
8. Disks and the Buffer Cache 8-1

Part 8: Disks and Caching
References:

• Elmasri/Navathe: Fundamentals of Database Systems, 3rd Edition. Section 5.1–5.4.

• Ramakrishnan/Gehrke: Database Management Systems, 2nd Ed. Section 7.1, 7.2, 7.4.

• Garcia-Molina/Ullman/Widom: Database System Implementation. Chapter 2.

• Härder/Rahm: Datenbanksysteme, Konzepte und Techniken der Implementierung.

• Michael J. Corey, Michael Abbey, Daniel J. Dechichio, Ian Abramson: Oracle8 Tuning.

• Mark Gurry, Peter Corrigan: Oracle Performance Tuning, 2nd Edition (with disk).

• Jim Gray, Andreas Reuter: Transaction Processing: Concepts and Techniques.

• Oracle 8i Designing and Tuning for Performance, Release 2 (8.1.6), Oracle, 1999.

• Transtec Catalogue, Yellow Guide, Chap. 4: Mass Storage. [http://www.transtec.co.uk]
German Version in [http://www.transtec.de].

• Seagate: [http://www.seagate.com/products/discsales/]

• Quantum/Maxtor: [http://www.maxtor.com/Maxtorhome.htm]

• IBM: [http://www.storage.ibm.com/]

• The PC Guide: Hard Disk Performance [http://www.pcguide.com/ref/hdd/perf/index.htm]

• Storage Review: [http://www.storagereview.com], [http://198.76.30.88/jive/sr/]

• Gray/Putzolu: The 5 minute rule for trading memory for disc accesses and the 10 byte
rule for trading memory for CPU time. Proc. of SIGMOD’87, Pages 395–398.

• J.N. Gray, G. Graefe: The Five Minute Rule Ten Years Later, and Other Computer
Storage Rules of Thumb. ACM SIGMOD Record 26:4, 1997. pages 63–68.

• Patterson/Keeton: Hardware Technology Trends and Database Opportunities.
SIGMOD’98. [http://www.cs.berkeley.edu/~pattrsn/talks/sigmod98-keynote-color.pdf]

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-2

Objectives

After completing this chapter, you should be able to:

• explain how disks work (list their main parts).

• evaluate disks, explain performance parameters.

• explain and evaluate different RAID configurations.

• create and use tablespaces in Oracle.

• explain the storage hierarchy and compare the cha-

racteristics of different storage media.

• explain how buffering (caching) works.

• find disk/buffer-related bottlenecks in Oracle.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-3

Overview

1. Disks

'

&

$

%
2. RAID Storage

3. Tablespaces in Oracle

4. Storage Hierarchy, The Buffer Manager

5. Disk/Buffer Performance in Oracle

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-4

Disks (1)

• A disk consists of a stack of circular plates (“plat-

ters”) each coated on one or both sides with ma-

gnetic recording material.

ST318405LW (Seagate Cheetah 36XL, 18.4 GB, $260):
2 platters of 3.5inch diameter, coated on both sides.
This SCSI disk was current in 2001. I apologize for not updating the
slides with a new disk.

• The platters are mounted to a rotating spindle.

ST318405: platters rotate with 10000 rpm(revolutions/min).
Other speeds are e.g. 3600, 5400, 7200, and 15000 rpm.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-5

Disks (2)

• There is one read-write head for each magnetic sur-

face, flying on an air cushion e.g. 3 microns above

the surface.

E.g. the ST318405 has 4 heads. Micron = 10−6 inch.

• The heads are mounted to an arm-assembly that

looks like a comb and can move in and out.

Only all heads together can be moved. Only one head can read or
write at the same time.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-6

Disks (3)

• The data is written on each surface in the form of

concentric circles called tracks.
ST318405: 19036 tracks per surface, 76144 in total.
The track density is 24406 tracks/inch (TPI).

• The tracks with the same distance from the center

on all surfaces together are called a cylinder.

• Each track is devided into sectors: This is the smal-

lest unit of information that can be read/written.
Sectors are small arcs of the circle. They often consist of 512 Bytes.
Modern disks have more sectors on the outer tracks (“mutiple zone
recording”), since the outer tracks are longer. The ST318405 has on
average 471 sectors/track.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-7

Disks (4)

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-8

IBM Ultrastar 36ZX:

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-9

Disks (6)

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-10

Disks (7)

• Modern disk drives have a disk controller built-in.

This is simply a small computer.

• It translates relatively high-level commands (such

as read the sector with address defined by cylinder,

surface, and sector number) into the commands

for the real hardware (e.g. the motor for the arm-

assembly).

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-11

Disks (8)

• The disk controller attaches checksums to the sec-

tors.

It also attaches address information to ensure that the head is really
on the right track (embedded servo technology).

• It is not economically feasible to produce 100%

defect-free media. Disks have a limited number of

replacement sectors.

During initialization of the disk, each sector is tested and bad sectors
are found. The controller manages a defect map which uses one of
the spare sectors in place of a bad sector.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-12

Disks (9)

• Modern disks have a cache (RAM) for recently read

sectors.

If the sector is still in the cache, it can be sent immediately to the
computer without the mechanical delay needed to read a sector from
the disk.

• Read ahead: The controller usually reads sectors

following a requested sector into the cache.

They are anyway available while the disk continues to spin and of-
ten required next. If the program does not fast enough request the
next sector, it might have passed already under the read/write-head.
Without caching, one would have to wait an entire turn of the disk.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-13

Disks (10)

• Except for the read-ahead, the disk cache is not ve-

ry important for database systems, since the DBMS

has a cache of its own.
The ST318405 has 4 MB Buffer Cache. This is “multisegmented”
which means that the cached data can be from different locations on
the disk.

• Disks may be configured to cache write requests,

too (i.e. the request is remembered for delayed exe-

cution). That is dangerous.
If a write request is cached, it might be lost due to a power failure
before it is really executed. But when the disk tells the DBMS that
the data were written, the DBMS must be able to rely on that.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-14

Disks (11)

• Blocks are a collection of consecutive sectors.

The sector size is often 512 Byte, but it is more economical for
the operating system to read/write larger units. The block size is
often 8 KB under UNIX, and e.g. 2 KB under DOS (“cluster size”).
Block size is usually determined during formatting as a multiple of
the fixed sector size.

• In case of a power failure, it can happen that blocks

are written only partially.

This leaves one with neither the old version nor the new version, which
is a problem for recovery. One technique to discover such destroyed
blocks is to write the same bit pattern at the beginning and end of
each block, and invert it whenever a new version is written. One can
also write version numbers or checksums.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-15

Disk Capacity

• Disk manufactureres define 1 MByte as 1000∗1000

Byte, otherwise 1 MByte is 1024 ∗ 1024 Byte.

• The operating system needs part of the disk space

for control information (not available for user data).

• Thus, the disk will appear smaller than advertised.

• The required disk space will grow over time.

A rule of thumb is that the needed disk space doubles every year.
However, when planning a database, you should do a much more
careful calculation. Since disk space becomes cheaper over time, it is
also not a good idea to buy disk space for many years in advance.
One author recommends to buy disk space for the next two years.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-16

Reading a Sector (1)

• The operating system sends the read request over

the disk interface to the disk controller.

• The arm is moved to the right cylinder (seek time).

The average seek time is the time needed to move the arm one third
of the maximal distance. For the ST318405, it is 5.4ms (read) /
6.2ms (write). The disk needs 0.8ms (read)/1.2ms (write) to position
the head on the next track and 10.5/11ms for the full distance. The
average seek time for write commands is slightly larger than for read
commands, since for write commands the controller must be sure
that the head is positioned on the right track (“it is locked into the
track”). Sectors can be read earlier (when the position is not yet
100% sure) and then checked for the embedded address.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-17

Reading a Sector (2)

• The disk then waits until the needed sector shows

up under the read-write head (latency time).

In average, half a turn is needed. So 10000rpm give an average latency
of 60s/(10000 ∗ 2) = 3ms.

• The drive then reads the data.

Modern disks can read an entire track in one revolution (interlea-
ve factor 1:1), i.e. the speed is (18352MB/76144)∗167(turns/s) =
40MB/s. The speed is higher on the outer tracks and lower on the
inner tracks. Seagate specifies:
Internal Transfer Rate 320–490MBits/s,
Internal Formatted Transfer Rate 31–50MByte/s,
Average Formatted Transfer Rate 43 MByte/s.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-18

Disk Interfaces (1)

• After the disk controller has read the sector, it must

transfer the data to the computer’s main memory.

• The example disk has an Ultra160 SCSI (pronoun-

ced “scuzzy”) interface which allows to transfer

160 MB/s.

Previous versions: SCSI2 (Fast, Wide): 5/10/20 MB/s (1986), Ultra
SCSI: 20/40 MB/s, Ultra-2 SCSI: 80 MB/s.

• Multiple disks (and other devices) can be connected

over the same SCSI bus.

Otherwise the high bandwidth would not be interesting, because it
cannot be used up by a single disk (except possibly from the cache).

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-19

Disk Interfaces (2)

• PC interfaces:

� IDE/ATA: 2–4MB/s,

� Ultra ATA: 33MB/s,

� Ultra ATA/66: 66MB/s.

� Ultra ATA/100: 100MB/s.

• In future, there will probably be only one physical

medium for networking and disk-computer connec-

tion, e.g. “Fibre Channel” (up to 400 MB/s).

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-20

Disk Performance (1)

• It is much faster to access consecutive blocks than

blocks scattered randomly over the entire disk.

Consecutive means first the following sectors on the same track, then
another track (surface) in the same cylinder, and then an adjacent
cylinder. Normally the sectors are ordered such that when we move to
an neighbouring cylinder, no or only a minimal latency time is needed.

• E.g. reading 10 MB which are stored in one piece

takes 0.3 seconds (307 ms).

In the ST318405, a track contains on average 241128 Bytes, thus
44 tracks must be read. This requires one random seek (5.4ms),
latency time (3.0ms), 10 seeks to the next cylinder (10 ∗0.8ms), and
11 ∗ 3 head switches (to adjust the head position on another surface,
33 ∗ 0.8 = 26.4ms), and 44 revolutions for reading (44 ∗ 6 = 264ms).

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-21

Disk Performance (2)

• Textbooks say that 10MB/s can be effectively read

from a disk (if the data is stored in consecutive

blocks).

The above computation gives 30MB/s.

• Reading the same amount of data from randomly

scattered blocks needs about 100 times as much

time.

Assume that we need to read 5000 blocks of 2KByte.
The time needed is 5000 ∗ (5.4 + 3.0 + 0.05)ms = 44.5s.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-22

Disk Performance (3)

• Some authors say that if a disk has constantly more

than 50 independent accesses per second, it beco-

mes a bottleneck.
This leaves 20ms for every access. The disk is faster, but when the
requests are randomly distributed, and you keep the disk operating
near its limits, a queue will build up. Probably today this amount has
increased to 70–100 accesses per second.

• Thus, even if the entire database would fit on a

single disk, it might be necessary to buy several

disks if the system load is high.
An alternative might be to increase the buffer cache (RAM), see
below.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-23

Disk Performance (4)

• To improve the performance, data that are needed

together should be stored near to each other:

� Ideally in the same block.

� If several blocks are needed (e.g. full table scan),

the data should be stored in consecutive blocks.

• Multiple disks can at least do the seek in parallel.

So if the data cannot be stored together, it might

be an option to store it on different disks.
Depending on the maximal transfer rate of the interface, also the
transfer can be done interleaved. Larger computers have several disk
interfaces which can work in parallel.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-24

Disk Performance (5)

• Expected future performance improvements:

� Disk Capacity: 27–60% per year.

Doubles every 1.5–2 years.

� Transfer Rate: 22–40% per year.

Doubles every 2–3.5 years.

� Rotation/Seek Time: 8% per year.

Halves every 7–10 years.

� $/MB: > 60% per year.

Halves in less than 1.5 years.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-25

Disk Performance (6)

• This shows that the difference between random and

sequential accesses becomes greater and greater.

• In 1970, this factor was about 30, in 2000 it is

about 140.

Data of the IBM 3330 (1970): Capacity: 93.7 MB, average seek:
30ms, next track: 10ms, max. seek: 55ms, 3600 rpm,
13 KB/track, 19 heads, 411 cylinders, 806 KB/s transfer rate.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-26

Overview

1. Disks

2. RAID Storage

'

&

$

%
3. Tablespaces in Oracle

4. Storage Hierarchy, The Buffer Manager

5. Disk/Buffer Performance in Oracle

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-27

RAID Storage (1)

• The speed and capacity of disks is limited.

At least very large/fast disks become unproportionally more expensive.

• Especially the seek time is reduced very slowly com-

pared to the processor speed.

CPU speed: +60% per year, i.e. doubles every 1.5 years.

• Idea: Combine multiple disks to a larger storage

component!

• RAID: Redundant Array of Independent (or Inex-

pensive) Disks.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-28

RAID Storage (2)

• But: With 100 disks, one must expect one disk

failure every 6 months.

• Therefore, RAID systems must include measures in

order to prevent the loss of data when a disk fails.

In addition, good RAID systems allow to exchange faulty disks during
the operation (“hot swap”), automatically manage a built-in spare
disk (“hot spare”), and have also redundant controllers, power suplies,
etc.

• There are different ways to couple the disks (RAID

levels).

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-29

RAID 0: Striping (1)

• With two disks, the first block is written to disk 1,

the second to disk 2, the third to disk 1, and so on.

• The speed of read/write accesses for long files sca-

les up nearly linearly with the number of disk drives.

With two drives, the time required for reading/writing a long file is
nearly half of the time required with one disk.

• Random accesses to single blocks do not become

faster, but they are distributed among multiple dri-

ves (more requests per second can be processed).

• A single disk failure makes all data unusable.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-30

RAID 0: Striping (2)

File A: 1 2 3 4 5 6 (long)

File B: 7

File C: 8

(short)

1 3

5 7

Disk 1

2 4

6 8

Disk 2

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-31

RAID 1: Mirroring (1)

• Here disk 2 keeps a copy of disk 1.

• The time needed for write accesses is not improved.

It required time might actually increase: Some controllers first write
a block on disk 1, and only after that succeeded, also on disk 2 (to
leave at least one in a consistent state).

• The time for read accesses is slightly impoved.

A read access can be scheduled for the disk where the head is nearer.
For very large files, both disks could work in parallel.

• Read accesses can be distributed among the disks

(reads/sec doubles), write commands must be done

on both disks.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-32

RAID 1: Mirroring (2)

• If one of the two disks fails, the controller can con-

tinue to work without interruption with the other

disk.

If the system has a “hot spare” disk, the controller can immediately
start to copy the contents of the remaining disk on the spare disk, so
that the data is again kept redundantly on two disks.

• Even with mirroring, backups must be done.

There is no protection against a fire or errors of the DBA (DROP TABLE

...), software bugs, viruses etc.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-33

RAID 10: Stripe+Mirror (1)

• RAID Level 0+1 together, i.e. striping and mirro-

ring, is sometimes called RAID Level 10.

• E.g. the first block is stored on disk 1 and 3, the

second on disk 2 and 4, the third on disk 1 and 3,

etc.

• This probably gives the best performance, but the

mirroring is quite expensive.

As explained below, one can get basically the same security (no data
is lost if a single disk fails) for less money, but then performance not
as good as in this RAID level.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-34

RAID 10: Stripe+Mirror (2)

1 3

5 7

Disk 1

2 4

6 8

Disk 2

1 3

5 7

Disk 3

2 4

6 8

Disk 4

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-35

RAID 4: Parity Disk (1)

• Mirroring doubles the required disk capacity (space

overhead 100%).

• RAID levels 3–5 support striping of the data among

n disks and add only a single disk with parity infor-

mation.

E.g. the XOR (exclusive or) of the data stored on the n disks is stored
on the parity disk (i.e. the number of “1” in the corresponding bits
on the n + 1 disks is always even).

• So e.g. with four data disks, the space overhead is

only 25%.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-36

RAID 4: Parity Disk (2)

• If one disk fails, its information can be reconstruc-

ted from the other disks.

E.g. if the number of “1” in the other n disks is even, the correspon-
ding bit on the failed disk must have been “0”. Two disk failures are
always fatal. In RAID level 0 + 1, one might be lucky that not both
copies of the mirrored disk are hit. But for planning a safe system, it
is probably more important what can be guaranteed.

• The performance for reading is similar to RAID 0:

� The speed is improved only for long reads,

� for small reads load-balancing is done (number of

reads/second scales up lineraly with data disks).

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-37

RAID 4: Parity Disk (3)

• Writing becomes slower than with a single disk,

since the old version of the block and the old version

of the parity block must be read first to recompute

the parity.

NewParity = (OldData XOR NewData) XOR OldParity.
So on each of the two disks, one needs to read a block, wait one
rotation of the disk, and write it. On the ST318405 the read-modify-
write cycle takes 56% more time than a simple write access. Caching
might help.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-38

RAID 4: Parity Disk (4)

• If a disk fails, the performance goes down quite

drastically (it halves although only one out of many

disks failed).

E.g. the array consists of 10 disks plus one parity disk, each disk
can process 50 reads/second. Thus, the performance of whole array
is 500 reads/second (assuming optimal distribution). Suppose one
of the 10 data disks fails. In one second, one can read 25 times
from each of the 9 working disks plus 25 times from all disks to
reconstruct the blocks on the failed disk. So the performance is only
250 reads/second. If the parity disk fails, performance is not reduced.

• Larger RAID systems partition the data disks into

groups, and have one parity disk for every group.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-39

RAID 4: Parity Disk (5)

1 3

5 7

Disk 1

2 4

6 8

Disk 2

1^2 3^4

5^6 7^8

Disk 3

Disk 1 0 0 1 1

Disk 2 0 1 0 1

Disk 3 0 1 1 0

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-40

RAID 5: Distributed Parity (1)

• In RAID Level 4, the parity disk becomes a bott-

leneck for write operations.

Each write operation, no matter on which disk, requires in addition a
read and a write on the parity disk.

• RAID 5 distributes the parity information evenly

among the disks. Otherwise, it is like RAID 4.

Actually, reads can be distributed now over all n +1 disks, instead of
only the n data disks.

• Some write operations can now be done in parallel.

In RAID Level 4, writes are serialized by the necessity to access the
parity disk.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-41

RAID 5: Distributed Parity (2)

1 3

5^6 7

Disk 1

2 3^4

5 8

Disk 2

1^2 4

6 7^8

Disk 3

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-42

Other RAID Levels

• RAID 2 uses error detecting and correcting codes.

This is not used in practice, since each disk normally knows that it is
faulty.

• RAID 3 is similar to RAID 4, but does the striping

bit-wise instead of block-wise.

So instead of putting e.g. the first 4KB on disk 1, and the second
4KB on disk 2, the bits of a block of 8KB are distributed between
both disks. But then it is always necessary to access all disks (no
increase in accesses/second).

• RAID 6 uses two disks with error correcting codes:

It can recover from two simultaneous disk failures.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-43

RAID Storage: Evaluation (1)

• RAID systems are easy to administer:

They look like one big disk.

• But better performance can be reached if database

objects are explicitly distributed over multiple disks.

This is an important part of physical database design.

• RAID Level 0+1 might be ok for databases.

For redo log files, the stripe size should be small. But redo log files are
much better kept on disks of their own, and not mixed with the data
files. They must be mirrored or otherwise protected, but the DBMS
software can do that.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-44

RAID Storage: Evaluation (2)

• If one uses RAID Level 3–5, one should benchmark

the system also with a simulated disk failure.

Will the performance still be sufficient if one disk should fail?

• RAID Level 3–5 is not good for redo log files, since

these are only written.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-45

Overview

1. Disks

2. RAID Storage

3. Tablespaces in Oracle

'

&

$

%
4. Storage Hierarchy, The Buffer Manager

5. Disk/Buffer Performance in Oracle

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-46

Tablespaces (1)

• In Oracle, one can use tablespaces to control on

which disk(s) a table is stored.

Tablespaces are physical containers for tables. When a table is crea-
ted, the tablespace in which the table is stored can be defined.

• Tablespaces are groups of data files. The files can

be on the same disk or spread across serveral disks.

A tablespace is something like a logical disk.

• Every data file can belong to only one tablespace.

• It is possible to have data files from different table-

spaces on the same physical disk.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-47

Tablespaces (2)

Table

(1,1)
��

����
���

HH
HHH

HHHHcreated in

H
HHHH

HHHH

�
���

�����

(0, ∗)

Tablespace
(1, ∗)

�
���

���
��

HH
HHHH

HHH

consists of ��
���

����

H
HHH

HHH
HH

(1,1)
Data File

(1,1/∗)
H

HHH
HHH

HH

�
���

���
��contains

���
���

���

HHH
HHH

HHH

(0, ∗)

Disk

A data file is spread across several disks only in case of RAID systems.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-48

Tablespaces (3)

• Example for defining the tablespace for a table:

CREATE TABLE STUDENTS(STUD_ID NUMERIC(5), ...)

TABLESPACE USER_DATA;

• Clauses setting physical attributes are specific to a

DBMS (in this case Oracle), they are not contained

in the SQL standard.

• The data file cannot be specified.

Actually, the data file cannot be specified only for the first extent
(piece of storage) allocated for the table. One can manually allocate
additional extents in specified data files in order to stripe a table
between different disks.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-49

Tablespaces (4)

• If the tablespace consists of more than one file,

Oracle may store part of the table in one data file,

and part in the other.

For this reason, most DBAs prefer to have only one data file per
tablespace, if possible.

• Every Oracle database has a tablespace “SYSTEM”,

which contains e.g. the data dictionary.

Simple DBs have only this tablespace. However, it is recommended
to store user data in a different tablespace.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-50

Tablespaces (5)

• It is normally easiest to have only one data file per

tablespace.

If a single disk is not large enough, it might be better to explicitly
distribute the data among different tablespaces.

• It increases the flexibility if not too many tables

(at least no unrelated ones) are put into the same

tablespace.

Tablespaces can be separately taken online or offline, separately expor-
ted and recovered. Backup copies are taken of datafiles. Performance
statistics are available for datafiles.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-51

Managing Tablespaces (1)

• A tablespace is created with a command like the

following:
CREATE TABLESPACE USER_DATA

DATAFILE ’D:\User1.ora’ SIZE 20M;

• Oracle will automatically create the datafile.
Use “SIZE 20M REUSE” if the file exists and can be overwritten (the
size is optional in this case).

• A data file can be added to a tablespaces with the

following command:
ALTER TABLESPACE USER_DATA

ADD DATAFILE ’D:\User2.ora’ SIZE 20M;

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-52

Managing Tablespaces (2)

• It is possible to let Oracle extend the datafile when-

ever the tablespace becomes full:

CREATE TABLESPACE USER_DATA

DATAFILE ’D:\User1.ora’ SIZE 20M

AUTOEXTEND ON NEXT 5M MAXSIZE 50M;

The file is created with 20 MB size. When it is full, it is increased to
25 MB, 30 MB, and so on until 50 MB. When the 50 MB are used
up, further commands that need additional storage (e.g. insertions)
will fail. Without MAXSIZE, the entire disk is filled.

• The data file size can also be manually increased:
ALTER DATABASE

DATAFILE ’D:\User2.ora’ RESIZE 100M

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-53

Managing Tablespaces (3)

• Tablespaces can be taken offline (i.e. made not

available):

ALTER TABLESPACE USER_DATA OFFLINE;

The SYSTEM tablespace cannot be taken offline.

• The following command deletes a tablespace with

all data in it:

DROP TABLESPACE USER_DATA

INCLUDING CONTENTS;

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-54

Managing Tablespaces (4)

• The following command is needed when data files

are renamed or moved to another disk:

ALTER DATABASE

RENAME FILE ’C:\User2.ora’ TO ’D:\User2.ora’

The file cannot be currently in use. E.g. the tablespace is offline or the
DBMS server is in the MOUNT state, but not OPEN. The command only
changes the file name that Oracle uses to access the file (stored in
Oracle’s control file), one must use OS commands to actually move
the data file.

• See the Oracle SQL Reference for more options.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-55

TS in the Data Dictionary (1)

• DBA_TABLESPACES is list of all tablespaces. Columns

are, e.g.

� TABLESPACE_NAME: Name of the tablespace.

� INITIAL_EXTENT, NEXT_EXTENT, MIN_EXTENTS,

MAX_EXTENTS, PCT_INCREASE:

Default storage parameters for tables created in

this tablespace (see next chapter).

� MIN_EXTLEN: Minimal size for storage pieces allo-

cated in this tablespace.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-56

TS in the Data Dictionary (2)

• Selected columns of DBA_TABLESPACES, continued:

� STATUS: ONLINE, OFFLINE, READ ONLY.

� CONTENTS: PERMANENT or TEMPORARY.
TEMPORARY: For sorting during query evaluation.

� LOGGING: LOGGING or NOLOGGING.
If changes are not logged, they cannot be recovered.

� EXTENT_MANAGEMENT: DICTIONARY or LOCAL.
Extends are pieces of storage allocated for tables or other data-
base objects. Originally, free space was managed by entries in the
data dictionary. Oracle 8i has introduced local extend manage-
ment (probably a bitmap inside the datafile) that is supposed to
be more efficient.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-57

TS in the Data Dictionary (3)

• USER_TABLESPACES lists all tablespaces for which the

current user has write permission.

• USER_TS_QUOTAS lists the current file space usage and

the allowed maximum for every tablespace writea-

ble by the user.

• USER_FREE_SPACE: Pieces of free space in tablespaces.

• TABS (= USER_TABLES) contains the tablespace in

which a table is stored:

SELECT TABLE_NAME, TABLESPACE_NAME

FROM TABS

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-58

TS in the Data Dictionary (4)

• See also:

� DBA_DATA_FILES,

� V$DATAFILE,

� V$DATAFILE_HEADER,

� DBA_FREE_SPACE,

� DBA_FREE_SPACE_COALESCED,

� DBA_TS_QUOTAS,

� V$FILESTAT,

� V$TABLESPACE.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-59

Performance Aspects (1)

• One should try to distribute the load (i.e. accesses

per second) evenly between the disks.
It is ok if a disk containing an often accessed file remains half empty.

• Distribute the tables among relatively many table-

spaces to increase the flexibility for later changes.
E.g. one can move a tablespace with all its tables to a different
disk. If one has only a single tablespace with multiple files, it is not
predictable, which table is contained in which file.

• One can manually stripe a table over multiple disks.
See ALTER TABLE ... ALLOCATE EXTENT
Necessary if the table requires more accesses/sec. than a single disk
can deliver and one does not use a RAID system.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-60

Performance Aspects (2)

• Before a COMMIT operation can be completed, a disk

block must be written to the redo log files.

This is actually the only case in which a disk block must be written
synchronously no matter how much memory one has.

• If some disks are faster than others, think carefully

what to put on them.

If there are many transcations per minute, it would make sense to
place the redo log on the fastest disks. But it is even more important
not to place anything else on the disks with the redo log: The redo
log is sequentially written, so the read/write head can remain at the
current track and does not have to move around.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-61

Performance Aspects (3)

• It is not recommended to store indexes on the same

disk as their tables.

This is advantageous only if there is a series of several index lookups,
either because of many queries of this type or because of a join eva-
luated with the index. In that case the disk head does not have to
move back and forth between index and table. This also gives load
distribution: Both disks can work in parallel. Also, whenever the table
is modified, the index must also be updated, and this can be done
parallel on the two disks.

• In the same way, tables that are often joined to-

gether should be on different disks.

Unless they can be put into a cluster, i.e. stored jointly in the same
disk blocks, see below.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-62

Performance Aspects (4)

• The data files should be stored in consecutive disk

blocks.

This automatically happens if the filesystem on the disk was created
directly before the DB files were created. Otherwise there might be
OS defragmentation tools.

• The number of DB blocks read in one I/O opera-

tion for full table scans is determined by the initia-

lization parameter DB_FILE_MULTIBLOCK_READ_COUNT.

It should be set relatively high, e.g. 8, 16, 32.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-63

Overview

1. Disks

2. RAID Storage

3. Tablespaces in Oracle

4. Storage Hierarchy, The Buffer Manager

'

&

$

%
5. Disk/Buffer Performance in Oracle

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-64

Storage Hierarchy

Registers
@

@
@

@
@

@
@

@
@

�
�

�
�

�
�

�
�
�

2ns/4B

Cache
@

@
@

@@

�
�

�
��

10ns/4B

Main Memory (RAM)
@

@
@

@@

�
�

�
��

100ns/64B

Access Gap 1:100000

Disks (Secondary Storage)
�

�
�

��

@
@

@
@@

12ms/4KB

Nearline External Memory (Tape Robot, Jukebox)

Offline External Memory (Tapes: Tertiary Storage)

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-65

Storage Characteristics (1)

• Size: Disks are usually much bigger than the main

memory.

PC (2001): 256MB RAM, 36GB Disk.
AltaVista (1997): 6GB RAM, 210GB disks
32Bit computers cannot have more than 4GB RAM.

• Cost:

� RAM is currently priced at approx. $0.15–$1.00

per MB,

� Disk: $0.002–0.01/MB ($2–15/GB).

� Tape (DLT Cartridge): approx. $0.001/MB.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-66

Storage Characteristics (2)

• Persistence: The contents of main memory is lost

in case of a power failure or system crash.

The disk contents is only lost in case of a headcrash etc. The mean
time between failure (MTBF) is today typically 500000–1Mio h (57–
114 years). But this measures only the probability of a failure when
the drives are still young.

• Operations: In order to work with the data, they

have to be brought into main memory.

Disks allow random access, tapes only sequential access, CDs only
read access, etc.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-67

Storage Characteristics (3)

• Granularity:

� In main memory, every bit can be accessed.

� On disks, one has to read/write entire blocks

(e.g. 2KByte).

• Speed:

� Accessing a word in main memory costs e.g.

100ns (1ns = 10−9s).

� Reading a block on a disk needs e.g. 12ms.
The CPU can execute e.g. 500000 instructions during one disk
access. In main memory, the time needed to access a word is
constant. On disks, the time depends on the distance.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-68

Buffering/Caching (1)

• Database blocks must be brought into main me-

mory in order to work with them.

• The idea of buffering/caching is to keep the con-

tents of the block for some time in main memory

after the current operation on the block is done.

Of course, if the block was modified, it might be necessary to write it
back to disk. This can be delayed if other measures protect the data.

• If this same block is later requested again, it is

much faster to use the copy in main memory in-

stead of loading it again from the disk.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-69

Buffering/Caching (2)

Main Memory:

Block 1

Buffer
Frame 1

Block 3

(new)

Buffer
Frame 2

(free)

Buffer
Frame 3 

Cache

�
�
�
��

�
�

�
��

6

?

Disk:

Block 1 Block 2 Block 3

(old)

Block 4 Block 5

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-70

Buffering/Caching (3)

• The part of main memory that is used to keep co-

pies of disk blocks is called the cache, the (disk)

buffer, or the buffer cache.

• The cache is organized into pieces that can con-

tain exactly one disk block, called (block) buffers

or buffer frames.

E.g. the block size might be 8 KB. Then each buffer frame is 8 KB
large. When the cache consists of 1000 buffer frames, the cache size
is 8 MB (plus some overhead for managing the cache, e.g. a table
that states which disk block is contained in which buffer frame).

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-71

Buffering/Caching (4)

• If every second block request can be satisfied by

using an already cached version (i.e. from main me-

mory), the execution speed approximately doubles.
This assumes a CPU and main memory access cost of 0, which is
of course a simplification. However, because disk access is so much
slower than main memory access, the result is already a relatively
good approximation. If one fetched every block from the disk, the
bottleneck would certainly be the disk, and the CPU would be idle for
most of the time.

• In a well-tuned system, only 10% or less of the

block requests really lead to a disk access.
The remaining 90% can be satisfied from the buffer. This of course
depends on the kind of queries that executed.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-72

Buffering/Caching (5)

• One module of the DBMS software is the buffer

manager (or cache manager). It gets “logical block

accesses” from the upper layers of the DBMS:

� Some of the requested blocks are contained in

the cache (“cache hit”): No disk access needed.

� Otherwise (“cache miss”), a real “physical block

access” is required.

• The percentage of disk block accesses that can be

satisfied from the cache is called the hit ratio. I.e.

hit ratio = cache hits/(cache hits + cache misses).

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-73

Buffering/Caching (6)

• Of course, when the DBMS has just been started,

the hit ratio is 0%, because the cache is still empty:

Every logical block access leads to a physical block

access.

• However, after some time there might have been

1000 logical block accesses and only 200 physical

ones. Then the hit ratio is 80%.

• Depending on the author, good hit ratios are 80%,

90%, 95% (for normal OLTP databases).

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-74

Buffering/Caching (7)

• Normally the database is much bigger than the

main memory. Therefore not all blocks can be kept

in the buffer cache.

• E.g. suppose that the DB consists of 1 million

blocks (8 GB), and the buffer cache consists of

only 10000 blocks (80 MB).

• If the block accesses were randomly distributed, the

hit ratio would be 1%. Then the possible speedup

would be 1% or less, which is not worth the effort.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-75

Buffering/Caching (8)

• But normally, a small part of the database is ac-

cessed very often, and a large part of the database

only seldom.

An 80-20 rule applies to many things in the real world (Pareto prin-
ciple). For database block accesses, it would mean that 80% of the
block accesses go to 20% of the blocks. However, this would still not
allow effective caching. Often, the distribution is much more uneven.

• When benchmarking a DBMS or measuring query

runtimes, one must respect the cache: When the

same query is executed for a second time, it usually

runs much faster.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-76

A Typical Buffer Manager (1)

• The following slides explain how the “Buffer Ma-

nager” module inside a DBMS might work.

This is a hypothetical textbook DBMS. I believe that also Oracle
basically works this way, but Oracle of course does not publish such
internal details.

• This is mainly interesting for people who need to

implement a DBMS.

E.g. the Oracle development staff or students who want to work in
my deductive database project.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-77

A Typical Buffer Manager (2)

• The procedures explained on the following slides

are called by the DBMS layers above the buffer

manager.

• They are internal to the DBMS. The DBA or data-

base user does not (and cannot) directly call them.

Of course, when queries are executed, the DBMS software calls these
procedures on behalf of the user.

• However, in order to do performance tuning, it is

good (or even necessary) to have some understan-

ding how the DBMS works internally.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-78

A Typical Buffer Manager (3)

Procedure “Pin Block x”:

• Determine whether block x is already in a buffer

frame (i.e. in the cache).
There probably is a hash table to quickly find the block.

• If yes (cache hit):

� Return the memory address of this buffer frame.

� Make sure that the block will remain in the buffer

frame.
I.e. is “pinned” there. The caller wants to work with this block
in memory, and it would be fatal if suddenly the buffer frame
is overwritten with another block. The caller will tell the buffer
manager with “unpin” that he/she is finished.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-79

A Typical Buffer Manager (4)

Procedure “Pin Block x”, Continued:

• If the block is not in the cache (cache miss):

� Get an empty buffer frame.

Normally there is no empty buffer frame. Then an occupied one
must be selected and made free, see “Replacement Strategy”
below.

� Call the disk manager to read the block into this

buffer frame.

� Return the memory address of the buffer frame.

Again, the block must be pinned in the buffer frame.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-80

A Typical Buffer Manager (5)

Procedure “Unpin Frame x” (block was not changed):

• The caller is done with this block (for the moment).

• Therefore, its buffer frame can be used for another

block.
Of course, since it is possible that the same block is requested again,
it should not be immediately removed from the buffer frame — only
when space is needed.

• Since the buffer frame was not changed, the disk

still contains the same version.

• Thus, when space is needed, the buffer frame may

simply be overwritten with another block.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-81

A Typical Buffer Manager (6)

Procedure “Unpin Frame x” (block was changed):

• If the caller has changed the block, the version in

the buffer frame is newer than the version stored

on the disk.

• So before this buffer frame is reused, its contents

must be written back to the corresponding block

on the disk.

The buffer is called “dirty” in this case.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-82

A Typical Buffer Manager (7)

Delayed Writing:

• Writing a modified block back to the disk does not

have to happen immediately.

• The persistence of the transaction is normally en-

sured via a different mechanism (log file).

The log file is a transcript of all changes. Actually, before the buffer
manager can write the block back to the disk it must ensure that
the undo information was written to the log file (in Oracle via the
rollback segments). This is called the WAL principle (write ahead log).
If the system should crash, it must be possible to undo all changes
by transactions that were not yet finished (committed). The easiest
way to do this is by not writing back modified blocks that contain
changes by unfinished transactions, but this has other problems.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-83

A Typical Buffer Manager (8)

Multiple Pins for One Block:

• It is possible that multiple clients request the same

block at the same time.

In this case, one can use a “pin counter” which is incremented for
every pin and decremented for every unpin. Only when this counter
becomes 0, the block can be removed from the buffer frame.

• Of course, it must be avoided (by means of locks)

that other processes access the block while one pro-

cess changes it.

Note that these locks should be held only for a very short time. They
are something different than the locks which a transaction holds on
a changed row until the commit.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-84

Replacement Strategy (1)

• The first n requested blocks are loaded into the

n available buffer frames. After that, all buffer fra-

mes are always “full”.

There is no advantage removing a block from the buffer without need
(unless we know that it is not used again).

• Thus, when a new block must be loaded, a victim

is selected among the blocks already in the buffer

(by the “replacement strategy”).

• This block is removed from the cache, and the new

block is loaded into the same buffer frame.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-85

Replacement Strategy (2)

• Note that if the block to be removed from the buf-

fer was changed, it must be saved first.

• The system should save modified blocks from time

to time so that there are sufficiently many buffer

frames available which can simply be overwritten

when needed.

Oracle has one or more background processes “DB Writer” (DBW0,
DBW1, etc.) for this purpose.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-86

Replacement Strategy (3)

• Normally, a “least recently used” (LRU) strategy is

used:

� Whenever a block becomes unpinned, its buffer

frame is entered into a queue (at the rear).

� When a buffer frame is needed, the one at the

front is taken.

� If a block is pinned again while it is in the queue,

it is removed from the queue.

• If all buffers are pinned, the caller must wait.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-87

Exercise

• Suppose there are 3 buffer frames and 10 disk

blocks. What actions does the buffer manager per-

form for these requests:

� Pin block 1, unpin block 1 (not changed)

� Pin block 2, unpin block 2 (changed)

� Pin block 1, unpin block 1 (not changed)

� Pin block 5, unpin block 5 (not changed)

� Pin block 8, unpin block 8 (changed)

� Pin block 1, unpin block 1 (not changed)

� Pin block 8, unpin block 8 (changed)

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-88

Sequential Flooding (1)

• Suppose that the DBMS has n buffer frames and

needs to read a table stored in n + 1 data blocks

multiple times.
E.g. for a nested loop join.

• Then the LRU strategy makes the buffer useless: A

block is forced out of the buffer immediately before

it is needed again.
This problem is called “sequential flooding of the buffer”. LRU is one
of the worst possible replacement strategies here: Although we have
n buffers, no block is buffered long enough to be accessed again from
the buffer. If the table had ≤ n blocks, it would be read only once,
and all following requests could be answered out of the buffer.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-89

Sequential Flooding (2)

• One possibility to avoid this behaviour is zig-zag

reading (used by some DBMS):

� The first pass through the table is done forward,

� the second pass backward,

� the third pass again forward, etc.

• Oracle puts blocks read in long full table scans nor-

mally at the front of the LRU queue, so they are

immediately reused.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-90

DBMS vs. OS (1)

• Modern operating systems have virtual memory,

which works quite similar to the decribed buffering

scheme.

• So why repeat parts of the operating system in the

DBMS?

• Operating systems are not very good in supporting

the specific needs of DBMS, although they often

do nearly the same thing.

• In the future there will be combined OS/DBMS.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-91

DBMS vs. OS (2)

• In the OS, the file used for paging is initialized

during every startup — it cannot be used it as the

persistent database.
One could of course request enough main memory to read every block
from the DB into memory. But this would store most blocks two times
on the disk: In the DB file and the swap file.

• On a 32bit-machine, virtual memory is limited to

4GB. Databases can be terrabytes large.

• Operating system calls take normally quite long.

But pin/unpin are called very often.
Since a block should be kept pinned only for a short time.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-92

DBMS vs. OS (3)

• The DBMS might have information about future

references to a block, which can be utilized in the

replacement strategy.

Also prefetching of blocks, e.g. in a sequential scan, is very effective.

• The buffer frames of the DBMS should be in real

memory.

If it should happen often that buffer frames are paged out (“double
paging”), the best replacement strategy becomes useless. Choose
a smaller number of buffer frames and do not run other memory-
intensive processes on this machine.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-93

Overview

1. Disks

2. RAID Storage

3. Tablespaces in Oracle

4. Storage Hierarchy, The Buffer Manager

5. Disk/Buffer Performance in Oracle

'

&

$

%

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-94

Performance Monitoring (1)

• For performance tuning, the bottlenecks of the sy-

stem must be found (i.e. the performance problems

must be located).

E.g. it is useless to increase the cache if it performs well.

• In Oracle, a lot of statistical information is available

in the V$*-tables, e.g. V$SYSSTAT.

The V$*-tables are called the “Dynamic Performance Views”. They
give access to data structures inside the Oracle server. They are not
stored tables. Of course, the V$*-tables can only be accessed by the
DBA.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-95

Performance Monitoring (2)

• V$SYSSTAT contains 226 different performance re-

lated numbers (counters, average times, etc.). Its

columns are:

� STATISTIC#: Identifying number of the statistic.

� NAME: Symbolic name of the statistic.

� CLASS: Bit pattern to classify the statistic.

E.g. all cache-related statistics have the third bit (8) set.

� VALUE: The value of the statistic.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-96

Performance Monitoring (3)

• E.g., this query prints the number of data blocks

that were physically read since system startup:
SELECT VALUE

FROM V$SYSSTAT

WHERE NAME = ’physical reads’

• The Oracle server maintains a counter that is in-

itialized to 0 when the system is started and incre-

mented each time a block is read from disk.

• There are many different such counters.
Some statistics are available only when the initialization parameter
TIMED_STATISTICS is set to TRUE (because they cause some overhead).

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-97

Performance Monitoring (4)

• In addition, there is a table V$SESSTAT that contains

statistics for each session. Columns are:

� SID: Session identifier (more info in V$SESSION).

� STATISTIC#: Identifying number of the statistic.

� VALUE: The value of the statistic.

• Here, a join with V$STATNAME is necessary in order to

decode the statistic numbers.

V$STATNAME lists all available statistics, it has the columns STATISTIC#,
NAME, CLASS. Some of the statistics are only meaningful in V$SYSSTAT,
others only in V$SESSTAT.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-98

Performance Monitoring (5)

• Two scripts in “$ORACLE_HOME/rdbms/admin” can be

used to print a report containing many statistics:

� utlbstat.sql (begin statistics) records the cur-

rent values of the statistics counters.
The scripts are executed with SQL*Plus. They log in as INTERNAL.
It might be necessary to belong to the OS user group “dba”.

� Then there should be normal production usage

of the DBMS for some time.

� utlestat.sql (end statistics) computes the diffe-

rences of the then current values with the stored

ones and generates a report (in report.txt).

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-99

Performance Monitoring (6)

• SQL*Plus shows a few statistics for each executed

query after

SET AUTOTRACE ON

• In addition, the query execution plan is shown.

SET AUTOTRACE ON STATISTICS shows only the statistics, SET AUTOTRACE

ON EXPLAIN only the execution plan. Try also SET TIMING ON. If a user
has rights on a view, but not the base tables, the execution plan is
not shown. Before one can see the execution plan, a table for storing
information about that plan must be created by executing the script
$ORACLE_HOME/rdbms/admin/utlxplan.sql. Before a user can see the sta-
tistics, the DBA must grant the role PLUSTRACE to that user. The role
is created with the script $ORACLE_HOME/sqlplus/admin/plustrce.sql.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-100

Buffer Performance (1)

• In Oracle, the number of cache misses is the value

of the counter “physical reads”.

• The total number of requests are the sum of two

statistics values (this sum is called “logical reads”):

� consistent gets: Requests for block versions that

contain only changes that were committed be-

fore the query started.

� db block gets: Requests for the current version

of a block.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-101

Buffer Performance (2)

• In Oracle, the hit ratio is computed as:

consistent gets + db block gets − physical reads

consistent gets + db block gets

• Exercise: Write an SQL query for this.

• The hit ratio should be above 90% or 95%.

At least for OLTP (online transaction processing) applications.

• If the hit ratio is below 60%, 70% or 80%, the

buffering is not working well and something should

be done.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-102

Buffer Performance (3)

• E.g., in order to improve the hit ratio, it might

be possible to increase the initialization parameter

DB_BLOCK_BUFFERS (number of buffer frames).

Total buffer memory: DB_BLOCK_BUFFERS * DB_BLOCK_SIZE.

• It is important that the entire SGA (system global

area, includes the cache) remains in real memory.

If the increase of the number of buffer frames leads to paging on the
operating system level (i.e. “virtual memory” is used), the situation
is worse than before (“double paging”).

• If necessary, more memory must be bought.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-103

Buffer Performance (4)

• However, before one tunes the buffer cache, there

are many other things to check and improve.

• E.g., indexes might reduce the number of accessed

disk blocks. Then the hit ratio will improve without

adding more buffer frames.

Oracle therefore recommends a specific sequence for tuning:
Business rules, data design, application design, logical DB structure,
DB operations, access paths, memory allocation, I/O and physical
structure, resource contention, OS/hardware.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-104

Buffer Performance (5)

• The hit ratio can also be improved by caching only

blocks from certain tables.
E.g., if blocks from a very large table are accessed at random, they
do not profit from the valuable buffer space, but push other blocks
out of the cache.

• Besides the DEFAULT buffer pool, Oracle can manage

two other buffer pools: KEEP and RECYCLE.

• One can distribute the available buffer frames bet-

ween these three buffer pools and assign database

objects to a specific buffer pool:

CREATE TABLE ...(...) STORAGE(BUFFER_POOL KEEP)

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-105

Buffer Performance (6)

• Oracle normally places blocks read during a full

table scan at the front of the LRU queue, so that

the buffer frames are immediately reused.

• For small lookup tables one should request that

they are even if read in a full table scan:

CREATE TABLE EXERCISES (CAT CHAR(1), ...)

TABLESPACE USER_DATA

CACHE

Small tables are nearly always read in full table scans.
See also: V$BUFFER_POOL, V$BUFFER_POOL_STATISTICS, V$BH.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-106

The Five Minute Rule (1)

• Sometimes disks must be bought not because more

disk space is needed, but because more accesses per

second are required.

• In such a situation, caching can save not only time,

but also money (see next slide).

• This rule was originally known as the five minute

rule: If a block is accessed every five minutes, it

should remain in the cache.

• However, as technology advanced, it is now really

the ten minute rule.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-107

The Five Minute Rule (2)

• Simplified/Naive calculation:

� A disk costs about $200 and allows e.g. 70 ac-

cesses per second. Suppose that each access

for 8KB (in average).

� If the data is accessed only every ten minutes

from the disk, it costs $200/(70∗600) = $0.005.

� So it is still cheaper to buy 8KB more buffer

(8KB RAM cost $0.004 if price/MB is $0.50).

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-108

Disk Performance (1)

• V$FILESTAT contains performance statistics for each

file. It has the following columns (continued below):

� FILENO#: File number.
V$DATAFILE relates FILENO# and NAME.

� PHYRDS: Number of read operations for this file.
Physical reads, i.e. real reads (not from buffer).

� PHYWRTS: Number of write operations for this file.

� PHYBLKRD: Number of blocks read.
PHYBLKRD can be larger than PHYRDS since sometimes a chunk of
several consecutive blocks is read in one call.

� PHYBLKWRT: Number of blocks written.

Stefan Brass: Datenbanken II Universität Halle, 2003

8. Disks and the Buffer Cache 8-109

Disk Performance (2)

• Columns of V$FILESTAT, continued:

� READTIM: Time spent in reading (in 1/100s).

Timing information is collected only when the initialization para-
meter TIMED_STATISTICS is TRUE.

� WRITETIM: Time spent in writing.

� AVGIOTIM: Average time for an I/O operation.

� LSTIOTIM: Time for last I/O operation.

� MINIOTIM: Minimum time for an I/O operation.

� MAXIOWTM: Maximum time for a write operation.

� MAXIORTM: Maximum time for a read operation.

Stefan Brass: Datenbanken II Universität Halle, 2003

