϕ or ∃X: sϕ with a level 5 formula ϕ.

• A formula is a level 5 formula.
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Variables in a Term

Definition:

• The function vars computes the set of variables

that occur in a given term t.

� If t is a variable V :

vars(t) := {V }.

� If t has the form f(t1, . . . , tn):

vars(t) :=
n⋃
i=1

vars(ti).
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Free Variables in a Formula

Definition:

• The function free computes the set of free variables

(not bound by a quantifier) in a formula ϕ:

� If ϕ is an atomic formula p(t1, . . . , tn):

free(ϕ) :=
n⋃
i=1

vars(ti).

� If ϕ has the form (¬ψ): free(ϕ) := free(ψ).

� If ϕ has the form (ψ1 ∧ ψ2), (ψ1 ∨ ψ2), etc.:

free(ϕ) := free(ψ1) ∪ free(ψ2).

� If ϕ has the form (∀X: s ψ) or (∃X: s ψ):

free(ϕ) := free(ψ)− {X}.
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Closed and Ground Formulas

Definition:

• A formula ϕ is closed iff free(ϕ) = ∅.
A closed formula may contain variables, but they are all bound by
quantifiers.

• A formula or a term is ground iff it does not contain

any variables (not even quantified ones).
Every ground formula is closed, but the opposite is not in general
true.

• A formula is propositional iff it contains only predi-

cates without arguments and no quantifiers.
Predicates without arguments are called propositional symbols. A pro-
positional formula is always ground.
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Uniqueness of Variable Sorts

• Let ϕ be a (Σ, ν)-formula. If X ∈ free(ϕ), the varia-

ble X can have only a unique sort, namely s = ν(X).

I.e. if ν1 and ν2 are two variable declarations such that ϕ is a (Σ, νi)-
formula, and if X ∈ free(ϕ), then ν1(X) = ν2(X). The reason is that
function and predicate symbols cannot be overloaded, thus, when the
variable appears in an argument, it must have a certian sort. Note
that in practice there might be exceptions, e.g. the predicate “=”.

• For every (Σ, ν)-formula ϕ, there is a unique va-

riable declaration ν′ ⊆ ν that is defined exactly

on free(ϕ) and such that ϕ is a (Σ, ν′)-formula.

• Let vdecl(ϕ) be this minimal variable declaration.
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Abbreviations of Quantifiers

• If X ∈ free(ϕ), one can leave out the sort in the

quantfiers, because it is uniquely determined by ϕ.

I.e. one can write ∀X ϕ instead of ∀X: s ϕ.

And the same for ∃. If X 6∈ free(ϕ), the quantifier is anyway a bit
strange. But in this case, if I[[s]] can be empty, it would make a
difference which sort is chosen, thus this abbreviation cannot be used.

• Instead of a sequence of quantifiers of the same ty-

pe, e.g. ∀X1 . . . ∀Xn ϕ, one can write ∀X1, . . . , Xn ϕ.

• The universal closure of a formula ϕ, written ∀(ϕ),
is ∀X1 . . . ∀Xn ϕ, where {X1, . . . , Xn} := free(ϕ).
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Variable Assignment

Definition:

• A variable assignment A for I and ν is a partial

mapping from VARS to
⋃
s∈S I[[s]].

• It maps every variable V , for which ν is defined, to

a value from I[[s]], where s := ν(V ).

I.e. a variable assignment for I and ν defines values from I for the
variables that are declared in ν.

Definition:

• A〈X/d〉 denotes a variable assignment A′ that agrees

with A except that A′(X) = d.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003



2. Basic Notions of Predicate Logic 2-31

Value of a Term

Definition:

• Let a signature Σ, a variable declaration ν for Σ,

a Σ-interpretation I, and a variable assignment A
for (I, ν) be given.

• The value (I,A)[[t]] of a term t ∈ TEΣ,ν is defined as

follows (recursion over the structure of the term):

� If t is a variable V , then (I,A)[[t]] := A(V ).

� If t has the form f(t1, . . . , tn), then

(I,A)[[t]] := I[[f ]]
(
(I,A)[[t1]], . . . , (I,A)[[tn]]

)
.
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Truth of a Formula (1)

Definition:

• The truth value (I,A)[[ϕ]] ∈ {0,1} of a formula ϕ in

(I,A) is defined as follows (0 means false, 1 true):

� If ϕ is an atomic formula p(t1, . . . , tn):

(I,A)[[ϕ]] :=


1 if

(
(I,A)[[t1]], . . . , (I,A)[[tn]]

)
∈ I[[p]]

0 else.

� If ϕ is of the from (¬ψ):

(I,A)[[ϕ]] :=

 1 if (I,A)[[ψ]] = 0

0 else.
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Truth of a Formula (2)

Definition, continued:

• Truth value of a formula, continued:

� If ϕ is of the from (ψ1 ∧ ψ2), (ψ1 ∨ ψ2), etc.:

ψ1 ψ2 ∧ ∨ ← → ↔
0 0 0 0 1 1 1
0 1 0 1 0 1 0
1 0 0 1 1 0 0
1 1 1 1 1 1 1

E.g. if (I,A)[[ψ1]] = 1 and (I,A)[[ψ2]] = 0 then (I,A)[[(ψ1 ∧ ψ2)]] = 0.
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Truth of a Formula (3)

Definition, continued:

• Truth value of a formula, continued:

� If ϕ has the form (∀X: s ψ):

(I,A)[[ϕ]] :=


1 if (I,A〈X/d〉)[[ψ]] = 1

for all d ∈ I[[s]]
0 else.

� If ϕ has the form (∃X: s ψ):

(I,A)[[ϕ]] :=


1 if (I,A〈X/d〉)[[ψ]] = 1

for at least one d ∈ I[[s]]
0 else.
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Model (1)

Notation:

• If (I,A)[[ϕ]] = 1, one also writes (I,A) |= ϕ.

Definition:

• Let ϕ be a (Σ, ν)-formula. A Σ-interpretation I
is a model of the formula ϕ (written I |= ϕ) iff

(I,A)[[ϕ]] = 1 for all variable declarations A.

I.e. free variables are treated as ∀-quantified. Of course, if ϕ is a closed
formula, the variable declaration is not important.

• A Σ-interpretation I is a model of a set Φ of Σ-

formulas, written I |= Φ, iff I |= ϕ for all ϕ ∈ Φ.
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Model (2)

Definition:

• A formula ϕ or set of formulas Φ is called consistent

iff it has a model. Otherwise it is called inconsistent.

• A formula ϕ is called satisfiable iff there is an inter-

pretation I and a variable declaration A such that

(I,A) |= ϕ.

• A (Σ, ν)-formula ϕ is called a tautology iff for all Σ-

interpretations I and (Σ, ν)-variable assignments A:

(I,A) |= ϕ.
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Formulas in Databases (1)

• Consider a database with relations

� EMP(EMPNO, ENAME, SAL, DEPTNO→ DEPT)

� DEPT(DEPTNO, DNAME, LOC)

• Formulas can be used as queries: They ask for va-

lues for the free variables that make the formula

true in the current database state (interpretation).

• E.g. print name and salary of all employees in the

research department (X and Y are the free variables):

∃ E, D, L emp(E, X, Y, D) ∧ dept(D, ’RESEARCH’, L)
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Formulas in Databases (2)

• In order to make the free variables, for which values

are sought, better visible, domain calculus queries

are usually written in the form:

{X, Y | ∃ E, D, L emp(E, X, Y, D) ∧ dept(D, ’RESEARCH’, L)}

• One cannot use arbitrary formulas as queries. E.g.

some formulas would generate an infinite answer:

{D, N | ¬dept(D, N, ’NEW YORK’}

• Other formulas would require that infinitely many

values are tried for quantified variables:

∃ X ∃ Y ∃ Z X ∗ X+ Y ∗ Y = Z ∗ Z
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Formulas in Databases (3)

• A formula is domain independent iff for all possible

DB states (interpretations), it suffices to replace

variables by values that appear in any argument of

the DB relations or as ground term in the query.

For a given interpretation I and formula ϕ, the “active domain” is
the set of values that appear in database relations in I or as ground
term (e.g. constant) in ϕ. Domain independence means that (1) ϕ

must be false if a value outside this set is inserted for a free variable.
(2) For all subformulas ∃X ψ, the formula ψ must be false if X has
a value outside the active domain. (3) For all subformulas ∀X ψ, the
formula ψ must be true if X has a value outside the active domain.

• Since all database relations are finite, queries can

be evaluated in finite time.
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Formulas in Databases (4)

• “Range restriction” is a syntactic (decidable) cons-

traint on formulas that implies the domain indepen-

dence (i.e. it is stricter than domain independence).
For every formula, one defines the set of restricted variables in posi-
tive context and in negative context.

E.g. if ϕ is an atomic formula p(t1, . . . , tn) with database relation p,
then posres(ϕ) := free(ϕ) and negres(ϕ) := ∅.
For other atomic formulas, both sets are empty, except that when ϕ

has the form X = t with a ground term t, posres(ϕ) := {X}.
If ϕ is ¬ψ, then posres(ϕ) := negres(ψ) and negres(ϕ) := posres(ψ).
If ϕ has the form ψ1 ∧ ψ2, then posres(ϕ) := posres(ψ1) ∪ posres(ψ2)
and negres(ϕ) := negres(ψ1) ∩ negres(ψ2). Etc.

A formula ϕ is range restricted if free(ϕ) = posres(ϕ) and for every
subformula ∀X ψ, it holds that X ∈ negres(ψ), and for every subfor-
mula ∃X ψ, it holds that X ∈ posres(ψ).
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Formulas in Databases (5)

• Exercise: Write these queries in domin calculus:

� Which employees work in New York or Dallas and

earn more than 3000 $ per month?

� Which department has no employees?

� Print for every department the employee(s) with

the greatest salary in that department.

• Relations:

� EMP(EMPNO, ENAME, SAL, DEPTNO→ DEPT)

� DEPT(DEPTNO, DNAME, LOC)
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Formulas in Databases (6)

• Closed formulas can appear as boolean queries, but

more often they are used as constraints, e.g.

� DEPTNO is a key of DEPT(DEPTNO, DNAME, LOC):

∀ D, N1, L1, D2, N2, L3
dept(D, N1, L1) ∧ dept(D, N2, L2)→

N1 = N2 ∧ L1 = L2

� DEPTNO in EMP is a foreign key that references DEPT:

∀ X, Y, Z, D
(
emp(X, Y, Z, D)→ ∃ N, L dept(D, N, L)

)
.

� Exercise: Write a constraint that DEPTNO in DEPT

must be greater than 0.
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Overview

1. Signature, Interpretation

2. Formulas, Models

3. Implication, Equivalence
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4. Clausal Form

5. Herbrand Interpretations
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Implication

Definition/Notation:

• A formula or set of formulas Φ (logically) implies a

formula or set of formulas ψ iff every model of Φ

is also a model of ψ. In this case we write Φ ` ψ.

• Many authors write Φ |= ψ.
The difference is important if one talks also about axioms and deduc-
tion rules. Then Φ ` ψ is used for syntactic deduction, and Φ |= ψ for
the implication defined above via models. Correctness and comple-
teness of the deduction system then mean that both relations agree.

Lemma:

• Φ ` ψ if and only if Φ ∪ {¬∀(ψ)} is inconsistent.
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Equivalence (1)

Definition/Lemma:

• Two Σ-formulas or sets of Σ-formulas ϕ1 and ϕ2

are equivalent iff they have the same models, i.e. for

every Σ-interpretation I:
I |= ϕ1 ⇐⇒ I |= ϕ2.

• ϕ1 and ϕ2 are equivalent iff ϕ1 ` ϕ2 and ϕ2 ` ϕ1.

Lemma:

• “Equivalence” of formulas is an equivalence relati-

on, i.e. it is reflexive, symmetric, and transitive.
This also holds for strong equivalence defined on the next page.
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Equivalence (2)

Definition/Lemma:

• Two (Σ, ν)-formulas ϕ1 and ϕ2 are strongly equiva-

lent iff for every Σ-interpretation I and every (I, ν)-
variable declaration A:

(I,A) |= ϕ1 ⇐⇒ (I,A) |= ϕ2.

• Strong equivalence of ϕ1 and ϕ2 is written: ϕ1 ≡ ϕ2.

• Suppose that ψ1 results from ψ2 by replacing a sub-

formula ϕ1 by ϕ2 and let ϕ1 and ϕ2 be strongly

equivalent. Then ψ1 and ψ2 are strongly equivalent.
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Some Equivalences (1)

• Commutativity (for and, or, iff):

� ϕ ∧ ψ ≡ ψ ∧ ϕ

� ϕ ∨ ψ ≡ ψ ∨ ϕ

� ϕ↔ ψ ≡ ψ ↔ ϕ

• Associativity (for and, or, iff):

� ϕ1 ∧ (ϕ2 ∧ ϕ3) ≡ (ϕ1 ∧ ϕ2) ∧ ϕ3

� ϕ1 ∨ (ϕ2 ∨ ϕ3) ≡ (ϕ1 ∨ ϕ2) ∨ ϕ3

� ϕ1↔ (ϕ2↔ ϕ3) ≡ (ϕ1↔ ϕ2)↔ ϕ3
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Some Equivalences (2)

• Distribution Law:

� ϕ ∧ (ψ1 ∨ ψ2) ≡ (ϕ ∧ ψ1) ∨ (ϕ ∧ ψ2)

� ϕ ∨ (ψ1 ∧ ψ2) ≡ (ϕ ∨ ψ1) ∧ (ϕ ∨ ψ2)

• Double Negation:

� ¬(¬ϕ) ≡ ϕ

• De Morgan’s Law:

� ¬(ϕ ∧ ψ) ≡ (¬ϕ) ∨ (¬ψ).

� ¬(ϕ ∨ ψ) ≡ (¬ϕ) ∧ (¬ψ).
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Some Equivalences (3)

• Replacements of Implication Operators:

� ϕ↔ ψ ≡ (ϕ→ ψ) ∧ (ϕ← ψ)

� ϕ← ψ ≡ ψ → ϕ

� ϕ→ ψ ≡ ¬ϕ ∨ ψ
� ϕ← ψ ≡ ϕ ∨ ¬ψ

• Together with De Morgan’s Law this means that

e.g. {¬,∨} are sufficient, all other logical junctors

{∧,←,→,↔} can be expressed with them.

As we will see, also only one of the quantifiers is needed.
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Some Equivalences (4)

• Replacements for Quantifiers:

� ∀X: s ϕ ≡ ¬(∃X: s (¬ϕ))

� ∃X: s ϕ ≡ ¬(∀X: s (¬ϕ))

• Moving logical junctors over quantifiers:

� ¬(∀X: s ϕ) ≡ ∃X: s (¬ϕ)

� ¬(∃X: s ϕ) ≡ ∀X: s (¬ϕ)

� ∀X: s (ϕ ∧ ψ) ≡ (∀X: s ϕ) ∧ (∀X: s ψ)

� ∃X: s (ϕ ∨ ψ) ≡ (∃X: s ϕ) ∨ (∃X: s ψ)
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Some Equivalences (5)

• Moving quantifiers: If X 6∈ free(ϕ):
� ∀X: s (ϕ ∨ ψ) ≡ ϕ ∨ (∀X: s ψ)

� ∃X: s (ϕ ∧ ψ) ≡ ϕ ∧ (∃X: s ψ)

If in addition I[[s]] cannot be empty:

� ∀X: s (ϕ ∧ ψ) ≡ ϕ ∧ (∀X: s ψ)

� ∃X: s (ϕ ∨ ψ) ≡ ϕ ∨ (∃X: s ψ)

• Removing unnecessary quantifiers:

If X 6∈ free(ϕ) and I[[s]] cannot be empty:

� ∀X: s ϕ ≡ ϕ

� ∃X: s ϕ ≡ ϕ
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Some Equivalences (6)

• Exchanging quantifiers: If X 6= Y :

� ∀X: s1 (∀Y : s2 ϕ) ≡ ∀Y : s2 (∀X: s1 ϕ)

� ∃X: s1 (∃Y : s2 ϕ) ≡ ∃Y : s2 (∃X: s1 ϕ)

Note that quantifiers of different type (∀ and ∃) cannot be ex-
changed.

• Renaming bound variables: If Y 6∈ free(ϕ) and ϕ′

results from ϕ by replacing every free occurrence

of X in ϕ by Y :

� ∀X: s ϕ ≡ ∀Y : s ϕ′

� ∃X: s ϕ ≡ ∃Y : s ϕ′

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2003



2. Basic Notions of Predicate Logic 2-53

Substitutions (1)

Definition:

• A (Σ, ν)-substitution θ is a mapping from variables

to terms that repects the sorts, i.e. if ν(X) = s,

then θ(X) ∈ TEΣ,ν(s).

If one uses a logic without sorts, θ is defined for the infinite set VARS,
but one usually requires that θ(X) 6= X only for finitely many X.

• A substitution is usually written as set of variable-

term-pairs, e.g. θ = {X1/t1, . . . , Xn/tn}.
It is the identity mapping for all not explicily mentioned variables.
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Substitutions (2)

Definition:

• The result of applying a substitution θ to a term t,

written θ(t) or tθ, is defined as follows:

� If t is a variable X, then

θ(t) := θ(X).

� If t has the form f(t1, . . . , tn), then

θ(t) := f(t′1, . . . , t
′
n),

where t′i := θ(ti).
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Substitutions (3)

Definition:

• The result of applying a substitution θ to a formu-

la ϕ, written θ(ϕ) or ϕθ, is defined as follows:

� If ϕ is an atomic formula p(t1, . . . , tn), then

θ(ϕ) := p(t′1, . . . , t
′
n), where t′i := θ(ti).

� If ϕ is (¬ψ), then θ(ϕ) := (¬ψ′) with ψ′ := θ(ψ).

� If ϕ has the form (ψ1∧ψ2), then θ(ϕ) := (ψ′1∧ψ′2),
where ψ′i := θ(ψi). The same for ∨, ←, →, ↔.

� If ϕ has the form ∀X: s ψ, then θ(ϕ) := ∀X: s ψ′,
where ψ′ := θ′(ψ) and θ′ agrees with θ except

that θ′(X) = X. The same for ∃.
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Substitutions (4)

• I.e. when a substitution is applied to a formula, one

replaces the variables as specified by the substitu-

tion and leaves the rest of the formula as it is.

• Only free variables are replaced by a substitution.

• A ground substitution for a quantifier-free formu-

la ϕ is a substitution that replaces all variables in

free(ϕ) by a ground term.

• I.e. the result of applying a ground substitution to

a formula is a ground formula.
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Normal Forms (1)

Definition:

• A formula ϕ is in Prenex Normal Form iff it is closed

and has the form

Θ1X1: s1 . . . ΘnXn: sn ψ

where {Θ1, . . . ,Θn} ⊆ {∀, ∃} and ψ is quantifier-free.

• A formula ϕ is in Disjunctive Normal Form iff it is

in Prenex Normal Form, and ψ has the form

(ψ1,1 ∧ · · · ∧ ψ1,k1) ∨ · · · ∨ (ψn,1 ∧ · · · ∧ ψn,kn),

where each ψi,j is an atomic formula or a negated

atomic formula.
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Normal Forms (2)

Remark:

• Conjunctive Normal Form is like disjunctive normal

form, but ψ must have the form

(ψ1,1 ∨ · · · ∨ ψ1,k1) ∧ · · · ∧ (ψn,1 ∨ · · · ∨ ψn,kn).

Theorem:

• Under the assumption of non-empty domains, every

formula can be equivalently translated into prenex

normal form, disjunctive normal form, and conjunc-

tive normal form.
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Overview

1. Signature, Interpretation

2. Formulas, Models

3. Implication, Equivalence

4. Clausal Form
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5. Herbrand Interpretations
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Literals, Clauses (1)

Definition:

• A literal is an atomic formula (“positive literal”) or

a negated atomic formula (“negative literal”).

• A clause is a disjunction of zero or more literals.

The empty clause is treated as false. All variables

in a clause are treated as ∀-quantified.

A clause is often seen as set of literals.

• A Horn clause is a clause with at most one posi-

tive literal. A definite Horn clause is a clause with

exactly one positive literal.
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Literals, Clauses (2)

• Clauses can be written as implications with the po-

sitive literals in the head, and negative literals (un-

negated) in the body:

A1 ∨ · · · ∨An︸ ︷︷ ︸ ← B1 ∧ · · · ∧Bm︸ ︷︷ ︸
Head Body

• This corresponds to the disjunction

A1 ∨ · · · ∨An ∨ ¬B1 ∨ · · · ∨ ¬Bm.

• A definite Horn clause is a standard Pure Prolog

rule with only one literal in the head:

A← B1 ∧ · · · ∧Bm.
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Literals, Clauses (3)

• A clause with only negative literals ¬B1∨ · · · ∨ ¬Bm
is written as: ← B1 ∧ · · · ∧Bm.

Here the head is the empty disjunction, which is understood as false:
A disjunction is satisfied if at least one of its elements is true. If there
are no elements, it can never be true.

• Φ ` ψ iff Φ ∪ {¬∀(ψ)} is inconsistent. (See above.)

• Refutation theorem provers, such as resolution, try

to derive the empty clause “false” from Φ∪{¬∀(ψ)}.

• Therefore, a clause with only negative literals is

often understood as proof goal ∃(B1 ∧ · · · ∧Bm).
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Literals, Clauses (4)

• “Ground” always means “without variables”:

� A ground term consists only of constants and

function symbols.

� A ground literal is a predicate (or its negation)

applied to ground terms.

� Ground clause: disjunction of ground literals.

� A ground substitution removes all variables from

a quantifier-free formula (e.g. a clause).

� ϕ is a ground instance of a clause ψ iff there is a

ground substitution θ for ψ such that ϕ = θ(ψ).
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Skolemnization (1)

• In clauses, all variables are ∀-quantified.

• Skolemnization is a technique for removing existen-

tial quantifiers.

• The idea of Skolemnization is to introduce names

(constants or function symbols) for the values that

are required to exist.

• E.g. ∃X: s p(X, a) is replaced by p(c, a) with a new

constant c of sort s.
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Skolemnization (2)

• The new formula is not equivalent (it is a formu-

la over a different signature), but it is consistent

whenever the old formula is consistent.

A model of ∃X: s p(X, a) can be extended to a model of p(c, a) by
interpreting c as the value for X that makes p(X, a) true.

Conversely, if one has a model of p(c, a), one can simply forget the
interpretation of c (but keep the value in the domain), to get a model
of ∃X: s p(X, a) for the original signature.

• For refutation theorem provers, only the consisten-

cy is important, thus this is no restriction.
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Skolemnization (3)

• Suppose that the existential quantifier ∃X: s is in

the scope of universal quantifiers ∀Y1: s1 . . . ∀Yn: sn.

• Then the value for X may depend on the values

for Y1, . . . , Yn.

• Thus, Skolemnization replaces each occurrence of

the variable X by f(Y1, . . . , Yn) with a new function

symbol f : s1 × · · · × sn→ s.

• With Skolemnization, any formula can be transla-

ted into a set of clauses.
But one needs non-empty domains to get first prenex normal form.
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Skolemnization (4)

Exercise:

• Consider the foreign key constraint:

∀ X, Y, Z, D
(
emp(X, Y, Z, D)→ ∃ N, L dept(D, N, L)

)
.

• Use the above transformations to show that it is

equivalent to

∀ D ∃ N, L ∀ X, Y, Z
(
emp(X, Y, Z, D)→ dept(D, N, L)

)
.

• What Skolem functions would be introduced for

this formula?
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Overview

1. Signature, Interpretation

2. Formulas, Models

3. Implication, Equivalence

4. Clausal Form

5. Herbrand Interpretations
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Herbrand Interpretations (1)

Definition:

• A Σ-interpretation I is a Herbrand interpretation

iff

� for every sort s, the domain I[[s]] is the set of all

ground terms of sort s, i.e. I[[s]] = TEs,∅(s).

This assumes that for every sort there is at least one ground term.
Otherwise one must extend the signature.

� all function symbols are interpreted as the cor-

responding term constructors, i.e.

I[[f ]](t1, . . . , tn) = f(t1, . . . , tn).
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Herbrand Interpretations (2)

Remark:

• Thus, a Herbrand interpretation is given by the in-

terpretation of the predicates.

• If the set of ground terms is finite, there are only

finitely many Herbrand interpretations.

• Often a Herbrand interpretation I is specified by

writing down all ground literals that are true in I.
All not explicitly mentioned ground literals are assumed to be false.
Since the domains do not contain unnamed elements (only ground
terms), this completely specifies the interpretation.
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Herbrand Interpretations (3)

Theorem:

• A set Φ of universal formulas (formulas in prenex

normal form with only universal quantifiers) without

“=” is consistent iff it has a Herbrand model.

Assuming that only interpretations are considered with non-empty
domains.

Remark:

• The consistency of a set of formulas does not de-

pend on the signature. Thus, it suffices to consider

Herbrand interpretations with respect to the signa-

ture that contains only the symbols appearing in Φ.
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Herbrand Interpretations (4)

• In general (non-Herbrand) interpretations, it is pos-

sible that

� there are anonymous domain elements (objects

not named by a constant or ground term).
For universal formulas, such domain elements are not important.
“For all” statements are even simpler to satisfy if the quantifiers
range only over a subset.

� different ground terms can denote the same ob-

ject, e.g. 1 + 1 and 2, or murderer and buttler.
As long as the logic contains no real equality, this is no problem:
One simply defines all predicates such that they treat e.g. 1 + 1
and 2 in the same way. One can have a user-defined “=”.
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Herbrand Interpretations (5)

Example/Exercise:

• Suppose that we want to prove that Φ := {p(a)}
implies ψ := ∃X p(X).

• Φ ` ψ iff Φ∪{¬∀(ψ)} is inconsistent. Thus, we must

check Φ′ := {p(a), ∀X(¬p(X))} for consistency.

• It is consistent iff it has a Herbrand model.

• The only ground term is a. Thus, there are only two

Herbrand interpretations, I1 := {p(a)} and I2 := ∅.
None of the two satisfies both formulas.

• Exercise: What happens if ψ := ∀Xp(X)?
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