
Datenbanken II A: DB-Entwurf

Chapter 14: Relational Normal Forms,
Part II

Prof. Dr. Stefan Brass
Martin-Luther-Universität Halle-Wittenberg

Wintersemester 2020/21

http://www.informatik.uni-halle.de/˜brass/dd20/

14. Relational Normal Forms 14-1 / 68

http://www.informatik.uni-halle.de/~brass/dd20/


Objectives

After completing this chapter, you should be able to:

work with functional dependencies (FDs),
Define them, detect them in applications, decide whether an FD is implied
by other FDs, determine a key based on FDs.

explain insert, update, and delete anomalies.

explain BCNF, check a given relation for BCNF, and
transform a relation into BCNF.

detect and correct violations to 4NF.

detect normal form violations on the ER-level.

decide about denormalization.
14. Relational Normal Forms 14-2 / 68



Contents

1 Splitting Relations

2 Multivalued Dependencies/4NF

3 5NF

4 DKNF

5 Normal Forms and ER-Design

6 Denormalization

14. Relational Normal Forms 14-3 / 68



Splitting Relations (1)

When a table is not in BCNF, one can split it into two
tables (“decomposition”).

E.g. COURSES(CRN, TITLE, INAME, PHONE) is split into

COURSES_NEW(CRN, TITLE, INAME)
INSTRUCTORS(INAME, PHONE)

If the FD A1, . . . ,An −→ B1, . . . ,Bm violates BCNF, one
creates a new relation S(A1, . . . ,An,B1, . . . ,Bm) and
removes B1, . . . ,Bm from the original relation.

In unusual cases (multiple violations), it might be necessary to repeat the
splitting step with one or both of the resulting relations. Then you have to
consider also implied FDs.

14. Relational Normal Forms 14-4 / 68



Splitting Relations (2)

It is important that this transformation is “lossless”,
i.e. that the original relation can be reconstructed by
means of a join:

COURSES = COURSES_NEW INSTRUCTORS.

I.e. the original relation can be defined as a view:

CREATE VIEW COURSES(CRN, TITLE, INAME, PHONE)
AS
SELECT C.CRN, C.TITLE, C.INAME, I.PHONE
FROM COURSES_NEW C, INSTRUCTORS I
WHERE C.INAME = I.INAME

14. Relational Normal Forms 14-5 / 68



Splitting Relations (3)

Definition:

Let a relation R(A1, . . . ,Ak ,B1, . . . ,Bm,C1, . . . ,Cn) be
decomposed (split) into relations

R1(A1, . . . ,Ak ,B1, . . . ,Bm)

R2(A1, . . . ,Ak ,C1, . . . ,Cn)

The decomposition is lossless if and only if
R = πA1,...,Ak ,B1,...,Bm(R) πA1,...,Ak ,C1,...,Cn(R)

for all valid database states.
I.e. for all states that satisfy the constraints, which means in normal form
theory usually the given functional dependencies. But later, also other
types of constraints are studied, e.g. multivalued dependencies.

14. Relational Normal Forms 14-6 / 68



Splitting Relations (4)

Theorem (Decomposition Theorem):

Consider again the decomposition of a relation
R(A1, . . . ,Ak ,B1, . . . ,Bm,C1, . . . ,Cn) into

R1(A1, . . . ,Ak ,B1, . . . ,Bm)

R2(A1, . . . ,Ak ,C1, . . . ,Cn)

If the intersection of the attributes of the resulting
relations, i.e. A1, . . . ,Ak , is key in at least one of them,
the decomposition is lossless.

Note that is not an “if and only if”-condition. The decomposition might be
lossless even when the condition is not satisfied.

14. Relational Normal Forms 14-7 / 68



Splitting Relations (5)

In the example, the intersection of the attributes of the
result of the decomposition is:
{CRN, TITLE, INAME} ∩ {INAME, PHONE} = {INAME}.

Since INAME is key in INSTRUCTOR(INAME, PHONE), the
decomposition is lossless.

The above method for transforming relations into BCNF
does only splits that satisfy this condition.

It is always possible to transform a relation into BCNF by
lossless splitting (if necessary repeated).

14. Relational Normal Forms 14-8 / 68



Splitting Relations (6)

Not every lossless split is reasonable:
STUDENTS

SSN FIRST_NAME LAST_NAME
111-22-3333 John Smith
123-45-6789 Maria Brown

Splitting this into STUD_FIRST(SSN,FIRST_NAME) and
STUD_LAST(SSN,LAST_NAME) is lossless, but

is not necessary to enforce a normal form and

only requires costly joins in later queries.

14. Relational Normal Forms 14-9 / 68



Splitting Relations (7)

Losslessness means that the resulting schema can
represent all states which were possible before.

We can translate states from the old schema into the new schema and
back (if the FD was satisfied). The new schema supports all queries which
the old schema supported: We can define the old relations as views.

However, the new schema allows states which do not
correspond to a state in the old schema: Now instructors
without courses can be stored.

Thus, the two schemas are not equivalent: The new one
is more general.

14. Relational Normal Forms 14-10 / 68



Splitting Relations (8)

If instructors without courses are possible in the real
world, the decomposition removes a fault in the old
schema (insertion and deletion anomaly).

If they are not,

a new constraint is needed that is not necessarily easier
to enforce than the FD, but at least

None of the two can be specified declaratively in the CREATE TABLE

statement. Thus, nothing is gained or lost.

the redundancy is avoided (update anomaly).

14. Relational Normal Forms 14-11 / 68



Splitting Relations (9)

It should also be remarked that although computed
columns (such as AGE from BIRTHDATE) lead to violations
of BCNF, splitting the relation is not the right solution.

The split would give a table R(BIRTHDATE, AGE) which does not have to
be stored because it can be computed.

The right solution is to eliminate AGE from the table, but
to define a view which contains all columns of the table
plus the computed column AGE.

14. Relational Normal Forms 14-12 / 68



Preservation of FDs (1)

Another property, which a good decomposition of a
relation should satisfy, is the preservation of FDs.

The problem is that an FD can refer only to attributes of
a single relation.

Of course, you could still have a general constraint which states that the
join of the two tables must satisfy an FD.

When you split a relation, there might be FDs that can
no longer be expressed.

Of course, you can try to find implied FDs such that each FD refers only
to the attributes of one of the resulting relations, but together imply the
global FD. But even this is not always possible.

14. Relational Normal Forms 14-13 / 68



Preservation of FDs (2)

A classical example is
ADDRESSES(STREET_ADR, CITY, STATE, ZIP)

with the FDs:
(1) STREET_ADR, CITY, STATE −→ ZIP
(2) ZIP −→ STATE

The second FD violates BCNF and would force us to split
the relation into

ADDRESSES1(STREET_ADR, CITY, ZIP)

ADDRESSES2(ZIP, STATE)

But now the first FD can no longer be expressed.

14. Relational Normal Forms 14-14 / 68



Preservation of FDs (3)

Probably most database designers would not split the
table (it is actually in 3NF, but violates BCNF).

Textbooks say that it is more important to preserve FDs
than to achieve BCNF.

This is probably not the real reason: Few DB designers
would actually write programs/triggers which check the
FD.

It does not often happen that there are two customers
with exactly the same address.

Only then the first FD could be potentially violated.

14. Relational Normal Forms 14-15 / 68



Preservation of FDs (4)

If there are many addresses with the same ZIP code, there
will be redundancies. If you split, you need expensive joins.

Here the dependencies between ZIP code and other parts
of the address are not considered as an independent fact,
they are only interesting in the context of a given address
(so insertion and deletion anomalies do not arise).

Modifications are also relatively uncommon.

If this were a DB for a mailing company, a table of ZIP
codes might be of its own interest. Then the split should
be done.

The following table (with added customer number) is not
even in 3NF, yet the same considerations apply:
CUSTOMER(NO, NAME, STREET_ADR, CITY, STATE, ZIP)

14. Relational Normal Forms 14-16 / 68



Algorithm for 3NF (1)

The following algorithm (“Synthesis Algorithm”) produces
a lossless decomposistion of a given relation into 3NF
relations that preserve the FDs.

First, one determines a minimal (canonical) set of FDs
that is equivalent to the given FDs as follows:

Replace every FD α −→ B1, . . . ,Bm by the
corresponding FDs α −→ Bi (i = 1, . . . ,m). Let the
result be F .

Continued on next slide . . .

14. Relational Normal Forms 14-17 / 68



Algorithm for 3NF (2)

Computation of canonical set of FDs, continued:

Minimize the left hand side of every FD:
For each FD A1, . . . ,An −→ B and each i = 1, . . . , n compute the
cover {A1, . . . ,Ai−1,Ai+1, . . . ,An}+ (with respect to F). If the
result contains B, the attribute Ai is not necessary to uniquely
determine B. F already implies A1, . . . ,Ai−1,Ai+1, . . . ,An −→ B.
Thus, set F := (F \ {A1, . . . ,An −→
B}) ∪ {A1, . . . ,Ai−1,Ai+1, . . . ,An −→ B}.

Remove implied FDs.
For each FD α −→ B in F , compute the cover α+ with respect to
F ′ := F \ {α −→ B}. If the cover contains B, remove the
FD α −→ B, i.e. continue with F := F ′ (α −→ B is implied by the
other FDs).

14. Relational Normal Forms 14-18 / 68



Algorithm for 3NF (3)

Synthesis Algorithm:

Compute the above minimal set of FDs F .

For each left hand side α of an FD in F , create a
relation with attributes A := α ∪ {B | α −→ B ∈ F}.

Assign to this relation all FDs α′ −→ B′ ∈ F with α′ ∪ {B′} ⊆ A.

If none of the constructed relations contains a key of the
given relation, add one relation with all attributes of a key.

If one of the constructed relations has a set of attributes
that is a subset of another relation, remove the relation
with the subset of attributes.

14. Relational Normal Forms 14-19 / 68



Summary

Tables should not contain FDs other than those implied
by the keys (i.e. all tables should be in BCNF).

Such FDs indicate a redundancy created by combining pieces of
information which should be stored separately.

You can transform tables into BCNF by splitting them.

Sometimes there is no really good solution, and not doing
the split (which would give BCNF) might be the better of
two bad things. But you should know what you are doing.

14. Relational Normal Forms 14-20 / 68



Contents

1 Splitting Relations

2 Multivalued Dependencies/4NF

3 5NF

4 DKNF

5 Normal Forms and ER-Design

6 Denormalization

14. Relational Normal Forms 14-21 / 68



Introduction (1)

The development of BCNF has been guided by a
particular type of constraints: FDs.

The goal of 3NF/BCNF is to

eliminate the redundant storage of data that follows
from these constraints, and to

transform the tables such that the constraints are
automatically enforced by means of keys.

However, there are other types of constraints which are
also useful for determining the table structure.

14. Relational Normal Forms 14-22 / 68



Introduction (2)

The condition in the decomposition theorem is only

sufficient (it guarantees losslessness),

but not necessary (a decomposition may be lossless even
if the condition is not satisfied).

Multivalued dependencies are constraints which give a
necessary and sufficient condition for lossless
decomposition.

They lead to Fourth Normal Form (4NF).

14. Relational Normal Forms 14-23 / 68



Introduction (3)

Intuitively, 4NF means: Whenever it is possible to split a
table (i.e. the decomposition is lossless), and this is not
superfluous (see, e.g., slide 9), do it.

Still shorter: 4NF means “Do not store unrelated
information in the same relation.”

Probably, in practice it is very seldom that a relation
violates 4NF, but not BCNF.

However, I have seen students merging two binary relationships to one
ternary relationship, which gives such a case. See below.

But theoretically, it is a nice roundoff.

14. Relational Normal Forms 14-24 / 68



Multivalued Dependencies (1)

Suppose that every employee knows a set of programming
languages and a set of DBMS and that these are
independent facts about the employees:

EMP_KNOWLEDGE
ENAME PROG_LANG DBMS
John Smith C Oracle
John Smith C DB2
John Smith C++ Oracle
John Smith C++ DB2
Maria Brown Prolog Access
Maria Brown Java Access

14. Relational Normal Forms 14-25 / 68



Multivalued Dependencies (2)

If the sets of known DBMS and known programming
languages are independent facts, the table contains
redundant data, and must be split:

EMP_LANG
ENAME PROG_LANG
John Smith C
John Smith C++
Maria Brown Prolog
Maria Brown Java

EMP_DBMS
ENAME DBMS
John Smith Oracle
John Smith DB2
Maria Brown Access

The original table is in BCNF (no non-trivial FDs).

14. Relational Normal Forms 14-26 / 68



Multivalued Dependencies (3)

The table can only be decomposed if the knowledge of
DBMS and programming languages is indeed independent.

If a row means that the employee knows the interface
between the language and DBMS, the split would lead to
a loss of information.

Then it would be only by chance that e.g. “John Smith” knows all four
possible interfaces. If e.g. he would know only the interface between C and
Oracle, and the interface between C++ and DB2, the contents of the two
tables would be the same. One would not know exactly which interface the
employee knows.

14. Relational Normal Forms 14-27 / 68



Multivalued Dependencies (4)

The multivalued dependency
ENAME −→−→ PROG_LANG

means that the set of values for PROG_LANG that is associated
with every ENAME is independent of the other columns.

Hidden in the table is a mapping from “ENAME” to sets of “PROG_LANG”.

Formally, “ENAME −→−→ PROG_LANG” holds if whenever
two tuples agree in the value for ENAME, one can exchange
their values for PROG_LANG and get two other tuples in
the table.

14. Relational Normal Forms 14-28 / 68



Multivalued Dependencies (5)

E.g. from the two table rows

ENAME PROG_LANG DBMS
John Smith C Oracle
John Smith C++ DB2

and the multivalued dependency, one can conclude that
the table must contain also these two rows:

ENAME PROG_LANG DBMS
John Smith C++ Oracle
John Smith C DB2

This expresses the independence of PROG_LANG for a
given ENAME from the rest of the table.

14. Relational Normal Forms 14-29 / 68



Multivalued Dependencies (6)

A multivalued dependency (MVD)
A1, . . . ,An −→−→ B1, . . . ,Bm.

is satisfied in a DB state I if and only if for all tuples t
and u that have the same values for the
columns A1, . . . ,An (i.e. t.Ai = u.Ai for i = 1, . . . , n),
there are two further tuples t ′ and u′ such that

t ′ has the same values as t for all columns except that
t ′.Bj = u.Bj for j = 1, . . . ,m, and

u′ agrees with u except that u′.Bj = t.Bj

(i.e. the values for the Bj are exchanged).

14. Relational Normal Forms 14-30 / 68



Multivalued Dependencies (7)

Multivalued dependencies come always in pairs:
If “ENAME −→−→ PROG_LANG” holds,
then “ENAME −→−→ DBMS” is automatically satisfied.

For R(A1, . . . ,Ak ,B1, . . . ,Bn,C1, . . . ,Cm) the multivalued dependency
A1, . . . ,Ak −→−→ B1, . . . ,Bn is equivalent to A1, . . . ,Ak −→−→ C1, . . . ,Cm.
Exchanging the Bj values in the two tuples is the same as exchanging the
values for all other columns (the Ai values are identical, so exchanging
them has no effect).

14. Relational Normal Forms 14-31 / 68



Multivalued Dependencies (8)

An MVD A1, . . . ,An −→−→ B1, . . . ,Bm for a relation R is
trivial if and only if

{B1, . . . ,Bm} ⊆ {A1, . . . ,An} or
The precondition for exchanging the Bj -values in the two tuples is
that they agree in the Ai -values. But if every Bj is also an Ai , only
equal values are exchanged, which has no effect.

{A1, . . . ,An} ∪ {B1, . . . ,Bm} are all columns of R.
In this case, exchanging the Bj values of tuples t and u gives the
tuples u and t, and no new tuples.

14. Relational Normal Forms 14-32 / 68



Multivalued Dependencies (9)

If the FD A1, . . . ,An −→ B1, . . . ,Bm holds, the
corresponding MVD A1, . . . ,An −→−→ B1, . . . ,Bm is
trivially satisfied.

The functional dependency means that if t and u have the same values for
the Ai , then they also have the same values for the Bj . But then
exchanging their Bj values changes nothing.

As an FD can be implied (i.e. automatically true) given a
set of FDs, FDs and MVDs can also follow from a set of
given FDs and MVDs.

A constraint ϕ is implied by constraints {ϕ1, . . . , ϕn} if and only if every
database state which satisfies {ϕ1, . . . , ϕn} also satisfies ϕ.

14. Relational Normal Forms 14-33 / 68



FD/MVD Deduction Rules

The following deduction rules permit to derive all implied
FDs/MVDs (they are sound and complete):

The three Armstrong axioms for FDs.

If α −→−→ β then α −→−→ γ, where γ are all remaining
columns of the relation.

If α1 −→−→ β1 and α2 ⊇ β2, then α1 ∪ α2 −→−→ β1 ∪ β2.

If α −→−→ β and β −→−→ γ, then α −→−→ (γ \ β).

If α −→ β, then α −→−→ β.

If α −→−→ β, β′ ⊆ β, and there is γ with γ ∩ β = ∅ and
γ −→ β′, then α −→ β′.

14. Relational Normal Forms 14-34 / 68



Fourth Normal Form (1)

A relation is in Fourth Normal Form (4NF) with respect
to given FDs and MVDs if and only if no MVD
A1, . . . ,An −→−→ B1, . . . ,Bm is implied which is

not trivial and

not directly implied by a key, i.e. A1, . . . ,An does not
functionally determine all other attributes.

The definition of 4NF is very similar to the BCNF definition:
It only looks at implied MVDs instead of given FDs.

14. Relational Normal Forms 14-35 / 68



Fourth Normal Form (2)

Since every FD is also an MVD, 4NF is stronger than BCNF
(i.e. if a relation is in 4NF, it is automatically in BCNF).

If might first seem that an FD violating BCNF could lead to a trivial MVD:
The second case for trivial MVDs has no counterpart for FDs. But if
{A1, . . . ,An} ∪ {B1, . . . ,Bm} are all columns of R, the FD corresponds to
a key and cannot violate BCNF.

EMP_KNOWLEDGE(ENAME, PROG_LANG, DBMS) is an
example of a relation that is in BCNF, but not in 4NF.

It has no non-trivial FDs (the key consists of all attributes).

14. Relational Normal Forms 14-36 / 68



Fourth Normal Form (3)

But if there are other columns besides the key of the
entity (ENAME) and a multivalued attribute, even 2NF is
violated:

EMPLOYEES
ENAME PROG_LANG SALARY
John Smith C 58 000
John Smith C++ 58 000
Maria Brown Prolog 62 000
Maria Brown Java 62 000

It is not very common that 4NF is violated, but BCNF is
not.

14. Relational Normal Forms 14-37 / 68



Fourth Normal Form (4)

Splitting a relation
R(A1, . . . ,An,B1, . . . ,Bm,C1, . . . ,Ck)

into relations
R1(A1, . . . ,An,B1, . . . ,Bm) and
R2(A1, . . . ,An,C1, . . . ,Ck)

is lossless, i.e.
R = πA1,...,An,B1,...,Bm(R) πA1,...,An,C1,...,Ck (R)

if and only if A1, . . . ,An −→−→ B1, . . . ,Bm.
Or equivalently A1, . . . ,An −→−→ C1, . . . ,Ck .

14. Relational Normal Forms 14-38 / 68



Fourth Normal Form (5)

Any relation can be transformed into 4NF by splitting it
as shown above.

It might be necessary to split it multiple times.

So the essence of 4NF is:

If a decomposition into two relations is lossless (i.e. the
original relation can always be reconstructed by a join),

and the two resulting relations do not have identical keys
(then the split would be superfluous),

then this decomposition must be done.

14. Relational Normal Forms 14-39 / 68



Contents

1 Splitting Relations

2 Multivalued Dependencies/4NF

3 5NF

4 DKNF

5 Normal Forms and ER-Design

6 Denormalization

14. Relational Normal Forms 14-40 / 68



Fifth Normal Form (1)

Fifth normal form is very seldom used in practice.
Many textbooks actually do not discuss it at all (more than half of those I
checked). 5NF is also called projection-join normal form (PJNF).

4NF handles all cases where a decomposition into two
tables is needed.

However, it is theoretically possible that only a
decomposition into three or more tables is lossless, but no
decomposition in two tables is lossless.

This means that the required decomposition cannot be reached by
repeated splitting into two tables. Instead, one needs additional tables with
overlapping columns which only serve as a filter in the join.

14. Relational Normal Forms 14-41 / 68



Fifth Normal Form (2)

E.g. consider
COURSE_OFFER(TITLE, TERM, INSTRUCTOR)

Normally, information is lost by the split into

OFFERED(TITLE, TERM),

EMPLOYED(INSTRUCTOR, TERM),

TEACHES(TITLE, INSTRUCTOR).

But the split would be lossless if following constraint were
true: “If a course C is offered in a term T , and
instructor I ever taught C and teaches some course in T ,
then I teaches C in T .”

14. Relational Normal Forms 14-42 / 68



Fifth Normal Form (3)

A join dependency (JD) states that a split into n relations
is lossless:

R = πAi1,1 ,...,Ai1,k1
(R) · · · πAin,1 ,...,Ain,kn

(R).

Of course, every attribute of R must appear in at least one of the
projections. Then “⊆” is always satisfied, only “⊇” is interesting. It states
that if there are n tuples t1, . . . , tn in R that agree in the values for the
attributes listed in more than one projection, then one can construct a
tuple from them that must also appear in R.

An MVD A1, . . . ,An −→−→ B1, . . . ,Bm corresponds to
R = πA1,...,An,B1,...,Bm(R) πA1,...,An,C1,...,Ck (R).

where C1, . . . ,Ck are the remaining columns of R .

14. Relational Normal Forms 14-43 / 68



Fifth Normal Form (4)

A relation R is in Fifth Normal Form (5NF) if and only if
every join dependency that holds for it is already implied
by a key for R .

Note that trivial constraints are always implied, so they do not have to be
treated specially.

Of course, 5NF implies 4NF, BCNF, 3NF, 2NF.

If a relation is in 3NF, and all its keys consist of a single
column each, it is automatically in 5NF.

So in this case, it is not necessary to consider multivalued dependencies
and join dependencies.

14. Relational Normal Forms 14-44 / 68



Contents

1 Splitting Relations

2 Multivalued Dependencies/4NF

3 5NF

4 DKNF

5 Normal Forms and ER-Design

6 Denormalization

14. Relational Normal Forms 14-45 / 68



Domain-Key Normal Form (1)

Consider a table for possible answers in multiple choice
tests:

ANSWERS
QUESTION ANSWER TEXT CORRECT

1 A ... Y
1 B ... N
1 C ... N
2 A ... N
2 B ... Y
2 C ... N

14. Relational Normal Forms 14-46 / 68



Domain-Key Normal Form (2)

The following is an example for a constraint that is not
an FD, MVD, or JD:

Each question can have only one correct answer.

Domain-Key Normal Form (DKNF) requires that every
constraint on the relation is implied by the domains and
keys defined for that relation.

It is of course nice if a relation is in DKNF: One only has
to enforce domains and keys.

Many relations cannot be transformed into DKNF.

14. Relational Normal Forms 14-47 / 68



Domain-Key Normal Form (3)

Here, a horizontal decomposition might be useful:

CORRECT_ANSWERS
QUESTION ANSWER TEXT

1 A ...
2 B ...

WRONG_ANSWERS
QUESTION ANSWER TEXT

1 B ...
1 C ...
2 A ...
2 C ...

14. Relational Normal Forms 14-48 / 68



Domain-Key Normal Form (4)

Now the key of CORRECT_ANSWERS enforces that every
question has only one correct answer.

CORRECT_ANSWERS may even be merged with a table QUESTIONS that
contains the text of each question. In this way, it is certain that every
question has exactly one correct answer.

Each relation (considered in isolation) is in DKNF.

However, a new inter-relational constraint must be
enforced: The same question with the same answer may
not appear in both relations.

Exercise: Discuss which schema is better.

14. Relational Normal Forms 14-49 / 68



Domain-Key Normal Form (5)

If every domain contains at least two values, DKNF
implies 4NF.

It also implies 5NF if every domain contains at least as many values as
there are components in a join dependency.

One important goal of normalization is indeed to replace
general constraints as far as possible by standard
constraints.

Domain and key constraints are very simple constraints, supported in
(nearly) every DBMS. Today, also CHECK-constraints defined on entire
tuples could be used (domain constraints are basically CHECK-constraints
for single attributes).

14. Relational Normal Forms 14-50 / 68



Domain-Key Normal Form (6)

Summary:

If one has only FDs, BCNF is probably the best one can
do. The next step was to look at more general constraints.

5NF is the end of vertical decomposition, i.e. using
projections for normalization.

But, as the example showed, also horizontal
decomposition or other schema transformations should be
considered.

DKNF is the ultimate normal form.

14. Relational Normal Forms 14-51 / 68



Contents

1 Splitting Relations

2 Multivalued Dependencies/4NF

3 5NF

4 DKNF

5 Normal Forms and ER-Design

6 Denormalization

14. Relational Normal Forms 14-52 / 68



Introduction (1)

If a good ER-schema is transformed into the relational
model, the resulting tables will satisfy all normal forms.

Otherwise it was not a good ER-schema . . .

If normal form violations are detected in the relational
schema, one must go back to the ER-schema and correct
them there.

Unless one has done special tricks during the logical design, a normal form
violation always means that the same problem occurs in the ER-schema. It
is important that ER-schema and relational schema remain in sync,
otherwise the ER-schema loses its value as a documentation for the
actually implemented database.

14. Relational Normal Forms 14-53 / 68



Introduction (2)

Of course, it is better to detect the errors directly in the
ER-schema.

The earlier one detects an error, the cheaper it is to correct it.

There is no independent normalization theory for
ER-schemas.

It is possible to define normal forms like BCNF for ER-schemas, but this is
significantly more complicated than for relational schemas, and does not
really give something new (as far as I know).

The definition is simply: An entity or a relationship is in
BCNF if and only if the corresponding table is in BCNF.

14. Relational Normal Forms 14-54 / 68



Examples (1)

Consider again the first example of this chapter:

Course

CRN

Title

IName

Phone

Here the functional dependency “IName −→ Phone”
leads to the violation of BCNF discussed above.

Also in the ER-model, FDs between attributes of an
entity should be implied by a key constraint.

14. Relational Normal Forms 14-55 / 68



Examples (2)

In the ER-model the solution is the same as in the
relational model: We have to split the construct.

In this case, we discover that “Instructor” is an
independent entity:

Instructor

IName Phone

(0,∗)
teaches

(1,1)
Course

CRN Title

14. Relational Normal Forms 14-56 / 68



Examples (3)

Functional dependencies between attributes of a relationship
always violate BCNF:

Customer

CustNo

(0,∗)
orders

(0,∗)

OrderNo Date

Product

ProdNo

The FD “OrderNo −→ Date” violates BCNF.
The key of the table corresponding to the relationship “orders” consists of
“CustNo” and “ProdNo”.

This shows that “Order” is an independent entity.

14. Relational Normal Forms 14-57 / 68



Examples (4)

Violations of BCNF might also be due to the wrong
placement of an attribute:

Student

Stud ID

takes

Email

Course

CRN

The relationship is translated into
Takes(Stud ID, CRN, Email).

Then the FD “Stud ID −→ Email” violates BCNF.

Obviously “Email” is an attribute of “Student”.

14. Relational Normal Forms 14-58 / 68



Examples (5)

If an attribute of a ternary relationship depends only on
two of the entities, this violates BCNF (2NF):

Instructor taught
Room

Course

Term

If every course is taught only once per term, the “Room”
depends only on “Course” and “Term”.

Solution hint: Create “Course Offer” as association entity between
“Course” and “Term”.

14. Relational Normal Forms 14-59 / 68



Examples (6)

If independent relationships are combined, 4NF is violated:

Employee knows Prog Lang

DBMS

If the knowledge of programming languages and DBMSs
is independent, one must use two binary relationships
instead.

One between “Employee” and “Prog Lang”, and one between “Employee”
and “DBMS”.

14. Relational Normal Forms 14-60 / 68



Summary (1)

Many errors in ER-design manifest themselves later as
violations of relational normal forms.

So it is a good test to think about FDs on the created
tables and check for normal forms.

One should check whether the tables make sense and not blindly trust the
automatic generation from an ER-schema. Of course, the automatic
translation preserves equivalence. However, the ER-schema might contain
errors which have been overlooked earlier.

Think about FDs already when developing the
ER-schema, and not only after the translation!

14. Relational Normal Forms 14-61 / 68



Summary (2)

Normalization is about:

Avoiding redundancy.

Storing separate facts separately.

Transforming general integrity constraints into
constraints that are supported by the DBMS.

Relational normalization theory is based mainly on FDs,
but there are other types of constraints.

The ER-model is also richer in constructs and built-in constraints.

Instead of simply applying relational normal forms to
ER-schemas, follow the above three goals!

14. Relational Normal Forms 14-62 / 68



Contents

1 Splitting Relations

2 Multivalued Dependencies/4NF

3 5NF

4 DKNF

5 Normal Forms and ER-Design

6 Denormalization

14. Relational Normal Forms 14-63 / 68



Denormalization (1)

Denormalization is the process of adding redundant
columns and tables to the database in order to improve
performance.

E.g. if the phone number of the instructor of a course is
often needed, the column PHONE can be added to the
table COURSES.

Then the join between COURSES and INSTRUCTORS can
often be avoided, because the required instructor
information (PHONE) is stored redundantly in the same
row as the course information.

14. Relational Normal Forms 14-64 / 68



Denormalization (2)

Since there is a separate table INSTRUCTORS (which
contains the phone number, too), insertion and deletion
anomalies are avoided.

But there will be update anomalies (changing a single
phone number requires updating many rows).

Thus, one must pay for the performance gain with a more
complicated application logic, the need for triggers, and
some remaining insecurity (will all copies always agree?).

14. Relational Normal Forms 14-65 / 68



Denormalization (3)

If the tables COURSES and INSTRUCTORS are small, it is
certainly a bad decision to violate BCNF here, since
performance is anyway no problem.

Koletzke/Dorsey state that if your tables have less than
100 000 rows, you need no denormalization.

Of course, it also depends on the number of queries per second.

Too much denormalization can make a database nearly
unmodifiable.

The requirements often change, so one must anticipate that the DB
application system will need changes.

14. Relational Normal Forms 14-66 / 68



Denormalization (4)

In the above example, denormalization helped to avoid joins.

Denormalization also includes creating tables or columns
which hold aggregated values.

In this case, formally no normal form is violated, but the information is of
course redundant.

E.g. suppose one stores invoices to a customer, and
payments from a customer. One could e.g. store in the
CUSTOMERS table the current balance.

This is redundant, because it can be computed as the sum of all payments
minus the sum of all invoices.

14. Relational Normal Forms 14-67 / 68



References
Elmasri/Navathe: Fundamentals of Database Systems, 3rd Ed.,
Ch. 14, “Functional Dependencies and Normalization for Relational Databases”
Ch. 15, “Relational Database Design Algorithms and Further Dependencies”

Silberschatz/Korth/Sudarshan: Database System Concepts, 3rd Ed.,
Ch. 7, “Relational Database Design”

Ramakrishnan/Gehrke: Database Management Systems, 2nd Ed., Mc-Graw Hill, 2000.
Ch. 15, “Schema Refinement and Normal Forms”

Simsion/Witt: Data Modeling Essentials, 2nd Ed.. Coriolis, 2001.
Ch. 2: “Basic Normalization”, Ch. 8: “Advanced Normalization”.

Batini/Ceri/Navathe: Conceptual Database Design, An Entity-Relationship
Approach. Benjamin/Cummings, 1992.

Kemper/Eickler: Datenbanksysteme (in German), Oldenbourg, 1997.
Ch. 6, “Relationale Entwurfstheorie”

Rauh/Stickel: Konzeptuelle Datenmodellierung (in German). Teubner, 1997.

Kent: A Simple Guide to Five Normal Forms in Relational Database Theory.
Communications of the ACM 26(2), 120–125, 1983.

Thalheim: Dependencies in Relational Databases. Teubner, 1991, ISBN 3-8154-2020-2.

Lipeck: Skript zur Vorlesung Datenbanksysteme (in German), Univ. Hannover, 1996.

14. Relational Normal Forms 14-68 / 68


	Splitting Relations
	Splitting Relations

	Multivalued Dependencies/4NF
	Multivalued Dependencies and 4NF

	5NF
	Fifth Normal Form

	DKNF
	Domain-Key Normal Form

	Normal Forms and ER-Design
	Normal Forms and ER-Design

	Denormalization
	Denormalization
	References


