
5. More Data Structures for Relations 5-1

Part 5:
More Data Structures
for Relations

References:
• Elmasri/Navathe: Fundamentals of Database Systems, 3rd Ed.,

Chap. 5: “Record Storage and Primary File Organizations”, Chap. 6: “Index Structures for Files”,

Section 16.4: “An Overview of Database Tuning in Relational Systems”

• Silberschatz/Korth/Sudarshan: Database System Concepts, 3rd Ed., Chap. 11: “Indexing and Hashing”

• Ramakrishnan/Gehrke: Database Management Systems, 2nd Ed.,

Chap. 8: “File Organizations and Indexes”, Chap. 9: “Tree-Structured Indexing”,

Chap. 10: “Hashed-Based Indexing”, Chap. 16: “Physical Database Design and Tuning”.

• Kemper/Eickler: Datenbanksysteme (in German), Chap. 7, Oldenbourg, 1997.

• Oracle 8i Concepts, Release 2 (8.1.6), Oracle Corporation, 1999, Part No. A76965-01.

• Oracle 8i SQL Reference, Release 2 (8.1.6), Oracle Corporation, 1999, Part No. A76989-01.

• Oracle 8i Designing and Tuning for Performance, Release 2 (8.1.6), Oracle Corporation, 1999, Part No. A76992-01.

• Gray/Reuter: Transaction Processing, Morgan Kaufmann, 1993, Chapter 15.

• Jason S. Couchman: Oracle8i Certified Professional: DBA Certification Exam Guide with CDROM.

• Lipeck: Skript zur Vorlesung Datenbanksysteme (in German), Univ. Hannover, 1996.

Stefan Brass: Datenbanken IIB Universität Halle, 2004



5. More Data Structures for Relations 5-2

Objectives

After completing this chapter, you should be able to:

• explain the advanced data structures introduced in this

chapter (clusters, index-organized tables, hash methods,

bitmap indexes, partitioned tables): How do they work?

• list advantages and disadvantages of each data structure.

• select the best data structure for a given application.

Stefan Brass: Datenbanken IIB Universität Halle, 2004



5. More Data Structures for Relations 5-3

Overview

1. Clusters

�
�

�
�

2. Hash-Based Indexes

3. Partitioned Tables

4. Bitmap Indexes

5. Index-Organized Tables

Stefan Brass: Datenbanken IIB Universität Halle, 2004



5. More Data Structures for Relations 5-4

Single-Table Clusters (1)

• Suppose you often need all invoices of a given customer:

SELECT SUM(Amount)

FROM Invoice

WHERE CustNo = 7635

• Even if you have an index over Invoice(CustNo), if the

customer has 10 invoices, it is very likely that they are

stored in 10 different blocks.

• However, instead of storing Invoice as a heap file, you can

request to have the rows clustered by CustNo (in Oracle).

• In this case, the 10 rows for the invoices by a given customer

will be stored in the same block (if possible).

Stefan Brass: Datenbanken IIB Universität Halle, 2004



5. More Data Structures for Relations 5-5

Single-Table Clusters (2)

Advantages of Clusters:

• In the above example, if you need to access two blocks from

the index, you need to access 12 blocks in total without the

cluster and 3 blocks in total with the cluster, so your query

is performed 4 times faster.

• Note that you have this advantage only if there are multiple

rows with the same value for the cluster column.

E.g. clustering by a key brings no advantages.

• There should also be not too many rows with the same

value for the cluster column — normally all these rows

should fit into a single block.

Stefan Brass: Datenbanken IIB Universität Halle, 2004



5. More Data Structures for Relations 5-6

Single-Table Clusters (3)

• The value for the cluster column is stored only once for each

set of rows with the same value.

This gives a slight reduction in the needed disk space.

• Since the rows are stored grouped by the cluster column,

e.g. this query can be evaluated without sorting:

SELECT CustNo, SUM(AMOUNT)

FROM Invoice

GROUP BY CustNo

• In general, any application of an index where one column

value appears in several rows becomes faster.

Except index-only execution plans and execution plans

where ROWIDs are sorted or intersected.

Stefan Brass: Datenbanken IIB Universität Halle, 2004



5. More Data Structures for Relations 5-7

Single-Table Clusters (4)

How Clusters work:

• You must specify in the cluster definition how much space all

rows with the same value in the cluster attribute will need.

• E.g. you estimate that 600 Bytes are needed for all invoices

of one customer (a customer has on average 10 invoices,

each needs 60 Bytes).

• So Oracle will put rows of 3 customers into each 2K block.

You must calculate with the block header. See below.

• When the first invoice of a new customer is inserted, Oracle

assigns it to a block which contains invoices of no more than

two other customers (and still has empty space).

Stefan Brass: Datenbanken IIB Universität Halle, 2004



5. More Data Structures for Relations 5-8

Single-Table Clusters (5)

• Oracle enters the CustNo together with the chosen block

into an index. Every cluster needs such an index over the

cluster column.

• Then all further invoices for this customer will go to the

same block. Oracle locates the block for a given CustNo via

the index.

• If the block becomes full, overflow blocks are chained to it.

• Oracle does not reserve 600 Bytes for each customer. If one

customer has many invoices and needs 1500 Byte, but the

other two customers in that block need only 100 Byte each,

this is still no problem.

Stefan Brass: Datenbanken IIB Universität Halle, 2004



5. More Data Structures for Relations 5-9

Single-Table Clusters (6)

Disadvantages of Clusters:

• If the cluster column is updated, the row will be migrated to

the block containing the rows with the new value. So do not

define clusters on columns which are normally updated.

• Clusters reduce the flexibility:

– If you estimate the size of the groups too small, invoices

for one customer will be distributed over many blocks.

And these blocks will not be consecutively stored on the

disk and Oracle always fetches all of these blocks.

– If you estimate the size too large, you waste disk space

and therefore also full table scans will take longer.

Stefan Brass: Datenbanken IIB Universität Halle, 2004



5. More Data Structures for Relations 5-10

Single-Table Clusters (7)

How to Create a Cluster:

• First you create the cluster and specify:

– The name and data type of the cluster column(s).

– The disk space for each distinct value of this column.

– Storage parameters like in the CREATE TABLE command.

CREATE CLUSTER Invoice_Clust(CustNo NUMBER(7))

SIZE 512

TABLESPACE USER_DATA

STORAGE(INITIAL 200K NEXT 50K

PCTINCREASE 100)

PCTFREE 10 PCTUSED 80

Stefan Brass: Datenbanken IIB Universität Halle, 2004



5. More Data Structures for Relations 5-11

Single-Table Clusters (8)

• Then you create a table in this cluster:

CREATE TABLE Invoice(INo NUMBER(10) PRIMARY KEY,

CustNo NUMBER(7) NOT NULL,

Amount NUMBER(7,2) NOT NULL,

Issued DATE NOT NULL)

CLUSTER Invoice_Clust(CustNo)

• Then you must create an index on the cluster before rows

can be inserted:

CREATE INDEX CustNo_Idx ON CLUSTER Invoice_Clust

• You can do insertions, queries etc. on Invoice as usual.

The existence of a cluster is transparent to the application.

Stefan Brass: Datenbanken IIB Universität Halle, 2004



5. More Data Structures for Relations 5-12

Single-Table Clusters (9)

Experiment:

• I created a cluster as shown above and inserted 7 invoices.

SELECT DBMS_ROWID.ROWID_BLOCK_NUMBER(ROWID),

INo, CustNo FROM Invoice

BLOCK_NUMBER INo CustNo

583 101 1

583 102 2

583 103 3

583 107 3

584 104 4

584 105 5

584 106 5

Stefan Brass: Datenbanken IIB Universität Halle, 2004



5. More Data Structures for Relations 5-13

Single-Table Clusters (10)

• I inserted the invoices in the order of ascending INo, but

they are printed in the order in which they are stored.

• I had expected that Oracle puts invoices for 4 customers in

one block, but because of the block overhead Oracle could

assign only 3 customers to each block.

• I repeated the experiment with “SIZE 400”, and then rows

of 4 customers were stored in a single block.

• Note that without the cluster definition, Oracle would put

all the given rows into a single block (and there would still

be lots of free space).

Stefan Brass: Datenbanken IIB Universität Halle, 2004



5. More Data Structures for Relations 5-14

Multiple-Table Clusters (1)

• You can assign more than one table to the same cluster

(of course, the table must also contain a customer number).

• E.g. we could store Customer and Invoice together:

CREATE TABLE Customer(

CustNo NUMBER(7) PRIMARY KEY,

First_Name VARCHAR(20) NOT NULL,

...)

CLUSTER Invoice_Clust(CustNo)

• Then rows from Customer and Invoice with the same

CustNo are stored in the same block.

Remember that without clusters, each block (even each

segment) contains only rows from one table.

Stefan Brass: Datenbanken IIB Universität Halle, 2004



5. More Data Structures for Relations 5-15

Multiple-Table Clusters (2)

• This makes joins between Customer and Invoice especially

fast. More or less, the join is already precomputed in the

way the rows are stored on disk.

• However, full table scans become slower now, because rows

of Invoice are interspersed between the rows of Customer.

So many more blocks are needed in the cluster than would

be needed to store only the rows of Customer.

• Cluster indexes are structured a bit different than table

indexes (they contain only the block number, not all

ROWIDs). So Oracle has to create another index on

Customer(CustNo) to enforce the PRIMARY KEY constraint.

Stefan Brass: Datenbanken IIB Universität Halle, 2004



5. More Data Structures for Relations 5-16

Summary

• Clusters can bring significant performance improvements for

queries using a non-unique index or containing joins.

• Don’t use clusters on columns which are updated.

• You must be able to estimate the disk space needed for all

rows having the same value in the cluster column.

• All these rows should fit into one block.

• Unless there is very little variation in this size, clusters do

not utilize the disk space as good as a heap file.

• Full table scans will most likely become slower.

• You can cluster a table only with respect to one attribute

(or one attribute combination).

Stefan Brass: Datenbanken IIB Universität Halle, 2004



5. More Data Structures for Relations 5-17

Overview

1. Clusters

2. Hash-Based Indexes

�
�

�
�

3. Partitioned Tables

4. Bitmap Indexes

5. Index-Organized Tables

Stefan Brass: Datenbanken IIB Universität Halle, 2004



5. More Data Structures for Relations 5-18

Motivation (1)

• If you have a B-tree of height 4, you still need 5 block

accesses to fetch a row via this index.

The root of the index is probably in the buffer cache.

• Hash methods ideally need only one block access.

• The idea is to assign every row to a specific block based on

some computation on the value of the indexed attribute.

• E.g. we want a very fast access to the Customer table for a

given customer number CustNo.

• When customer numbers are sequential numbers, and we

know that 22 rows fit into one block, we could store the

Customer row for CustNo =N in block N/22 (rounded).

Stefan Brass: Datenbanken IIB Universität Halle, 2004



5. More Data Structures for Relations 5-19

Motivation (2)

• Then, given a specific customer number, e.g. 7356,

we know that the row for this customer is stored in block

7356/22 = 334, so we can get it with a single block access.

• So the advantage of the hash method is to replace the index

lookup, which tells you in which block a row is stored, by a

computation (which does not need any block accesses).

• You can do such computations not only on numeric

columns, but also on string-valued columns (e.g. add the

ASCII codes of the letters) (this is not a good hash function).

• Also, the column used as input to the hash function does

not have to be the key of the table.

Stefan Brass: Datenbanken IIB Universität Halle, 2004



5. More Data Structures for Relations 5-20

Hash Tables (1)

• Hash tables were part of your data structures course.

• The general idea is that you use an array with h locations

for storing the rows (h = hash table size).

Note that now each array position can store only one row.

We talk about blocks (having space for multiple rows) later.

• When you insert a new row, you somehow compute a

number between 1 and h based on the indexed attribute.

• This is the array location in which the row will be stored.

• The function which takes a specific value for the indexed

attribute and returns the position in the table is called the

hash function.

Stefan Brass: Datenbanken IIB Universität Halle, 2004



5. More Data Structures for Relations 5-21

Hash Tables (2)

• E.g. for customer numbers in the range 1001..9999 you

can use a hash table of size 8999 and CustNo - 1000 as

hash function.

• Let us now assume that only 500 numbers in this range are

actually in use (so the table Customer has only 500 rows).

• Then an array of size 8999 would waste too much storage.

• Hash methods perform bad if the table fills up completely,

so let us use a table of size 701.

One usually chooses a prime number as hash table size.

• As hash function we use (CustNo MOD 701) + 1.

CustNo MOD 701 is the remainder of CustNo / 701.

Stefan Brass: Datenbanken IIB Universität Halle, 2004



5. More Data Structures for Relations 5-22

Hash Tables (3)

• This leads to the problem of collisions. It might be that two

different customer rows are mapped to the same array entry.

• There are different strategies for solving the problem, e.g.:

– Use the next free entry.

– Attach to every array entry a linked list of all customer

rows which should be stored in this array location.

• When you use hash functions on string-valued attributes,

such collisions are unavoidable, since you cannot have one

array element for every possible string.

• For a good hash function, it should be equally likely that

every array entry is hit (e.g. returning always 1 is bad).

Stefan Brass: Datenbanken IIB Universität Halle, 2004



5. More Data Structures for Relations 5-23

Hash Tables on External Storage

• In the customer example, 22 rows fit into one block.

• Then the hash table entries 1..22 are stored in the first

block, the entries 23..44 in the second block, and so on.

• For collisions, we use a combined strategy:

– Any free entry in the same block can be used.

Especially, since the rows are of variable length, we

simply try to fit all rows into this block which belong

there. The exact table entry is no longer important.

– If the block is full, overflow blocks are chained to this

block. This decreases performance (one block access is

no longer sufficient) and should not happen too often.

Stefan Brass: Datenbanken IIB Universität Halle, 2004



5. More Data Structures for Relations 5-24

Hash-Tables in Oracle (1)

• Oracle has two different kinds of clusters: Index Clusters

(see above) and Hash Clusters.

• Hash clusters must define the total number of different

entries (the hash table size).

• E.g. you expect that you will have 500 000 customers, and

that each customer row needs about 77 bytes:

CREATE CLUSTER Customer_Clust(CustNo NUMBER(7))

SIZE 77

HASHKEYS 500000 HASH IS CustNo

STORAGE(INITIAL 50M NEXT 5M)

PCTFREE 10 PCTUSED 80

Stefan Brass: Datenbanken IIB Universität Halle, 2004



5. More Data Structures for Relations 5-25

Hash-Tables in Oracle (2)

• From the SIZE parameter, Oracle computes how many

entries fit into one block. In the example, the result will be

around 22.

• Then rows with CustNo between 1 and 22 will be stored in

the first block, rows with CustNo between 23 and 44 in the

second block, etc.

• So if customer numbers only start with 1001, use

HASHKEYS 500000 HASH IS (CustNo - 1000)

• You do not have to specify a hash function:

HASHKEYS 500000

Then Oracle will use its internal hash function.

Stefan Brass: Datenbanken IIB Universität Halle, 2004



5. More Data Structures for Relations 5-26

Summary (1)

• Hash clusters can bring significant performance

improvements for queries containing equality conditions,

e.g. CustNo = 7356, or joins.

• Since a hash cluster contains the actual rows, and not the

ROWIDs, you can have hash access to a table only for one

attribute (or attribute combination).

The attribute does not have to be the key.

However, it should normally not be updated.

• Hash-based indexes are of no help for range queries.

The rows are not stored in sorted order. Also, when you use

an attribute combination, an equality condition for only one

attribute does not allow to compute the hash function.

Stefan Brass: Datenbanken IIB Universität Halle, 2004



5. More Data Structures for Relations 5-27

Summary (2)

• Hash-based indexes are very bad for full table scans.

Unless the hash table is nearly full, but then you will

probably have many overfow blocks.

• As in index-based clusters, you need to know how much

space every distinct value in the indexed column will need.

And this should not be more than one block.

• But in addition, you also need to know how many distinct

values there will be (more or less the table size).

• So hash clusters are very inflexible when the table grows.

You probably have to recreate it from time to time with a

larger value for HASHKEYS.

Stefan Brass: Datenbanken IIB Universität Halle, 2004



5. More Data Structures for Relations 5-28

Outlook

• The literature and textbooks also contain “dynamic hash

methods” or “external hash methods”.

• These methods can adapt to changes in the table size

without the need to reconstruct the entire table.

Typically, they split a block and need to rehash only the

entries in this block. In this way they avoid chained blocks.

• These methods need to keep some additional information, so

they might need more than one block access.

• But normally this information can be kept in main memory.

• Oracle8 only contains the standard static hash method

described above.

Stefan Brass: Datenbanken IIB Universität Halle, 2004



5. More Data Structures for Relations 5-29

Overview

1. Clusters

2. Hash-Based Indexes

3. Partitioned Tables

�
�

�
�

4. Bitmap Indexes

5. Index-Organized Tables

Stefan Brass: Datenbanken IIB Universität Halle, 2004



5. More Data Structures for Relations 5-30

Motivation (1)

• Suppose you have sales data for the last three years:

SALES(Year, Month, Region, Amount)

where Year only has the values 1997, 1998, 1999.

• Then it is an option to create instead three tables, e.g.

SALES_1997(Month, Region, Amount) and define:

CREATE VIEW SALES(Year, Month, Region, Amount)

AS SELECT 1997, Month, Region, Amount

FROM SALES_1997

UNION ALL SELECT 1998, Month, Region, Amount

FROM SALES_1998

UNION ALL SELECT 1999, Month, Region, Amount

FROM SALES_1999

Stefan Brass: Datenbanken IIB Universität Halle, 2004



5. More Data Structures for Relations 5-31

Motivation (2)

• Consider a query which specifies a value for year, e.g.

SELECT SUM(Amount)

FROM SALES

WHERE YEAR = 1998

• Then a sufficiently intelligent optimizer will do only a full

table scan of SALES_1998, whereas otherwise it would have

to read the entire SALES table.

• Also, in order to delete all data about 1997, you simply

redefine the view SALES and drop the table SALES_1997.

In contrast, DELETE FROM SALES WHERE YEAR=1997

takes a lot of time and rollback segment space, and does

not make the table and indexes any shorter.

Stefan Brass: Datenbanken IIB Universität Halle, 2004



5. More Data Structures for Relations 5-32

Motivation (3)

• There is the small problem that the view is not updatable in

SQL-92. So when you insert tuples, you have to insert it

into the right SALES_* table.

• However, a UNION ALL is very fast to evaluate. So even a

full table scan over all SALES_* tables is not slower than if

we had used only a single SALES table.

• You can also place the different SALES_* tables on different

disks and get a kind of “striping” (even parallel evaluation

might be possible).

• A disadvantage is that you must administer 3 tables now.

• Also foreign keys referencing SALES are no longer possible.

Stefan Brass: Datenbanken IIB Universität Halle, 2004



5. More Data Structures for Relations 5-33

Motivation (4)

• Obviously, this kind of partitioning is only effective when a

column contains a very small number of different values.

• However, a very good optimizer can also make use of

CHECK-constraints (semantic optimization):

CREATE TABLE SALES1(

YEAR NUMBER(4)

CHECK(YEAR BETWEEN 1985 AND 1989),

...)

CREATE VIEW SALES AS

SELECT * FROM SALES1 UNION ALL

SELECT * FROM SALES2

Stefan Brass: Datenbanken IIB Universität Halle, 2004



5. More Data Structures for Relations 5-34

Partitioned Tables in Oracle

• The above examples should have run in Oracle 7.3.

You have to buy the Partitioning option and use

ALTER SESSION SET PARTITION_VIEW_ENABLED = TRUE.

• Oracle 8 has a new syntax for partioned tables:

CREATE TABLE SALES(YEAR NUMBER(4), ...)

PARTITION BY RANGE (YEAR)

(PARTITION SALES1 VALUES LESS THAN (1998),

PARTITION SALES2 VALUES LESS THAN (1999),

PARTITION SALES3 VALUES LESS THAN (MAXVALUE))

• You can specify tablespace etc. separately for each part.

• When looking at query evaluation plans, I didn’t see any

improvement.

Stefan Brass: Datenbanken IIB Universität Halle, 2004



5. More Data Structures for Relations 5-35

Vertical Partitioning

• Splitting the rows of a table into multiple tables is called

horizontal partitioning.

Be careful. Some authors use the opposite names.

• You can also partition a table vertically. E.g. consider:

Course(CRN, Title, Instr, Time, Room, Syllabus)

• If Syllabus is a longer text, but seldom accessed, it will

make full table scans of Course unnecessary slow.

• So you could split the table into:

Course_Data(CRN, Title, Instr, Time, Room)

Course_Syllabus(CRN → Course_Data, Syllabus)

• You can define Course as a view with an outer join.

Syllabus can be null. Enforcing its definition is difficult.

Stefan Brass: Datenbanken IIB Universität Halle, 2004



5. More Data Structures for Relations 5-36

Overview

1. Clusters

2. Hash-Based Indexes

3. Partitioned Tables

4. Bitmap Indexes

�
�

�
�

5. Index-Organized Tables

Stefan Brass: Datenbanken IIB Universität Halle, 2004



5. More Data Structures for Relations 5-37

Bitmap Indexes (1)

• B-tree indexes are effective when a column has many

different values, i.e. each value appears only in a small

number of rows.

• Bitmap indexes are useful when a column has few distinct

values, i.e. the same value appears in a large number of rows.

E.g. male/female, family status, region (east, central, west).

Oracle suggests that “if the values in a column are repeated

more than a hundred times, then the column is candidate

for a bitmap index.”

• Bitmap indexes are often useful for data warehouse

applications.

• Oracle supports bitmap indexes only in its enterprise version.

Stefan Brass: Datenbanken IIB Universität Halle, 2004



5. More Data Structures for Relations 5-38

Bitmap Indexes (2)

• Suppose a bitmap index was created on attribute A of

table R.

• For each distinct value a that occurs in column A of R,

the system stores a bitmap Ba (array of boolean values).

• The bitmap contains an entry for each row r in the table R:

Ba[r] =

{
1 if r.A = a,

0 if r.A 6= a.

• The DBMS evaluates e.g.

SELECT * FROM R WHERE A = ’a’

by searching the bitmap for 1 bits.

Stefan Brass: Datenbanken IIB Universität Halle, 2004



5. More Data Structures for Relations 5-39

Bitmap Indexes (3)

• Each position in the bitstring can be translated into a

ROWID which can be used to fetch the row from the table.

• In order to do this, Oracle stores a fixed number of bits

per block (before compression), namely as many bits as

there can be rows per block.

The command ALTER TABLE R MINIMIZE ROWS_PER_BLOCK

computes the currently maximal number of rows per block

and ensures that future insertions cannot increase the

number. It can be used only before creating bitmap indexes

on the table. If one does not use this command (or cancels

it with NOMINIMIZE), Oracle somehow computes the

maximum number of rows possible. This is more effective

for a table that has attributes of fixed length.

Stefan Brass: Datenbanken IIB Universität Halle, 2004



5. More Data Structures for Relations 5-40

Bitmap Indexes (4)

• E.g. consider an index over CUSTOMERS(STATE). If the table

has 2 Million rows, the bitstring for each state needs 244KB

(as compared to the table that needs 230 MB disk space).

A bitmap index works by compressing a tuple of e.g. 100 Byte

to a single bit for the purpose of evaluating a condition like

STATE = ’PA’.

• In addition, Oracle compress the bitmaps before storing them.

The compression algorithm is not disclosed. E.g. it would

be possible to replace long sequences of 0-bits simply by

their number. Oracle states that a bitmap consists of a

number of segments (none of which is larger than half the

block size). These segments have to be sorted if one needs

to merge bitmaps (i.e. wants the bits in the storage order).

Stefan Brass: Datenbanken IIB Universität Halle, 2004



5. More Data Structures for Relations 5-41

Bitmap Indexes (5)

• Already the ROWIDs for an average state (40000 customers)

in a B-tree index would need 240KB (6 Byte per ROWID).

If one counts only the ROWIDs, and does not consider the

compression of bitmaps, the bitmap index is more space

effective for columns that contain 48 distinct values or less.

• The Oracle Tuning Manual contains an example of a table

with 1 Million rows having a B-tree index of 15 MB, where

the corresponding bitmap index is smaller even for 500000

different values in the column (each value appears only twice).

For 100000 different values, the bitmap index is about 5 MB.

• Normally, one would use a bitmap index only for attributes

with a limited number of distinct values.

Stefan Brass: Datenbanken IIB Universität Halle, 2004



5. More Data Structures for Relations 5-42

Bitmap Indexes (6)

• The real power of bitmap indexes is that complex conditions

(with logical connectives AND, OR, NOT) can be executed on

bitstrings before the relation itself is accessed.

Of course, one could in principle do the same with ROWIDs

(e.g. ORACLE sometimes intersects ROWIDs from different

indexes before accessing the table), but operations on bit

strings are much faster (specially supported by the hardware).

• E.g. consider the query:

SELECT COUNT(*)

FROM CUSTOMERS

WHERE (STATE = ’PA’ OR STATE = ’NY’)

AND SEX = ’M’ AND FAMILY_STATUS <> ’SINGLE’

Stefan Brass: Datenbanken IIB Universität Halle, 2004



5. More Data Structures for Relations 5-43

Bitmap Indexes (7)

• If there are bitmap indexes for the three attributes, the

DBMS would compute the bit-or of the bitmaps for

STATE = ’PA’ and STATE = ’NY’, then bit-and the result

with the bitmap for SEX = ’M’ and finally do a bit-and with

the complement of the FAMILY_STATUS = ’SINGLE’ bitmap.

• It would then count the number of “1” bits in the result and

not access the table “CUSTOMERS” at all.

So in the end it will have read about 1 MB instead of

230 MB for the full table scan.

• If for another query it would be necessary to access the table

in the end, the bitmap index at least returns the ROWIDs in

the storage order on disk.

Stefan Brass: Datenbanken IIB Universität Halle, 2004



5. More Data Structures for Relations 5-44

Bitmap Indexes (8)

• Bitmap indexes are created with a command like the following

CREATE BITMAP INDEX I_CUST_STATE

ON CUSTOMERS(STATE)

• The standard storage parameters can be added.

• Bitmap indexes cannot be UNIQUE.

• If one wants a more compact storage format, one can use

ALTER TABLE CUSTOMERS MINIMIZE RECORDS_PER_BLOCK

after the table contains a representative set of rows and

before the first bitmap index is created.

• If the column allows null values, there will be one bitmap for

the value null (Oracle’s B-tree indexes do not list null values).

Stefan Brass: Datenbanken IIB Universität Halle, 2004



5. More Data Structures for Relations 5-45

Bitmap Indexes (9)

• One can create bitmap indexes con column combinations,

but is is probably uncommon: Bitmap indexes on different

columns are easy to combine.

The efficient merging of bitmaps is one of the strengths of

this type of indexes.

• In Oracle, bitmap indexes are not good for heavily updated

tables (OLTP applications).

The problem is that an update will lock an entire “segment”

of the bitmap that might represent e.g. 1000 rows. In a

B-tree index, an update locks only a single row.

• Oracle will use bitmap indexes only with its newer, rule-based

optimizer (use ANALYZE TABLE to make statistics available).

Stefan Brass: Datenbanken IIB Universität Halle, 2004



5. More Data Structures for Relations 5-46

Overview

1. Clusters

2. Hash-Based Indexes

3. Partitioned Tables

4. Bitmap Indexes

5. Index-Organized Tables

�
�

�
�

Stefan Brass: Datenbanken IIB Universität Halle, 2004



5. More Data Structures for Relations 5-47

Index-Organized Tables: Structure

• As an alternative to storing the table rows in a heap file and

letting ROWIDs from a B-tree index point to these rows,

Oracle can store the entire rows in a B-tree index.

• This is called an index-organized table (IOT).

• An IOT is structured like a UNIQUE index for the primary key

of the table, but instead of containing a ROWID, it contains

the other (non-key) columns.

A primary key must be specified for index-organized tables.

• An index-organized table can be declared in the following way:

CREATE TABLE CUSTOMERS(..., PRIMARY KEY(CUSTNO))

ORGANIZATION INDEX

TABLESPACE USER_DATA STORAGE(...)

Stefan Brass: Datenbanken IIB Universität Halle, 2004



5. More Data Structures for Relations 5-48

Index-Organized Tables: Advantages

• When an attribute value is found in a standard index, the

DBMS must still look up the corresponding row from the

heap file (unless index-only QEP). In the IOT, the DBMS

directly finds the row (saves at least one block access).

• Range scans in standard indexes result in ROWIDs scattered

over the entire heap file. With the IOT, the rows are

physically stored in ordered sequence (in the same block or

in few blocks: may save many block accesses).

A full index scan returns rows in sorted sequence.

• Less space is required: With a heap file, the indexed attribute

values are stored twice. Also the ROWIDs require storage

space, the overhead is doubled (for index and heap file).

Stefan Brass: Datenbanken IIB Universität Halle, 2004



5. More Data Structures for Relations 5-49

Index-Organized Tables: Restrictions

• The rows in an index-organized table have no ROWIDs:

They are moved around when B-tree blocks are split, so they

have no stable physical address.

• Since the rows have no ROWID, no other indexes can be

built on the same table.

Besides the index on the primary key in which the rows are

stored. Of course, if the primary key is a composed key,

e.g. (A, B, C), then the index can also be used with only

values for A or (A, B).

• Therefore, also no alternative keys (UNIQUE-constraints) can

be declared.

Stefan Brass: Datenbanken IIB Universität Halle, 2004


