
9. More Design Techniques 9-1

Part 9:
More Design Techniques
References:

• Batini/Ceri/Navathe: Conceptual Database Design. Benjamin/Cummings, 1992.

• Elmasri/Navathe: Fundamentals of Database Systems, 3rd Ed.,

Section 16.2, “The Database Design Process”

• Teorey: Database Modeling & Design, 3rd Edition. Morgan Kaufmann, 1999, ISBN 1-55860-500-2.

• Graeme C. Simsion, Graham C. Witt: Data Modeling Essentials, 2nd Edition.

Coriolis, 2001, ISBN 1-57610-872-4, 459 pages.

• Rauh/Stickel: Konzeptuelle Datenmodellierung (in German), Teubner, 1997.

• Koletzke/Dorsey: Oracle Designer Handbook, 2nd Edition. ORACLE Press, 1998, ISBN 0-07-882417-6, ca. $40.

• Paul Dorsey, Joseph R. Hudicka: Oracle8 Design Using UML Object Modeling.

ORACLE Press, 1998, ISBN 0-07-882474-5, ca. $40.

• R. J. Muller: Database Design for Smarties — Using UML for Data Modeling. Morgan Kaufmann, 1999,

ISBN 1-55860-515-0, ca. $40.

• Lipeck: Skript zur Vorlesung Datenbanksysteme (in German), Univ. Hannover, 1996.

Stefan Brass: Datenbanken IIA Universität Halle, 2006

9. More Design Techniques 9-2

Objectives

After completing this chapter, you should be able to:

• write a short paragraph on design strategies (which describe

a sequence of refinement or extension steps to develop an

ER-schema), enumerate top-down schema transformations.

• enumerate possible sources for information that is the input

to database design (requirements).

• start doing business interviews for collecting requirements

(you still need a lot more experience).

• evaluate the view integration method.

• use look-up tables to make DB application systems easier to

change, evaluate the use of generic/data-driven solutions.

Stefan Brass: Datenbanken IIA Universität Halle, 2006

9. More Design Techniques 9-3

Overview

1. Development of ER-Schemas

�
�

�
�

2. Information Gathering

3. View Integration

4. Generic/Data-Driven Solutions

Stefan Brass: Datenbanken IIA Universität Halle, 2006

9. More Design Techniques 9-4

Design Strategies: Introduction

• “Building an ER schema is an incremental process: our

perception of reality is progressively refined and enriched,

and the conceptual schema is gradually developed.”

[Batini/Ceri/Navathe, 1992]

• The authors suggest to start with an initial schema, then

change it by applying schema transformations, until the final

schema is reached.

• They propose a set of primitive transformations, which they

classify as top-down or bottom-up.

• A pure top-down approach would start with a single

top-level entity and then successively split it by applying the

top-down primitives T1–T8 listed on the following pages.

Stefan Brass: Datenbanken IIA Universität Halle, 2006

9. More Design Techniques 9-5

Top-Down Primitives (1)

• T1: An entity can be split into two related entities:

⇒ �� HH
��HH

• An example is given on the next page. However, attributes

are usually developed later in the top-down strategy.

Stefan Brass: Datenbanken IIA Universität Halle, 2006

9. More Design Techniques 9-6

Top-Down Primitives (2)

• E.g. distinction between instances and general information:

Course

�
 �	No HH�
 �	Title ��

�
 �	CRN���
 �	Day TimeHH

⇓
Course Info

�
 �	No
�� �
 �	Title

@@

Course Offer

�
 �	CRN
�� �
 �	Day Time

@@

���

HHH
���

HHH
taught as

Stefan Brass: Datenbanken IIA Universität Halle, 2006

9. More Design Techniques 9-7

Top-Down Primitives (3)

• T2: Introduction of subtypes (specialization):

⇒
· · ·

@@ ��
����

HHHH

• Relationships involving the original entity type can be linked

to the supertype or to one or more of the subtypes.

More than one subtype: Relationship is split (see T4).

Stefan Brass: Datenbanken IIA Universität Halle, 2006

9. More Design Techniques 9-8

Top-Down Primitives (4)

• T3: An entity type can be split into unrelated entity types:

⇒ · · ·

• Normally, already the original entity type had relationships

to other entity types.

• These relationships are then distributed among the new

entity types.

• So normally one does not get an unconnected schema:

No top-down primitive would allow to later connect two

unrelated entities.

Stefan Brass: Datenbanken IIA Universität Halle, 2006

9. More Design Techniques 9-9

Top-Down Primitives (5)

• T4: A relationship can be split into two parallel ones:

�� HH
��HH ⇒ �� HH

��HH
�� HH

��HH

• E.g. one originally has “Person is related to City”.

Then one discovers that there are actually two different

relationships: “born in” and “lives in”.

Stefan Brass: Datenbanken IIA Universität Halle, 2006

9. More Design Techniques 9-10

Top-Down Primitives (6)

• If T4 is applied followed by T3, this transformation results:

�� HH
��HH ⇒ �� HH

��HH
�� HH

��HH

Stefan Brass: Datenbanken IIA Universität Halle, 2006

9. More Design Techniques 9-11

Top-Down Primitives (7)

• T5: A relationship can be split by introducing an entity.

�� HH
��HH ⇒

�� HH
��HH

�� HH
��HH

• E.g. one has the relationship “Customer orders product”.

Then one introduces the “order” entity type.

Stefan Brass: Datenbanken IIA Universität Halle, 2006

9. More Design Techniques 9-12

Top-Down Primitives (8)

• T6: Introduction of attributes for entities and relationships.

�� HH
��HH

⇒

⇒

�
 �	
�� HH

��HH

�
 �	
• T7: Introduction of structured attributes.

• T8: Refinement (splitting) of attributes.

Stefan Brass: Datenbanken IIA Universität Halle, 2006

9. More Design Techniques 9-13

Top-Down Schema Design

• So the general idea of top-down schema design is refinement:

– One starts with a small schema containing very general

concepts on a high abstraction level,

– then details are introduced by adding attributes,

introducing subtypes and splitting schema constructs.

• A pure top-down approach (which allows only the above

primitives) is probably very difficult.

• However, it can be a useful documentation to show the

schema afterwards at different abstraction levels.

There are also formal techniques and tools for schema

simplification/compression/condensation (to generate a

birds eye view of an otherwise too complicated schema).

Stefan Brass: Datenbanken IIA Universität Halle, 2006

9. More Design Techniques 9-14

Bottom-Up Primitives

• B1: Generate a new entity.

• B2: Connect two entities by a new relationship.

• B3: Generalization

(create a new supertype for existing subtypes).

• B4: Attribute aggregation

(create an entity type which has existing attributes).

• A pure bottom-up development of a schema would

– start with the set of all attributes,

– then aggregate them to entities, use generalization, and

connect the entities by relationships.

• So bottom-up means to stepwise extend, abstract, aggregate.

Stefan Brass: Datenbanken IIA Universität Halle, 2006

9. More Design Techniques 9-15

Inside-Out Strategy

• The inside-out strategy uses only the bottom-up primitives.

• It first produces a core schema for the most important or

most evident concepts,

• and then moves outward by attaching more and more

entities to the current schema.

So one first adds the entity types that are conceptually

close to the entities one already has.

Stefan Brass: Datenbanken IIA Universität Halle, 2006

9. More Design Techniques 9-16

Mixed Strategy

• The mixed strategy partitions the requirements into subsets,

which are separately considered.

• It produces first a skeleton schema (bottom-up).

• Each entity in the skeleton schema can then be separately

refined.

• The resulting schemas can then be integrated based on the

skeleton schema.

This may require a refinement of the relationships, too.

• In this way, we get an overview schema (the skeleton

schema) and detailed schemas for different “modules”.

Stefan Brass: Datenbanken IIA Universität Halle, 2006

9. More Design Techniques 9-17

Overview

1. Development of ER-Schemas

2. Information Gathering

�
�

�
�

3. View Integration

4. Generic/Data-Driven Solutions

Stefan Brass: Datenbanken IIA Universität Halle, 2006

9. More Design Techniques 9-18

Sources for Information

• Interviews

• Analysis of existing forms

Filled out forms are more useful than empty ones.

• Analysis of reports which should be generated out of the DB.

• Analysis of existing files

• Analysis of existing manuals, descriptions, documentations

(e.g. information for new employees, business reports).

• Partial reuse of published solutions (“reference models”).

• Utilization of experiences of other companies.

• Standard-Software like SAP/R3 also comes with a DB

schema.

Stefan Brass: Datenbanken IIA Universität Halle, 2006

9. More Design Techniques 9-19

Interviews (1)

Problems:

• You need to know the application domain (or learn about it).

• Your interview partners (experts of the application domain)

might use technical terms which you do not know (yet).

• Some things might be so trivial or obvious for the

application experts that they do not tell you about them.

But they might not at all be obvious for you.

• The interview partners will tell you about the normal way

things are done, but you need to know all exceptions.

Ask specifically for exceptional/extremal situations.

• Sometimes it might be possible to do things differently than

they are currently done.

Stefan Brass: Datenbanken IIA Universität Halle, 2006

9. More Design Techniques 9-20

Interviews (2)

Questions:

• Fishing: “Tell us something about instructors.”

• Number: “How many instructors can teach a course?”

• Connections: “Do books have something to do with courses?”

• Without Questions: “Can somebody write an exam without

being registered for the course?”

• Wandering: “What else is connected with a course?”

• Points of View: “What do your students think about this?”

• Active listening: Repeat what you understood with your own

words and ask whether you understood it correctly.

[List modelled after Table 6.2-2 in Rauh/Stickel, 1997.]

Stefan Brass: Datenbanken IIA Universität Halle, 2006

9. More Design Techniques 9-21

Interviews (3)

More Advice:

• Taping the interview would be useful, but not all people feel

comfortable with this.

You may need an assistant for note taking. Look at the

notes soon when everything is still fresh in your mind.

• Ask about any documents, forms, copies of example data

etc. you may collect. Go over example scenarios.

• There should be a short presentation (briefing) before the

interview to increase the interest and remove fears.

• Barker [1990] distinguishes in-depth interviews (2–4 hours)

and directional interviews (0.5–1 h, e.g. for management).

Stefan Brass: Datenbanken IIA Universität Halle, 2006

9. More Design Techniques 9-22

Interviews (4)

• Interviews take a lot of time. You should carefully select the

interview partners (minimum number of people who together

know all what is done now and needs to be done in future).

Make sure that the important people feel involved.

• Develop rough ER-diagrams and function hierarchies etc.

immediately after the interview.

• Many questions come up when you try to sort out your ideas

and read the collected material after the interview is done.

It might be necessary to schedule two interviews.

• There should be a feedback session where you present your

integrated understanding to the group of interviewed people.

Stefan Brass: Datenbanken IIA Universität Halle, 2006

9. More Design Techniques 9-23

Overview

1. Development of ER-Schemas

2. Information Gathering

3. View Integration

�
�

�
�

4. Generic/Data-Driven Solutions

Stefan Brass: Datenbanken IIA Universität Halle, 2006

9. More Design Techniques 9-24

View Integration (1)

• Often, it is not possible to create the complete ER-Schema

in one step, because this would be too large.

• Then one first creates small ER-schemas for each application

or user. So one does not start with the conceptual schema

level, but instead with the external views.

• After that, these schemas must be integrated to get the

complete enterprise data model.

• The integration is a labor-intensive and mainly manual task,

but the single views are at least a very useful documentation.

It is also possible to really implement the relational version

of the views later, based on the relational version of the

integrated schema.

Stefan Brass: Datenbanken IIA Universität Halle, 2006

9. More Design Techniques 9-25

View Integration (2)

• In order to integrate schemas, one must find correspondences

between schema elements. There may be conflicts:

– Naming conflicts (synonyms, homonyms),

Synonyms: Two entity types on different schemas denote

the same real-world concept, but have different names.

Homonyms: Two entity types have the same name, but

denote different concepts.

– type conflicts,

The same concept is modelled as an entity on one

schema and as an attribute on the other schema.

– domain conflicts (different data types or units of measure),

– conflicts among constraints (e.g. different keys).

Stefan Brass: Datenbanken IIA Universität Halle, 2006

9. More Design Techniques 9-26

View Integration (3)

• In part, the discovered conflicts will be removed from the

view schemas before the integration itself is done.

E.g. homonyms will later be confusing.

• However, not all conflicts need to be removed: It is only

necessary that one understands which schema elements are

needed in the integrated schema, so that the views can be

defined based on that schema.

• There are different strategies for integration: E.g. one first

takes two schemas that are similar (i.e. describe highly

related / overlapping domains), then one integrates the

result with another highly related schema and so on, until all

schemas are integrated (“binary ladder integration”).

Stefan Brass: Datenbanken IIA Universität Halle, 2006

9. More Design Techniques 9-27

Overview

1. Development of ER-Schemas

2. Information Gathering

3. View Integration

4. Generic/Data-Driven Solutions

�
�

�
�

Stefan Brass: Datenbanken IIA Universität Halle, 2006

9. More Design Techniques 9-28

Changes (1)

• Often the requirements will change. Then it will be

necessary to update the database schema and/or the

application programs.

• “The only programs which are never changed are those

which are not used.”

• “80% of the project cost goes into the maintenance, only

20% in the initial development.”

• “Software ages and becomes unmaintainable after many

programmers have applied patches to it without fully

understanding the architecture/concept of the software.”

Maybe a change would have required to change the basic

architecture of the software which was not done.

Stefan Brass: Datenbanken IIA Universität Halle, 2006

9. More Design Techniques 9-29

Changes (2)

• Personal experiences with the grades DB:

– I forgot the possibility of half points.

– I allowed as grades only “A+, A, A-, B+, B, B-”.

So I forgot “G”. Later another instructor wanted to use

the software for an ungraduate course, where “C”, “D”,

and “F” grades are quite possible.

– I allowed as exercise categories only homeworks, midterm

exam, and final.

This broke when I had two sessions of one course with

two different midterm exams. The statistics needed to

be computed over each exam version.

– I could collect data from only a single course in the DB.

Stefan Brass: Datenbanken IIA Universität Halle, 2006

9. More Design Techniques 9-30

Changes (3)

• First, this is a sign of bad planning/design.

• Already during conceptual design, one should think about

exceptional cases and extensions that may be required in the

near future.

• Anticipated changes can be prepared and made simpler.

• Simple changes require to modify only a single,

easy-to-identify place in the database or the program.

E.g. inserting/deleting/updating a single tuple in the

database, modifying a single constraint, modifying the

value of a single constant in a parameter file for the

application programs. Such anticipated changes such be

documented in the manuals.

Stefan Brass: Datenbanken IIA Universität Halle, 2006

9. More Design Techniques 9-31

Changes (4)

• Even if only an attribute is added to a table, or a data type

of an attribute is modified, this will require to change also

application programs.

• The later a change is done, the more expensive it is.

• E.g. instead of hard-coding possible values in application

programs and constraints, one can use lookup tables which

contain all allowed values (see below).

• Or: Instead of modelling a a few questionaires each as their

own table, you might want to model general questionaires

and put the field names etc. in a table.

• Sometimes the more general solution is actually simpler.

Stefan Brass: Datenbanken IIA Universität Halle, 2006

9. More Design Techniques 9-32

Changes (5)

• However, there are limits:

– If the requirements say that there are no half points, it is

an error if the system allows them.

One could have a parameter that can easily be switched.

– If the schema becomes more complicated by anticipating

possible changes, a cost/benefit analysis must be done.

When the change does not occur, time and money was

wasted. If does occur, money was saved, because

choosing a more general design from the beginning is

much cheaper than doing the change later when data

and application programs already exist.

– Most projects are anyway behind schedule/above budget.

Stefan Brass: Datenbanken IIA Universität Halle, 2006

9. More Design Techniques 9-33

Look-Up Tables (1)

• Values hard-coded as a constraint:

CREATE TABLE STUDENTS(...

GRADE VARCHAR(2)

CHECK(GRADE IN (’A+’,’A’,...))

• Look-up table (referenced with foreign key constraint):

CREATE TABLE STUDENTS(...

GRADE VARCHAR(2)

REFERENCES VALID_GRADES));

CREATE TABLE VALID_GRADES(GRADE VARCHAR(2)

PRIMARY KEY);

INSERT INTO VALID_GRADES VALUES(’A+’);

INSERT INTO VALID_GRADES VALUES(’A’); ...

Stefan Brass: Datenbanken IIA Universität Halle, 2006

9. More Design Techniques 9-34

Look-Up Tables (2)

• It is important that the application programs do not contain

their own checks for valid grades.

E.g. the program for entering grades. It is especially bad if

the check is programmed multiple times in different programs.

• This would be another case of redundant information that

requires changes in several places and can easily lead to

inconsistencies.

• However, depending on the DBMS, the error message

produced by an INSERT command with an invalid grade

might not be helpful to end users.

One should give the constraint a meaningful name.

The DBMS will show the name of the violated constraint.

Stefan Brass: Datenbanken IIA Universität Halle, 2006

9. More Design Techniques 9-35

Look-Up Tables (3)

• A compromise is to do error checking in the program, but to

use the values in VALID_GRADES.

Then one can give a nice error message and still has defined

the valid grades only at a single point (namely in the DB).

• Another solution to the duplication problem is to check for

valid values only in the program, and not in the database.

• This is not a good solution:

– After some time, other programs might be developed that

also allow to enter grades. Then the test will be duplicated.

– Some users might be allowed to access the database

directly via SQL. Then they can enter invalid grades.

Stefan Brass: Datenbanken IIA Universität Halle, 2006

9. More Design Techniques 9-36

Look-Up Tables (4)

• Look-up tables can contain more information besides a list

of valid values. E.g. lookup-table for exercise types:

EX_TYPES

CODE HEADLINE OUTPUT_ORDER

H Homeworks 1

M Midterm Exam 2

F Final Exam 3

• The OUTPUT_ORDER and the HEADLINE are used to print a

report for each student that lists first his/her homework

results, then the results for the midterm exam, etc.

• The CODE is referenced in the EXERCISES table.

Stefan Brass: Datenbanken IIA Universität Halle, 2006

9. More Design Techniques 9-37

Look-Up Tables (5)

• “Look-up tables” are in general tables that do not change

during normal database operations.

Changing them is a bit like changing the DB schema: The

real data changes frequently, the lookup tables very seldom,

and the schema hardly ever.

• Usually, look-up tables are not large.

• Changing look-up tables is easier than changing the

database schema or changing application programs.

Changes in the look-up tables are anticipated.

They are a way to parameterize the program.

• Look-up tables can also contain texts that the program has

to print (in order to make a translation simpler).

Stefan Brass: Datenbanken IIA Universität Halle, 2006

9. More Design Techniques 9-38

Expandable Attribute Sets (1)

• Hard-coded attributes of the students table:

CREATE TABLE STUDENTS(

STUD_ID NUMERIC(4) PRIMARY KEY,

FIRST_NAME VARCHAR(20) NOT NULL,

LAST_NAME VARCHAR(20) NOT NULL,

...)

• There is a lot of information that might be required about

students besides these basic attributes.

E.g. whether this is the last term (so G grades are impossible),

the Oracle account, etc. In my German university, I needed

the date and place of birth for printing them in certificates.

Stefan Brass: Datenbanken IIA Universität Halle, 2006

9. More Design Techniques 9-39

Expandable Attribute Sets (2)

• A solution is to have a table of possible student attributes

and to store the attribute value in a relationship:

STUDENT

STUD_ID
�
 �	@@
FIRST_NAME
�
 �	
LAST_NAME

�
 �	��
�
�

@
@

HAS@
@

�
�

VALUE
�
 �	

STUD_ATTR

NAME
�
 �	

The relationship could also be called “STUD_EXTENSION”,

“ADDITIONAL_STUDENT_DATA”, etc.

Stefan Brass: Datenbanken IIA Universität Halle, 2006

9. More Design Techniques 9-40

Expandable Attribute Sets (3)

• The additional attributes are listed in (a look-up table):

CREATE TABLE STUD_ATTR(

NAME VARCHAR(10) PRIMARY KEY)

• The relationship is translated to:

CREATE TABLE STUD_EXTENSION(

STUD_ID NUMERIC(4)

REFERENCES STUDENTS,

ATTR_NAME VARCHAR(10)

REFERENCES STUD_ATTR,

VALUE VARCHAR(20) NOT NULL,

PRIMARY KEY(STUD_ID, ATTR_NAME))

Stefan Brass: Datenbanken IIA Universität Halle, 2006

9. More Design Techniques 9-41

Expandable Attribute Sets (4)

• In this way, all of the added attributes have the data type

VARCHAR(20) (and all are optional).

• Most data can be stored as strings, but then again checks in

programs are needed to enforce any constraints on the

possible values.

And the goal is to make the program independent of the

attributes. Otherwise this effort would not be needed.

• Of course, one can also also define a schema for additional

attributes that are of enumeration types, with the possible

values for each attribute defined in a table.

One could have three tables, defining string-valued attributes,

numeric attributes, and attributes of enumeration types.

Stefan Brass: Datenbanken IIA Universität Halle, 2006

9. More Design Techniques 9-42

Expandable Attribute Sets (5)

• Note that data-entry forms etc. must be dynamically

created out of the attribute specifications in the database.

This is quite a lot of work. For a normal table with a fixed

set of attributes, tools like Oracle Developer Forms can

automatically create an input form from the table declaration.

• The look-up table defining the attributes will normally also

contain such information as the input field width and a

number for printing the fields in the correct sequence, etc.

• Positive: Changes of the attributes are easy and can even be

done by somebody without access to the source code.

• Positive: If the set of attributes is large, the generic program

might actually be simpler.

Stefan Brass: Datenbanken IIA Universität Halle, 2006

9. More Design Techniques 9-43

Extreme Case

Entity
Type

�
 �	HH
ID

�
 �	��
�
�

@
@
has@

@

�
�

Value
�
 �	

E Attribute

Name
�
 �	�

�
@

@�� @@from
@@ ��@

@
�

�

�
�

@
@�� @@to

@@ ��@
@

�
�

RelationshipType
�
 �	 �

�

@
@
has@

@

�
�

Value
�
 �	

R Attribute

Name
�
 �	

The entity type and the relationship type could also be made entity

types in this meta schema.

Stefan Brass: Datenbanken IIA Universität Halle, 2006

