
Prof. Dr. Stefan Brass November 03, 2017
Institut für Informatik
MLU Halle-Wittenberg

Databases IIB: DBMS-Implementation

— Exercise Sheet 4 —

Part a) to f) will be discussed in class, you only have to submit Part g) and h). Please
send your solutions to the instructor via EMail: brass@informatik.uni-halle.de (with
“dbi17” in the subject line). The official deadline is November 8, 12:00.

Some Feedback on Homework 2

• Please make sure that all submitted homeworks can be compiled. If you need help,
clearly mark in the subject line of your email that you have a question (and include
the error message of your compiler). I am quite generous with late homeworks, but
I do not want to get homework submissions with compilation errors.

• Of course, the difference between returning a value (as the result of a method) and
printing a value must be clear. The accessor methods for the attributes must return
the value and print nothing.

Probably most classes in a complex system should not print anything, since this
reduces possible usages of the class. Unexpected output might e.g. destroy the for-
mat of a message returned from the server to the client. Furthermore, today most
programs have a graphical user interface and it is not clear whether output sent to
cout will be seen by anybody.

• Some students declared the accessor method for firstname/lastname as returning
“char *” instead of “const char *”. Since the method returns only the address of
the array in the object, it would be simple for the caller to assign something and
destroy the contents of the array. The whole point of having accessor methods and
not making the attribute public was to protect the array and its contents. Note that
if the method is declared as const (i.e. not changing the object state), one cannot
give non-const pointers to object components away.

• Make sure that you understand that it is possible to write the method body already
in the class declaration in the .h-file. This has the advantage that the compiler can
replace the call to the method directly by its body (if it is not recursive and not too
long). It has the disadvantage that the class declaration might become less readable
because the human reader (in contrast to the compiler) needs only the interface of
the method, not its implementation. Since the accessor methods contain only a single
statement in their body (the return for the attribute value), this disadvantage is
very small in this case.

Databases IIB: DBMS-Implementation — Exercise Sheet 4 2

Note that you are still free to change the implementation of the method later. Howe-
ver, it would require recompilation of all code that used the class. If you only change
a method body in a separate .cpp-file, it would suffice to recompile that file and
link all the object files. But adding an attribute to the class would in the same way
require recompilation of all source files that used the class, because more memory is
now needed for the objects of the class. Therefore, there are anyway changes of the
implementation of the class that need this recompilation.

• Part of the specification was to copy all the characters of the string in the con-
structor, not only the pointer. E.g. if you declare the the attribute in the object as
“const char *first_name;” and the constructor parameter with the same name
and type, then the assignment

this->first_name = first_name;

copies only the address of the array that contains the characters of the name, but
not the contents. If this array is later reused, for instance when you read the next
input line, then the attribute still points to the same array, but a different name is
stored in it.

• One option is to declare an array of sufficient size as an attribute of the object:

char first_name[21];

Note that you need the array length 21 if you want to store names up to length 20,
because an additional byte is needed for the null-termination of the string (end-of-
string marker ’\0’).

• The other option is to find out how long the name is and to allocate an array of the
right size.

int length = strlen(first_name);

this->first_name = new char[length+1];

If you did this, you should free the array in the destructor. Note that this has to be
done with

delete[] this->first_name;

The simple delete (without []) cannot be used for arrays.

• Note that the function strcpy from the standard C library is inherently unsafe: It
copies all characters of the string, even if the array is too small, which means that
other variables stored in memory after the array may be overwritten. Whereas in
Java, arrays are objects and contain an attribute for their length, arrays in C++
are simply n variables of the base type allocated in consecutive memory locations.
E.g. a char-array of size 20 will be exactly 20 bytes long (char is one byte long,
except possible on extremely strange machine architectures). Since strcpy gets only
the start address of the array, and no information about its length, it is clear that

Databases IIB: DBMS-Implementation — Exercise Sheet 4 3

it cannot check the boundaries. There is another function strncpy which has an
additional parameter for the array length n, but unfortunately it will simply stop
after copying n characters, thus the null-termination of the string might be missing.
Then future usages of the string, e.g. when printing the name, will violate the array
boundaries because they print bytes until they find a null byte. However, if you first
computed the length of the input string with strlen, and then allocated an array
of the right size, strcpy and strncpy will be safe (until the contents of the input
array changes).

• Note that good testing code in the main program would include a name that is longer
than 20 charaters. Very few students did that.

• Many students repeated the loop for copying the contents of the input array for
firstname and lastname. Because of the limit of 20 characters, this loop is not
extremely simple and short. Therefore, this is a case of Copy&Paste programming
which should be avoided. One should write an auxiliary private method for copying
the string. The method must be declared in the class declaraction in the .h-file, but
because it is private, it does not change the interface of the class.

Databases IIB: DBMS-Implementation — Exercise Sheet 4 4

In-Class Exercises

a) Download and run again the SQL file that creates the Oracle example tables:

[http://www.informatik.uni-halle.de/˜brass/dbi17/empdept.sql]

Execute it while you are logged into SQL*Plus as your own account (not SYSTEM)
with the following command:

@empdept

Please note that the home directories on the virtual machine running Oracle are
different from your normal home directories. You must download the file on that
machine, e.g. with wget. You can also use scp (Linux) or pscp (PuTTY on Windows)
to copy files between different machines. Note that the SQL script first drops all the
table that are recreated later. When you execute the script for the first time, you
will get error messages for the DROP TABLE commands, these are normal. SQL*Plus
continues the execute the commands in a script, even if a command failed.

If the CREATE TABBLE or CREATE VIEW commands fail, you probably do not have the
needed system privileges. Since you have the password for the DBA account SYSTEM,
you can correct that.

b) Print a list of tables that you own. Do not worry about tables with names like
"BIN$XRhqbC0PnUjgUDCNZgk7lg==$0". These are dropped tables that are still in the
recycle bin and can be recovered if necessary. Write a condition that excludes tables
starting with “BIN$”.

c) Try the SQL*Plus command to list the columns of a table:

describe 〈Table〉

Note that keys and foreign keys are not listed. Try to write an SQL query to the
data dictionary that gives similar information as the describe command. It is quite
a challenging task, but possible, to get exactly the same output as the describe

command (you have to use UNION and the string concatenation ||). However, you do
not have to do that (it suffices if your query contains the same information).

d) In order to repeat SQL, write the following queries:

• For each department (table DEPT), print the department number (DEPTNO), the
department name (DNAME), and the number of employees (table EMP, it contains
the foreign key DEPTNO).

• Is there are department without employees?

e) Get the definition of the view SALES from the data dictionary (you can compare the
result with the definition at the end of the file empdept.sql). The required data

http://www.informatik.uni-halle.de/~brass/dbi17/empdept.sql

Databases IIB: DBMS-Implementation — Exercise Sheet 4 5

dictionary table is USER_VIEWS (of course, you could find that out by searching for a
table in DICT that contains the substring VIEW). Note that it might be necessary to
use the SQL*Plus command

SET LONG 1000

to increase the number of characters shown for values of type LONG. You should also
use

SET PAGESIZE 100

to increase the number of lines shown before the table header is repeated. Note that
if you want to re-run the last query (e.g. after changing SQL*Plus settings), this can
be done with the SQL*Plus command “run”:

r

It is also possible to replace a string in the current line of the query, e.g.

c/abc/xyz/

The following command lists the last SQL command:

l

The current line is marked with “*”. The change command “c” applies only to the
current line. One can set the current line e.g. with

l2

This lists only line 2 and makes it the current line. The “append” command can be
used to append text to the current line:

a xyz

Finally, use r to run the modified query. If this simple line-oriented editor that is built
into SQL*Plus is not sufficient, you can specify an external editor, e.g. the “vi”:

define _editor = vi

Then the command

edit

Databases IIB: DBMS-Implementation — Exercise Sheet 4 6

can be used to call this editor for the current SQL command. You can use the help
command to get more information on a command, e.g.

help edit

The command

help index

shows a list of commands.

f) Look at the table PRICE (which was also created by empdept.sql). The format of the
columns STDPRICE and MINPRICE does not look nice: Prices should be printed with
two decimal places after the decimal point, but the default number format prints only
decimal digits if needed (i.e. not 0). Have a look at the Section “Format Models” of
the Oracle “Database SQL Language Reference”:

[https://docs.oracle.com/cloud/latest/db112/SQLRF/sql elements004.htm]

Use the following SQL*Plus command to define a format for all columns called
“STDPRICE”:

COLUMN STDPRICE FORMAT 9990.00

Note that column settings are kept only until the end of the SQL*Plus session. One
can write then into an SQL-file that is executed with @file. The file login.sql is
read automatically each time one starts SQL*Plus. More information about this can
be found in the “SQL*Plus User’s Guide and Reference” (in the Section “Configuring
SQL*Plus”):

[https://docs.oracle.com/cd/B28359 01/server.111/b31189/toc.htm]

The “SQL*Plus Quick Reference” is also useful:

[https://docs.oracle.com/cd/B28359 01/server.111/b31190/toc.htm]

https://docs.oracle.com/cloud/latest/db112/SQLRF/sql_elements004.htm
https://docs.oracle.com/cd/B28359_01/server.111/b31189/toc.htm
https://docs.oracle.com/cd/B28359_01/server.111/b31190/toc.htm

Databases IIB: DBMS-Implementation — Exercise Sheet 4 7

Homework Exercises

g) Write an SQL query that shows the original names of all deleted tables in the data
dictionary together with the date when they were deleted. Read the Section “Using
Flashback Drop and Managing the Recycle Bin” from the Chapter “Managing Tables”
from the Oracle “Database Administrator’s Guide”:

[https://docs.oracle.com/cd/E11882 01/server.112/e25494/tables.htm]

Please answer also the following questions:

• Which command can be used to really delete a table from the recycle bin?

• Which command can be used to recover a table from the recycle bin?

h) Consider again the file:

[http://www.informatik.uni-halle.de/˜brass/dbi17/homeworks.txt]

It contains the data of the example table:

HOMEWORKS

FIRST_NAME LAST_NAME EXERCISE_NO POINTS

Ann Smith 1 10

Ann Smith 2 8

Michael Jones 1 9

Michael Jones 2 9

Richard Turner 1 5

The file contains one line per table row, and the columns are separated with a colon.

Please write a program that prints the sum of points of each student. It should use a
linked list of objects of a class Student:

• The class should manage the linked list of all its objects. Thus, you declare static
variables in the class, e.g. for the start of the linked list and possibly for the last
element:

static Student *FirstStud;

static Student *LastStud;

Note that this is only a declaration of the static variables, i.e. it tells the compiler
that there will be such variables. One has to define the variables in the cpp-file
in order to reserve memory for them:

Student *Student::FirstStud = 0;

Student *Student::LastStud = 0;

https://docs.oracle.com/cd/E11882_01/server.112/e25494/tables.htm
http://www.informatik.uni-halle.de/~brass/dbi17/homeworks.txt

Databases IIB: DBMS-Implementation — Exercise Sheet 4 8

The reason for this separation is that the .h-file will be seen by the compiler each
time it compiles a source file that uses the Student-class. But memory should
be reserved only once, namely when it compiles student.cpp. This ensures that
there is a unique address for the variable. Otherwise the linker will complain
about “doubly defined symbols”. For normal attributes (non static), there is
no such trouble, because they correspond only to offsets inside the memory for
each object. The memory is reserved when the object is created, and there can
be any number of objects of the class.

• The constructor has only two parameters for first and last name. The number of
points is initialized to 0. The objects also contain a pointer to the next Student
object on the linked list. This is initialized to the null pointer (if one adds objects
at the end of the list). The constructor is responsible for adding the new object
to the linked list. No specific order is required. Remember that this is a pointer
to the current object.

• For simplicity, we assume that all objects exist until the program terminates.
This is somewhat dangerous, but it is ok for this homework. If you want, you
can write a destructor that removes the object from the linked list. In this case,
you need a doubly linked list. But this is optional.

• There should be accessor methods for the four attributes:

– get_firstname(),

– get_lastname(),

– get_points(),

– get_next().

In addition, there should be a method add_points(int n) that increases the
number of points by n.

• There must also be a static method get_first that returns the first student,
so that users of the class can loop over all students by following the link returned
by get_next. A typical loop looks like this:

for(Student *s = Student::get_first(); s; s = s->get_next())

• Finally, there should be a static method

Student *find(const char *firstname, const char *lastname)

that returns the Student object for given first and last name, if it exists, or a
null pointer otherwise. If you prefer, you can do the searching of a student also
in the main program.

• An alternative design would be to have a static method that either returns an
existing student with the given name, or creates a new Student object. In this
case, the constructor would be private so that it can only be used in this method.
This would ensure that there are never two objects with the same name.

