
Prof. Dr. Stefan Brass December 1, 2017
Institut für Informatik
MLU Halle-Wittenberg

Databases IIB: DBMS-Implementation

— Exercise Sheet 8 —

Part a) and c) to g) will be discussed in class, you only have to submit the Homeworks.
This week, there are two deadlines: Part h) and i) should be submitted until December 6,
12:00, and the programming exercise j) until December 13. But please think about the
questions in a) before the meeting.

Repetition Questions

a) What would you answer to the following questions in an oral exam?

• Name some storage characteristics and compare main memory with disks.

• What is a “logical block access”, a “physical block access”, a “cache hit” and a
“cache miss”? How is the “hit ratio” defined?

• Suppose there were 1000 logical block accesses and 100 physical block accesses.
What is the cache hit ratio?

• What are reasonable cache hit ratios for a normal OLTP database?

• Why does one often get reasonable cache hit ratios even if the buffer in main
memory is much smaller than the data files on disk? E.g. if the main memory
buffer is only 20% of the total database size, one would still expect a better hit
ratio than 20%. Why?

• Suppose, one has a relatively large database (e.g. 60 GB), but also a large server
machine with e.g. 128 GB RAM. What would be advantages and disadvantages
of a standard DBMS with a cache for disk blocks compared to a system that
first reads the entire data to memory?

• Why does a query run much faster if one executes it a second time (soon after
the first time)?

• Suppose you want to compare the performance of two database management
systems. You create the same database in both systems and measure the runtime
of a few example queries. Why might the system vendors (or their salespeople)
consider the result questionable?

• Explain the interface of a typical buffer manager.

• Explain the LRU replacement strategy. What do the letters “LRU” stand for?

Databases IIB: DBMS-Implementation — Exercise Sheet 8 2

• What is the problem with “sequential flooding” of the buffer? What is the solu-
tion in Oracle?

• What information might the upper layers of a DBMS have that they should pass
to the buffer manager for improving the replacement strategy?

• What is the difference between “consistent gets” and “db block gets” in Oracle?

• How can one get information to determine the cache hit ratio in Oracle?

• Suppose you detect that the cache hit ratio is bad in your Oracle database. What
can you do?

• What does the CACHE parameter of the CREATE TABLE do in Oracle?

• What is the purpose of the buffer pools DEFAULT, KEEP and RECYCLE in Oracle?
How can they be used to improve the cache hit ratio?

• What is the main idea of the “Five Minute Rule”? Why might it be necessary
to buy more disks although the overall disk space is sufficient? Why can buying
more RAM solve the problem?

Some Classical Papers

b) Have a look at at least one of the following papers:

• Wolfgang Effelsberg and Theo Haerder:
Principles of Database Buffer Management.
ACM Transactions of Database Systems, Vol. 9, No. 4, Dezember 1984, pp. 560–
595.
[http://dx.doi.org/10.1145/1994.2022]

• Jim Gray and Gianfranco R. Putzolu:
The 5 Minute Rule for Trading Memory for Disk Accesses and The 10 Byte Rule
for Trading Memory for CPU Time.
Proceedings of the ACM SIGMOD Conference, 1987, pp. 395–398.
[http://dl.acm.org/citation.cfm?doid=38713.38755]

• Goetz Graefe:
The Five-minute Rule: 20 Years Later and How Flash Memory Changes the
Rules.
ACM Queue, Vol 6, Issue 4, September 24, 2008.
[http://queue.acm.org/detail.cfm?id=1413264]

You can access the PDFs of articles published by the ACM from IP-addresses of the
university, because the university pays for using the ACM digital library.

http://dx.doi.org/10.1145/1994.2022
http://dl.acm.org/citation.cfm?doid=38713.38755
http://queue.acm.org/detail.cfm?id=1413264

Databases IIB: DBMS-Implementation — Exercise Sheet 8 3

In-Class Exercises

c) Which buffer pools does our Oracle database have? How large is the buffer pool,
i.e. how much memory is used for the buffering of database blocks?

d) Create a table with the BUFFER_POOL and CACHE parameters. If you want, you can
have a look at the CREATE TABLE reference:

• [https://docs.oracle.com/cd/B28359 01/server.111/b28286/statements 7002.htm]

e) Check whether the initialization parameter “TIMED_STATISTICS” is true or false.

• [https://docs.oracle.com/cd/B28359 01/server.111/b28320/initparams245.htm]

You can set it locally for your session with the ALTER SESSION command:

• [https://docs.oracle.com/cd/B19306 01/server.102/b14200/statements 2012.htm]

It can be set globally with the ALTER SYSTEM command:

• [https://docs.oracle.com/cd/B28359 01/server.111/b28286/statements 2013.htm]

After that, interesting statistics should be contained in V$FILESTAT.

f) As explained in Exercise Sheet 6, grant your normal user account the role PLUSTRACE

(if you have not done that yet). Then enter “SET AUTOTRACE ON STATISTICS” into
SQL*Plus. After that, execute some queries and look at the performance data that
are shown. Compute the hit ratio from that. Notice that when you run the same query
again, it will run much faster.

g) We can run utlbstat.sql at the start of the problem session and utlestat.sql

after 30 minutes and then look at the generated report. Only one student should call
utlbstat, since it stores the data in a global table. However, we can all look at the
report generated by utlestat.sql.

These scripts are still available and interesting, but no longer the state of the art.
Oracle has a library STATSPACK that permits to take many performance snapshots:

• [https://docs.oracle.com/cd/B10501 01/server.920/a96533/statspac.htm]

• [https://www.markusdba.de/?p=542]

• [http://www.orafaq.com/wiki/Statspack]

Actually, even newer is the “Automatic Workload Repository”, however this is con-
tained only in the Enterprise version (it is part of the “Diagnostics Pack”):

• [http://www.oracle.com/technetwork/database/manageability/]
[diag-pack-ow09-133950.pdf]

• [https://docs.oracle.com/cd/E11882 01/server.112/e41573/autostat.htm]

https://docs.oracle.com/cd/B28359_01/server.111/b28286/statements_7002.htm
https://docs.oracle.com/cd/B28359_01/server.111/b28320/initparams245.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/statements_2012.htm
https://docs.oracle.com/cd/B28359_01/server.111/b28286/statements_2013.htm
https://docs.oracle.com/cd/B10501_01/server.920/a96533/statspac.htm
https://www.markusdba.de/?p=542
http://www.orafaq.com/wiki/Statspack
http://www.oracle.com/technetwork/database/manageability/diag-pack-ow09-133950.pdf
http://www.oracle.com/technetwork/database/manageability/diag-pack-ow09-133950.pdf
https://docs.oracle.com/cd/E11882_01/server.112/e41573/autostat.htm

Databases IIB: DBMS-Implementation — Exercise Sheet 8 4

Homework Exercises (Homework 8A, Deadline December 6)

h) Write an SQL query that computes and evaluates the hit ratio for Oracle:

consistent gets + db block gets − physical reads
consistent gets + db block gets

For example, you can access the value of the “physical reads” counter with the follo-
wing query:

SELECT VALUE

FROM V$SYSSTAT

WHERE NAME = ’physical reads’

However, you have to write a single query that computes the hit ratio in percent
(i.e. do not query the single counters and enter the data into a pocket calculator).
Furthermore, your query should not only return the hit ratio, but in a second column
one of the values “Good”, “Medium”, “Bad” depending on the value. Choose yourself
reasonable boundaries for this evaluation.

i) Consider a buffer cache that operates with the LRU method, and has only four buf-
fer frames. Suppose that the following blocks are accessed (pinned and immediately
unpinned):

10, 12, 15, 20, 30, 12, 40, 15, 10, 12.

Which blocks are in the buffer at the end, and what was the hit ratio?

Databases IIB: DBMS-Implementation — Exercise Sheet 8 5

Homework Exercises (Homework 8B, Deadline December 13)

j) Define a class buf_c in C++ with the following components:

• A constant BUF_MAXBUFS for the maximal number of blocks that can be kept in
memory (this is the number of buffer frames, i.e. the cache size).

Every object of the class should represent one buffer frame. Thus every object
would normally have to contain memory for one block (or a pointer to that
memory). To simplify this first version, we only simulate the buffer, and do not
really load blocks from a data file (that will be a future exercise).

There can be at most BUF_MAXBUFS objects of this class. You can either generate
objects as required up to this limit, or create immediately BUF_MAXBUFS objects
(the simplest solution would be to use an array).

• A static method (class method) init() that you can use for initializations. It is
guaranteed that the main program will call this method before any other method
of the class is called. It will also be called only once.

• A static method pin, that is called with a file ID (a small non-negative number
of type int) and a block number (a non-negative number of type int). It must
return a pointer to a buf_c-object that contains the requested block. If the block
is (in the simulation) already in a buffer frame, that object should be returned.
Otherwise a new buffer frame must be allocated for the block. If there is no free
buffer frame, and the BUF_MAXBUFS limit is reached (so that one cannot get more
memory from the operating system), you must select a buffer with the LRU
replacement strategy that can be reused. If that is impossible (too many pin

without unpin), you should return the null pointer. If we would have a multi
user system (that is too complicated for these exercises), one could also wait for
some time and try again.

• Object methods file_id() and block_no(), that can be used to query which
block is contained in a buffer. As long as a block is pinned in the buffer, these
values cannot change.

If no block is pinned in the buffer, one could treat any access as a programming
error (this is no requirement, but such tests could help to find bugs).

• A method unpin(), that unlocks the block in the buffer (i.e. it is not immediately
removed, but it can be replaced by the LRU strategy).

Please note that there can be several pins for the same block, and the buffer can
only be reused if there are as many unpin()-calls as there were pin()-calls.

• Static methods hits() and misses(), that return the corresponding values,
i.e. the total number of pin()-operations that found the block already in a
memory buffer, and the total number of pin()-operations that had to “load”
the block from disk (in this simulation or first version, the block is not actually
read from disk).

Databases IIB: DBMS-Implementation — Exercise Sheet 8 6

• A static method clear() that marks all buffers as unused. This is at least
helpful if one wants to do several tests without leaving the program. After calling
clear(), the methods hits() and misses() should return 0 again.

In a real buffer manager one would need at least the following additional methods
(not part of this exercise):

• A method contents(), that returns a pointer to the database block in the buffer
(for blocks there would be a superclass block_c and subclasses depending on the
contents, e.g. for blocks of a heap file or a B-tree).

• A method set_modified() that marks the contents of a buffer as modified. The
buffer can only be reused after the block was written back to the data file.

• Support for setting a checkpoint that writes all modified blocks back to the
data file. This works well only with several threads so that besides working on
queries and updates the system can write blocks back from time to time (when
it is idle). A minimal solution is a static method checkpoint() that writes all
modified blocks back to the respective data file.

• Furthermore, one needs support for temporary data. Blocks with temporary
data do not have to be written to a data file as long as their buffer is not needed
otherwise. A minimal solution is to never remove temporary blocks from the
buffer until they are deleted. However, this sets limits e.g. for sorting large data
sets. A better solution is to use one or more files if an unpinned temporary block
needs to be removed from the buffer cache.

Test your buffer management simulation with the block access sequence in the file

[http://www.informatik.uni-halle.de/~brass/dbi17/refstring.txt]

and a cache size (BUF_MAXBUFS) of 2000 blocks. How large is the hit ratio?

You can get a main program that reads the file and calls the methods pin and unpin,
from the following directory:

[http://www.informatik.uni-halle.de/~brass/dbi17/h8_buf/]

The main program is buftest.cpp. The directory contains further files that might
be useful, e.g. a Makefile and a first version of buf.h and buf.cpp that basically do
not do anything but permit to compile the program. It is recommended to program
more tests. You can extend buftest.cpp for this purpose.

Of course, your simulated buffer manager should work efficiently. Because pin is a
frequent operation, you should try to find the block in the buffer cache fast. For
instance, a hash table might be a good data structure. However, the homework will
also be accepted if you do a simple linear search (you will not win a performance price
with that).

http://www.informatik.uni-halle.de/~brass/dbi17/refstring.txt
http://www.informatik.uni-halle.de/~brass/dbi17/h8{{\char 95}}buf/

