
Datenbanken II A: DB-Entwurf

Chapter 12: UML Class Diagrams II

Prof. Dr. Stefan Brass

Martin-Luther-Universität Halle-Wittenberg

Wintersemester 2020/21

http://www.informatik.uni-halle.de/˜brass/dd20/

12. UML Class Diagrams II 12-1 / 63

http://www.informatik.uni-halle.de/~brass/dd20/

Objectives

After completing this chapter, you should be able to:

read and write UML class diagrams.

translate ER-schemas into UML class diagrams and vice
versa.

translate a UML class diagram into a relational database
schema (as far as possible).

explain differences between the object-oriented and the
classical relational approach to database design.

Especially with regard to operations and keys. What are the
implementation options for operations in a RDBMS?

12. UML Class Diagrams II 12-2 / 63

Contents

1 Qualifier

2 Constraints

3 Composition

4 More on Associations

5 Operations

6 Generalization

12. UML Class Diagrams II 12-3 / 63

Qualifiers (1)

If each exercise has a unique number within a chapter,
this can be expressed by means of a “qualifier”:

Chapter no: Integer 1 0..1 Exercise

Chapter objects now basically contain an array of links to
Exercise objects.

The array is indexed by a number, and returns 0 or 1
exercises for a given number.

A normal association would map “Chapter” objects into sets of “Exercise”
objects. Now a “Chapter” object and a value for the qualifier “no” are
mapped into at most one “Exercise” object.

12. UML Class Diagrams II 12-4 / 63

Qualifiers (2)

More general, the qualifier can be of any data type,
e.g. also a string. Then a “dictionary” data structure
would be stored within the Chapter objects, e.g. a hash
table or a search tree.

Arrays and dictionaries are also collection types.
Qualifiers are strongly related to the use of “{ordered}” etc. to determine
the collection type of the association. An array could be used to implement
an ordered association (at least if the maximum number of related objects
is known), but the qualifier makes clear that the specific value of the array
index is important for the application.

12. UML Class Diagrams II 12-5 / 63

Qualifiers (3)

A qualifier can also be used when there is more than one
related object for a given qualifier value.

I.e. the qualifier only partitions the set of related objects into subsets. It
could then be represented by an attribute in an association class (or in the
target class), but the qualifier makes clear that some kind of efficient
access should be possible.

The multiplicity on the opposite association end is
influenced by the qualifier: E.g. 0..1 at the Exercise end
is the number of objects that may be related to a single
Chapter object for a given qualifier value.

So “Chapter” and the qualifier now form some kind of composite object for
the purpose of determining multiplicities.

12. UML Class Diagrams II 12-6 / 63

Qualifiers (4)

With qualifiers, UML gets something like keys, but only in
the context of a given object.

The situation is similar to a weak entity, but the qualifier
value (the exercise number) is not part of the Exercise class.

If that is required, the exercise number must be stored
redundantly as an attribute of the Exercise class, and a
constraint is needed to enforce the equality (see next slide).

12. UML Class Diagrams II 12-7 / 63

Qualifiers (5)

Chapter
no: Integer

1

0..1
Exercise

no: Integer
. . .

{same}

12. UML Class Diagrams II 12-8 / 63

Qualifiers (6)

In the UNIX file system, the filename is not part of the
file objects, but appears only in the directory. This would
be a classical example of a qualifier.

The same file may actually appear in different places of the file system (in
different directories or under different names).

Directory
filename: String

*
0..1

File

12. UML Class Diagrams II 12-9 / 63

Qualifiers (7)

If one has a globally unique object a qualifier from there
corresponds to a key:

AllCustomers 1

SSN
1
0..1

Customer

If direct access from a customer to his/her social security number is
needed, a duplication of SSN as shown on slide 8 is required.

Does it have to be so complicated?

12. UML Class Diagrams II 12-10 / 63

Qualifiers (8)

The “AllCustomers” object is in effect a unique index
that supports the key “SSN” for the class “Customer”.

If UML is not extended in order to support keys, one
must show the index explicitly as in this example.

This is clearly a relapse to pre-relational times.
An index is something big and complicated, so one might argue that when
designing an object-oriented program (e.g., in C++), the index should be
shown explicitly if it is needed. However, when designing a database,
creating an index is easy, and furthermore indexes should not be part of
the conceptual design. By the way, the ODMG model has the notion of
keys (for extents).

12. UML Class Diagrams II 12-11 / 63

Contents

1 Qualifier

2 Constraints

3 Composition

4 More on Associations

5 Operations

6 Generalization

12. UML Class Diagrams II 12-12 / 63

Constraints on Associations (1)

One can specify that two associations exclude each other:

Account

account

personalOwner Person

CorporationcorporateOwner

account

{xor}

[Rumbaugh et.al.: The UML Reference Manual, 1999, p. 156]
Note that “xor” is not quite right: If the minimum cardinality is 0, it is
possible that an Account has no link at all.

12. UML Class Diagrams II 12-13 / 63

Constraints on Associations (2)

One can specify that an association implies another one:

Person Committee

1

∗ Member-of

Chair-of ∗

∗

{subset}

[Rumbaugh et.al.: The UML Reference Manual, 1999, p. 237]

As attributes, associations can be marked

changeable (the default),

addOnly (links can only be inserted, not deleted)

frozen (links of an object cannot be changed).

12. UML Class Diagrams II 12-14 / 63

Contents

1 Qualifier

2 Constraints

3 Composition

4 More on Associations

5 Operations

6 Generalization

12. UML Class Diagrams II 12-15 / 63

Composition/Aggregation (1)

Composite aggregation (or composition) is the relationship
between a whole and its parts.

Or really vice versa: parts are aggregated to a whole.

An association becomes a composition (a form of
aggregation association) by marking the side of the whole
with a black diamond:

Chapter
�1
∗

Exercise

12. UML Class Diagrams II 12-16 / 63

Composition/Aggregation (2)

An object can only be part of one composite object at a time:

The multiplicity on the side of the composition must be
1 or 0..1.

From every class, there can be at most one outgoing
composite aggregation relationship.

Actually, there could be more, but they must be linked with a
xor-constraint.

On the instance level, composite aggregations may not be
cyclic (an object cannot be part of itself).

On the class level, recursive composition relationships are
allowed: A class has many objects, so an object of a class
may be part of another object of the same class.

12. UML Class Diagrams II 12-17 / 63

Composition/Aggregation (3)

The whole is responsible for disposing its parts:
If the whole is deleted, it must delete its parts.

In relational databases, this means that the foreign key is
specified with ON DELETE CASCADE.
In C++, the destructor for the composite object would
call the destructors for its parts.

In C++, there is no automatic garbage collection, so one needs to
think about memory management.

It is legal that
a part is created after the composite or destroyed before it,
a part is moved from one composite object to another,

but this would normally be done by operations of the
composite object (it manages its parts).

12. UML Class Diagrams II 12-18 / 63

Composition/Aggregation (4)

Alternative notation: The part class is drawn within the
rectangle for the composite class.

Composition is the relationship between an object and its attributes.
Attribute name: role name of the part.

Chapter

contains: Exercise ∗

If an association is drawn within the boundaries of the
rectangle of the composite class, it can exist only between
parts of the same composite object.

12. UML Class Diagrams II 12-19 / 63

Composition/Aggregation (5)

UML also has a weak form of aggregation, called “simple
aggregation” or “aggregation”.

It is denoted by an open diamond:

Chapter
�∗
∗

Exercise
It has no semantic consequences: An object can be part
of more than one aggregated object.

“Think of it as a modeling placebo” [Rumbaugh cited after Fowler, 1999].

12. UML Class Diagrams II 12-20 / 63

Contents

1 Qualifier

2 Constraints

3 Composition

4 More on Associations

5 Operations

6 Generalization

12. UML Class Diagrams II 12-21 / 63

Association Classes (1)

If an association has attributes (or operations),
an “association class” must be used:

Student ∗
solved by

∗
has solved

Exercise

Solution
Date
Points

An association class is shown as a class that is linked by a
dashed line to an association.

12. UML Class Diagrams II 12-22 / 63

Association Classes (2)

There is exactly one object of the association class
“Solution” for every pair of objects from Student and
Exercise that are linked via the association.

In UML, there cannot be two links between the same two
objects via the same association.

I.e. associations are sets (as relationships in the ER-model).

Thus, the above class diagram enforces that the same
student cannot submit two solutions for the same
exercise.

12. UML Class Diagrams II 12-23 / 63

Association Classes (3)

In this schema, the same student can have two (or more)
solutions for the same exercise:

Student
1 ∗

Solution
∗ 1

Exercise

In the ER-model, “Solution” would be a weak entity with owners
“Student” and “Exercise”. Then the constructed key enforces the required
uniqueness. But in UML, one can specify keys only via user-defined
extensions to the standard UML syntax.

For one-to-many associations, attributes of the
association can be added to the class at the “many” side.
An association class is not required.

12. UML Class Diagrams II 12-24 / 63

Non-Binary Associations (1)

UML is not restricted to binary associations, although
that is by far the most common case.

An n-ary association is symbolized by a diamond with
n connections to the participating classes:

Instructor 0..1

CourseAssignment

0..3 Course

∗
Term

12. UML Class Diagrams II 12-25 / 63

Non-Binary Associations (2)

The multiplicities specify how many objects of that class
can exist for a given combination of objects from the
other classes.

E.g. the same instructor can offer in the same term not more than three
courses. For a given course and a given term, there is at most one
instructor. Zero instructors would mean that this combination of course
and term do not appear in the association. With this ternary association, it
is not possible to store that a course is offered in a term, but with a yet
unknown instructor.

Navigability, aggregation, and qualifiers are not permitted
for non-binary associations.

Their semantics is too complicated.

12. UML Class Diagrams II 12-26 / 63

Non-Binary Associations (3)

If there is only one instructor per term for a course,
the following model might be better:

Course ∗ ∗ Term

CourseOffering
0..1
∗

Instructor

This permits to store course offerings for which an instructor is not yet
assigned. It does not permit multiple sessions of the same course in the
same term. It does not enforce the maximal teaching load.

12. UML Class Diagrams II 12-27 / 63

Contents

1 Qualifier

2 Constraints

3 Composition

4 More on Associations

5 Operations

6 Generalization

12. UML Class Diagrams II 12-28 / 63

Operations (1)

“An operation is a specification of a transformation or
query that an object may be called to execute. It has a
name and a list of parameters.”

“A method is a procedure that implements an operation.
It has an algorithm or procedure description.”
[Rumbaugh et.al.: The UML Reference Manual, 1999, p. 369.]

UML distinguishes between

operations (the interface) and

methods (the implementation).

12. UML Class Diagrams II 12-29 / 63

Operations (2)

E.g. if an operation o from the superclass is overridden in
the subclass, there is one operation and two methods.

Most people do not take this distinction very strictly.

“An operation is the implementation of a service that can
be requested from any object of the class to affect
behavior. In other words, an operation is an abstraction of
something you can do to an object and that is shared by
all objects of that class.”

[Booch et.al.: The UML User Guide, 1999, p. 51.]

12. UML Class Diagrams II 12-30 / 63

Operations (3)

UML allows that there are two operations with the same
name, but different lists of parameter types.

This corresponds to the overloading of functions in languages like C++:
The compiler can decide by the types of the arguments in the function call
which function is meant.

UML is used to specify programs written in C++, Java
etc. Thus, the basic C++ constructs should be
expressible in UML.

12. UML Class Diagrams II 12-31 / 63

Operations (4)

A full operation declaration consists of:

Visibility: + (public), # (protected), - (private).
The visibility specification is optional.

The name of the operation.

The parameter list, enclosed in “(” and “)”.
The parameters can be suppressed. But even if only the name is
shown, it is usually followed by () to make clear that this is an
operation and not an attribute.

A colon and the return type.
This is optional. The default is “null” (i.e. no result).
In UML even a list of return types is possible.
Parameter list and return type can only be suppressed together.

12. UML Class Diagrams II 12-32 / 63

Operations (5)

The parameter list is a comma-separated list of parameter
declarations consisting of

A direction (optional): in, out, or inout.
The default is in (input parameter, i.e. read-only access).

Parameter name, colon “:”, and parameter type.

An equals sign “=” and a default value for the parameter.
This is optional. If a default value is declared, a call to the operation
does not have to specify a value for the parameter. This is also a
feature of C++: E.g. if a function has two parameters, but a default
value for the second one is declared, it can be called with one
parameter.

12. UML Class Diagrams II 12-33 / 63

Operations (6)

Example of an operation declaration:

+getTotal(StudID: Integer,
InclExtra: Boolean = true): Float

In front of an operation declaration, a stereotype can be
specified. It is enclosed in 〈〈. . .〉〉.

A stereotype can even apply to an entire group of operations. In a list
compartment (e.g. attributes, operations), stereotypes can be specified as
list elements by themselves. Then they apply to all following list entries
until the next stereotype that appears as a list element.

After an operation declaration, a property list can be
specified. It is enclosed in {. . .}.

12. UML Class Diagrams II 12-34 / 63

Operations (7)

The scope of an operation can be “instance” or “class”.
Operations of class scope are marked by underlining.

Operations of instance scope apply to individual objects,
so they have a hidden parameter for an object of their class.

Operations of class scope apply to the class as a whole,
not a specific object. Therefore, they can access only
attributes of class scope.

12. UML Class Diagrams II 12-35 / 63

Operations (8)

An operation may be declared a query operation
(stereotype keyword 〈〈query〉〉). Then this operation is
guaranteed not to modify the state of the object.

It is equivalent to specify the property isQuery=true. The default is
isQuery=false, i.e. the operation can assign values to the attributes and
change associations.

Operations can be marked as 〈〈constructor〉〉.
Such operations create and initialize instances (objects)
of the class.

They have class scope, but can access the attributes of the newly created
instance. They implicitly return the created instance, but no return type
needs to be specified.

12. UML Class Diagrams II 12-36 / 63

Hiding Attributes (1)

The main difference between the object-oriented and the
relational approach are the operations.

Of course, generalization and non-atomic attributes are nice object-oriented
features, which relational databases would like to have (this lead to
object-relational DBs). But the cultural clash lies in operations and identity.

Usually, all attributes are declared as private and can only
be accessed via operations of the class.

Of course, one can have public attributes in UML and e.g. in C++, but
this is generally considered bad style. E.g. in Smalltalk-80, it was impossible:
“A crucial property of an object is that its private memory can be
manipulated only by its own operations.” [Goldberg/Robson, 1983, p. 6]

Classes often have operations get_A and set_A for many
of their attributes A.

This is especially true if the class basically corresponds to a relation.

12. UML Class Diagrams II 12-37 / 63

Hiding Attributes (2)

The reason why the object-oriented approach distinguishes
between private attributes and public operations is that

the implementation can be changed

while the interface is kept stable.

In relational databases, this corresponds to physical data
independence: E.g. indexes can be changed while the
table structure remains stable.

In relational databases, the table structure normally is the
interface, it does not need to be hidden (except for
security purposes, but that is a different issue).

In the ANSI/SPARC architecture, there is a second interface level that
gives logical data independence.

12. UML Class Diagrams II 12-38 / 63

Hiding Attributes (3)

Complex programs like compilers or DB management
systems have a relatively small user interface, but difficult
algorithms. Different levels of interfaces (system layers)
are needed.

DB application system have a large user interface (many
screens), but simple algorithms. Thus, a single level
distinction between interface and implementation might
be enough.

12. UML Class Diagrams II 12-39 / 63

Hiding Attributes (4)

Basically, somebody who invested money and work to
build a relational database does not understand why
he/she should restrict the access to the data by
permitting only to call query operations, not direct read
access to all attributes.

Having to write program code for queries is a step back from the
declarative language SQL.

Views usually only extend the interface, but do seldom
hide details below them (except for security).

12. UML Class Diagrams II 12-40 / 63

Implementing Operations (1)

Of course, query operations that are not simply a
“get attribute”, but compute some derived value,
are interesting for relational databases, too.

They can normally be mapped into view definitions.

In order to avoid unnecessary joins, one will often have
one view for a relation that gives access to all explicitly
stored attributes as well as all derived attributes (query
operations).

If, however, a join is necessary for the computation of the result of the
query operation, it might be better to have it in a distinct view.

12. UML Class Diagrams II 12-41 / 63

Implementing Operations (2)

Query operations with parameters are not in general
implementable in this way.

If the parameter can take only values that appear in the database (or else
one of a few enumeration constants), the parameter can be implemented
as an attribute of the view. Otherwise, this method does not work since
views must be finite. (Deductive DBs have “binding restrictions” for this
purpose, i.e. values for certain attributes must be specified.)

If necessary, operations can be mapped to stored procedures
or procedures in a library for developing application programs.

This is also necessary if the algorithm cannot be expressed in SQL,
e.g. requires a transitive closure.

12. UML Class Diagrams II 12-42 / 63

Implementing Operations (3)

For attributes that participate in complex constraints, it is
useful to exclude direct write access via UPDATE, and
permit changes only via procedures (operations of the class).

Some other attributes should be non-updateable
(E.g. attributes participating in a primary key.)

So for write accesses, the object-oriented distinction
between the internal state (attributes) and the external
interface (operations) might make sense.

12. UML Class Diagrams II 12-43 / 63

Implementing Operations (4)

The more data structure invariants need to be protected,
the more important it is to exclude direct attribute
modifications.

Direct updates can be excluded if

the tables are installed under an account that is only
used by the DBA,

real users (and programs) log in under a different
account and can be granted selective access rights.

Especially, they get update rights only for certain attributes.

12. UML Class Diagrams II 12-44 / 63

Implementing Operations (5)

Operations can be implemented as stored procedures on
the server, or library procedures that are linked to client
programs.

Library procedures don’t give the access protection.

Triggers can be used if the operation mainly sets an
attribute, but additional constraints need to be checked
and redundantly stored values (e.g. sums) must be updated.

12. UML Class Diagrams II 12-45 / 63

Contents

1 Qualifier

2 Constraints

3 Composition

4 More on Associations

5 Operations

6 Generalization

12. UML Class Diagrams II 12-46 / 63

Generalization (1)

“A generalization is a relationship between a general thing
(called the superclass or parent) and a more specific kind
of thing (called the subclass or child). Generalization is
sometimes called an “is-a-kind-of” relationship.”

[Booch et.al.: The UML User Guide, 1999, page 64/141]
Generalization: “A taxonomic relationship between a more general element
and a more specific element. The more specific element is fully consistent
with the more general element and contains additional information.”
[Rumbaugh et.al.: UML Reference Man., 1999, p. 287]

The four kinds of relationships in UML are: Dependency,
Association, Generalization, Realization.

12. UML Class Diagrams II 12-47 / 63

Generalization (2)

Generalization is shown in UML as an arrow (with a large
open triangle at the end) pointing from the subclass to
the superclass (in the “is a” direction):

Person

Student

Person

Student Professor

If a class has several subclasses, either single arrows can
be used or the combined “tree notation”.

12. UML Class Diagrams II 12-48 / 63

Generalization (3)

Multiple inheritance is allowed in UML, i.e. a class can
have two or more superclasses:

Student Employee

GSA

“Use multiple inheritance carefully. You’ll run into
problems if a child has multiple parents whose structure
or behaviour overlap.”

[Booch et.al.: The UML User Guide, 1999, p. 142.]

12. UML Class Diagrams II 12-49 / 63

Generalization (4)

Of course, the subclass can be a superclass for other
classes, i.e. there can be a whole hierarchy of
subclass-superclass relationships.

Cycles are forbidden. Generalization is a transitive, anti-symmetric
relationship (partial order, lattice). So transitive edges (directly to a
super-super-class) should semantically change nothing. In practice, they
should be avoided.

The superclass is also called parent of the subclass, direct
and indirect superclasses its ancestors. Correspondingly,
the subclass is called child of the superclass, direct and
indirect subclasses its decendants.

12. UML Class Diagrams II 12-50 / 63

Inheritance (1)

A Subclass inherits structure and behaviour, i.e. attributes
and operations, from its superclass.

An instance of the subclass can be used in any context
where an instance of the superclass is required.

The value of a variable/parameter of type S can actually be an instance of
a subclass of S. Liskov substitutability principle.

If the generalization arrow is marked with the stereotype
〈〈implementation〉〉, the inherited attributes and
operations become private.

This is not a real use of generalization, since the basic substitutability
principle is violated. C++ has such a notion of “private inheritance”.

12. UML Class Diagrams II 12-51 / 63

Inheritance (2)

In the model/diagrams, only attributes and operations are
shown that are added to the inherited ones.

It is illegal in UML to redeclare an inherited attribute. An inherited operation
may be redeclared to show overriding.

In case of multiple inheritance, it is forbidden if a class inherits
the same attribute/operation from two different classes.

Then it would be unclear which of the two methods for the operation
should be used. Of course, it is legal if the operation is inherited from a
common superclass on two different inheritance paths.

To override an inherited operation (usually) means to replace
its implementation (method) for objects of the subclass.

However, complicated techniques for combining the inherited method with
method declared in the subclass have been proposed and UML does not
require the simple replacement semantics (depends on programming language).

12. UML Class Diagrams II 12-52 / 63

Inheritance (3)

Operations have a property isPolymorphic.
If it is false, the operation cannot be overridden.

The default value is true. In C++, polymorphic operations must be
declared as virtual (called via a pointer in the object: “late binding”).

A class can have the property leaf, in which case it is
not legal to declare a subclass of it.

In the same way, there is a property root which means that this class
cannot have a superclass. Operations can also be declared as root or leaf,
leaf seems to mean the same as isPolymorphic=false. A polymorphic
operation may be declared leaf in a descendant class which means that
further down in the hierarchy it cannot be overridden.

12. UML Class Diagrams II 12-53 / 63

Abstract Classes (1)

An abstract class is a class that cannot have direct instances,
i.e. there can be no objects of this class.

However, subclasses of the abstract class can have instances.
Otherwise, the class could only be interesting because of operations of
class scope.

Abstract classes correspond to total specialization.

Abstract classes / abstract operations (see below)
are marked by writing their declaration in italics.

12. UML Class Diagrams II 12-54 / 63

Abstract Classes (2)

Abstract classes can have abstract and concrete operations:

For a concrete operation, a method (implementation) is
already specified in the abstract class.

For an abstract operation, a method must be specified in
each subclass.

Abstract operations must be polymorphic since they can only be
used when the non-existant implementation is overridden
(in C++: pure virtual functions).

12. UML Class Diagrams II 12-55 / 63

Generalization Constraints (1)

A generalization can be marked as “{complete}” which
means that all possible subclasses have been declared and
no further subclasses may be added.

A generalization can be marked as complete even if not all subclasses are
shown on the diagram. It suffices that all have been declared in the model.

Conversely, it can be marked as “{incomplete}” which
means that more subclasses are known or expected but
have not been declared yet.

Note that this is not the same as total and partial specialization in the
ER-model. E.g. the UML Reference contains incomplete generalization
with an abstract superclass (p. 290).

12. UML Class Diagrams II 12-56 / 63

Generalization Constraints (2)

It is possible to use an ellipses symbol in a diagram to
mark that there are more subclasses that are not shown
on the diagram (“elided”):

Person

Student Professor · · ·

12. UML Class Diagrams II 12-57 / 63

Generalization Constraints (3)

A generalization can be marked as “{disjoint}” or
“{overlapping}”.

Disjoint means that an object of the superclass can only
have one of the subclasses as type.

E.g., if “Person” has subclasses “Student” and
“Employee”, and both are declared {disjoint}, it is
impossible to later introduce a class “GSA” that has
both, Student and Employee, as superclasses.

12. UML Class Diagrams II 12-58 / 63

Multiple Classification (1)

In most programming languages, objects must have a
unique “direct class” (i.e. most specific class).

It is then automatically an indirect instance of all
ancestors (superclasses etc.) of its direct class.

UML permits “multiple classification”, i.e. an object can
be a direct instance of more than one class.

This basically corresponds to multiple inheritance with anonymous
subclasses. E.g. with multiple classification, an object can be at the same
time “Student” and “Employee”, even if no “GSA” class is explicitly
declared. If there are a lot of possible combinations, it would be too much
effort to declare them all explicitly.

12. UML Class Diagrams II 12-59 / 63

Multiple Classification (2)

Generalization arrows can be marked with “discriminators”
(names) to show the different dimensions along which
objects can be classified:

Employee

kind

Staff Faculty

insurance

HMO NonHMO

12. UML Class Diagrams II 12-60 / 63

Multiple Classification (3)

“All subtypes with the same discriminator are disjoint;
that is, any instance of the supertype may be an instance
of only one of the subtypes within that discriminator.”
[UML Distilled, 2nd Ed, 2000, p. 83]

“A parent with multiple discriminators has multiple
dimensions, all of which must be specialized to produce a
concrete element. Therefore, children within a discriminator
group are inherently abstract. [. . .] A concrete element
requires specializing all the dimensions simultaneously.”
[UML Ref. Man., p. 262/263]

If no discriminators are specified, all generalizations with
the same parent form one discriminator group. (Consistent?)

Discriminators become attributes of the instances.
12. UML Class Diagrams II 12-61 / 63

Dynamic Classification

Dynamic classification means that an object can change
its class over time.

Most programming languages use static classification: The type of an
object is fixed at runtime.

This is normally used together with multiple classification:
An object has a static base class and can gain or lose
additional “roles” over time.

Fowler uses the stereotype 〈〈dynamic〉〉 on the generalization relationship. It
does not appear in the UML Reference or the User Guide.

The Reference Manual says dynamic or static classification is a semantic
variantion point and that either assumption may be used in a UML model.

12. UML Class Diagrams II 12-62 / 63

References

Grady Booch, James Rumbaugh, Ivar Jacobson:
The Unified Modeling Language User Guide.
Addison Wesley Longman, 1999, ISBN 0-201-57168-4, 482 pages.
James Rumbaugh, Ivar Jacobson, Grady Booch:
The Unified Modeling Language Reference Manual.
Addison Wesley Longman, 1999, ISBN 0-201-30998-X, 550 pages, CD-ROM.
Martin Fowler, Kendall Scott: UML Distilled, Second Edition.
Addison-Wesley, 2000, ISBN 0-201-65783-X, 185 pages.
Terry Quatrani: Visual Modeling with Rational Rose 2000 and UML.
Addison-Wesley, 2000, ISBN 0-201-69961-3, 256 pages.
Robert J. Muller: Database Design for Smarties — Using UML for Data Modeling.
Morgan Kaufmann, 1999, ISBN 1-55860-515-0, ca. $40.
Paul Dorsey, Joseph R. Hudicka: Oracle8 Design Using UML Object Modeling.
ORACLE Press, 1998, ISBN 0-07-882474-5, 496 pages, ca. $40.
OMG’s UML page: [http://www.omg.org/technology/uml/index.htm]
UML 1.3 Specification: [https://www.omg.org/spec/UML]
UML Resources: [https://www.uml.org/resource-hub.htm]

12. UML Class Diagrams II 12-63 / 63

http://www.omg.org/technology/uml/index.htm
https://www.omg.org/spec/UML
https://www.uml.org/resource-hub.htm

	Qualifier
	Qualifier

	Constraints
	Constraints on Associations

	Composition
	Composition and Aggregation

	More on Associations
	Association Classes
	Non-Binary Associations

	Operations
	Operations

	Generalization
	Generalization
	References

