
7. Query Optimization 7-1

Part 7: Query

Optimization
References:

• Elmasri/Navathe: Fundamentals of Database Systems, 2nd Ed.,

Chap. 16: “Query Processing and Optimization”

• Silberschatz/Korth/Sudarshan: Database System Concepts, 3rd Ed., Chap. 12: “Query Processing”

• Ramakrishnan/Gehrke: Database Management Systems, 2nd Ed., Mc-Graw Hill, 2000, Chap. 13: “Introduction to

Query Optimization”, Chap. 14: “A Typical Relational Query Optimizer”.

• Kemper/Eickler: Datenbanksysteme (in German), Chap. 8, Oldenbourg, 1997.

• Härder/Rahm: Datenbanksysteme — Konzepte und Techniken der Implementierung (in German), Springer, 1999.

• Oracle 8i Concepts, Release 2 (8.1.6), Oracle Corporation, 1999, Part No. A76965-01. Chapter 21: “The

Optimizer”.

• Oracle 8i Designing and Tuning for Performance, Release 2 (8.1.6), Oracle Corporation, 1999, Part No. A76992-01.

• Lipeck: Skript zur Vorlesung Datenbanksysteme (in German), Univ. Hannover, 1996.

• Brass: Skript zur Vorlesung Informationssysteme II (in German), Univ. Hildesheim, 1997.

http://www-db.informatik.uni-hannover.de/~sb/isII/

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-2

Objectives

After completing this chapter, you should be able to:

• use equivalences in relational algebra to transform a given

algebra expression into a more efficient form.

• develop Oracle QEPs as Oracle’s older rule-based optimizer

would do it.

• explain the concept of selectivity of conditions, estimate the

selectivity of given conditions.

• explain how costs of QEPs are estimated.

• expain how cost-based optimization works.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-3

Overview

1. Introduction to Query Optimization

�
�

�
�

2. Algebraic Optimization

3. Oracle’s Rule-Based Optimizer

4. Cost-Based Optimization

5. Conclusion

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-4

Query Optimization (1)

Goal:

• Given a query in SQL or its naive translation into relational

algebra (or some similar formalism).

• Determine an efficient query evaluation plan.

• Especially, the optimizer should make good use of objects

which only exist on the physical level (e.g. indexes), and

which cannot be directly mentioned in the SQL query.

Declarative Languages make Powerful Optimizers . . .

• Necessary: The naive execution would be too inefficient.

• Possible: They do not prescribe a specific execution model.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-5

Query Optimization (2)

Main Tasks:

• Generation of alternative query evaluation plans.

This can often be done using algebraic identities. The

system must prove that the alternative plans are really

equivalent to the given query (or its naive translation).

• Cost estimation for each generated plan and selection of the

plan with the least estimated cost.

• Heuristics must be applied to limit the search space.

The time needed for optimization should not exceed the

time saved for the execution of the query. Of course, if the

query is executed many times, it might be acceptable to

invest more time into a thorough optimization.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-6

Naive Translation into RA/QEPs (1)

• Given an SQL query without aggregations, subqueries, etc.:

SELECT A1, . . . , An

FROM R1 X1, . . . , Rm Xm

WHERE ϕ

• The naive/direct translation into relational algebra is:

πA1,...,An

(
σϕ

(
ρX1(R1)× · · · × ρXm

(Rm)
))

.

• The operation ρX(R) renames every attribute A to X.A.

• This needs a relational algebra with duplicates, and the π

operator here does no duplicate elimination.

Also the selection σ must treat null values correctly.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-7

Naive Translation into RA/QEPs (2)

Translation of Subqueries:

• Also SQL queries with subqueries can be translated into

relational algebra, but the mapping is more complicated.

• System R (RDBMS research prototype, 1976) did simply

evaluate correlated subqueries once for every assignment of

tuples to the tuple variables of the outer query.

So that references to the outer tuplevariables in the inner

query could be replaced by constants.

• Uncorrelated subqueries were evaluated only once.

• Oracle is able to replace some applications of subqueries by

joins or anti-joins.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-8

Overview

1. Introduction to Query Optimization

2. Algebraic Optimization

�
�

�
�

3. Oracle’s Rule-Based Optimizer

4. Cost-Based Optimization

5. Conclusion

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-9

Algebraic Identities

• You know e.g. the following identities for numbers:

x + y = y + x (commutativity law)

x ∗ (y + z) = x ∗ y + x ∗ z (distribution law)

• Similar laws hold for relational algebra, e.g.

σϕ1

(
σϕ2(R)

)
= σϕ2

(
σϕ1(R)

)
are equivalent.

• Two relational algebra expressions E1 and E2 are equivalent

if for all database states S: S(E1) = S(E2).
I.e. the two queries return the same answer relation,

independent of the DB state.

• Equivalence of RA queries is undecidable.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-10

Join Order (1)

• 1, ×, ∪, ∩ are commutative, e.g.

E1 × E2 = E2 × E1

• If we treat the sequence of attributes as important, × and 1

are not quite commutative: we must reorder the attributes.

E.g. if E1 has attributes A, B, and E2 has attribute C, the

identity really is E1 × E2 = πA,B,C(E2 × E1). Probably, in

many systems the SQL parser computes the final sequence

of attributes and generates such a projection to be done at

the very end. Then for all the other operations, we don’t

have to care about the attribute sequence.

• 1, ×, ∪, ∩ are also associative (parentheses don’t matter):

E1 × (E2 × E3) = (E1 × E2)× E3

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-11

Join Order (2)

• Consider the following query which looks for departments

which have a hierarchy inside them:

SELECT D.DNAME

FROM DEPT D, EMP X, EMP Y

WHERE D.DEPTNO = X.DEPTNO

AND D.DEPTNO = Y.DEPTNO

AND X.MGR = Y.EMPNO

• An important task in query evaluation is to determine a

good join order. In the example, one possibility is:

πD.DNAME

((
ρD(DEPT) 1

D.DEPTNO=X.DEPTNO
ρX(EMP)

)
1
...

ρY(EMP)
)

• Exercise: Find more possibilities.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-12

Join Order (3)

• Many systems (including Oracle) construct only QEPs which

start with one table, join it with a second, join the result

with a third, and so on:((
(R1 1 R2) 1 R3

)
1 R4

)
• These joins give normally good results.

• In rare situations, a “bushy” join would be better:(
(R1 1 R2) 1 (R3 1 R4)

)
E.g. R1 and R4 are very small and R2 and R3 are large. The join

with R1 and R4 might reduce the size of R2 and R3 (like σ).

• If one consider all possible sequences, already without bushy

joins a FROM clause with n tables gives rise to n! join orders.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-13

Moving Selections (1)

• General Heuristic: Try to do selections as early as possible

(i.e. push it down in the QEPs).

• In this way, the input relations to more expensive operations

(e.g. joins) are smaller.

EMP
��

1

@@
DEPT

σJOB = ′CLERK′

πDNAME

=⇒

EMP

σJOB = ′CLERK′
��

1

@@
DEPT

πDNAME

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-14

Moving Selections (2)

• Selections can be splitted or combined:

σϕ1 AND ϕ2(E) = σϕ1

(
σϕ2(E)

)
.

• The order of selections can be exchanged:

σϕ1

(
σϕ2(E)

)
= σϕ2

(
σϕ1(E)

)
.

• All kind of logical equivalence transformations can be

applied to the selection condition.

If ϕ1 and ϕ2 are logically equivalent:

σϕ1(E) = σϕ2(E).

• E.g. NOT SAL < 3000 is equivalent to SAL >= 3000, and the

second condition may make an index applicable.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-15

Moving Selections (3)

• A selection can be moved past × and 1 if its selection

condition ϕ contains only attributes of one relation (e.g. E1):

If ϕ contains only attributes of E1:

σϕ(E1 × E2) =
(
σϕ(E1)

)
× E2.

• A selection condition can also be moved past ∪, ∩, −:

σϕ(E1 ∪ E2) = σϕ(E1) ∪ σϕ(E2).

• The system should detect joins built from σ and ×
(since there are more efficient algorithms for joins):

If A is an attribute from E1, and B from E2:

σA=B(E1 × E2) = E1 1
A=B

E2.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-16

Moving Selections (4)

• If the system detects that a condition is contradictory

(e.g. YEAR=1997 AND YEAR=1998), the entire selection can

be removed:
σFALSE(E) = ∅.

• Such conditions may occur when views are expanded.

See above under partitioned tables. If the user wrote such a

condition, he/she should probably be informed.

• There are also rules for simplifying relational algebra

expressions containing ∅, e.g. E× ∅ = ∅.

• Conditions which are equivalent to TRUE (e.g. YEAR=1997

OR YEAR <> 1997) need no selection:

σTRUE(E) = E.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-17

Moving Selections (5)

Exercise:

• Consider the following SQL query:

SELECT E.ENAME

FROM DEPT D, EMP E

WHERE D.LOC = ’BOSTON’

AND D.DEPTNO = E.DEPTNO

AND E.SAL >= 2800

• The naive transtaltion into relational algebra is

πE.ENAME

(
σD.LOC = ’BOSTON’ AND D.DEPTNO = E.DEPTNO AND E.SAL >= 2800

(ρD(DEPT)× ρE(EMP))
)

• Optimize this step by step by using the above equations.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-18

Moving Selections (6)

• Note that “Do selections as early as possible” is only a

heuristic rule. Normally it is right, but there are exceptions.

• Suppose that DEPT is quite large, there are many

departments in New York, few employees who earn at least

$3000, and there is an index on DEPT(DEPTNO), but no

index on DEPT(LOC).

• Then it would make things worse to move the selection

LOC = ’NEW YORK’ before the join:

πDNAME

(
σLOC=’NEW YORK’

(
σSAL>=3000(EMP) 1 DEPT

))

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-19

Moving Projections (1)

• Projections are normally not done explicitly. (At least with

our QEP interface, attributes are only accessed as needed.)

• However, it is good to know at each step which of the

attributes are actually needed.

• E.g. when an intermediate result has to be sorted, one wants

to store the tuples as compactly as possible, and especially

retain only the needed attributes.

• Also, index-only access plans may become available when

not all attributes of the relation are needed.

• Projections with duplicate elimination on intermediate

results is worth the effort only in rare circumstances.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-20

Moving Projections (2)

• Projections can be splitted or combined:

If the attributes in A are a subset of those on B,

which are in turn a subset of all attributes of E:

πA
(
πB(E)

)
= πA(E).

• Projections can be moved past selections:

If ϕ accesses only attributes in A:

πA
(
σϕ(E)

)
= σϕ

(
πA(E)

)
.

• There are also rules for moving projections past other

operations, e.g. joins. You only need to check which

attributes are later still accessed.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-21

Query Normalization in Oracle (1)

• After parsing the SQL query, and before QEPs are generated,

Oracle replaces some constructs by equivalent constructs.

• SQL often allows equivalent formulations, and in this way

the optimizer does not have to handle them all.

• Also, some of these transformations make specific

optimizations applicable later.

• It is good to know about these normalizations, since then

you will not wonder later which version of a query is more

efficient if Oracle anyway treats them the same.

• Studying these transformations might also help you to

improve your SQL knowledge.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-22

Query Normalization in Oracle (2)

• Oracle does evaluate constant expressions,

e.g. SAL >= 24000/12 is transformed into SAL >= 2000.

• Oracle does not move operands from one side of a condition

to the other side. E.g. SAL*12 >= 24000 is not changed.

And in this way an index over EMP(SAL) cannot be used.

• Oracle detects when the LIKE operator is really an equality,

e.g. ENAME LIKE ’Smith’ is mapped to ENAME = ’Smith’.

There is a subtle problem with the blank-padded semantics

here. If ENAME is of type CHAR(10), the LIKE condition

could be replaced by FALSE (LIKE uses the non-padded

semantics), whereas ENAME = ’Smith’ could return results.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-23

Query Normalization in Oracle (3)

• IN with a list of values is transformed into OR.

E.g. ENAME IN (’Smith’, ’Jones’) is transformed into

ENAME = ’Smith’ OR ENAME = ’Jones’.

• The BETWEEN operator is also removed. E.g.

SAL BETWEEN 1000 AND 2000

is replaced by

SAL >= 1000 AND SAL <= 2000.

• NOT is moved down to the atomic conditions. E.g.

NOT (SAL < 1000 OR COMM IS NULL)

is transformed into

SAL >= 1000 AND COMM IS NOT NULL)

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-24

Query Normalization in Oracle (4)

• ANY, SOME, and ALL are removed.

• E.g. SAL >= ALL (1000, LOW_SAL) is replaced by

SAL >= 1000 AND SAL >= LOW_SAL

• ANY with a subquery is normalized to EXISTS. E.g.:

X.SAL >=ANY (SELECT Y.SAL FROM EMP Y

WHERE Y.JOB = ’PROGRAMMER’)
is transformed to

EXISTS(SELECT Y.SAL FROM EMP Y

WHERE Y.JOB = ’PROGRAMMER’

AND X.SAL >= Y.SAL)

• X.SAL >=ALL(...) is mapped to NOT(X.SAL <ANY(...)),

and then the above transformation yields NOT EXISTS.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-25

Query Normalization in Oracle (5)

• The cost-based optimizer can compute certain implied

conditions. E.g. given the following query:

SELECT E.ENAME, DNAME

FROM DEPT D, EMP E

WHERE D.DEPTNO = E.DEPTNO AND E.DEPTNO = 20

• The optimizer concludes that then also D.DEPTNO = 20,

which might be useful for applying an index in a QEP with

DEPT in the outer loop of a nested loop join.

• Oracle only generates conditions of the form

〈Column〉 〈Comparison〉 〈Constant〉
E.g. X.DEPTNO=Y.DEPTNO is not derived in the query on slide 7-11.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-26

Overview

1. Introduction to Query Optimization

2. Algebraic Optimization

3. Oracle’s Rule-Based Optimizer

�
�

�
�

4. Cost-Based Optimization

5. Conclusion

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-27

Rule-Based Optimizer in Oracle (1)

• Consider the query

SELECT E.ENAME, D.DNAME, G.GRADE

FROM EMP E, DEPT D, SALGRADE G

WHERE E.DEPTNO = D.DEPTNO

AND E.SAL BETWEEN G.LOSAL AND G.HISAL

AND D.LOC = ’DALLAS’ AND E.JOB = ’CLERK’

• The rule-based optimizer will generate 3 QEPs:

– One accessing EMP first,

– one starting the evaluation with DEPT,

– and one accessing SALGRADE before the other two.

If the FROM list contains m tuple variables, m QEPs are produced.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-28

Rule-Based Optimizer in Oracle (2)

• So first it tries to start the evaluation with EMP.

• It notices that the only condition which can be evaluated at

this point is E.JOB = ’CLERK’.

• The rule-based optimizer has a priority list of available

access paths (see below).

• E.g. using an index is higher on the list than a full table

scan. The optimizer chooses the first available access path

on the list.

• So if an index on EMP(JOB) exists, it will be used, if it does

not exist, the only possibility is to use a full table scan.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-29

Rule-Based Optimizer in Oracle (3)

• Then Oracle chooses a next relation, to be joined with the

current intermediate result.

• So the optimizer must decide whether to join

σJOB = ’CLERK’(EMP) with DEPT or SALGRADE first.

• In order to do this, it evaluates the access paths for each of

the possibilities and chooses the relation for which the join is

considered cheapest (this is a greedy algorithm).

• If an index on DEPT(DEPTNO) exists, this access path would

be 4th on the priority list, whereas using a condition like

E.SAL >= G.LOSAL even with an index on

SALGRADE(LOSAL) would be ranked 11th.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-30

Rule-Based Optimizer in Oracle (4)

• If an index on DEPT(LOC) exists, this would also be an

alternative, but single column indexes on non-key attributes

are only ranked 9th on the list.

• So the rule-based optimizer would do the join with DEPT

first, and use an index join (NESTED LOOPS in Oracle).

• Immediately after the join it will also evaluate the condition

D.LOC = ’DALLAS’.

• Then finally it has to do the join with SALGRADE:

– If an index exists on SALGRADE(LOSAL) or

SALGRADE(HISAL), this is used.

– If no such index exists, a full table scan is done.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-31

Access Path Priority List (1)

1. Access by ROWID: The query contains either a constant

ROWID (ROWID = ’...’) or a join ROWID = R.A, where R

is already accessed, so R.A is known.

2. Single row by cluster join: E.g. EMP and DEPT are contained

in the same cluster (by DEPTNO), and EMP is already

accessed. Then the block containing the corresponding row

of DEPT is already in the buffer.

3. Single row by hash cluster key: E.g. DEPT is stored in a hash

cluster by DEPTNO, and the value for DEPTNO is known (either

a condition like DEPTNO=20 or D.DEPTNO=E.DEPTNO and E is

already accessed). This needs ideally one block access.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-32

Access Path Priority List (2)

4. Index over unique or primary key: E.g. accessing DEPT via

an index over DEPT(DEPTNO) either because of a selection

DEPTNO=20 or in form of an index join with a table which

was already accessed.

These first four possibilities will not extend the number of

tuples in the intermediate result, since they all use a key for

accessing the next table.

5. Cluster join: E.g. DEPT and EMP are stored together in a

cluster over DEPTNO. If DEPT was already accessed before,

the tuples in EMP are probably loaded with them.

6. Hash cluster (non-key): E.g. EMP is stored in a hash cluster

on DEPTNO. The query contains a condition like DEPTNO=20.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-33

Access Path Priority List (3)

7. Indexed cluster (non-key): As 6., but with an index cluster.

8. Composite index (non-key): E.g. using an index on

EMP(DEPTNO,JOB) for DEPTNO=20 AND JOB=’CLERK’.

9. Single-column index (non-key): E.g. using an index on

EMP(DEPTNO) for evaluating DEPTNO=20. Also intersecting

ROWIDs from different indexes falls into this category.

10. Bounded-range search on indexed columns: E.g. using an

index on EMP(SAL) for SAL >= 2000 AND SAL <= 3000

(interval bounded on both sides). Also using an index for

ENAME LIKE ’F%’ and using an index on only a prefix of

the index columns are bounded-range searches.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-34

Access Path Priority List (4)

11. Unbounded-range search on indexed columns: E.g. using

an index on EMP(SAL) for evaluating SAL >= 2000.

12. Merge-Join.

Index joins are higher ranked. A merge join is done when

no index is available and the join condition is an equality.

13. MAX or MIN of indexed column: Using an index for

computing the maximal value of a column.

Oracle seems nevertheless to do a full scan of the index.

14. ORDER BY on indexed columns: Using an index to get the

tuples in sorted order.

15. Full table scan.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-35

Exercises

• How will Oracle (with the rule-based optimizer) evaluate this

query?

SELECT E.ENAME

FROM EMP E

WHERE DEPTNO = 20

AND SAL >= 2000

AND ENAME LIKE ’F%’

How does the answer depend on the existence of indexes

over EMP(DEPNO), EMP(SAL), and EMP(ENAME)?

• Compute the other two QEPs for the query on slide 7-27

(starting with DEPT and starting with SALGRADE).

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-36

Rule-Based QEP Selection

• Among the generated QEPs, the rule-based optimizer

chooses the one with the smallest number of nested-loop

joins (Proper nested loop joins, where the inner table is

accessed with a full table scan.).

• If this does not bring a decision, the optimizer chooses the

QEP with the smallest number of merge joins.

• If there is still a tie, it chooses the plan with the more

efficient access path to the first table.

• Finally it uses the sequence in the FROM list.

It chooses the plan of which the relation accessed first

appears later in the FROM list.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-37

Overview

1. Introduction to Query Optimization

2. Algebraic Optimization

3. Oracle’s Rule-Based Optimizer

4. Cost-Based Optimization

�
�

�
�

5. Conclusion

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-38

Cost-Based Optimization (1)

• The cost-based optimizer generates a larger number of

alternative query evaluation plans.

The Oracle documentation does not say much about this,

but e.g. a full table scan is considered even if there is an

index. The rule-based optimizer checks the access paths on

this list in the given order and stops once it has found an

available path.

• It then estimates the cost of each generated plan and picks

the cheapest.

It is possible to use cost estimates already on partial plans

while they are generated in order to restrict the search

space of possible alternatives.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-39

Cost-Based Optimization (2)

• In order to estimate the costs, all tables should be analyzed.

If there are no statistics in the data dictionary, the

optimizer will guess them based on the number of blocks

allocated to the table. However, this will often result in

sub-optimal plans.

• Important input data are:

– Size of tables (number of rows, number of blocks)

– Key constraints, foreign key constraints

– Distribution of values for each attribute used in conditions

(number of different values, minimal/maximal value).

• It might also be useful to compute histograms (see below).

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-40

Cost-Based Optimization (3)

• With the cost-based approach, the chosen QEP may depend

on the constant values in the query. E.g. the optimizer may

treat these queries differently:

SELECT * FROM EMP WHERE SAL >= 1000

SELECT * FROM EMP WHERE SAL >= 5000

SELECT * FROM EMP WHERE SAL >= :X

• Some systems defer certian decisions to runtime (“runtime

optimization).

E.g. they first assume that a certain intermediate result will

be small, but as soon as more than a few tuples are

computed, they switch to a QEP for larger results.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-41

Selectivity (1)

• Suppose we have a query

SELECT *

FROM Customers

WHERE SEX = ’M’ AND AGE >= 80

• If there are indexes over both attributes, it is better to use

the one over AGE, since it will select less rows.

• An important part of cost-based query optimization is the

estimation of the “selectivity” of conditions, that is the

percentage of rows which will satisfy the condition:

Number of rows in R which satisfy the condition ϕ

Total number of rows in R.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-42

Selectivity (2)

• So the selectivity of a condition ranges from 0 to 1,

and the smaller it is, the better.

You can understand the selectivity also as the probability

that a row will fulfill the condition.

• The optimizer can only use estimates for the selectivity.

The actual selectivity is only known after the query is

executed (and varies if the QEP is executed multiple times).

• Bad estimates can lead to sub-optimal query evaluation

plans, but usually a high accuracy is not needed.

• The selectivity is used to estimate the number of rows in

intermediate results.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-43

Selectivity (3)

Selectivity of A = c:

• If A is a primary key, only one row can satisfy this condition.

So the selectivity esitimate is 1/number of rows.

• If the number of different values of A is n, the selectivity of

A = c is estimated to be 1/n.

This assumes a uniform distribution. When the table is

analyzed, Oracle stores the number of different data values

in each column in the table COLS, column NUM_DISTINCT.

• If nothing was known about the column values, System R

guessed a selectivity of 0.1. Probably Oracle uses a similar

value if the table is not analyzed.

• Exercise: What is the selectivity of SEX = ’M’?

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-44

Selectivity (4)

Selectivity of A > c:

• If A is of numerical type, and the minimal and the maximal

value of A are known, the selectivity of A > c can be

estimated as max(A)− c

max(A)−min(A)
This assumes that there are very many different possible values.

• Otherwise System R has estimated it as 0.3.

• Oracle uses the above formula also for string-valued columns,

and uses the internal string encoding (e.g. ASCII values).

Maximal and minimal value in hexadecimal are stored in

the columns LOW_VALUE and HIGH_VALUE of the table COLS.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-45

Selectivity (5)

• The selectivity of ϕ1 AND ϕ2 can be estimated as s1 ∗ s2,

if s1 and s2 are the selectivity estimates for ϕ1 and ϕ2.

• This assumes that the conditions are independent.

• E.g. SAL >= 1000 AND SAL <= 2000 must be treated

specially. Oracle uses the formula s1 + s2 − 1 in this case.

• The selectivity of ϕ1 OR ϕ2 can be estimated as

s1 + s2 − s1 ∗ s2 (again assuming independence).

• Selectivity can also be estimated by sampling: If 5 rows out

of 100 randomly chosen rows satisfy the condition, the

selectivity is estimated as 0.05.

• However, this needs DB accesses (expensive method).

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-46

Histograms (1)

• Suppose that 90% of your customers are from Pittsburgh,

but you also have customers from 99 other cities.

The above formulas would estimate the selectivity of

CITY = ’PITTSBURGH’ as 0.01 (1%).

• Suppose that the director of a company makes a yearly

salary of $530 000, but the salaries of the other employees

are mostly in the range $30 000 to $70 000.

The above formulas would estimate the selectivity of

SAL < 100 000 as 0.2 (20%).

• Oracle allows to create histograms for such non-uniformly

distributed data.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-47

Histograms (2)

• You can request that a histogram is computed on a specific

column with a version of the ANALYZE command:

ANALYZE TABLE EMP

COMPUTE STATISTICS FOR COLUMNS SAL SIZE 10

• Then Oracle will sort the table EMP on the attribute SAL,

split it into 10 groups (intervals) containing the same

number of rows, and write the maximal SAL value in each

interval into the table

USER_HISTOGRAMS(TABLE_NAME, COLUMN_NAME,

ENDPOINT_NUMBER, ENDPOINT_VALUE)

In addition, MIN(SAL) is stored as endpoint number 0.

String-valued column values are shown as numbers.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-48

Histograms (3)

EMP

· · · SAL

· · · 800
· · · 950
· · · 1100

· · · 1250
· · · 1250
· · · 1300

· · · 1500
· · · 1600
· · · 2450

· · · 2850
· · · 2975
· · · 3000

· · · 3000
· · · 4000
· · · 50000

USER_HISTOGRAMS

TAB· · · COL· · · ENDPOINT_NUMBER · · ·VALUE

EMP SAL 0 800

EMP SAL 1 1100

EMP SAL 2 1300

EMP SAL 3 2450

EMP SAL 4 3000

EMP SAL 5 50000

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-49

Histograms (4)

• Histograms are not automatically computed when you

analyze the table.

However, there will be entries for the minimum and

maximum column value in USER_HISTOGRAMS.

• In the example with nearly all customers coming from

Pittsburgh, the value “Pittsburgh” will be the endpoint of

most intervals. In this way, Oracle notices that the

selectivity of CITY=’Pittsburgh’ is not good.

It would also be possible to store the number of different

values in each of the intervals (not done in Oracle).

• Queries in Embedded SQL which use a program variable in

place of a constant value do not profit from histograms.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-50

Cost Estimation (1)

• The main cost factor is the number of blocks read.

Some systems might also consider CPU costs, but it has a

much smaller weight. The CPU is usually not the

bottleneck in DBMSs, unless they have large amounts of

memory. Often, the CPU will be idle waiting for the disk.

• In order to compute the cost of a QEP node, an estimate for

the number of result rows of its child nodes is needed.

• If we do nested loop joins, it might be good to have a

method for estimating the cost of executing a QEP n times.

This may be cheaper than n times the cost of a single

execution: buffer cache, storing intermediate results.

• Oracle’s cost formulas are not published.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-51

Cost Estimation (2)

Full Table Scans:

• A full table scan needs to read all blocks below the “high

water mark” (column BLOCKS in TABS).

• But reading these blocks should be given a big discount,

since they are stored consecutively on the disk.

If the number of extents is small (ideally 1). The number of

extents is stored in USER_SEGMENTS.EXTENTS.

• Also, a full table scan becomes cheaper if the parameter

DB_FILE_MULTIBLOCK_READ_COUNT

(number of blocks to read in a single OS call) is larger.

For Oracle on our Solaris systems, it is set to 8.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-52

Cost Estimation (3)

Index Scans:

• For a unique index scan, the number of blocks is the height

of the B-tree.

IND contains this information (BLEVEL+1).

• The root node will often be in the buffer cache.

• For other index scans, the number of leaf blocks accessed

can be estimated based on the selectivity of the condition

and the total number of leaf blocks.

IND.LEAF_BLOCKS is the total number of leaf blocks.

E.g. suppose it is 50. It the condition has a selectivity of 0.1

(10%), we will assume that 5 leaf blocks will be accessed.

In addition IND.BLEVEL branch blocks will be accessed.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-53

Cost Estimation (4)

Table Access by ROWID:

• In principle, every ROWID can request a different data block.

• So “Table Access by ROWID” can cost as many block

accesses as it has input ROWIDs.

The number of input ROWIDs can be estimated from the

selectivity of the condition and IND.NUM_ROWS.

• However, if the table is small compared with the buffer

cache, no block will be read twice.

So for small tables, their number of blocks (TABS.BLOCKS)

is an upper limit to the cost of “Table Access by ROWID”.

• AVG_DATA_BLOCKS_PER_KEY and CLUSTERING_FACTOR (in IND)

might indicate that the ROWIDs are not randomly distributed.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-54

Cost Estimation (5)

Nested Loop Join (Unoptimized Version):

• Suppose the left child needs b block accesses and returns

n rows. The nested loop join will then cost b block accesses

plus the cost of executing the right child n times.

• Suppose L has 40 rows, stored in 1 block, and R has

100 rows stored in 50 blocks. Without caching, the nested

loop join L 1 R will need 1 + 40 ∗ 50 = 2001 block accesses.

• The nested loop join R 1 L will need 50 + 100 ∗ 1 = 150
block accesses.

• So for the unoptimized nested loop join, it is not always

better to use the smaller relation in the outer loop.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-55

Cost Estimation (6)

• It is also not always better to use the larger relation in the

outer loop.

• E.g. suppose that L has 1000 rows stored in 100 blocks and

R has 10 rows stored in 5 blocks.

• Then L 1 R will need 100 + 1000 ∗ 5 = 5100 block accesses,

and R 1 L will need 5 + 10 ∗ 100 = 1005 block accesses.

• So the nested loop join behaves asymmetric, and the cost of

both variants must be estimated and compared.

• This also clarifies why Oracle tries to avoid a full table scan

as the right child of a nested loop join with higher priority

than on the left side: As right child, it is done repeatedly.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-56

Cost Estimation (7)

• For the unoptimized version, if one relation is small enough

to fit into the buffer, it is better to use it as inner relation.

Since the outer relation will anyway be read only once.

• However, Oracle uses only a small number of buffer frames

for full table scans (buffer frames are immediately reused).

Older versions of Oracle had a parameter

_SMALL_TABLE_THRESHOLD for the number of buffers for a

full table scan that will be normally cached using LRU

(Default 5). Since Oracle 7.1, the CREATE TABLE command

has an option CACHE which requests to do normal caching

for full table scans for this table. You should set this for

small tables which are right arguments in nested loop joins.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-57

Cost Estimation (8)

Nested Loop Join, Optimized Version:

• For the unoptimized version, the question whether one table

fits into memory is all or nothing: If it does not fit entirely,

very little is gained.

• The optimized version can make good use of any amount of

buffer space available.

• E.g. if the smaller table is double the size of the available

memory, the larger table has to be read twice.

• In the optimized version, the buffer space is used for the

outer table in order to process as many tuples as possible

from the outer table for each pass through the inner table.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-58

Cost Estimation (9)

Result Size Estimation for Joins:

• In order to estimate the cost of the parent nodes, we need to

estimate the number of tuples produced by the child nodes.

E.g. if we join three tables, we must know the size of the

intermediate result after joining two tables.

• For the join R 1
A=B

S, if R.A is a foreign key referencing S.B,

the result will have exactly as many tuples as R has.

• For the cartesian product R× S, the result will have |R| ∗ |S|
tuples (where |R| denotes the number of tuples in R).

• Other join estimates are beyond the scope of this course.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-59

Cost Estimation (10)

Index Joins:

• Suppose we evaluate R 1
A=B

S with an index on S.B.

• If R returns n rows, we have to do n index lookups and table

accesses by ROWID on S.

This is very similar to a nested loops join, which is why

Oracle has only one NESTED LOOPS operator for both joins.

• If n is small and S is large, this join is cheapest, since in this

way we can avoid reading all tuples of S.

All other joins need to look at each tuple at least once.

• If S is small, all of its blocks will end up in the cache.

But then a nested loops join is also very efficient.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-60

Cost Estimation (11)

Merge Join:

• The main cost of the merge join is the sorting phase.

The merging can be done on the fly when the last sort step

produces the tuples.

• If the sorting can be done in main memory, the number of

block accesses will be the sum of the costs of the children.

Due to pipelined evaluation, no block accesses are added.

• If the input is b blocks, and we have m buffer frames

available (m < b), mergesort needs 2 ∗ b ∗ ceil
(
logm−1(n)

)
block read/writes where n = ceil(b/m).

n is the number of initial runs.

ceil rounds to the next heigher integer.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-61

Comparison of Join Methods

• Suppose we have to evaluate R 1
A=B

S.

• If R is small (few tuples) and S is large, and there is an

index on S.B, choose an index join.

And vice versa: R large, S small, index on R.A.

• Otherwise, if one relation is small (fits into memory), the

other is large, but no index is available for the large relation,

choose the nested loops join.

Since this avoids sorting the large relation.

• If both relations are small, it doesn’t matter.

• If both relations are large, and no index is available, the

merge join or the hash join are best.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-62

Optimizer Hints (1)

• If you discover that the optimizer produces a bad QEP, you

can try to give it hints for a better QEP.

Only the cost-based optimizer understands hints.

• Hints have the form of special comments:

SELECT /*+ ORDERED */ ENAME, DNAME

FROM EMP E, DEPT D

WHERE E.JOB = ’CLERK’ AND D.LOC = ’BOSTON’

AND E.DEPTNO = D.DEPTNP

• /*+ ORDERED */ means to access the relations in the order

given in the FROM clause.

• You can specify several hints in one comment, e.g.

/*+ ORDERED INDEX(E I_EMP_JOB) */

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-63

Optimizer Hints (2)

• Oracle does not print an error message if such a hint

contains an error or can not be respected.

• In these cases, the hint is treated as a comment (ignored).

One reason for this is that it is legal to intersperse hints

with normal comments (e.g. explaining the hints).

• Hints must be put immediately after the first keyword

(SELECT, UPDATE, DELETE). No space between /* and +.

• Hints apply only to their statement block.

E.g. if you have two SELECT queries, combined by UNION,

you must put separate hints into both parts. Also

subqueries might need their own hint.

• Hints must use the tuple variable names, not table names.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-64

Optimizer Hints (3)

• Hints for optimizer selection:

ALL_ROWS, FIRST_ROWS, CHOOSE, RULE.

• Hints for access methods:

FULL(table), ROWID(table), CLUSTER(table), HASH(table),

HASH_AJ, HASH_SJ, INDEX(table index . . .),

INDEX_ASC(. . .), INDEX_COMBINE(. . .), INDEX_DESC(. . .),

INDEX_FFS(. . .), MERGE_AJ, MERGE_SJ, USE_CONCAT_SJ,

AND_EQUAL(table index index . . .),

• Hints for joins:

ORDERED, STAR, USE_NL(table ...),

USE_MERGE(table ...), USE_HASH(table ...),

• More hints for parallel execution, views, caching, . . .

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-65

Overview

1. Introduction to Query Optimization

2. Algebraic Optimization

3. Oracle’s Rule-Based Optimizer

4. Cost-Based Optimization

5. Conclusion

�
�

�
�

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-66

Conclusion (1)

• SQL is a declarative language, so when you write queries,

you should not worry too much about query evaluation.

• However, this depends on how good the optimizer of your

system is and which performance you have to reach.

• If your database is large and you have to support many

concurrent users, performance becomes an issue.

• There should be quantifiable performance requirements.

• If you discover performance problems only when the system

goes into production, you have a big problem.

• It is much cheaper to think about performance already

during design and development.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-67

Conclusion (2)

• Some optimizations in SQL formulations can be done

without making the query more complicated:

– E.g. write SAL > 24000/12 instead of SAL*12 > 24000.

In Oracle, any datatype function applied to a column

makes an index unusable for that column.

– E.g. avoid unnecessary complications (in any case better).

E.g. some students used UNION when a simple OR would

have sufficed, some used DISTINCT without need, or

GROUP BY a key, unnecessary subqueries under FROM, etc.

– E.g. express “for all” with comparing counts instead of a

doubly nested NOT EXISTS subquery.

Nested subqueries might be difficult for some optimizers.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-68

Conclusion (3)

• If performance is an issue, the application programmers

should think about which indexes can be used for their

queries, and check whether the indexes exist.

• Sometimes redundant data must be added to the schema.

• E.g. UPPER(NAME) = :X requires to store NAME in uppercase

in the database, or indexes are not usable.

• Sometimes (very seldom) redundant data must be stored for

performance reasons (“denormalization”).

• However, index selection and denormalization should be

done before the actual programming begins.

• The later the change, the more expensive it is.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-69

Conclusion (4)

• However, with regard to QEP selection (only that!), I would

suggest a reactive, rather than a proactive approach:

– Try to write good SQL, create the indexes/clusters which

seem useful (based on your knowledge from this course).

– Check the QEP only for a few especially critical queries.

– Test your application programs under actual system loads.

– If there is a performance problem, find out which queries

use the most system resources and tune these queries.

– I.e. keep performance in mind over the entire life-cycle,

do what is sensible (the earlier, the better), but invest

your time where it is most useful to satisfy the goals.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-70

Conclusion (5)

• Reasons for reactive approach:

– QEPs might change if your table sizes etc. change.

– With a new version of Oracle, the optimizer might have

changed, and different QEPs can be produced.

– Also, adding an index later in order to improve a certain

query might confuse the optimizer, so that it produces

worse QEPs for other queries.

– Unless you put optimizer hints in every query or use the

rule-based optimizer (which is unlikely to change), QEPs

are not sufficiently stable to invest too much work in them.

– After all, you program in SQL and not in QEPs.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

7. Query Optimization 7-71

Conclusion (6)

Good performance depends also on many other issues, e.g.:

• The right setting of DBMS and OS parameters.

• If you have many concurrent users, the reason for delays

might be locks by other users.

• Your interface to the DBMS server:

– It might be more efficient to do more work on the server

by means of stored procedures (less network traffic).

– In Embedded SQL, fetching whole arrays of results is

more effient than fetching only a tuple at a time.

– Using static Embedded SQL rather than dynamic SQL.

• Good database and application program design.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

