
Datenbanken IIB:
DBMS-Implementierung

Chapter 10: More Data Structures
for Relations

Prof. Dr. Stefan Brass
Martin-Luther-Universität Halle-Wittenberg

Wintersemester 2019/20

http://www.informatik.uni-halle.de/˜brass/dbi19/

10. More Data Structures 1/63

http://www.informatik.uni-halle.de/~brass/dbi19/


Objectives

After completing this chapter, you should be able to:

explain the advanced data structures introduced in this
chapter (clusters, index-organized tables, hash methods,
bitmap indexes, partitioned tables): How do they work?

list advantages and disadvantages of each data structure.

select the best data structure for a given application.

10. More Data Structures 2/63



Inhalt

1 Physical Design

2 Clusters

3 Hash-Based Indexes

4 Partitioned Tables

5 Bitmap Indexes

6 Index-Organized Tables

10. More Data Structures 3/63



Physical Database Design (1)

The purpose of physical database design is to ensure that
the database system meets the performance requirements.

Physical database design depends heavily on

The concrete DBMS chosen for the implementation.

The table sizes and how often each application is
executed (load profile).

10. More Data Structures 4/63



Physical Database Design (2)

Don’t think too early during database design about
performance:

Conceptual design is difficult enough — separate the
problems.

If one must later switch to another DBMS or the load
profile changes, the conceptual design remains still valid.

Accept compromises to a clear design for performance
reasons only if experiments show that otherwise the
performance requirements cannot be met.

10. More Data Structures 5/63



Inputs to Physical Design (1)

How big the tables will be:

Number of rows,

size of column data (min/max/avg),

frequency of null values.

How will the tables grow over time?
How many rows will each table have in one year?

Which strategies should be used for purging the data?
When can rows be deleted? Or is the database ever-growing?

10. More Data Structures 6/63



Inputs to Physical Design (2)

How are column values distributed?

Will there be many different values or will the same
value be often repeated?

Are there especially common values?
I.e. is the distribution uneven?

Will rows grow over time via updates?
Will some columns be null at insertion and filled out later?

10. More Data Structures 7/63



Inputs to Physical Design (3)

Which application programs exist and which queries and
updates do they execute?

How often is each application program executed?

Especially the following information is needed:

Which columns are used in equality conditions, range
conditions, joins, group by.

Which columns of tables are accessed together?

Which columns are updated? How often do these
updates happen? How frequent are insertions into each
table? What about deletions?

10. More Data Structures 8/63



Inputs to Physical Design (4)

Performance requirements:

What response time is needed for which step in an
application program?

Commonly executed interactive programs need fast answers,
seldomly executed programs could run longer.

Can reports be generated over night?
Or do they have to be generated during main business hours?

Are there unpredictable ad-hoc SQL queries?
Can we keep them out of our main DB during business hours?
Would it be acceptable if ad-hoc queries use a slightly outdated or
aggregated copy of the data?

10. More Data Structures 9/63



Inputs to Physical Design (5)

Can we have scheduled maintenance times or do we need
to be up 7 days a week, 24 hours a day?

How fast must the system be up again after a power
failure (system crash) or after a disk failure?

How big is the hardware?
How much main memory does the machine have? How many disks? What
is the capacity of these disks? How many disk controllers? How many disks
can be connected? What is the maximum transfer rate? Is there money for
buying more main memory, disks, etc.?

Do we have to use a particular DBMS?
What is the budget for buying a DBMS? And for updates/support?

10. More Data Structures 10/63



Experimental Approach

Since these parameters are difficult to estimate and
change over time, one must be prepared to repeat the
physical design step from time to time.

Creating a new index is simple in relational systems. However, if one has to
buy entirely new hardware because performance criteria are not met, one
has a problem. Thus, it is important to think about realistic system loads
during the design.

There are (expensive) tools for simulating given loads.

Don’t start using the system before you are sure that it
will work.

10. More Data Structures 11/63



Physical Design Decisions

How should the tables be stored?
Heap file, index cluster, hash cluster, index-organized table? Which tables
should be clustered together? See Chapter 10.

How big should the initial extents be?

What space reserve is needed for updates (PCTFREE)?

Which indexes would be useful?

Should tables be partioned (horizontally/vertically)?

Should some tables be specially cached?

Should tables be denormalized (introducing redundant
information for performance reasons)?

10. More Data Structures 12/63



Outlook (1)

Further Oracle Data Structures:

Clusters for storing table data
This permits to store rows for the same attribute value together. It is even
possible to store rows from different tables in one cluster (makes joins very
fast).

Hash clusters
Here, the block (storage position) is computed from column value. This is
the fastest possible access for conditions of the form A = c, but it is less
flexible than a B-tree.

Bitmap indexes
Good for columns with few different values, for each row and each possible
value there is one bit.

10. More Data Structures 13/63



Outlook (2)

Further Oracle Data Structures, continued:

Index-organized tables
Instead of ROWIDs, the index contains the complete rows.

Function-based indexes
Instead of indexing an attribute value, the search key of the index can be a
function of the row.

Object-relational features
E.g. non-first normal form tables: Table entries can be arrays.

10. More Data Structures 14/63



Outlook (3)

The literature contains many more data structures for
indexes:

E.g. there are special indexes for geometric data, where
one can search all points in a given rectangle, the
nearest point to a given point, etc.

In general, an index allows special ways to compute
certain parameterized queries. E.g. a Hash-index on R(A)
supports

SELECT ROWID FROM R WHERE A=:1

10. More Data Structures 15/63



Inhalt

1 Physical Design

2 Clusters

3 Hash-Based Indexes

4 Partitioned Tables

5 Bitmap Indexes

6 Index-Organized Tables

10. More Data Structures 16/63



Single-Table Clusters (1)

Suppose you often need all invoices of a given customer:
SELECT SUM(Amount)
FROM Invoice
WHERE CustNo = 7635

Even if you have an index over Invoice(CustNo), if the
customer has 10 invoices, it is very likely that they are
stored in 10 different blocks.

However, instead of storing Invoice as a heap file, you
can request to have the rows clustered by CustNo (in
Oracle).

In this case, the 10 rows for the invoices by a given
customer will be stored in the same block (if possible).

10. More Data Structures 17/63



Single-Table Clusters (2)

Advantages of Clusters:

In the above example, if you need to access two blocks
from the index, you need to access 12 blocks in total
without the cluster and 3 blocks in total with the cluster,
so your query is performed 4 times faster.

Note that you have this advantage only if there are
multiple rows with the same value for the cluster column.

E.g. clustering by a key brings no advantages.

There should also be not too many rows with the same
value for the cluster column — normally all these rows
should fit into a single block.

10. More Data Structures 18/63



Single-Table Clusters (3)

The value for the cluster column is stored only once for
each set of rows with the same value.

This gives a slight reduction in the needed disk space.

Since the rows are stored grouped by the cluster column,
e.g. this query can be evaluated without sorting:

SELECT CustNo, SUM(AMOUNT)
FROM Invoice
GROUP BY CustNo

In general, any application of an index where one column
value appears in several rows becomes faster.

Except index-only execution plans and execution plans where ROWIDs are
sorted or intersected.

10. More Data Structures 19/63



Single-Table Clusters (4)
How Clusters work:

You must specify in the cluster definition how much space
will be needed for all rows with the same value in the
cluster attribute.

E.g. you estimate that 600 Bytes are needed for all
invoices of one customer (a customer has on average
10 invoices, each needs 60 Bytes).

So Oracle will put rows of 3 customers into each 2K block.
You must calculate with the block header. See below.

When the first invoice of a new customer is inserted,
Oracle assigns it to a block which contains invoices of no
more than two other customers (and still has empty
space).

10. More Data Structures 20/63



Single-Table Clusters (5)

Oracle enters the CustNo together with the chosen block
into an index. Every cluster needs such an index over the
cluster column.

Then all further invoices for this customer will go to the
same block. Oracle locates the block for a given CustNo
via the index.

If the block becomes full, overflow blocks are chained to it.

Oracle does not reserve 600 Bytes for each customer.
If one customer has many invoices and needs 1500 Byte,
but the other two customers in that block need only
100 Byte each, this is still no problem.

10. More Data Structures 21/63



Single-Table Clusters (6)

Disadvantages of Clusters:

If the cluster column is updated, the row will be migrated
to the block containing the rows with the new value. So
do not define clusters on columns which are normally
updated.

Clusters reduce the flexibility:

If you estimate the size of the groups too small, invoices
for one customer will be distributed over many blocks.

And these blocks will not be consecutively stored on the disk and
Oracle always fetches all of these blocks.

If you estimate the size too large, you waste disk space
and therefore also full table scans will take longer.

10. More Data Structures 22/63



Single-Table Clusters (7)

How to Create a Cluster:

First you create the cluster and specify:
The name and data type of the cluster column(s).
The disk space for each distinct value of this column.
Storage parameters like in the CREATE TABLE command.

CREATE CLUSTER Invoice_Clust(CustNo NUMBER(7))
SIZE 512
TABLESPACE USER_DATA
STORAGE(INITIAL 200K NEXT 50K

PCTINCREASE 100)
PCTFREE 10 PCTUSED 80

10. More Data Structures 23/63



Single-Table Clusters (8)

Then you create a table in this cluster:

CREATE TABLE Invoice(INo NUMBER(10) PRIMARY KEY,
CustNo NUMBER(7) NOT NULL,
Amount NUMBER(7,2) NOT NULL,
Issued DATE NOT NULL)

CLUSTER Invoice_Clust(CustNo)

Then you must create an index on the cluster before rows
can be inserted:

CREATE INDEX CustNo_Idx ON CLUSTER
Invoice_Clust

You can do insertions, queries etc. on Invoice as usual.
The existence of a cluster is transparent to the
application.

10. More Data Structures 24/63



Single-Table Clusters (9)

Experiment:

I created a cluster as shown above and inserted 7 invoices.
SELECT DBMS_ROWID.ROWID_BLOCK_NUMBER(ROWID),

INo, CustNo FROM Invoice

BLOCK_NUMBER INo CustNo
583 101 1
583 102 2
583 103 3
583 107 3
584 104 4
584 105 5
584 106 5

10. More Data Structures 25/63



Single-Table Clusters (10)

I inserted the invoices in the order of ascending INo, but
they are printed in the order in which they are stored.

I had expected that Oracle puts invoices for 4 customers
in one block, but because of the block overhead Oracle
could assign only 3 customers to each block.

I repeated the experiment with “SIZE 400”, and then
rows of 4 customers were stored in a single block.

Note that without the cluster definition, Oracle would put
all the given rows into a single block (and there would
still be lots of free space).

10. More Data Structures 26/63



Multiple-Table Clusters (1)

You can assign more than one table to the same cluster
(of course, the table must also contain a customer
number).

E.g. we could store Customer and Invoice together:

CREATE TABLE Customer(
CustNo NUMBER(7) PRIMARY KEY,
First_Name VARCHAR(20) NOT NULL,
...)

CLUSTER Invoice_Clust(CustNo)

Then rows from Customer and Invoice with the same
CustNo are stored in the same block.

Remember that without clusters, each block (even each segment) contains
only rows from one table.

10. More Data Structures 27/63



Multiple-Table Clusters (2)

This makes joins between Customer and Invoice
especially fast. More or less, the join is already
precomputed in the way the rows are stored on disk.

However, full table scans become slower now, because
rows of Invoice are interspersed between the rows of
Customer. So many more blocks are needed in the cluster
than would be needed to store only the rows of Customer.

Cluster indexes are structured a bit different than table
indexes (they contain only the block number, not all
ROWIDs). So Oracle has to create another index on
Customer(CustNo) to enforce the PRIMARY KEY
constraint.

10. More Data Structures 28/63



Summary

Clusters can bring significant performance improvements
for queries using a non-unique index or containing joins.

Don’t use clusters on columns which are updated.

You must be able to estimate the disk space needed for
all rows having the same value in the cluster column.

All these rows should fit into one block.

Unless there is very little variation in this size, clusters do
not utilize the disk space as good as a heap file.

Full table scans will most likely become slower.

You can cluster a table only with respect to one attribute
(or one attribute combination).

10. More Data Structures 29/63



Inhalt

1 Physical Design

2 Clusters

3 Hash-Based Indexes

4 Partitioned Tables

5 Bitmap Indexes

6 Index-Organized Tables

10. More Data Structures 30/63



Motivation (1)

If you have a B-tree of height 4, you still need 5 block
accesses to fetch a row via this index.

The root of the index is probably in the buffer cache.

Hash methods ideally need only one block access.

The idea is to assign every row to a specific block based
on some computation on the value of the indexed
attribute.

E.g. we want a very fast access to the Customer table for
a given customer number CustNo.

When customer numbers are sequential numbers, and we
know that 22 rows fit into one block, we could store the
Customer row for CustNo = N in block N/22 (rounded).

10. More Data Structures 31/63



Motivation (2)
Then, given a specific customer number, e.g. 7356,
we know that the row for this customer is stored in block
7356/22 = 334, so we can get it with a single block
access.

So the advantage of the hash method is to replace the
index lookup, which tells you in which block a row is
stored, by a computation (which does not need any block
accesses).

You can do such computations not only on numeric
columns, but also on string-valued columns (e.g. add the
ASCII codes of the letters) (this is not a good hash
function).

Also, the column used as input to the hash function does
not have to be the key of the table.

10. More Data Structures 32/63



Hash Tables (1)

Hash tables were part of your data structures course.

The general idea is that you use an array with h locations
for storing the rows (h = hash table size).

Note that now each array position can store only one row. We talk about
blocks (having space for multiple rows) later.

When you insert a new row, you somehow compute a
number between 1 and h based on the indexed attribute.

This is the array location in which the row will be stored.

The function which takes a specific value for the indexed
attribute and returns the position in the table is called the
hash function.

10. More Data Structures 33/63



Hash Tables (2)

E.g. for customer numbers in the range 1001..9999 you
can use a hash table of size 8999 and CustNo - 1000 as
hash function.

Let us now assume that only 500 numbers in this range
are actually in use (so the table Customer has only 500
rows).

Then an array of size 8999 would waste too much storage.

Hash methods perform bad if the table fills up completely,
so let us use a table of size 701.

One usually chooses a prime number as hash table size.

As hash function we use (CustNo MOD 701) + 1.
CustNo MOD 701 is the remainder of CustNo / 701.

10. More Data Structures 34/63



Hash Tables (3)
This leads to the problem of collisions. It might be that
two different customer rows are mapped to the same
array entry.

There are different strategies for solving the problem,
e.g.:

Use the next free entry.

Attach to every array entry a linked list of all customer
rows which should be stored in this array location.

When you use hash functions on string-valued attributes,
such collisions are unavoidable, since you cannot have one
array element for every possible string.

For a good hash function, it should be equally likely that
every array entry is hit (e.g. returning always 1 is bad).

10. More Data Structures 35/63



Hash Tables on External Storage

In the customer example, 22 rows fit into one block.

Then the hash table entries 1..22 are stored in the first
block, the entries 23..44 in the second block, and so on.

For collisions, we use a combined strategy:

Any free entry in the same block can be used.
Especially, since the rows are of variable length, we simply try to fit
all rows into this block which belong there. The exact table entry is
no longer important.

If the block is full, overflow blocks are chained to this
block. This decreases performance (one block access is
no longer sufficient) and should not happen too often.

10. More Data Structures 36/63



Hash-Tables in Oracle (1)

Oracle has two different kinds of clusters: Index Clusters
(see above) and Hash Clusters.

Hash clusters must define the total number of different
entries (the hash table size).

E.g. you expect that you will have 500 000 customers,
and that each customer row needs about 77 bytes:

CREATE CLUSTER Customer_Clust(CustNo NUMBER(7))
SIZE 77
HASHKEYS 500000 HASH IS CustNo
STORAGE(INITIAL 50M NEXT 5M)
PCTFREE 10 PCTUSED 80

10. More Data Structures 37/63



Hash-Tables in Oracle (2)

From the SIZE parameter, Oracle computes how many
entries fit into one block. In the example, the result will
be around 22.

Then rows with CustNo between 1 and 22 will be stored
in the first block, rows with CustNo between 23 and 44 in
the second block, etc.

So if customer numbers only start with 1001, use
HASHKEYS 500000 HASH IS (CustNo - 1000)

You do not have to specify a hash function:
HASHKEYS 500000

Then Oracle will use its internal hash function.

10. More Data Structures 38/63



Summary (1)

Hash clusters can bring significant performance
improvements for queries containing equality conditions,
e.g. CustNo = 7356, or joins.

Since a hash cluster contains the actual rows, and not the
ROWIDs, you can have hash access to a table only for
one attribute (or attribute combination).

The attribute does not have to be the key.
However, it should normally not be updated.

Hash-based indexes are of no help for range queries.
The rows are not stored in sorted order. Also, when you use an attribute
combination, an equality condition for only one attribute does not allow to
compute the hash function.

10. More Data Structures 39/63



Summary (2)

Hash-based indexes are very bad for full table scans.
Unless the hash table is nearly full, but then you will probably have many
overfow blocks.

As in index-based clusters, you need to know how much
space every distinct value in the indexed column will need.

And this should not be more than one block.

But in addition, you also need to know how many distinct
values there will be (more or less the table size).

So hash clusters are very inflexible when the table grows.
You probably have to recreate it from time to time with a
larger value for HASHKEYS.

10. More Data Structures 40/63



Outlook

The literature and textbooks also contain “dynamic hash
methods” or “external hash methods”.

These methods can adapt to changes in the table size
without the need to reconstruct the entire table.

Typically, they split a block and need to rehash only the entries in this
block. In this way they avoid chained blocks.

These methods need to keep some additional information,
so they might need more than one block access.

But normally this information can be kept in main
memory.

Oracle8 only contains the standard static hash method
described above.

10. More Data Structures 41/63



Inhalt

1 Physical Design

2 Clusters

3 Hash-Based Indexes

4 Partitioned Tables

5 Bitmap Indexes

6 Index-Organized Tables

10. More Data Structures 42/63



Motivation (1)

Suppose you have sales data for the last three years:
SALES(Year, Month, Region, Amount)

where Year only has the values 1997, 1998, 1999.

Then it is an option to create instead three tables, e.g.
SALES_1997(Month, Region, Amount) and define:

CREATE VIEW SALES(Year, Month, Region, Amount)
AS SELECT 1997, Month, Region, Amount

FROM SALES_1997
UNION ALL SELECT 1998, Month, Region, Amount

FROM SALES_1998
UNION ALL SELECT 1999, Month, Region, Amount

FROM SALES_1999

10. More Data Structures 43/63



Motivation (2)

Consider a query which specifies a value for year, e.g.
SELECT SUM(Amount)
FROM SALES
WHERE YEAR = 1998

Then a sufficiently intelligent optimizer will do only a full
table scan of SALES_1998, whereas otherwise it would
have to read the entire SALES table.

Also, in order to delete all data about 1997, you simply
redefine the view SALES and drop the table SALES_1997.

In contrast, DELETE FROM SALES WHERE YEAR=1997

takes a lot of time and rollback segment space, and does not make the
table and indexes any shorter.

10. More Data Structures 44/63



Motivation (3)

There is the small problem that the view is not updatable
in SQL-92. So when you insert tuples, you have to insert
it into the right SALES_* table.

However, a UNION ALL is very fast to evaluate. So even a
full table scan over all SALES_* tables is not slower than
if we had used only a single SALES table.

You can also place the different SALES_* tables on
different disks and get a kind of “striping” (even parallel
evaluation might be possible).

A disadvantage is that you must administer 3 tables now.

Also foreign keys referencing SALES are no longer possible.

10. More Data Structures 45/63



Motivation (4)

Obviously, this kind of partitioning is only effective when a
column contains a very small number of different values.

However, a very good optimizer can also make use of
CHECK-constraints (semantic optimization):

CREATE TABLE SALES1(
YEAR NUMBER(4)
CHECK(YEAR BETWEEN 1985 AND 1989),
...)

CREATE VIEW SALES AS
SELECT * FROM SALES1 UNION ALL
SELECT * FROM SALES2

10. More Data Structures 46/63



Partitioned Tables in Oracle

The above examples should have run in Oracle 7.3.
You have to buy the Partitioning option and use
ALTER SESSION SET PARTITION_VIEW_ENABLED = TRUE.

Oracle 8 has a new syntax for partioned tables:

CREATE TABLE SALES(YEAR NUMBER(4), ...)
PARTITION BY RANGE (YEAR)
(PARTITION SALES1 VALUES LESS THAN (1998),
PARTITION SALES2 VALUES LESS THAN (1999),
PARTITION SALES3 VALUES LESS THAN (MAXVALUE))

You can specify tablespace etc. separately for each part.

When looking at query evaluation plans, I didn’t see any
improvement.

10. More Data Structures 47/63



Vertical Partitioning

Splitting the rows of a table into multiple tables is called
horizontal partitioning.

Be careful. Some authors use the opposite names.

You can also partition a table vertically. E.g. consider:
Course(CRN, Title, Instr, Time, Room,

Syllabus)

If Syllabus is a longer text, but seldom accessed, it will
make full table scans of Course unnecessary slow.

So you could split the table into:
Course_Data(CRN, Title, Instr, Time, Room)
Course_Syllabus(CRN → Course_Data, Syllabus)

You can define Course as a view with an outer join.
Syllabus can be null. Enforcing its definition is difficult.

10. More Data Structures 48/63



Inhalt

1 Physical Design

2 Clusters

3 Hash-Based Indexes

4 Partitioned Tables

5 Bitmap Indexes

6 Index-Organized Tables

10. More Data Structures 49/63



Bitmap Indexes (1)

B-tree indexes are effective when a column has many
different values, i.e. each value appears only in a small
number of rows.

Bitmap indexes are useful when a column has few distinct
values, i.e. the same value appears in a large number of rows.
E.g. male/female, family status, region (east, central, west).

Oracle suggests that “if the values in a column are repeated more than a
hundred times, then the column is candidate for a bitmap index.”

Bitmap indexes are often useful for data warehouse
applications.

Oracle supports bitmap indexes only in its enterprise version.

10. More Data Structures 50/63



Bitmap Indexes (2)

Suppose a bitmap index was created on attribute A of
table R .

For each distinct value a that occurs in column A of R ,
the system stores a bitmap Ba (array of boolean values).

The bitmap contains an entry for each row r in the
table R :

Ba[r ] =
{

1 if r .A = a,
0 if r .A 6= a.

The DBMS evaluates e.g.
SELECT * FROM R WHERE A = ’a’

by searching the bitmap for 1 bits.

10. More Data Structures 51/63



Bitmap Indexes (3)

Each position in the bitstring can be translated into a
ROWID which can be used to fetch the row from the
table.

In order to do this, Oracle stores a fixed number of bits
per block (before compression), namely as many bits as
there can be rows per block.

The command ALTER TABLE R MINIMIZE ROWS_PER_BLOCK

computes the currently maximal number of rows per block and ensures
that future insertions cannot increase the number. It can be used only
before creating bitmap indexes on the table. If one does not use this
command (or cancels it with NOMINIMIZE), Oracle somehow computes the
maximum number of rows possible. This is more effective for a table that
has attributes of fixed length.

10. More Data Structures 52/63



Bitmap Indexes (4)

E.g. consider an index over CUSTOMERS(STATE). If the
table has 2 Million rows, the bitstring for each state
needs 244KB (as compared to the table that needs
230 MB disk space).

A bitmap index works by compressing a tuple of e.g. 100 Byte
to a single bit for the purpose of evaluating a condition like STATE = ’PA’.

In addition, Oracle compress the bitmaps before storing
them.

The compression algorithm is not disclosed. E.g. it would be possible to
replace long sequences of 0-bits simply by their number. Oracle states that
a bitmap consists of a number of segments (none of which is larger than
half the block size). These segments have to be sorted if one needs to
merge bitmaps (i.e. wants the bits in the storage order).

10. More Data Structures 53/63



Bitmap Indexes (5)

Already the ROWIDs for an average state (40000 customers)
in a B-tree index would need 240KB (6 Byte per ROWID).

If one counts only the ROWIDs, and does not consider the compression of
bitmaps, the bitmap index is more space effective for columns that contain
48 distinct values or less.

The Oracle Tuning Manual contains an example of a
table with 1 Million rows having a B-tree index of 15 MB,
where the corresponding bitmap index is smaller even for
500000 different values in the column (each value
appears only twice).

For 100000 different values, the bitmap index is about 5 MB.

Normally, one would use a bitmap index only for
attributes with a limited number of distinct values.

10. More Data Structures 54/63



Bitmap Indexes (6)

The real power of bitmap indexes is that complex conditions
(with logical connectives AND, OR, NOT) can be executed
on bitstrings before the relation itself is accessed.

Of course, one could in principle do the same with ROWIDs (e.g. ORACLE
sometimes intersects ROWIDs from different indexes before accessing the
table), but operations on bit strings are much faster (specially supported
by the hardware).

E.g. consider the query:

SELECT COUNT(*)
FROM CUSTOMERS
WHERE (STATE = ’PA’ OR STATE = ’NY’)
AND SEX = ’M’ AND FAMILY_STATUS <> ’SINGLE’

10. More Data Structures 55/63



Bitmap Indexes (7)

If there are bitmap indexes for the three attributes, the
DBMS would compute the bit-or of the bitmaps for
STATE = ’PA’ and STATE = ’NY’, then bit-and the
result with the bitmap for SEX = ’M’ and finally do a
bit-and with the complement of the
FAMILY_STATUS = ’SINGLE’ bitmap.

It would then count the number of “1” bits in the result
and not access the table “CUSTOMERS” at all.

So in the end it will have read about 1 MB instead of 230 MB for the full
table scan.

If for another query it would be necessary to access the
table in the end, the bitmap index at least returns the
ROWIDs in the storage order on disk.

10. More Data Structures 56/63



Bitmap Indexes (8)

Bitmap indexes are created with a command like the
following:

CREATE BITMAP INDEX I_CUST_STATE
ON CUSTOMERS(STATE)

The standard storage parameters can be added.

Bitmap indexes cannot be UNIQUE.

If one wants a more compact storage format, one can use
ALTER TABLE CUSTOMERS
MINIMIZE RECORDS_PER_BLOCK

after the table contains a representative set of rows and
before the first bitmap index is created.

If the column allows null values, there will be one bitmap for the value null
(Oracle’s B-tree indexes do not list null values).

10. More Data Structures 57/63



Bitmap Indexes (9)

One can create bitmap indexes con column combinations,
but is is probably uncommon: Bitmap indexes on different
columns are easy to combine.

The efficient merging of bitmaps is one of the strengths of this type of
indexes.

In Oracle, bitmap indexes are not good for heavily
updated tables (OLTP applications).

The problem is that an update will lock an entire “segment” of the bitmap
that might represent e.g. 1000 rows. In a B-tree index, an update locks
only a single row.

Oracle will use bitmap indexes only with its newer,
rule-based optimizer (use ANALYZE TABLE to make
statistics available).

10. More Data Structures 58/63



Inhalt

1 Physical Design

2 Clusters

3 Hash-Based Indexes

4 Partitioned Tables

5 Bitmap Indexes

6 Index-Organized Tables

10. More Data Structures 59/63



Index-Organized Tables: Structure
As an alternative to storing the table rows in a heap file
and letting ROWIDs from a B-tree index point to these
rows, Oracle can store the entire rows in a B-tree index.

This is called an index-organized table (IOT).

An IOT is structured like a UNIQUE index for the primary
key of the table, but instead of containing a ROWID,
it contains the other (non-key) columns.

A primary key must be specified for index-organized tables.

An index-organized table can be declared in the following way:

CREATE TABLE CUSTOMERS(..., PRIMARY KEY(CUSTNO))
ORGANIZATION INDEX
TABLESPACE USER_DATA STORAGE(...)

10. More Data Structures 60/63



Index-Organized Tables: Advantages

When an attribute value is found in a standard index, the
DBMS must still look up the corresponding row from the
heap file (unless index-only QEP). In the IOT, the DBMS
directly finds the row (saves at least one block access).

Range scans in standard indexes result in ROWIDs
scattered over the entire heap file. With the IOT, the rows
are physically stored in ordered sequence (in the same
block or in few blocks: may save many block accesses).

A full index scan returns rows in sorted sequence.

Less space is required: With a heap file, the indexed
attribute
values are stored twice. Also the ROWIDs require storage
space, the overhead is doubled (for index and heap file).

10. More Data Structures 61/63



Index-Organized Tables: Restrictions

The rows in an index-organized table have no ROWIDs:
They are moved around when B-tree blocks are split, so
they have no stable physical address.

Since the rows have no ROWID, no other indexes can be
built on the same table.

Besides the index on the primary key in which the rows are stored. Of
course, if the primary key is a composed key, e.g. (A, B, C), then the index
can also be used with only values for A or (A, B).

Therefore, also no alternative keys (UNIQUE-constraints)
can be declared.

10. More Data Structures 62/63



References
Elmasri/Navathe: Fundamentals of Database Systems, 3rd Ed.
Chap. 5: “Record Storage and Primary File Organizations”, Chap. 6: “Index
Structures for Files”,
Section 16.4: “An Overview of Database Tuning in Relational Systems”

Ramakrishnan/Gehrke: Database Management Systems, 2nd Edition.
8. File Organizations and Indexes, Chap. 9: “Tree-Structured Indexing”,
Chap. 10: “Hashed-Based Indexing”, 16. Physical Database Design and Tuning.

Silberschatz/Korth/Sudarshan: Database System Concepts, 3rd Ed., Chap 11.

Kemper/Eickler: Datenbanksysteme (in German), Chap. 7, Oldenbourg, 1997.

Gray/Reuter: Transaction Processing: Concepts and Techniques. 1993.
Chapter 15.

Oracle 8i Concepts, Release 2 (8.1.6), Oracle Corporation, 1999,
Part No. A76965-01.

Oracle 8i Designing and Tuning for Performance, Release 2 (8.1.6),
Oracle Corporation, 1999, Part No. A76992-01.

Oracle 8i SQL Reference, Release 2 (8.1.6), Oracle Corp., 1999, Part
No. A76989-01.

Jason S. Couchman: Oracle8i Certified Professional: DBA Certification Exam
Guide with CDROM.

Lipeck: Skript zur Vorlesung Datenbanksysteme (in German), Univ. Hannover,
1996.

10. More Data Structures 63/63


	Physical Design
	Physical Design Summary

	Clusters
	Clusters

	Hash-Based Indexes
	Hash-Based Indexes

	Partitioned Tables
	Partitioned Tables

	Bitmap Indexes
	Bitmap Indexes

	Index-Organized Tables
	Index-Organized Tables
	References


