
Datenbanken II A: DB-Entwurf

Chapter 13: Relational Normal Forms,
Part I

Prof. Dr. Stefan Brass
Martin-Luther-Universität Halle-Wittenberg

Wintersemester 2020/21

http://www.informatik.uni-halle.de/˜brass/dd20/

13. Relational Normal Forms I 13-1 / 77

http://www.informatik.uni-halle.de/~brass/dd20/

Objectives

After completing this chapter, you should be able to:

work with functional dependencies (FDs),
Define them, detect them in applications, decide whether an FD is implied
by other FDs, determine a key based on FDs.

explain insert, update, and delete anomalies.

explain BCNF, check a given relation for BCNF, and
transform a relation into BCNF.

detect normal form violations on the ER-level.

13. Relational Normal Forms I 13-2 / 77

Contents

1 Introduction

2 1NF

3 Functional Dependencies

4 Implication of FDs

5 Computation of Keys

6 Anomalies

7 BCNF, 3NF, 2NF

13. Relational Normal Forms I 13-3 / 77

Introduction (1)

Relational database design theory is based mainly on a
class of constraints called “Functional Dependencies”
(FDs). FDs are a generalization of keys.

This theory defines when a relation is in a certain normal
form (e.g. Third Normal Form, 3NF) for a given set of FDs.

It is usually bad if a schema contains relations that violate
the conditions of a normal form.

However, there are exceptions and tradeoffs.

13. Relational Normal Forms I 13-4 / 77

Introduction (2)

If a normal form is violated, data is stored redundantly,
and information about different concepts is intermixed.
E.g. consider the following table:

COURSES
CRN TITLE INAME PHONE
22268 DB Management Brass 9404
42232 Data Structures Brass 9404
31822 Client-Server Spring 9429

The phone number of “Brass” is stored two times. In
general, the phone number of an instructor will be stored
once for every course he/she teaches.

13. Relational Normal Forms I 13-5 / 77

Introduction (3)

Third Normal Form (3NF) is today considered part of the
general database education.

Boyce-Codd Normal Form (BCNF) is a little bit stronger,
easier to define, and better matches our intuition.

BCNF should really replace 3NF. The only problem is that in rare
circumstances, a relation cannot be transformed into BCNF with the FDs
preserved. However, every relation can be transformed into 3NF with the
FDs preserved.

In short, BCNF means that all functional dependencies
are already enforced by keys.

13. Relational Normal Forms I 13-6 / 77

Introduction (4)

Normalization algorithms can construct tables from a set
of attributes and a set of functional dependencies.

So in theory, database design can be done by only collecting attributes and
FDs. No ER-design is needed.

In practice, normalization is only used as an additional
check.

E.g. one does the ER-design, translates the ER-schema into the relational
model, and check the resulting tables for BCNF.

13. Relational Normal Forms I 13-7 / 77

Introduction (5)

When an Entity-Relationship design is done well, the
resulting tables will automatically be in BCNF
(even 4NF).

If the resulting tables are not in BCNF, one must go back to the
ER-design, and correct the normal form violation there.

Awareness of normal forms can help to detect design
errors already in the ER-design phase.

There is a normal form theory for the ER-model, too, but it is quite
complicated. It is easier to understand relational normal forms and
combine them with the ER-to-relational translation.

13. Relational Normal Forms I 13-8 / 77

Theory vs. Intuition

Once one understood normal forms, the intuition should
be sufficient in 97% of the cases.

It will all seem very obvious. But in order to develop the intuition, one
needs the theory. Good students showed me non-normalized designs.

But in the remaining difficult 3% of the cases, it might be
necessary to apply the formal definitions.

In order to convince other people, it is also better if one can argue with
generally accepted formal definitions.

Even Codd needed three tries to get the normal form
definition right (2NF, 3NF, BCNF).

To be fair, 2NF and 3NF were defined in the same paper.

13. Relational Normal Forms I 13-9 / 77

Contents

1 Introduction

2 1NF

3 Functional Dependencies

4 Implication of FDs

5 Computation of Keys

6 Anomalies

7 BCNF, 3NF, 2NF

13. Relational Normal Forms I 13-10 / 77

First Normal Form (1)

First Normal Form only requires that all table entries are
atomic (not lists, sets, records, relations).

Today, the relational model is already defined in this way.
All further normal forms assume that the tables are in
1NF (First Normal Form).

Some modern database management systems allow
structured attributes. Such systems are call NF2 systems
(“Non First Normal Form”).

Structured attributes are also usually considered a requirement for an
object-relational DBMS.

13. Relational Normal Forms I 13-11 / 77

First Normal Form (2)

Example of an NF2-relation (not 1NF):

COURSES
CRN TITLE TAUGHT_BY STUDENTS

FNAME LNAME
22332 DB Management Brass John Smith

Ann Miller
31864 Client-Server Spring Ann Miller

1NF doesn’t really belong in this chapter.
It has nothing to do with functional dependencies.

13. Relational Normal Forms I 13-12 / 77

First Normal Form (3)

Some authors feel that 1NF is already violated if there are
string-valued attributes that have an inner structure
(i.e. which could be further decomposed).

Simple example: Last name and first name are put
together in one attribute, separated by a comma.

This means that one will have to use string operations in some queries.

Really bad example: The CRNs of all courses a student is
registered for are put into an attribute of the students
table (separated by spaces).

Some interesting queries will need real programming now.

13. Relational Normal Forms I 13-13 / 77

First Normal Form (4)

Some practical DB designers argue that 1NF is already
violated if there are repeated attributes like DEGREE1,
DEGREE2, DEGREE3 in in the instructors table.

Normally, such attributes make queries and updates more
difficult, and should be avoided.

And is there any guarantee that there cannot be an instructor with four
degrees? It is better to have a separate degree table with one row for each
degree (together with the key of the instructor).

However, formally, this is no violation of First Normal Form.

13. Relational Normal Forms I 13-14 / 77

Contents

1 Introduction

2 1NF

3 Functional Dependencies

4 Implication of FDs

5 Computation of Keys

6 Anomalies

7 BCNF, 3NF, 2NF

13. Relational Normal Forms I 13-15 / 77

Functional Dependencies (1)

An example of a functional dependency (FD) is
INAME −→ PHONE.

It means that whenever two rows agree in the instructor
name column INAME, they must also have the same value
in the column PHONE:

COURSES
CRN TITLE INAME PHONE
22268 DB Management Brass 9404
42232 Data Structures Brass 9404
31822 Client-Server Spring 9429

13. Relational Normal Forms I 13-16 / 77

Functional Dependencies (2)

The reason for the validity of INAME −→ PHONE is that
the contact phone number for the course depends only on
the instructor, not on the other course data.

The FD is read as: “INAME (functionally, uniquely)
determines PHONE”.

One says also that INAME is a determinant for PHONE.
Saying that A is a determinant for B is slightly stronger than
the FD A −→ B, see below (A must be minimal and 6=B).

A determinant is like a partial key: It uniquely determines
some attributes, but in general not all.

13. Relational Normal Forms I 13-17 / 77

Functional Dependencies (3)

A key uniquely determines every attribute, i.e. the FDs
CRN−→TITLE, CRN−→INAME, CRN−→PHONE hold, too.

There will never be two distinct rows with the same CRN, so the condition
is trivially satisfied.

E.g. the FD “INAME−→TITLE” is not satisfied. There are
rows with the same INAME, but different TITLE:

COURSES
CRN TITLE INAME PHONE
22268 DB Management Brass 9404
42232 Data Structures Brass 9404
31822 Client-Server Spring 9429

13. Relational Normal Forms I 13-18 / 77

Functional Dependencies (4)

In general, an FD has the form
A1, . . . ,An −→ B1, . . . ,Bm.

Sequence and multiplicity of attributes in an FD are
unimportant, since both sides are formally sets of
attributes: {A1, . . . ,An} −→ {B1, . . . ,Bm}.

In discussing FDs, the focus is on a single relation R . All
attributes Ai , Bi are from this relation.

13. Relational Normal Forms I 13-19 / 77

Functional Dependencies (5)

The FD A1, . . . ,An −→ B1, . . . ,Bm holds for a
relation R in a database state I if and only if for all
tuples t, u ∈ I(R):

If t.A1 = u.A1 and . . . and t.An = u.An,
then t.B1 = u.B1 and . . . and t.Bm = u.Bm.

I.e. A1, . . . ,An −→ B1, . . . ,Bm holds if there no two
rows contain the same values in all columns Ai , but
different values in one of the columns Bj .

13. Relational Normal Forms I 13-20 / 77

Functional Dependencies (6)

An FD with m attributes on the right hand side
A1, . . . ,An −→ B1, . . . ,Bm

is equivalent to the m FDs:
A1, . . . ,An −→ B1...
A1, . . . ,An −→ Bm.

Thus, it suffices to consider FDs with a single column on
the right hand side.

However, sometimes it is a useful abbreviation to put multiple columns on
the right hand side.

13. Relational Normal Forms I 13-21 / 77

FDs are Constraints (1)

For database design, only FDs are interesting that must
hold in all possible database states.

I.e. FDs are constraints (like keys).

E.g. in the example state for “COURSES”, also the FD
“TITLE −→ CRN” holds, because no two courses have
the same title.

But probably this is not true in general, only in this small
example state.

It would be important for the design to find out whether this holds in
general, i.e. there can never be two sessions of the same course.

13. Relational Normal Forms I 13-22 / 77

FDs are Constraints (2)

There are tools for analyzing example data for possible
FDs, and then asking the designer whether these FDs
hold in general.

If an FD (or any constraint) does not hold in the example
state, it certainly cannot hold in general.

If one wants to use normal forms, one needs to collect all
FDs that hold in general. This is a design task, it cannot
be done automatically.

Actually, only a representative subset is needed (that implies the remaining
ones, see below). Of course, such tools could help.

13. Relational Normal Forms I 13-23 / 77

FDs vs. Keys (1)

FDs are a generalization of keys: A1, . . . ,An is a key of
R(A1, . . . ,An,B1, . . . ,Bm) if and only if the FD
“A1, . . . ,An −→ B1, . . . ,Bm” holds.

Under the assumption that there are no duplicate rows. Two distinct rows
that are identical in every attribute would not violate the FD, but they
would violate the key. In theory, this cannot happen, because relations are
sets of tuples, and tuples are defined only by their attribute values. In
practice, SQL permits two identical rows in a table as long as one did not
define a key (therefore, always define a key).

Given the FDs for a relation, one can compute a key i.e. a
set of attributes A1, . . . ,An that functionally determines
the other attributes (see below).

13. Relational Normal Forms I 13-24 / 77

FDs vs. Keys (2)

Conversely, FDs can be explained with keys. FDs are keys
for some columns, e.g. “INAME −→ PHONE” means that
INAME is a key of πINAME, PHONE(COURSES):

INAME PHONE
Brass 9404
Spring 9429

I.e. one removes all columns from the table that do not appear in the FD
and then eliminates duplicate rows. A1, . . . ,An −→ B1, . . . ,Bm is satisfied
in the original table if the projection result has no two rows with the same
Ai -values (these would have to differ in a Bj).

So an FD describes a key for part of the attributes. The
goal of normalization is to make it a real key.

13. Relational Normal Forms I 13-25 / 77

FDs Describe Functions

A key means that a relation (a table) really describes a
partial function (with values for the key attributes as
inputs and values for the other attributes as outputs).

In the example, another function is represented in the table:
It maps instructors’ names to phone numbers.

Partial function, because it is not defined for arbitrary strings.

Sometimes there are functions which can be computed:
E.g. if the date of birth and the age are stored in the same
table. Then of course the FD “BIRTHDATE −→ AGE” holds.

But we actually know much more than what the FD
expresses: we know the exact formula.

Therefore, normalization theory does not help in this case.
AGE is simply redundant.

13. Relational Normal Forms I 13-26 / 77

Example (1)

The following table is used to store information about
books and their authors:

BOOKS
AUTHOR NO TITLE PUBLISHER ISBN
Elmasri 1 Fund. of DBS Addison-W. 0805317554
Navathe 2 Fund. of DBS Addison-W. 0805317554
Date 1 SQL Standard Addison-W. 0201964260
Darwen 2 SQL Standard Addison-W. 0201964260
Meier 1 Theory of RDB Comp.Sc.P. 0914894420

A book can have multiple authors. There is one row for every author of a book.
“NO” is used to keep track of their sequence (it is not necessarily alphabetic,
e.g. Date/Darwen).

13. Relational Normal Forms I 13-27 / 77

Example (2)

The ISBN uniquely identifies a single book. Thus the
following FD holds:

ISBN −→ TITLE, PUBLISHER

Equivalently, one can use the two FDs:

ISBN −→ TITLE
ISBN −→ PUBLISHER

Since a book can have several authors, the following FD
does not hold:

ISBN −→ AUTHOR [Not Satisfied]
In the same way, ISBN does not determine NO.

13. Relational Normal Forms I 13-28 / 77

Example (3)

One author can write many books, thus the following FD
cannot be assumed, although it happens to hold in the
given example state:

AUTHOR −→ TITLE [Not in general true]

It is possible that there are books with the same title but
different authors and different publishers.

E.g. there are several unrelated books called “Database Management”. So
TITLE determines none of the other attributes.

Books can have the same author and title, but different
ISBNs (paperback and hardcover edition).

13. Relational Normal Forms I 13-29 / 77

Example (4)

At every position, there can be only one author:
ISBN, NO −→ AUTHOR.

At first, it seems impossible that the same author appears
in two different positions in the author list of the same book:

ISBN, AUTHOR −→ NO [Questionable]
This would be violated if there is a book from Smith & Smith.

13. Relational Normal Forms I 13-30 / 77

Example (5)

Only unquestionable conditions should be used as
constraints.

The table structure depends on the FDs. Therefore, if it should turn out
later that an FD is too restrictive, it will normally not suffice to simply
remove a constraint (e.g. a key) with an ALTER TABLE statement. Instead,
one has to create new tables, copy data, and change application programs.
If conversely, new FDs are discovered later, the old tables can still be used,
but they violate a normal form.

One might also be tempted to assume this FD:
PUBLISHER, TITLE, NO −→ AUTHOR [Questionable]

It is probably unlikely, but if e.g. in a new edition the author sequence
changes, one is in trouble.

13. Relational Normal Forms I 13-31 / 77

Example (6)

A set of FDs can be displayed as a “hypergraph”:

ISBN TITLE
PUBLISHERNO

AUTHOR PUB URL

In a hypergraph the edges are between sets of nodes, not only between two
nodes as in a standard graph.

A publisher URL was added to make the example more interesting.

13. Relational Normal Forms I 13-32 / 77

Exercise (1)

Consider a one-relation version of the homework grades DB:

HOMEWORK_RESULTS
STUD_ID FIRST LAST EX_NO POINTS MAX_PT
100 Andrew Smith 1 9 10
101 Dave Jones 1 8 10
102 Maria Brown 1 10 10
101 Dave Jones 2 11 12
102 Maria Brown 2 10 12

Which FDs should hold for this table (in general)?

13. Relational Normal Forms I 13-33 / 77

Exercise (2)

What does the FD “LAST −→ FIRST” mean?

If students have the same first name,
they must have the same last name.
There cannot be siblings or other students
with the same last name, different first name.
There cannot be different students with
the same name (first and last).

Name one FD which holds in this state, but not in general.

Draw the hypergraph displaying the FDs.

13. Relational Normal Forms I 13-34 / 77

Contents

1 Introduction

2 1NF

3 Functional Dependencies

4 Implication of FDs

5 Computation of Keys

6 Anomalies

7 BCNF, 3NF, 2NF

13. Relational Normal Forms I 13-35 / 77

Implication of FDs (1)

CRN−→PHONE is nothing new when one knows already
CRN−→INAME and INAME−→PHONE.

Whenever A −→ B and B −→ C are satisfied, A −→ C automatically
holds.

PHONE−→PHONE holds, but is not interesting.
FDs of the form A −→ A always hold (for every DB state).

A set of FDs {α1 −→ β1, . . . ,αn −→ βn} implies an
FD α −→ β if and only if every DB state which satisfies
the αi −→ βi for i = 1, . . . , n also satisfies α −→ β.

α and β stand here for sets of attributes/columns. Note that this notion of
implication is not specific to FDs, the same definition is used for general
constraints.

13. Relational Normal Forms I 13-36 / 77

Implication of FDs (2)

One is normally not interested in all FDs which hold, but
only in a representative set that implies all other FDs.

Implied dependencies can be computed by applying the
Armstrong Axioms:

If β ⊆ α, then α −→ β trivially holds (Reflexivity).

If α −→ β, then α ∪ γ −→ β ∪ γ (Augmentation).

If α −→ β and β −→ γ, then α −→ γ (Transitivity).

13. Relational Normal Forms I 13-37 / 77

Implication of FDs (3)

However, a simpler way to check whether α −→ β is
implied by given FDs is to compute first the cover α+

of α and then to check whether β ⊆ α+.

The cover α+ of a set of attributes α is the set of all
attributes B that are uniquely determined by the
attributes α (with respect to given FDs).

α+ := {B | The given FDs imply α −→ B}.
The cover α+ depends on the given FDs, although the set of FDs is not
explicitly shown in the usual notation α+. If necessary, write α+

F .

A set of FDs F implies α −→ β if and only if β ⊆ α+
F .

13. Relational Normal Forms I 13-38 / 77

Implication of FDs (4)

The cover is computed as follows:

Input: α (Set of attributes)
α1 −→ β1, . . . , αn −→ βn (Set of FDs)

Output: α+ (Set of attributes, Cover of α)
Method: x := α;

while x did change do
for each given FD αi −→ βi do

if αi ⊆ x then
x := x ∪ βi ;

output x ;

13. Relational Normal Forms I 13-39 / 77

Implication of FDs (5)

Consider the following FDs:

ISBN −→ TITLE, PUBLISHER
ISBN, NO −→ AUTHOR
PUBLISHER −→ PUB_URL

Suppose we want to compute {ISBN}+.

We start with x = {ISBN}.
x is the set of attributes for which we know that there can be only a single
value. We start with the assumption that for the given attributes in α,
i.e. ISBN, there is only one value. Then the cover α+ is the set of
attributes for which we can derive under this assumption that their value is
uniquely determined (using the given FDs).

13. Relational Normal Forms I 13-40 / 77

Implication of FDs (6)

The first of the given FDs, namely
ISBN −→ TITLE, PUBLISHER

has a left hand side that is entirely contained in the
current set x (actually, it happens to be the same).

I.e. there is a unique value for these attributes. Then the FD means that
also for the attributes on the right hand side have a unique value.

Therefore, we can extend x by the attributes on the right
hand side of this FD, i.e. TITLE, and PUBLISHER:

x = {ISBN, TITLE, PUBLISHER}.

13. Relational Normal Forms I 13-41 / 77

Implication of FDs (7)

Now the third of the FDs, namely
PUBLISHER −→ PUB_URL

is applicable: Its left hand side is contained in x .

Therefore, we can add the right hand side of this FD to x
and get

x = {ISBN, TITLE, PUBLISHER, PUB_URL}.

The last FD, namely
ISBN, NO −→ AUTHOR

is still not applicable, because NO is missing in x .

13. Relational Normal Forms I 13-42 / 77

Implication of FDs (8)

After checking again that there is no way to extend the
set x any further with the given FDs, the algorithm
terminates and prints
{ISBN}+ = {ISBN, TITLE, PUBLISHER, PUB_URL}.

From this, we can conclude that the given FDs imply e.g.
ISBN −→ PUB_URL.

In the same way, one can compute e.g. the cover of
{ISBN, NO}. It is the entire set of attributes.

This means that {ISBN, NO} is a key of the relation, see next slide.

13. Relational Normal Forms I 13-43 / 77

Contents

1 Introduction

2 1NF

3 Functional Dependencies

4 Implication of FDs

5 Computation of Keys

6 Anomalies

7 BCNF, 3NF, 2NF

13. Relational Normal Forms I 13-44 / 77

How to Determine Keys (1)

Given a set of FDs (and the set of all attributes A of a
relation), one can determine all possible keys for that relation.

Again, one must assume that duplicate rows are excluded.

K ⊆ A is a key if and only if K+ = A.

Normally, one is only interested in minimal keys.
The superset of a key is again a key, e.g. if {ISBN, NO} uniquely identifies
all other attributes, this automatically holds also for {ISBN, NO, TITLE}.
Therefore, one usually requires in addition that every A ∈ K must be
necessary, i.e. (K \ {A})+ 6= A. Most authors make the minimality
requirement part of the key definition. But then a key is not only a
constraint, it also says that stronger constraints do not hold.

13. Relational Normal Forms I 13-45 / 77

How to Determine Keys (2)

Algorithm to compute one minimal key:

(1) K := A; /* Certainly a key (non-minimal) */
(2) foreach A ∈ A do
(3) if (K \ {A})+ = A then
(4) K := K \ {A}; /* A is not necessary */
(5) print K;

One starts with the set of all attributes and tries to
remove each attribute in succession.

The sequence, in which the attributes are checked, determines which of
several keys is computed.

13. Relational Normal Forms I 13-46 / 77

How to Determine Keys (3)

Correctness:

The construction obviously ensures K+ = A.
This holds at the beginning, and K is only changed when this condition
holds for the new value of K.

An important property of the attribute closure is
X ⊆ Y =⇒ X+ ⊆ Y+.

Thus, if (K \ {A})+ 6= A at some point in the
computation, this also holds for any later value of K
(which will be a subset of the current value).

13. Relational Normal Forms I 13-47 / 77

How to Determine Keys (4)

Algorithm minimize(S): (global Variables A and F)

(1) K := S;
(2) assert S+

F = A; /* S must be a key */
(3) foreach A ∈ A do
(4) if (K \ {A})+

F = A then
(5) K := K \ {A}; /* A is not necessary */
(6) return K; /* Minimal Key */

Slight generalization of the algorithm from Slide 46:
Instead of starting with all attributes, we can start with
any (not necessarily minimal) key S.

The algorithm then returns a subset K ⊆ S which is a minimal key.

13. Relational Normal Forms I 13-48 / 77

How to Determine Keys (5)

Theorem:

Let A be the set of all attributes, F be a set of
functional dependencies, and K1, . . . ,Kn, n ≥ 1 be a set
of minimal keys with respect to A and F .

There is an additional minimal key K′ (wrt A, F), not
contained in {K1, . . . ,Kn} if and only if there is
an i ∈ {1, . . . , n} and an FD α −→ β ∈ F such that
α ∪ (Ki \ β) does not include any key in {K1, . . . ,Kn}.

Furthermore, the additional key K′ is a subset of α ∪ (Ki \ β).
This theorem is a slightly rephrased version of Lemma 4 in:
Cláudio L. Lucchesi, Sylvia L. Osborn: Candidate keys for relations. Journal
of Computer and System Sciences 17:2, Oct. 1978, 270–279.

13. Relational Normal Forms I 13-49 / 77

How to Determine Keys (6)

Explanation / Proof Sketch:

Given a key Ki , and FD α −→ β, the set α∪ (Ki \ β) is a
key, too (not necessarily minimal).

The first step of the iteration of the computation of the attribute closure
adds β, then we have a superset of Ki (not necessarily proper).

By applying the minimization algorithm (→ 48), we can
construct a subset, which is a minimal key.

If before the minimization, none of the known keys was a
subset, this obviously holds also after the minimization,
i.e. the constructed key is new.

13. Relational Normal Forms I 13-50 / 77

How to Determine Keys (7)

Explanation / Proof Sketch (continued):

The important point is that the converse holds, too: If
this construction does not give any new key, then there is
no further key (completeness).

Let K′ be a key such that Ki 6⊆ K′ for all i ∈ {1, . . . , n}. Let M be a
maximal superset of K′ of which no Ki is a subset (i.e. one adds attributes
as long as no Ki is fully contained). M 6= A, because it contains no Ki ,
and there is at least one. Because M is a key, M+ = A. Thus, there must
be α −→ β with α ⊆M and β 6⊆ M. Because of the maximality of M
there is i0 ∈ {1, . . . , n} with Ki0 ⊆M∪ β. Then α ∪ (Ki0 \ β) ⊆M
follows. But since Ki 6⊆ M for all i ∈ {1, . . . , n}, this holds all the more for
the subset: Ki 6⊆ α ∪ (Ki0 \ β).

13. Relational Normal Forms I 13-51 / 77

How to Determine Keys (8)

Algorithm to compute all minimal keys:

(1) K1 := Key computed with Alg. on Slide 46;
(2) n := 1; /* Number of Keys known so far */
(3) i := 0; /* Number of keys processed so far */
(4) while i < n do
(5) foreach α −→ β ∈ F do
(6) S := α ∪ (Ki \ β);
(7) found := false;
(8) for j := 1 to n do
(9) if Kj ⊆ S then found := true;

(10) if not found then
(11) n := n + 1;
(12) Kn := minimize(S);

13. Relational Normal Forms I 13-52 / 77

How to Determine Keys (9)

In general, there can be exponentially many keys.
Consider A = {A1, . . . ,An} ∪ {B1, . . . ,Bn}
and {F = {Ai −→ Bi | i = 1, . . . , n} ∪ {Bi −→ Ai | i = 1, . . . , n}}.

The question whether a given attribute is contained in
any minimal key, is NP-complete.

Such attributes are called “prime attributes” (or “key attributes”).

The question whether there is a key consisting of at most
i attributes is NP-complete.

13. Relational Normal Forms I 13-53 / 77

How to Determine Keys (10)

One can construct a key also in a less formal way.

So one starts with the set of required attributes (that do
not appear on any right side).

In the above example one is already done: ISBN and NO appear at no right
side, but their cover is the set of all attributes.

If the required attributes do not already form a key, one
adds attributes: The left hand side of an FD or directly
one of the missing attributes.

Only make sure at the end that the set is minimal. If it contains attributes
that are functionally determined by other attributes in the set, remove
them.

13. Relational Normal Forms I 13-54 / 77

Exercise (1)

The following relation is used for storing homework results:

RESULTS
STUD_ID EX_NO POINTS MAX_POINTS
100 1 9 10
101 1 8 10
102 1 10 10
101 2 11 12
102 2 10 12

13. Relational Normal Forms I 13-55 / 77

Exercise (2)

It is known that these FDs hold:

STUD_ID, EX_NO −→ POINTS

EX_NO −→ MAX_POINTS

Do these FDs imply the following FD?
STUD_ID, EX_NO −→ MAX_POINTS

Does this FD imply “EX_NO −→ MAX_POINTS”?
So which of the two is the stronger restriction?

Determine a key of the relation RESULTS.

13. Relational Normal Forms I 13-56 / 77

Determinants

A1, . . . ,An is called a determinant for a set of
attributes B1, . . . ,Bm if and only if

The FD A1, . . . ,An −→ B1, . . . ,Bm holds.

The left hand side is minimal, i.e. whenever an attribute
Ai is removed from the left hand side

A1, . . . ,Ai−1,Ai+1, . . . ,An −→ B1, . . . ,Bm

does not hold.

Left and right hand side are distinct,
i.e. {A1, . . . ,An} 6= {B1, . . . ,Bm}.

Together with the minimality requirement this excludes trivial FDs.

13. Relational Normal Forms I 13-57 / 77

Contents

1 Introduction

2 1NF

3 Functional Dependencies

4 Implication of FDs

5 Computation of Keys

6 Anomalies

7 BCNF, 3NF, 2NF

13. Relational Normal Forms I 13-58 / 77

Problems (1)

It is usually bad if a tables contains an FD that is not
implied by a key (e.g. INAME−→PHONE).

Among other problems, this leads to the redundant
storage of certain facts. E.g. in the example table, the
phone number of “Brass” is stored two times:

COURSES
CRN TITLE INAME PHONE
22268 DB Management Brass 9404
42232 Data Structures Brass 9404
31822 Client-Server Spring 9429

13. Relational Normal Forms I 13-59 / 77

Problems (2)

If a schema contains redundant data, a constraint must
be specified to ensure that the copies of the information
agree.

In the example, this constraint is precisely the FD
“INAME−→PHONE”.

But FDs are not supported as one of the standard
constraints of the relational model.

Therefore, one should try to avoid FDs and transform them
into key constraints. This is what normalization does.

13. Relational Normal Forms I 13-60 / 77

Problems (3)

Redundant data leads to the Update Anomalies: When a
single fact needs to be changed, e.g. the phone number of
“Brass”, multiple tuples must be updated. This
complicates application programs.

If one forgets to change one of the tuples, the redundant
copies get out of sync, and it is not clear which is the
correct information.

Application programs may break if the data does not satisfy the
assumptions of the programmer. E.g. querying the phone number of an
instructor should normally yield a unique value, so “SELECT INTO ” may
be used. This gives an error if the query returns more than one value.

13. Relational Normal Forms I 13-61 / 77

Problems (4)

In the example, information about two different entities
(Course and Instructor) is stored together in one table.

This leads to insertion and deletion anomalies.

Insertion Anomalies: The phone number of a new faculty
member cannot be inserted until it is known what course
he/she will teach.

Since CRN is a key, it cannot be filled with “null”.

Deletion Anomalies: When the last course of a faculty
member is deleted, his/her phone number is lost.

Even if null values were possible, it would be strange that all courses by an
instructor can be deleted except the last. Then the course data must be replaced
by null values instead. This complicates the logic of application programs.

13. Relational Normal Forms I 13-62 / 77

Contents

1 Introduction

2 1NF

3 Functional Dependencies

4 Implication of FDs

5 Computation of Keys

6 Anomalies

7 BCNF, 3NF, 2NF

13. Relational Normal Forms I 13-63 / 77

Boyce-Codd Normal Form (1)

A Relation is in Boyce-Codd Normal Form (BCNF) if and
only if all its FDs are already implied by the key
constraints.

So for every FD “A1, . . . ,An −→ B1, . . . ,Bm” for R one
of the following conditions hold:

The FD is trivial, i.e. {B1, . . . ,Bm}⊆{A1, . . . ,An}.

The FD follows from a key, because {A1, . . . ,An} or
some subset of it is already a key of R.

It can be any key, not necessarily the primary key.

13. Relational Normal Forms I 13-64 / 77

Boyce-Codd Normal Form (2)

BCNF ⇐⇒ Every determinant is a candidate key.

So if a relation is in BCNF, FD constraints are not
needed, only key constraints.

The anomalies do not occur.
At least not because of FDs: Since every (non-trivial) FD has a key on the
left-hand side, and each key value can appear only once in the table, no
redundancies occur because of the FDs. Again because every FD has a key
on the left-hand side, there is no indication that information about
different entities was merged.

13. Relational Normal Forms I 13-65 / 77

Examples (1)

COURSES(CRN, TITLE, INAME, PHONE) with the FDs

CRN −→ TITLE, INAME, PHONE

INAME −→ PHONE
is not in BCNF because the FD “INAME −→ PHONE” is
not implied by a key:

“INAME” is not a key of the entire relation.

The FD is not trivial.

However, without the attribute PHONE (and its FD), the
relation COURSE(CRN, TITLE, INAME) is in BCNF:

CRN −→ TITLE, INAME corresponds to the key.

13. Relational Normal Forms I 13-66 / 77

Examples (2)

Suppose that each course meets only once per week and
that there are no cross-listed courses. Then

CLASS(CRN, TITLE, DAY, TIME, ROOM)
satisfies the following FDs (plus implied ones):

CRN −→ TITLE, DAY, TIME, ROOM

DAY, TIME, ROOM −→ CRN

The keys are CRN and DAY, TIME, ROOM.

Both FDs have a key on the left hand side, so the relation
is in BCNF.

13. Relational Normal Forms I 13-67 / 77

Examples (3)

Consider the relation PRODUCT(NO, NAME, PRICE) with
the following functional dependencies:

(1) NO −→ NAME (3) PRICE, NAME −→ NAME
(2) NO −→ PRICE (4) NO, PRICE −→ NAME

This relation is in BCNF:

The first two FDs show that NO is a key. Thus, they have
a key on the left hand side.

The third FD is trivial and can be ignored.

The fourth FD has a superset of the key on the left hand
side, which is also no problem.

13. Relational Normal Forms I 13-68 / 77

Exercises

Is the relation
RESULTS(STUD_ID, EX_NO, POINTS, MAX_POINTS)

with the following FDs in BCNF?

(1) STUD_ID, EX_NO −→ POINTS
(2) EX_NO −→ MAX_POINTS

Is the relation
INVOICE(INV_NO, DATE, AMOUNT, CUST_NO, CUST_NAME)
with the following FDs in BCNF?

(1) INV_NO −→ DATE, AMOUNT, CUST_NO
(2) INV_NO, DATE −→ CUST_NAME
(3) CUST_NO −→ CUST_NAME
(4) DATE, AMOUNT −→ AMOUNT

13. Relational Normal Forms I 13-69 / 77

Third Normal Form (1)

Third Normal Form is a bit weaker than BCNF.
If a relation is in BCNF, it is automatically in 3NF.

However, the differences are small. For most practical applications, the two
can be considered as equivalent.

BCNF is easy and clear: We want no non-trivial FDs
except those which are implied by a key constraint.

In some rare circumstances, the “preservation of FDs”
(see below) is lost when a relation is transformed into
BCNF, whereas 3NF can always be reached without this
problem.

13. Relational Normal Forms I 13-70 / 77

Third Normal Form (2)

A Relation R is in Third Normal Form (3NF) if and only
if every FD “A1, . . . ,An −→ B” satisfies at least one of
the following conditions:

An FD A1, . . . ,An −→ B1, . . . ,Bm with multiple attributes on the right
hand side is treated as abbreviation for the FDs A1, . . . ,An −→ Bi

(i = 1, . . . ,m).

The FD is trivial, i.e. B ∈ {A1, . . . ,An}.

The FD follows from a key, because {A1, . . . ,An} or
some subset of it is already a key of R.

B is a key attribute, i.e. element of a minimal key of R.

13. Relational Normal Forms I 13-71 / 77

Third Normal Form (3)

The only difference to BCNF is the additional third
possibility for showing that an FD does not violate the
normal form.

An attribute is called a non-key attribute if it does not
appear in any minimal key.

Not necessarily the primary key, but any candidate key. The minimality
requirement is important here because otherwise the entire set of
attributes of a relation would always qualify as a key.

3NF means that every determinant of a non-key attribute
is a key.

Again, not necessarily the primary key, but any candidate key.

13. Relational Normal Forms I 13-72 / 77

Transitive Dependencies (1)

BCNF and 3NF can also be defined via transitive
dependencies.

A relation is in BCNF iff there are no attribute sets α, β,
γ such that

α −→ β and β −→ γ are implied by the given FDs,

β 6−→ α (i.e. β −→ α is not implied),

γ 6⊆ β.

It suffices to consider sets γ that consist of a single
attribute C .

13. Relational Normal Forms I 13-73 / 77

Transitive Dependencies (2)

The charactization of 3NF is again the same, except that
now γ must consist of non-key attributes.

Or alternatively, its single element C must be a non-key attribute.

In the literature, transitive dependencies are often
mentioned in connection with 3NF. But they apply
equally well to BCNF.

The reason is probably that transitive dependencies motivate why 2NF is
not enough, and most textbooks use the sequence (1NF), 2NF, 3NF,
BCNF. It is quite obvious that a definition with transitive dependencies is
more complicated than the definition given above. Note especially that
here implied FDs must be taken into account.

13. Relational Normal Forms I 13-74 / 77

Second Normal Form (1)

2NF is only interesting for historical reasons. It is too
weak, e.g. the “COURSES” example actually satisfies 2NF.

If a relation is in 3NF or BCNF, it is automatically in 2NF.

A relation is in Second Normal Form (2NF) if and only if
every non-key attribute depends on the complete key.

13. Relational Normal Forms I 13-75 / 77

Second Normal Form (2)

I.e. a relation is in 2NF if and only if the given FDs do
not imply an FD A1, . . . ,An −→ B such that:

A1, . . . ,An is a strict subset of a minimal key, and

B is not contained in any minimal key.
I.e. a non-key attribute.

E.g., the homework results table is not in 2NF:
RESULTS(STUD_ID, EX_NO, POINTS, MAX_POINTS)

MAX_POINTS depends only on part of the key.

13. Relational Normal Forms I 13-76 / 77

References
Elmasri/Navathe: Fundamentals of Database Systems, 3rd Ed.,
Ch. 14, “Functional Dependencies and Normalization for Relational Databases”
Ch. 15, “Relational Database Design Algorithms and Further Dependencies”

Silberschatz/Korth/Sudarshan: Database System Concepts, 3rd Ed.,
Ch. 7, “Relational Database Design”

Ramakrishnan/Gehrke: Database Management Systems, 2nd Ed., Mc-Graw Hill, 2000.
Ch. 15, “Schema Refinement and Normal Forms”

Simsion/Witt: Data Modeling Essentials, 2nd Ed.. Coriolis, 2001.
Ch. 2: “Basic Normalization”, Ch. 8: “Advanced Normalization”.

Batini/Ceri/Navathe: Conceptual Database Design, An Entity-Relationship
Approach. Benjamin/Cummings, 1992.

Kemper/Eickler: Datenbanksysteme (in German), Oldenbourg, 1997.
Ch. 6, “Relationale Entwurfstheorie”

Rauh/Stickel: Konzeptuelle Datenmodellierung (in German). Teubner, 1997.

Kent: A Simple Guide to Five Normal Forms in Relational Database Theory.
Communications of the ACM 26(2), 120–125, 1983.

Thalheim: Dependencies in Relational Databases. Teubner, 1991, ISBN 3-8154-2020-2.

Lipeck: Skript zur Vorlesung Datenbanksysteme (in German), Univ. Hannover, 1996.

13. Relational Normal Forms I 13-77 / 77

	Introduction
	Functional Dependencies (FDs)

	1NF
	First Normal Form (1NF)

	Functional Dependencies
	Functional Dependencies (FDs)

	Implication of FDs
	Implication of FDs

	Computation of Keys
	Computation of Keys from FDs

	Anomalies
	Anomalies, FD-Based Normal Forms

	BCNF, 3NF, 2NF
	FD-Based Normal Forms: BCNF
	FD-Based Normal Forms: 3NF
	FD-Based Normal Forms: 2NF
	References

