
5. Logical Design II 5-1

Part 5: Logical Design II
References:

• Teorey: Database Modeling & Design, 3rd Edition.
Morgan Kaufmann, 1999, ISBN 1-55860-500-2, ca. $32.

• Elmasri/Navathe: Fundamentals of Database Systems, 3rd Ed.

• Rauh/Stickel: Konzeptuelle Datenmodellierung (in German), Teubner, 1997.

• Kemper/Eickler: Datenbanksysteme (in German), Oldenbourg, 1997.

• Graeme C. Simsion, Graham C. Witt: Data Modeling Essentials, 2nd Edition.
Coriolis, 2001, ISBN 1-57610-872-4, 459 pages.

• Barker: CASE*Method, Entity Relationship Modelling.
Addison-Wesley, 1990, ISBN 0-201-41696-4, ca. $61.

• Koletzke/Dorsey: Oracle Designer Handbook, 2nd Edition.
ORACLE Press, 1998, ISBN 0-07-882417-6, ca. $40.

• A. Lulushi: Inside Oracle Designer/2000.
Prentice Hall, 1998, ISBN 0-13-849753-2, ca. $50.

• Oracle/Martin Wykes: Designer/2000, Release 2.1.1, Tutorial.
Part No. Z23274-02, Oracle, 1998.

• Oracle Designer Model, Release 2.1.2 (Element Type List).

• Oracle Designer Online Help System.

• Lipeck: Skript zur Vorlesung Datenbanksysteme (in German), Univ. Hannover, 1996.

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-2

Objectives

After completing this chapter, you should be able to:

• explain the steps in which a database schema is

developed with Oracle Designer and name the tools

that are used in this process.

• write a short paragraph about the Database Design

Transformer of Oracle Designer: What it can do

and what its limitations are.

• read Server Model Diagrams in Oracle Designer.

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-3

Overview

1. Database Design Transformer

'

&

$

%

2. Design Editor: Server Model Diagrams

3. Design Editor: Database Administration

4. Generation of SQL Code

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-4

Development Steps (1)

• First (during the conceptual design phase), one de-

velops ER-diagrams with the ER-Diagrammer.

The Repository Object Navigator can be used to check the global
schema (and alter it, if necessary).

Actually, one might start with business process diagrams and then de-
sign application program functions and the ER-schema concurrently.

• Then the Database Design Transformer is used to

translate the ER-Schema (as stored in the Reposi-

tory) into the relational model.

One can choose to either translate the global schema or subsets of it
step by step. The first option seems clearer.

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-5

Development Steps (2)

• The resulting relational schema is stored in the re-

pository.

• One can then edit the relational schema (with the

Design Editor or the Repository Object Navigator).

� E.g. rename certain tables and columns.

� View definitions, indexes, triggers, and other in-

formation that is not present in the ER-schema

can be added at this stage.
The DB Design Transformer does not generate certain constraints
that would be necessary for an exact translation of the given ER-
schema. These must be added manually in this step.

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-6

Development Steps (3)

• In the Design Editor, “Server Model Diagrams” can

be developed that are a graphical representation of

the relational schema.

• Finally, one can generate SQL code (for various da-

tabase management systems) from the definitions

stored in the repository.

This is also done with the Design Editor.

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-7

Development Steps (4)

ER-Diagrammer
-

� RON/Rep. Reports

?

Database Design Transformer

?

Design Editor: Server Model
-

� RON/Rep. Reports

?

Design Editor: Generate DB

?

SQL Files (CREATE TABLE etc.)
#
"

!

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-8

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-9

Example

INSTRUCTOR
FNAME
LNAME
◦ PHONE

'

&

$

%

teacher of
���
H

HH

taught by

COURSE
CRN
* TITLE

'

&

$

%

STUDENT
SSN
* FNAME
* LNAME
◦ EMAIL

'

&

$

%

H
HH

���

registered for

A
AA

�
��

taken by

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-10

DB Design Transformer (1)

• As explained above, each entity type is transformed

into a table:

� The plural form of the entity type name is used

as table name.

� Spaces and punction characters in entity type

and attribute names are mapped to underscores.

� If a name is a reserved word in SQL, that name

is modified (e.g. FROM becomes FROM_FROM).

Reserved words depend in part on the DBMS, which is a problem
in this step.

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-11

DB Design Transformer (2)

• Attributes of the entity type are translated into co-

lumns of the corresponding table:

INSTRUCTORS(FNAME, LNAME, PHONE◦).
STUDENTS(SSN, FNAME, LNAME, EMAIL◦).

• Columns are optional (null values allowed) if the

corresponding source attribute is optional.
The ER-Diagrammer permits optional attributes in primary keys. The
DB Design Transformer silently corrects this mistake and makes the
column not optional. Alternate key attributes remain optional.

• Primary/Alternate keys (UIDs) of the entity type

become primary/alternate keys of the table.

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-12

DB Design Transformer (3)

• If an entity type has no primary key, a surrogate

key is automatically added.

• E.g. for the INSTRUCTOR entity type, an attri-

bute INST_ID of type NUMBER(10) would be added

(where INST is the short name).
In addition, a sequence called INST_ID is generated (for producing
unique numbers). One can choose the domain for the ID columns.

• An option of the Database Design Transformer is

to create a surrogate key for each table in this way.
Then the declared primary keys for the entity types become alternate
keys for the tables.

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-13

DB Design Transformer (4)

• For one-to-many relationships, foreign keys are ad-

ded to the table at the “many” side (as expected):

COURSES(CRN, TITLE,

(INST_FNAME, INST_LNAME) → INSTRUCTORS)

The Database Design Transformer is able to produce foreign keys
consisting of more than one column as in this case.

• Foreign key column names are constructed from

the short name of the referenced entity type and

the name of its primary key attribute.
One can choose whether one wants the prefix. If the surrogate primary
keys already have prefixes, one gets names like INST_INST_ID.

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-14

DB Design Transformer (5)

• If there name clashes (the table already has a co-

lumn of that name), column names are made un-

ique by adding the name of the relationship end

(if that still does not help, numbers are added).

• If the participation in the relationship is optional,

the foreign key attributes are declared as optional.

However, if the foreign key consists of more than one attribute, a
check constraint should be added that they can only be both null,
or both not null. But the Database Design Transformer does not
generate such constraints.

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-15

DB Design Transformer (6)

• If relationships are mutually exclusive (participate

in an arc), the corresponding arc is stored for the

generated foreign keys.

However, when SQL code is later generated, the corresponding CHECK

constraint is missing.

• One can choose how the generated foreign keys

behave in case of deletions of the referenced row

(restrict, cascade, nullify).

One can also choose what happens in case of updates of the primary
key values of the referenced row. The default value is “restrict” for
updates and deletes, i.e. the deletion or update is not possible.

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-16

DB Design Transformer (7)

• For many-to-many relationships, an intersection ta-

ble is generated:

COURSES_STUDENTS(CRS_CRN→COURSES,

STUD_SSN→STUDENTS).

• The name of the table for the relationship is com-

posed out of the plural forms of both entity types.

Probably it would have been nicer if the relationhip names were
used in some way. It is possible to change generated table and co-
lumn names later in the Design Editor. Also, I would have preferred
“STUDENTS_COURSES”, with the “from” side of the relationship first.
But the Database Design Transformer always uses the alphabetic se-
quence.

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-17

Restrictions (1)

• The alternate keys that would enforce one-to-one

relationships are not generated.

One-to-one relationships are translated by the DB Design Transformer
in the same way as one-to-many relationships.

• Mandatory participation for many-to-many relati-

onships or on the “one” side of one-to-many rela-

tionships are also lost in the translation.

As explained above, this is no fault of the Database Design Transfor-
mer, since there is no good translation.

• No warning is generated.

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-18

Restrictions (2)

• Of the nine types of relationships that can be used

in the ER-diagrammer, only three are exactly trans-

lated (see next page), the other ones are approxi-

mated by more liberal relationship types.

As explained above, it would have been possible to implement also
the three kinds of one-to-one relationships (except recursive ones).

• Even constraints that cannot be enforced decla-

ratively in the CREATE TABLE statements should be

documented in the repository.

The DB Design Transformer does not generate such constraints for
the problematic cardinalities.

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-19

Restrictions (3)

Exactly Translated Relationship Types:

• Many-to-one, mandatory-to-optional:

COURSE

'

&

$

%
taught by

HHH
��� teacher of

INSTRUCTOR

'

&

$

%
• Many-to-one, optional-to-optional:

COURSE

'

&

$

%
taught by

H
HH

��� teacher of
INSTRUCTOR

'

&

$

%
• Many-to-many, optional-to-optional:

STUDENT

'

&

$

%
registered for

HHH
���

���
HHHtaken by

COURSE

'

&

$

%

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-20

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-21

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-22

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-23

Translation of Weak Entities

• The DB Design Transformer translates a hierarchy

of weak entities as expected:

TEST
TID
* DESC

'

&

$

%

���
HHH

QUESTION
QNO
* TEXT

'

&

$

%

���
HHH

ANSWER
LETTER
* TEXT
* CORRECT

'

&

$

%
TESTS(TID, TEST_DESC) -- DESC is a reserved word

QUESTIONS(TEST_TID→TESTS, QNO, TEXT)

ANSWERS((QUEST_TEST_TID, QUEST_QNO)→QUESTIONS,

LETTER, TEXT, CORRECT)

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-24

Translation of Subtypes (1)

• The Database Design Transformer supports

� Method 1 (“Single Table Approach”)

This is the default. One can specify in the Database Design Trans-
former which entity types are mapped to tables. Method 1 means
that only the supertype is mapped to a table, the subtypes are
marked as “Included”.

� Method 2 (“Separate Table Approach”)

One gets this transformation if one selects the subtypes to be
mapped to tables, but not the supertype. Select the radio button
“Customize the Database Design Transformer”. Then the tab
“Table Mappings” appears. There select the “In Set” checkbox
for the subtypes and deselect it for the supertype.

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-25

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-26

Translation of Subtypes (3)

• Supported Translation Methods, continued:

� Method 2, Variant for Partial Specialization

(“Implicit Sub-Type Approach”)
One gets this option if supertype and subtype are mapped to
tables. Instantiable supertypes can be selected in “Settings/Other
Settings”. But one gets this translation also if it is not selected.

� Method 4 (“Arc Approach”).
For this transformation, the DB Design Transformer must be star-
ted two times (only for the supertype and the subtype, other entity
types should be mapped in a third run): First map supertype and
subtypes (check “In Set”) but in the “Run Options” permit only
the generation of tables, not of columns or keys. In the second run,
permit to create and modify tables, columns, and keys. For each
subtype, the “Arc” flag must be set under “Table Mappings”.

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-27

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-28

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-29

Translation of Subtypes (6)

• Result of Method 1 (“Single Table Approach”):

COMMITTEES(CNAME)

COMMITTEES_FACULTY(COM_CNAME→COMMITTEES,

INST_NAME→INSTRUCTORS)

COURSES(CRN, TITLE, INST_NAME→INSTRUCTORS)

INSTRUCTORS(ADDRESSo, TENUREDo, NAME, EMAIL,

INST_TYPE)

• The column “INST_TYPE” is declared to have values

“EXT” and “FAC” (the short names of the subtypes).

• No CHECK-constraints are generated.

• The column sequence in INSTRUCTORS is strange.

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-30

Translation of Subtypes (7)

• Result of Method 2 (“Separate Table Approach”):

COMMITTEES(CNAME)

COMMITTEES_FACULTY(COM_CNAME→COMMITTEES,

FAC_NAME→FACULTY)

COURSES(CRN, TITLE, EXT_NAMEo→EXTERNAL,

FAC_NAMEo→FACULTY)

EXTERNAL(NAME, EMAIL, ADDRESS)

FACULTY(NAME, EMAIL, TENURED)

• An arc is generated for the foreign keys in COURSES.

• The split table method for many-to-many relation-

ships with the supertype (“AWARD1/2”) is supported.

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-31

Translation of Subtypes (8)

• Result of “Implicit Sub-Type Approach”:

COMMITTEES(CNAME)

COMMITTEES_FACULTY(COM_CNAME→COMMITTEES,

FAC_NAME→FACULTY)

COURSES(CRN, TITLE, INST_NAMEo→INSTRUCTORS,

EXT_NAMEo→EXTERNAL, FAC_NAMEo→FACULTY)

EXTERNAL(NAME, EMAIL, ADDRESS)

FACULTY(NAME, EMAIL, TENURED)

INSTRUCTORS(NAME, EMAIL)

• An arc is generated for the foreign keys in COURSES.

• This is Method 2 for partial specialization.

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-32

Translation of Subtypes (9)

• Result of Method 4 (“Arc Approach”):

COMMITTEES(CNAME)

COMMITTEES_FACULTY(COM_CNAME→COMMITTEES,

FAC_1_FAC_ID→FACULTY)

COURSES(CRN, TITLE, INST_NAME→INSTRUCTORS)

EXTERNAL(ADDRESS, EXT_ID)

FACULTY(TENURED, FAC_ID)

INSTRUCTORS(NAME, EMAIL, EXT_EXT_IDo→EXTERNAL,

FAC_FAC_IDo→FACULTY)

• The foreign keys in INSTRUCTORS are connected with

an (optional) arc and marked as non-transferable.

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-33

Propagating Changes (1)

• It is probably best to start the DB Design Transfor-

mer only when one is finished with the ER-design.

• If one has already changed the relational schema,

and then changes the ER-schema and runs the DB

Design Transformer again, it is a difficult problem

to merge both changes into one version.

• In general, it is important that the ER-Schema and

the relational schema remain in sync — otherwise

the ER-schema loses its value as a documentation

for the created tables.

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-34

Propagating Changes (2)

• Of course, if one has not yet worked on the rela-

tional schema, one can simply delete it and run the

DB Design Transformer again.

Actually, it is not so simple to delete table definitions from the repo-
sitory since they might be referenced in foreign keys. One must delete
the foreign keys first. If one wants to delete all table definitions, one
can click on the first, shift-click on the last, and then press the delete
key. This will give an error message if a table is deleted that is still re-
ferenced by a foreign key. However, in Designer 6i (not Designer 6.0),
one can choose to continue. After this is done, one simply presses
“delete” again to remove the remaining tables (more runs might be
needed, but if there are no cyclic foreign keys, finally all tables are
deleted). In case of cyclic references, one must first delete at least
one foreign key in the cycle before one can start to delete the tables.

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-35

Propagating Changes (3)

• Deleting the entire relational schema and running

the DB Design Transformer again is the only com-

pletely automatic way that is guaranteed to keep

both schemas in sync.

• The DB Design Transformer will never

� remove existing tables (from a previous run) even

if the corresponding entity type was deleted in

the meantime,

� remove columns from tables when the correspon-

ding attribute was deleted.

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-36

Propagating Changes (4)

• The reason is probably that for denormalization,

one could add columns and tables to the relational

schema which are not present in the ER-schema.
This should be a big exception, only if the performance requirements
cannot be met with a good schema. But in earlier times it was done
quite often (programmer time was cheap compared to hardware).

• The DB Design Transformer protects this work.
The real reason probably is that in order to propagate deletions from
the ER-schema to the relational schema, one must keep information
about deleted schema elements. Also, the DB Design Transformer
can be applied to a subset of the entity types. If one wants to delete
tables, transforming the subset consisting of all entity types would be
different from transforming the entire schema.

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-37

Propagating Changes (5)

• Under “Run Options” one can specify what the DB

Design Transformer is allowed to modify.

E.g. table names, column names, column sequence, column datatypes,
etc.

• With the default (nothing can be modified) the DB

Design Transformer remembers which elements in

the ER-diagram are already mapped, and translates

only new elements.

E.g. if an attribute is added to an existing entity, it will be mapped
to a new column in the existing table.

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-38

Propagating Changes (6)

• In the other extreme case (all modify options are

checked), the new translation of the ER-schema

overwrites the entire relational schema except that

tables/columns are not deleted.

• E.g. even if one has renamed a column in the rela-

tional schema, running the DB Design Transformer

again will reset it to its old name.

I.e. the correspondence between ER-attributes and columns in tables
is remembered in the repository, even if one of the two is renamed.
One can see this information in the Repository Object Navigator under
“Usages/Implemented by Columns” from the entity attribute.

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-39

Propagating Changes (7)

• One should not do arbitrary “last minute” chan-

ges in the relational schema. Go back to the ER-

Schema and perform the required changes there!

• Depending on the kind of change, one can select

the right modify options and run the DB Design

Transformer only for the modified entity type.

• If something was deleted in the ER-schema, one

must manually perform the corresponding deletion

in the relational schema.

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-40

Overview

1. Database Design Transformer

2. Design Editor: Server Model Diagrams

'

&

$

%

3. Design Editor: Database Administration

4. Generation of SQL Code

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-41

Design Editor (1)

• The relational schema generated by the database

design transformer often still needs some work:

� The names of the “intersection tables” for many-

to-many relationships often must be changed.

� Column names and the sequence of columns wi-

thin a table might need changes.

� Often, some constraints are missing.

The DB Design transformer only generates keys, foreign keys, NOT
NULL, and CHECK constraints for enumeration types or ranges auto-
matically. Keys for one-to-one relationships are missing, as well as
CHECK-constraints for subtypes, arcs, and other CHECK-constraints.

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-42

Design Editor (2)

• Manual work on the relational schema, continued:

� For some foreign keys, one might have to select

“ON DELETE CASCADES” etc.
A default can be specified in the settings of the DB design trans-
former, but it might be useful to consider each case individually.
E.g. for weak entities “ON DELETE CASCADES” is probably right.

• Warning: Many students submitted the result of the

DB Design Transformer as logical schema without

ever reading it. They all lost points.
E.g. some generated column names are really ugly. Once application
program development has started, it is difficult to change column or
table names.

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-43

Design Editor (3)

• In addition, information necessary for the generati-

on of application programs must be collected, e.g.

� display title of the form generated for a table,

� labels of input fields for columns,

� field type (text, radio buttons, etc.),

� field width,

� help text,

� display format (e.g. for date values),

� columns that are not displayed.

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-44

Design Editor (4)

• After the logical design is finished, the following

things must be defined:

� Views.

� Possibly triggers, stored procedures.

� Users, table owners, access rights.

� Physical design information.

E.g. indexes, storage parameters for tables, distribution of tables
over disks/tablespaces, etc. It is quite likely that the physical de-
sign will need to change when it turns out that the assumptions
about the system load were not quite right. However, changing it
after the data was loaded can be quite a lot of work.

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-45

Design Editor (5)

• Although this information can be edited directly

with the Repository Object Navigator, Oracle offers

a special tool for all this work: The Design Editor.

• The Design Editor consists of four distinct tools:

� Server Model (Relational Database Schema)

� Modules (Application Programs)

� DB Administration (Users, Tablespaces, etc.)

� Distribution (for Distributed Databases)

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-46

Design Editor (6)

• Later, first-cut application programs (for Oracle

Developer Forms, Visual Basic, etc.) will be ge-

nerated from the “module definitions”.

• However, the module definitions contain only a link

to the table name. The details such as the display

width of input fields are defined in the server model

(attached to tables).

Of course, some things such as the exact position of the input fields
on the form cannot be generated, and must be later edited with the
programming tool itself (e.g. Oracle Developer Forms).

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-47

Design Editor (7)

• One window of the Design Editor is the Server Mo-

del Navigator.

• It looks very similar to the Repositor Object Navi-

gator, but shows only objects that are part of the

relational schema.

A student thought that she could remove the relational schema (for
a fresh run of the DB Design Transformer) by selecting the applica-
tion system name at the top of the Server Model Navigator window
and pressing “Delete”. This removed her entire application system,
not only the part shown in the window. For safety, export your de-
sign data at least once a day (with the Repository Object Navigator:
“Application→Export”) and copy them on a floppy disk.

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-48

Design Editor (8)

• The Design Editor uses normally wizards/tabbed

dialog boxes instead of the simple property palette

in the Repository Object Navigator.
One can get also a property palette window under “Tools→Property

Palette”.

• The Design Editor also contains a tool to put infor-

mation about the schema of an existing relational

database in the repository.
The “Design Capture Utility” (“Generate→Capture Design of→Server

Model”) can read the information from the data dictionary of an Oracle
Database, from a file with SQL DDL (Create Table) commands, or
via the ODBC interface.

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-49

Design Editor (9)

• The Design Editor has also a “Server Model Guide”

which shows a tree of all server model object types:

� Domains

� Tables (Indexes, Triggers, Constraints)

Constraints: Primary Keys, Foreign Keys, Unique Keys, Check.

� Sequences

� Advanced (Views, Snapshots, Clusters)

� PL/SQL

� Oracle8 (Collection Types, Object Types, Ob-

ject Tables, Object Views).

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-50

Design Editor (10)

• When one selects an object type in the map, all

objects of that type are shown. One can create,

edit, or delete an object of the selected type.

• Basically, this is the same functionality as the “Ser-

ver Model Navigator” which is also part of the De-

sign Editor. Only the user interface is a bit different.

One can also choose that the two tools are linked: When an object is
selected in the Server Model Guide, it is automatically also selected
in the Server Model Navigator. The Server Model Guide gives more
advice what to do in which sequence and sometimes has links to
documentation.

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-51

Server Model Diagrams (1)

• The “Server Model” part of the Design Editor has a

graphical interface showing tables and their foreign

key connections in “Server Model Diagrams”.
The easiest way to create a diagram is to expand the “Relational
Table Definitions” in the “Server Model Navigator” on the left, then
to select the tables that should appear on the diagram (e.g. click
on the first table and shift-click on the last) and then to select
“File→New→Server Model Diagram”.

• These diagrams are quite similar to ER-Diagrams.
However, the orientation on ER-diagrams is simpler. Server model dia-
grams are overloaded with information, table boxes are larger than en-
tity boxes. Also many-to-many relationships are now shown as tables
of their own, and foreign key columns do not appear on ER-diagrams.

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-52

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-53

Server Model Diagrams (3)

• Tables are shown as boxes with three sections:

� The first section contains the table name and a

number of buttons.
Buttons: “Database Triggers”, “Indexes”, “Database Synonyms”,
“Primary Key”, “Unique Keys”, “Check Constraints”, “Foreign
Keys”. A dimmed button means that the table has no object of
that type. The button left to the table name is unusable.

� The second section lists the columns (→ below).

� The third section shows additional information

as selected by the buttons in the first section.
If one selects “View→Track Associations” and clicks on e.g. an
index, the corresponding columns are shown inverted above.

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-54

Server Model Diagrams (4)

• The second section of the table box contains one

row per column with the following information:

� “#”: member of the primary key.

� “*”: mandatory column (not null),

“◦”: optional column.

� “ ”: enumeration type value list.

� “A”: character/string data type,

“789”: numeric data type.

� “ 123 ”: sequence (unique number generator).

� “ ”: column belongs to domain.

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-55

Server Model Diagrams (5)

• Foreign keys are shown as lines between the tables

and use symbols similar to “one-to-many” relation-

ships (but beware of the differences).

• Mandatory foreign keys (i.e. foreign keys that must

be not null) are shown as solid lines:

COURSES

* 789 CRN

* A TITLE

* A INST_FNAME

* A INST_LNAME

CRS_INST_FK
H

HH
���

INSTRUCTORS

* A FNAME

* A LNAME

* A PHONE

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-56

Server Model Diagrams (6)

• Optional foreign keys (i.e. foreign keys that can be

null) are shown as dashed lines:

COURSES

* 789 CRN

* A TITLE

◦ A INST_FNAME

◦ A INST_LNAME

CRS_INST_FK
HHH
���

INSTRUCTORS

* A FNAME

* A LNAME

* A PHONE

• The entire line is either solid or dashed, there are

no longer two halves.

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-57

Server Model Diagrams (7)

• Corresponding to the one-to-many relationship, the

“crows foot” is on the side with the foreign key.

It can also be seen as indicating the direction of the pointer, although
a real arrowhead would be on the opposite side.

• The names of the foreign keys are often not helpful,

but take space on the diagram.

With “Options→Show/Hide” one can determine what is shown on the
diagram. Removing the check mark from “Text” of “Associations”
hides the foreign key names. One can specify which kinds of columns
are shown, e.g. hide the foreign key columns on the diagram. One
can also select which of the column type symbols are shown.

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-58

Server Model Diagrams (8)

• The small vertical bar near the crowsfoot means

that deletions do not cascade (“restricted”, one

cannot delete an instructor that teaches courses).

• If one selects “ON DELETE CASCADES”, the line is cros-

sed with an “x”:

COURSES

* 789 CRN

* A TITLE

* A INST_FNAME

* A INST_LNAME

CRS_INST_FK
H

HH
��� ��@@

INSTRUCTORS

* A FNAME

* A LNAME

* A PHONE

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-59

Server Model Diagrams (9)

• If “ON DELETE SET NULL” is selected, a circle is used:

COURSES

* 789 CRN

* A TITLE

◦ A INST_FNAME

◦ A INST_LNAME

CRS_INST_FK
HHH
�

��
n

INSTRUCTORS

* A FNAME

* A LNAME

* A PHONE

• A filled circle means “ON DELETE SET DEFAULT”.

• The cascade rule for “ON UPDATE” is not shown on

the diagram.

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-60

Server Model Diagrams (10)

• One can also mark foreign keys as non updatable

(corresponding to a non-transferable relationship):

COURSES

* 789 CRN

* A TITLE

* A INST_FNAME

* A INST_LNAME

CRS_INST_FK
H

HH
��� �

INSTRUCTORS

* A FNAME

* A LNAME

* A PHONE

• Foreign keys can be marked as mutually exclusive

by means of arcs (as on ER-diagrams).

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-61

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-62

Server Model Diagrams (12)

• The properties dialog box for tables (“Edit Table”)

has tabs “Name”, “Columns”, “Display”, “Con-

trols”, “UI”.

Under “Display”, one can define which columns correspond to input
fields in a form. Under “Controls” the type, size, etc. of these input
fields is defined. Under “UI” (User Interface), more information about
input fields is defined, e.g. a help text and a display format.

• Column and table names can be edited directly in

the diagram, one does not have to go over the

properties dialog box.

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-63

Server Model Diagrams (13)

• Tables also have the “Edit Text” dialog box, where

one can define a description, notes, help text, and

code for insert, update, delete, and locks.

One can open this dialog box from the menu that appears if one
right-clicks on the table. This menu also permits to add columns,
triggers, indexes, synonyms, keys, check constraints, foreign keys.

• The properties dialog box for foreign keys has tabs

“Foreign Key Mandatory”, “Foreign Key Column”,

“Cascade Rules”, “Validation”.

E.g. under “Validation” one can choose whether the constraint should
be enforced on the server, the client, or both. One can also specify
an error message and a table for exceptions (rows that violate it).

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-64

Server Model Diagrams (14)

• If one chooses to add e.g. a check constraint to a

table, a wizard is opened that asks for the required

information.

To edit it later, display it in the third part of the box (by clicking
on the button for the object type) and click on the symbol in front
of the name. Clicking on the name only permits to edit the name.
Editing an existing check constraint etc. shows the same screens as
the wizard, but now one can jump with tabs between them.

• Oracle Designer does not check the SQL syntax

e.g. of CHECK-constraint definitions.

One can enter any text. Column names can be selected from a list.
Of course, the exact SQL syntax depends on the DBMS.

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-65

Server Model Diagrams (15)

• The DB Design Transformer has already created

indexes for foreign keys.

In addition, the DBMS automatically creates indexes for primary and
alternate keys.

• As part of the physical design, one can add further

indexes to a table.

• One can also add triggers (e.g. for enforcing com-

plex constraints or logging changes to a table).

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-66

Server Model Diagrams (16)

• Server model diagrams can also contain other ob-

jects, such as

� Views (shown as grey-blue boxes).

In order to create a view, one can e.g. right-click on the back-
ground of a server model diagram. Alternatively there is also a
symbol on the left toolbar. A wizard is started that asks the re-
quired information. One can select base tables (FROM) and columns
(SELECT), and then any WHERE clause can be entered.

� Object types (shown as red boxes).

In Oracle, an object type is a generalization of a record/row type.
One can create one or more tables over an object type. Object
type an tables are connected with a line that ends in a diamond
attached to the table.

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-67

Server Model Diagrams (17)

• Objects on Server Model Diagrams, continued:

� Clusters (shown as grey boxes).

In Oracle, a cluster is a storage area in which rows of one or more
tables may be stored, such that rows with the same value in the
cluster column are stored together.

� Snapshots (shown as light blue boxes).

In Oracle, a snapshot is a copy of another table or view, used
in distributed DBs for performance or failure safety reasons. One
can specify that it is automatically refreshed at certain intervalls.

• The diagram legend can be shown in the upper left

corner (it contains diagram title, author, date etc.).

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-68

Repository Reports

• Again, there are many repository reports which can

be printed for documenting the DB Design, e.g.:

� Entity to Table Implementation

� Table Definition

� Column Definition

� Columns in Domain

� Constraint Definition

� Database Trigger

� Cluster Definition

� Tables, Columns, and Foreign Key Derivations

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-69

Overview

1. Database Design Transformer

2. Design Editor: Server Model Diagrams

3. Design Editor: Database Administration

'

&

$

%

4. Generation of SQL Code

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-70

Database Administration (1)

• The following information can be specified with this

part of the Design Editor:

� Database Name and connection information.

� Access information: Users, Roles, Profiles.

� Storage Information: Tablespaces, Datafiles,

Logfiles, Rollback Segments, Directories.

• In the Server Model view, the really physical infor-

mation (like storage parameters) was not yet asked.

Also, in the server model, the tables do not yet belong to users (there
is no such property). One must move from the Server Model Relatio-
nal Table Definitions to Table Implementations under “DB Admin”.

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-71

Database Administration (2)

• One now can “implement” the tables under a user

account in a database. A new wizard asks for a

table from the server model and takes the designer

through the physical options.

One gets this wizard e.g. by selecting a user in the Database Admini-
strator Guide, then selecting “Tables” and clicking on “Create”. This
does not mean that a table is created from scratch, one can select a
table from the Server Model. Since often several tables have the same
storage parameters, one can create named sets of such parameters
(“Storage Definitions”) and assign to tables.

• Of course, the resulting data are still stored in the

repository. The table is not yet really implemented.

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-72

Database Administration (3)

• The Database Administration part of the Design

Editor is only a subset of the Repository Object

Navigator (there are no new diagrams).

However, again wizards/tabbed dialog boxes are used instead of the
property palette. And it has a “Database Administrator Guide” that
shows the steps for specifying a database.

• The tool is similar to a graphical user interface for a

DBA (but stores all information in the repository).

• From the collected information, database creation

scripts can be generated.

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-73

Overview

1. Database Design Transformer

2. Design Editor: Server Model Diagrams

3. Design Editor: Database Administration

4. Generation of SQL Code

'

&

$

%

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-74

DDL Generation (1)

• The Database Design Transformer stores the rela-

tional schema in the repository. It does not actually

create the tables.

• The reason for this is that in most cases, some

things must still be changed/added manually.

• Once one is satisfied with the relational schema,

one can generate SQL DDL code containing e.g.

CREATE TABLE statements.

DDL = Data Definition Language. The generation is done with the
Design Editor: “Generate→Generate Database from Server Model”.

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-75

DDL Generation (2)

• Oracle Designer can create DDL code for different

DBMS: ANSI 92, DB2, Oracle (different versions),

RDB7, SQL Server, Sybase.

• The creation of tables etc. can be done as follows:

� Files with DDL statements are created, these

must be executed manually in the target DB.

� If the target database is an Oracle Database,

Oracle Designer can directly create the tables.

� If the target DB supports ODBC connections,

tables can also be directly created.

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-76

DDL Generation (3)

• One can select for which schema objects should be

generated (e.g. only a subset of the tables).

This is done on the “Objects” tab. E.g. click on the double right
arrow: “Generate All”.

• What can be generated, depends on the DBMS

chosen, e.g.:

� “ANSI 92”: Only tables and views.

� “SQL Server” Only domains, tables, and views.

Which is strange, since it has indexes.

Stefan Brass: Datenbanken II A Universität Halle, 2006

5. Logical Design II 5-77

DDL Generation (4)

• When creating files, one defines a file prefix (e.g.

courses) and a directory. The different kinds of

schema elements will then be written to different

files (for Oracle8):

� courses.tab: Table Definitions

� courses.con: Constraints (as ALTER TABLE ...)

� courses.ind: Indexes

� courses.sqs: Sequence Definitions

� courses.sql: Includes all of the above files.

Stefan Brass: Datenbanken II A Universität Halle, 2006

