
6. UML Class Diagrams 6-1

Part 6: UML Class Diagrams

References:
• Grady Booch, James Rumbaugh, Ivar Jacobson:

The Unified Modeling Language User Guide.
Addison Wesley Longman, 1999, ISBN 0-201-57168-4, 482 pages.

• James Rumbaugh, Ivar Jacobson, Grady Booch:
The Unified Modeling Language Reference Manual.
Addison Wesley Longman, 1999, ISBN 0-201-30998-X, 550 pages, CD-ROM.

• Martin Fowler, Kendall Scott: UML Distilled, Second Edition.
Addison-Wesley, 2000, ISBN 0-201-65783-X, 185 pages.

• Terry Quatrani: Visual Modeling with Rational Rose 2000 and UML.
Addison-Wesley, 2000, ISBN 0-201-69961-3, 256 pages.

• Robert J. Muller: Database Design for Smarties — Using UML for Data Modeling.
Morgan Kaufmann, 1999, ISBN 1-55860-515-0, ca. $40.

• Paul Dorsey, Joseph R. Hudicka: Oracle8 Design Using UML Object Modeling.
ORACLE Press, 1998, ISBN 0-07-882474-5, 496 pages, ca. $40.

• OMG’s UML page: [http://www.omg.org/technology/uml/index.htm]

• UML 1.3 Specification: [ftp://ftp.omg.org/pub/docs/formal/00-03-01.ps]
[http://www.omg.org/technology/documents/formal/unified modeling language.htm]

• Rational: Unified Modeling Language Resource Center:
[http://www.rational.com/uml/index.jsp]

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-2

Objectives

After completing this chapter, you should be able to:

• read and write UML class diagrams.

• translate ER-schemas into UML class diagrams and

vice versa.

• translate a UML class diagram into a relational

database schema (as far as possible).

• explain differences between the object-oriented and

the classical relational approach to database design.

Especially with regard to operations and keys. What are the imple-
mentation options for operations in a RDBMS?

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-3

Overview

1. History and Importance of UML

'

&

$

%
2. Classes, Attributes

3. Associations

4. Operations

5. Generalization

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-4

What is UML? (1)

• “ The Unified Modeling Language (UML) is a

general-purpose visual modeling language that is

used to specify, visualize, construct, and document

the artifacts of a software system. It captures deci-

sions and understanding about systems that must

be constructed.”

[Rumbaugh et.al., The UML Reference Manual, 1999]

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-5

What is UML? (2)

• The UML gives you a standard way to write a sy-

stem’s blueprints, covering conceptual things, such

as business processes and system functions, as well

as concrete things, such as classes written in a

specific programming language, database schemas,

and reusable software components.”

[Booch et.al., The UML User Guide, 1999]

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-6

What is UML? (3)

• “The UML, in its current state, defines a notation

and a meta-model. The notation is the graphical

stuff you see in models; it is the syntax of the mo-

deling language.”

[Fowler/Scott, UML Distilled, Second Edition, 2000]

• “The UML is a modeling language, not a method.

The UML has no notion of a process, which is an

important part of a method.”

[Fowler/Scott, UML Distilled, Second Edition, 2000]

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-7

History of UML (1)

Object-Oriented Programming Languages:

• Simula-67 (1965–1970) is generally called the first

object-oriented language.

Simula was developed by Nygaad and Dahl at the Norwegian Compu-
ting Center.

• Smalltalk is the classical object-oriented program-

ming language. It was developed at XEROX PARC

in the 1970s and became widespread in the 1980s.

The first version was developed by Alan Kay and others in 1972. The
book “Smalltalk-80: The Language and Its Implementation” by Adele
Goldberg and David Robson appeared 1983.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-8

History of UML (2)

Object-Oriented Programming Languages, Continued:

• C++ was introduced in 1984, but further develo-

ped during the 1980s and 1990s.

In 1979–1980 Bjarne Stroustrup developed “C with Classes” at the
Computer Science Research Center of Bell Laboritories in Murray Hill.
During 1982–1984 it was redesigned and called C++, 1986 appea-
red the book “The C++ Programming Language”. However, many
features were still added later. The ANSI/ISO C++ standardization
started in 1989 and the standard was finally approved in 1999.

• Eiffel: Developed 1985–1986, the book by Bertrand

Meyer appeared 1988. ‘Design by Contract”.

• Java: Introduced in 1995 (by SUN Microsystems).

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-9

History of UML (3)

Development Methods for Traditional Languages:

• E.g. Structured Analysis and Structured Design, a

development method for traditional programming

languages, was published by Edward Yourdon and

Larry L. Constantine in 1979.

• Development methods became widespread in the

1980s.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-10

History of UML (4)

Object-Oriented Design Methods / Influential Books:

• Shlaer/Mellor (1988/1989)

• CRC: Wirfs-Brock/Wilkerson/Wiener (1990/91).

• Coad/Yourdon (1991)

• Booch [Rational Software Corporation] (1991)

• OMT: Rumbaugh/Blaha/Premerlani/Eddy/

Lorensen (1991).

• Martin/Odell (1992).

• OOSE: Jakobson et.al. [Objectory] (1992).

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-11

History of UML (5)

• “The number of object-oriented methods increased

from fewer than 10 to more than 50 during the

period between 1989 and 1994.”

[Booch et.al., The UML User Guide, 1999]

• “. . . in 1994, the methods scene was pretty split

and competitive. Each of the aforementioned aut-

hors was now informally leading a group of practi-

tioners who liked his ideas.”

[Fowler/Scott, UML Distilled, Second Edition, 2000]

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-12

History of UML (6)

• All methods/design languages were relatively simi-

lar, but each had strengths and weaknesses.

• In addition, similar things were often expressed in

different notation.

• In October 1994, James Rumbaugh joined Grady

Booch at Rational. Their goal was to unify the

Booch and OMT methods.

“Grady and Jim proclaimed that ‘the methods war is over — we won,’
basically declaring that they were going to achieve standardization the
Microsoft way.” [Fowler/Scott, UML Distilled, Second Edition, 2000]

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-13

History of UML (7)

• In October 1995, the version 0.8 draft of the “Uni-

fied Method” was released.

• In Fall 1995, Rational bought Objectory and Ivar

Jacobson joined the team working on UML.

• In June 1996, UML version 0.9 was published.

• In 1996, the Object Management Group (OMG)

issued a request for a standard object-oriented mo-

deling language.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-14

History of UML (8)

• Rational formed a UML consortium (including, e.g.,

DEC, HP, IBM, Microsoft, Oracle, TI) that deve-

loped UML 1.0, offered for standardization to the

OMG in January 1997.

• Until July/September 1997, most of the proposals

for the OMG call were merged in the UML 1.1.

• UML 1.1 was adoped by the OMG on November

14, 1997.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-15

History of UML (9)

• An OMG Revision Task Force (RTF) continues to

work on the UML. UML 1.3 was formally published

in March 2000.

• UML 1.5 was published in March 2003.

• UML 2.0 (superstructure) specification was accep-

ted by the OMG meeting in June 2003. However,

the finalization process is not yet finished.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-16

Some Critical Remarks (1)

• It is visible in the UML that it is a monster language

designed by a committee.
It seems that everything is in what one committee member wanted
in, so it is a very large language. Programming languages like PL/1
and Ada basically failed because of this.

• At least in the beginning, UML was not precisely

defined.
In some questions, the UML User Guide and the UML Reference Ma-
nual (both 1999, both from the “three amigos”) directly contradict
each other. Other important questions about the exact meaning of
certain constructs are simply not answered. Some software engineers
think that UML is an acronym for “The Undefined Modeling Langua-
ge”.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-17

Some Critical Remarks (2)

• “UML is far from being new. With respect to syntax

it just reinvents many . . . concepts and introduces

new names for them. With respect to semantics it

does not present precise semantic definitions. If the-

se were added, the limitations of the expressiveness

of the UML [would] become apparent.”

[Klaus-Dieter Schewe: UML: A Modern Dinosaur? — A Critical Analy-
sis of the Unified Modeling Language. Proc. 10th European-Japanese
Conference on Information Modelling and Knowledge Bases, 2000]
See also [http://www.dbdebunk.com/page/page/622530.htm].

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-18

Future (1)

• After the past experience and all this work on stan-

dardization, nobody seems to want another “me-

thods war”. At least not only about notation.

• In addition, UML has several extension mechanisms

that allow to introduce new concepts in the nota-

tion.

• So it seems that UML is the future and all the

direct successors to it (like OMT) are dead.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-19

Future (2)

• ER-Diagrams are no direct successor to UML, and

the DB community is relatively distinct from the

OO design community.

Already object-oriented databases did not have the commercial impact
that was expected and several OODBMS vendors moved to different
fields.

• If you start today a large software project without

using an object-oriented language and UML, people

find you strange. If you use an RDBMS and ER-

diagrams, this is still acceptable.

Advantage of UML: One language for software and DB.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-20

Future (3)

• Some DB Design tools (e.g. Power Designer) intro-

duce support for UML, but they continue to support

ER-diagrams.
And probably for quite some time. The support for ER-diagrams might
still be better than that for UML. Oracle added UML to Oracle De-
signer (in a separate program: ODD) and removed it again.

• “Conceptually, an object does not need a key or

other mechanism to identify itself, and such me-

chanisms should not be included in models.”
[UML Reference Manual, p. 294]

• But keys are important in DB design.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-21

Overview

1. History and Importance of UML

2. Classes, Attributes

'

&

$

%
3. Associations

4. Operations

5. Generalization

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-22

Classes (1)

• “Classes are the most important building block of

any object-oriented system.”

• “A class is a set of objects that share the same at-

tributes, operations, relationships, and semantics”.

• “You use classes to capture the vocabulary of the

system you are developing.”
All three cited from the UML User Guide [Booch et al, 1999].

• So a class is similar to an entity type, only opera-

tions are added.
The meaning of operations for databases is discussed below.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-23

Classes (2)

• One can use class diagrams in UML simply like a

different syntax for ER-diagrams.

• However, the UML can be used to model the entire

database application system.

I.e. not only the database design, but also the software.

• So classes describe not necessarily persistent ob-

jects that might ultimately be stored as rows in a

relational table.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-24

Classes (3)

• UML classes can also describe transient objects,

e.g. C++ or Java objects that exist only for the

duration of a program execution.

Actually, the mapping to an object-oriented programming language
or an OODB is more direct than to a relational database. But in this
course, our intention is mainly to translate a UML class diagram into
a relational DB schema.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-25

Classes (4)

• A class is symbolized by a rectangle with normally

three “compartments” (sections) that contain the

class name, the attributes, and the operations:

Student

firstName: String
lastName: String
email[0..1]: String
encryptedPW: String

totalPoints(): Integer
setPassword(pw: String)
checkPW(pw: String): Boolean

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-26

Classes (5)

• Either or both of the middle and bottom compart-

ment may be suppressed, i.e. it is possible to show

only attributes, only operations, or none of the two.

Operations always have a parameter list (which may be empty), so if
the rectangle has only two compartments, one can tell from the ()

whether operations or attributes are shown.

Student

firstName: String
lastName: String
email[0..1]: String
encryptedPW: String

Exercise

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-27

Classes (6)

• One often sees empty compartments, e.g.

Exercise

no: Integer
maxPoints: Integer

• This means that the class has no operations.
Unless some kind of filtering is in effect, e.g. only public operations
(see below) are shown.

• But some authors are so used to the three com-

partments that they still show the delimiting lines

even if they do not show attributes or operations.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-28

Classes (7)

Style guidelines (suggestions by the UML designers):

• One normally uses a noun or noun phrase (singular

form) as class names.

Class names should begin with an uppercase letter. One capitalizes
the first letter of every word. The class name is printed centered and
in boldface. Abstract classes (see next slide) are shown in italics.

• Attribute names are normally nouns/noun phrases.

• Operation names are usually verbs/verb phrases.

Attribute and operation names start with a lowercase letter, but have
the first letter of every following word capitalized. They are shown in
normal font and left justified.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-29

Classes (8)

• Abstract classes cannot have any direct instances

(i.e. objects of that class cannot exist).

Abstract classes can be useful to define a common interface, subclas-
ses of this class can have instances.

• One can also define a multiplicity of a class, i.e. the

number of instances (objects) of that class. It is

written in the upper-right corner of the class rec-

tangle:

SymbolTable
1

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-30

Extension Mechanisms (1)

• Besides the three predefined compartments (class

name, attributes, operations), a class rectangle can

have further user-defined named compartments.
One application in the database context would be a compartment for
triggers.

• One such user-defined compartment is already de-

fined in the UML specification: Responsibilities.

• Responsibilities explain the purpose of a class on a

higher level than attributes and operations.
“A responsibility is a contract or an obligation of a class.” [UML User
Guide, p. 53]

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-31

Extension Mechanisms (2)

• The responsibility compartment contains free text.

The responsibilities are usually written as itemized list. If a class has
more than five responsibilities, it is probably too complicated.

HomeworkResults

Responsibilities

-- Maintain the information
about submitted homeworks

-- Compute total points
for each student

-- Check missing submissions

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-32

Extension Mechanisms (3)

• Stereotypes modify/redefine the semantics of exi-

sting UML constructs.

So in effect one can add new constructs to the UML. Stereotypes
correspond to creating a new subclass in the UML meta model.

• For instance, one can use the normal class notation,

but add the stereotype “utility”. This means that

� the attributes of the class are global variables,

� the operations are global functions.

In this way, existing non-object-oriented library mo-

dules can be included.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-33

Extension Mechanisms (4)

• The four standard stereotypes for classes are:

� metaclass

� powertype

� stereotype

� utility

• In addition, the following standard steoreotypes or

keywords apply to classes (continued on next slide):

� interface

� type

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-34

Extension Mechanisms (5)

• Standard stereotypes or keywords, continued:

� implementationClass

� actor

� exception

� signal

� process

� thread

• However, the power of stereotypes is that the UML

user can introduce new ones.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-35

Extension Mechanisms (6)

• Steoreotypes are enclosed in 〈〈 and 〉〉 and are written

in front of (or above) the declaration of the element

that is modified:

〈〈utility〉〉

MathLibrary

sin (x: Float): Float
cos(x: Float): Float

• Instead of explicitly showing the stereotype name,

one can also define new icons for the modified con-

structs.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-36

Extension Mechanisms (7)

• Every element in a specification (e.g. a class, an

attribute) has certain properties.

• The set of these properties is user-extensible.

Whereas stereotypes correspond to adding a subclass to the meta-
model of UML, such “tagged values” in effect add an attribute.

• Additional properties are shown in a property list/as

tagged values behind or below the element decla-

ration enclosed in { and }.

Student
{author=sb, version=1.0}

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-37

Extension Mechanisms (8)

• The standard tagged values for classes are

� documentation (any text),

� location (e.g. client or server),

� persistence, and

� semantics.

• If needed, one can mark database classes with

{persistence=persistent} or just {persistent}

and program classes with

{persistence=transient} or just {transient}.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-38

Extension Mechanisms (9)

• As already shown in the example, if a property is

of an enumerated type and an enumeration value

implies a unique property name, if suffices to put

that value in the property list.

• Of course, {persistent} and {transient} should on-

ly be used if the same diagram shows both kinds of

classes. Otherwise it would overload the diagram.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-39

Attributes (1)

• “An attribute represents some property of the thing

you are modeling that is shared by all objects of that

class.”

[Booch et.al.: UML User Guide, 1999, p. 50]

• “An attribute is the description of a named slot of

a specified type in a class, each object of the class

separately holds a value of the type.”

[Rumbaugh et.al.: UML Reference Manual, 1999, p. 166]

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-40

Attributes (2)

Attribute Scope:

• Attributes can have

� class scope (class attributes, static members), or

� instance scope (normal attributes).

• Attributes of class scope have only one value for

the entire class (even if the class has no objects).

Attributes of instance scope have one value for each object/instance
of the class.

• Attributes of class scope are marked by underlining.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-41

Attributes (3)

Attribute Visibility:

• Attribute visibility defines which classes can directly

access the attribute (in their operations).

• There are three options:

� public (+): The attribute is visible to any class

that can see the class containing the attribute.

� package (~): Visible to all classes of the package.

� protected (#): Visible to the class itself and its

subclasses.

� private (-): Visible only to the class itself.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-42

Attributes (4)

Multiple-Valued Attributes:

• UML permits multiple-valued attributes, i.e. sets or

arrays. Example multiplicity specifications are:

� [0..1]: Zero or one values.
This corresponds to an attribute that can be null.

� [1..*]: A set with at least one element.
There is no upper bound on the number of elements. When trans-
lating a class with such an attribute into relations, one would
create an extra table for this attribute. Exercise: Consider a class
for web pages, where each web page has an URL, a title, and a
set of keywords/search terms. Model this in UML and in the RM.

� [3 ordered]: An array with three elements.
The default is “unordered”, i.e. a set.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-43

Attributes (5)

Attribute Declaration:

• A full attribute declaration consists of:

� Visibility: +, ~, #, - (see above).

� The name of the attribute.

� The multiplicity (array/set), e.g. [0..1], [3].

� A colon “:” and the type of the attribute.

� An equals sign “=” and the initial value of the

attribute.

• Of this, everything except the name is optional.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-44

Attributes (6)

• Example:

+ProgramOfStudy [0..2]: String = "MIS"

• In addition, the standard UML extension mecha-

nisms apply:

� In front of an attribute declaration, a stereotype

can be specified (enclosed in 〈〈 and 〉〉).

� After the attribute declaration, a property string

(enclosed in { and }) can be added.
In the property string, one can specify, e.g., the following values:
changeable (the default), frozen (cannot be changed after object
is initialized), addOnly (for attributes with multiplicity > 1).

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-45

Constraints (1)

• “With constraints, you can add new semantics or

change existing rules.”
[Booch et.al.: The UML User Guide, 1999, page 82]

• This is not quite the usual notion of a constraint: In

databases, a constraint can only restrict DB states.
This shows again that database people and UML people do not speak
the same language. To be fair, the UML reference manual states “A
constraint is a semantic condition or restriction expressed as a liguistic
statement in some textual language.” [Rumbaugh et.al.: The UML
Reference Manual, 1999, page 235]

• Constraints are one of the three UML extension

mechanisms (besides stereotypes, tagged values).

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-46

Constraints (2)

• Constraints are enclosed in { and } and written near

to the element to which they apply.
A constraint can be connected with dashed lines to the diagram ele-
ments to which it applies (if it is not clear from its position). It can
be written into a note box, or simply on the diagram background.

• Constraints can be written

� as free-form text,

� in a formal logical language, especially OCL:

UML’s Object Constraint Language,

� in a programming language.

� as predefined name/abbreviation.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-47

Constraints (3)

• Example (Restriction of an attribute):

Exercise

No: Integer
Points: Integer {value ≥ 0}
Headline: String

• If a constraint appears as an item of its own in the

attribute list, it applies to all following attributes

until it is explicitly cancelled.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-48

Constraints (4)

• Example (using OCL for a relationship):

Person

Gender: {female, male} 0. .1
wife

0. .1
husband

{self.wife.gender = female and
self.husband.gender = male}

[Booch et al., UML User Guide, 1999, p. 82]

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-49

Derived Attributes (1)

• Attributes are derived if can be computed from

other attributes.

The derivation formula can be shown as a constraint.

• Derived attributes should normally not be stored in

the database, because they are redundant.

Therefore, they seldom appear in conceptual database schemas (they
do not give any additional information). However, if they are important
concepts in the application domain, they can be included if they are
explicitly marked as “derived”. Then they will typically be translated
into a view, not into a stored column. There is no real difference
between a derived attribute and a query operation.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-50

Derived Attributes (2)

• Derived attributes are marked by putting a slash

“/” in front of their name:

Person

firstName: String
lastName: String
birthdate: Date
/age: Integer

• Also other model elements can be derived. They

are marked in the same way.
E.g. relationships (called “associations” in UML, see below) might be
computable from other relationships and/or attributes.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-51

Keys

• UML has no built-in notion of keys.

The idea is that objects automatically have an object identity, i.e. a
surrogate key (an automatically generated number). However, at least
externally objects must be identified in user input. Internal num-
bers/addresses are difficult for this purpose.

• One can extend UML in order to add keys. Several

proposals exist, one is to add “{oid}” (or “{pk}”)

as property list to the primary key attributes.

One would use “{oid1}” (or “{ak1}”) for the attributes of the first
alternative key, and so on. Some proposals also permit to define the
sequence of the attributes in composed keys.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-52

Specification of Data Types

〈〈datatype〉〉

Short
{values range
from −32768
to +32767}

〈〈enumeration〉〉

Boolean

false
true

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-53

Annotations/Comments

• A note can contain a comment, a constraint, or a

method.

• It is shown in a dog-eared rectangle with its upper-

right corner bent over:

Exercise

no
headline
points

@
@Exercise from

Homework,
Midterm
or Final Exam.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-54

Overview

1. History and Importance of UML

2. Classes, Attributes

3. Associations

'

&

$

%
4. Operations

5. Generalization

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-55

Associations (1)

• Relationships are called “associations” in UML:

Exercise
0..∗

BelongsTo
Chapter

1..1

• Note that the cardinalities are written on the op-

posite side of the standard (min,max)-cardinalities:

� Each exercise belongs to exactly one chapter.

� A chapter can contain any number of exercises.

• Cardinalities are called multiplicities in UML.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-56

Associations (2)

• Of course, in a relational database, associations are

implemented as usual:

� For a one-to-many relationship, one adds the key

of the “one” side (Chapter) as a foreign key to

the “many” side (Exercise).

� For a many-to-many relationship, one constructs

an “intersection table”.

• But in order to understand UML better, it is also

important to look at the implementation in object-

oriented programming languages or databases.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-57

Associations (3)

• In OODBs, associations are usually implemented

by pointers that are the inverse of each other:

class Chapter (extent chapters)
{ attribute unsigned short number;

attribute string title;
relationship set<Exercise> contains

inverse Exercise::belongs to;
};
class Exercise (extent exercises)
{ . . . ;

relationship Chapter belongs to
inverse Chapter::contains;

};

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-58

Associations (4)

• The example above is in the ODMG ODL.
The Object Data Management Group has defined a standard for
object-oriented database systems. The Object Definition Language
is used for defining database schemas.

• In order to traverse the relationship efficiently in

both directions, pointers are needed in both parti-

cipating classes.

• If the system knows the inverse relationship, it can

ensure the consistency.
In particular, when an object is deleted, dangling pointers can be
avoided, since the system knows which other objects contain pointers
to the deleted object.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-59

Multiplicity (1)

• A multiplicity specification consists of a comma-

separated list of intervals, e.g. 0..2,5..6 means that

the following numbers are possible: 0,1,2,5,6.

• An interval consisting only of a single number can

be denoted by that number, e.g. 1 is an abbreviation

for the interval 1..1.

• “*” denotes an unbounded number, e.g. 0..* is the

most general interval (any number).

• 0..* can be shortend to *.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-60

Multiplicity (2)

• The multiplicity specification near an entity type E1

counts how many entities of this type can be related

to a single entity of the other type E1.

The other notation counts the number of outgoing edges from a
single entity of type E1.

• The advantage of the UML notation is that the

multiplicities for one-to-many relationships are as

expected: 1 (or 0..1) on the “one” side and * (or

1..*) on the “many” side.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-61

Multiplicity (3)

• The disadvantage of this notation is that if “inter-

section entities” are introduced for many-to-many

relationships, multiplicities must be moved around:

Student
Solved∗ ∗

Exercise

Student
1 ∗

Solution
∗ 1

Exercise

• With the standard (min,max)-notation this does

not happen.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-62

Multiplicity (4)

• Another disadvantage is that if associations are im-

plemented by pointers (as usual in object-oriented

languages), the multiplicity is on the opposite side:

Exercise ∗
BelongsTo

1
Chapter

• Here, each Exercise object contains a single pointer

to a Chapter object.

• But each Chapter object contains a set of pointers

to Exercise objects (if this direction is supported).

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-63

Reading Direction

• One can use the symbol “I” to make the direction

of the name clear (this is optional):

Exercise
1..∗

BelongsTo I

1
Chapter

• Also J N H can be used:

Exercise
1..∗

J Contains

1
Chapter

• Of course, it is best to choose names that read

from left to right and from top to bottom.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-64

Role Names (1)

• Instead of or in addition to association names, one

can also use role names:

Person
0..∗
Employee

WorksFor
Company

0..1

Employer

• Here the person has the role of an employee in the

association, and the company has the role of an

employer.

• In other associations, objects of the two classes can

play different roles (e.g., customer and contractor).

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-65

Role Names (2)

• The role names on the opposite site can often be

used as attribute names for the pointers or foreign

keys.

Person
0..∗
Employee

Company
0..1

Employer

• In the example, “PERSONS” would have a foreign key

(or pointer attribute) called “EMPLOYER”.

It can contain 0 or 1 key values (pointers/addresses) of companies.
In relational databases, this means that the attribute can be null.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-66

Role Names (3)

• If necessary, the “Company” class would have an

attribute “Employees” that is a set of pointers to

“Person” objects.

Person
0..∗
Employee

Company
0..1

Employer

• Of course, in relational databases this is not neces-

sary because with the foreign key on the “Person”

side, the join can also find employees for a given

company.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-67

Role Names (4)

• Often, the class name itself can be used as role

names. Then it is not necessary to add an explicit

role name (actually, it is difficult to invent one).

Exercise
1..∗
[Exercise]

1

[Chapter]
Chapter

• Then the table/class “Exercises” would have a for-

eign key/pointer attribute “Chapter”.

• Conversely, the class “Chapter” might have a set-

valued attribute “Exercises”.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-68

Role Names (5)

• The names used in Oracle Designer on both ends

of the relationship are not role names in the sense

of UML:

Exercise
Wrong!1..∗

BelongsTo

1

Contains
Chapter

• UML tools would add a foreign key/pointer attri-

bute “Contains” to the table/class “Exercises”.
I.e. just the wrong way around.

• The names in Oracle Designer are really association

names for both directions, not role names.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-69

Uniqueness of Names

• Names of classes and associations must be unique.
It is not even allowed to have an association and a class with the
same name (since there are association classes, see below). UML has
packages, and the uniqueness is only required within each package.

• Role names (labels of association ends) must be

unique within the association (each end must have

a different name) and within the connected class.
A role may not have the same name as an attribute (since associations
are typically implemented by pointer attributes).

• If there is only one connection between the two

classes, it is possible to have neither association

name nor role names.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-70

Navigability (1)

• In UML, it is possible to specify that an association

will be traversed only in one direction:

Exercise
1..∗

BelongsTo

1
HHH
��� Chapter

• Then Exercise objects would contain a pointer to

the Chapter to which they belong, but there would

be no inverse pointer.

Even with the pointer implementation it might be possible to find
exercises for one chapter (e.g. if there is a linked list of all exercise
objects in the system). So the arrow only specifies in which direction
an efficient traversal is possible.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-71

Navigability (2)

• Without inverse pointers, it might be difficult to

ensure that when a Chapter object is deleted, the

corresponding Exercise objects are deleted, too.

An important reason for having pointers in both directions is to avoid
dangling pointers. OODBMS can do this automatically.

• For a relational databases, the navigability specifi-

cation is not important: Joins are always both ways.

• But for programs written e.g. in C++, one seldom

has pointers in both directions, thus there the arrow

will be often used.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-72

Visibility (1)

• Since relationships are implemented by attributes

or operations, it possible to specify a visibility at

the association ends:

User
1

+ owner

∗
− key

Password

[Example from Booch et.al: UML User Guide, 1999, p. 145]

• This means that everybody who has access to a

Password object, can navigate from there to the

corresponding User.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-73

Visibility (2)

• However, only operations of the User class can fol-

low the link to the passwords.

• Thus the visibility is denoted at the opposite end

of the association (the end to which one wants to

navigate).

This is natural, since the role name and the multiplicity on the op-
posite end of the assocation determine the pointer attribute for this
class.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-74

Collection-Type (1)

• Consider again the relationship between chapters

and exercises:

Chapter
1 Contains I ∗

Exercise

• As explained above, in an OODB, the class “Chap-

ter” will contain a set-valued attribute with pointers

to “Exercise” objects.

• If one iterates over the elements of this set, they

are returned in no specific order.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-75

Collection-Type (2)

• However, one can specify in UML that the order of

exercises in a chapter is significant:

Chapter
1 Contains I ∗

{ordered}
Exercise

• Then not a set, but a list will be used to hold the

pointers to exercises (but duplicates are still not

allowed).

• “{ordered}” can also be used on one or both sides

of a many-to-many relationship.
Only for multiplicities 0..1 and 1 it makes no sense.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-76

Collection-Type (3)

• In the ODMG proposal, set, list, or bag can be

used in relationships:

class Chapter (extent chapters)
{ . . . ;

relationship list<Exercise> contains
inverse Exercise::belongs to;

};

• However, one must exclude duplicates from the list.

An “ordered set” as in UML is not quite the same as a list.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-77

Collection-Type (4)

• In a relational implementation, one would add a

number to the exercises table (exercise number wi-

thin chapter) in addition to a foreign key referen-

cing the chapter.

EXERCISES(ID, ..., CHAPTER→CHAPTERS, SORT_NO)

• CHAPTER and SORT_NO together are an alternative key

for EXERCISES.

This ensures that there is really a defined sequence for the exercises
within one chapter.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-78

Collection-Type (5)

• Note that “{ordered}” means that additional infor-

mation needs to be stored besides the set of links

between objects.

• If the exercise objects already contain an exerci-

se number, so that the order can be derived from

this information, “{ordered}” would not be correct

(redundant information).

One can use “{sorted}” to indicate that for a more efficient implemen-
tation, it would be good to store the links sorted by some criterion,
e.g. the exercise number.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-79

Exercise

• Consider the following class diagram:

Autor

FirstName
LastName
EMail

1..*

Wrote I

∗

Book

Title
Publisher
ISBN

• If a book has several authors, their sequence is im-

portant (it is not always the alphabetical sequence).

How would you specify that?

• Translate this diagram into the relational model.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-80

Qualifiers (1)

• If each exercise has a unique number within a chap-

ter, this can be expressed by means of a “qualifier”:

Chapter no: Integer
1 0..1

Exercise

• Chapter objects now basically contain an array of

links to Exercise objects.

• The array is indexed by a number, and returns 0 or

1 exercises for a given number.
A normal association would map “Chapter” objects into sets of “Exer-
cise” objects. Now a “Chapter” object and a value for the qualifier
“no” are mapped into at most one “Exercise” object.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-81

Qualifiers (2)

• More general, the qualifier can be of any data type,

e.g. also a string. Then a “dictionary” data struc-

ture would be stored within the Chapter objects,

e.g. a hash table or a search tree.

• Arrays and dictionaries are also collection types.

Qualifiers are strongly related to the use of “{ordered}” etc. to deter-
mine the collection type of the association. An array could be used to
implement an ordered association (at least if the maximum number
of related objects is known), but the qualifier makes clear that the
specific value of the array index is important for the application.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-82

Qualifiers (3)

• A qualifier can also be used when there is more

than one related object for a given qualifier value.
I.e. the qualifier only partitions the set of related objects into subsets.
It could then be represented by an attribute in an association class
(or in the target class), but the qualifier makes clear that some kind
of efficient access should be possible.

• The multiplicity on the opposite association end is

influenced by the qualifier: E.g. 0..1 at the Exercise

end is the number of objects that may be related to

a single Chapter object for a given qualifier value.
So “Chapter” and the qualifier now form some kind of composite
object for the purpose of determining multiplicities.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-83

Qualifiers (4)

• With qualifiers, UML gets something like keys, but

only in the context of a given object.

• The situation is similar to a weak entity, but the

qualifier value (the exercise number) is not part of

the Exercise class.

• If that is required, the exercise number must be

stored redundantly as an attribute of the Exercise

class, and a constraint is needed to enforce the

equality (see next slide).

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-84

Qualifiers (5)

Chapter

no: Integer

1

0..1

Exercise

no: Integer
. . .

{same}

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-85

Qualifiers (6)

• In the UNIX file system, the filename is not part of

the file objects, but appears only in the directory.

This would be a classical example of a qualifier.

The same file may actually appear in different places of the file system
(in different directories or under different names).

Directory

filename:String

*

0..1

File

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-86

Qualifiers (7)

• If one has a globally unique object a qualifier from

there corresponds to a key:

AllCustomers 1

SSN
1

0..1

Customer

If direct access from a customer to his/her social security number is
needed, a duplication of SSN as shown on slide 6-84 is required.

• Does it have to be so complicated?

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-87

Qualifiers (8)

• The “AllCustomers” object is in effect a unique

index that supports the key “SSN” for the class

“Customer”.

• If UML is not extended in order to support keys, one

must show the index explicitly as in this example.

• This is clearly a relapse to pre-relational times.
An index is something big and complicated, so one might argue that
when designing an object-oriented program (e.g., in C++), the index
should be shown explicitly if it is needed. However, when designing a
database, creating an index is easy, and furthermore indexes should
not be part of the conceptual design. By the way, the ODMG model
has the notion of keys (for extents).

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-88

Constraints (1)

• One can specify that two associations exclude each

other:

Account
���������������������������

XXXXXXXXXXXXXXXXXXXXXXXXXXX

account

personalOwner
Person

Corporation
corporateOwner

account

{xor}

[Rumbaugh et.al.: The UML Reference Manual, 1999, p. 156]
Note that “xor” is not quite right: If the minimum cardinality is 0, it
is possible that an Account has no link at all.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-89

Constraints (2)

• One can specify that an association implies another

one:

Person Committee

1

∗ Member-of

Chair-of ∗

∗
�� AA

{subset}

[Rumbaugh et.al.: The UML Reference Manual, 1999, p. 237]

• As attributes, associations can be marked

� changeable (the default),

� addOnly (links can only be inserted, not deleted)

� frozen (links of an object cannot be changed).

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-90

Composition/Aggregation (1)

• Composite aggregation (or composition) is the re-

lationship between a whole and its parts.
Or really vice versa: parts are aggregated to a whole.

• An association becomes a composition (a form of

aggregation association) by marking the side of the

whole with a black diamond:

Chapter
�1

∗
Exercise

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-91

Composition/Aggregation (2)

• An object can only be part of one composite object

at a time:

� The multiplicity on the side of the composition

must be 1 or 0..1.

� From every class, there can be at most one out-

going composite aggregation relationship.

Actually, there could be more, but they must be linked with a
xor-constraint.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-92

Composition/Aggregation (3)

• On the instance level, composite aggregations may

not be cyclic (an object cannot be part of itself).

• On the class level, recursive composition relation-

ships are allowed: A class has many objects, so an

object of a class may be part of another object of

the same class.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-93

Composition/Aggregation (4)

• The whole is responsible for disposing its parts:

If the whole is deleted, it must delete its parts.

� In relational databases, this means that the for-

eign key is specified with ON DELETE CASCADE.

� In C++, the destructor for the composite object

would call the destructors for its parts.

In C++, there is no automatic garbage collection, so one needs
to think about memory management.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-94

Composition/Aggregation (5)

• It is legal that

� a part is created after the composite or destroyed

before it,

� a part is moved from one composite object to

another,

but this would normally be done by operations of

the composite object (it manages its parts).

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-95

Composition/Aggregation (6)

• Alternative notation: The part class is drawn within

the rectangle for the composite class.

Composition is the relationship between an object and its attributes.
Attribute name: role name of the part.

Chapter

contains: Exercise∗

• If an association is drawn within the boundaries of

the rectangle of the composite class, it can exist

only between parts of the same composite object.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-96

Composition/Aggregation (7)

• UML also has a weak form of aggregation, called

“simple aggregation” or “aggregation”.

• It is denoted by an open diamond:

Chapter

�∗
∗

Exercise

• It has no semantic consequences: An object can be

part of more than one aggregated object.
“Think of it as a modeling placebo” [Rumbaugh cited after Fowler, 1999].

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-97

Association Classes (1)

• If an association has attributes (or operations),

an “association class” must be used:

Student
∗
has solved

∗
solved by

Exercise

Solution

Date
Points

• An association class is shown as a class that is

linked by a dashed line to an association.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-98

Association Classes (2)

• There is exactly one object of the association class

“Solution” for every pair of objects from Student

and Exercise that are linked via the association.

• In UML, there cannot be two links between the

same two objects via the same association.

I.e. associations are sets (as relationships in the ER-model).

• Thus, the above class diagram enforces that the

same student cannot submit two solutions for the

same exercise.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-99

Association Classes (3)

• In this schema, the same student can have two (or

more) solutions for the same exercise:

Student
1 ∗

Solution
∗ 1

Exercise

In the ER-model, “Solution” would be a weak entity with owners
“Student” and “Exercise”. Then the constructed key enforces the
required uniqueness. But in UML, one can specify keys only via user-
defined extensions to the standard UML syntax.

• For one-to-many associations, attributes of the as-

sociation can be added to the class at the “many”

side. An association class is not required.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-100

Non-Binary Associations (1)

• UML is not restricted to binary associations, alt-

hough that is by far the most common case.

• An n-ary association is symbolized by a diamond

with n connections to the participating classes:

Instructor
0..1

CourseAssignment
�

��

Q
QQ

Q
QQ

�
�� 0..3

Course

∗
Term

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-101

Non-Binary Associations (2)

• The multiplicities specify how many objects of that

class can exist for a given combination of objects

from the other classes.

E.g. the same instructor can offer in the same term not more than
three courses. For a given course and a given term, there is at most
one instructor. Zero instructors would mean that this combination of
course and term do not appear in the association. With this ternary
association, it is not possible to store that a course is offered in a
term, but with a yet unknown instructor.

• Navigability, aggregation, and qualifiers are not per-

mitted for non-binary associations.

Their semantics is too complicated.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-102

Non-Binary Associations (3)

• If there is only one instructor per term for a course,

the following model might be better:

Course
∗ ∗

Term

CourseOffering

0..1

∗
Instructor

This permits to store course offerings for which an instructor is not
yet assigned. It does not permit multiple sessions of the same course
in the same term. It does not enforce the maximal teaching load.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-103

Overview

1. History and Importance of UML

2. Classes, Attributes

3. Associations

4. Operations

'

&

$

%
5. Generalization

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-104

Operations (1)

• “An operation is a specification of a transformation

or query that an object may be called to execute.

It has a name and a list of parameters.”

• “A method is a procedure that implements an ope-

ration. It has an algorithm or procedure descripti-

on.” [Rumbaugh et.al.: The UML Reference Manual, 1999, p. 369.]

• UML distinguishes between

� operations (the interface) and

� methods (the implementation).

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-105

Operations (2)

• E.g. if an operation o from the superclass is over-

ridden in the subclass, there is one operation and

two methods.

Most people do not take this distinction very strictly.

• “An operation is the implementation of a service

that can be requested from any object of the class

to affect behavior. In other words, an operation is

an abstraction of something you can do to an object

and that is shared by all objects of that class.”

[Booch et.al.: The UML User Guide, 1999, p. 51.]

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-106

Operations (3)

• UML allows that there are two operations with the

same name, but different lists of parameter types.

This corresponds to the overloading of functions in languages like
C++: The compiler can decide by the types of the arguments in the
function call which function is meant.

• UML is used to specify programs written in C++,

Java etc. Thus, the basic C++ constructs should

be expressible in UML.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-107

Operations (4)

• A full operation declaration consists of:

� Visibility: + (public), # (protected), - (private).
The visibility specification is optional.

� The name of the operation.

� The parameter list, enclosed in “(” and “)”.
The parameters can be suppressed. But even if only the name is
shown, it is usually followed by () to make clear that this is an
operation and not an attribute.

� A colon and the return type.
This is optional. The default is “null” (i.e. no result).
In UML even a list of return types is possible.
Parameter list and return type can only be suppressed together.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-108

Operations (5)

• The parameter list is a comma-separated list of

parameter declarations consisting of

� A direction (optional): in, out, or inout.
The default is in (input parameter, i.e. read-only access).

� Parameter name, colon “:”, and parameter type.

� An equals sign “=” and a default value for the

parameter.
This is optional. If a default value is declared, a call to the ope-
ration does not have to specify a value for the parameter. This
is also a feature of C++: E.g. if a function has two parameters,
but a default value for the second one is declared, it can be called
with one parameter.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-109

Operations (6)

• Example of an operation declaration:

+getTotal(StudID: Integer,

InclExtra: Boolean = true): Float

• In front of an operation declaration, a stereotype

can be specified. It is enclosed in 〈〈. . .〉〉.

A stereotype can even apply to an entire group of operations. In a list
compartment (e.g. attributes, operations), stereotypes can be speci-
fied as list elements by themselves. Then they apply to all following
list entries until the next stereotype that appears as a list element.

• After an operation declaration, a property list can

be specified. It is enclosed in {. . .}.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-110

Operations (7)

• The scope of an operation can be “instance” or

“class”. Operations of class scope are marked by

underlining.

� Operations of instance scope apply to individual

objects, so they have a hidden parameter for an

object of their class.

� Operations of class scope apply to the class as

a whole, not a specific object. Therefore, they

can access only attributes of class scope.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-111

Operations (8)

• An operation may be declared a query operation

(stereotype keyword 〈〈query〉〉). Then this operation

is guaranteed not to modify the state of the object.
It is equivalent to specify the property isQuery=true. The default is
isQuery=false, i.e. the operation can assign values to the attributes
and change associations.

• Operations can be marked as 〈〈constructor〉〉. Such

operations create and initialize instances (objects)

of the class.
They have class scope, but can access the attributes of the newly
created instance. They implicitly return the created instance, but no
return type needs to be specified.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-112

Hiding Attributes (1)

• The main difference between the object-oriented

and the relational approach are the operations.
Of course, generalization and non-atomic attributes are nice object-
oriented features, which relational databases would like to have (this
lead to object-relational DBs). But the cultural clash lies in operations
and identity.

• Usually, all attributes are declared as private and

can only be accessed via operations of the class.
Of course, one can have public attributes in UML and e.g. in C++,
but this is generally considered bad style. E.g. in Smalltalk-80, it was
impossible: “A crucial property of an object is that its private memory
can be manipulated only by its own operations.” [Goldberg/Robson,
1983, p. 6]

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-113

Hiding Attributes (2)

• Classes often have operations get_A and set_A for

many of their attributes A.

This is especially true if the class basically corresponds to a relation.

• The reason why the object-oriented approach di-

stinguishes between private attributes and public

operations is that

� the implementation can be changed

� while the interface is kept stable.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-114

Hiding Attributes (3)

• In relational databases, this corresponds to physical

data independence: E.g. indexes can be changed

while the table structure remains stable.

• In relational databases, the table structure normal-

ly is the interface, it does not need to be hidden

(except for security purposes, but that is a different

issue).

In the ANSI/SPARC architecture, there is a second interface level
that gives logical data independence.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-115

Hiding Attributes (4)

• Complex programs like compilers or DB manage-

ment systems have a relatively small user interface,

but difficult algorithms. Different levels of interfa-

ces (system layers) are needed.

• DB application system have a large user interface

(many screens), but simple algorithms. Thus, a sin-

gle level distinction between interface and imple-

mentation might be enough.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-116

Hiding Attributes (5)

• Basically, somebody who invested money and work

to build a relational database does not understand

why he/she should restrict the access to the data by

permitting only to call query operations, not direct

read access to all attributes.

Having to write program code for queries is a step back from the
declarative language SQL.

• Views usually only extend the interface, but do sel-

dom hide details below them (except for security).

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-117

Implementing Operations (1)

• Of course, query operations that are not simply a

“get attribute”, but compute some derived value,

are interesting for relational databases, too.

• They can normally be mapped into view definitions.

• In order to avoid unnecessary joins, one will often

have one view for a relation that gives access to

all explicitly stored attributes as well as all derived

attributes (query operations).

If, however, a join is necessary for the computation of the result of
the query operation, it might be better to have it in a distinct view.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-118

Implementing Operations (2)

• Query operations with parameters are not in gene-

ral implementable in this way.
If the parameter can take only values that appear in the database
(or else one of a few enumeration constants), the parameter can be
implemented as an attribute of the view. Otherwise, this method does
not work since views must be finite. (Deductive DBs have “binding
restrictions” for this purpose, i.e. values for certain attributes must
be specified.)

• If necessary, operations can be mapped to stored

procedures or procedures in a library for developing

application programs.
This is also necessary if the algorithm cannot be expressed in SQL,
e.g. requires a transitive closure.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-119

Implementing Operations (3)

• For attributes that participate in complex cons-

traints, it is useful to exclude direct write access

via UPDATE, and permit changes only via procedures

(operations of the class).

• Some other attributes should be non-updateable

(E.g. attributes participating in a primary key.)

• So for write accesses, the object-oriented distincti-

on between the internal state (attributes) and the

external interface (operations) might make sense.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-120

Implementing Operations (4)

• The more data structure invariants need to be pro-

tected, the more important it is to exclude direct

attribute modifications.

• Direct updates can be excluded if

� the tables are installed under an account that is

only used by the DBA,

� real users (and programs) log in under a diffe-

rent account and can be granted selective access

rights.

Especially, they get update rights only for certain attributes.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-121

Implementing Operations (5)

• Operations can be implemented as stored proce-

dures on the server, or library procedures that are

linked to client programs.

Library procedures don’t give the access protection.

• Triggers can be used if the operation mainly sets

an attribute, but additional constraints need to be

checked and redundantly stored values (e.g. sums)

must be updated.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-122

Overview

1. History and Importance of UML

2. Classes, Attributes

3. Associations

4. Operations

5. Generalization

'

&

$

%

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-123

Generalization (1)

• “A generalization is a relationship between a ge-

neral thing (called the superclass or parent) and a

more specific kind of thing (called the subclass or

child). Generalization is sometimes called an “is-a-

kind-of” relationship.”

[Booch et.al.: The UML User Guide, 1999, page 64/141]
Generalization: “A taxonomic relationship between a more general
element and a more specific element. The more specific element is
fully consistent with the more general element and contains additional
information.” [Rumbaugh et.al.: UML Reference Man., 1999, p. 287]

• The four kinds of relationships in UML are: Depen-

dency, Association, Generalization, Realization.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-124

Generalization (2)

• Generalization is shown in UML as an arrow (with

a large open triangle at the end) pointing from the

subclass to the superclass (in the “is a” direction):

Person
�

��
A
AA

Student

Person
�

��
A
AA

Student Professor

• If a class has several subclasses, either single arrows

can be used or the combined “tree notation”.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-125

Generalization (3)

• Multiple inheritance is allowed in UML, i.e. a class

can have two or more superclasses:

Student
�

��
A
AA

Employee
�

��
A
AA

GSA

• “Use multiple inheritance carefully. You’ll run in-

to problems if a child has multiple parents whose

structure or behaviour overlap.”
[Booch et.al.: The UML User Guide, 1999, p. 142.]

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-126

Generalization (4)

• Of course, the subclass can be a superclass for

other classes, i.e. there can be a whole hierarchy

of subclass-superclass relationships.

Cycles are forbidden. Generalization is a transitive, anti-symmetric
relationship (partial order, lattice). So transitive edges (directly to
a super-super-class) should semantically change nothing. In practice,
they should be avoided.

• The superclass is also called parent of the subclass,

direct and indirect superclasses its ancestors. Corre-

spondingly, the subclass is called child of the super-

class, direct and indirect subclasses its decendants.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-127

Inheritance (1)

• A Subclass inherits structure and behaviour, i.e. at-

tributes and operations, from its superclass.

• An instance of the subclass can be used in any con-

text where an instance of the superclass is required.

The value of a variable/parameter of type S can actually be an in-
stance of a subclass of S. Liskov substitutability principle.

• If the generalization arrow is marked with the ste-

reotype 〈〈implementation〉〉, the inherited attributes

and operations become private.

This is not a real use of generalization, since the basic substitutability
principle is violated. C++ has such a notion of “private inheritance”.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-128

Inheritance (2)

• In the model/diagrams, only attributes and ope-

rations are shown that are added to the inherited

ones.

It is illegal in UML to redeclare an inherited attribute. An inherited
operation may be redeclared to show overriding.

• In case of multiple inheritance, it is forbidden if

a class inherits the same attribute/operation from

two different classes.

Then it would be unclear which of the two methods for the operation
should be used. Of course, it is legal if the operation is inherited from
a common superclass on two different inheritance paths.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-129

Inheritance (3)

• To override an inherited operation (usually) means

to replace its implementation (method) for objects

of the subclass.

However, complicated techniques for combining the inherited method
with method declared in the subclass have been proposed and UML
does not require the simple replacement semantics (depends on pro-
gramming language).

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-130

Inheritance (4)

• Operations have a property isPolymorphic. If it is

false, the operation cannot be overridden.

The default value is true. In C++, polymorphic operations must be
declared as virtual (called via a pointer in the object: “late binding”).

• A class can have the property leaf, in which case

it is not legal to declare a subclass of it.

In the same way, there is a property root which means that this class
cannot have a superclass. Operations can also be declared as root or
leaf, leaf seems to mean the same as isPolymorphic=false. A poly-
morphic operation may be declared leaf in a descendant class which
means that further down in the hierarchy it cannot be overridden.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-131

Abstract Classes (1)

• An abstract class is a class that cannot have direct

instances, i.e. there can be no objects of this class.

• However, subclasses of the abstract class can have

instances.

Otherwise, the class could only be interesting because of operations
of class scope.

• Abstract classes correspond to total specialization.

• Abstract classes / abstract operations (see below)

are marked by writing their declaration in italics.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-132

Abstract Classes (2)

• Abstract classes can have abstract and concrete

operations:

� For a concrete operation, a method (implemen-

tation) is already specified in the abstract class.

� For an abstract operation, a method must be

specified in each subclass.

Abstract operations must be polymorphic since they can only
be used when the non-existant implementation is overridden (in
C++: pure virtual functions).

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-133

Generalization Constraints (1)

• A generalization can be marked as “{complete}”

which means that all possible subclasses have been

declared and no further subclasses may be added.

A generalization can be marked as complete even if not all subclasses
are shown on the diagram. It suffices that all have been declared in
the model.

• Conversely, it can be marked as “{incomplete}”

which means that more subclasses are known or

expected but have not been declared yet.

Note that this is not the same as total and partial specialization in
the ER-model. E.g. the UML Reference contains incomplete genera-
lization with an abstract superclass (p. 290).

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-134

Generalization Constraints (2)

• It is possible to use an ellipses symbol in a diagram

to mark that there are more subclasses that are not

shown on the diagram (“elided”):

Person
�

��
A
AA

Student Professor · · ·

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-135

Generalization Constraints (3)

• A generalization can be marked as “{disjoint}” or

“{overlapping}”.

• Disjoint means that an object of the superclass can

only have one of the subclasses as type.

• E.g., if “Person” has subclasses “Student” and

“Employee”, and both are declared {disjoint}, it

is impossible to later introduce a class “GSA” that

has both, Student and Employee, as superclasses.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-136

Multiple Classification (1)

• In most programming languages, objects must have

a unique “direct class” (i.e. most specific class).

• It is then automatically an indirect instance of all

ancestors (superclasses etc.) of its direct class.

• UML permits “multiple classification”, i.e. an ob-

ject can be a direct instance of more than one class.

This basically corresponds to multiple inheritance with anonymous
subclasses. E.g. with multiple classification, an object can be at the
same time “Student” and “Employee”, even if no “GSA” class is
explicitly declared. If there are a lot of possible combinations, it would
be too much effort to declare them all explicitly.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-137

Multiple Classification (2)

• Generalization arrows can be marked with “discri-

minators” (names) to show the different dimensi-

ons along which objects can be classified:

Employee
�

��
A
AA

kind

Staff Faculty

�
��

A
AA

insurance

HMO NonHMO

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-138

Multiple Classification (3)

• “All subtypes with the same discriminator are dis-

joint; that is, any instance of the supertype may be

an instance of only one of the subtypes within that

discriminator.” [UML Distilled, 2nd Ed, 2000, p. 83]

• “A parent with multiple discriminators has multi-

ple dimensions, all of which must be specialized to

produce a concrete element. Therefore, children wi-

thin a discriminator group are inherently abstract.

. . . A concrete element requires specializing all the

dimensions simultaneously.” [UML Ref. Man., p. 262/263]

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-139

Multiple Classification (4)

• If no discriminators are specified, all generalizations

with the same parent form one discriminator group.

(Consistent?)

• Discriminators become attributes of the instances.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. UML Class Diagrams 6-140

Dynamic Classification

• Dynamic classification means that an object can

change its class over time.

Most programming languages use static classification: The type of an
object is fixed at runtime.

• This is normally used together with multiple classi-

fication: An object has a static base class and can

gain or lose additional “roles” over time.

Fowler uses the stereotype 〈〈dynamic〉〉 on the generalization relation-
ship. It does not appear in the UML Reference or the User Guide.

The Reference Manual says dynamic or static classification is a se-
mantic variantion point and that either assumption may be used in a
UML model.

Stefan Brass: Datenbanken II Universität Halle, 2003

