
Introduction Benchmark Database Input Graphs Results Runtime vs. Rule Instances Predicting Runtimes Conclusions

Performance Analysis and
Comparison of Deductive Systems

and SQL Databases

Stefan Brass and Mario Wenzel

University of Halle, Germany

Datalog 2.0 2019 (June 4, 2019)

Stefan Brass: Performance of Deductive Systems and SQL DBs 1/34

Introduction Benchmark Database Input Graphs Results Runtime vs. Rule Instances Predicting Runtimes Conclusions

Contents

1 Introduction

2 Benchmark Database

3 Input Graphs

4 Results

5 Runtime vs. Rule Instances

6 Predicting Runtimes

7 Conclusions

Stefan Brass: Performance of Deductive Systems and SQL DBs 2/34

Introduction Benchmark Database Input Graphs Results Runtime vs. Rule Instances Predicting Runtimes Conclusions

This is NOT a Talk about . . .
Our Push method for bottom-up evaluation of Datalog.

Although that was our motivation for the work presented
here: We wanted to check the performance of our approach
before investing a lot of work to implement it.

The implementation is not finished: We can execute some
benchmarks, but not yet arbitrary Datalog programs.

(The first performance results look nice.)

New Benchmarks for deductive databases.

The benchmarks we have implemented are all from the
OpenRuleBench (Liang, Fodor, Wan, Kifer, 2009–2011).

Currently, we implemented only a few of the OpenRuleBench benchmarks
in our system (3+2 of 12/18), but we analyze them in much more detail.
We are working on more benchmarks.

Stefan Brass: Performance of Deductive Systems and SQL DBs 3/34

Introduction Benchmark Database Input Graphs Results Runtime vs. Rule Instances Predicting Runtimes Conclusions

This is a Talk about . . .

Doing benchmark measurements.

A database for storing benchmark results.

A collection of graphs for checking the performance of
transitive closure, same generation, win-not-win.

Also different versions with respect to input and output arguments.

Making sense of all the numbers.

Checking recursive views in SQL databases.

Stefan Brass: Performance of Deductive Systems and SQL DBs 4/34

Introduction Benchmark Database Input Graphs Results Runtime vs. Rule Instances Predicting Runtimes Conclusions

Benchmarks are important
When selecting a system for a project, there are many aspects:
Language features, development tools, support.

But this all becomes important only when the
performance is at least acceptable for the task.

Declarative systems do not have an especially good reputation with regard
to performance. Maybe such doubts are inherent in the declarative approach,
because there is no prescribed evaluation algorithm. We aim at a simple
declarative model to predict the approximate runtime. If runtime would
suddenly explode for certain inputs, the entire system would be unreliable.

“Stress tests” with benchmarks might also help to discover
limitations in a system.

Benchmarks also motivate the developers
(“competition” in the end helps to improve all systems).

Stefan Brass: Performance of Deductive Systems and SQL DBs 5/34

Introduction Benchmark Database Input Graphs Results Runtime vs. Rule Instances Predicting Runtimes Conclusions

Contents

1 Introduction

2 Benchmark Database

3 Input Graphs

4 Results

5 Runtime vs. Rule Instances

6 Predicting Runtimes

7 Conclusions

Stefan Brass: Performance of Deductive Systems and SQL DBs 6/34

Introduction Benchmark Database Input Graphs Results Runtime vs. Rule Instances Predicting Runtimes Conclusions

Benchmark Database (1)

Runtimes depend on:
Benchmark (Logic Program/SQL Query)
System to Test
Input File (Facts)
Version of System, Installation Settings, Compiler Options
Settings for System and Benchmark (e.g. Index Selection)

To be fair, one should invest some time to find good settings.

Machine
Some small random influences on the machine

Therefore it is common practice to measure the same runtime multiple
times, and take the average. OpenRuleBench has no support for this.

The OpenRuleBench scripts only record first three.
Stefan Brass: Performance of Deductive Systems and SQL DBs 7/34

Introduction Benchmark Database Input Graphs Results Runtime vs. Rule Instances Predicting Runtimes Conclusions

Benchmark Database (2)
Data measured for each run (as far as possible):

Time to load the input (CPU time and real time)
This is based on timing functions within the system.

Time to process the query (CPU time and real time)
Also measured internally (within the system) (if supported).

Total time for benchmark execution.
This is measured externally with /usr/bin/time or the process
information file system (see man 5 proc). For server-based systems
like PostgreSQL, it does not include the time for starting and stopping
the server, but it includes everything from CREATE TABLE to DROP TABLE.

Memory usage (maximum resident set size)
Memory allocated and actively used, thus in RAM.

OpenRuleBench measures only the first two.
Stefan Brass: Performance of Deductive Systems and SQL DBs 8/34

Introduction Benchmark Database Input Graphs Results Runtime vs. Rule Instances Predicting Runtimes Conclusions

Benchmark Database (3)

SYS_TYPE

* STYPE
U * SEQ_NO
 * HEADLINE

BENCHMARK

* BENCH
U * SEQ_NO
 * HEADLINE

TEST_SYS

* SYS
U * SEQ_NO
 * FULL_NAME
 o URL
 o REMARK

BENCH_IMPL

* IMPL
 * STATUS
 o DESCRIPTION

SYS_INSTALL

* INST_NO
 * COMPILER
 * STATUS
 o REMARK

SYS_VER

* VER
 * VER_ADDTEXT
 o VER_DATE
 o REMARK

BENCH_RUN

* RUN_DATE
* RUN_NO
 * WITH_OUTPUT
 o LOAD_TIME
 o EXEC_TIME
 o TOTAL_TIME
 o USER_TIME
 o SYS_TIME
 * REAL_TIME
 o MEM
 * STATUS
 o REMARK

GRAPH_TYPE

* GTYPE
U * SEQ_NO
 * NAME

INPUT_SET

* SET_ID

INPUT_FILE

* FILE_ID
U * SEQ_NO
 * LINES
 * BYTES
 * FILENAME
 o DESCRIPTION

INPUT_GRAPH

 o PARAM_1
 o PARAM_2
 * NUM_NODES
 * NUM_EDGES
 * DUP_EDGES
 * LOOPS
 * MIN_IN_DEGREE
 * MAX_IN_DEGREE
 * MIN_OUT_DEGREE
 * MAX_OUT_DEGREE
 * CYCLES

OTHER_INPUT

INPUT_TYPE

* ITYPE
U * SEQ_NO
 * HEADLINE
 * DESCRIPTION

MACHINE

* MACHINE
U * SEQ_NO
 * STATUS
 o MODEL
 o YEAR
 o MONTH
 o PRICE
 * NUM_CPUS

Stefan Brass: Performance of Deductive Systems and SQL DBs 9/34

Introduction Benchmark Database Input Graphs Results Runtime vs. Rule Instances Predicting Runtimes Conclusions

Benchmark Database (4)

We defined a relatively large number of views, e.g. for:

Outlier detection

Comparing different settings for the same system and
benchmark (to find the best)

Generating HTML and LATEX-Tables with the results
Also with data of the input files (graphs).

Analyzing runtimes compared to input size measures

Stefan Brass: Performance of Deductive Systems and SQL DBs 10/34

Introduction Benchmark Database Input Graphs Results Runtime vs. Rule Instances Predicting Runtimes Conclusions

Contents

1 Introduction

2 Benchmark Database

3 Input Graphs

4 Results

5 Runtime vs. Rule Instances

6 Predicting Runtimes

7 Conclusions

Stefan Brass: Performance of Deductive Systems and SQL DBs 11/34

Introduction Benchmark Database Input Graphs Results Runtime vs. Rule Instances Predicting Runtimes Conclusions

The TCFF Benchmark
The main benchmark, which we investigated very thoroughly,
is the transitive closure:

tc(X, Y) ← par(X, Y).
tc(X, Z) ← par(X, Y), tc(Y, Z).

The relation par can be understood as defining edges in a
directed graph.

Then tc contains pairs of nodes X and Y, such that there
is a path from X to Y in the graph.

The benchmark is called “TCFF” because all such pairs
should be computed, i.e. the predicate tc is queried with
both arguments “free”.

OpenRuleBench also contains TCBF and TCFB.

Stefan Brass: Performance of Deductive Systems and SQL DBs 12/34

Introduction Benchmark Database Input Graphs Results Runtime vs. Rule Instances Predicting Runtimes Conclusions

Input Graphs (1)

OpenRuleBench used ten random graphs of different size.
However, due to the construction algorithm, the all nodes in the graph
have more or less the same degree.

We added a collection of non-random graphs of different
structure, which permit a better analysis.

E.g. complete graph Kn:

Stefan Brass: Performance of Deductive Systems and SQL DBs 13/34

Introduction Benchmark Database Input Graphs Results Runtime vs. Rule Instances Predicting Runtimes Conclusions

Input Graphs (2)
Cycle-Graph Cn:

We also studied a cycle with shortcuts Sn,k .

Path Pn:

We also studied a “Multipath” Mn,k with several disjoint paths.

Stefan Brass: Performance of Deductive Systems and SQL DBs 14/34

Introduction Benchmark Database Input Graphs Results Runtime vs. Rule Instances Predicting Runtimes Conclusions

Input Graphs (3)
Y-Graph Yn,k (n nodes pointing to central node, which starts path Pk):

X-Graph Xn,k (n nodes pointing to central node, from there to k):

Stefan Brass: Performance of Deductive Systems and SQL DBs 15/34

Introduction Benchmark Database Input Graphs Results Runtime vs. Rule Instances Predicting Runtimes Conclusions

Contents

1 Introduction

2 Benchmark Database

3 Input Graphs

4 Results

5 Runtime vs. Rule Instances

6 Predicting Runtimes

7 Conclusions

Stefan Brass: Performance of Deductive Systems and SQL DBs 16/34

Introduction Benchmark Database Input Graphs Results Runtime vs. Rule Instances Predicting Runtimes Conclusions

Compared Systems
Prolog Systems with Tabling:

XSB (Stony Brook)
YAProlog (Universidade do Porto)

New Datalog Systems:
Soufflé (University of Sydney, Oracle Labs)
Our Bottom-Up Abstract Machine (BAM)

SQL Databases
PostgreSQL
SQLite
MariaDB (fork of MySQL)

RDF Graph Store:
Apache Jena

Stefan Brass: Performance of Deductive Systems and SQL DBs 17/34

Introduction Benchmark Database Input Graphs Results Runtime vs. Rule Instances Predicting Runtimes Conclusions

TCFF Benchmark Implementation

Datalog as shown above (with tc tabled)

SQL:
WITH RECURSIVE tc(a,b) AS (

SELECT par.a, par.b
FROM par

UNION
SELECT par.a, tc.b

FROM par JOIN tc ON par.b = tc.a
) SELECT Count(*) FROM tc;

SPARQL query using property paths (for Apache Jena):
SELECT (count(*) as ?resultcount)
WHERE {?a :par+ ?b}

Stefan Brass: Performance of Deductive Systems and SQL DBs 18/34

Introduction Benchmark Database Input Graphs Results Runtime vs. Rule Instances Predicting Runtimes Conclusions

Results: TCFF (1)

Graph XSB (s) BAM YAP SQLite PG Maria Jena Soufflé
K500 13.342 0.30 0.66 5.07 3.62 3.75 1.92 0.20
K1000 103.266 0.31 0.67 5.56 3.82 3.76 1.82 0.18
T500 2.301 0.62 0.76 4.52 2.84 4.58 3.09 0.31
C2000 1.597 0.18 1.18 4.93 3.28 7.87 5.14 1.55
S2000,1 1.844 0.28 1.47 5.43 3.39 9.02 5.03 1.79
P4000 3.145 0.23 1.29 4.81 2.87 31.58 4.33 1.57
M64,128 0.283 0.17 0.49 2.25 2.59 2.07 9.28 0.83
M4096,2 6.252 0.55 1.44 5.16 2.91 50.63 4.07 1.62
B18 2.012 0.82 1.03 3.50 2.49 8.85 7.33 0.76
Y1k,8k 14.084 1.41 1.33 5.66 3.12 67.51 3.78 1.75
X10k 23.630 6.80 0.36 9.70 7.01 243.93 4.30 0.87
AVG 0.56 1.21 4.88 3.42 28.27 4.96 0.95

Stefan Brass: Performance of Deductive Systems and SQL DBs 19/34

Introduction Benchmark Database Input Graphs Results Runtime vs. Rule Instances Predicting Runtimes Conclusions

Results: TCFF (2)
The bottom line shows the average factor of the runtime
in that system compared with XSB (over 50 graphs).

Of course, this depends on the selection of graphs: For each system, there
are input graphs, where the system is slower than XSB. Maybe the maximum
would be more interesting if one wants no surprises and believes that XSB
delivers a predictable performance (which is plausible, see below).

PostgreSQL has is on average 3.4 times slower than XSB
on the TCFF problem, and 7.0 times in the worst case.

Among the measured 50 graphs. SQLite: AVG=4.88, MAX=9.7.

MariaDB has a very young implementation of recursive views,
and was > 100 times slower than XSB for five graphs.

Maybe we did not find the best settings. Performances goes severely down
for large graphs. I.e. in the current state, without better ideas, it should
not be used for problems similar to TCFF.

Stefan Brass: Performance of Deductive Systems and SQL DBs 20/34

Introduction Benchmark Database Input Graphs Results Runtime vs. Rule Instances Predicting Runtimes Conclusions

Results: SGFF

Graph XSB (s) BAM YAP SQLite PG Maria Soufflé
K500 9277.250 0.31 0.41 2.31 1.79 3.51 0.14
T100 2.137 0.61 1.18 3.12 2.70 4.97 0.43
C1000 0.075 0.03 0.13 0.33 1.87 0.73 0.25
S1000,1 1.233 0.32 0.86 3.64 2.83 3.93 1.35
P4000 0.105 0.00 0.19 0.86 1.56 0.95 0.18
M4,2048 0.125 0.00 0.32 1.05 1.36 1.04 0.24
M4096,2 0.133 0.00 0.45 1.23 1.36 1.21 0.23
B18 1.088 0.11 1.14 2.17 1.20 4.03 0.28
V12 2.296 0.42 0.30 4.24 4.87 21.80 0.69
Y500,4k 0.218 0.30 0.16 2.82 3.06 1.97 0.56
AVG 0.20 0.47 2.00 2.13 3.05 0.41

Stefan Brass: Performance of Deductive Systems and SQL DBs 21/34

Introduction Benchmark Database Input Graphs Results Runtime vs. Rule Instances Predicting Runtimes Conclusions

Contents

1 Introduction

2 Benchmark Database

3 Input Graphs

4 Results

5 Runtime vs. Rule Instances

6 Predicting Runtimes

7 Conclusions

Stefan Brass: Performance of Deductive Systems and SQL DBs 22/34

Introduction Benchmark Database Input Graphs Results Runtime vs. Rule Instances Predicting Runtimes Conclusions

A Simple Cost Measure: Applicable Rule Instances
A first try to estimate the work a deductive system has to
do for a given program and input facts is the number of
applicable rule instances.

I.e. rule instances, the body of which is true in the minimal model.
E.g. seminaive evaluation would apply each such rule instance exactly once.

Consider the transitive closure program:
tc(X, Y) ← par(X, Y).
tc(X, Z) ← par(X, Y), tc(Y, Z).

Let the input be the K100, i.e.
par := {(i , j) | 1 ≤ i ≤ 100, 1 ≤ j ≤ 100}.

The first rule has 1002 instances (the size of the par-relation),
and the second has 1003 instances (each par-fact has
100 join partners in tc), in total 1010000 rule instances.

Stefan Brass: Performance of Deductive Systems and SQL DBs 23/34

Introduction Benchmark Database Input Graphs Results Runtime vs. Rule Instances Predicting Runtimes Conclusions

Runtime vs. Rule Instances: XSB

0 0.2 0.4 0.6 0.8 1 1.2 1.4
·109

0

50

100

applicable rule instances in billions

tim
e

in
s

Stefan Brass: Performance of Deductive Systems and SQL DBs 24/34

Introduction Benchmark Database Input Graphs Results Runtime vs. Rule Instances Predicting Runtimes Conclusions

Runtime vs. Rule Instances: PostgreSQL

0 0.2 0.4 0.6 0.8 1 1.2 1.4
·109

0

100

200

300

400

500

applicable rule instances in billions

tim
e

in
s

Stefan Brass: Performance of Deductive Systems and SQL DBs 25/34

Introduction Benchmark Database Input Graphs Results Runtime vs. Rule Instances Predicting Runtimes Conclusions

Runtime vs. Rule Instances: BAM

0 0.2 0.4 0.6 0.8 1 1.2 1.4
·109

0

50

100

150

applicable rule instances in billions

tim
e

in
s

Stefan Brass: Performance of Deductive Systems and SQL DBs 26/34

Introduction Benchmark Database Input Graphs Results Runtime vs. Rule Instances Predicting Runtimes Conclusions

Runtime vs. Rule Instances: Soufflé

0 0.2 0.4 0.6 0.8 1 1.2 1.4
·109

0

10

20

30

40

applicable rule instances in billions

tim
e

in
s

Stefan Brass: Performance of Deductive Systems and SQL DBs 27/34

Introduction Benchmark Database Input Graphs Results Runtime vs. Rule Instances Predicting Runtimes Conclusions

Contents

1 Introduction

2 Benchmark Database

3 Input Graphs

4 Results

5 Runtime vs. Rule Instances

6 Predicting Runtimes

7 Conclusions

Stefan Brass: Performance of Deductive Systems and SQL DBs 28/34

Introduction Benchmark Database Input Graphs Results Runtime vs. Rule Instances Predicting Runtimes Conclusions

Predicting TCFF Runtimes (1)
Goal: Predict the runtime (first for the TCFF program)
from simple features of the graph and the program rules.
Runtime estimation is done in databases for a long time,
but this is a kind of “black box approach” that does not
assume knowledge of internal data structures and
algorithms of the system.

Of course, runtime depends e.g. on the chosen indexes, but we do our
estimation for reasonable settings that a somewhat knowlegable user would
have chosen (the best settings for the system we could find).

The parameters of the prediction formula for a system
can be seen as the result of “compressing” all the
benchmark measurements to just a few numbers that
characterize the performance of a system.

Of course, this is not a lossless compression.

Stefan Brass: Performance of Deductive Systems and SQL DBs 29/34

Introduction Benchmark Database Input Graphs Results Runtime vs. Rule Instances Predicting Runtimes Conclusions

Predicting TCFF Runtimes (2)
Four components (with system-dependent parameters):

Startup time (independent of input): IS .
Since we consider only one logic program/query, this contains the time
for parsing the rules, and query optimization. IS is measured in ms.

Load time (depends on input size): LS ∗ e(G)∗ log(e(G)).
e(G) is the input size (number of edges). LS is measured in ms per
106 n ∗ log2(n) units of edges, e.g. ms for approx. 63.000 edges.

Deduction time (depends on rule instances): DS ∗ R(G).
R(G) is the number of applicable rule instances. DS : ms/106 rule inst.

Answer time (depends on result size): AS ∗ T (G).
T (G) is the result size (transitive closure of G). AS : ms/106 derived
tc-tuples (not counting duplicates). Note that R(G) − T (G) is the
number of duplicates. One can see DS as the cost of deriving a duplicate
and DS + AS as the cost of deriving a new result tuple.

Stefan Brass: Performance of Deductive Systems and SQL DBs 30/34

Introduction Benchmark Database Input Graphs Results Runtime vs. Rule Instances Predicting Runtimes Conclusions

Predicting TCFF Runtimes (3)

Program IS LS DS AS ±20% Avg. Err.

XSB 130 90 95 284 49/50 6%
SQLite 90 93 593 1317 49/50 7%
PostgreSQL 369 102 419 711 48/50 8%
Jena 2076 1599 166 1402 47/50 9%
YAP 20 4 200 221 35/50 30%
Soufflé 25 12 42 671 32/50 23%
BAM 0 373 32 54 31/50 81%
MariaDB 19 1026 438 1164 24/50 512%

Stefan Brass: Performance of Deductive Systems and SQL DBs 31/34

Introduction Benchmark Database Input Graphs Results Runtime vs. Rule Instances Predicting Runtimes Conclusions

Contents

1 Introduction

2 Benchmark Database

3 Input Graphs

4 Results

5 Runtime vs. Rule Instances

6 Predicting Runtimes

7 Conclusions

Stefan Brass: Performance of Deductive Systems and SQL DBs 32/34

Introduction Benchmark Database Input Graphs Results Runtime vs. Rule Instances Predicting Runtimes Conclusions

Conclusions
XSB has beaten older systems based on bottom-up evaluation
(such as Coral). Now it seems that bottom-up evaluation
can be implemented in a competitive way.

We are developing a “Bottom-Up Abstract Machine” (BAM).
System development needs systematic runtime measurements.

We developed a database for runtime measurements.
Including scripts for doing the benchmarks and SQL views for generating
HTML and LATEX tables, and analyzing the data.

There are first results for using the collected data to predict
runtimes (based amongst others on # applicable rule inst.).

Even SQL databases such as PostgreSQL and SQLite
have acceptable preformance on the tested benchmarks.

Stefan Brass: Performance of Deductive Systems and SQL DBs 33/34

Introduction Benchmark Database Input Graphs Results Runtime vs. Rule Instances Predicting Runtimes Conclusions

Web Pages and Downloads
New benchmark page:
[http://dbs.informatik.uni-halle.de/rbench/]

Old benchmark page (some additional benchmarks&systems):
[http://users.informatik.uni-halle.de/˜brass/push/bench.html]

Git repository for benchmark project:
[https://gitlab.informatik.uni-halle.de/brass/rbench]

The subdirectory db contains the SQL scripts to create and fill the database.

Git repository for Graph generator:
[https://gitlab.informatik.uni-halle.de/mwenzel/graphgen]

This was used for generating the graphs. Alternative: rbench/graph.

Benchmarking and build platform (used for some systems):
[https://gitlab.informatik.uni-halle.de/mwenzel/benchF]

Stefan Brass: Performance of Deductive Systems and SQL DBs 34/34

http://dbs.informatik.uni-halle.de/rbench/
http://users.informatik.uni-halle.de/~brass/push/bench.html
https://gitlab.informatik.uni-halle.de/brass/rbench
https://gitlab.informatik.uni-halle.de/mwenzel/graphgen
https://gitlab.informatik.uni-halle.de/mwenzel/benchF

	Introduction
	Benchmark Database
	Input Graphs
	Results
	Runtime vs. Rule Instances
	Predicting Runtimes
	Conclusions

