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Objectives

After completing this chapter, you should be able to:
use equivalences in relational algebra to transform a given
algebra expression into a more efficient form.

develop Oracle QEPs as Oracle’s older rule-based
optimizer would do it.

explain the concept of selectivity of conditions, estimate
the selectivity of given conditions.

explain how costs of QEPs are estimated.

expain how cost-based optimization works.
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Query Optimization (1)
Goal:

Given a query in SQL or its naive translation into
relational algebra (or some similar formalism).

Determine an efficient query evaluation plan.

Especially, the optimizer should make good use of objects
which only exist on the physical level (e.g. indexes), and
which cannot be directly mentioned in the SQL query.

Declarative Languages make Powerful Optimizers . . .
Necessary: The naive execution would be too inefficient.

Possible: They do not prescribe a specific execution
model.
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Query Optimization (2)

Main Tasks:
Generation of alternative query evaluation plans.

This can often be done using algebraic identities. The system must prove
that the alternative plans are really equivalent to the given query (or its
naive translation).

Cost estimation for each generated plan and selection of
the plan with the least estimated cost.

Heuristics must be applied to limit the search space.
The time needed for optimization should not exceed the time saved for the
execution of the query. Of course, if the query is executed many times, it
might be acceptable to invest more time into a thorough optimization.
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Naive Translation into RA/QEPs (1)

Given an SQL query without aggregations, subqueries,
etc.:

SELECT A1, . . . , An
FROM R1 X1, . . . , Rm Xm
WHERE ϕ

The naive/direct translation into relational algebra is:
πA1,...,An

(
σϕ

(
ρX1

(R1)× · · · × ρXm
(Rm)

))
.

The operation ρX(R) renames every attribute A to X.A.

This needs a relational algebra with duplicates, and the π
operator here does no duplicate elimination.

Also the selectionσ must treat null values correctly.
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Naive Translation into RA/QEPs (2)

Translation of Subqueries:
Also SQL queries with subqueries can be translated into
relational algebra, but the mapping is more complicated.

System R (RDBMS research prototype, 1976) did simply
evaluate correlated subqueries once for every assignment
of tuples to the tuple variables of the outer query.

So that references to the outer tuplevariables in the inner query could be
replaced by constants.

Uncorrelated subqueries were evaluated only once.

Oracle is able to replace some applications of subqueries
by joins or anti-joins.
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Algebraic Identities

You know e.g. the following identities for numbers:

x + y = y + x (commutativity law)

x ∗ (y + z) = x ∗ y + x ∗ z (distribution law)

Similar laws hold for relational algebra, e.g.
σϕ1

(
σϕ2(R)

)
= σϕ2

(
σϕ1(R)

)
are equivalent.

Two relational algebra expressions E1 and E2 are
equivalent if for all database states I: I(E1) = I(E2).

I.e. the two queries return the same answer relation, independent of the
DB state.

Equivalence of RA queries is undecidable.
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Join Order (1)

on, ×, ∪, ∩ are commutative, e.g.
E1 × E2 = E2 × E1

If we treat the sequence of attributes as important, × and
on are not quite commutative: we must reorder the attributes.

E.g. if E1 has attributes A, B, and E2 has attribute C , the identity really is
E1 × E2 =πA,B,C (E2 × E1). Probably, in many systems the SQL parser
computes the final sequence of attributes and generates such a projection
to be done at the very end. Then for all the other operations, we don’t
have to care about the attribute sequence.

on, ×, ∪, ∩ are also associative (parentheses don’t matter):
E1 × (E2 × E3) = (E1 × E2)× E3
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Join Order (2)

Consider the following query which looks for departments
which have a hierarchy inside them:

SELECT D.DNAME
FROM DEPT D, EMP X, EMP Y
WHERE D.DEPTNO = X.DEPTNO
AND D.DEPTNO = Y.DEPTNO
AND X.MGR = Y.EMPNO

An important task in query evaluation is to determine a
good join order. In the example, one possibility is:
πD.DNAME

((
ρD(DEPT) on

D.DEPTNO=X.DEPTNO
ρX(EMP)

)
on
...
ρY(EMP)

)
Exercise: Find more possibilities.
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Join Order (3)
Many systems (including Oracle) construct only QEPs
which start with one table, join it with a second, join the
result with a third, and so on:((

(R1 R2) R3
)

R4

)
These joins give normally good results.

In rare situations, a “bushy” join would be better:(
(R1 R2) (R3 R4)

)
E.g. R1 and R4 are very small and R2 and R3 are large. The join with R1 and
R4 might reduce the size of R2 and R3 (likeσ ).

If one consider all possible sequences, already without
bushy joins a FROM clause with n tables gives rise to n!
join orders.
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Moving Selections (1)

General Heuristic: Try to do selections as early as possible
(i.e. push it down in the QEPs).

In this way, the input relations to more expensive
operations (e.g. joins) are smaller.

EMP DEPT

σJOB = ′CLERK′

πDNAME

=⇒

EMP

σJOB = ′CLERK′DEPT

πDNAME
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Moving Selections (2)

Selections can be splitted or combined:
σϕ1 AND ϕ2(E ) = σϕ1

(
σϕ2(E )

)
.

The order of selections can be exchanged:
σϕ1

(
σϕ2(E )

)
= σϕ2

(
σϕ1(E )

)
.

All kind of logical equivalence transformations can be
applied to the selection condition.

If ϕ1 and ϕ2 are logically equivalent:
σϕ1(E ) = σϕ2(E ).

E.g. NOT SAL < 3000 is equivalent to SAL >= 3000, and
the second condition may make an index applicable.
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Moving Selections (3)

A selection can be moved past × and if its selection
condition ϕ contains only attributes of one relation (e.g. E1):

If ϕ contains only attributes of E1:
σϕ(E1 × E2) =

(
σϕ(E1)

)
× E2.

A selection condition can also be moved past ∪, ∩, \:
σϕ(E1 ∪ E2) = σϕ(E1) ∪σϕ(E2).

The system should detect joins built from σ and ×
(since there are more efficient algorithms for joins):

If A is an attribute from E1, and B from E2:
σA=B(E1 × E2) = E1 on

A=B
E2.
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Moving Selections (4)

If the system detects that a condition is contradictory
(e.g. YEAR=1997 AND YEAR=1998), the entire selection
can be removed:

σFALSE(E ) = ∅.

Such conditions may occur when views are expanded.
See above under partitioned tables. If the user wrote such a condition,
he/she should probably be informed.

There are also rules for simplifying relational algebra
expressions containing ∅, e.g. E × ∅ = ∅.

Conditions which are equivalent to TRUE (e.g. YEAR=1997
OR YEAR <> 1997) need no selection:

σTRUE(E ) = E .
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Moving Selections (5)

Exercise:
Consider the following SQL query:

SELECT E.ENAME
FROM DEPT D, EMP E
WHERE D.LOC = 'BOSTON'
AND D.DEPTNO = E.DEPTNO
AND E.SAL >= 2800

The naive translation into relational algebra is
πE.ENAME

(
σD.LOC = ’BOSTON’ AND D.DEPTNO = E.DEPTNO AND E.SAL >= 2800

(ρD(DEPT)× ρE(EMP))
)

Optimize this step by step by using the above equations.
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Moving Selections (6)

Note that “Do selections as early as possible” is only a
heuristic rule. Normally it is right, but there are exceptions.

Suppose that DEPT is quite large, there are many
departments in New York, few employees who earn at
least $3000, and there is an index on DEPT(DEPTNO),
but no index on DEPT(LOC).

Then it would make things worse to move the selection
LOC = ’NEW YORK’ before the join:
πDNAME

(
σLOC=’NEW YORK’

(
σSAL>=3000(EMP) DEPT

))
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Moving Projections (1)

Projections are normally not done explicitly. (At least with
our QEP interface, attributes are only accessed as needed.)

However, it is good to know at each step which of the
attributes are actually needed.

E.g. when an intermediate result has to be sorted, one
wants to store the tuples as compactly as possible, and
especially retain only the needed attributes.

Also, index-only access plans may become available when
not all attributes of the relation are needed.

Projections with duplicate elimination on intermediate
results is worth the effort only in rare circumstances.
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Moving Projections (2)

Projections can be splitted or combined:
If the attributes in A are a subset of those on B,
which are in turn a subset of all attributes of E :

πA
(
πB(E )

)
= πA(E ).

Projections can be moved past selections:
If ϕ accesses only attributes in A:
πA

(
σϕ(E )

)
= σϕ

(
πA(E )

)
.

There are also rules for moving projections past other
operations, e.g. joins. You only need to check which
attributes are later still accessed.
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Query Normalization in Oracle (1)

After parsing the SQL query, and before QEPs are generated,
Oracle replaces some constructs by equivalent constructs.

SQL often allows equivalent formulations, and in this way
the optimizer does not have to handle them all.

Also, some of these transformations make specific
optimizations applicable later.

It is good to know about these normalizations, since then
you will not wonder later which version of a query is more
efficient if Oracle anyway treats them the same.

Studying these transformations might also help you to
improve your SQL knowledge.
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Query Normalization in Oracle (2)

Oracle does evaluate constant expressions,
e.g. SAL >= 24000/12 is transformed into SAL >= 2000.

Oracle does not move operands from one side of a condition
to the other side. E.g. SAL*12 >= 24000 is not changed.

And in this way an index over EMP(SAL) cannot be used.

Oracle detects when the LIKE operator is really an
equality, e.g. ENAME LIKE 'Smith' is mapped to
ENAME = 'Smith'.

There is a subtle problem with the blank-padded semantics here. If ENAME

is of type CHAR(10), the LIKE condition could be replaced by FALSE (LIKE

uses the non-padded semantics), whereas ENAME = ’Smith’ could return
results.
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Query Normalization in Oracle (3)

IN with a list of values is transformed into OR.
E.g. ENAME IN (’Smith’, ’Jones’) is transformed
into ENAME = ’Smith’ OR ENAME = ’Jones’.

The BETWEEN operator is also removed. E.g.
SAL BETWEEN 1000 AND 2000

is replaced by
SAL >= 1000 AND SAL <= 2000.

NOT is moved down to the atomic conditions. E.g.
NOT (SAL < 1000 OR COMM IS NULL)

is transformed into
SAL >= 1000 AND COMM IS NOT NULL)
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Query Normalization in Oracle (4)
ANY, SOME, and ALL are removed.

E.g. SAL >= ALL (1000, LOW_SAL) is replaced by
SAL >= 1000 AND SAL >= LOW_SAL

ANY with a subquery is normalized to EXISTS. E.g.:
X.SAL >=ANY (SELECT Y.SAL FROM EMP Y

WHERE Y.JOB = 'PROGRAMMER')
is transformed to

EXISTS(SELECT Y.SAL FROM EMP Y
WHERE Y.JOB = 'PROGRAMMER'
AND X.SAL >= Y.SAL)

X.SAL >=ALL(...) is mapped to NOT(X.SAL <ANY(...)),
and then the above transformation yields NOT EXISTS.
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Query Normalization in Oracle (5)

The cost-based optimizer can compute certain implied
conditions. E.g. given the following query:
SELECT E.ENAME, DNAME
FROM DEPT D, EMP E
WHERE D.DEPTNO = E.DEPTNO AND E.DEPTNO = 20

The optimizer concludes that then also D.DEPTNO = 20,
which might be useful for applying an index in a QEP
with DEPT in the outer loop of a nested loop join.

Oracle only generates conditions of the form
〈Column〉 〈Comparison〉 〈Constant〉

E.g. X.DEPTNO=Y.DEPTNO is not derived in the query on slide 12-11.
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Rule-Based Optimizer in Oracle (1)

Consider the query
SELECT E.ENAME, D.DNAME, G.GRADE
FROM EMP E, DEPT D, SALGRADE G
WHERE E.DEPTNO = D.DEPTNO
AND E.SAL BETWEEN G.LOSAL AND G.HISAL
AND D.LOC = ’DALLAS’ AND E.JOB = ’CLERK’

The rule-based optimizer will generate 3 QEPs:

One accessing EMP first,

one starting the evaluation with DEPT,

and one accessing SALGRADE before the other two.
If the FROM list contains m tuple variables, m QEPs are produced.
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Rule-Based Optimizer in Oracle (2)

So first it tries to start the evaluation with EMP.

It notices that the only condition which can be evaluated
at this point is E.JOB = ’CLERK’.

The rule-based optimizer has a priority list of available
access paths (see below).

E.g. using an index is higher on the list than a full table
scan. The optimizer chooses the first available access
path on the list.

So if an index on EMP(JOB) exists, it will be used, if it
does not exist, the only possibility is to use a full table
scan.
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Rule-Based Optimizer in Oracle (3)

Then Oracle chooses a next relation, to be joined with
the current intermediate result.

So the optimizer must decide whether to join
σJOB = ’CLERK’(EMP) with DEPT or SALGRADE first.

In order to do this, it evaluates the access paths for each
of the possibilities and chooses the relation for which the
join is considered cheapest (this is a greedy algorithm).

If an index on DEPT(DEPTNO) exists, this access path
would be 4th on the priority list, whereas using a
condition like E.SAL >= G.LOSAL even with an index on
SALGRADE(LOSAL) would be ranked 11th.
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Rule-Based Optimizer in Oracle (4)

If an index on DEPT(LOC) exists, this would also be an
alternative, but single column indexes on non-key
attributes are only ranked 9th on the list.

So the rule-based optimizer would do the join with DEPT
first, and use an index join (NESTED LOOPS in Oracle).

Immediately after the join it will also evaluate the
condition D.LOC = ’DALLAS’.

Then finally it has to do the join with SALGRADE:

If an index exists on SALGRADE(LOSAL) or
SALGRADE(HISAL), this is used.

If no such index exists, a full table scan is done.
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Access Path Priority List (1)

1. Access by ROWID: The query contains either a constant
ROWID (ROWID = ’...’) or a join ROWID = R.A, where
R is already accessed, so R.A is known.

2. Single row by cluster join: E.g. EMP and DEPT are
contained in the same cluster (by DEPTNO), and EMP is
already accessed. Then the block containing the
corresponding row of DEPT is already in the buffer.

3. Single row by hash cluster key: E.g. DEPT is stored in a
hash cluster by DEPTNO, and the value for DEPTNO is
known (either a condition like DEPTNO=20 or
D.DEPTNO=E.DEPTNO and E is already accessed). This
needs ideally one block access.
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Access Path Priority List (2)

4. Index over unique or primary key: E.g. accessing DEPT via
an index over DEPT(DEPTNO) either because of a selection
DEPTNO=20 or in form of an index join with a table which
was already accessed.

These first four possibilities will not extend the number of tuples in the
intermediate result, since they all use a key for accessing the next table.

5. Cluster join: E.g. DEPT and EMP are stored together in a
cluster over DEPTNO. If DEPT was already accessed before,
the tuples in EMP are probably loaded with them.

6. Hash cluster (non-key): E.g. EMP is stored in a hash
cluster on DEPTNO. The query contains a condition like
DEPTNO=20.
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Access Path Priority List (3)

7. Indexed cluster (non-key): As 6., but with an index
cluster.

8. Composite index (non-key): E.g. using an index on
EMP(DEPTNO,JOB) for DEPTNO=20 AND JOB=’CLERK’.

9. Single-column index (non-key): E.g. using an index on
EMP(DEPTNO) for evaluating DEPTNO=20. Also intersecting
ROWIDs from different indexes falls into this category.

10. Bounded-range search on indexed columns: E.g. using an
index on EMP(SAL) for SAL >= 2000 AND SAL <= 3000
(interval bounded on both sides). Also using an index for
ENAME LIKE ’F%’ and using an index on only a prefix of
the index columns are bounded-range searches.
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Access Path Priority List (4)

11. Unbounded-range search on indexed columns: E.g. using
an index on EMP(SAL) for evaluating SAL >= 2000.

12. Merge-Join.
Index joins are higher ranked. A merge join is done when no index is
available and the join condition is an equality.

13. MAX or MIN of indexed column: Using an index for
computing the maximal value of a column.

Oracle seems nevertheless to do a full scan of the index.

14. ORDER BY on indexed columns: Using an index to get the
tuples in sorted order.

15. Full table scan.
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Exercises

How will Oracle (with the rule-based optimizer) evaluate
this query?

SELECT E.ENAME
FROM EMP E
WHERE DEPTNO = 20
AND SAL >= 2000
AND ENAME LIKE ’F%’

How does the answer depend on the existence of indexes
over EMP(DEPNO), EMP(SAL), and EMP(ENAME)?

Compute the other two QEPs for the query on slide 12-27
(starting with DEPT and starting with SALGRADE).
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Rule-Based QEP Selection

Among the generated QEPs, the rule-based optimizer
chooses the one with the smallest number of nested-loop
joins (Proper nested loop joins, where the inner table is
accessed with a full table scan.).

If this does not bring a decision, the optimizer chooses
the QEP with the smallest number of merge joins.

If there is still a tie, it chooses the plan with the more
efficient access path to the first table.

Finally it uses the sequence in the FROM list.
It chooses the plan of which the relation accessed first appears later in the
FROM list.
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Cost-Based Optimization (1)

The cost-based optimizer generates a larger number of
alternative query evaluation plans.

The Oracle documentation does not say much about this, but e.g. a full
table scan is considered even if there is an index. The rule-based optimizer
checks the access paths on this list in the given order and stops once it has
found an available path.

It then estimates the cost of each generated plan and
picks the cheapest.

It is possible to use cost estimates already on partial plans while they are
generated in order to restrict the search space of possible alternatives.
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Cost-Based Optimization (2)
In order to estimate the costs, all tables should be
analyzed.

If there are no statistics in the data dictionary, the optimizer will guess
them based on the number of blocks allocated to the table. However, this
will often result in sub-optimal plans.

Important input data are:
Size of tables (number of rows, number of blocks)

Key constraints, foreign key constraints

Distribution of values for each attribute used in
conditions (number of different values, minimal/maximal
value).

It might also be useful to compute histograms (see
below).
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Cost-Based Optimization (3)

With the cost-based approach, the chosen QEP may
depend on the constant values in the query. E.g. the
optimizer may treat these queries differently:

SELECT * FROM EMP WHERE SAL >= 1000
SELECT * FROM EMP WHERE SAL >= 5000
SELECT * FROM EMP WHERE SAL >= :X

Some systems defer certian decisions to runtime
(“runtime optimization).

E.g. they first assume that a certain intermediate result will be small, but
as soon as more than a few tuples are computed, they switch to a QEP for
larger results.
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Selectivity (1)

Suppose we have a query
SELECT *
FROM Customers
WHERE SEX = ’M’ AND AGE >= 80

If there are indexes over both attributes, it is better to
use the one over AGE, since it will select less rows.

An important part of cost-based query optimization is the
estimation of the “selectivity” of conditions, that is the
percentage of rows which will satisfy the condition:

Number of rows in R which satisfy the condition ϕ
Total number of rows in R .
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Selectivity (2)

So the selectivity of a condition ranges from 0 to 1,
and the smaller it is, the better.

You can understand the selectivity also as the probability that a row will
fulfill the condition.

The optimizer can only use estimates for the selectivity.
The actual selectivity is only known after the query is executed (and varies
if the QEP is executed multiple times).

Bad estimates can lead to sub-optimal query evaluation
plans, but usually a high accuracy is not needed.

The selectivity is used to estimate the number of rows in
intermediate results.
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Selectivity (3)
Selectivity of A = c :

If A is a primary key, only one row can satisfy this
condition.

So the selectivity esitimate is 1/number of rows.

If the number of different values of A is n, the selectivity
of A = c is estimated to be 1/n.

This assumes a uniform distribution. When the table is analyzed, Oracle
stores the number of different data values in each column in the table
COLS, column NUM_DISTINCT.

If nothing was known about the column values, System R
guessed a selectivity of 0.1. Probably Oracle uses a similar
value if the table is not analyzed.

Exercise: What is the selectivity of SEX = 'M'?
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Selectivity (4)
Selectivity of A > c :

If A is of numerical type, and the minimal and the
maximal value of A are known, the selectivity of A > c
can be estimated as max(A)− c

max(A)−min(A)
This assumes that there are very many different possible values.

Otherwise System R has estimated it as 0.3.

Oracle uses the above formula also for string-valued
columns, and uses the internal string encoding
(e.g. ASCII values).

Maximal and minimal value in hexadecimal are stored in the columns
LOW_VALUE and HIGH_VALUE of the table COLS.
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Selectivity (5)
The selectivity of ϕ1 AND ϕ2 can be estimated as s1 ∗ s2,
if s1 and s2 are the selectivity estimates for ϕ1 and ϕ2.

This assumes that the conditions are independent.

E.g. SAL >= 1000 AND SAL <= 2000 must be treated
specially. Oracle uses the formula s1 + s2 − 1 in this case.

The selectivity of ϕ1 OR ϕ2 can be estimated as
s1 + s2 − s1 ∗ s2 (again assuming independence).

Selectivity can also be estimated by sampling: If 5 rows
out of 100 randomly chosen rows satisfy the condition,
the selectivity is estimated as 0.05.

However, this needs DB accesses (expensive method).
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Histograms (1)

Suppose that 90% of your customers are from Pittsburgh,
but you also have customers from 99 other cities.

The above formulas would estimate the selectivity of
CITY = ’PITTSBURGH’ as 0.01 (1%).

Suppose that the director of a company makes a yearly
salary of $530 000, but the salaries of the other employees
are mostly in the range $30 000 to $70 000.

The above formulas would estimate the selectivity of
SAL < 100 000 as 0.2 (20%).

Oracle allows to create histograms for such non-uniformly
distributed data.
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Histograms (2)

You can request that a histogram is computed on a
specific column with a version of the ANALYZE command:

ANALYZE TABLE EMP
COMPUTE STATISTICS FOR COLUMNS SAL SIZE 10

Then Oracle will sort the table EMP on the attribute SAL,
split it into 10 groups (intervals) containing the same
number of rows, and write the maximal SAL value in each
interval into the table

USER_HISTOGRAMS(TABLE_NAME, COLUMN_NAME,
ENDPOINT_NUMBER, ENDPOINT_VALUE)

In addition, MIN(SAL) is stored as endpoint number 0.
String-valued column values are shown as numbers.
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Histograms (3)

EMP
· · · SAL
· · · 800· · · 950· · · 1100
· · · 1250· · · 1250· · · 1300
· · · 1500· · · 1600· · · 2450
· · · 2850· · · 2975· · · 3000
· · · 3000· · · 4000· · · 50000

USER_HISTOGRAMS
TAB· · · COL· · · ENDPOINT_NUMBER · · · VALUE
EMP SAL 0 800
EMP SAL 1 1100
EMP SAL 2 1300
EMP SAL 3 2450
EMP SAL 4 3000
EMP SAL 5 50000
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Histograms (4)

Histograms are not automatically computed when you
analyze the table.

However, there will be entries for the minimum and maximum column
value in USER_HISTOGRAMS.

In the example with nearly all customers coming from
Pittsburgh, the value “Pittsburgh” will be the endpoint of
most intervals. In this way, Oracle notices that the
selectivity of CITY=’Pittsburgh’ is not good.

It would also be possible to store the number of different values in each of
the intervals (not done in Oracle).

Queries in Embedded SQL which use a program variable
in place of a constant value do not profit from histograms.
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Cost Estimation (1)
The main cost factor is the number of blocks read.

Some systems might also consider CPU costs, but it has a much smaller
weight. The CPU is usually not the bottleneck in DBMSs, unless they have
large amounts of memory. Often, the CPU will be idle waiting for the disk.

In order to compute the cost of a QEP node, an estimate
for the number of result rows of its child nodes is needed.

If we do nested loop joins, it might be good to have a
method for estimating the cost of executing a QEP
n times.

This may be cheaper than n times the cost of a single execution: buffer
cache, storing intermediate results.

Oracle’s cost formulas are not published.
Stefan Brass: DB IIB: DBMS-Implementation 12. Query Optimization 50/72



Introduction Algebraic Optimization Rule-Based Optimizer Cost-Based Optimization Conclusion

Cost Estimation (2)

Full Table Scans:
A full table scan needs to read all blocks below the “high
water mark” (column BLOCKS in TABS).

But reading these blocks should be given a big discount,
since they are stored consecutively on the disk.

If the number of extents is small (ideally 1). The number of extents is
stored in USER_SEGMENTS.EXTENTS.

Also, a full table scan becomes cheaper if the parameter
DB_FILE_MULTIBLOCK_READ_COUNT

(number of blocks to read in a single OS call) is larger.
For Oracle on our Solaris systems, it is set to 8.
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Cost Estimation (3)

Index Scans:
For a unique index scan, the number of blocks is the
height of the B-tree.

IND contains this information (BLEVEL+1).

The root node will often be in the buffer cache.

For other index scans, the number of leaf blocks accessed
can be estimated based on the selectivity of the condition
and the total number of leaf blocks.

IND.LEAF_BLOCKS is the total number of leaf blocks. E.g. suppose it is 50.
It the condition has a selectivity of 0.1 (10%), we will assume that 5 leaf
blocks will be accessed. In addition IND.BLEVEL branch blocks will be
accessed.
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Cost Estimation (4)
Table Access by ROWID:

In principle, every ROWID can request a different data
block.

So “Table Access by ROWID” can cost as many block
accesses as it has input ROWIDs.

The number of input ROWIDs can be estimated from the selectivity of the
condition and IND.NUM_ROWS.

However, if the table is small compared with the buffer
cache, no block will be read twice.

So for small tables, their number of blocks (TABS.BLOCKS) is an upper limit
to the cost of “Table Access by ROWID”.

AVG_DATA_BLOCKS_PER_KEY and CLUSTERING_FACTOR (in
IND) might indicate that the ROWIDs are not randomly
distributed.
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Cost Estimation (5)
Nested Loop Join (Unoptimized Version):

Suppose the left child needs b block accesses and returns
n rows. The nested loop join will then cost b block
accesses plus the cost of executing the right child n times.

Suppose L has 40 rows, stored in 1 block, and R has
100 rows stored in 50 blocks. Without caching, the nested
loop join L R will need 1 + 40 ∗ 50 = 2001 block
accesses.

The nested loop join R L will need 50 + 100 ∗ 1 = 150
block accesses.

So for the unoptimized nested loop join, it is not always
better to use the smaller relation in the outer loop.
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Cost Estimation (6)
It is also not always better to use the larger relation in the
outer loop.

E.g. suppose that L has 1000 rows stored in 100 blocks
and R has 10 rows stored in 5 blocks.

Then L R will need 100 + 1000 ∗ 5 = 5100 block
accesses, and R L will need 5 + 10 ∗ 100 = 1005 block
accesses.

So the nested loop join behaves asymmetric, and the cost
of both variants must be estimated and compared.

This also clarifies why Oracle tries to avoid a full table
scan as the right child of a nested loop join with higher
priority than on the left side: As right child, it is done
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Cost Estimation (7)

For the unoptimized version, if one relation is small
enough to fit into the buffer, it is better to use it as inner
relation.

Since the outer relation will anyway be read only once.

However, Oracle uses only a small number of buffer
frames for full table scans (buffer frames are immediately
reused).

Older versions of Oracle had a parameter _SMALL_TABLE_THRESHOLD for
the number of buffers for a full table scan that will be normally cached
using LRU (Default 5). Since Oracle 7.1, the CREATE TABLE command has
an option CACHE which requests to do normal caching for full table scans
for this table. You should set this for small tables which are right
arguments in nested loop joins.
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Cost Estimation (8)

Nested Loop Join, Optimized Version:
For the unoptimized version, the question whether one
table fits into memory is all or nothing: If it does not fit
entirely, very little is gained.

The optimized version can make good use of any amount
of buffer space available.

E.g. if the smaller table is double the size of the available
memory, the larger table has to be read twice.

In the optimized version, the buffer space is used for the
outer table in order to process as many tuples as possible
from the outer table for each pass through the inner table.

Stefan Brass: DB IIB: DBMS-Implementation 12. Query Optimization 57/72



Introduction Algebraic Optimization Rule-Based Optimizer Cost-Based Optimization Conclusion

Cost Estimation (9)
Result Size Estimation for Joins:

In order to estimate the cost of the parent nodes, we need
to estimate the number of tuples produced by the child
nodes.

E.g. if we join three tables, we must know the size of the intermediate
result after joining two tables.

For the join R on
A=B

S, if R .A is a foreign key
referencing S.B, the result will have exactly as many
tuples as R has.

For the cartesian product R × S, the result will have
|R| ∗ |S| tuples (where |R| denotes the number of tuples
in R).

Other join estimates are beyond the scope of this course.
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Cost Estimation (10)
Index Joins:

Suppose we evaluate R on
A=B

S with an index on S.B.

If R returns n rows, we have to do n index lookups and
table accesses by ROWID on S.

This is very similar to a nested loops join, which is why Oracle has only
one NESTED LOOPS operator for both joins.

If n is small and S is large, this join is cheapest, since in
this way we can avoid reading all tuples of S.

All other joins need to look at each tuple at least once.

If S is small, all of its blocks will end up in the cache.
But then a nested loops join is also very efficient.
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Cost Estimation (11)
Merge Join:

The main cost of the merge join is the sorting phase.
The merging can be done on the fly when the last sort step produces the
tuples.

If the sorting can be done in main memory, the number of
block accesses will be the sum of the costs of the children.

Due to pipelined evaluation, no block accesses are added.

If the input is b blocks, and we have m buffer frames
available (m < b), mergesort needs 2∗b ∗ ceil

(
logm−1(n)

)
block read/writes where n = ceil(b/m).

n is the number of initial runs.
ceil rounds to the next heigher integer.
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Comparison of Join Methods

Suppose we have to evaluate R on
A=B

S.

If R is small (few tuples) and S is large, and there is an
index on S.B, choose an index join.

And vice versa: R large, S small, index on R.A.

Otherwise, if one relation is small (fits into memory), the
other is large, but no index is available for the large
relation, choose the nested loops join.

Since this avoids sorting the large relation.

If both relations are small, it doesn’t matter.

If both relations are large, and no index is available, the
merge join or the hash join are best.
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Optimizer Hints (1)

If you discover that the optimizer produces a bad QEP,
you can try to give it hints for a better QEP.

Only the cost-based optimizer understands hints.

Hints have the form of special comments:
SELECT /*+ ORDERED */ ENAME, DNAME
FROM EMP E, DEPT D
WHERE E.JOB = ’CLERK’ AND D.LOC = ’BOSTON’
AND E.DEPTNO = D.DEPTNP

/*+ ORDERED */ means to access the relations in the
order given in the FROM clause.

You can specify several hints in one comment, e.g.
/*+ ORDERED INDEX(E I_EMP_JOB) */
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Optimizer Hints (2)

Oracle does not print an error message if such a hint
contains an error or can not be respected.

In these cases, the hint is treated as a comment (ignored).
One reason for this is that it is legal to intersperse hints with normal
comments (e.g. explaining the hints).

Hints must be put immediately after the first keyword
(SELECT, UPDATE, DELETE). No space between /* and +.

Hints apply only to their statement block.
E.g. if you have two SELECT queries, combined by UNION, you must put
separate hints into both parts. Also subqueries might need their own hint.

Hints must use the tuple variable names, not table names.
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Optimizer Hints (3)

Hints for optimizer selection:
ALL_ROWS, FIRST_ROWS, CHOOSE, RULE.

Hints for access methods:
FULL(table), ROWID(table), CLUSTER(table), HASH(table), HASH_AJ,
HASH_SJ, INDEX(table index . . . ), INDEX_ASC(. . . ), INDEX_COMBINE(. . . ),
INDEX_DESC(. . . ), INDEX_FFS(. . . ), MERGE_AJ, MERGE_SJ, USE_CONCAT_SJ,
AND_EQUAL(table index index . . . ),

Hints for joins:
ORDERED, STAR, USE_NL(table ...), USE_MERGE(table ...),
USE_HASH(table ...),

More hints for parallel execution, views, caching, . . .
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Conclusion (1)
SQL is a declarative language, so when you write queries,
you should not worry too much about query evaluation.

However, this depends on how good the optimizer of your
system is and which performance you have to reach.

If your database is large and you have to support many
concurrent users, performance becomes an issue.

There should be quantifiable performance requirements.

If you discover performance problems only when the
system goes into production, you have a big problem.

It is much cheaper to think about performance already
during design and development.
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Conclusion (2)
Some optimizations in SQL formulations can be done
without making the query more complicated:

E.g. write SAL > 24000/12 instead of SAL*12 > 24000.
In Oracle, any datatype function applied to a column makes an
index unusable for that column.

E.g. avoid unnecessary complications (in any case
better).

E.g. some students used UNION when a simple OR would have
sufficed, some used DISTINCT without need, or GROUP BY a key,
unnecessary subqueries under FROM, etc.

E.g. express “for all” with comparing counts instead of a
doubly nested NOT EXISTS subquery.

Nested subqueries might be difficult for some optimizers.
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Conclusion (3)
If performance is an issue, the application programmers
should think about which indexes can be used for their
queries, and check whether the indexes exist.

Sometimes redundant data must be added to the schema.

E.g. UPPER(NAME) = :X requires to store NAME in
uppercase in the database, or indexes are not usable.

Sometimes (very seldom) redundant data must be stored
for performance reasons (“denormalization”).

However, index selection and denormalization should be
done before the actual programming begins.

The later the change, the more expensive it is.
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Conclusion (4)
However, with regard to QEP selection (only that!), I
would suggest a reactive, rather than a proactive
approach:

Try to write good SQL, create the indexes/clusters which
seem useful (based on your knowledge from this course).

Check the QEP only for a few especially critical queries.

Test your application programs under actual system
loads.

If there is a performance problem, find out which queries
use the most system resources and tune these queries.

I.e. keep performance in mind over the entire life-cycle,
do what is sensible (the earlier, the better), but invest
your time where it is most useful to satisfy the goals.
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Conclusion (5)

Reasons for reactive approach:

QEPs might change if your table sizes etc. change.

With a new version of Oracle, the optimizer might have
changed, and different QEPs can be produced.

Also, adding an index later in order to improve a certain
query might confuse the optimizer, so that it produces
worse QEPs for other queries.

Unless you put optimizer hints in every query or use the
rule-based optimizer (which is unlikely to change), QEPs
are not sufficiently stable to invest too much work in
them.

After all, you program in SQL and not in QEPs.
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Conclusion (6)
Good performance depends also on many other issues, e.g.:

The right setting of DBMS and OS parameters.

If you have many concurrent users, the reason for delays
might be locks by other users.

Your interface to the DBMS server:
It might be more efficient to do more work on the server
by means of stored procedures (less network traffic).

In Embedded SQL, fetching whole arrays of results is
more effient than fetching only a tuple at a time.

Using static Embedded SQL rather than dynamic SQL.

Good database and application program design.
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