
6. Advanced SQL Repetition 6-1

Part 6: Advanced SQL
Repetition

References:
• Elmasri/Navathe:Fundamentals of Database Systems, 3rd Edition, 1999.

Chap. 8, “SQL — The Relational Database Standard” (Sect. 8.2, 8.3.3, part of 8.3.4.)

• Silberschatz/Korth/Sudarshan: Database System Concepts, 3rd Edition.
McGraw-Hill, 1999: Chapter 4: “SQL”.

• Kemper/Eickler: Datenbanksysteme (in German), Ch. 4, Oldenbourg, 1997.

• Lipeck: Skript zur Vorlesung Datenbanksysteme (in German), Univ. Hannover, 1996.

• Heuer/Saake: Datenbanken, Konzepte und Sprachen (in German), Thomson, 1995.

• Date/Darwen: A Guide to the SQL Standard, Fourth Edition, Addison-Wesley, 1997.

• Date: A Guide to the SQL Standard, First Edition, Addison-Wesley, 1987.

• van der Lans: SQL, Der ISO-Standard (in German). Hanser, 1990.

• Sunderraman: Oracle Programming, A Primer. Addison-Wesley, 1999.

• Oracle 8i SQL Reference, Release 2 (8.1.6), Dec. 1999, Part No. A76989-01.

• Chamberlin: A Complete Guide to DB2 Universal Database. Morgan Kaufmann, 1998.

• Microsoft SQL Server Books Online: Accessing and Changing Data.

• Microsoft Jet Database Engine Programmer’s Guide, 2nd Edition (Part of MSDN Library
Visual Studio 6.0).

• DuBois: MySQL. New Riders Publishing, 2000, ISBN 0-7357-0921-1, 756 pages.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-2

Objectives

After completing this chapter, you should be able to:

• write advanced queries in SQL including, e.g.,

� several tuple variables over the same relation.

� Aggregations, GROUP BY, HAVING

� NOT EXISTS / NOT IN

• Avoid errors and unnecessary complications.

• Check given queries for errors or equivalence.

• Evaluate the portability of certain constructs.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-3

Overview

1. Lexical Syntax

'

&

$

%
2. Tuple Variables, Joins

3. Terms, Conditions, Logic, Null Values

4. Subqueries, Nonmonotonic Constructs

5. Aggregations

6. Union, ORDER BY, Outer Join

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-4

Example Database

STUDENTS

SID FIRST LAST EMAIL

101 Ann Smith · · ·
102 Michael Jones (null)
103 Richard Turner · · ·
104 Maria Brown · · ·

EXERCISES

CAT ENO TOPIC MAXPT

H 1 Rel. Algeb. 10
H 2 SQL 10
M 1 SQL 14

RESULTS

SID CAT ENO POINTS

101 H 1 10
101 H 2 8
101 M 1 12
102 H 1 9
102 H 2 9
102 M 1 10
103 H 1 5
103 M 1 7

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-5

Lexical Syntax Overview

• The lexical syntax of a language defines how word

symbols (“tokens”) are composed from single cha-

racters. E.g. it defines the exact syntax of

� Identifiers (names for e.g. tables, columns),

� Literals (datatype constants, e.g. numbers),

� Keywords, Operators, Punctation marks.

• Thereafter, the syntax of queries and other com-

mands is defined in terms of these word symbols.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-6

White Space and Comments

White space is allowed between words (tokens):

• Spaces (normally also tabulator characters)

• Line breaks

• Comments:

� From “--” to 〈Line End〉
Supported in SQL-92, Oracle, SQL Server, IBM DB2, MySQL.
MySQL requires a space after the “--”, SQL-92 does not.
Access does not support this comment, and also not /* ...*/.

� From “/*” to “*/”
Supported only in Oracle, SQL Server, MySQL: Less portable.

SQL is a free-format language like Pascal, C, Java.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-7

Numbers (1)

• Numeric literals are constants of numeric data ty-

pes (fixed point and floating point numbers).

• E.g.: 1, +2., -34.5, -.67E-8

• Note that numbers are not enclosed in quotes.

• Numeric Literal:

- Exact Numeric Literal -

- Approximate Numeric Literal

6

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-8

Numbers (2)

• Exact Numeric Literal:

-

-"!

+

-"!

-

6

-

Digits -

? -"!

. - Digits

6

• Digits (Unsigned Integer):

- Digit -
6

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-9

Numbers (3)

• Digit:
-

?

��
��
0

?

?

��
��
1

?

?

��
��
2

?

?

��
��
3

?

?

��
��
4

?

. . .
?

��
��
8

?

?

��
��
9

? -

• Approximate Numeric Literal:

- Exact Numeric Literal -"!

E -

-"!

+

-"!

-

6 Digits -

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-10

Character Strings (1)

• A character string constant/literal is a sequence of

characters enclosed in single quotes, e.g. ’abc’.

• Single quotes in a string must be doubled,

e.g. ’John’’s Book’.
The real value of the string is John’s Book (with a single quote).
The doubling is only a way to input it.

-

#
"

!’ - Any Character except ’ -

#
"

!’ -

6

-

#
"

!’ -

#
"

!’

6

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-11

Character Strings (2)

• The SQL-92 standard allows splitting strings bet-

ween lines (with each segment enclosed in ’).
MySQL does support this syntax. Oracle, SQL Server, and Access do
not support it. However, strings can be combined with the concaten-
ation operator (|| in Oracle, + in SQL Server and Access).

• SQL-92 and all five DBMS allow line breaks inside

string constants.
I.e. the quote can be closed on a subsequent line.

• Microsoft SQL Server, MS Access, and MySQL ac-

cept also string literals enclosed in double quotes.

This does not conform to the standard.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-12

Identifiers (1)

• Identifiers are used e.g. as table and column names.

- Letter - - -

�

#
"

!_�

�Digit�

�Letter�

• E.g. Instructor_Name, X27, but not _XYZ, 12, 2BE.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-13

Identifiers (2)

• Identifiers can have up to 18 characters (at least).
System Length First Character Other Characters
SQL-86 ≤ 18 A-Z A-Z,0-9
SQL-92 ≤ 128 A-Z,a-z A-Z,a-z,0-9,_
Oracle ≤ 30 A-Z,a-z A-Z,a-z,0-9,_,#,$
SQL Server ≤ 128 A-Z,a-z,_,(@,#) A-Z,a-z,0-9,_,@,#,$
IBM DB2 ≤ 18 (8) A-Z,a-z A-Z,a-z,0-9,_
Access ≤ 64 A-Z,a-z A-Z,a-z,0-9,_
MySQL ≤ 64 A-Z,a-z,0-9,_,$ A-Z,a-z,0-9,_,$

Intermediate SQL-92: “_” at the end forbidden. Entry Level: Like SQL-86 (plus “_”).
In MySQL, identifiers can start with digits, but must contain at least one letter.
Access might permit more characters, depending on the context.

• Names must be different from all reserved words.

There are a lot of reserved words, see below. Embeddings in a pro-
gramming language (PL/SQL, Visual Basic) add reserved words.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-14

Identifiers (3)

• Identifiers (and keywords) are not case sensitive.

It seems that this is what the SQL-92 standard says (the book by Da-
te/Darwen about the Standard states this clearly). Oracle SQL*Plus
converts all letters outside quotes to uppercase. In SQL Server, case
sensitivity can be chosen at installation time. In MySQL, case sensi-
tivity of table names depends on the case sensitivity of file names in
the underlying operating system (tables are stored as files). Within a
query, one must use consistent case. However, keywords and column
names are not case sensitive.

• It is possible to use also national characters.

This is implementation dependent. E.g. in Oracle, one chooses a
database character set when the database is installed. Alphanumeric
characters from this character set can be used in identifiers.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-15

SQL Reserved Words (1)

1 = Oracle 8.0
2 = SQL-92
3 = SQL Server 7

— A —
ABSOLUTE2

ACCESS1

ACTION2

ADD1,2,3

ALL1,2,3

ALLOCATE2

ALTER1,2,3

AND1,2,3

ANY1,2,3

ARE2

AS1,2,3

ASC1,2,3

ASSERTION2

AT2

AUTHORIZATION2,3

AUDIT1

AVG2,3

— B —
BACKUP3

BEGIN2,3

BETWEEN1,2,3

BIT2

BIT_LENGTH2

BOTH2

BREAK3

BROWSE3

BULK3

BY1,2,3

— C —
CASCADE2,3

CASCADED2

CASE2,3

CATALOG2

CHAR1,2

CHARACTER2

CHAR_LENGTH2

CHARACTER_LENGTH2

CHECK1,2,3

CHECKPOINT3

CLOSE2,3

CLUSTER1

CLUSTERED3

COALESCE2,3

COLLATE2

COLLATION2

COLUMN1,3

COMMENT1

COMMIT2,3

COMMITTED3

COMPRESS1

COMPUTE3

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-16

SQL Reserved Words (2)

CONFIRM3

CONNECT1,2

CONNECTION2

CONSTRAINT2,3

CONSTRAINTS2

CONTAINS3

CONTAINSTABLE3

CONTINUE2,3

CONTROLROW3

CONVERT2,3

CORRESPONDING2

COUNT2,3

CREATE1,2,3

CROSS2,3

CURRENT1,2,3

CURRENT_DATE2,3

CURRENT_TIME2,3

CURRENT_TIMESTAMP2,3

CURRENT_USER2,3

CURSOR2,3

— D —
DATABASE3

DATE1,2

DAY2

DBCC3

DEALLOCATE2,3

DEC2

DECIMAL1,2

DECLARE2,3

DEFAULT1,2,3

DEFERRABLE2

DEFERRED2

DELETE1,2,3

DENY3

DESC1,2

DESCRIBE2

DESCRIPTOR2

DIAGNOSTICS2

DISCONNECT2

DISK3

DISTINCT1,2,3

DISTRIBUTED3

DOMAIN2

DOUBLE2,3

DROP1,2,3

DUMMY3

DUMP3

— E —
ELSE1,2,3

END2,3

END-EXEC2

ERRLVL3

ERROREXIT3

ESCAPE2,3

EXCEPT2,3

EXCEPTION2

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-17

SQL Reserved Words (3)

EXCLUSIVE1

EXEC2,3

EXECUTE2,3

EXISTS1,2,3

EXIT3

EXTERNAL2

EXTRACT2

— F —
FALSE2

FETCH2,3

FILE1,3

FILLFACTOR3

FIRST2

FLOAT1,2

FLOPPY3

FOR1,2,3

FOREIGN2,3

FOUND2

FREETEXT3

FREETEXTTABLE3

FROM1,2,3

FULL2,3

— G —
GET2

GLOBAL2

GO2

GOTO2,3

GRANT1,2,3

GROUP1,2,3

— H —
HAVING1,2,3

HOLDLOCK3

HOUR2

— I —
IDENTITY2,3

IDENTITY_INSERT3

IDENTITYCOL3

IDENTIFIED1

IF3

IMMEDIATE1,2

IN1,2,3

INCREMENT1

INDEX1,3

INDICATOR2

INITIAL1

INITIALLY2

INNER2,3

INPUT2

INSENSITIVE2

INSERT1,2,3

INT2

INTEGER1,2

INTERSECT1,2,3

INTERVAL2

INTO1,2,3

IS1,2,3

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-18

SQL Reserved Words (4)

ISOLATION2,3

— J —
JOIN2,3

— K —
KEY2,3

KILL3

— L —
LANGUAGE2

LAST2

LEADING2

LEFT2,3

LEVEL1,2,3

LIKE1,2,3

LINENO3

LOAD3

LOCAL2

LOCK1

LONG1

LOWER2

— M —
MATCH2

MAX2,3

MAXEXTENTS1

MIN2,3

MINUS1

MINUTE2

MIRROREXIT3

MODE1

MODIFY1

MODULE2

MONTH2

— N —
NAMES2

NATIONAL2,3

NATURAL2

NCHAR2

NETWORK1

NEXT2

NO2

NOAUDIT1

NOCHECK3

NOCOMPRESS1

NONCLUSTERED3

NOT1,2,3

NOWAIT1

NULL1,2,3

NULLIF2,3

NUMBER1

NUMERIC2

— O —
OCTET_LENGTH2

OF1,2,3

OFF3

OFFLINE1

OFFSETS3

ON1,2,3

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-19

SQL Reserved Words (5)

ONCE3

ONLINE1

ONLY2,3

OPEN2,3

OPENDATASOURCE3

OPENQUERY3

OPENROWSET3

OPTION1,2,3

OR1,2,3

ORDER1,2,3

OUTER2,3

OUTPUT2

OVER3

OVERLAPS2

— P —
PARTIAL2

PCTFREE1

PERCENT3

PERM3

PERMANENT3

PIPE3

PLAN3

POSITION2

PRECISION2,3

PREPARE2,3

PRESERVE2

PRIMARY2,3

PRINT3

PRIOR1,2

PRIVILEGES1,2,3

PROC3

PROCEDURE2,3

PROCESSEXIT3

PUBLIC1,2,3

— R —
RAISERROR3

RAW1

READ2,3

READTEXT3

REAL2

RECONFIGURE3

REFERENCES2,3

RELATIVE2

RENAME1

REPEATABLE3

REPLICATION3

RESOURCE1

RESTORE3

RESTRICT2,3

RETURN3

REVOKE1,2,3

RIGHT2,3

ROLLBACK2,3

ROW1

ROWCOUNT3

ROWGUIDCOL3

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-20

SQL Reserved Words (6)

ROWID1

ROWNUM1

ROWS1,2

RULE3

— S —
SAVE3

SCHEMA2,3

SCROLL2

SECOND2

SECTION2

SELECT1,2,3

SERIALIZABLE3

SESSION1,2

SESSION_USER2,3

SET1,2,3

SETUSER3

SHARE1

SHUTDOWN3

SIZE1,2

SMALLINT1,2

SOME2,3

SQL2

SQLCODE2

SQLERROR2

SQLSTATE2

START1

STATISTICS3

SUBSTRING2

SUCCESSFUL1

SUM2,3

SYNONYM1

SYSDATE1

SYSTEM_USER2,3

— T —
TABLE1,2,3

TAPE3

TEMP3

TEMPORARY2,3

TEXTSIZE3

THEN1,2,3

TIME2

TIMESTAMP2

TIMEZONE_HOUR2

TIMEZONE_MINUTE2

TO1,2,3

TOP3

TRAILING2

TRAN3

TRANSACTION2,3

TRANSLATE2

TRANSLATION2

TRIGGER1,3

TRIM2

TRUE2

TRUNCATE3

TSEQUAL3

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-21

SQL Reserved Words (7)

— U —
UID1

UNCOMMITTED3

UNION1,2,3

UNIQUE1,2,3

UNKNOWN2

UPDATE1,2,3

UPDATETEXT3

UPPER2

USAGE2

USE3

USER1,2,3

USING2

— V —

VALIDATE1

VALUE2

VALUES1,2,3

VARCHAR1,2

VARCHAR21

VARYING2,3

VIEW1,2,3

— W —
WAITFOR3

WHEN2,3

WHENEVER1,2

WHERE1,2,3

WHILE3

WITH1,2,3

WORK2,3

WRITE2

WRITETEXT3

— Y —
YEAR2

— Z —
ZONE2

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-22

Delimited Identifiers (1)

• It is possible to use any sequence of characters in

double quotes as identifiers, e.g. "id, 2!".

Such identifiers are case-sensitive, and there are no conflicts with
reserved words. SQL-86 does not contain them.

-

#
"

!" - Any Character except " -

#
"

!" -

6

-

#
"

!" -

#
"

!"

6

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-23

Delimited Identifiers (2)

• Delimited identifiers are not character string con-

stants! Character strings have the form ’...’.
SQL Server accepts ’ and " for string constants, and uses [...] for
delimited identifiers. “SET QUOTED_IDENTIFIER ON” selects the SQL-92
standard behaviour (but quoted identifiers are not case sensitive).
Access understands [...] and ‘...‘ for delimited identifiers and ex-
cludes the characters !.‘[]" and leading spaces in delimited identifiers.

• E.g. if you write in Oracle:

SELECT * FROM EMP WHERE ENAME = "JONES"

Error: "JONES" is an invalid column name.
Quoted identifiers are normally used only to rename output columns
(or if column names become reserved words in a new DBMS version).

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-24

Delimited Identifiers (3)

• Delimited identifiers are often used when output

columns are renamed, e.g.

SELECT FIRST AS "First Name", LAST "Last Name"

FROM STUDENTS

Note that “AS” is optional (except in MS Access).

• But if the new column name is a legal identifier,

the double quotes are not necessary:

SELECT FIRST AS FIRST_NAME, LAST Last_Name

FROM STUDENTS

• At least in Oracle, it will be printed all-uppercase.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-25

Summary: Lexical Errors

• Using double quotes, e.g. "Smith", for string con-

stants. This is a delimited identifier, no string.
Some systems accept "...", but that is a violation of the standard.

• Using quotes for numbers, e.g. ’123’.
This should give a type error. However, the DBMS may simply convert
the type of one of the operands. Since < and so on are differently
defined for strings and for numbers, this might be dangerous and
should be avoided. E.g. ’12’ < ’3’.

• Using reserved words as table, column, or tuple va-

riable names.
The error message might be strange (not understandable). Therefore,
one should keep this possibility in mind.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-26

Delimiting SQL Queries

• In Oracle SQL*Plus, every SQL statement must

be terminated with a semicolon “;”.

Since SQL statements can extend over several lines, this is necessary
so that SQL*Plus can see where the SQL statement is complete.
Also when SQL is embedded into C programs, the semicolon is used
as delimiter.

• But strictly speaking the semicolon is not part of

the SQL statement.

E.g. in the query analyzer window of MS SQL Server no semicolon
is necessary. It might even be an error, as in the command line in-
terface of DB2. Also, when SQL statements are passed to interface
procedures as strings, as e.g. in ODBC, no semicolon is necessary.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-27

Overview

1. Lexical Syntax

2. Tuple Variables, Joins

'

&

$

%
3. Terms, Conditions, Logic, Null Values

4. Subqueries, Nonmonotonic Constructs

5. Aggregations

6. Union, ORDER BY, Outer Join

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-28

Basic Query Syntax (1)

SELECT-Expression (Simplified):

-

#
"

!SELECT - Goal-List

-

#
"

!FROM - Source-List

?

?-

#
"

!WHERE - Condition - -

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-29

Basic Query Syntax (2)

• E.g., to list the complete table “STUDENTS”:

SELECT * FROM STUDENTS

• Every SQL query must contain the keywords SELECT

and FROM.

Oracle provides a relation “DUAL” which has only one row. It can be
used if only a computation is done without access to the database:
SELECT TO_CHAR(SQRT(2)) FROM DUAL.

• However, in SQL Server, Access, and MySQL, the

FROM-clause can be omitted, e.g. SELECT 1+1.

In Oracle, DB2, and the SQL-92 Standard, this is a syntax error.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-30

SELECT Syntax (1)

Goal-List (after SELECT):

-

-

#
"

!DISTINCT -

-

#
"

!ALL -

6
-

#
"

!* -

? - Goal-Element -

6

�

#
"

!,

6

• ALL (no duplicate elimination) is the default.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-31

SELECT Syntax (2)

Goal-Element:

- Term -

- Alias

6

-

#
"

!AS

6

- Variable -

#
"

!. -

#
"

!*

6

• “Variable.*” and “[AS] Alias” work in SQL-92, Oracle, SQL Server, and
DB2, MySQL and Access (in Access “AS” is required). These constructs
are not contained in the old SQL-86 standard.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-32

FROM Syntax (1)

Source-List (after FROM):

- Source-Element - -

�

#
"

!,

6

- Variable

6

• In SQL-92, SQL Server, Access, DB2, and MySQL (but not in Oracle 8i)
one can write “AS” between Source-Element and Variable.

• In SQL-92 and DB2 (but not Oracle, SQL Server, Access, MySQL) new
column names can be defined: “STUDENTS AS S(NO,FNAME,LNAME, EMAIL)”.

• If the “Source-Element” is a subquery, the tuple variable is required in
SQL-92, SQL Server, and DB2, but not in Oracle and Access. In this
case the above column renaming syntax suddenly works in SQL Server.

• SQL-92, SQL Server, Access, DB2 support joins under FROM (see below).

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-33

FROM Syntax (2)

Source-Element:
- - Table -

- User/Schema -

'
&

$
%.

6

-

'
&

$
%(Subquery

'
&

$
%)

6

• SQL-86 did not allow subqueries in the FROM-list.

• MySQL does not support subqueries at all.

• Basic (simplified) syntax of the FROM-clause:

FROM Table [Variable], ..., Table [Variable]

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-34

FROM Syntax (3)

Table Names:

• Tables of other users can be referenced in the FROM-

list (if read permission was granted):

SELECT * FROM BRASS.EXERCISES

• The username is here really a name of a DB schema

(one DBMS server can manage several schemas).
In Oracle, schema and user are more or less the same: Every user
has his/her own schema, every schema belongs to exactly one user.
In DB2, there can be multiple schemas per user and you can write
“schema.table” as in Oracle. In SQL Server, a fully qualified name
has the form “server.database.owner.table”, but there are various ab-
breviations including “owner.table” or simply “table”. In MySQL, one
can write “database.table”.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-35

Example Database (again)

STUDENTS

SID FIRST LAST EMAIL

101 Ann Smith · · ·
102 Michael Jones (null)
103 Richard Turner · · ·
104 Maria Brown · · ·

EXERCISES

CAT ENO TOPIC MAXPT

H 1 Rel. Algeb. 10
H 2 SQL 10
M 1 SQL 14

RESULTS

SID CAT ENO POINTS

101 H 1 10
101 H 2 8
101 M 1 12
102 H 1 9
102 H 2 9
102 M 1 10
103 H 1 5
103 M 1 7

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-36

Tuple Variables (1)

• The FROM clause can be understood as declaring

variables that range over all tuples of a relation:

SELECT E.ENO, E.TOPIC

FROM EXERCISES E

WHERE E.CAT = ’H’

• This can be executed as:
for E in EXERCISES do

if E.CAT = ’H’ then
print E.ENO, E.TOPIC

• E stands here for a single row in the table EXERCISES

(the loop assigns each row in succession).

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-37

Tuple Variables (2)

• A tuple variable is always created: If not given a

name explicitly, it will have the name of the relation:

SELECT EXERCISES.ENO, EXERCISES.TOPIC

FROM EXERCISES

WHERE EXERCISES.CAT = ’H’

• I.e. writing only FROM EXERCISES is understood as:

FROM EXERCISES EXERCISES

(The tuple variable called “EXERCISES” ranges over

the rows of the table “EXERCISES”.)

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-38

Tuple Variables (3)

• If a tuple variable name is explicitly declared, e.g.,

FROM EXERCISES E

it is an error to try to access “EXERCISES.ENO”.

The tuple variable is now called “E”, not “EXERCISES”.

• When one refers to an attribute A of a tuple varia-

ble R, it is possible to write simply A instead of R.A

if R is the only tuple variable that has attribute A.

This is explained further below. In the example, one can write “ENO”
for the attribute, no matter whether one explicitly introduces a tuple
variable or not.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-39

Joins (1)

• Consider a query with two tuple variables:

SELECT A1, . . . , An

FROM STUDENTS S, RESULTS R

WHERE C

• Then S will range over the 4 tuples in STUDENTS, and

R will range over the 8 tuples in RESULTS. In principle,

all 4 ∗ 8 = 32 combinations are considered:

for S in STUDENTS do
for R in RESULTS do

if C then print A1, . . . , An

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-40

Joins (2)

• A good DBMS might use a better evaluation algo-

rithm (depending on the condition C).

This is the task of the query optimizer. E.g. if C contains the join con-
dition S.SID = R.SID, the DBMS might loop over all tuples in RESULTS,
and find the corresponding STUDENTS tuple by using an index over
STUDENTS.SID (most systems automatically create an index over the
key attributes).

• But in order to understand the meaning of a query,

it suffices to consider this simple algorithm.

The query optimizer can use any algorithm that produces the same
output, possibly in a different sequence (SQL does not define the
sequence of the result tuples).

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-41

Joins (3)

• The join must be explicitly specified in the WHERE-

condition:

SELECT R.CAT, R.ENO, R.POINTS

FROM STUDENTS S, RESULTS R

WHERE S.SID = R.SID -- Join Condition

AND S.FIRST = ’Ann’ AND S.LAST = ’Smith’

• Exercise: What will be the output of this query?

SELECT S.FIRST, S.LAST Wrong!
FROM STUDENTS S, RESULTS R

WHERE R.CAT = ’H’ AND R.ENO = 1

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-42

Joins (4)

• It is almost always an error if there are two tuple

variables which are not linked (maybe indirectly) via

join conditions.
However, it is also possible that constant values are required for the
join attributes instead. In seldom cases a connection might also be
done in a subquery.

• In this query, all three tuple varibles are connected:

SELECT E.CAT, E.ENO, R.POINTS, E.MAXPT

FROM STUDENTS S, RESULTS R, EXERCISES E

WHERE S.SID = R.SID

AND R.CAT = E.CAT AND R.ENO = E.ENO

AND S.FIRST = ’Ann’ AND S.LAST = ’Smith’

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-43

Joins (5)

• The tuple variables are connected as follows:

"!

S

S.SID = R.SID "!

R

R.CAT = E.CAT
AND R.ENO = E.ENO

"!

E

• This corresponds to the key-foreign key relation-

ships between the tables.

• If one forgets a join condition, one will often get

many duplicates.

Then it would be wrong to specify DISTINCT without thinking about
the reason for the duplicates.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-44

Attribute References (1)

• Attributes can be accessed in the form

Variable.Attribute

• If only one variable has this attribute, the variable

name can be left out. E.g. this query is legal:

SELECT CAT, ENO, POINTS

FROM STUDENTS S, RESULTS R

WHERE S.SID = R.SID

AND FIRST = ’Ann’ AND LAST = ’Smith’

“FIRST” and “LAST” can only refer to “S”. The attributes “CAT”, “ENO”,
and “POINTS” can only refer to “R”. However, “SID” alone would be
ambiguous, since “S” and “R” both have an attribute with this name.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-45

Attribute References (2)

• Consider this query:
SELECT ENO, SID, POINTS, MAXPT Wrong!
FROM RESULTS R, EXERCISES E

WHERE R.ENO = E.ENO

AND R.CAT = ’H’ AND E.CAT = ’H’

• SQL requires that the user specifies whether he/she

wants R.ENO or E.ENO in the SELECT-clause, although

both are equal, so it actually does not matter.

The rule is purely syntactic: If more than one tuple variable in the FROM

clause has the attribute “ENO”, the tuple variable cannot be left out,
or the DBMS (e.g. Oracle) will print the error message “ORA-00918:
column ambiguously defined”. DB2, SQL Server, Access, MySQL are
equally pedantic.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-46

Query Formulation (1)

• Task: Write an SQL query which prints the topics

of all exercises solved by Ann Smith.

• First it must understood that Ann Smith is a stu-

dent, requiring a tuple variable S over STUDENTS and

the condition S.FIRST=’Ann’ AND S.LAST=’Smith’.

• Exercise topics are requested, so a tuple variable E

over EXERCISES is needed, and the following piece

can already be generated (several exercises can ha-

ve the same topic):

SELECT DISTINCT E.TOPIC

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-47

Query Formulation (2)

• Finally, S and E are not connected.

• When trying to understand a relational database

schema, it helps to draw a connection graph of the

tables based on common columns (foreign keys):

STUDENTS RESULTS EXERCISES

• This shows that a tuple variable R over RESULTS is

required, and yields the condition

S.SID = R.SID AND R.CAT = E.CAT AND R.ENO = E.ENO

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-48

Query Formulation (3)

• It is not always that simple. The connection graph

may contain cycles, which makes the selection of

the right path more difficult and error-prone.

• E.g. consider a course registration database that

also contains GSA assignments.
Graduate student assistants are advanced students (often PhD stu-
dents) who help correcting homeworks etc.

STUDENTS
HH

HHHH ENROLLMENTS

��
����

��
���� GSA

HH
HHHH

COURSES

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-49

Unnecessary Joins (1)

• Do not join more tables than needed.
Queries will run more slowly: Most optimizers do not remove joins.

• E.g. results for Homework 1:

SELECT R.SID, R.POINTS

FROM RESULTS R, EXERCISES E

WHERE R.CAT = E.CAT AND R.ENO = E.ENO

AND E.CAT = ’H’ AND E.ENO = 1

• Can the following query ever give a different result?

SELECT SID, POINTS

FROM RESULTS R

WHERE R.CAT = ’H’ AND R.ENO = 1

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-50

Unnecessary Joins (2)

• What will be the result of this query?

SELECT R.SID, R.POINTS

FROM RESULTS R, EXERCISES E

WHERE R.CAT = ’H’ AND R.ENO = 1

• Is there any difference between these two queries?

SELECT S.FIRST, S.LAST

FROM STUDENTS S

SELECT DISTINCT S.FIRST, S.LAST

FROM STUDENTS S, RESULTS R

WHERE S.SID = R.SID

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-51

Self Joins (1)

• It might be possible that in order to generate a re-

sult tuple, more than one tuple must be considered

from the same relation.

• Task: Is there a student who got 10 points for both,

Homwork 1 and Homework 2?

SELECT S.FIRST, S.LAST

FROM STUDENTS S, RESULTS H1, RESULTS H2

WHERE S.SID = H1.SID AND S.SID = H2.SID

AND H1.CAT = ’H’ AND H1.ENO = 1

AND H2.CAT = ’H’ AND H2.ENO = 2

AND H1.POINTS = 10 AND H2.POINTS = 10

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-52

Self Joins (2)

• Find students who solved at least two exercises:

SELECT S.FIRST, S.LAST Wrong!
FROM STUDENTS S, RESULTS E1, RESULTS E2

WHERE S.SID = E1.SID AND S.SID = E2.SID

• The tuple variables E1 and E2 can point to the same

input tuple.

• One must explicitly request that they are different:

WHERE S.SID = E1.SID AND S.SID = E2.SID

AND (E1.CAT <> E2.CAT OR E1.ENO <> E2.ENO)

• This task can also be solved with aggregations.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-53

Duplicate Elimination (1)

• One difference of SQL to relational algebra is that

duplicates have to be explicitly eliminated in SQL.

• E.g. which exercises have already been solved by at

least one student?

SELECT CAT, ENO

FROM RESULTS

CAT ENO

H 1
H 2
M 1
H 1
H 2
M 1
H 1
M 1

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-54

Duplicate Elimination (2)

• If the query might contain duplicates, and there is

no specific reason why they should be shown, use

“SELECT DISTINCT” (DISTINCT applies to rows, not columns):

SELECT DISTINCT CAT, ENO

FROM RESULTS

CAT ENO

H 1

H 2

M 1

• To emphasize that there are duplicates and that

they are really wanted, one can write “SELECT ALL”.

However, “ALL” is the default.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-55

Duplicate Elimination (3)

Sufficient condition for unnecessary DISTINCT:

• Let K be the set of attributes that appear as output

columns under SELECT.

The elements of K are of the form “Tuplevariable.Attribute”. K is the
set of attributes that have a unique value for a given output row.

• Add to K attributes A such that A = c with a

constant c appears in the WHERE-condition.

This test assumes that the condition is a conjunction. Of course, a
condition c = A is treated in the same way. Conditions in subqueries
do not count (subqueries are simply removed before the test is done).

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-56

Duplicate Elimination (4)

Test for unnecessary DISTINCT, continued:

• As long as something changes, do the following:

� Add to K attributes A such that A = B appears

in the WHERE-condition and B ∈ K.

� If K contains a key of a tuple variable, add all

other attributes of this tuple variable.

• If K contains a key of every tuple variable listed

under FROM, DISTINCT is superfluous.

If the query contains GROUP BY, one checks instead whether all GROUP
BY columns are contained in K.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-57

Duplicate Elimination (5)

Example:

• Consider the following query:

SELECT DISTINCT S.FIRST, S.LAST, R.ENO, R.POINTS

FROM STUDENTS S, RESULTS R

WHERE R.CAT = ’H’ AND R.SID = S.SID

• Let us assume that FIRST, LAST is declared as an

alternative key for STUDENTS.

• K is initialized with S.FIRST, S.LAST, R.ENO, R.POINTS.

• R.CAT is added because of the condition R.CAT = ’H’.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-58

Duplicate Elimination (6)

Example, continued:

• S.SID and S.EMAIL are added, because K contains a

key of STUDENTS S (S.FIRST and S.LAST).

• R.SID is added because of R.SID = S.SID.

• Now K contains also a key of RESULTS R (R.SID,

R.CAT, R.ENO), thus DISTINCT is superfluous.

• If FIRST, LAST were not a key of STUDENTS, this test

would not succeed.

However, this case it might be useful to print duplicates since in the
real world, students are identified by name (“soft key”).

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-59

Duplicate Elimination (7)

• Duplicates should be eliminated with DISTINCT, alt-

hough it works also with GROUP BY:
SELECT CAT, ENO Bad Style!
FROM RESULTS

GROUP BY CAT, ENO

This splits the table into groups of tuples: each group contains tuples
that agree in the values for the grouping attributes CAT, ENO. For each
group, only one output tuple is produced. Normally this is used to
compute aggregation functions (SUM, COUNT) for each group.

• I would consider this as an abuse of GROUP BY.
However, GROUP BY is more flexibe than DISTINCT if one wants to eli-
minate only some duplicates. Also old versions of MySQL did not
support DISTINCT. Then one had to use GROUP BY.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-60

Summary: Join Errors

• Missing join conditions (very common)

• Unnecessary joins (make query slower)

• Problems when several tuple variables over the sa-

me relation are required: If these are “merged”, one

often gets an inconsistent condition (see below).

• Duplicates are often an indication for errors: One

should understand the source of the duplicates and

not simply specify DISTINCT to avoid the problem.

• An unnecessary DISTINCT should be avoided.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-61

Overview

1. Lexical Syntax

2. Tuple Variables, Joins

3. Terms, Conditions, Logic, Null Values

'

&

$

%
4. Subqueries, Nonmonotonic Constructs

5. Aggregations

6. Union, ORDER BY, Outer Join

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-62

Terms (1)

• A term denotes a data element.

Instead of term, one can also say “expression”.

• Terms are:

� Attribute References, e.g. STUDENT.SID.

� Constants (“literals”), e.g. ’Ann’, 1.

� Composed Terms, using datatype operators like

+, -, *, / (for numbers), || (string concatenati-

on), and datatype functions, e.g. 0.9 * MAXPT.

� Aggregation terms, e.g. MAX(POINTS).

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-63

Terms (2)

• The SQL-86 standard contained only +, -, *, /.

• Current database management systems still differ

in other data type operations.

• E.g. the operator || is contained in the SQL-92

standard, but does not work e.g. in SQL Server.

String concatenation is written “+” in SQL Server and Access.
In MySQL, one must write “concat(s1, s2)” (but there is “--ansi”).
Other datatype functions (e.g. SUBSTR) are even less standardized.

• SQL knows the standard precedence rules, e.g. that

A+B*C means A+(B*C). Parentheses may be used.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-64

Terms (3)

• Terms are used in conditions, e.g.

R.POINTS > E.MAXPT * 0.8

contains the terms “R.POINTS” and “E.MAXPT * 0.8”.

• Also the SELECT-list can contain arbitrary terms:

SELECT LAST || ’, ’ || FIRST "Name"
FROM STUDENTS

Name

Smith, Ann
Jones, Michael
Turner, Richard
Brown, Maria

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-65

Conditions (1)

• Conditions consist of atomic formulas, e.g.

POINTS >= 8,

connected by “AND”, “OR”, “NOT”.

• AND binds more strongly than OR, thus

CAT = ’H’ AND ENO = 1 OR ENO = 2

is implicitly parenthesized as

(CAT = ’H’ AND ENO = 1) OR ENO = 2

• In this example, this is probably not intended.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-66

Conditions (2)

• It might help to draw a complex condition (or com-

plex term) as an “operator tree”:

CAT = ’H’ ENO = 1

��
���

����

HH
HHH

HHHH

'
&

$
%AND

��
���

����

ENO = 2

HH
HHH

HHHH

'
&

$
%OR

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-67

Conditions (3)

• NOT binds most strongly, i.e. it is applied only to the

immediately following condition (atomic formula).

• Parentheses (...) can be used to override the

operator priorities (precedences, binding strengths).

• Sometimes, it might be clearer to use parentheses

even if they are not necessary to enforce the right

structure of the formula.

However, beginners tend to use a lot of parentheses (probably because
they are unsure about the operator priorities). This does not make
the formula easier to understand.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-68

Conditions (4)

Condition:

- Atomic Formula -

-

#
"

!NOT

6

-

#
"

!(- Condition -

#
"

!)

6

�

#
"

!AND

6

�

#
"

!OR

6

• SQL-92 allows “IS NOT TRUE”, “IS FALSE” etc. after formulas
(not supported in Oracle 8.0, SQL Server, DB2, MySQL, Access).

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-69

Conditions (5)

• AND and OR must take complete logical conditions

(something that is true or false) on both sides.

• So the following is a syntax error although it is

similar to natural language:

SELECT DISTINCT SID Wrong!
FROM RESULTS

WHERE CAT = ’H’ AND POINTS >= 9

AND ENO = 1 OR 2

• Exception: ... BETWEEN ... AND ...

Here the word AND does not denote the logical connective.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-70

Comparisons (1)

Atomic Formula (Form 1):

- Term - Comparison-Op - Term -

• Comparison operators: =, <>, <, >, <=, >=.

• Comparison operators can be used for numbers as

well as for strings, e.g.: POINTS >= 8, LAST < ’M’.

• “Not equals” is written in standard SQL as “<>”.

Oracle, SQL Server, DB2, and MySQL understand also “!=” (Access
does not accept this notation). “^=” works in Oracle and DB2, but
not in SQL Server, Access, or MySQL.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-71

Comparisons (2)

• Numbers are compared differently than strings,

e.g. 3 < 20, but ’3’ > ’20’.

String comparison is done character by character until the outcome is
clear. In this case, “3” comes alphabetically after “2”, therefore the
rest of the string is not important.

• According to the SQL-92 standard, it is an error to

compare strings with numbers, e.g. 3 > ’20’.

The two compared values must be of compatible types: All numeric
types are compatible, and all string types are compatible, but numeric
types are not compatible with string types.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-72

Comparisons (3)

• Comparing a string with a number should be avoi-

ded, since the outcome is very system dependent:

� SQL-92, DB2, and Access produce a type error.

� Oracle, MySQL, and SQL Server convert the

string to a number and do a numeric comparison.
If the string is not of numeric format, MySQL simply converts it
to 0. E.g. 0 = ’abc’ is true in MySQL. In Oracle and SQL Server,
one gets an error if the string is not of numeric format. This might
be a runtime error if the string is a column value.

� However, if a column is compared with a con-

stant, SQL server uses the column type.
Aggregate functions have still higher priority than columns.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-73

String Comparisons (1)

• The outcome of comparing (=, <>, <, <=, >, >=) two

character strings may depend on the DBMS.

Or settings within the DBMS.

• The SQL-92 standard defines the notion of “colla-

tion sequences” (or “collations”) which determine

� for any pair X and Y of characters, whether

X < Y , X = Y , or X > Y , and

� whether the blank-padded semantics (PAD SPACE)

or the non-padded semantics (NO PAD) is used.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-74

String Comparisons (2)

• ’a’ < ’b’ etc., and ’A’ < ’B’ etc. can be expected.

• But the systems differ in the comparison of upper-

case and lowercase characters. The defaults are:

� In Oracle all uppercase characters come before

all lowercase characters (ASCII), e.g. ’Z’ < ’a’.

� In DB2, uppercase and lowercase characters are

interleaved, e.g.: ’a’ < ’A’, ’A’ < ’b’.

� SQL Server, MS Access, and MySQL are case-

insensitive, e.g.: ’a’ = ’A’.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-75

String Comparisons (3)

• It might be possible to change this, but e.g. only

during installation (SQL Server), or during databa-

se creation (Oracle, DB2).

• When the order (<, =, >) of every two characters

is known, the comparison of strings of the same

length is clear:

� The system compares character by character,

the first comparison which does not give “=” de-

termines the result.
Actually, DB2 makes two passes: It first compares the character
“weights”, and if there is no difference, also the character codes.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-76

String Comparisons (4)

• For strings of different lengths, there are

� Non-Padded Comparison Semantics:

E.g. ’a’ < ’a ’.

Strings are compared character by character. When one string
ends and no difference was found, the shorter string is considered
less than the longer one.

� Blank-Padded Comparison Semantics:

E.g. ’a’ = ’a ’.

The shorter string is filled with ’ ’ before the comparison.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-77

String Comparisons (5)

• DB2, SQL Server, Access, and MySQL use the

blank-padded semantics (at least by default).

• Oracle uses the nonpadded semantics if at least

one operand of a comparison has type VARCHAR2.

Oracle has introduced a type VARCHAR2(n). It is currently synonymous
to VARCHAR(n), but Oracle intends to change the comparison seman-
tics for VARCHAR, while the semantics for VARCHAR2 will remain stable.
String literals (constants) in the query have type CHAR(n). E.g. a com-
parison of CHAR(10) and CHAR(20) columns can possibly yield “true” as
can a comparison of these columns with, e.g., ’abc’. But CHAR(10)

and VARCHAR(20) can only be equal if the VARCHAR happens to be of
length 10. Trailing spaces in VARCHAR2-columns can be quite annoying:
They are not visible in the output, but the comparison does not work.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-78

String Comparisons (6)

• If the system uses a case-sensitive semantics, one

can get a case-insentive comparison by converting

both sides e.g. to uppercase:

SELECT FIRST, LAST

FROM STUDENTS

WHERE UPPER(EMAIL) = UPPER(’xyz@hotmail.com’)

• UPPER works in SQL-92, Oracle, SQL Server, DB2,

MySQL. In Access, use UCASE.

UCASE works also in DB2 and MySQL. The book by Chamberlin about
DB2 lists only UCASE.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-79

String Comparisons (7)

• The opposite case (case-sensitive comparison with

a case-insensitive system) is more difficult.

But also much more seldom required.

• E.g. in MySQL, one can convert a string to a binary

string in order to get case-sensitive comparison:

BINARY EMAIL = ’xyz@hotmail.com’

• The same trick works in SQL Server:

CAST(EMAIL AS VARBINARY(255))

= CAST(’...’ AS VARBINARY(255))

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-80

String Comparisons (8)

• If one suspects that trailing spaces make a compa-

rison fail, one can make them visible in this way:

SELECT ’"’ || LAST || ’"’ AS LAST_NAME

FROM STUDENTS

• One can also remove trailing spaces:

� TRIM(TRAILING ’ ’ FROM LAST)

in SQL-92 (works in MySQL)

This syntax is not supported in Oracle, DB2, SQL Server, Access.

� RTRIM(LAST)

in Oracle, DB2, SQL Server, MySQL, Access.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-81

BETWEEN Conditions

Atomic Formula (Form 2):

- Term -

#
"

!BETWEEN

-

#
"

!NOT

6

- Term -

#
"

!AND - Term -

• x BETWEEN y AND z is equivalent to

x >= y AND x <= z.

• E.g.: POINTS BETWEEN 5 AND 8

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-82

LIKE Conditions (1)

Atomic Formula (Form 3):

- Term -

#
"

!LIKE - Term

?

-

#
"

!NOT

6

-

#
"

!ESCAPE - Character -

• E.g.: EMAIL LIKE ’%.pitt.edu’

Thius is true for all email addresses that end in “pitt.edu”.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-83

LIKE Conditions (2)

• The right argument is interpreted as pattern.

In SQL-86 and DB2, it must be a string constant.

In Oracle, SQL Server, Access, and MySQL, one can use any string
valued term as pattern (especially also another column).

• “%” in the pattern matches any sequence of arbi-

trary characters (including the empty string).

• “_” matches any single character.

SQL Server and Access support also character ranges, e.g. [a-zA-Z].
MySQL has an additional operator “RLIKE” (or “REGEXP”) that accepts
arbitrary regular expressions as patterns.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-84

LIKE Conditions (3)

• To use the characters “%” and “_” without their

special meaning in the pattern, an “escape” cha-

racter is used.

The escape character removes the special meaning of the following
character. E.g. if “\” is the escape character, then “\%” matches only
a percent sign, not an arbitrary string.

• The escape character must be declared, e.g.:

PROCNAME LIKE ’_%’ ESCAPE ’\’

This gives all procedure names starting with an “_”.

In MySQL, if no escape character is explicitly declared, “\” is the
default escape character. However, this violates the SQL-92 standard.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-85

LIKE Conditions (4)

• LIKE uses the non-padded semantics.
Oracle, DB2, MySQL, and Access use the non-padded semantics as
required by the SQL-92 standard. Note that MySQL removes trailing
spaces when strings are stored. All systems fill values with blanks if
the column is declared as fixed-length character string.
In SQL Server, if the stored string contains more spaces at the end
than the pattern, it might still match. If the pattern contains more
spaces, the match fails. With the Unicode national character set types,
the strict non-padded semantics is used.

• E.g. ’a’ = ’a ’ might be true (in some DBMS),

but ’a’ LIKE ’a ’ is surely false.

• The case sensitivity is the same as for ordinary com-

parisons.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-86

IN Conditions (1)

Atomic Formula (Form 4):

- Term -

#
"

!IN

-

#
"

!NOT

6

-

#
"

!(- Term -

#
"

!) -

�

#
"

!,

6

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-87

IN Conditions (2)

• E.g. CAT IN (’M’, ’F’)

• This is equivalent to

CAT = ’M’ OR CAT = ’F’

• The SQL-86 standard allowed only constants in the

enumeration of values.
SQL-92, Oracle, SQL Server, and DB2 allow arbitrary terms, but it
is normally better style to use OR if the set is not an enumeration of
constants.

• Note that although in mathematics, “(...)” are

used for intervals, here they mean “set”.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-88

A bit of Logic (1)

• Conditions used in the WHERE-clause are formulas of

tuple calculus, which is a variant of predicate logic.

• Predicate logic is studied for about 100 years in

mathematics and philosophy.

• Some basic knowledge of logic can actually help in

query formulation.

• Here, the notions “inconsistent”, “tautology”, “im-

plied”, and “equivalent” are introduced, as well as

some concrete equivalences for the propositional

connectives AND, OR, NOT.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-89

A bit of Logic (2)

• A condition is inconsistent if it can never be satis-

fied, i.e. is always false, no matter what the databa-

se state is and no matter which tuples are assigned

to the tuple variables.

• E.g., no matter what row stands R for, R.ENO cannot

be two different values at the same time:

R.ENO = 1 AND R.ENO = 2 Wrong!

• An inconsistent condition as WHERE-clause means

that the query will never return any result rows.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-90

A bit of Logic (3)

• Database management systems like Oracle do not

give warnings for inconsistent conditions.

Actually, it can be proven that it is impossible to develop an algorithm
that detects all inconsistent conditions (if also subqueries or arithmetic
operations are allowed).

• The other extreme is a tautology, i.e. a condition

that is always true, e.g.:

R.ENO < 3 OR R.ENO > 2

• Obviously, such conditions are not useful.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-91

A bit of Logic (4)

• A condition A implies a condition B if, whenever A

is true, also B is true.

The implied condition B is weaker than condition A that implies it.
A set of conditions {A1, . . . , An} implies a condition B if, whenever A1

to An are all true, also B is true.

• E.g. “R.ENO = 2” implies “R.ENO <> 1”.

• Therefore, the condition

R.ENO = 2 AND R.ENO <> 1

can be safely simplified to R.ENO = 2.

The second part gives nothing new.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-92

A bit of Logic (5)

• Two conditions are called (logically) equivalent if

they always yield the same truth value.

I.e. A and B are equivalent if for all database states and all assignments
of rows to the tuple variables, if A is true, then B is true, and if
A is false, then B is false. Equivalence means implication in both
directions.

• E.g. it is not important whether one writes

CAT = ’H’ AND ENO = 1

or vice versa

ENO = 1 AND CAT = ’H’

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-93

A bit of Logic (6)

• For the correctness of a query, it is not important

which one out of several logically equivalent formu-

lation one chooses.

• Of course, some formulations are more complicated

than others, and one should choose a simple one.
For instance, although adding an implied condition as shown above
does not change the correctness of the query, points might be taken
off in the exam for unnecessary complications.

• Modern DBMSs have good optimizers, such that

simple equivalences like A AND B vs. B AND A are

not important for the runtime of a query.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-94

A bit of Logic (7)

• More complicated equivalences might not be de-

tected by the query optimizer, e.g. writing

ENO - 2 = 0

might prevent that a special access structure for

finding rows quickly (B-tree index) is used, which

would have been used for the logically equivalent

condition

ENO = 2

• However, one gets the same answer in both cases,

only the first query might run slightly longer.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-95

Some Equivalences (1)

• A AND B ≡ B AND A

This is called commutativity. It holds also for OR.

• A AND (B AND C) ≡ (A AND B) AND C

This is called associativity. It means that no parentheses are neces-
sary if one has a sequence of conditions all connected with AND. The
associative law also holds for OR.

• A AND (B OR C) ≡ (A OR B) AND (A OR C)

This is the distribution law. It holds also for AND and OR exchanged.

• NOT (NOT A) ≡ A

This means that double negation cancels out.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-96

Some Equivalences (2)

• NOT(A AND B) ≡ (NOT A) OR (NOT B)

This is De Morgan’s Law. It holds also with AND and OR exchanged.

• A AND A ≡ A

It makes no sense to repeat a condition. This holds also for OR.

• NOT X < Y ≡ X >= Y

The comparison operators always come in complementary pairs, and
it is not necessary to use NOT directly in front of such a condition.
Together with De Morgan’s law and the double negation rule, one
can eliminate NOT from conditions (that use only the six comparison
operators). But this might not always make the condition simpler.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-97

Some Equivalences (3)

• X = Y ≡ Y = X (symmetry)

• X < Y ≡ Y > X

And the same for <= and >=.
Also, X <= Y is equivalent to X < Y OR X = Y .

• X = Y AND Y = Z implies X = Z (transitivity)
And the same for <, <=, >, >=. When A implies B, the formulas A

and A AND B are equivalent. Thus, X = Y AND Y = Z is equivalent to
X = Y AND Y = Z AND X = Z Since certain equality conditions can
be evaluated by using an index, it makes sense for a query optimizer
to compute implied such conditions.

• X = X is a tautology if X cannot be null.
SQL uses a three-valued logic, see below.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-98

Exercise

• Is there any problem with this query? The task is to

list all students who solved an exercise about SQL

and an exercise about relational algebra.

SELECT S.FIRST, S.LAST

FROM STUDENTS S, RESULTS R,

EXERCISES E1, EXERCISES E2

WHERE S.SID = R.SID

AND R.CAT = E1.CAT AND R.ENO = E1.ENO

AND R.CAT = E2.CAT AND R.ENO = E2.ENO

AND E1.TOPIC = ’SQL’

AND E2.TOPIC = ’Rel. Alg.’

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-99

Three-Valued Logic (1)

• Consider the following query:

SELECT FIRST, LAST

FROM STUDENTS

WHERE EMAIL = ’xyz@acm.org’

• What happens if a course has a null value in the

column EMAIL? It is not printed.

• But it also does not appear in the result of this

query (because the value is unknown):

SELECT FIRST, LAST

FROM STUDENTS

WHERE NOT (EMAIL = ’xyz@acm.org’)

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-100

Three-Valued Logic (2)

• The condition

EMAIL = ’xyz@acm.org’

does not evaluate to false if EMAIL is null, since then

the row would appear in the negated query.

Of course, it also does not yield true.

• SQL uses a three-valued logic for treating null va-

lues. The three truth values are true, false, and

unknown.

Instead of “unknown”, one also often reads “null”.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-101

Three-Valued Logic (3)

• The idea is that tuples which have a null value in

an attribute which is important for the query should

be “filtered out” — they should not influence the

query result.

• The real attribute value is unknown or does not

exist, so saying that the result of a comparison with

a null value is true or false is equally wrong.

• In SQL, a comparison with a null value always yields

the third truth value “unknown”.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-102

Three-Valued Logic (4)

• A result row is printed only if the WHERE-condition

evaluates to “true”.

• Thus, the following query gives the empty result:

SELECT FIRST, LAST

FROM STUDENTS

WHERE EMAIL = null

Actually, the query is illegal in SQL-92, and DB2 refuses it. Oracle, SQL
Server, Access, and MySQL accept it and print the empty result.

• “AND”/“OR” forward the truth value “unknown”,

unless the result is clear:

E.g. “true OR unknown = true”.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-103

Three-Valued Logic (5)

P Q NOT P P AND Q P OR Q
false false true false false
false unknown true false unknown
false true true false true
unknown false unknown false unknown
unknown unknown unknown unknown unknown
unknown true unknown unknown true
true false false false true
true unknown false unknown true
true true false true true

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-104

Test for Null (1)

Atomic Formula (Form 5):

- Term -

#
"

!IS -

#
"

!NULL -

-

#
"

!NOT

6

• E.g. EMAIL IS NULL

• The test for a null value can only be done in this

way.

“EMAIL = NULL” does not give the expected result in Oracle and SQL
Server, it is a syntax error in SQL-92 and DB2.
In SQL Server 7, “EMAIL = NULL” works after the command
“SET ANSI_NULLS OFF” (then a two-valued logic is used).

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-105

Test for Null (2)

• Exercise: The following query prints all students

with an email address in the domain “.pitt.edu”:

SELECT FIRST, LAST

FROM STUDENTS

WHERE EMAIL IS NOT NULL

AND EMAIL LIKE ’%.pitt.edu’

Is the test for null necessary?

• CHECK-integrity constraints are satisfied if the condi-

tion evaluates to the third truth value “unknown”.

They are only violated if the condition evaluates to false.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-106

Problems of Null Values (1)

• For those accustomed to working with a two-valued

logic (all of us), null values can sometimes lead

to surprises: Some standard logical equivalences do

not hold in SQL.

• E.g. if students with an email address in the domain

“.pitt.edu” are counted, and students with an out-

side email address, one would normally assume to

get all students.

• But this is not true in SQL — those with a null

value in the EMAIL column are not counted.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-107

Problems of Null Values (2)

• E.g. X = X evaluates to “unknown”, not to “true”

if X is null.

• Since the null value is used with different meanings,

there can be no satisfying semantics for a query

language.

E.g. the meaning “value exists, but unknown” (∃X: . . .) would allow
to use standard logical equivalences.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-108

Terms with Null Values (1)

• Data type functions will normally return null if one

of their arguments is null. E.g. if A is null, A+B will

be null.

In Oracle, A || B (the concatenation of strings A and B) returns B if A

is null (violates the SQL-92 standard).

• NULL by itself is not a term (expression), although it

can be used in many contexts that otherwise require

a term.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-109

Terms with Null Values (2)

• NULL has no type, so at least we need a context in

which the type is clear:

� In SQL-92 and DB2, CAST(NULL AS type) gives a

null value of the specified type.

� In Oracle, NULL often can be used as a term, but

e.g. this gives an error:

select 1 from dual union select null from dual

One must write TO_NUMBER(null).

� In SQL Server, Access, and MySQL “NULL” is

handled like a normal term (with arbitrary type).

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-110

Overview

1. Lexical Syntax

2. Tuple Variables, Joins

3. Terms, Conditions, Logic, Null Values

4. Subqueries, Nonmonotonic Constructs

'

&

$

%
5. Aggregations

6. Union, ORDER BY, Outer Join

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-111

Example Database (again)

STUDENTS

SID FIRST LAST EMAIL

101 Ann Smith · · ·
102 Michael Jones (null)
103 Richard Turner · · ·
104 Maria Brown · · ·

EXERCISES

CAT ENO TOPIC MAXPT

H 1 Rel. Algeb. 10
H 2 SQL 10
M 1 SQL 14

RESULTS

SID CAT ENO POINTS

101 H 1 10
101 H 2 8
101 M 1 12
102 H 1 9
102 H 2 9
102 M 1 10
103 H 1 5
103 M 1 7

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-112

Nonmonotonic Behaviour (1)

• SQL queries using only the constructs introduced

above compute monotonic functions on the existing

tables: If further rows are inserted, one gets at least

the same answers as before, and maybe more.

• However, not all queries behave monotonically in

this way: E.g. print students who have not yet sub-

mitted any homework.
Currently Maria Brown would be a correct answer. But if a homework
result were inserted for her, she would no longer qualify.

• Therefore, this query cannot be formulated with

the SQL constructs that were introduced so far.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-113

Nonmonotonic Behaviour (2)

• In the natural language version of queries, formu-

lations like “there is no”, “does not exist” indicate

nonmonotonic behaviour.

• Furthermore, “for all”, “the minimal/maximal”, al-

so indicate nonmonotonic behaviour: In this case a

violation of the “for all” condition must not exist.

For some such queries, a formulation with HAVING might be natural.

• When formulating queries in SQL, it is important

to check whether the query requires that certain

tuples do not exist.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-114

NOT IN (1)

• With IN (∈) and NOT IN (6∈) it is possible to check

whether an attribute value appears in a set that is

computed by another SQL query.

• E.g. students without any homework result:

SELECT FIRST, LAST

FROM STUDENTS

WHERE SID NOT IN (SELECT SID

FROM RESULTS

WHERE CAT = ’H’)

FIRST LAST

Maria Brown

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-115

NOT IN (2)

• At least conceptually, the subquery is evaluated,

before the execution of the main query starts:

STUDENTS

SID FIRST LAST EMAIL

101 Ann Smith · · ·
102 Michael Jones (null)
103 Richard Turner · · ·
104 Maria Brown · · ·

Result of Subquery

SID

101

101

102

102

103

• Then for every STUDENTS tuple, a matching SID is

searched in the subquery result. If there is none,

the student name is printed.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-116

NOT IN (3)

• It is possible to use DISTINCT in the subquery:

SELECT FIRST, LAST

FROM STUDENTS

WHERE SID NOT IN (SELECT DISTINCT SID ?
FROM RESULTS

WHERE CAT = ’H’)

• This is logically equivalent, and the effect on the

performance depends on the data and the DBMS.

I would expect that a reasonable optimizer knows that duplicates are
not important in this case and that conversely writing DISTINCT might
have the effect that the optimizer does not consider certain evaluation
stragegies that do not really materialize the result of the subquery.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-117

NOT IN (4)

• It is also possible to use IN (without NOT) for an

element test.

• This is relatively seldom done, since it is equiva-

lent to a join, which could be written without a

subquery.

• But sometimes this formulation is more elegant.

It might also help to avoid duplicates.

Or to get exactly the required duplicates (see example on next page).

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-118

NOT IN (5)

• E.g. topics (“names”) of homeworks that were al-

ready solved by at least one student:
SELECT TOPIC
FROM EXERCISES
WHERE CAT=’H’ AND ENO IN (SELECT ENO

FROM RESULTS
WHERE CAT=’H’)

• Exercise: Is there a difference to this query (with

or without DISTINCT)?

SELECT DISTINCT TOPIC
FROM EXERCISES E, RESULTS R
WHERE E.CAT=’H’ AND E.ENO=R.ENO AND R.CAT=’H’

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-119

NOT IN (6)

• In SQL-86, the subquery on the right-hand side of

IN must have a single output column.
So that the subquery result is really a set (or multiset), and not an
arbitrary relation.

• In SQL-92, comparisons were extended to the tuple

level, and therefore it is possible to write e.g.

WHERE (FIRST, LAST) NOT IN (SELECT FIRST, LAST

FROM ...)

But is not very portable. E.g. SQL Server and Access do not support it
(and MySQL does not permit any subqueries, see below). An EXISTS

subquery (see below) might be better if one has to compare more
than one column. Oracle and DB2 do allow IN with multiple columns.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-120

NOT IN (7)

Atomic Formula (Form 6):

- Term -

#
"

!IN

-

#
"

!NOT

6

-

#
"

!(Subquery

#
"

!) -

• The Subquery must result in a table with a single column (a set).

• However, in SQL-92, Oracle, and DB2 it is possible to write a tuple on
the left hand side in the form (Term1, ..., Termn). Then the subquery
must result in a table with exactly n columns.

• MySQL does not support subqueries.

• The column names on the left and right hand side of IN do not have to
match, but the data types must be compatible.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-121

NOT EXISTS (1)

• It is possible to check in the outer query whether

the result of the subquery is empty (NOT EXISTS).

• In the inner query, tuple variables declared in the

FROM clause of the outer query can be accessed.

This is actually also possible for IN subqueries, but there it is an
unnecessary and unexpected complication (bad style).

• This means that the subquery has to be evaluated

once for every assignment of values to the accessed

tuple variables in the outer query. The subquery can

be seen as parameterized.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-122

NOT EXISTS (2)

• Students that have not submitted any homework:

SELECT FIRST, LAST

FROM STUDENTS S

WHERE NOT EXISTS (SELECT * FROM RESULTS R

WHERE R.CAT = ’H’

AND R.SID = S.SID)

• The tuple variable S loops over the four rows in

STUDENTS. Conceptually, the subquery is evaluated

four times. Each time, S.SID is replaced by the SID

value of the current tuple S.
The DBMS is free to choose another, more efficient evaluation stra-
tegy if that evaluation strategy is guaranteed to give the same result.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-123

NOT EXISTS (3)

• First, S points to the STUDENTS tuple

SID FIRST LAST EMAIL

101 Ann Smith · · ·

• S.SID in the subquery is conceptually replaced by

101 and the following query is executed:

SELECT * FROM RESULTS R

WHERE R.CAT = ’H’

AND R.SID = 101

SID CAT ENO POINTS

101 H 1 10

101 H 2 8

• The result is not empty. Thus, the NOT EXISTS con-

dition in the outer query is not satisfied for this S.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-124

NOT EXISTS (4)

• The same happens for the second row in STUDENTS.

The subquery is executed for S.SID=102:

SELECT * FROM RESULTS R

WHERE R.CAT = ’H’

AND R.SID = 102

SID CAT ENO POINTS

102 H 1 9

102 H 2 9

• The result is not empty, therefore the NOT EXISTS

condition is not satisfied.

• Also for the third row in STUDENTS, the condition is

not satisfied.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-125

NOT EXISTS (5)

• Finally, S points to the STUDENTS tuple

SID FIRST LAST EMAIL

104 Maria Brown · · ·

• For S.SID=104, the result of the subquery is empty:

SELECT * FROM RESULTS R

WHERE R.CAT = ’H’

AND R.SID = 104

no rows selected

• Thus, the NOT EXISTS condition is satisfied for this

tuple S. Maria Brown is printed as the query result.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-126

NOT EXISTS (6)

• While in the inner query, tuple variables from the

outer query can be accessed, the converse is illegal:

SELECT FIRST, LAST, R.ENO Wrong!
FROM STUDENTS S

WHERE NOT EXISTS (SELECT * FROM RESULTS R

WHERE R.CAT = ’H’

AND R.SID = S.SID)

• This works like global and local variables: Variables

defined in the outer query are valid for the entire

query, variables defined in the subquery are valid

only in the subquery (∼ block structure in Pascal).

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-127

NOT EXISTS (7)

• Subqueries that access variables from the outer

query are called “correlated subqueries”.

Correlated subqueries can be understood as being parameterized with
the tuples chosen in the outer query. There can be optimizations, but
conceptually they are executed once for every assignment of tuples
to the tuple variables in the outer query.

• Subqueries that do not access variables from the

outer query are called “non-correlated subqueries”.

It suffices to evaluate a non-correlated subquery only once (since the
result does not depend on the tuples chosen for the tuple variables of
the outer query).

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-128

NOT EXISTS (8)

• Non-correlated subqueries with NOT EXISTS are al-

most always an error (but they are ok with IN):

SELECT FIRST, LAST Wrong!
FROM STUDENTS S

WHERE NOT EXISTS (SELECT * FROM RESULTS R

WHERE CAT = ’H’)

Here the join-condition in the subquery was forgotten, and it became
a non-correlated subquery.

• If there is at least one homework entry in RESULTS,

no matter for what student, the NOT EXISTS will be

false, and the query result empty.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-129

NOT EXISTS (9)

• Until now, for attribute references without tuple

variable (“unqualified attribute name”), there had

to be a unique tuple varible to which it can refer.

• For subqueries, SQL only requires that there is a

unique nearest tuple variable which has this attri-

bute, e.g. this is legal (but bad style):

SELECT FIRST, LAST

FROM STUDENTS S

WHERE NOT EXISTS (SELECT * FROM RESULTS R

WHERE CAT = ’H’

AND SID = S.SID)

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-130

NOT EXISTS (10)

• In general, for attribute reference without tuple va-

riables, the SQL parser searches the FROM-clauses

beginning from the current subquery towards outer

queries (there can be several nesting levels).

• The first FROM-clause that declares a tuple varia-

ble with this attribute must have exactly one such

variable. Then the attribute refers to this variable.

• This rule helps that non-correlated subqueries can

be developed independently and inserted into ano-

ther query without any change (so it makes sense).

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-131

NOT EXISTS (11)

• It is also legal to declare tuple variables in the sub-

query that have the same name as tuple variables

in the outer query.

SELECT FIRST, LAST

FROM STUDENTS X

WHERE NOT EXISTS (SELECT * FROM RESULTS X

WHERE ???)

• References to X in the subquery mean RESULTS X.

The variable declared in the outer query becomes

“shadowed”: It cannot be accessed in the subquery.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-132

NOT EXISTS (12)

• It is legal to specify a SELECT-list in the subquery,

but since for NOT EXISTS the returned columns do

not matter, “SELECT *” should be used.

• Some authors say that in some systems SELECT null

or SELECT 1 is actually faster than SELECT *.

“SELECT null” is used by Oracle’s programmers (in “catalog.sql”).
But this does not work in DB2 (null cannot be used as a term here).
Today, resonably good optimizers should know that the column values
are not really needed, and the SELECT-list should not matter, not even
for performance.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-133

NOT EXISTS (13)

Atomic Formula (Form 7):

-

#
"

!EXISTS -

#
"

!(Subquery

#
"

!) -

• A subquery is an expression of the form SELECT ...

FROM ... [WHERE ...] [GROUP BY ...] [HAVING ...].
[...] means that these parts are optional. SQL-92 also allows UNION

(see below) in subqueries (as do Oracle, DB2, and SQL Server),
SQL-86 does not (and Access really does not support it).

• ORDER BY is not allowed in subqueries.
It would make no sense there, it is only for the final output.

• Subqueries must be enclosed in parentheses (...).

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-134

NOT EXISTS (14)

• It is possible to use EXISTS without negation.

• Who has submitted at least one homework?

SELECT SID, FIRST, LAST

FROM STUDENTS S

WHERE EXISTS (SELECT * FROM RESULTS R

WHERE R.SID = S.SID

AND R.CAT = ’H’)

• But the same query can be done with a usual join:

SELECT DISTINCT S.SID, FIRST, LAST

FROM STUDENTS S, RESULTS R

WHERE S.SID = R.SID AND R.CAT = ’H’

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-135

“For all” (1)

• Who got the best result for Homework 1?

SELECT FIRST, LAST, POINTS

FROM STUDENTS S, RESULTS X

WHERE S.SID = X.SID

AND X.CAT = ’H’ AND X.ENO = 1

AND NOT EXISTS

(SELECT * FROM RESULTS Y

WHERE Y.CAT = ’H’ AND Y.ENO = 1

AND Y.POINTS > X.POINTS)

• I.e. a result X for Homework 1 is selected if there is

no result Y for this exercise with more points than X.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-136

“For all” (2)

• In mathematical logic, there are two quantifiers:

� ∃X (ϕ): There is an X that satisfies ϕ.

(existential quantifier)

� ∀X (ϕ): For all X, ϕ is true.

(universal quantifier)

• In tuple relational calculus, the maximal number of

points for Homework 1 is expressed e.g. as follows:

{X.POINTS | X: RESULTS ∧ X.CAT = ’H’ ∧ X.ENO = 1 ∧
∀ Y (Y: RESULTS ∧ Y.CAT = ’H’ ∧ Y.ENO = 1

→ Y.POINTS ≤ X.POINTS)}

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-137

“For all” (3)

• The pattern ∀X(ϕ1 → ϕ2) is very typical:

For all X, if ϕ1 is true, then ϕ2 must be true.

• I.e. ϕ2 must be true for all X that satisfy ϕ1.

Such a “bounded quantifier” is natural because tuple relational cal-
culus requires that all queries are safe in the sense that values outside
the database state do not influence the truth values. This is import-
ant in order to make sure that the truth value of a formula for a
database state can be determined with finite effort (it suffices to look
at all values that really occur in the database relations). The formal
definition is a bit complex. SQL solves this problem by immediately
binding every tuple variable to a single relation. However, because of
this restriction, it needs UNION.

• ϕ1 → ϕ2 is logically equivalent to ¬ϕ1 ∨ ϕ2.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-138

“For all” (4)

• SQL has only an existential quantifier (“EXISTS”),

but not a universal quantifier.

However, see “>= ALL” below.

• This is no problem, because “∀X (ϕ)” is equivalent

to “¬∃X (¬ϕ)”.

“ϕ is true for all X” is the same as “ϕ is false for no X”.

• Thus, one type of quantifier suffices.

• Exercise: Show that ∀X(ϕ1 → ϕ2) is equivalent to

¬∃X(ϕ1 ∧ ¬ϕ2).

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-139

“For all” (5)

• The above example is logically equivalent to:

{X.POINTS | X: RESULTS ∧ X.CAT = ’H’ ∧ X.ENO = 1 ∧
¬∃ Y (Y: RESULTS ∧ Y.CAT = ’H’ ∧ Y.ENO = 1

∧ Y.POINTS > X.POINTS)}
• In SQL, this is written as:

SELECT X.POINTS
FROM RESULTS X
WHERE X.CAT = ’H’ AND X.ENO = 1
AND NOT EXISTS

(SELECT * FROM RESULTS Y
WHERE Y.CAT = ’H’ AND Y.ENO = 1
AND Y.POINTS > X.POINTS)

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-140

Nested Subqueries

• Subqueries can be nested to any reasonable depth.

• List the students who solved all homeworks:

SELECT FIRST, LAST

FROM STUDENTS S

WHERE NOT EXISTS

(SELECT * FROM EXERCISES E

WHERE CAT = ’H’

AND NOT EXISTS

(SELECT * FROM RESULTS R

WHERE R.SID = S.SID

AND R.ENO = E.ENO

AND R.CAT = ’H’))

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-141

Common Errors (1)

Exercises:

• Would this query find students without homeworks

in the database? If not, what does it compute?

SELECT DISTINCT S.SID, FIRST, LAST
FROM STUDENTS S, RESULTS R
WHERE S.SID <> R.SID AND R.CAT = ’H’

• Would this query find exercises that were not yet

solved?

SELECT DISTINCT E.CAT, E.ENO
FROM EXERCISES E, RESULTS R
WHERE E.CAT = R.CAT AND E.ENO = R.ENO
AND R.SID IS NULL

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-142

Common Errors (2)

• It is important to understand that the absence/non-

existence of a row is very different than the exi-

stence of a row with a different value.

If the requested query behaves in a non-monotonic fashion (i.e. in-
sertion of a row could invalidate an answer), then NOT EXISTS, NOT IN,
<> ALL etc. are required.

• There is no way to write it without a subquery.

Except possibly using an outer join. Aggregations also change when
tuples are inserted, but without subquery, they cannot express “for
all” or “not exists”.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-143

Common Errors (3)

• Does this query compute the student with the best

result for Homework 1?

SELECT DISTINCT S.FIRST, S.LAST, X.POINTS

FROM STUDENTS S, RESULTS X, RESULTS Y

WHERE S.SID = X.SID

AND X.CAT = ’H’ AND X.ENO = 1

AND Y.CAT = ’H’ AND Y.ENO = 1

AND X.POINTS > Y.POINTS

• If not, what does it compute?

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-144

Common Errors (4)

• As mentioned above, using a non-correlated sub-

query with NOT EXISTS is normally an error.

• Does this also apply in this case (there is a join

condition in the subquery)?

SELECT FIRST, LAST

FROM STUDENTS S

WHERE NOT EXISTS Wrong!
(SELECT *

FROM RESULTS R, STUDENTS S

WHERE R.SID = S.SID

AND R.CAT = ’H’ AND R.ENO = 1)

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-145

Common Errors (5)

• What is the error in this query? It is supposed to

find students that have neither submitted a home-

work nor participated in an exam.

SELECT FIRST, LAST Wrong!
FROM STUDENTS S

WHERE SID NOT IN (SELECT SID

FROM EXERCISES)

• This query is syntactically correct SQL. Why?

• What is the output of the query?

Under the assumption that EXERCISES is not empty.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-146

Common Errors (6)

• Is there any problem with this query?

The task is to list all students who did not yet

actively participated in the course, i.e. neither sub-

mitted a homework nor took the exam.

SELECT S.FIRST, S.LAST

FROM STUDENTS S, RESULTS R

WHERE S.SID = R.SID

AND NOT EXISTS (SELECT *

FROM RESULTS R

WHERE S.SID = R.SID)

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-147

ALL, ANY, SOME (1)

• It is possible to compare a value with all values in

a set (computed by a subquery).

• One can require that the comparison returns true

for all set elements (ALL) or for at least one (ANY):

SELECT S.FIRST, S.LAST, X.POINTS
FROM STUDENTS S, RESULTS X
WHERE S.SID=X.SID AND X.CAT=’H’ AND X.ENO=1
AND X.POINTS >= ALL (SELECT Y.POINTS

FROM RESULTS Y
WHERE Y.CAT = ’H’
AND Y.ENO = 1)

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-148

ALL, ANY, SOME (2)

• The following is logically equivalent to the above

query:

SELECT S.FIRST, S.LAST, X.POINTS

FROM STUDENTS S, RESULTS X

WHERE S.SID=X.SID AND X.CAT=’H’ AND X.ENO=1

AND NOT X.POINTS < ANY (SELECT Y.POINTS

FROM RESULTS Y

WHERE Y.CAT = ’H’

AND Y.ENO = 1)

• Again, “for all” can be replaced by “not exists not”.

Of course, also conversely “exists” is equivalent to “not for all not”.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-149

ALL, ANY, SOME (3)

• This construct is not strictly necessary, since e.g.

T1 < ANY (SELECT T2 FROM ... WHERE ...)

is equivalent to

EXISTS (SELECT * FROM ... WHERE ... AND T1 < T2)

This requires that T1 explicitly mentions a tuple variable which is not
redeclared in the subquery (so that the meaning of T1 is not changed
by moving it into the subquery).

• E.g. Oracle internally does such transformations so

that the query optimizer does not have to handle

too many different cases (syntactic variants).

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-150

ALL, ANY, SOME (4)

Atomic Formula (Form 8):

- Term - Comparison Op.
-

#
"

!ALL -

-

#
"

!ANY -

-

#
"

!SOME -

-

#
"

!(Subquery

#
"

!) -

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-151

ALL, ANY, SOME (5)

Syntactic Remarks:

• ANY and SOME are synonyms.

• “x IN S” is equivalent to “x = ANY S”.

• The subquery must have a single result column.

SQL92 allows comparisons also on a tuple basis. Oracle supports this
only with <> and =, DB2 supports only =ANY (which is equivalent to IN).
SQL86, SQL Server, and Access do not support tuple comparisons.

• If none of the keywords ALL, ANY, SOME are present,

the subquery must yield at most one row.

Since there is also only one column, this means the subquery gives a
single data value. If the subqery result is empty, the null value is used.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-152

Single Value Subqueries (1)

• Who got full points for Homework 1?

SELECT S.FIRST, S.LAST
FROM STUDENTS S, RESULTS R
WHERE S.SID=R.SID AND R.CAT=’H’ AND R.ENO=1
AND R.POINTS = (SELECT MAXPT

FROM EXERCISES
WHERE CAT=’H’ AND ENO=1)

• It is only possible to leave out ANY/ALL when the

subquery is guaranteed to return at most one row.
In the example, a key of EXERCISES is specified. But in general, this may
depend on the data. The query might run during testing, but later
give an error. Use constraints to ensure that the necessary assumtions
are really satisfied.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-153

Single Value Subqueries (2)

• In SQL92, DB2, SQL Server, and Access, a sub-

query returning a single data element can be used

as a term/expression. Thus, this is equally legal:

(SELECT MAXPT FROM ...) = R.POINTS

• In Oracle8 and SQL86, the subquery must be on

the right hand side.

• One can even do further computations with the

result of a subquery, e.g. (not in SQL86, Oracle8):

R.POINTS >= (SELECT MAXPT FROM ...) * 0.9

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-154

Single Value Subqueries (3)

• If the subquery has an empty result, the null value

is used instead.

• E.g. this is a strange way to ask for students that

have not yet solved Homework 1:

SELECT FIRST, LAST

FROM STUDENTS S

WHERE (SELECT 1 Bad Style!
FROM RESULTS R

WHERE R.SID = S.SID

AND R.CAT = ’H’ AND R.ENO = 1) IS NULL

• In SQL86 and Oracle8, this is a syntax error.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-155

Subqueries under FROM (1)

• Since the result of an SQL-query is a table, it is

natural that one can write a subquery instead of a

table name in the FROM-clause.

• This was not allowed in SQL-86, and at that time

SQL was often criticized as having “not orthogonal

constructs”, which cannot be combined arbitrarily.

In relational algebra, whereever one can write a relation name, one
can also write a subquery (relational algebra expression).

• Subqueries under FROM are really needed only sel-

dom, and might make the query more complex.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-156

Subqueries under FROM (2)

• Subqueries under FROM are needed e.g. for nested

aggregations, see below.

• In the following example, the join of RESULTS and

EXERCISES is computed in a subquery (that might

result from a view definition, see below):

SELECT X.SID, ROUND(X.POINTS*100/X.MAXPT) AS PCT

FROM (SELECT E.CAT, E.ENO, R.SID, R.POINTS

E.MAXPT

FROM EXERCISES E, RESULTS R

WHERE E.CAT=R.CAT AND E.ENO=R.ENO) X

WHERE X.CAT = ’E’ AND X.ENO = 1

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-157

Subqueries under FROM (3)

• SQL92, SQL Server, and DB2 require declaring a

tuple variable for the subquery; in Oracle and Ac-

cess this is optional.

• SQL92, DB2, and SQL Server (but not Oracle8

and Access) permit to rename columns in this way:

FROM (...) X(CATEGORY, EX_NO, ...)

• In Oracle and Access, columns can only be renamed

inside the subquery.

All systems support the specification of new column names in the
SELECT-clause, so that is the more portable way.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-158

Subqueries under FROM (4)

• Inside the subquery, one cannot refer to other tuple

variables introduced in the same FROM-clause:

SELECT S.FIRST, S.LAST, X.ENO, X.POINTS Wrong!
FROM STUDENTS S, (SELECT R.ENO, R.POINTS

FROM RESULTS R

WHERE R.CAT = ’H’

AND R.SID = S.SID) X

• In addition, subqueries under FROM should only be

used if needed. They can make queries much more

difficult to understand.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-159

Subqueries under FROM (5)

• A view declaration stores a query under a name in

the database:

CREATE VIEW HW_POINTS AS

SELECT S.FIRST, S.LAST, R.ENO, R.POINTS

FROM STUDENTS S, RESULTS R

WHERE S.SID=R.SID AND R.CAT = ’H’

• Views can be used in queries like stored tables:

SELECT ENO, POINTS

FROM HW_POINTS

WHERE FIRST=’Michael’ AND LAST=’Jones’

• A view is an abbreviation for the subquery (macro).

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-160

Subqueries under FROM (6)

• When a view used in a query, the DBMS simply

replaces the view name by the query it stands for.

Views existed already in SQL-86. However, since SQL-86 did not
contain subqueries under FROM, there were complex restrictions for
using views.

• By using views, one can build complex queries step

by step.

If the optimizer is not very good, it might be possible that a query
built in this way runs slightly slower than a single “monolithic” query.
However, there should be no difference to using subqueries under FROM.
A performance improvement is only possible if one can formulate the
query without such subqueries.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-161

Overview

1. Lexical Syntax

2. Tuple Variables, Joins

3. Terms, Conditions, Logic, Null Values

4. Subqueries, Nonmonotonic Constructs

5. Aggregations

'

&

$

%
6. Union, ORDER BY, Outer Join

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-162

Aggregations (1)

• Aggregation functions are functions from a set or

multiset to a single value (usually a number).

E.g.: min{41,57,19,23,27} = 19

• Aggregation functions aggregate or summarize an

entire set of values to a single value.

Aggregation functions are also called “set functions”, “group functi-
ons” or “column functions”. They take not a single value as input, but
an entire column (a set). The column can be constructed by means
of a query (it does not have to be a column of a stored table).

• Aggregation functions are often used for statistical

evaluations (e.g. average).

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-163

Aggregations (2)

• SQL-86/92 has the five aggregation functions

COUNT, SUM, AVG, MAX, MIN.
Additional aggregation functions in certain systems:
Oracle 8i: CORR (correlation, works on a set of pairs),

COVAR_POP, COVAR_SAMP, linear regression functions,
STDDEV, STDDEV_POP, STDEV_SAMP, VARIANCE, VAR_POP, VAR_SAMP.

DB2: CORRELATION, COUNT_BIG, COVARIANCE, regression functions, STDDEV,
VARIANCE.

SQL Server: VAR, VARP, STDEV, STDEVP.
Access: VAR, VARP, STDEV, STDEVP, FIRST, LAST.
MySQL: STD. However, MySQL supports DISTINCT only for COUNT.

• Any commutative and associative binary operator

with a neutral element can be extended to work on

sets. E.g. sum is the set-version of +.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-164

Aggregations (3)

• Some aggregation functions are sensitive to dupli-

cates (e.g. sum), others are not (e.g. minimum).

E.g. the sum of all items of an invoice. If two items cost the same
amount, nevertheless both must be added.

• In SQL, one can request duplicate elimination

(input is a set) or not (input is a multiset).

A multiset is a set where each element has a multiplicity, e.g. an
element can be contained in a multiset two times. In contrast to a
list, there is still no specific order. Also the name “bag” is used.

• SUM(DISTINCT X) and AVG(DISTINCT X) are most likely

an error. Some students mix up SUM and COUNT.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-165

Syntax

Aggregation Term:

-

#
"

!AVG -

-

#
"

!MIN -

-

#
"

!MAX -

-

#
"

!SUM -

-

#
"

!COUNT -

6

#
"

!(-

-

#
"

!DISTINCT -

-

#
"

!ALL -

6 Term -

#
"

!) -

-

#
"

!COUNT -

#
"

!(-

#
"

!* -

#
"

!)

6

• MySQL supports DISTINCT only for COUNT (and does not understand ALL).

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-166

Null Values in Aggregations

• Usually, null values are ignored (filtered out) before

the aggregation function is applied.

• Only COUNT(*) includes null values (it counts rows,

not attrbute values).

• The difference between COUNT(EMAIL) and COUNT(*)

is that the first counts only those rows where EMAIL

is not null, whereas the second counts all rows.

Otherwise, the actual attribute value is not important for COUNT, and
one probably should use COUNT(*). Of course, if duplicates are elimi-
nated as in COUNT(DISTINCT CAT), the attribute is obviously important.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-167

Empty Aggregations

• If the input set is empty, most aggregations yield a

null value, only COUNT returns 0.

This is counter-intuitive at least for the SUM. One would expect that
the SUM over the empty set is 0, but in SQL it returns NULL. (One
reason for this behaviour might be that the SUM aggregation function
cannot detect a difference between the empty input set because there
was no qualifying tuple and the empty input set because all qualifying
tuples had a null value in this argument.)

• Since it may happen that no row satisfies the WHERE-

condition, programs must be prepared to process

the resulting null value.

Alternative: Use e.g. NVL(SUM(POINTS),0) in Oracle to replace the null.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-168

Aggregation Queries

• There are three different types of queries in SQL:

� Queries without aggregation functions and wi-

thout GROUP BY and HAVING: See above.

� Queries with aggregation functions under SELECT,

but no GROUP BY (called “simple aggregations”

below): Result is always exactly one row.

� Queries with GROUP BY.

• Each type has different syntax restrictions and is

evaluated in a different way.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-169

Evaluation (1)

• First, the FROM-clause is evaluated.

Theoretically, all possible tuple combinations of the source tables are
constructed (cartesian product, nested loops).

• Second, the WHERE-clause is evaluated.

Only those tuple combinations that satisfy the condition are further
considered (selection, filter, if). Of course, in real systems the first
and second step may be combined to allow a more efficient evaluation.

• Third, if there is no aggregation, GROUP BY, and

HAVING, the SELECT-clause is evaluated by printing

the values of the terms/scalar expressions in the

SELECT-list for every remaining tuple combination.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-170

Evaluation (2)

• When the SELECT-list contains an aggregation term,

and there is no GROUP BY, only a single output row is

computed by applying the aggregation operators.

• Instead of printing the values of columns as usual,

the values are added to a set/multiset that is the

input to the aggregation function.
If the SELECT-list contains multiple aggregations, multiple such sets
must be managed.

• If no DISTINCT is used, the aggregated values can be

incrementally computed without explicitly storing a

temporary set of values (see next slide).

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-171

Evaluation (3)

• E.g. consider the query:

SELECT SUM(MAXPT), COUNT(*)

FROM EXERCISES E

WHERE CAT = ’H’

• This is evaluated as:
out1 = 0; out2 = 0;

foreach row E in EXERCISES do
if E.CAT = ’H’ then begin

out1 = out1 + E.MAXPT;

out2 = out2 + 1;

end;
print out1, out2;

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-172

Syntax / Restrictions (1)

• The arguments of SUM and AVG must be numeric.

COUNT, MIN, and MAX accept any datatype.

• Aggregations cannot be nested, e.g. the following

is illegal:

AVG(COUNT(*)) Wrong!

After the COUNT only a single value remains. Thus,

applying another aggregation makes no sense.

It is possible that aggregations are first applied to groups of rows,
and then the result is input to another aggregation. E.g. what is
the average over the total number of points students got for their
homeworks? This is done with GROUP BY and subqueries (see below).

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-173

Syntax / Restrictions (2)

• Aggregations cannot be used in the WHERE-clause.
The WHERE-condition is evaluated before aggregations are computed
(it determines which tuples enter the aggregation). Conditions with
aggregations can be specified under HAVING (see below). Of course,
also subqueries nested in the WHERE-clause may contain aggregations.

WHERE COUNT(*) > 1 Wrong!

• If an aggregation function and no GROUP BY is used,

no normal attributes can appear in the SELECT-list.
Only a single output tuple is produced, and an attribute outside ag-
gregations would not have a unique output value. But see GROUP BY.

SELECT CAT, ENO, AVG(POINTS) Wrong!
FROM RESULTS

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-174

Syntax / Restrictions (3)

• Every aggregation operator needs an argument

(which specifies input values).

SELECT SID

FROM RESULTS

WHERE CAT = ’H’ AND ENO = 1

AND POINTS = MAX Wrong! Wrong!

Aggregations are also not allowed under WHERE.

• A subquery is required to find the student(s) with

the best result for Homework 1 (see below).

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-175

GROUP BY (1)

• The above SQL constructs can produce a single

aggregated output row only.

• The GROUP BY clause allows one to aggregate in

groups rather than aggregate all tuples.

• Compute the average points for each homework:

SELECT ENO, AVG(POINTS)

FROM RESULTS

WHERE CAT = ’H’

GROUP BY ENO

ENO AVG(POINTS)

1 8

2 8.5

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-176

GROUP BY (2)

• The GROUP BY clause splits the resulting table after

evaluation of FROM and WHERE into groups that have

the same value in the GROUP BY columns.

SID CAT ENO POINTS

101 H 1 10
102 H 1 9
103 H 1 5

101 H 2 8
102 H 2 9

• The aggregation is then done over every group.

So there will be one output row for every group.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-177

GROUP BY (3)

• This construction can never produce empty groups.

So it is impossible that a COUNT(*) results in the

value 0.

The value 0 can be produced with COUNT(A) where the attribute A is
null. If a query must produce groups with count 0, probably an outer
join is needed (see below).

• On the other hand, simple aggregations (without

GROUP BY) will always produce exactly one output

row, and it is possible that their input set is empty

(then COUNT(*) can be 0).

A GROUP BY query can result in none, one, or many output rows.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-178

GROUP BY (4)

• Since the GROUP BY attributes have a unique value

for every group, they can be used in the SELECT-list.

Other attributes can be used under SELECT only inside aggregations.

• E.g. this is illegal:

SELECT E.ENO, E.TOPIC, AVG(R.POINTS) Wrong!
FROM EXERCISES E, RESULTS R

WHERE E.CAT=’H’ AND R.CAT=’H’ AND E.ENO=R.ENO

GROUP BY E.ENO

E.TOPIC does not appear under GROUP BY, therefore it cannot be used
in the SELECT-list outside an aggregation function. This is especially
strange since ENO is a key of EXERCISES, so that TOPIC is actually unique
in the groups. But the SQL rule is purely syntactic.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-179

GROUP BY (5)

• Thus, one must group by E.ENO and E.TOPIC:

SELECT E.ENO, E.TOPIC, AVG(R.POINTS)

FROM EXERCISES E, RESULTS R

WHERE E.CAT=’H’ AND R.CAT=’H’ AND E.ENO=R.ENO

GROUP BY E.ENO, E.TOPIC

E.ENO E.TOPIC AVG(POINTS)

1 Rel. Algeb. 8

2 SQL 8.5

• Adding E.TOPIC to the GROUP BY attributes does not

change the groups, but now one can print it.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-180

GROUP BY (6)

• Exercise: Is there any semantical difference between

SELECT TOPIC, AVG(POINTS/MAXPT)

FROM EXERCISES E, RESULTS R

WHERE E.CAT=’H’ AND R.CAT=’H’ AND E.ENO=R.ENO

GROUP BY TOPIC

and the query which additionally groups by E.ENO,

but does not print it?

SELECT TOPIC, AVG(POINTS/MAXPT)

FROM EXERCISES E, RESULTS R

WHERE E.CAT=’H’ AND R.CAT=’H’ AND E.ENO=R.ENO

GROUP BY TOPIC, E.ENO

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-181

GROUP BY (7)

• GROUP BY is evaluated before the SELECT clause.

Thus, one cannot refer to new attribute names:

SELECT FLOOR((POINTS/MAXPT)*10+0.5) PCT_RANGE,
COUNT(*)

FROM EXERCISES E, RESULTS R
WHERE E.CAT = R.CAT AND E.ENO = R.ENO
GROUP BY PCT_RANGE Wrong!

• Oracle, SQL Server, DB2, MySQL, and Access

support GROUP BY with arbitrary terms. The SQL92

standard permits GROUP BY only with column names.
I.e. GROUP BY FLOOR(...) works in these systems.
Portable alternative: Subquery under FROM or using a view.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-182

GROUP BY (8)

• The sequence of attributes in the GROUP BY clause

is not important.

GROUP BY A, B means that two tuples t, u belong into the same group
if t.A = u.A and t.B = u.B.
GROUP BY B, A means that two tuples t, u belong into the same group
if t.B = u.B and t.A = u.A.

• Note that it makes no sense to group by a key

(if only one table is listed under FROM): Then every

group will consist of only a single row.

• In the same way, GROUP BY is not useful if there can

be only a single group.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-183

GROUP BY (9)

Warning:

• Many students mix up “GROUP BY” and “ORDER BY”:

� GROUP BY is important for the query result.

� ORDER BY is only cosmetic (for a nice printout).

• GROUP BY usually internally sorts the tuples (so that

tuples with the same values are adjacent).

• But then GROUP BY does the grouping, whereas the

sort for the ORDER BY is done at the very end.

• Sometimes, the DBMS may evaluate the GROUP BY

in more efficient ways without sorting.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-184

Syntax (1)

SELECT-Expression:

-

�
�

�
�SELECT - Goal-List

-

�
�

�
�FROM - Source-List

?

?-

�
�

�
�WHERE - Condition -

?

?-

�
�

�
�GROUP BY - Grouping -

?

?-

�
�

�
�HAVING - Condition - -

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-185

Syntax (2)

Grouping:

- Attribute-Reference -

�

#
"

!,

6

• E.g. GROUP BY TITLE, C.CRN

• Oracle, SQL Server, DB2, Access, and MySQL support the more gene-
ral “Term” instead of “Attribute-Reference”. Of course, no aggregation
functions are permitted under GROUP BY.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-186

HAVING (1)

• Aggregations cannot be used in the WHERE-clause.

• But sometimes aggregations are needed to filter

output rows, not only for computing output values.

• For this reason, SQL has a second kind of condi-

tion, the HAVING clause. The purpose of the HAVING

clause is to eliminate whole groups.

• Aggregation operators can be used in the HAVING-

condition. But as under SELECT, outside aggregati-

ons, only GROUP BY attributes can be used.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-187

HAVING (2)

• Which students got at least 18 homework points?

SELECT FIRST, LAST

FROM STUDENTS S, RESULTS R

WHERE S.SID=R.SID AND R.CAT=’H’

GROUP BY S.SID, FIRST, LAST

HAVING SUM(POINTS) >= 18

FIRST LAST

Ann Smith
Michael Jones

• The WHERE condition refers to single tuple combina-

tions, the HAVING condition to entire groups.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-188

Evaluation

1. All combinations of rows from tables under FROM

are considered.

2. The WHERE-condition selects a subset of these.

3. The remaining joined tuples are split into groups

having equal values for the GROUP BY-attributes.

4. Groups of tuples which do not satisfy the condition

in the HAVING-clause are eliminated.

5. One output tuple for every group is produced by

evaluating the terms in the SELECT-clause.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-189

Syntax: Restrictions

• An aggregation is done if

� an aggregation function is used in the SELECT-list,

� or the GROUP BY or HAVING-clause is present.

• If an aggregation is done, then: Only GROUP BY at-

tributes can be used under SELECT or HAVING outside

aggregation functions.
Inside aggregation functions, i.e. as their arguments, all attributes can
be used. E.g. AVG(A)/B: The attribute A appars inside an aggregation
function, B outside.

• HAVING without GROUP BY is legal, but uncommon:

The query could only return 0 or 1 output rows.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-190

WHERE vs. HAVING

• Normally, the restrictions uniquely define whether a

condition must be put under WHERE or under HAVING.
Only if a condition contains only GROUP BY-attributes, but no aggre-
gations, it would be allowed in both clauses.

• If both is possible, it is much more efficient to put

it under WHERE. E.g. this query is legal, but slow and

needs lots of memory:

SELECT FIRST, LAST

FROM STUDENTS S, RESULTS R

GROUP BY S.SID, R.SID, FIRST, LAST

HAVING S.SID = R.SID AND SUM(POINTS) >= 18

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-191

Aggregation Subqueries (1)

• Who has the best result for Homework 1?

SELECT S.FIRST, S.LAST, R.POINTS
FROM STUDENTS S, RESULTS R
WHERE S.SID=R.SID AND R.CAT=’H’ AND R.ENO=1
AND R.POINTS = (SELECT MAX(POINTS)

FROM RESULTS
WHERE CAT=’H’ AND ENO=1)

• For an aggregation query without GROUP BY, it is

guaranteed that it will return exactly one row.

Thus ANY/ALL is not necessary here.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-192

Aggregation Subqueries (2)

• Since in SQL92, DB2, SQL Server, and Access a

subquery returning a single data element can be

used as a term, subqueries are also allowed in the

SELECT-clause. Oracle 8.0 does not support this.

• This can replace GROUP BY. E.g. print for every stu-

dent the sum of the homework points (null if none):

SELECT FIRST, LAST, (SELECT SUM(POINTS)

FROM RESULTS R

WHERE R.SID = S.SID

AND R.CAT = ’H’)
FROM STUDENTS S

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-193

Nested Aggregations (1)

• Nested aggregations require a subquery under FROM.

• What is the average number of homework points?

(counting only students who submitted homeworks)

SELECT AVG(X.HW_PT)

FROM (SELECT SID, SUM(POINTS) AS HW_PT

FROM RESULTS

WHERE CAT = ’H’

GROUP BY SID) X
X

SID HW_PT

101 18
102 18
103 5

AVG(X.HW_PT)

13.67

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-194

Nested Aggregations (2)

• Oracle also supports nested aggregations written

in this way:

SELECT AVG(SUM(POINTS)) Only Oracle!
FROM RESULTS

WHERE CAT = ’H’

GROUP BY SID

This is completely non-standard (not supported in

SQL92, DB2, SQL Server, Access).

Since it is much shorter than the equivalent standard query, it might be
handy to use this when writing ad-hoc queries. However, in application
programs, one should not create unnecessary portability problems.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-195

Aggregating Different Sets (1)

• Subqueries under FROM make it possible to aggrega-

te over different sets:

SELECT FIRST, LAST, H.PT AS HOMEWORK, M.PT AS MID
FROM STUDENTS S,

(SELECT SID, SUM(POINTS) AS PT
FROM RESULTS
WHERE CAT = ’H’
GROUP BY SID) H,

(SELECT SID, SUM(POINTS) AS PT
FROM RESULTS
WHERE CAT = ’M’
GROUP BY SID) M

WHERE S.SID = H.SID AND S.SID = M.SID

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-196

Aggregating Different Sets (2)

• This is also possible with conditional expressions,

e.g. in Oracle:

SELECT FIRST, LAST,

SUM(DECODE(R.CAT, ’H’, R.POINTS, 0)) HW

SUM(DECODE(R.CAT, ’M’, R.POINTS, 0)) MID

FROM STUDENTS S, RESULTS R

WHERE S.SD = R.SID

• E.g. the conditional expression

DECODE(R.CAT, ’H’, R.POINTS, 0)

returns R.POINTS if R.CAT = ’H’ and 0 otherwise.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-197

Maximizing Aggregations (1)

• Who has the best results in the homeworks (maxi-

mal sum of homework points)?

SELECT FIRST, LAST, SUM(POINTS) AS TOTAL

FROM STUDENTS S, RESULTS R

WHERE S.SID = R.SID AND R.CAT = ’H’

GROUP BY S.SID, FIRST, LAST

HAVING SUM(POINTS) >= ALL(SELECT SUM(POINTS)

FROM RESULTS

GROUP BY SID)

• An alternative solution with a view is shown on the

next slide.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-198

Maximizing Aggregations (2)

• Total number of HW points for every student:

CREATE VIEW HW_TOTALS AS

SELECT SID, SUM(POINTS) AS TOTAL

FROM RESULTS

WHERE CAT = ’H’

GROUP BY SID

• Then one can use this as follows:

SELECT S.FIRST, S.LAST, H.TOTAL

FROM STUDENTS S, HW_TOTALS H

WHERE S.SID = H.SID

AND H.TOTAL = (SELECT MAX(TOTAL)

FROM HW_TOTALS)

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-199

Exercise: Possible Errors (1)

• What do you think about this query? Its task is

to list all students who have solved at least two

homeworks.

SELECT FIRST, LAST

FROM STUDENTS S

WHERE 2 <= (SELECT COUNT(S.SID)

FROM RESULTS R

WHERE R.SID = S.SID

AND R.CAT = ’H’)

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-200

Exercise: Possible Errors (2)

• And what about this query? Again, the task is to list

students who have solved at least two homeworks.

SELECT FIRST, LAST

FROM STUDENTS S, RESULTS R

WHERE S.SID = R.SID

AND R.CAT = ’H’

AND COUNT(R.ENO) >= 2

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-201

Exercise: Possible Errors (3)

• And what about this query? Here the task is to list

the number of homeworks per student.

SELECT S.SID, S.FIRST, S.LAST, SUM(R.ENO)

FROM STUDENTS S, RESULTS R

WHERE S.SID = R.SID

AND R.CAT = ’H’

GROUP BY S.SID, S.FIRST, S.LAST, R.ENO

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-202

Overview

1. Lexical Syntax

2. Tuple Variables, Joins

3. Terms, Conditions, Logic, Null Values

4. Subqueries, Nonmonotonic Constructs

5. Aggregations

6. Union, ORDER BY, Outer Join

'

&

$

%
Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-203

UNION (1)

• In SQL it is possible to combine the results of two

queries by UNION.
R ∪ S is the set of all tuples contained in R, in S, or in both.

• UNION is needed since otherwise there is no way to

construct one result column that contains values

drawn from different tables/columns.
This is necessary e.g. when subclasses are represented by different
tables. For instance, there may be one table GRADUATE_COURSES and
another table UNDERGRADUATE_COURSES.

• UNION is also very useful for case analysis

(to code an if . . . then . . . else . . .).

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-204

UNION (2)

• The subqueries which are operands to UNION must

return tables with the same number of columns.

The data types of corresponding columns must be

compatible.
The attribute names do not have to be equal. Oracle and SQL Server
use the attribute names from the first operand in the result. DB2 uses
artificial column names (1, 2, . . .) if the input column names differ.

• SQL distinguishes between

� UNION: ∪ with duplicate elimination, and

� UNION ALL: concatenation (retains duplicates).

Duplicate elimination is quite expensive.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-205

UNION (3)

• Print for every student his/her total number of ho-

mework points (0 if no homework submitted).

SELECT S.FIRST, S.LAST, SUM(R.POINTS) AS TOTAL
FROM STUDENTS S, RESULTS R
WHERE S.SID = R.SID AND R.CAT = ’H’
GROUP BY S.SID, S.FIRST, S.LAST

UNION ALL

SELECT S.FIRST, S.LAST, 0 AS TOTAL
FROM STUDENTS S
WHERE S.SID NOT IN (SELECT SID

FROM RESULTS
WHERE CAT = ’H’)

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-206

UNION (4)

• Assign student grades based on Homework 1:

SELECT S.SID, S.FIRST, S.LAST, ’A’ GRADE

FROM STUDENTS S, RESULTS R

WHERE S.SID=R.SID AND R.CAT=’H’ AND R.ENO=1

AND R.POINTS >= 9

UNION ALL

SELECT S.SID, S.FIRST, S.LAST, ’B’ GRADE

FROM STUDENTS S, RESULTS R

WHERE S.SID=R.SID AND R.CAT=’H’ AND R.ENO=1

AND R.POINTS >= 7 AND R.POINTS < 9

UNION ALL

...

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-207

Other Set Operations in SQL

• SQL-86 contained only UNION [ALL].

• The SQL-92 standard also contains EXCEPT (set dif-

ference, −) and INTERSECT (∩).
SQL-86, SQL Server and Access support only UNION [ALL]. MySQL
does not support any of these operations. DB2 supports all SQL-92
set operators. In Oracle 8.0, the − operator is called MINUS instead of
EXCEPT. ALL for MINUS and INTERSECT is not supported in Oracle.

• These operations add nothing to the expressivity

to the language.
Queries containing EXCEPT/MINUS and INTERSECT can be transformed
into equivalent SQL-queries without these constructs, but queries
containing UNION in general cannot. So only UNION is really important.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-208

UNION: Syntax

Table Expression:

- SELECT Query -

-

#
"

!(- Table Expression -

#
"

!)

6

�

�

#
"

!UNION�

�

#
"

!UNION ALL�

6

• MySQL does not support union. SQL-86 contains UNION and UNION ALL.

• SQL-92 and DB2 support in addition INTERSECT, INTERSECT ALL, EXCEPT,
and EXCEPT ALL. Oracle 8 supports UNION, UNION ALL, INTERSECT and MINUS.

• In Access, it is not possible to put parentheses around the entire query.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-209

Union vs. Join

Exercise:

• Two alternatives for respresenting the homework,

midterm, and final results of the students are:

Results_1

STUDENT H M F

Jim Ford 95 60 75
Ann Lloyd 80 90 95

Results_2

STUDENT CAT PCT

Jim Ford H 95
Jim Ford M 60
Jim Ford F 75
Ann Lloyd H 80
Ann Lloyd M 90
Ann Lloyd F 95

• Write SQL queries to translate between the two.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-210

Conditional Expressions (1)

• Whereas using UNION is the portable way to make

a case analysis, sometimes a conditional expression

suffices, and is more efficient.

Conditional expressions look differently in each DBMS.

• E.g. Oracle has expressions of the form:

DECODE(X, X1, Y1, X2, Y2, ..., Z)

• This is evaluated by comparing X first to X1, then

to X2, and so on. If Xi is the first value with X = Xi,

then Yi is returned. If no Xi matches, Z is returned.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-211

Conditional Expressions (2)

• E.g. print the exercise category in full for the results

of Ann Smith (Oracle Version):

SELECT DECODE(CAT, ’H’, ’Homework’,

’M’, ’Midterm Exam’,

’F’, ’Final Exam’,

’Unknown Category’),

ENO, POINTS

FROM STUDENTS S, RESULTS R

WHERE S.SID = R.SID

AND S.FIRST = ’Ann’ AND S.LAST = ’Smith’

ORDER BY DECODE(CAT, ’H’, 1, ’M’, 2, ’F’, 3, 4)

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-212

Conditional Expressions (3)

• In the SQL-92 standard (and e.g. DB2), this is

written as follows:

SELECT CASE WHEN CAT=’H’ THEN ’Homework’,

WHEN CAT=’M’ THEN ’Midterm Exam’

WHEN CAT=’F’ THEN Final Exam’

ELSE ’Unknown Category’ END

ENO, POINTS

FROM STUDENTS S, RESULTS R

WHERE S.SID = R.SID

AND S.FIRST = ’Ann’ AND S.LAST = ’Smith’

• Oracle 8i (not 8.0) supports a similar syntax, but

requires a comma between the WHEN clauses.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-213

Conditional Expressions (4)

• The SQL-92 standard (and DB2, but not Oracle 8i)

supports also the following abbreviation which is

very similar to Oracle’s DECODE:

SELECT CASE CAT WHEN ’H’ THEN ’Homework’,

WHEN ’M’ THEN ’Midterm Exam’,

WHEN ’F’ THEN Final Exam’,

ELSE ’Unknown Category’ END,

ENO, POINTS

FROM STUDENTS S, RESULTS R

WHERE S.SID = R.SID

AND S.FIRST = ’Ann’ AND S.LAST = ’Smith’

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-214

Conditional Expressions (5)

• A typical application of condtional expressions is to

replace a null value by something else.

• In Oracle NVL(X, Y) is equivalent to

DECODE(X, NULL, Y , X)

I.e. if X is not null, then X is the result.

If X is null, then Y is the result.

• COALESCE(X, Y) is the same in standard SQL-92.

There it abbreviates

CASE WHEN X IS NOT NULL THEN X ELSE Y END

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-215

Conditional Expressions (6)

• E.g. list the email address of all students, and write

“(none)” if the column is null:

SELECT FIRST, LAST, NVL(EMAIL, ’(none)’)

FROM STUDENTS

• Finally note that conditional expressions are nor-

mal terms, so they can be input for other datatype

functions or e.g. aggregation functions.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-216

Sorting Output (1)

• Output that is longer than a few lines should be

sorted in some understandable way.
It is much easier to search a specific value in a sorted table. Without
“ORDER BY” the sequence of output rows means nothing (it depends on
the algorithms used in the DBMS and may change between versions).

• However, it is important to understand that deve-

loping the logic of the query and nicely formatting

the output are two separate things.
Whereas sorting is the only formatting command that found its way
into the SQL standard, DBMS tools usually offer more options. E.g. to
have a pagebreak when the value in a specific column changes, to
show negative values in red ink, etc. However, sorting may also be
important when an application program retrieves the data.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-217

Sorting Output (2)

• One can specify a prioritized list of sorting criteria.

The “ORDER BY” list can contain multiple columns. The second column
is only used for ordering two tuples which have the same value in the
first column, and so on.

• E.g.: Print the homework results sorted by exercise,

and for each exercise by points (best result first),

and if there is still a tie, alphabetically by name:

SELECT R.ENO, R.POINTS, S.FIRST, S.LAST

FROM STUDENTS S, RESULTS R

WHERE S.SID = R.SID AND R.CAT = ’H’

ORDER BY R.ENO, R.POINTS DESC, S.LAST, S.FIRST

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-218

Sorting Output (3)

• Result of the example query on the previous page:

ENO POINTS FIRST LAST

1 10 Ann Smith
1 9 Michael Jones
1 5 Richard Turner
2 9 Micael Jones
2 8 Ann Smith

• E.g. the first two tuples have the same value in the

highest priority sort criterion (ENO), and the second

criterion (POINTS DESC) determines their sequence.
It does not matter that according to the criterion of third priority
(LAST) the sequence would be the other way round.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-219

Sorting Output (4)

• According to the SQL-92 standard, one can only

sort by columns that appear in the output.

E.g. it is impossible to print a list of student names ordered by total
points without printing these points. But tools like SQL*Plus can
suppress output columns from the query result.

• However, in all five systems (Oracle 8, DB2, SQL

Server, Access, MySQL) one can sort by any term

that would be allowed in the SELECT-clause.

In these systems, it is not necessary that the term really appears in
the SELECT-clause. E.g. one can sort by UPPER(LAST), but print LAST.
With DISTINCT, one can only sort by result columns (in Oracle one
can still use them in terms and MySQL has no restriction).

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-220

Sorting Output (5)

• Sometimes it is necessary to add columns to data-

base tables to get a sort value, e.g.

� The results should be printed in the sequence:

Homeworks, Midterm, Final (not alphabetically).

� The “University of Pittsburgh” should appear in

a list of universities under “P”, not under “U”.

• If the student names were stored as a single string

in the form “FIRST LAST”, it would be (more or

less) impossible to sort by last name.

Important DB design question: What do I want to do with the data?

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-221

Sorting Output (6)

• “DESC” means descending (inverse order from high

to low values), the default is “ASC” (ascending).

• It is also possible to refer to columns by number,

e.g.: ORDER BY 2, 4 DESC, 1

Column numbers refer to the sequence in the SELECT-list. They were
important in earlier SQL versions, where one could not explicitly name
the result columns. Today, one probably should use column names.

• Null values are all listed first or all listed last in the

sort sequence (depending on the DBMS).

In Oracle, one can specify NULLS FIRST or NULLS LAST.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-222

Sorting Output (7)

• The effect of “ORDER BY” is purely cosmetic. It does

not change the set of output tuples in any way.

• Thus, “ORDER BY” can only be applied at the very

end of the query. It cannot be used in subqueries.

• Even when multiple SELECT-expressions are combi-

ned with UNION, the ORDER BY can only be placed at

the very end (it refers to all result tuples).

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-223

Sorting Output (8)

SQL Query:

- Table Expression

?

?-

#
"

!ORDER BY - Order Specification -

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-224

Sorting Output (9)

Order Specification:

- Attribute-Reference -

- Column No

6

-

#
"

!ASC

-

#
"

!DESC

6

�

#
"

!,

6

• Most DBMS permit “Term” instead of “Attribute Reference” (except if
DISTINCT or UNION etc. are specified). Then basically the same restrictions
apply as for terms in the SELECT-list (there might be additional restrictions
for the use of aggregation functions).

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-225

Joins in SQL-92 (1)

• An important and useful operation of relational al-

gebra is the join (in several variants).

• In SQL-86, one cannot directly specify a join. One

writes a cartesian product (FROM) and then does a

selection (WHERE). This is still the usual case.

• E.g. the natural join of RESULTS and EXERCISES is:

SELECT R.CAT AS CAT, R.ENO AS ENO, SID,

POINTS, TOPIC, MAXPT

FROM RESULTS R, EXERCISES E

WHERE R.CAT = E.CAT AND R.ENO = E.ENO

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-226

Joins in SQL-92 (2)

• In SQL-92 one can write e.g.

SELECT SID, ENO, (POINTS/MAXPT)*100

FROM RESULTS R NATURAL JOIN EXERCISES E

WHERE CAT = ’H’

• Because of the keywords “NATURAL JOIN” the system

automatically adds the join condition

R.CAT = E.CAT AND R.ENO = E.ENO

• SQL-92 permits to use joins in the FROM-clause and

even on the outer query level (like UNION).
So one can write quite a lot in “relational algebra style”.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-227

Joins in SQL-92 (3)

• Current systems support the standard only partially:

� SQL-92 joins are not supported in Oracle 8.0.

� Some types of joins are supported in DB2, SQL

Server, and Access, but the above “natural join”

is not. A join with explicit condition is possible:

SELECT SID, R.ENO, (POINTS/MAXPT)*100

FROM RESULTS R INNER JOIN EXERCISES E

ON R.CAT = E.CAT AND R.ENO = E.ENO

WHERE R.CAT = ’H’

� MySQL has a natural join, but it behaves not

exactly as required in the standard (see below).

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-228

Joins in SQL-92 (4)

• With the explicit join condition, the query is not

shorter than the equivalent one with the standard

WHERE condition.

• The power of SQL is not increased by adding the

new join constructs.

Every query with the new join constructs can be translated in an
equivalent one that does not use these constructs.

• The reason why joins where added to SQL is pro-

bably the “outer join”: For the outer join, the equi-

valent formulation in SQL-86 is significantly longer.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-229

Outer Join: Repetition

• The usual join eliminates tuples without partner:

A B
a1 b1
a2 b2

��@@

B C
b2 c2
b3 c3

=
A B C
a2 b2 c2

• The left outer join guarantees that tuples from the

left table will appear in the result:

A B
a1 b1
a2 b2

��@@

B C
b2 c2
b3 c3

=
A B C
a1 b1
a2 b2 c2

Rows from the left table are filled with “null” if necessary.
There are also a right outer join and a full outer join.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-230

Outer Join in SQL-92 (1)

• E.g. number of submissions per homework. If there

is no submission, the number 0 should be printed:

SELECT E.NO, COUNT(SID)
FROM EXERCISES E LEFT OUTER JOIN RESULTS R

ON E.CAT = R.CAT AND E.SNO = R.ENO
WHERE E.CAT = ’H’
GROUP BY E.ENO

• All exercises are present in the result of the left

outer join. In exercises without solutions, the attri-

butes of SID and POINTS are filled with null values.

• COUNT(SID) does not count rows where SID is null.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-231

Outer Join in SQL-92 (2)

• Equivalent query without outer join (12 vs. 5 lines):

SELECT E.NO, COUNT(*)
FROM EXERCISES E, RESULTS R
WHERE E.CAT = ’H’ AND R.CAT = ’H’
AND E.ENO = R.ENO
GROUP BY E.ENO

UNION ALL

SELECT E,ENO, 0
FROM EXERCISES E
WHERE E.CAT = ’H’
AND E.ENO NOT IN (SELECT R.RNO

FROM RESULTS R
WHERE R.CAT = ’H’)

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-232

Outer Join in SQL-92 (3)

• E.g. print for every student the number of home-

works he/she has solved (including 0).

• The following query does not work:

Students without homework are not listed.

SELECT FIRST, LAST, COUNT(ENO) Wrong!
FROM STUDENTS S LEFT OUTER JOIN RESULTS R

ON S.SID = R.SID

WHERE R.CAT = ’H’

GROUP BY S.SID, FIRST, LAST

• The outer join is constructed before the WHERE-

condition is evaluated.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-233

Outer Join in SQL-92 (4)

• In general, one must be careful not to eliminate

possible join partners after the outer join is done.

• One has to select the homework results before the

outer join is done:

SELECT FIRST, LAST, COUNT(R.ENO)

FROM STUDENTS S LEFT OUTER JOIN

(SELECT SID, ENO

FROM RESULTS

WHERE CAT = ’H’) R

ON S.SID = R.SID

GROUP BY S.SID, FIRST, LAST

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-234

Outer Join in SQL-92 (5)

• One can also put the condition on the right table

into the join condition:

SELECT FIRST, LAST, COUNT(R.ENO)

FROM STUDENTS S LEFT OUTER JOIN RESULTS R

ON S.SID = R.SID AND R.CAT = ’H’

GROUP BY S.SID, FIRST, LAST

• The SQL-92 permits any WHERE-condition that re-

fers only to the tuple variables on the left and right

side of the join. (But don’t abuse this.)

It seems that DB2 and Access permit no subqueries in the ON-clause.
More complex conditions must be enclosed in parentheses in Access.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-235

Outer Join in SQL-92 (6)

• Conditions on the left table make little sense in the

condition of the left outer join.

• E.g. consider this query:

SELECT E.CAT, E.ENO, R.SID, R.POINTS

FROM EXERCISES E LEFT OUTER JOIN RESULTS R

ON E.CAT = ’H’ AND R.CAT = ’H’

AND E.ENO = R.ENO

• Exercise: Will E.CAT = ’M’ appear in the output?

yes no

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-236

Outer Join in SQL-92 (7)

• MySQL has no subqueries, but sometimes one can

use the outer join instead.

• E.g. students who did not submit any homework:

SELECT S.SID. S.FIRST, S.LAST

FROM STUDENTS S LEFT OUTER JOIN RESULTS R

ON S.SID = R.SID AND R.CAT = ’H’

WHERE R.CAT IS NULL

• Of course, instead of R.CAT one can test any attri-

bute of RESULTS for the null value.
The test for the null value checks whether the current STUDENTS tuple
did not find a join partner.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-237

Join Syntax in SQL-92 (1)

• SQL-92 has the following join types:

� [INNER] JOIN: Usual Join.

� LEFT [OUTER] JOIN: Preserves rows from left table.

� RIGHT [OUTER] JOIN: Preserves right table tuples.

� FULL [OUTER] JOIN: All input tuples are preserved.

� CROSS JOIN: Cartesian product ×.

� UNION JOIN: This is a union that fills the columns

of the other table with null values.

• The brackets mean that INNER/OUTER are optional.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-238

Join Syntax in SQL-92 (2)

• The join condition can be specified as follows:

� The keyword NATURAL in front of the join name.

� “ON 〈Condition〉” follows the join.

� “USING (A1, . . . , An)” follows the join.

USING lists join attributes (e.g. for specifying the natural join).
Attributes with the names A1, . . . , An must appear in both tables
and the join condition is R.A1 = S.A1∧· · ·∧R.An = S.An. NATURAL is
equivalent to specifying USING with all common attribute names.

• Only one of these constructs can be used.

• CROSS JOIN and UNION JOIN have no join condition.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-239

Join Syntax in SQL-92 (3)

• According to the standard, the NATURAL join and the

join with USING produce a table with only one copy

of the common attributes.

• Furthermore, the common attributes are listed first

and cannot be referenced with a tuple variable.

SELECT *

FROM RESULTS R NATURAL JOIN EXERCISES E

• The result columns are CAT, ENO, R.SID, R.POINTS,

E.TOPIC, E.MAXPT (in this sequence).

It is illegal to refer to R.CAT or E.CAT, only CAT can be used (and the
same for ENO).

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-240

Join Syntax in SQL-92 (4)

• Oracle 8i does not support any SQL-92 joins.

• Inner and outer join with ON work in SQL Server,

DB2, Access, and MySQL.

In Access and MySQL, the keyword INNER is not optional.

• USING is supported in none of the five systems.

• NATURAL is supported only in MySQL, but MySQL

does not merge the common columns.

Probably these naming rules which are a bit strange for SQL (but
perfectly normal for relational algebra) are the reason why USING and
NATURAL are not implemented in the big commercial systems.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-241

Join Syntax in SQL-92 (5)

• CROSS JOIN is supported only in SQL Server and

MySQL, not Access and DB2.

One can write a comma for CROSS JOIN, so it is not very useful.

• UNION JOIN is supported in none of the five systems.

However, in SQL-92 (and e.g. Oracle, DB2, SQL Server, not Access),
one can write a subquery containing UNION or UNION ALL also in the
FROM-clause. So with a bit more keystrokes, one can simulate the union
join. By the way, it is a bit strange that e.g. “FROM A NATURAL JOIN B”
is legal in SQL-92, but “FROM A UNION B” is not. Also, SQL-92 per-
mits to write “FROM (SELECT * FROM A UNION SELECT * FROM B) X”, but
the same with “NATURAL JOIN” instead of “UNION” is a syntax error
[Date/Darwen, 1997, p. 148].

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-242

Join Syntax in SQL-92 (6)

• In the FROM clause, one can also combine joins and

the declaration of further tuple variables (separated

by “,” as usual).

• One can also join the result of joining two tables

with a third one (and so on). The syntax is:

SELECT ...

FROM R LEFT JOIN S ON R.A=S.B

LEFT JOIN T ON S.C=T.D

• It is also possible to use parentheses, but then one

has to declare a new tuple variable after the (...).

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-243

Outer Join in Oracle (1)

• In Oracle, the outer join is specified under WHERE.

• Instead of the usual join condition R.A = S.B one

writes

� R.A = S.B(+) for the left outer join of R and S,

� R.A(+) = S.B for the right outer join of R and S.

I.e. the special marker “(+)” is appended to attri-

butes of the table which can be replaced with nulls.
I.e. this protects the tuples of the other table (not marked with “(+)”).
There are many syntactic restrictions which ensure that this is really
an outer join. If the join is done on several attributes, all must be
marked. It is possible to write also S.B(+) = c with a constant c or
e.g. R.A = S.B(+)+ 1.

Stefan Brass: Datenbanken II Universität Halle, 2003

6. Advanced SQL Repetition 6-244

Outer Join in Oracle (2)

• E.g. number of submissions per exercise (can be 0):

SELECT E.CAT, E.ENO, COUNT(SID)

FROM EXERCISES E, RESULTS R

WHERE E.CAT = R.CAT(+) AND E.ENO = R.ENO(+)

GROUP BY E.CAT, E.ENO

• As in the SQL-92 outer join, the outer join is con-

structed before any other conditions in the WHERE-

clause are applied.

No matter in what sequence the conditions are written. But as shown
above, one can use a subquery under FROM to do a selection before
the outer join.

Stefan Brass: Datenbanken II Universität Halle, 2003

