
3. Physical Storage of Relations 3-1

Part 3: Physical Storage
of Relations

References:
• Ramez Elmasri, Shamkant B. Navathe: Fundamentals of Database Systems, 3rd Edition.

Section 5.5,5.7.

• Raghu Ramakrishnan, Johannes Gehrke: Database Management Systems, 2nd Edition.
Section 7.3, 7.5–7.8.

• Silberschatz/Korth/Sudarshan: Database System Concepts, 3rd Ed., Chap 10.

• Kemper/Eickler: Datenbanksysteme (in German), Chap. 7, Oldenbourg, 1997.

• Hector Garcia-Molina, Jeffrey D. Ullman, Jennifer Widom: Database System Implemen-
tation. Chapter 3.

• Theo Härder, Erhard Rahm: Datenbanksysteme, Konzepte und Techniken der Imple-
mentierung (in German).

• Michael J. Corey, Michael Abbey, Daniel J. Dechichio, Ian Abramson: Oracle8 Tuning.

• Jason S. Couchman: Oracle8i Certified Professional: DBA Certification Exam Guide with
CDROM. Osborne/ORACLE Press, ISBN 0-07-213060-1, ca. 1257 pages, ca. $99.99.

• Mark Gurry, Peter Corrigan: Oracle Performance Tuning, 2nd Edition (with disk).

• Jim Gray, Andreas Reuter: Transaction Processing: Concepts and Techniques.

• Oracle 8i Concepts, Release 2 (8.1.6), Oracle Corporation, 1999, Part No. A76965-01.

• Oracle 8i Designing and Tuning for Performance, Release 2 (8.1.6), Oracle Corporation,
1999, Part No. A76992-01.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-2

Objectives

After completing this chapter, you should be able to:

• write a short paragraph explaining how blocks are

allocated in Oracle (mention segments, extents).

• find storage information in the data dictionary.
And use the ANALYZE TABLE command to populate the dictionary tables.

• explain how relations are stored in Oracle (row and

block format, TIDs/ROWIDs, migrated rows).

• estimate the number of blocks needed for a table.

• set the basic storage parameters for relations in

Oracle for good performance.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-3

Overview

1. Disk Space Management: Segments, Extents

'

&

$

%
2. Block Format, TIDs/ROWIDs

3. Block Free Space Management in Oracle

4. Row Format

5. Data Format

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-4

Segments (1)

• If tablespaces are the “logical disks” of Oracle,

segments are the “logical files”.

• Segments are sequences of data blocks within a

tablespace.

The sequence does not have to be the physical sequence. The blocks
are not necessarily stored in contiguous places.

• Segments can grow (blocks can be appended at the

end) and shrink (blocks are removed at the end).

In Oracle, segments shrink only when explicitly requested.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-5

Segments (2)

• The used storage in a tablespace is partioned into

segments.

Every data block can belong to at most one segment.

• A tablespace can contain many segments.

• For every table, Oracle creates a segment inside the

tablespace that is mentioned in the CREATE TABLE.

• In the same way, each index is stored in a segment.

The four basic kinds of segments are: Data segments (for tables),
index segments, rollback segments (for storing old versions of blocks),
temporary segments (for sorting during query evaluation).

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-6

Segments (3)

• Normally, the relationship between data segments

and tables is 1:1. But in general, it can be n:m:

� Partioned tables have more than one segment

(usually in different tablespaces on several disks).
A partitioned table is stored in several pieces, where each piece is
basically a table with the same structure: The complete table is
then the union of the pieces. When rows are inserted, conditions
on the data determine in which piece the row is stored.

� Clusters can contain rows from several tables ha-

ving one or more attributes in common.
Clusters are an Oracle-specific data structure that permits very
efficient joins because the rows to be joined together are already
stored together (ideally, in the same block).

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-7

Segments (4)

Segment

J
J

JJ

Data Seg.(Table)

Index Segment

Rollback Seg.

Temporary Seg.

(1,1)
�������

PPPPPPP

in PPPPPPP

�������

(0, ∗)
Tablespace

(1, ∗)
�����������

PPPPPPPPPPP

consists of PPPPPPPPPPP

�����������

(0,1)
Block

@
@@

#
"

!Seq

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-8

Segments (5)

• The data dictionary view DBA_SEGMENTS contains one

row for each segment. It has the following columns:

� OWNER: User who created the table etc.

� SEGMENT_NAME: Table name, index name, etc.

� PARTITION_NAME: For partitioned tables (else null).

� SEGMENT_TYPE: Type of the segment, e.g. TABLE.

TABLE, INDEX, CLUSTER, TABLE PARTITION, INDEX PARTITION, ROLLBACK,
DEFERRED ROLLBACK, TEMPORARY, CACHE, LOBINDEX, LOBSEGMENT.

� TABLESPACE_NAME: Tablespace in which the seg-

ment is stored.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-9

Segments (6)

• Columns of DBA_SEGMENTS, continued:

� HEADER_FILE, HEADER_BLOCK: Storage position of

segment header block.
This is the first block of the segment. It contains control infor-
mation and is not available for table data.

� BYTES, BLOCKS: Current size of the segment.
BYTES is simply BLOCKS ∗ DB_BLOCK_SIZE.

� EXTENTS: Number of storage pieces.

� INITIAL_EXTENT, NEXT_EXTENT, MIN_EXTENTS,

MAX_EXTENTS, PCT_INCREASE: Parameters for allo-

cating storage pieces, see below.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-10

Segments (7)

• Columns of DBA_SEGMENTS, continued:

� FREELISTS, FREELIST_GROUPS: For management of

blocks with free space within the segment.
Usually both are 1, but if there are many parallel users that insert
data, these parameters can be increased.

� RELATIVE_FNO: File containing seg. header block.
For Parallel Server (Please explain if you know).

� BUFFER_POOL: Buffer pool for caching blocks from

this segment.

• USER_SEGMENTS lists the segments owned by the cur-

rent user (some of the above columns are missing).

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-11

Extents (1)

• Oracle allocates storage in units called “extents”.

• An extent is sequence of contiguous disk blocks.

Thus, an extent can be especially fast read from the disk.

• An extent belongs to a single segment and thus to

a single table (or index etc.).

• A segment can consist of many extents. But too

many extents give bad performance.

The disk head has to move between the extents (a segment with many
extents is “fragmented”). Also, the list of extents should fit into one
block. More than 100–500 extents are certainly bad. A single extent
would be perfect. One must plan how much space will be needed.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-12

Extents (2)

• Extent sizes are specified in the table declaration:

CREATE TABLE STUDENTS(SID NUMERIC(3), ...)

TABLESPACE USER_DATA

STORAGE(INITIAL 200K

NEXT 50K

PCTINCREASE 100)

• When the table is created, the initial extent is al-

located.

Although it does not yet contain any rows, it needs disk space for
the initial extent (200 KB in the example). The extent size should be
a multiple of DB_BLOCK_SIZE ∗ DB_FILE_MULTIBLOCK_READ_COUNT (the size
that Oracle reads during a full table scan in one disk access).

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-13

Extents (3)

• Whenever the disk space allocated for a table is

full, another extent will be allocated.

• In the example, the second extent will be 50 KByte

(NEXT). Normally, all following extents have this size.

• However, with the parameter PCTINCREASE one can

request that each following extent will be larger

than the previous one (reduces number of extents).

PCTINCREASE 100 means that the extent size is doubled. Third extent:
100 KB, fourth: 200 KB, etc. If the extent size grows so fast, there
will certainly not be very many extents. However, since one soon gets
very large extents, space may be wasted.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-14

Extents (4)

Example:

File 1:
1 2 3 4

Table R, Extent 1

5 6 7

Table R, Extent 2

8 9 10 11

Free

File 2:
1 2 3 4

Table S, Extent 1

5 6

Free

7 8 9 10 11

Table R, Extent 3

Tables R and S are stored in a tablespace which consists of two data files.
Table R has three extents: Block 1 to 4 in File 1, Block 5 to 8 in File 1,
and Block 7 to 11 in File 2. Oracle does not merge contiguous extents of
a table. Table S consists of a single extent (Block 1 to 4 in File 2).

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-15

Extents (5)

Segment

(1, ∗)
���������

PPPPPPPPPconsists
of
PPPPPPPPP

���������

(1,1)

Extent

(1, ∗)
���������

PPPPPPPPPconsists
of
PPPPPPPPP

���������

(0,1)

Block

Tablespace

(1, ∗)
���������

PPPPPPPPPconsists
of
PPPPPPPPP

���������

(1,1)

Data File

(1, ∗)
���������

PPPPPPPPPconsists
of
PPPPPPPPP

���������

(1,1)
�

�
�

@
@

@

in @
@

@

�
�

�

(0, ∗)

(1,1)
�

�
�

@
@

@

in @
@

@

�
�

�

(0, ∗)

(1,1)

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-16

Extents (6)

Alternative Design:

Tablespace
(1, ∗)

���������

PPPPPPPPPconsists
of
PPPPPPPPP

���������

(1,1)

Data File
�
�

�
�File No

(1,1)
���������

PPPPPPPPP

��������

PPPPPPPPcontains
PPPPPPPP

��������

PPPPPPPPP

���������

(1,1)
Extent (or free)

����
�

�
�Start Block No

HHH�
�

�
�Num Blocks

(0, ∗)
���������

PPPPPPPPPcontains
PPPPPPPPP

���������

(1,1)

Segment

(1, ∗)
���������

PPPPPPPPPconsists
of
PPPPPPPPP

���������

(0,1)

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-17

Extents (7)

• DBA_EXTENTS contains one row for each extent.

� OWNER, SEGMENT_NAME, PARTITION_NAME: Identificati-

on of the segment to which this extent belongs.

� SEGMENT_TYPE, TABLESPACE_NAME: See DBA_SEGMENTS.

� EXTENT_ID: Extent number within segment.
Counted from 0, i.e. 0,1,2,

� FILE_ID: File containing the extent.

� BLOCK_ID: Start of the extent within the file.

� BYTES, BLOCKS: Size of the extent.

� RELATIVE_FNO: Relative file number of first block.
I am not sure what relative file number means. Please help.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-18

Extents (8)

• DBA_FREE_SPACE contains one row for each conti-

guous sequence of blocks that is currently not al-

located to a segment (“free extents”).

� TABLESPACE_NAME, FILE_ID: Tablespace, data file.

� BLOCK_ID: First block of free piece.

� BYTES, BLOCKS: Size of free piece.

� RELATIVE_FNO: Relative file no of first extent block.
DBA_FREE_SPACE might contain two adjacent pieces. Oracle checks
only from time to time (or when necessary) whether adjacent
pieces can be merged (“coalesced”).

• See also: USER_EXTENTS, USER_FREE_SPACE.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-19

TS Declaration: Extents (1)

• In the CREATE TABLESPACE command, default values

for the extent parameters can be specified:

CREATE TABLESPACE USER_DATA

DATAFILE ’D:\User1.ora’ SIZE 20M

MINIMUM EXTENT 32K

DEFAULT STORAGE (INITIAL 100K NEXT 50K

PCTINCREASE 5

MINEXTENTS 1 MAXEXTENTS 50

BUFFER_POOL KEEP)

• DBA_TABLESPACES lists these values (used for all seg-

ments in the tablespace unless otherwise specified).

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-20

TS Declaration: Extents (2)

• The DEFAULT STORAGE parameters have no meaning

for the tablespace itself, they only apply to tables

created within it.

• E.g. if one does not specify PCTINCREASE for a ta-

ble, it will not be 0, but the value defined in the

tablespace declaration.

If one does not define it there, defaults set by Oracle are used:
PCTINCREASE=50, 5 blocks for INITIAL and NEXT. The small default va-
lues for INITIAL and NEXT show that at least for large tables, it is
important to set these parameters

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-21

TS Declaration: Extents (3)

• If one needs to create many similar tables in a ta-

blespace, it is easier to set default values for the

tablespace instead of setting the values for each

table.

• For temporary segments (created during query eva-

luation), one cannot explicitly set the physical sto-

rage parameters. But default values for the tempo-

rary tablespace can be set.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-22

Extent Allocation (1)

• The following is basically the explanation from the

Oracle manual.

Experiments show that extents are sometimes slightly larger than
expected.

• First, Oracle searches through the list of all “free

extents” of the requested tablespace for an exactly

fitting piece of disk space.

Of course, the requested extent size is rounded up to the next multiple
of DB_BLOCK_SIZE (or to the minimal extent size declared for the table-
space). The first extent must consist of at least two blocks, because
the first block of each segment is the segment header and cannot be
used for table data.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-23

Extent Allocation (2)

• If an extent is found, the data dictionary and the

segment header are updated to reflect the alloca-

tion of the disk space.

• If no free space is found that has a size equal to the

requested amount, Oracle searches the list again for

a piece that is larger than the requested one.

� If the first piece found is larger by 5 blocks or

more, a piece of the requested size is cut off.

� If the piece found is larger by less than 5 blocks,

it is completely allocated as the new extent.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-24

Extent Allocation (3)

• If all existing pieces of free space are smaller than

requested, Oracle merges adjacent pieces. Then

both steps are repeated.

• If still no piece is found, and AUTOEXTEND is on for at

least one data file, the data file is extended (i.e. mo-

re disk space is requested from the OS).

• Else the operation fails and an error message is

returned (“tablespace full”).

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-25

Local Extent Management (1)

• Since Oracle 8i, free space can alternatively be ma-

naged by an array of bits showing which “extents”

are allocated.

• For such tablespaces, one can

� either define a uniform extent size (then one bit

is used for each piece of that size)

� or let Oracle determine the extent size (the al-

gorithm is not disclosed in the documentation).

• The bitmaps are stored in each data file, and not

in the data dictionary, thus the name.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-26

Local Extent Management (2)

• When using bitmaps for free space management,

there is no need to search for adjacent pieces of

free space in order to merge them.

It also avoids recursive calls: The data dictionary entry might itself
need space. Also requires to change a rollback segment.

• The parameters NEXT and PCTINCREASE are not pos-

sible for such tablespaces.

But INITIAL is of course possible.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-27

Summary (1)

Tasks of the Disk Manager:

• Create a segment with a given initial size.

• Delete a segment.

• Grow a segment by a given number of blocks.

• Shrink a segment (might not be really required).

• Return all blocks of the segment in the logical se-

quence (i.e. open scan, read next block, close scan).

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-28

Summary (2)

Tasks of the Disk Manager, continued:

• It is also necessary to create pointers to blocks (in

indexes):

� If the segment management never moves blocks,

pointers can be physical block addresses.

� Else needed: “Return i-th block of the segment”.

Operating systems usually have a call to set the current position
in an open file without reading all intermediate blocks (lseek).

• Auxillary function:

Free space management for tablespace.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-29

UNIX File System (1)

• Segments are very similar to files.

• The file system of any operating system has to

implement the same basic functions as the Oracle

segment management.

• In UNIX, there are no extents: It manages a list of

block addresses for every file.

• It is not a linear list, but a tree (see below).

• In this way, one can efficiently jump to a specific

file location.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-30

UNIX File System (2)

• If the blocks of a file were randomly distributed over

the entire disk, this would be a big performance

problem.

• Therefore, the disk is divided in several cylinder

groups (within a cylinder group, the disk head must

move only very little).

• If possible, files are kept in a single cylinder group.

The block allocation routine even allows to specify a block near to
which the new block should be allocated.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-31

UNIX File System (3)

Directory Entry

?

v - Block 1
v - Block 2
...

v - Block 10
v -

Double Ind.
Triple Ind.

(Single)
Indirect Block

v · · · v

?

Block 11
?

Block 1010

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-32

Overview

1. Disk Space Management: Segments, Extents

2. Block Format, TIDs/ROWIDs

'

&

$

%
3. Block Free Space Management in Oracle

4. Row Format

5. Data Format

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-33

Row Manager/Heap Files (1)

• Table rows are stored physically in disk blocks. Nor-

mally, each block stores rows from one table only.

Clusters in Oracle are an exception.

• The disk space manager assignes a sequence of disk

blocks to every table (called a segment in Oracle).

• The row manager has to store a set of rows in this

space.

The lower level modules can treat a row as a bytestring without
inner structure, i.e. they do not need to understand how columns are
encoded in the rows. The row format is discussed in the next section.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-34

Row Manager/Heap Files (2)

• The basic operations of the row manager are to

� insert, update, and delete a row,

� return all existing rows (in a loop),

� manage pointers to rows.
I.e. determine the address or some kind of ID of a row, and locate
the row with a given address/ID.

• The simplest and most common file structure to

store a table is the heap file. It stores rows in no

particular order.
Whereever space is available. After all, relations are sets.
(Note that this heap has nothing to do with the heap of heapsort.)

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-35

Row Manager/Heap Files (3)

• In many database management systems, the heap

file is the only way to store table data.

Of course, they also have indexes, which are organized in a different
way. But indexes contain only access information, not the primary
copy of the table data.

• As an alternative to heap files, Oracle also has clu-

sters and index-organized tables.

In this case, the storage position depends on data within the rows.
This improves the performance, but reduces the flexibility. Heap files
remain the most common method.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-36

ROWIDs/TIDs (1)

• ROWIDs (row identifiers) are physical pointers to

rows. They are called also TID (tuple identifier).

• Indexes provide a fast way to look up the ROWIDs

of those table rows that contain a given value in a

certain column.
An index over column A of a table R can be understood as an auxil-
lary table I(A,ROWID). The first column contains all data values that
currently appear in R.A, the second column contains the ROWIDs of
the matching rows in R. The index is not organized as a heap file, but
e.g. as a B-tree, which gives fast access to the entry for a specific
value (see below). One could organize the original table as a B-tree,
but then only one attribute could be indexed (since B-trees basically
store the entries sorted by A).

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-37

ROWIDs/TIDs (2)

• So the Row Manager must support two ways to

access a row:

� Read all rows of the table in a full table scan.

� Get a particular row given its address (ROWID).

• The access via the ROWID should be especially

fast, i.e. normally only a single block access.

• Therefore, ROWIDs usually contain the physical

address of the block in which the row is stored.

I.e. the file number and the block number within the file. Plus e.g. the
number of the row within the block.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-38

ROWIDs/TIDs (3)

• Most DBMS guarantee that ROWIDs/TIDs do not

change for the entire lifetime of a tuple.

Except when the tuple is exported and imported again. That would
basically create a new row with the same values.

• The reason that ROWIDs should be kept stable is

� there can be many indexes for the same table. If

the ROWID of a tuple should change, all would

have to be updated.

� some DBMS (e.g. Oracle) make ROWIDs availa-

ble on the user level.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-39

ROWIDs/TIDs (4)

• Expert users can use ROWIDs in Oracle to improve

performance.

E.g. foreign keys could be supported by an additional column that
contains the ROWID of the referenced tuple (the real foreign key is
then needed only for export/import). One could also construct one’s
own tree structures (with restrictions). If the user can store ROWIDs,
it might be difficult for the system to determine all pointers to a given
row. Then stable ROWIDs are especially important.

• If ROWIDs must remain stable, and ROWIDs must

contain a physical block address, tuples are basically

locked to the block recorded in their ROWID.

Design decision for DBMS vendor: Support stable ROWIDs?
Support the one-block-access to rows by ROWID?

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-40

ROWIDs/TIDs (5)

• ROWIDs are similar to object identifiers (OIDs):

� Even if two rows agree in all attributes, they can

be distinguished by their ROWIDs.

It is bad design to permit duplicate rows. At least, one must really
know what one is doing.

� The ROWID remains stable even if primary key

attributes are updated.

Normally, there should be no updates on primary key attributes.

• However, if a tuple is deleted, a newly created tuple

might get its ROWID (this differs from real OIDs).

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-41

Oracle ROWIDs (1)

• In Oracle, every table has a “pseudocolumn” ROWID,

which can be queried like a real column:
SELECT ROWID, FIRST, LAST
FROM STUDENTS

• The column is not listed with describe or SELECT *.

• It is not possible to update the column ROWID.

It is not stored, but computed from the storage position of the row.

• The pseudocolumn can also be used in conditions:
SELECT FIRST, LAST

FROM STUDENTS

WHERE ROWID = ’AAACiMAACAAAAYnAAA’;

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-42

Oracle ROWIDs (2)

• An Oracle8 ROWID consists of:

� SUBSTR(ROWID,1,6): Data object number.
This identifies the segment. I do not see why it is necessary. Old
Oracle 7 ROWIDs did not contain this part. The data object
number is e.g. shown in USER_OBJECTS.

� SUBSTR(ROWID,7,3): Relative file number.

� SUBSTR(ROWID,10,6): Block number in the file.

� SUBSTR(ROWID,16,3): Row number in the block.

• A base 64 encoding is used for the numbers.

Six bits per character (0–63) are coded using the characters A-Z, a-z,
0-9, + and /. E.g. AAC is the number 2.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-43

Oracle ROWIDs (3)

• There is a package of stored functions for decoding

the components of a ROWID:
SELECT DBMS_ROWID.ROWID_OBJECT(ROWID),

DBMS_ROWID.ROWID_RELATIVE_FNO(ROWID),
DBMS_ROWID.ROWID_BLOCK_NUMBER(ROWID),
DBMS_ROWID.ROWID_ROW_NUMBER(ROWID),
FIRST, LAST

FROM STUDENT

• Rows in a block are numbered 0, 1, 2, . . .

Holes in the sequence are numbers of deleted rows.

• By querying and decoding the ROWID, it is possible

to find out where a particular row is stored.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-44

Fixed-Length Rows (1)

• In old, simple DBMS, rows had to be of fixed length

(i.e. all rows in a table had the same storage size).

Like e.g. a record in C. In newer systems, this might be an option for
certain tables (not in Oracle).

• This simplifies the task of the row manager: It sto-

res as many rows in one block as the space permits.

So if the row size is 100 bytes, the first row would begin e.g. at
offset 0 from the beginning of the block, the second at offset 100,
the third at offset 200, etc. (like an array in C).

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-45

Fixed-Length Rows (2)

• Normally, one would not split a row between two

blocks, but rather leave some space unused.

Unless the row is very long, it should be possible to retrieve it with
one block access. E.g. block size 2048: 48 Byte wasted.

• In order to manage the space within a block, a flag

“deleted” (or “free”) is needed for every slot that

can contain a row.

• In addition, e.g. a linked list of blocks with empty

space is needed to find a free slot when a new row

is inserted.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-46

Fixed-Length Rows (3)

• There must also be a mechanism to find all blocks

that might contain rows in them (for a full table

scan).

• With fixed-length rows, stable addresses mean that

we cannot move a row after it has been created.

E.g. even if after some deletions only one row remains in a block, we
are not allowed to move it to another block with free space, since this
would change its ROWID (and a full table scan runs the faster the
less blocks are needed).

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-47

Variable-Length Rows (1)

• Often rows in a table have a variable size.
E.g. because of VARCHAR columns.

• Then rows can also grow or shrink via updates.

• Oracle treats all rows as variable-length.
Since columns can be added to a table with ALTER TABLE, one must
either copy the entire table at this point, or abandon the idea of fixed-
length rows. Also when null values should be stored with less space
than the normal column value, the row length becomes variable.

• Variable-length rows are usually managed in a block

with a row directory, i.e. a small table giving the

offsets (start addresses) of the rows in the block.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-48

Variable-Length Rows (2)

Block Header

Row
Dir.

0: z

�

1: z

�

2: z

�

Free Space

Row A

Row B

Row C

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-49

Variable-Length Rows (3)

• The ROWID consists of file number, block number,

and the index in the row directory.

• The indirect addressing via the row directory makes

it possible that rows are moved within the block:

� E.g. Row B is updated and grows slightly.
Then Row A has to be moved towards the beginning of the block
(where there is still free space) to make room.

� Or suppose that Row B is deleted.
Then Row A would be moved towards the end of the block, such
that the free space is not fragmented. However, most systems
including Oracle merge free space only if necessary to insert a
new row.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-50

Variable-Length Rows (4)

• The block header may e.g. contain

� Block address, type of segment, table name.

� The size of the row directory, size of free space.

� Next block in the list of blocks with free space.

� A serial version number for this block which is

incremented for every update.

This is needed for crash recovery.

� A bit pattern to detect partially written blocks.

The pattern at the begin and end of the block must agree, they
are both inversed on every write.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-51

Variable-Length Rows (5)

• Block overhead in Oracle: ca. 84–107 Byte.

(Gurry/Corrigan use 90 Byte in computations.)

• In Oracle, the row directory needs two bytes per

entry.

Oracle never releases elements of the row directory. If at some point
in time, 50 rows were stored in the block, the row directory will always
need 100 bytes, even if it contains only a single row. Of course, if the
row is stored in location 50, there is would be in any case no way to
shorten the row directory, because the ROWID must be kept stable.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-52

Variable-Length Rows (6)

• If a row grows and there is not enough free space

left in the block, it must be moved (“migrated”)

to another block.

• A pointer must be left behind in this block so that

the row can still be found via its ROWID.

Thus, e.g. its entry in the row directory is still used.

• So now two block accesses are needed in order to

retrieve this row, given its ROWID.

This decreases performance, especially since the row might be stored
far away on the disk.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-53

Variable-Length Rows (7)

File 4, Block 497:

Block Header

Row
Dir.

0: z

�

1: z

�

2: z

�

Free Space

Row A

Ref: 4/526/1

Row C

File 4, Block 526:

Block Header

Row
Dir.

0: z

�

1: z

�

Free Space

Row B

Row D

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-54

Variable-Length Rows (8)

• If Row B should have to move again, the original

reference in block 497 is updated. In this way, two

block accesses remains the maximum to retrieve a

row with given ROWID.

The new address is stored only in the reference under the old (and
only) ROWID.

• When a new row is stored, storage must be reserved

that is at least large enough to contain a reference

to a new place.

Each row will at least need e.g. 14 Bytes.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-55

Variable-Length Rows (9)

File 4, Block 497:

Block Header

Row
Dir.

0: z

�

1: z

�

2: z

�

Free Space

Row A

Ref: 4/573/0

Row C

File 4, Block 573:

Block Header

Row Dir. 0: z

�

Free Space

Row B

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-56

Variable-Length Rows (10)

• Oracle can also store rows in multiple pieces in dif-

ferent blocks (“chained rows”).

• This is only done for rows longer than a block. If

the row fits in a block, it is completely moved to

another block.

• If there are many chained rows, consider increasing

the DB_BLOCK_SIZE (requires recreation of the DB).
Depending on the version, the default size might be 2KB. The block
size should be a multiple of the OS block size (often 4KB or 8KB).
The parameter can only be set when the database is created. A block
size which is too large can decrease the performance for accesses to
single rows (e.g. via an index) and also the caching performance.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-57

Summary: Row Manager (1)

Main Operations of the Row Manager for Heap Files:

• Operations for full table scans:

� Open a scan (“cursor”) over a given table.

� Are there further rows? (“end of scan”)

� Get next row for a given scan.
Implementation detail: Row is not copied. Instead the containing
block is pinned in the buffer, pointer is returned.

� Determine the ROWID of the current row.

� Close a scan.

• Get a row given its ROWID.

• Insert/Update/Delete a row.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-58

Summary: Row Manager (2)

The main tasks of the row manager are:

• Free space management

In which block should a new row be stored?
What happens if a row grows or shrinks?

• Used space management

Which blocks actually contain rows and must be read during a full
table scan?

• Management of stable addresses for rows.

Of course, the access via ROWIDs should be efficient (usually one
block access, sometimes two).

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-59

Summary: Row Manager (3)

• Problem: Rows have in general variable length and

can grow and shrink.

• The row manager determines the block format.

A small part of the block might already be used by the disk manager
to implement segments.

• The heap file is very common, but there are alter-

natives. These might support associative access to

the rows.

I.e. return the row with a given attribute value. E.g., in the Transbase
DBMS, all relations are stored as B-trees.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-60

Overview

1. Disk Space Management: Segments, Extents

2. Block Format, TIDs/ROWIDs

3. Block Free Space Management in Oracle

'

&

$

%
4. Row Format

5. Data Format

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-61

PCTFREE (1)

• To avoid migrated rows, some free space in each

block should be reserved for growth of the rows.

Then INSERT commands will not use up all space, only subsequent
UPDATE commands can fill a block entirely.

• Oracle has a parameter PCTFREE in the CREATE TABLE

which determines this space reserve (in percent of

the block size).

E.g. if PCTFREE is 20, and the block size is 2KB (2048 Byte), the space
reserve is (20/100) ∗ 2048 = 410 bytes. This space must remain free
after the INSERT. If the row to be inserted is 50 bytes long, it will be
inserted only in a block with at least 460 bytes of free space (two
additional bytes might be needed for the row directory entry).

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-62

PCTFREE (2)

• One must estimate how much the row length will

grow over the row’s lifetime

This is part of physical DB design. Typical case for growing rows:
Some attributes are null when the row is inserted, and later filled out.

• If PCTFREE is too small, there will be migrated rows.

• If PCTFREE too large, space is wasted and full table

scans will run longer.

• If there are many migrated rows: Export all rows,

empty or recreate the table, import the rows again.

And of course PCTFREE should be changed. This can be done with
ALTER TABLE. It effects all future insertions.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-63

PCTFREE (3)

• If rows are only inserted and deleted, but not upda-

ted (or at least to not become longer by updates),

PCTFREE = 0 can be chosen.

• PCTFREE= 10 is a common value (default value).

• PCTFREE= 20 would be chosen if it is known that

rows quite significantly grow because of updates.

• In general, the following formula can be used:

Rowsize after Update − Rowsize at Insertion

Rowsize after Update
∗100

This value can be too large: Simplified calculation+problem on slide 3-65.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-64

PCTFREE (4)

• Suppose that rows are inserted at 40 Bytes length,

but they all will become 60 Bytes due to updates.

• Then a block of 2048 bytes can contain

(2048− 90)/(60 + 2) = 31

rows.

90 Bytes are the overhead for the block header, 2 Bytes the overhead
for the entry in the row directory.

• Thus, 31 ∗ (60 − 40) = 620 Bytes should remain

free at insertion, i.e. PCTFREE = 620/2048 = 30%.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-65

PCTFREE (5)

• The above calculation assumes that a block is filled

with short rows before the first row grows.

This would hold e.g. when there are only insertions into a table (no
deletions), and when the time difference between the insertion and
the update is longer than the time needed to fill a block.

• If this is not the case, PCTFREE can be chosen (much)

smaller.

Basically, the PCTFREE model does not treat this case. No formula can
be applied, only rules of thumb. Advanced exercise: Propose other
ways to control the space reserve.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-66

PCTUSED (1)

• For each table/segment, Oracle manages a linked

list of blocks that still have space for new rows.

Oracle can manage more than one such list (parameter FREELISTS) for
tables with many concurrent insertions.

• The Parameter PCTUSED determines which blocks

are kept on this free list.

• When Oracle wants to insert a new row, it looks at

the first block on the free list. If after the inserti-

on, there would be still PCTFREE free space left, the

insertion is done.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-67

PCTUSED (2)

• Otherwise (insertion attempt fails), Oracle removes

the block from the free list, unless is is filled to less

than PCTUSED percent.

• This exception ensures that exceptionally long rows

do not remove blocks with a reasonable amount of

free space from the free list.

• Blocks are removed from the free list only if an

insertion attempt fails. Only then PCTUSED becomes

important (for insertions).
PCTUSED is also important for deletions, see below.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-68

PCTUSED (3)

Exercise:

• Suppose the block size is 1000 (to simplify the cal-

culation). Let PCTFREE=20 and PCTUSED=60.

• The free list looks as follows:

Block 1

300 Byte free
700 used

-

Block 2

700 Byte free
300 used

-

Block 3

800 Byte free
200 used

• What happens if the following rows are inserted?

� Row A: 200 Byte,
� Row B: 500 Byte,
� Row C: 200 Byte.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-69

PCTUSED (4)

• The sum of PCTFREE and PCTUSED can be no more

than 100, but it should be less in order to allow

blocks to be removed from the free list.

• If the sum is 100, blocks are in effect not removed

from the free list (unless they are filled exactly to

the right byte).

• Then INSERTs will take a long time since they have

to scan a large number of blocks for free space.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-70

PCTUSED (5)

• Suppose that all rows are 200 Bytes long, and let

PCTFREE: 10, blocksize: 2048, header size: 90 Bytes.

• Blocks have 2048−(90+205) = 1753 Bytes availa-

ble space, rows need 200 + 2 byte, so after 8 rows

are inserted, the next insertion fails.

• Only (8∗202)+90 = 1706 bytes are actually used,

so PCTUSED must be less than 1706/2048 = 83% in

order to remove the block from the free list.

Choosing PCTFREE smaller has no effect for insertions, still 8 rows are
inserted until PCTUSED is considered.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-71

PCTUSED (6)

• The maximum value for PCTUSED can be computed

as follows (it leaves space for one average row, so

that when such an insertion fails, the block is re-

moved from the free list):

Available Space − Length of one Row

Blocksize
∗ 100

where the available space is

(Blocksize ∗ (100− PCTFREE)/100)−Header Size.

• The default value is PCTUSED=40.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-72

PCTUSED (7)

• If rows are deleted from a block, the block is put

on the free list once less than PCTUSED space is used.
Since there is some overhead involved in putting blocks on the free
list and removing them again, it makes sense that there should be
space for several rows before a block is put back on the free list.

• The smaller PCTUSED is chosen, the longer it takes

until the block is again considered having free space

after deletions.

• E.g. if in the example PCTUSED were 50%, less than

2048 ∗ 0.50 = 1024 Bytes must be used (4 rows)

before the block is put back on the free list.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-73

CREATE TABLE Syntax

Example:

CREATE TABLE STUDENT(

SID NUMERIC(4) PRIMARY KEY,

FIRST VARCHAR(20),

LAST VARCHAR(20) NOT NULL)

TABLESPACE USER_DATA

STORAGE(INITIAL 10K

NEXT 10K

PCTINCREASE 50)

PCTFREE 20

PCTUSED 60;

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-74

Full Table Scan (1)

• As explained above, the row manager module must

be able to find all blocks that contain rows (or

might contain rows) of a given table.

The disk manager below returns a list of blocks for each table (a
segment), but not all blocks do necessarily contain rows.

• Oracle manages a “high water mark” for each ta-

ble, that is the number of blocks that were ever

used for storing rows of this table.

• In a full table scan, Oracle will read all blocks until

this “high water mark”.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-75

Full Table Scan (2)

• Suppose that a table contains 100000 rows, stored

in 1000 blocks. Even if then all rows are deleted, a

full table scan will nevertheless read all 1000 blocks.

• Normally, such extreme situations do not happen.

• But if there should be a large number of deletes,

consider exporting and reimporting the table.
Unless a similar number of insertions is expected soon.

• To delete all rows from a table use the TRUNCATE

command. This resets the high water mark.
No ROLLBACK is possible for this command.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-76

ANALYZE TABLE (1)

• The following Oracle SQL command gathers sta-

tistical information about a table, e.g. EMP:

ANALYZE TABLE EMP COMPUTE STATISTICS

• This command stores size information about the

table in the data dictionary, e.g.

� The number of rows in the analyzed table.

� The average row length in bytes.

� The number of blocks that ever contained rows.

� How full these blocks are on average.

� How many different values each attribute has.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-77

ANALYZE TABLE (2)

• This information is used by the query optimizer in

order to estimate the cost (execution time) for each

alternative query evaluation plan.

• Oracle does not automatically keep this information

up-to-date.

• If the DBMS wanted to keep the number of rows of

a table (table size) current, any insertion on table R

would lock the data dictionary entry for R.

Then no parallel insertions would be possible, e.g. different users could
not enter orders concurrently.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-78

ANALYZE TABLE (3)

• The query optimizer does not need exact values for

size parameters.

• In the worst case it chooses a query evaluation plan

that takes longer than the optimal one.

• Therefore, it is no problem that the data about the

table size are slightly outdated.

• One should execute the ANALYZE TABLE again from

time to time, at least after significant changes in

the size of the table.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-79

ANALYZE TABLE (4)

• The ANALYZE TABLE command can take a long time

to execute for large tables.

E.g. in order to compute the number of different values in each at-
tribute, it must sort the set of attribute values.

• Therefore, one can also request to estimate stati-

stics from a sample of rows

ANALYZE TABLE EMP ESTIMATE STATISTICS

One can also add e.g. “SAMPLE 10 PERCENT”.

The DBA should execute the ANALYZE TABLE outside of the main busi-
ness hours.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-80

ANALYZE TABLE (5)

• The output of the ANALYZE TABLE command is stored

in the data dictionary tables, especially TABS, COLS,

USER_TAB_COL_STATISTICS.
The entries in COLS remain only for backward compatibility, Oracle sug-
gests to use now USER_TAB_COL_STATISTICS (USER_PART_COL_STATISTICS
for partitioned tables). More information about the data distributi-
on in a column can be collected with histograms (explained in the
chapter about query optimization).

• The command itself prints only “Table analyzed.”.

• All data dictionary columns that contain output

from the ANALYZE TABLE are null until the table is

analyzed for the first time.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-81

Data Dictionary: TABS (1)

• TABS is a synonym for USER_TABLES. It contains one

row for each table owned by the current user (not

including views). It has 44 columns, e.g.:

� TABLE_NAME: Name of the table.

� TABLESPACE_NAME: Tablespace in which the table

is stored.

� PCT_FREE, PCT_USED, INITIAL_EXTENT, NEXT_EXTENT,

MIN_EXTENTS, MAX_EXTENTS, PCT_INCREASE, FREELISTS:

Storage parameters set in the CREATE TABLE.

PCTFREE etc. are reserved words. Therefore the different spelling.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-82

Data Dictionary: TABS (2)

• Columns of TABS, continued:

� NUM_ROWS: Number of rows in the table.

� BLOCKS: The number of used data blocks.
This is the “high water mark” mentioned above (i.e. blocks that
ever contained rows), not the total number of blocks allocated
for the table.

� EMPTY_BLOCKS: Number data blocks that are allo-

cated for the table, but not yet used.
Since every segment needs one header block, the total number of
allocated blocks (segment size) is BLOCKS+EMPTY_BLOCKS+1.

� CHAIN_CNT: Number of rows which are split bet-

ween blocks (includes migrated rows).

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-83

Data Dictionary: TABS (3)

• Columns of TABS, continued:

� AVG_ROW_LEN: Average length of a row in bytes.

� AVG_SPACE: Average amount of free space (in by-

tes) in blocks below the high water mark.

� AVG_SPACE_FREELIST_BLOCKS: Average free space in

blocks on the free list (used for insertions).

� NUM_FREELIST_BLOCKS: Number of blocks on the

free list (the free list contains only blocks below

the high water mark).

� LAST_ANALYZED: Date of last ANALYZE TABLE.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-84

Data Dictionary: COLS

• COLS (a synonym for USER_TAB_COLUMS) contains the

following information set by the ANALYZE TABLE:

� TABLE_NAME, COLUMN_NAME: Identifies the column.

� NUM_DISTINCT: Number of distinct data values.

� NUM_NULLS: Number of rows for which this column

is null.

� LOW_VALUE, HIGH_VALUE: Smallest/greatest value.

They are shown in the internal format (not readable).

• See also USER_TAB_COL_STATISTICS.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-85

Overview

1. Disk Space Management: Segments, Extents

2. Block Format, TIDs/ROWIDs

3. Block Free Space Management in Oracle

4. Row Format

'

&

$

%
5. Data Format

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-86

Row Format (1)

• Normal row format in Oracle (not chained, not clu-

stered):

Row
Header

1st Col.
Length

1st Col.
Data

2nd Col.
Length

2nd Col.
Data · · ·

• The row header contains the number of columns

and the number of chain pieces (3 bytes in total).

• The column length is encoded in one byte if below

250. Otherwise it needs three bytes.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-87

Row Format (2)

• The length of the column data depends on the data

type. E.g. a VARCHAR-string with 5 characters needs

5 byte.

See below for more information.

• In the order of columns is normally the order of

declaration in the CREATE TABLE statement.

But LONG columns are moved towards the end. Columns added with
ALTER TABLE are also added at the end.

• Null values need only the length byte (0).

If the columns at the end are all filled with null values, they are not
stored at all.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-88

Row Format (3)

• The Oracle Row Format is quite compact.

• However, if Oracle wants to access e.g. the fifth

attribute, it needs to look at each of the preceeding

column lengths.

• Normally the bottleneck is disk I/O, but not the

CPU.

An additional advantage is that when Oracle has to work with these
data elements, e.g. strings, it can simply pass a pointer to the length
around. So one can see the format also as the concatenation of data
values, which encode their own length.

• Exercise: Discuss alternative row formats.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-89

Overview

1. Disk Space Management: Segments, Extents

2. Block Format, TIDs/ROWIDs

3. Block Free Space Management in Oracle

4. Row Format

5. Data Format

'

&

$

%

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-90

Data Formats (1)

• The storage size of any data value can be determi-

ned with the function VSIZE:

SELECT SSN, VSIZE(SSN), LNAME, VSIZE(LNAME)
FROM STUDENT

• This is also possible without storing the value:

SELECT VSIZE(-1.2), VSIZE(’abc’)
FROM DUAL

• To see the internal representation of e.g. 123, use

SELECT DUMP(123, 16) FROM DUAL

The bytes are printed in hexadecimal notation (selected with the argu-
ment 16). This also works with other data types, e.g. DUMP(’ab’,16).

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-91

Data Formats (2)

• CHAR(n): A fixed-length string is stored in n Bytes

(one character per byte, filled with blanks to the

length n).

• VARCHAR(n): Here only the actual characters are sto-

red. (If a VARCHAR(10) column contains ’Jim’, it

needs 3 Byte.)

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-92

Data Formats (3)

• The strings are stored in the DB character set

(e.g. ASCII).
The character set can be chosen at DB creation time, but until
Oracle 8i it could not be changed later. Now it can be changed to
supersets that have the same codepoint values for the subset. Clients
can use a different character set and Oracle does the conversion.
Oracle can manage multi-byte character sets. Oracle has also types
NCHAR/NVARCHAR for storing strings in a second, national character set.

• RAW(n): Variable-length string of data which is not

interpreted / not converted between different cha-

racter sets.
Input/output is in form of a string of hexadecimal digits.
RAW(10) means max. 10 Byte, but ’00FF’ needs 2 Byte.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-93

Data Formats (4)

• NUMBER(p), NUMBER(p,s): Numbers are stored in

scientific notation with mantissa and exponent.

E.g. 123 = 1.23 ∗ 102.

It seems that Oracle really stores it as 1.23 ∗ 1001.
Note that NUMBER(p,s) is an Oracle-specific synonym for NUMERIC(p,s).

• The exponent needs always one byte, the mantis-

sa needs one byte per two digits (leading/training

zeros are not stored).

Even if the column is NUMBER(30), 123 needs only 3 Byte.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-94

Data Formats (5)

• So a positive number with n digits needs

1 + ceil(n/2)
bytes.

The Oracle 8 Concepts manual says something different.

• Negative numbers need one more byte for the sign.

• Oracle can store up to 38 significant digits, so a

number needs at most 21 Byte (or 20 Byte if po-

sitive).

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-95

Data Formats (6)

• ROWID: Physical pointer to a row, needs 10 bytes.

Maybe: Object 4 Byte, File+Block 4 Byte, Row 2 Byte (?).

• DATE: Timestamp (Date and Time), needs 7 Byte.

Year: 2 Byte, Month: 1 Byte, Day: 1 Byte, Hours: 1 Byte, Minu-
tes: 1 Byte, Seconds 1 Byte. In the default format for input/output
(DD-MON-YY) only the date portion can be specified and Oracle assu-
mes 0:00am (midnight). However, SYSDATE returns not only the current
date, but also the time.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-96

Experiments/Exercises (1)

• CREATE TABLE R(A NUMBER(4), B VARCHAR(50)).

• INSERT INTO R VALUES (12, ’abcde’).

• What will be the output of this query?

SELECT A, VSIZE(A), B, VSIZE(B) FROM R;

• ANALYZE TABLE R COMPUTE STATISTICS.

• What will be the output of this query?
SELECT AVG_ROW_LEN FROM TABS
WHERE TABLE_NAME = ’R’;

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-97

Experiments/Exercises (2)

• TABS also reports

� INITIAL_EXTENT=10240,

� BLOCKS=1,

� NUM_ROWS=1,

� EMPTY_BLOCKS=3,

� AVG_SPACE=1944,

� NUM_FREELIST_BLOCKS=1.

Please explain (blocksize is 2048).

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-98

Experiments/Exercises (3)

• When another row is inserted, e.g. (34,’uvwxy’),

the AVG_SPACE shrinks to 1930. Please explain.

• When this row is deleted again, AVG_SPACE grows

only to 1942. Why?

• The procedure on the next slide is used to insert

rows of the above length until the first block is full.

125 rows are inserted before the system starts to

use a second block.

This table is declared with PCTFREE=10. TABS shows e.g.: BLOCKS=2,
NUM_ROWS=126, EMPTY_BLOCKS=2, AVG_SPACE=1076, NUM_FREELIST_BLOCKS=1,
AVG_SPACE_FREELIST_BLOCKS=1944. Please explain.

Stefan Brass: Datenbanken IIB Universität Halle, 2004

3. Physical Storage of Relations 3-99

Experiments/Exercises (4)

(1) CREATE OR REPLACE PROCEDURE P AS
(2) N NUMBER;
(3) BEGIN
(4) N := 1;
(5) WHILE N < 2 LOOP
(6) INSERT INTO R VALUES(34, ’uvwxy’);
(7) SELECT COUNT(DISTINCT DBMS_ROWID.
(8) ROWID_BLOCK_NUMBER(ROWID))
(9) INTO N FROM R;

(10) END LOOP;
(11) END;

Stefan Brass: Datenbanken IIB Universität Halle, 2004

