
4. Logical Design 4-1

Part 4: Logical Design
References:

• Teorey: Database Modeling & Design, 3rd Edition.
Morgan Kaufmann, 1999, ISBN 1-55860-500-2, ca. $32.

• Elmasri/Navathe: Fundamentals of Database Systems, 3rd Ed.

• Rauh/Stickel: Konzeptuelle Datenmodellierung (in German), Teubner, 1997.

• Kemper/Eickler: Datenbanksysteme (in German), Oldenbourg, 1997.

• Graeme C. Simsion, Graham C. Witt: Data Modeling Essentials, 2nd Edition.
Coriolis, 2001, ISBN 1-57610-872-4, 459 pages.

• Barker: CASE*Method, Entity Relationship Modelling.
Addison-Wesley, 1990, ISBN 0-201-41696-4, ca. $61.

• Koletzke/Dorsey: Oracle Designer Handbook, 2nd Edition.
ORACLE Press, 1998, ISBN 0-07-882417-6, ca. $40.

• A. Lulushi: Inside Oracle Designer/2000.
Prentice Hall, 1998, ISBN 0-13-849753-2, ca. $50.

• Oracle/Martin Wykes: Designer/2000, Release 2.1.1, Tutorial.
Part No. Z23274-02, Oracle, 1998.

• Oracle Designer Model, Release 2.1.2 (Element Type List).

• Oracle Designer Online Help System.

• Lipeck: Skript zur Vorlesung Datenbanksysteme (in German), Univ. Hannover, 1996.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-2

Objectives

After completing this chapter, you should be able to:

• translate given ER-schemas manually into the rela-

tional model (most important goal of this chapter).

• explain the steps in which a database schema is

developed with Oracle Designer and name the tools

that are used in this process.

• write a short paragraph about the Database Design

Transformer of Oracle Designer: What it can do

and what its limitations are.

• read Server Model Diagrams in Oracle Designer.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-3

Overview

1. Schema Translation

'

&

$

%
2. Database Design Transformer

3. Design Editor: Server Model Diagrams

4. Design Editor: Database Administration

5. Generation of SQL Code

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-4

General Remarks (1)

• In order to develop a relational schema, one usually

first designs an ER-schema, and then transforms it

into the relational model, because the ER-model

� allows better documentation of the relationship

between the schema and the real world.
E.g. entity types and relationships are distinguished.

� has a useful graphical notation.

� has constructs like inheritance which have no di-

rect counterpart in the relational model.
The difficult conceptual design can be simplified a bit by first
using the extended possibilities.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-5

General Remarks (2)

• Given an ER-schema SE, the goal is to construct

a relational schema SR such that there is a one-to-

one mapping τ between the states for SE and SR.

I.e. each possible DB state with respect to SE has exactly one coun-
terpart state with respect to SR and vice versa.

• States possible in the relational schema but mea-

ningless with respect to the ER-schema must be

excluded by integrity constraints.

E.g., in the ER-model, relationships can be always only between
currently existing entities. In the relational model, “dangling poin-
ters” must be explicitly excluded by means of foreign key constraints.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-6

General Remarks (3)

• In addition, it must be possible to translate que-

ries referring to SE into queries with respect to SR,

evaluate them in the relational system, and then

translate the answers back.

• I.e. it must be possible to simulate the designed ER-

database with the actually implemented relational

database.

Any schema translation must explain the correspondance of schema
elements such that, in our case, a query intended for the ER-schema
can also be formulated with respect to the relational schema.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-7

Example

INSTRUCTOR
FNAME
LNAME
◦ PHONE

'

&

$

%

teacher of
�

��
HHH

taught by

COURSE
CRN
* TITLE

'

&

$

%

STUDENT
SSN
* FNAME
* LNAME
◦ EMAIL

'

&

$

%

HHH
���

registered for

A
AA

�
��

taken by

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-8

Entities Types (1)

• First a table is created for each entity type.
The tables created in this step are not necessarily the final result.
When one-to-many relationships are translated, columns are added
to them. In rare cases, they will later turn out as unnecessary.

• The name of this table is the name of the entity

type (maybe in plural form, as in Oracle Designer).

• The columns of this table are the attributes of the

entity type.
Optional attributes translate into columns that permit null values.
Depending on how much one considers the goal DBMS in this step,
it might be necessary to map attribute data types into something the
DBMS supports.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-9

Entities Types (2)

• The primary key of the table is the primary key of

the entity type. The same for alternative keys.

Weak entity types are discussed below.

• If the entity type has no key, an artificial key is

added (e.g. Oracle Designer does this).

The designer really should explicitly define a key for each entity type.

• Result in the example:

INSTRUCTORS(FNAME, LNAME, PHONEo)

STUDENTS(SSN, FNAME, LNAME, EMAILo)

COURSES(CRN, TITLE)

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-10

Entity Types (3)

Example State for the Tables Generated So Far:

INSTRUCTORS

FNAME LNAME Phone
Stefan Brass 624-9404
Michael Spring 624-9424
Nina Brass

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-11

Entity Types (4)

COURSES

CRN TITLE
12345 DB Management
24816 DB Analysis&Design
56789 Client-Server

STUDENTS

SSN FIRST LAST EMAIL
111-22-3333 John Smith js@acm.org
123-45-6789 Ann Miller
235-71-1131 David Meyer dm@hotmail.com

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-12

One:Many Relationships (1)

• One-to-many Relationships are normally translated

by adding the primary key from the “one” side as

a foreign key to the “many” side.

In this way, every entity on the “many” side can refer to the related
entity on the “one” side.

• E.g. in the example, first name and last name of the

instructor are added to the course table in order to

implement the relationship “teacher of/taught by”:

COURSES(CRN, TITLE,
(FNAME,LNAME)→INSTRUCTORS)

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-13

One:Many Relationships (2)

• The example shows already a difficult case because

the primary key (and therefore also the foreign key)

consists of two columns.
This is why some designers would prefer primary keys consisting only
of one column. But that is a matter of taste.

• Example State:

COURSES

CRN TITLE FNAME LNAME
12345 DB Management Stefan Brass
24816 DB Analysis&Design Stefan Brass
56789 Client-Server Michael Spring

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-14

One:Many Relationships (3)

• The rows corresponding to both entities will be

combined with a join (which equates the foreign

key on the “many” side to the primary key on the

“one” side).

• Although a “pointer” (foreign key) was added on-

ly on the “COURSES” side, the join permits to

“follow pointers in both directions”.

Of course, one can formulate queries that contain conditions on in-
structors and then find all their courses. The exact evaluation se-
quence for the query is a question of query optimization and depends
also on the existing indexes.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-15

One:Many Relationships (4)

• It is a common error of beginners to add the foreign

key to the wrong side.

Of course, this cannot happen when one uses a tool that does the
translation automatically (like Oracle Designer). But one nevertheless
needs to understand the correct translation.

• Adding a foreign key to the table is only possible if

the maximum cardinality in the (min,max) notation

is 1, i.e. there is at most one related entity.

• This holds for the “many” side of a one-to-many

relationship.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-16

One:Many Relationships (5)

• Since one instructor can teach many courses, ad-

ding the key of COURSES to the INSTRUCTORS

table would give a set-valued attribute which is not

permitted in the standard relational model:

INSTRUCTORS WRONG!

FNAME LNAME Phone CRN
Stefan Brass 624-9404 {12345, 24816}
Michael Spring 624-9424 {56789}
Nina Brass ∅

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-17

One:Many Relationships (6)

• Unfolding the set-valued attribute would destroy

the key, store information redundantly (instructors

of multiple courses), and lead to the loss of other

information (instructors of no course).

INSTRUCTORS WRONG!

FNAME LNAME Phone CRN
Stefan Brass 624-9404 12345
Stefan Brass 624-9404 24816
Michael Spring 624-9424 56789

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-18

One:Many Relationships (7)

• Above, every course had to be taught by an in-

structor (mandatory participation).

• The translation for the case of optional participa-

tion is similar (courses without instructors).

INSTRUCTOR
FNAME
LNAME
◦ PHONE

'

&

$

%

teacher of
���
H

HH

taught by

COURSE
CRN
* TITLE

'

&

$

%

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-19

One:Many Relationships (8)

• The only difference is that the foreign key can now

be null:
COURSES(CRN, TITLE,

(FNAMEo,LNAMEo)
→ INSTRUCTORS)

• Example State:

COURSES

CRN TITLE FNAME LNAME
12345 DB Management Stefan Brass
24816 DB Analysis&Design
56789 Client-Server Michael Spring

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-20

One:Many Relationships (9)

• If the foreign key consists of more than one attri-

bute (as in the example), all its attributes must be

together null or together not null.

A partially defined foreign key would make no sense in terms of the
relationship that has to be implemented.

• Fortunately, this condition can be enforced decla-

ratively with a CHECK-constraint:

CHECK((FNAME IS NOT NULL AND LNAME IS NOT NULL)

OR (FNAME IS NULL AND LNAME IS NULL))

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-21

One:Many Relationships (10)

• Mandatory participation on the “one” side of a one-

to-many relationship cannot be translated into the

relational model using only the standard constraints

(not null, keys, foreign keys, CHECK).

• Instructors must teach at least one course:

INSTRUCTOR
FNAME
LNAME
◦ PHONE

'

&

$

%

teacher of
���
H

HH

taught by

COURSE
CRN
* TITLE

'

&

$

%
Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-22

One:Many Relationships (11)

• In this case, one uses the same translation as if the

participation on the “INSTRUCTOR” side would

be optional.

• This is more general: The cardinality restriction

(1, ∗) is weakend to (0, ∗).

• Thus, all DB states required by the ER-schema can

be represented in the relational schema.

• But the relational schema permits DB states that

would be illegal with respect to the ER-schema.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-23

One:Many Relationships (12)

• In order to make the two schemas equivalent, one

needs to add a constraint that excludes instructors

without courses.

• E.g. one could run from time to time an SQL query

that finds violations of the constraint:

SELECT FNAME, LNAME

FROM INSTRUCTORS I

WHERE NOT EXISTS (SELECT *

FROM COURSES C

WHERE C.FNAME = I.FNAME

AND C.LNAME = I.LNAME)

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-24

Integrity Control (1)

• The problem with the above approach (searching

for violations e.g. every night) is that it does not

really enforce the integrity of the DB state.

• The invalid information can be entered, and is de-

tected only after some time.

• In the meantime, it might have been used already.
E.g. a salary was paid.

• It is also more difficult to correct the integrity vio-

lation if it is not immediately detected.
Who has entered this? What did he/she meant to do?

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-25

Integrity Control (2)

• One can also program the check in the application

programs used for entering data.

The instructor can only be added with his/her first course, and when
the last course is deleted, the instructor is deleted, too.

• Then one has to exclude direct changes to the da-

tabase that do no use the application programs.

• Also, one must be very careful that all application

programs check this condition.

E.g. also the one used for updating instructor assignments for courses.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-26

Integrity Control (3)

• Triggers can be used to enforce the constraint in a

more reliable way.

Triggers are procedures stored in the database that the DBMS au-
tomatically calls when a certain event has happend, e.g. when an in-
structor was inserted. Triggers often consist of the three parts “event,
condition, action”.

• One can also define elementary transactions as sto-

red procedures in the database and change the DB

state only via these stored procedures.

Then checks do not have to be repeated in the application programs,
it is more likely that checks are not forgotten, and they are more
clearly separated from the user interface.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-27

Integrity Control (4)

• The SQL-92 standard would permit to specify the

constraint declaratively (“CREATE ASSERTION”).
This is not implemented in any DBMS I know. However, DBMS ven-
dors now feel some pressure from their customers to offer more sup-
port for integrity enforcement.

• The constraint that would be needed here is similar

to a foreign key.
It also requires the inclusion of attribute values in one table in attribute
values in another table. Every combination of FNAME, LNAME values
in the INSTRUCTORS table must also appear in the COURSES table.

• But it is no foreign key since the referenced attri-

bute combination is no key.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-28

Integrity Control (5)

• Because of these problems, one can of course ask:

“Should I use such cardinality specifications?”

• But if in the real world, there cannot be instructors

that do not teach courses, the ER-schema with

optional participation would be simply wrong.

Of course, as for any constraint, one must always ask: Could there
possibly be exceptional situations that would permit an instructor
without courses? In that case, the mandatory participation would be
wrong, because constraints do not permit any exceptions.

• Clearer example: Invoices without line items really

do not make sense.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-29

Integrity Control (6)

• When definiting the conceptual schema, one should

not think about limitations of current technology.

• That is the task of logical (and physical) design.

• The problem can be solved (e.g. with checks in

application programs and by searching for integrity

violations with a query at least once a month).

• When technology advances, the same conceptual

schema can be translated in a nicer way.

More tasks are given to the system, less is explicitly programmed.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-30

Many:Many Relationships (1)

• In the example, a many-to-many relationship still

remains:

STUDENT
SSN
* FNAME
* LNAME
◦ EMAIL

'

&

$

%

HHH
�

��

registered for
���
H

HH

taken by

COURSE
CRN
* TITLE

'

&

$

%
• Such relationships cannot be implemented by ad-

ding a foreign key to one of the two tables, because

there can be more than one related entity.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-31

Many:Many Relationships (2)

• Thus, a new table is created for the relationship (it

is sometimes called an “intersection table”).

• The new table contains the primary keys of both

entity types that participate in the relationship.

• The two keys together form the composed key of

the intersection table, and each is a foreign key

referencing the table for its entity type:

REGISTERED FOR(SSN→STUDENTS,
CRN→COURSES)

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-32

Many:Many Relationships (3)

• The intersection table for the relationship simply

contains key value pairs of entities that are related:

REGISTERED FOR

SSN CRN
111-22-3333 12345
111-22-3333 56789
123-45-6789 12345

• E.g. John Smith (SSN 111-22-3333) is registered

for Database Management (CRN 12345) and for

Client-Server (CRN 56789).

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-33

Many:Many Relationships (4)

• Optional participation (minimum cardinality 0) is

actually the only form of many-to-many relation-

ship that can be implemented in this way with the

standard constraints supported in SQL.

If a student has to register for at least one course, it would be possible
to store the CRN for the first course redundantly in the STUDENTS
table and then one could declare SSN and CRN in STUDENTS as a
foreign key referencing REGISTERED FOR, but this is at least very
ugly (one would also get severe problems inserting any data). One
could also leave the foreign key out and take in all queries the union of
the registration in the STUDENTS table and the registrations in the
REGISTERED FOR table. Again, such strange and tricky solutions
lead to complicated programs and possibly errors.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-34

Many:Many Relationships (5)

• As before, if one has mandatory participation, one

uses the more general translation, and adds a cons-

traint (to be checked e.g. in application programs).

• If a student can register for at most three courses,

and could discuss also the following solution:

STUDENTS(SSN, FNAME, LNAME, EMAILo,

CRN1o→COURSES, CRN2o→COURSES,

CRN3o→COURSES)

• However, this significantly complicates queries (one

will need a lot of “OR” and “UNION”).

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-35

Many:Many Relationships (6)

• Suppose the relationship has attributes:

Student

�
�

�
�SSN

(0, ∗)
�

���
����

HH
HHH

HHH

took ��
���

���

H
HHH

HHHH

(0, ∗)

�
�

�
�Term

��
���� �

�
�
�Grade

H
HHHHH

Course

�
�

�
�CRN

• Then one can simply add the relationship attributes

to the relationship table:

TOOK(SSN→STUDENTS, CRN→COURSES,
TERM, GRADE)

• These attributes do not become part of the key.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-36

One:Many: Alternative (1)

• One can also translate one-to-many relationships

(with optional partcipation on both sides) into ta-

bles of their own.

• E.g. consider the following example: The university

library wants to store who has borrowed with book:

STUDENT
SSN
* FNAME
* LNAME
◦ EMAIL

'

&

$

%

borrower of
���
H

HH

borrowed by

BOOK
ID
* TITLE
◦ AUTHOR

. . .

'

&

$

%
Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-37

One:Many: Alternative (2)

• This can also be translated in a similar way to a

many-to-many relationship:

BORROWED BY(ID→BOOKS,
SSN→STUDENTS)

• In contrast to a many-to-many relationship, ID alo-

ne suffices as key, since every book can be related

to at most one student, so there can never be two

entries for the same book.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-38

One:Many: Alternative (3)

• Note that this alternative solution needs one more

join in most queries than the standard solution.

The standard solution explicitly stores the outer join of the entity table
and this relationship table, so that one does not have to compute the
join at runtime.

• However, if there are very many books and very few

of them are borrowed, permits fast access to the

borrowed books.

It might also be a bit more space-efficient.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-39

One:One Relationships (1)

• Suppose we want to store which student is respon-

sible for which computer account:

STUDENT
SSN
* FNAME
* LNAME
◦ EMAIL

'

&

$

%

owner of

owned by

ACCOUNT
ID
* LAST LOGIN

'

&

$

%
• The translation is basically done like a one-to-many

relationship. If one side has mandatory participati-

on, one treats that side as the “many” side.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-40

One:One Relationships (2)

• The result of the translation is

STUDENTS(SSN, FNAME, LNAME, EMAILo)

ACCOUNTS(ID, LAST LOGIN,
SSN→STUDENTS)

• The important difference to a “one-to-many” re-

lationship is that the foreign key that implements

the relationship now becomes an alternative key for

the ACCOUNTS table.

• I.e. for every student SSN, there can be at most

one account.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-41

One:One Relationships (3)

• Now consider the case that the participation is op-

tional on both sides:

FACULTY
FNAME
LNAME
* PHONE
◦ EMAIL

'

&

$

%

head of

lead by

DEPARTMENT
DNAME
* ADDRESS

'

&

$

%
• Now the situation is symmetric, and one can choose

either side as “many” side.
It would be a mistake to add a foreign key on both sides (redundant
information).

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-42

One:One Relationships (4)

• In the example, it is probably an exceptional situa-

tion that departments do not have a head.

• One needs less null values if one chooses the side

on which participation is “less optional” and adds

the foreign key on this side:

FACULTY(FNAME, LNAME, PHONE, EMAILo)

DEPARTMENTS(DNAME, ADDRESS,
(LNAMEo, FNAMEo)

→FACULTY)

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-43

One:One Relationships (5)

• The relationship becomes one-to-one by specifying

that LNAME, FNAME are an alternative key for

DEPARTMENTS.

Note that as always for optional composed foreign keys, one needs
a CHECK-constraint specifying that LNAME and FNAME can only be
together null.

• Not every DBMS supports alternative keys that can

be null.

And if they are supported, one has to check what the semantics is.
E.g. in SQL server, at most one record with a null value in the key is
permitted, which would not help here.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-44

One:One Relationships (6)

• However, if that does not work, one can also use

the alternative translation for one-to-many relati-

onships (with their own table):

FACULTY(FNAME, LNAME, PHONE, EMAILo)

DEPARTMENTS(DNAME, ADDRESS)

DEPT HEAD(DNAME→DEPARTMENTS
(LNAME, FNAME)→FACULTY)

• LNAME and FNAME together are an alternative

key for the relation DEPT HEAD.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-45

One:One Relationships (7)

• Finally, consider the case with mandatory partici-

pation on both sides:

STUDENT
SSN
* FNAME
* LNAME
◦ EMAIL

'

&

$

%

owner of

owned by

ID CARD
NO
* DATE ISSUED

'

&

$

%
• In this case, one would translate the two entity

types into only one table.
One must select one of the two keys as primary key, the other becomes
an alternative key.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-46

Summary: Limitations (1)

• The following cardinalities can be translated with

the methods explained above (using only the stan-

dard constraints of the relational model):

E1
(1,1)

�
�

��

@
@

@@

@
@

@@

�
�

��
R

(0, ∗)
E2

E1
(0,1)

�
�

��

@
@

@@

@
@

@@

�
�

��
R

(0, ∗)
E2

E1
(0, ∗)

�
�

��

@
@

@@

@
@

@@

�
�

��
R

(0, ∗)
E2

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-47

Summary: Limitations (2)

• In addition, all kinds of one-to-one relationships can

be handled:

E1
(1,1)

�
�

��

@
@

@@

@
@

@@

�
�

��
R

(0,1)
E2

E1
(0,1)

�
�

��

@
@

@@

@
@

@@

�
�

��
R

(0,1)
E2

E1
(1,1)

�
�

��

@
@

@@

@
@

@@

�
�

��
R

(1,1)
E2

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-48

Renaming of Columns (1)

• Sometimes the direct application of the translation

rules would lead to a name clash:

INSTRUCTOR
NO
* FNAME
* LNAME
◦ PHONE

'

&

$

%

teacher of
���
HHH

taught by

COURSE
NO
* TITLE

'

&

$

%
• In this example, one would get:

COURSES(NO, TITLE, NO→INSTRUCTORS)

• But column names must be unique within a table.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-49

Renaming of Columns (2)

• One can rename attributes during the translation

in any understandable way.

• E.g. one could also use the role name in the relati-

onship:
COURSES(NO, TITLE,

TAUGHT BY→INSTRUCTORS)

• One could also add the name of the referenced

table, or maybe a shorthand for it:
COURSES(NO, TITLE,

INST NO→INSTRUCTORS)

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-50

Renaming of Columns (3)

• The renaming must be carefully documented such

that the ER-diagram is still useful as documentati-

on for the implemented relational schema.

• Sometimes, it might be good to change the attri-

bute name already on the ER-level.

However, this is not always possible (e.g. in the case of recursive
relationships).

• Also the table names generated for many-to-many

relationships are often not very good and should be

renamed.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-51

Weak Entity Types (1)

• When weak entities are translated, the “borrowed”

key attributes of the parent entity must be added.

BUILDING
NAME
◦ YEAR BUILT

'

&

$

%

home of
���
HHH

contained in

ROOM
NUMBER
* TYPE
◦ CAPACITY

'

&

$

%
• The key of the “ROOMS” table will consist of the

building name and the room number.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-52

Weak Entity Types (2)

• The result of the translation is:

BUILDINGS(NAME, YEAR BUILTo)

ROOMS(NAME→BUILDINGS, NUMBER,
TYPE, CAPACITYo)

• I.e. the foreign key that is added to the weak entity

table in order to implement the relationship with

the parent type becomes part of the key.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-53

Weak Entity Types (3)

• Next, consider a weak entity type with more than

one parent (“Association Entity Type”):
'

&

$

%

STUDENT

#NAME
◦ EMAIL

author of

submitted by

�
��

HHH

'

&

$

%

EXERCISE

#NO
* MPOINTS

subject of

for

�
��

HHH

'

&

$

%

SOLUTION

*POINTS

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-54

Weak Entity Types (4)

• The translation is done in the same way: The key

of the weak entity type now consists of the keys

of the two parent entity types (i.e. the two foreign

keys added to implement the relationships):

STUDENTS(NAME, EMAILo)

EXERCISES(NO, MPOINTS)

SOLUTIONS(NAME→STUDENTS,
NO→EXERCISES,
POINTS)

• Of course, any key attributes declared in the weak

entity type itself would be added.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-55

Weak Entity Types (5)

• Note that the translation result is exactly the same

as if we had used a relationship with an attribute:

Student

�
�

�
�Name

�
�
� �
�

�
�Email

@
@

@

(0, ∗)
��

���
��

H
HHH

HHH

solved �
���

���

HH
HHH

HH

(0, ∗)

�
�

�
�Points

Exercise

�
�
�
�No

�
�
� �
�

�
�MPoints

@
@

@

• This demonstrates again that the two ER-schemas

are equivalent.
When one has to check two ER-constructs for equivalence, one can
try to translated them into the relational model. If the results are the
same, the ER-schemas are equivalent. The converse does not hold.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-56

Weak Entity Types (6)

• A weak entity can also be constructed over sever-

al steps. Consider a database schema for storing

multiple choice online tests:

TEST
TID
* DESC

'

&

$

%

���
HHH

QUESTION
QNO
* TEXT

'

&

$

%

���
HHH

ANSWER
LETTER
* TEXT
* CORRECT

'

&

$

%
Each test consists of several questions. For each question, the student
has to check the correct answer among several alternatives. Within a
test, questions are identified by a number. For a given question, each
possible answer is identified by a letter (a, b, c).

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-57

Weak Entity Types (7)

• Before a weak entity type can be translated, all its

parent entity types must be translated.

In the example, first TEST must be translated, then QUESTION,
then ANSWER.

• The reason is that in order to construct the prima-

ry key for a weak entity type, one must know the

primary key of its parent entity type(s).

• This also means that any cycles in the “parent of”

relation would give an ill-formed schema that has

no meaning and cannot be translated.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-58

Weak Entity Types (8)

• The result of the translation in the example is:

TESTS(TID, DESC)

QUESTIONS(TID→TESTS, QNO, TEXT)

ANSWERS((TID, QNO)→QUESTIONS,
LETTER, TEXT, CORRECT)

• ANSWERS contains a foreign key that references

its direct parent entity table QUESTIONS.

• This contains a foreign key referencing TESTS.

• It is logically implied that any TID value appearing

in ANSWERS also appears in TESTS.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-59

Subtypes/Specialization (1)

'

&

$

%

INSTRUCTOR

#NAME
∗ EMAIL'

&

$

%

FACULTY

∗TENURED

'

&

$

%

EXTERNAL

∗ADDRESS

'

&

$

%

COURSE

#CRN
∗ TITLE

teacher of
���
H

HH

taught by

'

&

$

%
COMMITTEE

#CNAME
HHH
���

member of
���
HHH

composed of

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-60

Subtypes/Specialization (2)

Method 1 (Table for the Supertype):

• One big relation is created that contains all attri-

butes of the supertype and of all subtypes.

Including possibly indirect subtypes.

• In the example, the result is:
INSTRUCTORS(NAME, EMAIL, TYPE,

TENUREDo, ADDRESSo)

• The column “TYPE” identifies to which subtype the

entity belongs, e.g. “F” for Faculty and “E” for Ex-

ternal: CHECK(TYPE = ’F’ OR TYPE = ’E’).

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-61

Subtypes/Specialization (3)

• Example State:

INSTRUCTORS

NAME EMAIL TYPE TENURED ADDRESS

Brass sb@... F N

Spring spring@... F Y

Mundie mundie@... E CMU

• Attributes of subtypes are defined only for rows

corresponding to elements of the subtype.

• This means that the corresponding columns in the

table must permit null values.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-62

Subtypes/Specialization (4)

• With the following constraints one can make sure

that subtype attribute columns are really defined

only for the subtype:
CHECK(TYPE = ’F’ OR TENURED IS NULL)

CHECK(TYPE = ’E’ OR ADDRESS IS NULL)

• Conversely, if an attribute was not optional in the

ER-schema, one must add a CHECK-constraint to

make sure that the corresponding column is not

null for elements of this subtype:
CHECK(TYPE <> ’F’ OR TENURED IS NOT NULL)

CHECK(TYPE <> ’E’ OR ADDRESS IS NOT NULL)

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-63

Subtypes/Specialization (5)

• It might be useful to declare views for the subtypes:

CREATE VIEW FACULTY AS

SELECT NAME, EMAIL, TENURED

FROM INSTRUCTORS

WHERE TYPE = ’F’

• Sometimes, the “TYPE” column is not really needed.

E.g. in the example, all instructors where “TENURED” is a null value are
external instructors.

• But it might be clearer to retain it. This might also

help to adapt the schema to additional subtypes.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-64

Subtypes/Specialization (6)

• With this method, relationships refering to the su-

pertype are no problem:

COURSES(CRN, TITLE, INST_NAME→INSTRUCTOR)

• Example State:

COURSES

CRN TITLE INST_NAME

11111 Database Management Brass

22222 DB Analysis&Design Brass

33333 Client-Server Spring

44444 Document Processing Mundie

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-65

Subtypes/Specialization (7)

• Relationships with a subtype can only be translated

in the same way as a relationship to the supertype:

COMMITTEE_MEMBERS(CNAME→COMMITTEES,

FAC_NAME→INSTRUCTOR)

COMMITTEE_MEMBERS

CNAME FAC_NAME

PhD Admissions Spring

PhD Admissions Brass

• The table declaration does not prevent that an ex-

ternal instructor is entered as a committee member.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-66

Subtypes/Specialization (8)

• The standard constraints of the relational model

do not help in this case.

As mentioned before, one can run a query that finds violations from
time to time, one can do checks in application programs or stored
procedures, or one can use triggers. Note that a foreign key cannot
reference a view. One can hope that in future DBMS vendors will
implement more general constraints. In this case one needs some-
thing like a foriegn key that specifies in addition a condition on the
referenced tuple.

• If there are relationships on subclasses, one should

consider using one of the other translation methods

(or do the trick on the next page).

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-67

Subtypes/Specialization (9)

• In the special case that one uses artificial keys

(i.e. numbers that one can assign), one can reserve

different ranges for the different subtypes.

• E.g. faculty members have IDs from 100 to 499,

external instructs have IDs from 500 to 999:

INSTRUCTORS

ID NAME EMAIL TYPE TENURED ADDRESS

101 Brass sb@... F N

102 Spring spring@... F Y

501 Mundie mundie@... E CMU

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-68

Subtypes/Specialization (10)

• The column “TYPE” should now be removed, since

it is redundant.

Of course, one can define a view that reconstructs it. If one really
wants to retain it, one must add at least a CHECK constraint that
ensures that IDs are in the correct range for the instructor type.

• Some designers would leave part of the possible

range of IDs for future subtypes.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-69

Subtypes/Specialization (11)

• Now relationships defined on subtypes are no pro-

blem. Consider again:

COMMITTEE_MEMBERS(CNAME→COMMITTEES,

FAC_ID→INSTRUCTOR)

COMMITTEE_MEMBERS

CNAME FAC_ID

PhD Admissions 101

PhD Admissions 102

• This constraint ensures that only the subtype is

referenced: CHECK(FAC_ID BETWEEN 100 AND 499)

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-70

Subtypes/Specialization (12)

• This method can be easily adapted for partial or

overlapping specialization:

� If specialization is partial, one simply has one

more TYPE value for elements of the supertype

that do not belong to any subtype.

Actually, partial specialization is never a problem: One can always
add an “Other” subclass.

� If specialization is overlapping, one uses instead

of the TYPE column one boolean column for each

subtype (e.g. IS_FACULTY, IS_EXTERNAL).

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-71

Subtypes/Specialization (13)

Method 2 (Tables for the Subtypes):

• In this case, one table is created for each subtype.

It contains the attributes of the subtype plus all

inherited attributes.

• In the example, the result is:
FACULTY(NAME, EMAIL, TENURED)

EXTERNAL(NAME, EMAIL, ADDRESS)

• Since each entity of the supertype belongs to only

one subtype, no data is stored redundantly.

This method would not work for overlapping specialization.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-72

Subtypes/Specialization (14)

• Example State:

FACULTY

NAME EMAIL TENURED

Brass sb@... N

Spring spring@... Y

EXTERNAL

NAME EMAIL ADDRESS

Mundie mundie@... CMU

• This method does not need null values and the

corresponding CHECK-constraints like Method 1.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-73

Subtypes/Specialization (15)

• One can define a view for the supertype:

CREATE VIEW INSTRUCTOR(NAME, EMAIL) AS

SELECT NAME, EMAIL FROM FACULTY

UNION ALL

SELECT NAME, EMAIL FROM EXTERNAL

Without the view, queries will often be more complicated than with
the first method. In any case, queries refering to the supertype will
run a bit slower, although UNION ALL is only concatenation.

• Queries refering only to a subtype are slightly simp-

ler and will run slightly faster than with Method 1.

If there are subtypes that contain only a small fraction of the entities
of the supertype, queries to these subtypes will be significantly faster.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-74

Subtypes/Specialization (16)

• This method cannot enforce the uniqueness of keys

between subtypes: E.g. a faculty member and an

external instructor with the same name can exist.

The constraint that the values in the NAME columns of the tables
FACULTY and EXTERNAL must be disjoint is not one of the standard cons-
traints and cannot be specified (today) in the CREATE TABLE statement.

• If one can assign numbers as key values, one can

use CHECK constraints that enforce that the key va-

lue ranges in the two tables are disjoint.

E.g. FACULTY uses only IDs 100 to 499, EXTERNAL only 500 to 999.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-75

Subtypes/Specialization (17)

• For Method 2, relationships with a subtype are no

problem (since each subtype has its own table):

COMMITTEE_MEMBERS(CNAME→COMMITTEES,

FAC_NAME→FACULTY)

COMMITTEE_MEMBERS

CNAME FAC_NAME

PhD Admissions Spring

PhD Admissions Brass

• However, the translation of relationships with a su-

pertype is significantly more complicated.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-76

Subtypes/Specialization (18)

• Since there is no table for the supertype, one must

split foreign keys that are generated for relation-

ships with the supertype:
COURSES(CRN, TITLE, FAC_NAMEo→FACULTY,

EXT_NAMEo→EXTERNAL)

COURSES

CRN TITLE FAC_NAME EXT_NAME

11111 Database Management Brass

22222 DB Analysis&Design Brass

33333 Client-Server Spring

44444 Document Processing Mundie

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-77

Subtypes/Specialization (19)

• Only one of the two foreign keys can be defined:

CHECK(FAC_NAME IS NULL OR EXT_NAME IS NULL)

• In addition, one must be defined (because the re-

lationship has mandatory participation):

CHECK(FAC_NAME IS NOT NULL

OR EXT_NAME IS NOT NULL)

• Queries become more complicated in this way.

It would be possible to hide these complications with another view
defined for COURSES that merges the two columns (using UNION ALL).
But in any case, query evaluation will be slower (with today’s query
optimizers). Of course, if the tables are small, this is no problem.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-78

Subtypes/Specialization (20)

• When the foreign key would be part of a primary key

(for many-to-many relationships or weak entities),

there are two options:

� Either one uses the splitting of foreign keys as

above and accepts null values in keys: This trans-

lation works only for some DBMS.

DBMS differ in whether they support UNIQUE-constraints for co-
lumns that can be null, and in the exact semantics for this. One
would need here that only exact copies are excluded. If necessa-
ry, one could replace the null value by a single “invalid” faculty
member or external instructor.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-79

Subtypes/Specialization (21)

• Translation of many-to-many and weak entity rela-

tionsships, continued:

� Or one splits the entire table: E.g. suppose that

instructors can suggest students for awards (i.e.

there is a many-to-many relationship between in-

structors and students).
AWARD1(NAME→FACULTY, SSN→STUDENTS)

AWARD2(NAME→EXTERNAL, SSN→STUDENTS)

• Because of these problems, one would probably use

one of the other methods for translating speciali-

zation in this case.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-80

Subtypes/Specialization (22)

• Method 2 can work also with partial specialization.
The trick is to add another subclass and works with any method.

• E.g. if there are instructors that are neither facul-

ty members nor external (e.g. PhD students), one

would simply add another table for them:
FACULTY(NAME, EMAIL, TENURED)

EXTERNAL(NAME, EMAIL, ADDRESS)

OTHER_INSTRUCTORS(NAME, EMAIL)

• The OTHER_INSTRUCTORS table contains only those

entities that are direct instances of the supertype,

it does not contain the subtype entities.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-81

Subtypes/Specialization (23)

Method 3 (Tables for Supertype and Subtypes):

• Method 3 creates

� a table for the supertype that contains all en-

tities, including those of subtypes, but has only

columns for the supertype attributes, and

� one table for each subtype which contains co-

lumns for the attributes that are specific to the

subtype, plus the key of the supertype.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-82

Subtypes/Specialization (24)

• In the example, the result is:

INSTRUCTORS(NAME, EMAIL)

FACULTY(NAME→INSTRUCTORS, TENURED)

EXTERNAL(NAME→INSTRUCTORS, ADDRESS)

• One must use a join to get all attributes of an

entity together (the same entity is now represented

in two different tables):

CREATE VIEW FACULTY2(NAME, EMAIL, TENURED) AS

SELECT I.NAME, I.EMAIL, F.TENURED

FROM INSTRUCTORS I, FACULTY F

WHERE I.NAME = F.NAME

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-83

Subtypes/Specialization (25)

• Example State:

INSTRUCTORS

NAME EMAIL

Brass sb@...

Spring spring@...

Mundie mundie@...

FACULTY

NAME TENURED

Brass N

Spring Y

EXTERNAL

NAME ADDRESS

Mundie CMU

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-84

Subtypes/Specialization (26)

• For Method 3, relationships defined on the super-

type and relationships defined on the subtypes are

both no problem.

• A problem of this method is that it really supports

only partial, overlapping specialization.

Nothing prevents that instructors are also entered in one or both of
the two subtype tables (needs a general constraint). With key value
ranges, at least disjoint specialization can be enforced.

• Also the join can be a performance problem.

If one uses artificial numbers as keys, the join will be basically always
necessary whenever one accesses the subtype.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-85

Subtypes/Specialization (27)

Method 4 (Variant of Method 3 Using an “Arc”):

• Method 4 creates a table for the supertype and one

table for each subtype (like Method 3).

• Artificial keys (numbers) are added to the subtype

tables.

• Foreign keys are added to the supertype table (one

for each subtype).

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-86

Subtypes/Specialization (28)

• In the example, the result is:

INSTRUCTORS(NAME, EMAIL,

FNOo→FACULTY, ENOo→EXTERNAL)

FACULTY(FNO, TENURED)

EXTERNAL(ENO, ADDRESS)

• Check constraints are needed to ensure that exactly

one of the two columns FNO and ENO are defined (not

null) in INSTRUCTORS.

By adapting this constraint, Method 4 also works with partial or over-
lapping specialization.

• In this way, the problem of Method 3 is avoided.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-87

Subtypes/Specialization (29)

• Relationships on supertype and subtypes can be

represented.
Although it is a bit strange that relationships defined on the subtypes
now have to use the artificial numbers.

• This method does not prevent rows in the subtype

tables without entry in the supertype table.
Such rows are meaningless: One does not even have the name of the
instructor. One possibility would be to treat such rows as “not really
present”. Practically all queries have to join the subtype tables with
the supertype table, and then the problematic rows are filtered out.
From time to time, one can simply remove such rows. The drawback
of this solution is that one does not get an error message if one enters
such a row. But if all queries do the join, bad rows are never used.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-88

Subtypes/Specialization (30)

Comparison:

• Method 1 is probably most often chosen, but:

� If one cannot assign key value ranges, and there

are relationships with subtypes, it does not work.

� The many null values might be a problem.

Real world designers are used to null values. One should not leave
out the CHECK-constraints that restrict them.

� If small subtypes (few rows) of a large supertype

(many rows) are accessed often, Method 1 might

have a performance problem.

Powerful DBMS offer partition features that solve this problem.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-89

Subtypes/Specialization (31)

• Method 2 is good when one accesses the subtypes

often, but:

� Relationships with the supertype are a problem,

especially if these are many-to-many relation-

ships or weak entity relationships.

� Uniqueness of keys cannot be enforced between

subtypes unless one can assign key value ranges.

� Some people don’t like UNION in their queries.
It is a bit uncommon, but one can hide it in views. UNION ALL

should really run fast. Modern optimizers should be able to work
with it, old might produce not very efficient query execution plans.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-90

Subtypes/Specialization (32)

• Method 3 can easily represent relationships on su-

pertypes and subtypes, but:

� This method works only for partial specialization.

� The joins are a performance problem.

• Method 4 is similar, and also has problems:

� Integrity violations are possible (partial entity da-

ta), but the invalid data is never used.

� Joins are needed as in Method 3.

• There is no perfect solution!

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-91

Unnecessary Tables (1)

• Sometimes, tables generated for entity types might

seem unnecessary. E.g. consider this example:'

&

$

%

FACULTY

#NAME
∗ EMAIL

H
HH

���

member of
�

��
HHH

composed of

'

&

$

%

COMMITTEE

#CNAME

• The translation result is:
FACULTY(NAME, EMAIL)

COMMITTEES(CNAME)

COMMITTEE_MEMBERS(CNAME→COMMITTEE,

FAC_NAME→FACULTY)

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-92

Unnecessary Tables (2)

• The entire contents of the table COMMITTEES can be

derived from the table COMMITTEE_MEMBERS:

SELECT DISTINCT CNAME

FROM COMMITTEE_MEMBERS

• This works because of the mandatory participation

of COMMITTEE in the relationship.

Therefore, all committee names must be present in COMMITTEE_MEMBERS.

• It is also important in this example that the entity

type COMMITTEE has only the key attributes, and

no additional information.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-93

Unnecessary Tables (3)

• Formally, the table COMMITTEES is indeed redundant

and one must discuss to delete it.

• However, deleting the table changes the behaviour

of updates:

� With the table, COMMITTEE entities are expli-

citly created by inserting a row into COMMITTEES.

� Without the table, COMMITTEE entities are

only implicitly created by inserting a member of

a new committee.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-94

Unnecessary Tables (4)

• Therefore, when inserting a committee member,

a typing error in the committee name would be

detected with the table, but maybe not without it.

• However, this also depends on the application pro-

gram: Even without the table, one could distinguish

� Create a new committee and add its first mem-

ber (e.g. the chairman).

� Add a member to a committee (with all currently

existing committees shown in a selection box).

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-95

Unnecessary Tables (5)

• With the COMMITTEES table, one has the problem how

to enforce the mandatory participation (see above).

• The entire problem would vanish if it turns out that

� there can be committees without members (at

least temporarily or in exceptional situations), or

� some other information has to be stored about

committees.

It would be even interesting if such changes in the requirements
can be expected for future extensions.

• Again, there is no unique, perfect solution.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-96

Final Step: Check (1)

• At the end, one should check the generated tables

to see whether they really make sense.

• E.g. one should fill them with a few example rows.

This is also a useful part of the documentation.

• A correct translation of a correct ER-schema re-

sults in a correct relational schema.

• However, a by-hand translation can result in mista-

kes, and the ER-schema can contain hidden flaws.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-97

Final Step: Check (2)

• Think a last time about renaming tables/columns.
Later changes will be difficult: The table/column names are already
used in the application programs, and the DBMS might not permit
to rename tables or columns (without deleting and recreating them).

• Check for normal forms (see Chapter 5).
This is not an automatic step: It requires that the designer thinks
about possible functional dependencies.

• If there are tables with the same key, one might

consider to merge them.
But this is not always the right thing to do: E.g. Methods 2–4 for
translating specialization generate such tables, merging them would
move back to Method 1.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-98

Overview

1. Schema Translation

2. Database Design Transformer

'

&

$

%
3. Design Editor: Server Model Diagrams

4. Design Editor: Database Administration

5. Generation of SQL Code

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-99

Development Steps (1)

• First (during the conceptual design phase), one de-

velops ER-diagrams with the ER-Diagrammer.

The Repository Object Navigator can be used to check the global
schema (and alter it, if necessary).

Actually, one might start with business process diagrams and then de-
sign application program functions and the ER-schema concurrently.

• Then the Database Design Transformer is used to

translate the ER-Schema (as stored in the Reposi-

tory) into the relational model.

One can choose to either translate the global schema or subsets of it
step by step. The first option seems clearer.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-100

Development Steps (2)

• The resulting relational schema is stored in the re-

pository.

• One can then edit the relational schema (with the

Design Editor or the Repository Object Navigator).

� E.g. rename certain tables and columns.

� View definitions, indexes, triggers, and other in-

formation that is not present in the ER-schema

can be added at this stage.
The DB Design Transformer does not generate certain constraints
that would be necessary for an exact translation of the given ER-
schema. These must be added manually in this step.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-101

Development Steps (3)

• In the Design Editor, “Server Model Diagrams” can

be developed that are a graphical representation of

the relational schema.

• Finally, one can generate SQL code (for various da-

tabase management systems) from the definitions

stored in the repository.

This is also done with the Design Editor.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-102

Development Steps (4)

ER-Diagrammer
-

� RON/Rep. Reports

?

Database Design Transformer

?

Design Editor: Server Model
-

� RON/Rep. Reports

?

Design Editor: Generate DB

?

SQL Files (CREATE TABLE etc.)
#
"

!

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-103

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-104

Example

INSTRUCTOR
FNAME
LNAME
◦ PHONE

'

&

$

%

teacher of
���
HHH

taught by

COURSE
CRN
* TITLE

'

&

$

%

STUDENT
SSN
* FNAME
* LNAME
◦ EMAIL

'

&

$

%

HHH
���

registered for

A
AA

�
��

taken by

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-105

DB Design Transformer (1)

• As explained above, each entity type is transformed

into a table:

� The plural form of the entity type name is used

as table name.

� Spaces and punction characters in entity type

and attribute names are mapped to underscores.

� If a name is a reserved word in SQL, that name

is modified (e.g. FROM becomes FROM_FROM).

Reserved words depend in part on the DBMS, which is a problem
in this step.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-106

DB Design Transformer (2)

• Attributes of the entity type are translated into co-

lumns of the corresponding table:

INSTRUCTORS(FNAME, LNAME, PHONE◦).
STUDENTS(SSN, FNAME, LNAME, EMAIL◦).

• Columns are optional (null values allowed) if the

corresponding source attribute is optional.
The ER-Diagrammer permits optional attributes in primary keys. The
DB Design Transformer silently corrects this mistake and makes the
column not optional. Alternate key attributes remain optional.

• Primary/Alternate keys (UIDs) of the entity type

become primary/alternate keys of the table.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-107

DB Design Transformer (3)

• If an entity type has no primary key, a surrogate

key is automatically added.

• E.g. for the INSTRUCTOR entity type, an attri-

bute INST_ID of type NUMBER(10) would be added

(where INST is the short name).
In addition, a sequence called INST_ID is generated (for producing
unique numbers). One can choose the domain for the ID columns.

• An option of the Database Design Transformer is

to create a surrogate key for each table in this way.
Then the declared primary keys for the entity types become alternate
keys for the tables.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-108

DB Design Transformer (4)

• For one-to-many relationships, foreign keys are ad-

ded to the table at the “many” side (as expected):

COURSES(CRN, TITLE,

(INST_FNAME, INST_LNAME) → INSTRUCTORS)

The Database Design Transformer is able to produce foreign keys
consisting of more than one column as in this case.

• Foreign key column names are constructed from

the short name of the referenced entity type and

the name of its primary key attribute.
One can choose whether one wants the prefix. If the surrogate primary
keys already have prefixes, one gets names like INST_INST_ID.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-109

DB Design Transformer (5)

• If there name clashes (the table already has a co-

lumn of that name), column names are made un-

ique by adding the name of the relationship end

(if that still does not help, numbers are added).

• If the participation in the relationship is optional,

the foreign key attributes are declared as optional.

However, if the foreign key consists of more than one attribute, a
check constraint should be added that they can only be both null,
or both not null. But the Database Design Transformer does not
generate such constraints.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-110

DB Design Transformer (6)

• If relationships are mutually exclusive (participate

in an arc), the corresponding arc is stored for the

generated foreign keys.

However, when SQL code is later generated, the corresponding CHECK

constraint is missing.

• One can choose how the generated foreign keys

behave in case of deletions of the referenced row

(restrict, cascade, nullify).

One can also choose what happens in case of updates of the primary
key values of the referenced row. The default value is “restrict” for
updates and deletes, i.e. the deletion or update is not possible.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-111

DB Design Transformer (7)

• For many-to-many relationships, an intersection ta-

ble is generated:

COURSES_STUDENTS(CRS_CRN→COURSES,

STUD_SSN→STUDENTS).

• The name of the table for the relationship is com-

posed out of the plural forms of both entity types.

Probably it would have been nicer if the relationhip names were
used in some way. It is possible to change generated table and co-
lumn names later in the Design Editor. Also, I would have preferred
“STUDENTS_COURSES”, with the “from” side of the relationship first.
But the Database Design Transformer always uses the alphabetic se-
quence.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-112

Restrictions (1)

• The alternate keys that would enforce one-to-one

relationships are not generated.

One-to-one relationships are translated by the DB Design Transformer
in the same way as one-to-many relationships.

• Mandatory participation for many-to-many relati-

onships or on the “one” side of one-to-many rela-

tionships are also lost in the translation.

As explained above, this is no fault of the Database Design Transfor-
mer, since there is no good translation.

• No warning is generated.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-113

Restrictions (2)

• Of the nine types of relationships that can be used

in the ER-diagrammer, only three are exactly trans-

lated (see next page), the other ones are approxi-

mated by more liberal relationship types.

As explained above, it would have been possible to implement also
the three kinds of one-to-one relationships.

• Even constraints that cannot be enforced decla-

ratively in the CREATE TABLE statements should be

documented in the repository.

The DB Design Transformer does not generate such constraints for
the problematic cardinalities.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-114

Restrictions (3)

Exactly Translated Relationship Types:

• Many-to-one, mandatory-to-optional:

COURSE

'

&

$

%
taught by

H
HH

��� teacher of
INSTRUCTOR

'

&

$

%
• Many-to-one, optional-to-optional:

COURSE

'

&

$

%
taught by

HHH
�

�� teacher of
INSTRUCTOR

'

&

$

%
• Many-to-many, optional-to-optional:

STUDENT

'

&

$

%
registered for

HHH
�

��
���
H

HHtaken by
COURSE

'

&

$

%

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-115

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-116

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-117

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-118

Translation of Weak Entities

• The DB Design Transformer translates the example

from Slide 4-56 as expected:

TEST
TID
* DESC

'

&

$

%

�
��

HHH

QUESTION
QNO
* TEXT

'

&

$

%

�
��

HHH

ANSWER
LETTER
* TEXT
* CORRECT

'

&

$

%
TESTS(TID, TEST_DESC) -- DESC is a reserved word

QUESTIONS(TEST_TID→TESTS, QNO, TEXT)

ANSWERS((QUEST_TEST_TID, QUEST_QNO)→QUESTIONS,

LETTER, TEXT, CORRECT)

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-119

Translation of Subtypes (1)

• The Database Design Transformer supports

� Method 1 (“Single Table Approach”)

This is the default. One can specify in the Database Design Trans-
former which entity types are mapped to tables. Method 1 means
that only the supertype is mapped to a table, the subtypes are
marked as “Included”.

� Method 2 (“Separate Table Approach”)

One gets this transformation if one selects the subtypes to be
mapped to tables, but not the supertype. Select the radio button
“Customize the Database Design Transformer”. Then the tab
“Table Mappings” appears. There select the “In Set” checkbox
for the subtypes and deselect it for the supertype.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-120

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-121

Translation of Subtypes (3)

• Supported Translation Methods, continued:

� Method 2, Variant for Partial Specialization

(“Implicit Sub-Type Approach”)
One gets this option if supertype and subtype are mapped to ta-
bles. Instantiable subtypes can be selected under “Settings/Other
Settings”. But one gets this translation also if it is not selected.

� Method 4 (“Arc Approach”).
For this transformation, the DB Design Transformer must be star-
ted two times (only for the supertype and the subtype, other entity
types should be mapped in a third run): First map supertype and
subtypes (check “In Set”) but in the “Run Options” permit only
the generation of tables, not of columns or keys. In the second run,
permit to create and modify tables, columns, and keys. For each
subtype, the “Arc” flag must be set under “Table Mappings”.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-122

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-123

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-124

Translation of Subtypes (6)

• Result of Method 1 (“Single Table Approach”):

COMMITTEES(CNAME)

COMMITTEES_FACULTY(COM_CNAME→COMMITTEES,

INST_NAME→INSTRUCTORS)

COURSES(CRN, TITLE, INST_NAME→INSTRUCTORS)

INSTRUCTORS(ADDRESSo, TENUREDo, NAME, EMAIL,

INST_TYPE)

• The column “INST_TYPE” is declared to have values

“EXT” and “FAC” (the short names of the subtypes).

• No CHECK-constraints are generated.

• The column sequence in INSTRUCTORS is strange.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-125

Translation of Subtypes (7)

• Result of Method 2 (“Separate Table Approach”):

COMMITTEES(CNAME)

COMMITTEES_FACULTY(COM_CNAME→COMMITTEES,

FAC_NAME→FACULTY)

COURSES(CRN, TITLE, EXT_NAMEo→EXTERNAL,

FAC_NAMEo→FACULTY)

EXTERNAL(NAME, EMAIL, ADDRESS)

FACULTY(NAME, EMAIL, TENURED)

• An arc is generated for the foreign keys in COURSES.

• The split table method for many-to-many relation-

ships with the supertype (“AWARD1/2”) is supported.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-126

Translation of Subtypes (8)

• Result of “Implicit Sub-Type Approach”:

COMMITTEES(CNAME)

COMMITTEES_FACULTY(COM_CNAME→COMMITTEES,

FAC_NAME→FACULTY)

COURSES(CRN, TITLE, INST_NAMEo→INSTRUCTORS,

EXT_NAMEo→EXTERNAL, FAC_NAMEo→FACULTY)

EXTERNAL(NAME, EMAIL, ADDRESS)

FACULTY(NAME, EMAIL, TENURED)

INSTRUCTORS(NAME, EMAIL)

• An arc is generated for the foreign keys in COURSES.

• This is Method 2 for partial specialization.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-127

Translation of Subtypes (9)

• Result of Method 4 (“Arc Approach”):

COMMITTEES(CNAME)

COMMITTEES_FACULTY(COM_CNAME→COMMITTEES,

FAC_1_FAC_ID→FACULTY)

COURSES(CRN, TITLE, INST_NAME→INSTRUCTORS)

EXTERNAL(ADDRESS, EXT_ID)

FACULTY(TENURED, FAC_ID)

INSTRUCTORS(NAME, EMAIL, EXT_EXT_IDo→EXTERNAL,

FAC_FAC_IDo→FACULTY)

• The foreign keys in INSTRUCTORS are connected with

an (optional) arc and marked as non-transferable.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-128

Propagating Changes (1)

• It is probably best to start the DB Design Transfor-

mer only when one is finished with the ER-design.

• If one has already changed the relational schema,

and then changes the ER-schema and runs the DB

Design Transformer again, it is a difficult problem

to merge both changes into one version.

• In general, it is important that the ER-Schema and

the relational schema remain in sync — otherwise

the ER-schema loses its value as a documentation

for the created tables.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-129

Propagating Changes (2)

• Of course, if one has not yet worked on the rela-

tional schema, one can simply delete it and run the

DB Design Transformer again.

Actually, it is not so simple to delete table definitions from the repo-
sitory since they might be referenced in foreign keys. One must delete
the foreign keys first. If one wants to delete all table definitions, one
can click on the first, shift-click on the last, and then press the delete
key. This will give an error message if a table is deleted that is still re-
ferenced by a foreign key. However, in Designer 6i (not Designer 6.0),
one can choose to continue. After this is done, one simply presses
“delete” again to remove the remaining tables (more runs might be
needed, but if there are no cyclic foreign keys, finally all tables are
deleted). In case of cyclic references, one must first delete at least
one foreign key in the cycle before one can start to delete the tables.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-130

Propagating Changes (3)

• Deleting the entire relational schema and running

the DB Design Transformer again is the only com-

pletely automatic way that is guaranteed to keep

both schemas in sync.

• The DB Design Transformer will never

� remove existing tables (from a previous run) even

if the corresponding entity type was deleted in

the meantime,

� remove columns from tables when the correspon-

ding attribute was deleted.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-131

Propagating Changes (4)

• The reason is probably that for denormalization,

one could add columns and tables to the relational

schema which are not present in the ER-schema.
This should be a big exception, only if the performance requirements
cannot be met with a good schema. But in earlier times it was done
quite often (programmer time was cheap compared to hardware).

• The DB Design Transformer protects this work.
The real reason probably is that in order to propagate deletions from
the ER-schema to the relational schema, one must keep information
about deleted schema elements. Also, the DB Design Transformer
can be applied to a subset of the entity types. If one wants to delete
tables, transforming the subset consisting of all entity types would be
different from transforming the entire schema.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-132

Propagating Changes (5)

• Under “Run Options” one can specify what the DB

Design Transformer is allowed to modify.

E.g. table names, column names, column sequence, column datatypes,
etc.

• With the default (nothing can be modified) the DB

Design Transformer remembers which elements in

the ER-diagram are already mapped, and translates

only new elements.

E.g. if an attribute is added to an existing entity, it will be mapped
to a new column in the existing table.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-133

Propagating Changes (6)

• In the other extreme case (all modify options are

checked), the new translation of the ER-schema

overwrites the entire relational schema except that

tables/columns are not deleted.

• E.g. even if one has renamed a column in the rela-

tional schema, running the DB Design Transformer

again will reset it to its old name.

I.e. the correspondence between ER-attributes and columns in tables
is remembered in the repository, even if one of the two is renamed.
One can see this information in the Repository Object Navigator under
“Usages/Implemented by Columns” from the entity attribute.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-134

Propagating Changes (7)

• One should not do arbitrary “last minute” chan-

ges in the relational schema. Go back to the ER-

Schema and perform the required changes there!

• Depending on the kind of change, one can select

the right modify options and run the DB Design

Transformer only for the modified entity type.

• If something was deleted in the ER-schema, one

must manually perform the corresponding deletion

in the relational schema.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-135

Overview

1. Schema Translation

2. Database Design Transformer

3. Design Editor: Server Model Diagrams

'

&

$

%
4. Design Editor: Database Administration

5. Generation of SQL Code

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-136

Design Editor (1)

• The relational schema generated by the database

design transformer often still needs some work:

� The names of the “intersection tables” for many-

to-many relationships often must be changed.

� Column names and the sequence of columns wi-

thin a table might need changes.

� Often, some constraints are missing.

The DB Design transformer only generates keys, foreign keys, NOT
NULL, and CHECK constraints for enumeration types or ranges auto-
matically. Keys for one-to-one relationships are missing, as well as
CHECK-constraints for subtypes, arcs, and other CHECK-constraints.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-137

Design Editor (2)

• Manual work on the relational schema, continued:

� For some foreign keys, one might have to select

“ON DELETE CASCADES” etc.
A default can be specified in the settings of the DB design trans-
former, but it might be useful to consider each case individually.
E.g. for weak entities “ON DELETE CASCADES” is probably right.

• In addition, information necessary for the generati-

on of application programs must be collected.

E.g. display title of the form generated for a table, labels of input
fields for columns, field type (text, radio buttons, etc.), field width,
help text, display format (e.g. for date values), columns that are not
displayed, etc.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-138

Design Editor (3)

• After the logical design is finished, the following

things must be defined:

� Views.

� Possibly triggers, stored procedures.

� Users, table owners, access rights.

� Physical design information.

E.g. indexes, storage parameters for tables, distribution of tables
over disks/tablespaces, etc. It is quite likely that the physical de-
sign will need to change when it turns out that the assumptions
about the system load were not quite right. However, changing it
after the data was loaded can be quite a lot of work.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-139

Design Editor (4)

• Although this information can be edited directly

with the Repository Object Navigator, Oracle offers

a special tool for all this work: The Design Editor.

• The Design Editor consists of four distinct tools:

� Server Model (Relational Database Schema)

� Modules (Application Programs)

� DB Administration (Users, Tablespaces, etc.)

� Distribution (for Distributed Databases)

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-140

Design Editor (5)

• Later, first-cut application programs (for Oracle

Developer Forms, Visual Basic, etc.) will be ge-

nerated from the “module definitions”.

• However, the module definitions contain only a link

to the table name. The details such as the display

width of input fields are defined in the server model

(attached to tables).

Of course, some things such as the exact position of the input fields
on the form cannot be generated, and must be later edited with the
programming tool itself (e.g. Oracle Developer Forms).

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-141

Design Editor (6)

• One window of the Design Editor is the Server Mo-

del Navigator.

• It looks very similar to the Repositor Object Navi-

gator, but shows only objects that part part of the

relational schema.

A student thought that she could remove the relational schema (for
a fresh run of the DB Design Transformer) by selecting the applica-
tion system name at the top of the Server Model Navigator window
and pressing “Delete”. This removed her entire application system,
not only the part shown in the window. For safety, export your de-
sign data at least once a day (with the Repository Object Navigator:
“Application→Export”) and copy them on a floppy disk.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-142

Design Editor (7)

• The Design Editor uses normally wizards/tabbed

dialog boxes instead of the simple property palette

in the Repository Object Navigator.
One can get also a property palette window under “Tools→Property

Palette”.

• The Design Editor also contains a tool to put infor-

mation about the schema of an existing relational

database in the repository.
The “Design Capture Utility” (“Generate→Capture Design of→Server

Model”) can read the information from the data dictionary of an Oracle
Database, from a file with SQL DDL (Create Table) commands, or
via the ODBC interface.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-143

Design Editor (8)

• The Design Editor has also a “Server Model Guide”

which shows a tree of all server model object types:

� Domains

� Tables (Indexes, Triggers, Constraints)

Constraints: Primary Keys, Foreign Keys, Unique Keys, Check.

� Sequences

� Advanced (Views, Snapshots, Clusters)

� PL/SQL

� Oracle8 (Collection Types, Object Types, Ob-

ject Tables, Object Views).

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-144

Design Editor (9)

• When one selects an object type in the map, all

objects of that type are shown. One can create,

edit, or delete an object of the selected type.

• Basically, this is the same functionality as the “Ser-

ver Model Navigator” which is also part of the De-

sign Editor. Only the user interface is a bit different.

One can also choose that the two tools are linked: When an object is
selected in the Server Model Guide, it is automatically also selected
in the Server Model Navigator. The Server Model Guide gives more
advice what to do in which sequence and sometimes has links to
documentation.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-145

Server Model Diagrams (1)

• The “Server Model” part of the Design Editor has a

graphical interface showing tables and their foreign

key connections in “Server Model Diagrams”.
The easiest way to create a diagram is to expand the “Relational
Table Definitions” in the “Server Model Navigator” on the left, then
to select the tables that should appear on the diagram (e.g. click
on the first table and shift-click on the last) and then to select
“File→New→Server Model Diagram”.

• These diagrams are quite similar to ER-Diagrams.
However, the orientation on ER-diagrams is simpler. Server model dia-
grams are overloaded with information, table boxes are larger than en-
tity boxes. Also many-to-many relationships are now shown as tables
of their own, and foreign key columns do not appear on ER-diagrams.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-146

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-147

Server Model Diagrams (3)

• Tables are shown as boxes with three sections:

� The first section contains the table name and a

number of buttons.
Buttons: “Database Triggers”, “Indexes”, “Database Synonyms”,
“Primary Key”, “Unique Keys”, “Check Constraints”, “Foreign
Keys”. A dimmed button means that the table has no object of
that type. The button left to the table name is unusable.

� The second section lists the columns (→ below).

� The third section shows additional information

as selected by the buttons in the first section.
If one selects “View→Track Associations” and clicks on e.g. an
index, the corresponding columns are shown inverted above.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-148

Server Model Diagrams (4)

• The second section of the table box contains one

row per column with the following information:

� “#”: member of the primary key.

� “*”: mandatory column (not null),

“◦”: optional column.

� “ ”: enumeration type value list.

� “A”: character/string data type,

“789”: numeric data type.

� “ 123 ”: sequence (unique number generator).

� “ ”: column belongs to domain.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-149

Server Model Diagrams (5)

• Foreign keys are shown as lines between the tables

and use symbols similar to “one-to-many” relation-

ships (but beware of the differences).

• Mandatory foreign keys (i.e. foreign keys that must

be not null) are shown as solid lines:

COURSES

* 789 CRN

* A TITLE

* A INST_FNAME

* A INST_LNAME

CRS_INST_FK
HHH
�

��

INSTRUCTORS

* A FNAME

* A LNAME

* A PHONE

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-150

Server Model Diagrams (6)

• Optional foreign keys (i.e. foreign keys that can be

null) are shown as dashed lines:

COURSES

* 789 CRN

* A TITLE

◦ A INST_FNAME

◦ A INST_LNAME

CRS_INST_FK
H

HH
���

INSTRUCTORS

* A FNAME

* A LNAME

* A PHONE

• The entire line is either solid or dashed, there are

no longer two halves.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-151

Server Model Diagrams (7)

• Corresponding to the one-to-many relationship, the

“crows foot” is on the side with the foreign key.

It can also be seen as indicating the direction of the pointer, although
a real arrowhead would be on the opposite side.

• The names of the foreign keys are often not helpful,

but take space on the diagram.

With “Options→Show/Hide” one can determine what is shown on the
diagram. Removing the check mark from “Text” of “Associations”
hides the foreign key names. One can specify which kinds of columns
are shown, e.g. hide the foreign key columns on the diagram. One
can also select which of the column type symbols are shown.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-152

Server Model Diagrams (8)

• The small vertical bar near the crowsfoot means

that deletions do not cascade (“restricted”, one

cannot delete an instructor that teaches courses).

• If one selects “ON DELETE CASCADES”, the line is cros-

sed with an “x”:

COURSES

* 789 CRN

* A TITLE

* A INST_FNAME

* A INST_LNAME

CRS_INST_FK
HHH
�

�� ��@@

INSTRUCTORS

* A FNAME

* A LNAME

* A PHONE

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-153

Server Model Diagrams (9)

• If “ON DELETE SET NULL” is selected, a circle is used:

COURSES

* 789 CRN

* A TITLE

◦ A INST_FNAME

◦ A INST_LNAME

CRS_INST_FK
HHH
���
n

INSTRUCTORS

* A FNAME

* A LNAME

* A PHONE

• A filled circle means “ON DELETE SET DEFAULT”.

• The cascade rule for “ON UPDATE” is not shown on

the diagram.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-154

Server Model Diagrams (10)

• One can also mark foreign keys as non updatable

(corresponding to a non-transferable relationship):

COURSES

* 789 CRN

* A TITLE

* A INST_FNAME

* A INST_LNAME

CRS_INST_FK
H

HH
��� �

INSTRUCTORS

* A FNAME

* A LNAME

* A PHONE

• Foreign keys can be marked as mutually exclusive

by means of arcs (as on ER-diagrams).

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-155

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-156

Server Model Diagrams (12)

• The properties dialog box for tables (“Edit Table”)

has tabs “Name”, “Columns”, “Display”, “Con-

trols”, “UI”.

Under “Display”, one can define which columns correspond to input
fields in a form. Under “Controls” the type, size, etc. of these input
fields is defined. Under “UI” (User Interface), more information about
input fields is defined, e.g. a help text and a display format.

• Column and table names can be edited directly in

the diagram, one does not have to go over the

properties dialog box.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-157

Server Model Diagrams (13)

• Tables also have the “Edit Text” dialog box, where

one can define a description, notes, help text, and

code for insert, update, delete, and locks.

One can open this dialog box from the menu that appears if one
right-clicks on the table. This menu also permits to add columns,
triggers, indexes, synonyms, keys, check constraints, foreign keys.

• The properties dialog box for foreign keys has tabs

“Foreign Key Mandatory”, “Foreign Key Column”,

“Cascade Rules”, “Validation”.

E.g. under “Validation” one can choose whether the constraint should
be enforced on the server, the client, or both. One can also specify
an error message and a table for exceptions (rows that violate it).

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-158

Server Model Diagrams (14)

• If one chooses to add e.g. a check constraint to a

table, a wizard is opened that asks for the required

information.

To edit it later, display it in the third part of the box (by clicking
on the button for the object type) and click on the symbol in front
of the name. Clicking on the name only permits to edit the name.
Editing an existing check constraint etc. shows the same screens as
the wizard, but now one can jump with tabs between them.

• Oracle Designer does not check the SQL syntax

e.g. of CHECK-constraint definitions.

One can enter any text. Column names can be selected from a list.
Of course, the exact SQL syntax depends on the DBMS.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-159

Server Model Diagrams (15)

• The DB Design Transformer has already created

indexes for foreign keys.

In addition, the DBMS automatically creates indexes for primary and
alternate keys.

• As part of the physical design, one can add further

indexes to a table.

• One can also add triggers (e.g. for enforcing com-

plex constraints or logging changes to a table).

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-160

Server Model Diagrams (16)

• Server model diagrams can also contain other ob-

jects, such as

� Views (shown as grey-blue boxes).

In order to create a view, one can e.g. right-click on the back-
ground of a server model diagram. Alternatively there is also a
symbol on the left toolbar. A wizard is started that asks the re-
quired information. One can select base tables (FROM) and columns
(SELECT), and then any WHERE clause can be entered.

� Object types (shown as red boxes).

In Oracle, an object type is a generalization of a record/row type.
One can create one or more tables over an object type. Object
type an tables are connected with a line that ends in a diamond
attached to the table.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-161

Server Model Diagrams (17)

• Objects on Server Model Diagrams, continued:

� Clusters (shown as grey boxes).

In Oracle, a cluster is a storage area in which rows of one or more
tables may be stored, such that rows with the same value in the
cluster column are stored together.

� Snapshots (shown as light blue boxes).

In Oracle, a snapshot is a copy of another table or view, used
in distributed DBs for performance or failure safety reasons. One
can specify that it is automatically refreshed at certain intervalls.

• The diagram legend can be shown in the upper left

corner (it contains diagram title, author, date etc.).

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-162

Repository Reports

• Again, there are many repository reports which can

be printed for documenting the DB Design, e.g.:

� Entity to Table Implementation

� Table Definition

� Column Definition

� Columns in Domain

� Constraint Definition

� Database Trigger

� Cluster Definition

� Tables, Columns, and Foreign Key Derivations

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-163

Overview

1. Schema Translation

2. Database Design Transformer

3. Design Editor: Server Model Diagrams

4. Design Editor: Database Administration

'

&

$

%
5. Generation of SQL Code

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-164

Database Administration (1)

• The following information can be specified with this

part of the Design Editor:

� Database Name and connection information.

� Access information: Users, Roles, Profiles.

� Storage Information: Tablespaces, Datafiles,

Logfiles, Rollback Segments, Directories.

• In the Server Model view, the really physical infor-

mation (like storage parameters) was not yet asked.

Also, in the server model, the tables do not yet belong to users (there
is no such property). One must move from the Server Model Relatio-
nal Table Definitions to Table Implementations under “DB Admin”.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-165

Database Administration (2)

• One now can “implement” the tables under a user

account in a database. A new wizard asks for a

table from the server model and takes the designer

through the physical options.

One gets this wizard e.g. by selecting a user in the Database Admini-
strator Guide, then selecting “Tables” and clicking on “Create”. This
does not mean that a table is created from scratch, one can select a
table from the Server Model. Since often several tables have the same
storage parameters, one can create named sets of such parameters
(“Storage Definitions”) and assign to tables.

• Of course, the resulting data are still stored in the

repository. The table is not yet really implemented.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-166

Database Administration (3)

• The Database Administration part of the Design

Editor is only a subset of the Repository Object

Navigator (there are no new diagrams).

However, again wizards/tabbed dialog boxes are used instead of the
property palette. And it has a “Database Administrator Guide” that
shows the steps for specifying a database.

• The tool is similar to a graphical user interface for a

DBA (but stores all information in the repository).

• From the collected information, database creation

scripts can be generated.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-167

Overview

1. Schema Translation

2. Database Design Transformer

3. Design Editor: Server Model Diagrams

4. Design Editor: Database Administration

5. Generation of SQL Code

'

&

$

%

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-168

DDL Generation (1)

• The Database Design Transformer stores the rela-

tional schema in the repository. It does not actually

create the tables.

• The reason for this is that in most cases, some

things must still be changed/added manually.

• Once one is satisfied with the relational schema,

one can generate SQL DDL code containing e.g.

CREATE TABLE statements.

DDL = Data Definition Language. The generation is done with the
Design Editor: “Generate→Generate Database from Server Model”.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-169

DDL Generation (2)

• Oracle Designer can create DDL code for different

DBMS: ANSI 92, DB2, Oracle (different versions),

RDB7, SQL Server, Sybase.

• The creation of tables etc. can be done as follows:

� Files with DDL statements are created, these

must be executed manually in the target DB.

� If the target database is an Oracle Database,

Oracle Designer can directly create the tables.

� If the target DB supports ODBC connections,

tables can also be directly created.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-170

DDL Generation (3)

• One can select for which schema objects should be

generated (e.g. only a subset of the tables).

This is done on the “Objects” tab. E.g. click on the double right
arrow: “Generate All”.

• What can be generated, depends on the DBMS

chosen, e.g.:

� “ANSI 92”: Only tables and views.

� “SQL Server” Only domains, tables, and views.

Which is strange, since it has indexes.

Stefan Brass: Datenbanken II Universität Halle, 2003

4. Logical Design 4-171

DDL Generation (4)

• When creating files, one defines a file prefix (e.g.

courses) and a directory. The different kinds of

schema elements will then be written to different

files (for Oracle8):

� courses.tab: Table Definitions

� courses.con: Constraints (as ALTER TABLE ...)

� courses.ind: Indexes

� courses.sqs: Sequence Definitions

� courses.sql: Includes all of the above files.

Stefan Brass: Datenbanken II Universität Halle, 2003

