
IBM
®

DB2

Universal

Database
™

Common

Criteria

Certification:

Administration

and

User

Documentation

Version

8.2

Revision

05

SC09-7981-00

���

IBM
®

DB2

Universal

Database
™

Common

Criteria

Certification:

Administration

and

User

Documentation

Version

8.2

Revision

05

SC09-7981-00

���

Before

using

this

information

and

the

product

it

supports,

be

sure

to

read

the

general

information

under

Notices.

This

document

contains

proprietary

information

of

IBM.

It

is

provided

under

a

license

agreement

and

is

protected

by

copyright

law.

The

information

contained

in

this

publication

does

not

include

any

product

warranties,

and

any

statements

provided

in

this

manual

should

not

be

interpreted

as

such.

You

can

order

IBM

publications

online

or

through

your

local

IBM

representative.

v

To

order

publications

online,

go

to

the

IBM

Publications

Center

at

www.ibm.com/shop/publications/order

v

To

find

your

local

IBM

representative,

go

to

the

IBM

Directory

of

Worldwide

Contacts

at

www.ibm.com/planetwide

To

order

DB2

publications

from

DB2

Marketing

and

Sales

in

the

United

States

or

Canada,

call

1-800-IBM-4YOU

(426-4968).

When

you

send

information

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

the

information

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

International

Business

Machines

Corporation

1993-2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide

Contents

Common

Criteria

certification

of

DB2

Universal

Database

products

.

.

.

.

. ix

Supported

interfaces

for

a

Common

Criteria

evaluated

configuration

.

.

.

. xi

About

This

Book

.

.

.

.

.

.

.

.

.

. xiii

Part

1.

Administration

.

.

.

.

.

.

.

. 1

Chapter

1.

Process

Overview

.

.

.

.

. 3

DB2

architecture

and

process

overview

.

.

.

.

. 3

Client-server

processing

model

.

.

.

.

.

.

.

. 5

Database

agents

.

.

.

.

.

.

.

.

.

.

.

.

. 9

Chapter

2.

Security

.

.

.

.

.

.

.

.

. 13

Authentications,

authorizations,

privileges,

and

authorities

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 13

Security

.

.

.

.

.

.

.

.

.

.

.

.

.

. 13

Authentication

.

.

.

.

.

.

.

.

.

.

.

. 13

Authorization

.

.

.

.

.

.

.

.

.

.

.

. 15

Privileges,

authority

levels,

and

database

authorities

.

.

.

.

.

.

.

.

.

.

.

.

.

. 15

Object

creation,

ownership,

and

privileges

.

.

. 19

Schemas

.

.

.

.

.

.

.

.

.

.

.

.

.

. 20

Details

on

privileges,

authorities,

and

authorization

.

.

.

.

.

.

.

.

.

.

.

.

. 21

Controlling

Database

Access

.

.

.

.

.

.

.

. 35

Security

issues

when

installing

DB2

Universal

Database

.

.

.

.

.

.

.

.

.

.

.

.

.

. 36

Authentication

methods

for

your

server

.

.

.

. 38

Authentication

considerations

for

remote

clients

43

Controlling

access

to

database

objects

.

.

.

.

. 43

Details

on

controlling

access

to

database

objects

44

Tasks

and

required

authorizations

.

.

.

.

.

. 53

Acquiring

Windows

users’

group

information

using

an

access

token

.

.

.

.

.

.

.

.

.

. 54

Details

on

security

based

on

operating

system

.

. 56

Chapter

3.

Auditing

DB2

Universal

Database

(DB2

UDB)

activities

.

.

.

. 57

Introduction

to

the

DB2

Universal

Database

(DB2

UDB)

audit

facility

.

.

.

.

.

.

.

.

.

.

.

. 57

Audit

facility

behavior

.

.

.

.

.

.

.

.

.

.

. 59

Audit

facility

usage

.

.

.

.

.

.

.

.

.

.

.

. 60

Working

with

DB2

audit

data

in

DB2

tables

.

.

. 64

Working

with

DB2

audit

data

in

DB2

tables

.

. 64

Creating

tables

to

hold

the

DB2

audit

data

.

.

. 64

Creating

DB2

audit

data

files

.

.

.

.

.

.

. 67

Loading

DB2

audit

data

into

tables

.

.

.

.

. 69

Selecting

DB2

audit

data

from

tables

.

.

.

.

. 71

Audit

facility

messages

.

.

.

.

.

.

.

.

.

. 72

Audit

facility

record

layouts

(introduction)

.

.

.

. 72

Details

on

audit

facility

record

layouts

.

.

.

.

. 73

Audit

record

layout

for

AUDIT

events

.

.

.

. 73

Audit

record

layout

for

CHECKING

events

.

.

. 74

Audit

record

object

types

.

.

.

.

.

.

.

.

. 75

List

of

possible

CHECKING

access

approval

reasons

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 76

List

of

possible

CHECKING

access

attempted

types

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 77

Audit

record

layout

for

OBJMAINT

events

.

.

. 79

Audit

record

layout

for

SECMAINT

events

.

.

. 80

List

of

possible

SECMAINT

privileges

or

authorities

.

.

.

.

.

.

.

.

.

.

.

.

.

. 81

Audit

record

layout

for

SYSADMIN

events

.

.

. 84

List

of

possible

SYSADMIN

audit

events

.

.

. 84

Audit

record

layout

for

VALIDATE

events

.

.

. 85

Audit

record

layout

for

CONTEXT

events

.

.

. 87

List

of

possible

CONTEXT

audit

events

.

.

.

. 87

Audit

facility

tips

and

techniques

.

.

.

.

.

.

. 88

Controlling

DB2

UDB

audit

facility

activities

.

.

. 89

Chapter

4.

Naming

rules

.

.

.

.

.

.

. 95

General

naming

rules

.

.

.

.

.

.

.

.

.

.

. 95

DB2

UDB

object

naming

rules

.

.

.

.

.

.

.

. 95

User,

user

ID

and

group

naming

rules

.

.

.

.

. 97

Workstation

naming

rules

.

.

.

.

.

.

.

.

. 98

Naming

rules

in

an

NLS

environment

.

.

.

.

. 99

Naming

rules

in

a

Unicode

environment

.

.

.

. 100

Chapter

5.

Considerations

for

Creating

a

Database

System

.

.

.

.

. 101

Database

directories

and

files

.

.

.

.

.

.

.

. 101

Space

requirements

for

database

objects

.

.

.

. 103

Space

requirements

for

system

catalog

tables

.

.

. 104

Space

requirements

for

user

table

data

.

.

.

.

. 105

Space

requirements

for

long

field

data

.

.

.

.

. 106

Space

requirements

for

large

object

data

.

.

.

. 107

Space

requirements

for

indexes

.

.

.

.

.

.

. 108

Space

requirements

for

log

files

.

.

.

.

.

.

. 110

Table

space

design

.

.

.

.

.

.

.

.

.

.

.

. 111

System

managed

space

.

.

.

.

.

.

.

.

.

. 114

Database

managed

space

.

.

.

.

.

.

.

.

. 116

Comparison

of

SMS

and

DMS

table

spaces

.

.

. 117

Relationship

between

table

spaces

and

buffer

pools

118

Catalog

table

space

design

.

.

.

.

.

.

.

.

. 119

Chapter

6.

Before

Creating

the

Database

.

.

.

.

.

.

.

.

.

.

.

.

. 121

Starting

DB2

UDB

on

UNIX

.

.

.

.

.

.

.

. 121

Starting

DB2

UDB

on

Windows

.

.

.

.

.

.

. 122

Grouping

objects

by

schema

.

.

.

.

.

.

.

. 122

Stopping

an

instance

on

UNIX

.

.

.

.

.

.

. 123

Stopping

an

instance

on

Windows

.

.

.

.

.

. 124

Instance

creation

.

.

.

.

.

.

.

.

.

.

.

. 125

Setting

the

DB2

UDB

environment

automatically

on

UNIX

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 127

©

Copyright

IBM

Corp.

1993-2004

iii

Setting

the

DB2

UDB

environment

manually

on

UNIX

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 128

UNIX

details

when

creating

instances

.

.

.

.

. 128

Windows

details

when

creating

instances

.

.

.

. 129

License

management

.

.

.

.

.

.

.

.

.

.

. 130

Chapter

7.

Creating

a

Database

and

Database

Objects

.

.

.

.

.

.

.

.

. 133

Creating

a

database

.

.

.

.

.

.

.

.

.

.

. 133

Defining

initial

table

spaces

.

.

.

.

.

.

.

. 134

Definition

of

system

catalog

tables

.

.

.

.

.

. 136

Definition

of

the

database

recovery

log

.

.

.

.

. 136

Binding

utilities

to

the

database

.

.

.

.

.

.

. 137

Creating

a

table

space

.

.

.

.

.

.

.

.

.

. 137

Creating

a

schema

.

.

.

.

.

.

.

.

.

.

.

. 140

Setting

a

schema

.

.

.

.

.

.

.

.

.

.

.

. 141

Creating

and

populating

a

table

.

.

.

.

.

.

. 142

Large

object

(LOB)

column

considerations

.

.

.

. 144

Creating

a

view

.

.

.

.

.

.

.

.

.

.

.

. 146

Creating

an

index

.

.

.

.

.

.

.

.

.

.

.

. 148

Using

an

index

.

.

.

.

.

.

.

.

.

.

.

.

. 149

Options

on

the

CREATE

INDEX

statement

.

.

. 150

Chapter

8.

Concurrency,

Isolation

Levels,

and

Locking

.

.

.

.

.

.

.

. 155

Deadlocks

between

applications

.

.

.

.

.

.

. 155

Concurrency

Control

and

Isolation

Levels

.

.

.

. 156

Concurrency

issues

.

.

.

.

.

.

.

.

.

. 156

Performance

impact

of

isolation

levels

.

.

.

. 157

Specifying

the

isolation

level

.

.

.

.

.

.

. 160

Concurrency

Control

and

Locking

.

.

.

.

.

. 163

Locks

and

concurrency

control

.

.

.

.

.

. 163

Lock

attributes

.

.

.

.

.

.

.

.

.

.

.

. 164

Locks

and

performance

.

.

.

.

.

.

.

.

. 166

Guidelines

for

locking

.

.

.

.

.

.

.

.

. 170

Correcting

lock

escalation

problems

.

.

.

.

. 172

Lock

type

compatibility

.

.

.

.

.

.

.

.

. 173

Lock

modes

and

access

paths

for

standard

tables

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 174

Lock

modes

for

table

and

RID

index

scans

of

MDC

tables

.

.

.

.

.

.

.

.

.

.

.

.

. 177

Locking

for

block

index

scans

for

MDC

tables

180

Factors

that

affect

locking

.

.

.

.

.

.

.

.

. 182

Factors

That

Affect

Locking

.

.

.

.

.

.

.

. 183

Locks

and

types

of

application

processing

.

.

. 183

Locks

and

data-access

methods

.

.

.

.

.

. 184

Index

types

and

next-key

locking

.

.

.

.

.

. 185

Chapter

9.

Configuring

DB2

to

be

Common

Criteria

compliant

.

.

.

.

. 187

Configuring

DB2

to

be

Common

Criteria

compliant

187

Chapter

10.

System

catalogs

and

security

maintenance

.

.

.

.

.

.

.

. 189

Using

the

system

catalog

for

security

issues

.

.

. 189

Details

on

using

the

system

catalog

for

security

issues

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 190

Retrieving

authorization

names

with

granted

privileges

.

.

.

.

.

.

.

.

.

.

.

.

.

. 190

Retrieving

all

names

with

DBADM

authority

190

Retrieving

names

authorized

to

access

a

table

191

Retrieving

all

privileges

granted

to

users

.

.

. 191

Securing

the

system

catalog

view

.

.

.

.

.

. 192

System

Catalog

Views

.

.

.

.

.

.

.

.

.

. 193

SYSCAT.COLAUTH

.

.

.

.

.

.

.

.

.

. 193

SYSCAT.DBAUTH

.

.

.

.

.

.

.

.

.

.

. 194

SYSCAT.INDEXAUTH

.

.

.

.

.

.

.

.

. 195

SYSCAT.PACKAGEAUTH

.

.

.

.

.

.

.

. 195

SYSCAT.PACKAGEDEP

.

.

.

.

.

.

.

.

. 196

SYSCAT.PASSTHRUAUTH

.

.

.

.

.

.

.

. 197

SYSCAT.SCHEMAAUTH

.

.

.

.

.

.

.

. 198

SYSCAT.SCHEMATA

.

.

.

.

.

.

.

.

.

. 198

SYSCAT.SEQUENCEAUTH

.

.

.

.

.

.

.

. 198

SYSCAT.SEQUENCES

.

.

.

.

.

.

.

.

. 199

SYSCAT.TABCONST

.

.

.

.

.

.

.

.

.

. 200

SYSCAT.TABLES

.

.

.

.

.

.

.

.

.

.

. 201

SYSCAT.TABLESPACES

.

.

.

.

.

.

.

.

. 205

SYSCAT.TBSPACEAUTH

.

.

.

.

.

.

.

. 206

SYSCAT.USEROPTIONS

.

.

.

.

.

.

.

.

. 206

SYSCAT.TABAUTH

.

.

.

.

.

.

.

.

.

. 206

Chapter

11.

Other

security

considerations

.

.

.

.

.

.

.

.

.

.

. 209

Introduction

to

firewall

support

.

.

.

.

.

.

. 209

Screening

router

firewalls

.

.

.

.

.

.

.

.

. 209

Application

proxy

firewalls

.

.

.

.

.

.

.

.

. 210

Circuit

level

firewalls

.

.

.

.

.

.

.

.

.

.

. 210

Stateful

multi-layer

inspection

(SMLI)

firewalls

.

. 210

Guidelines

for

stored

procedures

.

.

.

.

.

.

. 210

Chapter

12.

Command

Line

Processor

(CLP)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 213

db2

-

Command

Line

Processor

Invocation

.

.

. 213

Command

line

processor

options

.

.

.

.

.

.

. 214

Command

Line

Processor

Return

Codes

.

.

.

. 220

Command

Line

Processor

(CLP)

.

.

.

.

.

.

. 221

Chapter

13.

DB2

UDB

Commands

for

Administrators

.

.

.

.

.

.

.

.

.

.

. 227

BACKUP

DATABASE

.

.

.

.

.

.

.

.

.

. 227

BIND

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 232

CATALOG

DATABASE

.

.

.

.

.

.

.

.

.

. 249

CREATE

DATABASE

.

.

.

.

.

.

.

.

.

.

. 252

db2audit

-

Audit

Facility

Administrator

Tool

.

.

. 260

db2icrt

-

Create

Instance

.

.

.

.

.

.

.

.

.

. 260

db2rbind

-

Rebind

all

Packages

.

.

.

.

.

.

. 263

db2secv82

-

Set

permissions

for

DB2

objects

.

.

. 264

db2set

-

DB2

Profile

Registry

.

.

.

.

.

.

.

. 265

db2undgp

-

Revoke

Execute

Privilege

.

.

.

.

. 267

DROP

DATABASE

.

.

.

.

.

.

.

.

.

.

. 268

EXPORT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 269

GET

AUTHORIZATIONS

.

.

.

.

.

.

.

.

. 274

GET

DATABASE

CONFIGURATION

.

.

.

.

. 275

GET

DATABASE

MANAGER

CONFIGURATION

281

IMPORT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 285

INSPECT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 298

LIST

APPLICATIONS

.

.

.

.

.

.

.

.

.

. 302

LOAD

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 304

File

type

modifiers

for

load

.

.

.

.

.

.

.

.

. 326

iv

Common

Criteria

Certification:

Administration

and

User

Documentation

MIGRATE

DATABASE

.

.

.

.

.

.

.

.

.

. 336

QUIESCE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 338

QUIESCE

TABLESPACES

FOR

TABLE

.

.

.

.

. 340

RECONCILE

.

.

.

.

.

.

.

.

.

.

.

.

. 342

REORG

INDEXES/TABLE

.

.

.

.

.

.

.

.

. 346

RESTART

DATABASE

.

.

.

.

.

.

.

.

.

. 352

RESTORE

DATABASE

.

.

.

.

.

.

.

.

.

. 354

ROLLFORWARD

DATABASE

.

.

.

.

.

.

.

. 363

SET

WRITE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 371

START

DATABASE

MANAGER

.

.

.

.

.

.

. 373

STOP

DATABASE

MANAGER

.

.

.

.

.

.

. 378

UNQUIESCE

.

.

.

.

.

.

.

.

.

.

.

.

. 380

UPDATE

DATABASE

CONFIGURATION

.

.

.

. 381

UPDATE

DATABASE

MANAGER

CONFIGURATION

.

.

.

.

.

.

.

.

.

.

. 384

Chapter

14.

DB2

UDB

APIs

for

Administrators

.

.

.

.

.

.

.

.

.

.

. 387

db2Backup

-

Backup

database

.

.

.

.

.

.

.

. 387

db2CfgGet

-

Get

Configuration

Parameters

.

.

. 394

db2CfgSet

-

Set

Configuration

Parameters

.

.

.

. 397

db2DatabaseRestart

-

Restart

Database

.

.

.

.

. 400

db2DatabaseQuiesce

-

Database

Quiesce

.

.

.

. 402

db2DatabaseUnquiesce

-

Database

Unquiesce

.

.

. 404

db2Export

-

Export

.

.

.

.

.

.

.

.

.

.

. 405

db2Import

-

Import

.

.

.

.

.

.

.

.

.

.

. 412

db2Inspect

-

Inspect

database

.

.

.

.

.

.

.

. 423

db2InstanceStart

-

Instance

Start

.

.

.

.

.

.

. 428

db2InstanceStop

-

Instance

Stop

.

.

.

.

.

.

. 433

db2Load

-

Load

.

.

.

.

.

.

.

.

.

.

.

. 437

db2Reorg

-

Reorganize

.

.

.

.

.

.

.

.

.

. 458

db2Restore

-

Restore

database

.

.

.

.

.

.

.

. 463

db2Rollforward

-

Rollforward

Database

.

.

.

. 474

db2SetWriteForDB

-

Set

or

Resume

I/O

.

.

.

. 483

sqlabndx

-

Bind

.

.

.

.

.

.

.

.

.

.

.

. 484

sqlbftpq

-

Fetch

Table

Space

Query

.

.

.

.

.

. 487

sqlbmtsq

-

Table

Space

Query

.

.

.

.

.

.

.

. 489

sqlbotcq

-

Open

Table

Space

Container

Query

.

. 491

sqlbstpq

-

Single

Table

Space

Query

.

.

.

.

.

. 493

sqlecadb

-

Catalog

Database

.

.

.

.

.

.

.

. 494

sqlecrea

-

Create

Database

.

.

.

.

.

.

.

.

. 500

sqledrpd

-

Drop

Database

.

.

.

.

.

.

.

.

. 506

sqlemgdb

-

Migrate

Database

.

.

.

.

.

.

.

. 508

sqluadau

-

Get

Authorizations

.

.

.

.

.

.

.

. 510

sqlurcon

-

Reconcile

.

.

.

.

.

.

.

.

.

.

. 512

sqluvqdp

-

Quiesce

Table

Spaces

for

Table

.

.

.

. 514

Chapter

15.

SQL

Statements

for

Administrators

.

.

.

.

.

.

.

.

.

.

. 519

ALTER

FUNCTION

.

.

.

.

.

.

.

.

.

.

. 519

ALTER

METHOD

.

.

.

.

.

.

.

.

.

.

.

. 521

ALTER

PROCEDURE

.

.

.

.

.

.

.

.

.

.

. 522

ALTER

TABLE

.

.

.

.

.

.

.

.

.

.

.

.

. 525

ALTER

TABLESPACE

.

.

.

.

.

.

.

.

.

. 557

ALTER

VIEW

.

.

.

.

.

.

.

.

.

.

.

.

. 563

COMMENT

.

.

.

.

.

.

.

.

.

.

.

.

.

. 565

CREATE

FUNCTION

.

.

.

.

.

.

.

.

.

.

. 574

CREATE

INDEX

.

.

.

.

.

.

.

.

.

.

.

. 575

CREATE

METHOD

.

.

.

.

.

.

.

.

.

.

. 583

CREATE

PROCEDURE

.

.

.

.

.

.

.

.

.

. 588

CREATE

SCHEMA

.

.

.

.

.

.

.

.

.

.

. 588

CREATE

TABLE

.

.

.

.

.

.

.

.

.

.

.

. 591

CREATE

TABLESPACE

.

.

.

.

.

.

.

.

.

. 648

CREATE

VIEW

.

.

.

.

.

.

.

.

.

.

.

.

. 656

DELETE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 670

DROP

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 676

GRANT

(Database

Authorities)

.

.

.

.

.

.

. 700

GRANT

(Index

Privileges)

.

.

.

.

.

.

.

.

. 704

GRANT

(Package

Privileges)

.

.

.

.

.

.

.

. 705

GRANT

(Routine

Privileges)

.

.

.

.

.

.

.

. 708

GRANT

(Schema

Privileges)

.

.

.

.

.

.

.

. 711

GRANT

(Sequence

Privileges)

.

.

.

.

.

.

.

. 713

GRANT

(Server

Privileges)

.

.

.

.

.

.

.

.

. 715

GRANT

(Table

Space

Privileges)

.

.

.

.

.

.

. 716

GRANT

(Table,

View,

or

Nickname

Privileges)

.

. 718

INSERT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 724

REVOKE

(Database

Authorities)

.

.

.

.

.

.

. 733

RENAME

.

.

.

.

.

.

.

.

.

.

.

.

.

. 736

REVOKE

(Index

Privileges)

.

.

.

.

.

.

.

.

. 738

REVOKE

(Package

Privileges)

.

.

.

.

.

.

.

. 740

REVOKE

(Routine

Privileges)

.

.

.

.

.

.

.

. 742

REVOKE

(Schema

Privileges)

.

.

.

.

.

.

.

. 745

REVOKE

(Sequence

Privileges)

.

.

.

.

.

.

. 747

REVOKE

(Server

Privileges)

.

.

.

.

.

.

.

. 749

REVOKE

(Table

Space

Privileges)

.

.

.

.

.

.

. 750

REVOKE

(Table,

View,

or

Nickname

Privileges)

752

UPDATE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 757

Chapter

16.

Configuration

Parameters

769

Configuration

parameters

.

.

.

.

.

.

.

.

. 769

Configuration

parameters

summary

.

.

.

.

.

. 771

Database

Manager

Configuration

Parameter

Summary

.

.

.

.

.

.

.

.

.

.

.

.

.

. 771

Database

Configuration

Parameter

Summary

775

DB2

Administration

Server

(DAS)

Configuration

Parameter

Summary

.

.

.

.

.

.

.

.

.

. 779

Configuring

DB2

with

configuration

parameters

779

Security-Related

Configuration

Parameters

.

.

. 782

audit_buf_sz

-

Audit

buffer

size

.

.

.

.

.

. 782

authentication

-

Authentication

type

.

.

.

.

. 783

authentication

-

Authentication

type

DAS

.

.

. 784

catalog_noauth

-

Cataloging

allowed

without

authority

.

.

.

.

.

.

.

.

.

.

.

.

.

. 784

dasadm_group

-

DAS

administration

authority

group

name

.

.

.

.

.

.

.

.

.

.

.

.

. 785

dftdbpath

-

Default

database

path

.

.

.

.

. 785

svcename

-

TCP/IP

service

name

.

.

.

.

.

. 786

sysadm_group

-

System

administration

authority

group

name

.

.

.

.

.

.

.

.

. 787

sysctrl_group

-

System

control

authority

group

name

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 788

sysmaint_group

-

System

maintenance

authority

group

name

.

.

.

.

.

.

.

.

.

.

.

.

. 789

sysmon_group

-

System

monitor

authority

group

name

.

.

.

.

.

.

.

.

.

.

.

.

. 790

trust_allclnts

-

Trust

all

clients

.

.

.

.

.

.

. 790

trust_clntauth

-

Trusted

clients

authentication

791

Locking

Configuration

Parameters

.

.

.

.

.

. 792

dlchktime

-

Time

interval

for

checking

deadlock

792

locktimeout

-

Lock

timeout

.

.

.

.

.

.

.

. 793

Contents

v

|

|

|

|

|

|

|

|

|

|

maxlocks

-

Maximum

percent

of

lock

list

before

escalation

.

.

.

.

.

.

.

.

.

.

.

.

.

. 794

autorestart

-

Auto

restart

enable

.

.

.

.

.

.

. 795

database_consistent

-

Database

is

consistent

.

.

. 796

Chapter

17.

Security-Related

Special

Registers

.

.

.

.

.

.

.

.

.

.

.

.

. 797

Special

registers

.

.

.

.

.

.

.

.

.

.

.

. 797

CURRENT

CLIENT_APPLNAME

.

.

.

.

.

. 799

CURRENT

CLIENT_USERID

.

.

.

.

.

.

.

. 800

CURRENT

CLIENT_WRKSTNNAME

.

.

.

.

. 800

CURRENT

SERVER

.

.

.

.

.

.

.

.

.

.

. 800

CURRENT

SCHEMA

.

.

.

.

.

.

.

.

.

.

. 801

USER

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 801

Chapter

18.

Crash

Recovery

and

Database

Logs

.

.

.

.

.

.

.

.

.

.

. 803

Crash

recovery

.

.

.

.

.

.

.

.

.

.

.

.

. 803

Understanding

recovery

logs

.

.

.

.

.

.

.

. 804

Chapter

19.

Application

processes,

concurrency,

and

recovery

.

.

.

.

. 807

Chapter

20.

Identifiers

.

.

.

.

.

.

.

. 809

Naming

conventions

and

implicit

object

name

qualifications

.

.

.

.

.

.

.

.

.

.

.

.

. 809

Aliases

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 813

Authorization

IDs

and

authorization

names

.

.

. 814

Dynamic

SQL

characteristics

at

run

time

.

.

. 815

Authorization

IDs

and

statement

preparation

817

Column

names

.

.

.

.

.

.

.

.

.

.

.

.

. 818

Qualified

column

names

.

.

.

.

.

.

.

.

. 818

Correlation

names

.

.

.

.

.

.

.

.

.

.

. 818

Column

name

qualifiers

to

avoid

ambiguity

.

. 820

Column

name

qualifiers

in

correlated

references

822

References

to

host

variables

.

.

.

.

.

.

.

. 823

Host

variables

in

dynamic

SQL

.

.

.

.

.

. 824

References

to

BLOB,

CLOB,

and

DBCLOB

host

variables

.

.

.

.

.

.

.

.

.

.

.

.

.

. 825

References

to

locator

variables

.

.

.

.

.

.

. 826

References

to

BLOB,

CLOB,

and

DBCLOB

file

reference

variables

.

.

.

.

.

.

.

.

.

.

. 826

References

to

structured

type

host

variables

.

. 828

Chapter

21.

Naming

Conventions

.

.

. 831

Part

2.

User

Information

.

.

.

.

.

. 833

Chapter

22.

User

responsibilities

for

security

.

.

.

.

.

.

.

.

.

.

.

.

.

. 835

Chapter

23.

Utility

Considerations

.

. 837

Privileges,

authorities

and

authorization

required

to

use

export

.

.

.

.

.

.

.

.

.

.

.

.

. 837

Privileges,

authorities,

and

authorization

required

to

use

backup

.

.

.

.

.

.

.

.

.

.

.

.

. 837

Privileges,

authorities,

and

authorization

required

to

use

restore

.

.

.

.

.

.

.

.

.

.

.

.

. 837

Privileges,

authorities,

and

authorization

required

to

use

rollforward

.

.

.

.

.

.

.

.

.

.

.

. 838

Privileges,

authorities,

and

authorizations

required

to

use

Load

.

.

.

.

.

.

.

.

.

.

.

.

.

. 838

Chapter

24.

Commands

for

Users

.

.

. 839

ATTACH

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 839

DETACH

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 840

GET

CONNECTION

STATE

.

.

.

.

.

.

.

. 841

PRECOMPILE

.

.

.

.

.

.

.

.

.

.

.

.

. 842

REBIND

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 866

Chapter

25.

DB2

UDB

APIs

for

Users

871

sqlaprep

-

Precompile

Program

.

.

.

.

.

.

. 871

sqlarbnd

-

Rebind

.

.

.

.

.

.

.

.

.

.

.

. 873

sqleatcp

-

Attach

and

Change

Password

.

.

.

. 876

sqleatin

-

Attach

.

.

.

.

.

.

.

.

.

.

.

. 879

sqledtin

-

Detach

.

.

.

.

.

.

.

.

.

.

.

. 882

Chapter

26.

SQL

Statements

for

Users

885

COMMIT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 885

CONNECT

(Type

1)

.

.

.

.

.

.

.

.

.

.

. 887

CONNECT

(Type

2)

.

.

.

.

.

.

.

.

.

.

. 893

ROLLBACK

.

.

.

.

.

.

.

.

.

.

.

.

.

. 900

SELECT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 902

SET

SCHEMA

.

.

.

.

.

.

.

.

.

.

.

.

. 902

Subselect

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 904

select-clause

.

.

.

.

.

.

.

.

.

.

.

.

. 905

from-clause

.

.

.

.

.

.

.

.

.

.

.

.

. 908

table-reference

.

.

.

.

.

.

.

.

.

.

.

. 909

joined-table

.

.

.

.

.

.

.

.

.

.

.

.

. 916

where-clause

.

.

.

.

.

.

.

.

.

.

.

. 917

group-by-clause

.

.

.

.

.

.

.

.

.

.

. 918

having-clause

.

.

.

.

.

.

.

.

.

.

.

. 924

order-by-clause

.

.

.

.

.

.

.

.

.

.

.

. 924

fetch-first-clause

.

.

.

.

.

.

.

.

.

.

. 927

Examples

of

subselects

.

.

.

.

.

.

.

.

. 927

Examples

of

joins

.

.

.

.

.

.

.

.

.

.

. 929

Examples

of

grouping

sets,

cube,

and

rollup

.

. 932

Chapter

27.

Application

Considerations

.

.

.

.

.

.

.

.

.

.

. 941

Security

Considerations

when

Using

SQL

in

Applications

.

.

.

.

.

.

.

.

.

.

.

.

.

. 942

Package

Creation

for

Embedded

SQL

.

.

.

. 942

Precompilation

of

Source

Files

Containing

Embedded

SQL

.

.

.

.

.

.

.

.

.

.

. 943

Source

File

Requirements

for

Embedded

SQL

Applications

.

.

.

.

.

.

.

.

.

.

.

.

. 945

Compilation

and

Linkage

of

Source

Files

Containing

Embedded

SQL

.

.

.

.

.

.

.

. 946

Package

Creation

Using

the

BIND

Command

947

Generation

of

Sequential

Values

.

.

.

.

.

. 947

Management

of

Sequence

Behavior

.

.

.

.

. 949

Sequence

Objects

Compared

to

Identity

Columns

.

.

.

.

.

.

.

.

.

.

.

.

.

. 950

Authorization

Considerations

for

Embedded

SQL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 950

Authorization

Considerations

for

Dynamic

SQL

951

Authorization

Considerations

for

Static

SQL

.

. 952

vi

Common

Criteria

Certification:

Administration

and

User

Documentation

Effect

of

DYNAMICRULES

bind

option

on

dynamic

SQL

.

.

.

.

.

.

.

.

.

.

.

. 952

When

to

use

DB2

CLI

or

embedded

SQL

.

.

. 954

Units

of

work

.

.

.

.

.

.

.

.

.

.

.

.

. 956

Remote

unit

of

work

.

.

.

.

.

.

.

.

.

.

. 956

Compound

SQL

guidelines

.

.

.

.

.

.

.

.

. 958

Authorization

Considerations

for

APIs

.

.

.

.

. 959

Purpose

of

Multiple-Thread

Database

Access

.

.

. 959

Ending

a

Transaction

with

the

COMMIT

Statement

960

Ending

a

Transaction

with

the

ROLLBACK

Statement

.

.

.

.

.

.

.

.

.

.

.

.

.

. 961

Security

and

Java

Applications

.

.

.

.

.

.

. 962

SQLJ

Considerations

.

.

.

.

.

.

.

.

.

. 962

JDBC

Considerations

.

.

.

.

.

.

.

.

.

. 971

Type

2

JDBC

Driver

Considerations

.

.

.

.

. 975

Universal

JDBC

Driver

Considerations

.

.

.

. 978

Security

and

Routines

.

.

.

.

.

.

.

.

.

. 988

Routines

in

application

development

.

.

.

. 988

Procedures

.

.

.

.

.

.

.

.

.

.

.

.

. 991

User-defined

scalar

functions

.

.

.

.

.

.

. 992

User-defined

scalar

functions

.

.

.

.

.

.

. 995

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 996

Security

considerations

for

routines

.

.

.

.

. 996

Connection

contexts

in

SQLJ

routines

.

.

.

. 999

Library

and

class

management

considerations

1000

Rebuilding

DB2

routine

shared

libraries

.

.

. 1002

Updating

the

database

manager

configuration

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1003

SQLCA

(SQL

communications

area)

.

.

.

.

. 1004

SQLCA

field

descriptions

.

.

.

.

.

.

.

. 1004

Error

reporting

.

.

.

.

.

.

.

.

.

.

. 1007

SQLCA

usage

in

partitioned

database

systems

1007

SQLDA

(SQL

descriptor

area)

.

.

.

.

.

.

. 1008

SQLDA

field

descriptions

.

.

.

.

.

.

.

. 1008

Effect

of

DESCRIBE

on

the

SQLDA

.

.

.

.

. 1012

SQLTYPE

and

SQLLEN

.

.

.

.

.

.

.

. 1013

SQL-AUTHORIZATIONS

.

.

.

.

.

.

.

.

. 1016

Part

3.

Security

Plug-Ins

.

.

.

.

. 1019

Chapter

28.

Security

plug-ins

.

.

.

. 1021

Security

plug-ins

.

.

.

.

.

.

.

.

.

.

.

. 1021

Security

plug-in

library

locations

.

.

.

.

.

. 1024

Security

plug-in

naming

conventions

.

.

.

.

. 1025

Security

plug-in

support

for

two-part

user

IDs

1026

32-bit

and

64-bit

considerations

for

security

plug-ins

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1028

Security

plug-in

problem

determination

.

.

.

. 1029

Deploying

a

group

retrieval

plug-in

.

.

.

.

. 1030

Deploying

a

user

ID/password

plug-in

.

.

.

. 1031

Deploying

a

GSS-API

plug-in

.

.

.

.

.

.

. 1033

Deploying

a

Kerberos

plug-in

.

.

.

.

.

.

. 1034

Chapter

29.

Developing

security

plug-ins

.

.

.

.

.

.

.

.

.

.

.

.

. 1037

How

DB2

loads

security

plug-ins

.

.

.

.

.

. 1037

Restrictions

on

security

plug-in

libraries

.

.

.

. 1038

Return

codes

for

security

plug-ins

.

.

.

.

.

. 1040

Error

messages

for

security

plug-ins

.

.

.

.

. 1042

Calling

sequences

for

the

security

plug-in

APIs

1043

Chapter

30.

Security

plug-in

APIs

1047

Security

plug-in

APIs

.

.

.

.

.

.

.

.

.

. 1047

Group

plug-in

APIs

.

.

.

.

.

.

.

.

.

.

. 1048

APIs

for

group

retrieval

plug-ins

.

.

.

.

. 1048

db2secGroupPluginInit

-

Initialize

group

plug-in

function

.

.

.

.

.

.

.

.

.

.

. 1050

db2secPluginTerm

-

Clean

up

group

plug-in

resources

function

.

.

.

.

.

.

.

.

.

. 1051

db2secGetGroupsForUser

-

Get

list

of

groups

for

user

function

.

.

.

.

.

.

.

.

.

.

. 1052

db2secDoesGroupExist

-

Check

if

group

exists

function

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1055

db2secFreeGroupListMemory

-

Free

group

list

memory

function

.

.

.

.

.

.

.

.

.

.

. 1056

db2secFreeErrormsg

-

Free

error

message

memory

function

.

.

.

.

.

.

.

.

.

.

. 1057

User

authentication

plug-in

APIs

.

.

.

.

.

. 1057

APIs

for

user

ID/password

authentication

plug-ins

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1057

db2secClientAuthPluginInit

-

Initialize

client

authentication

plug-in

.

.

.

.

.

.

.

.

. 1064

db2secClientAuthPluginTerm

-

Clean

up

client

authentication

plug-in

resources

function

.

.

. 1065

db2secRemapUserid

-

Remap

user

ID

and

password

function

.

.

.

.

.

.

.

.

.

. 1065

db2secGetDefaultLoginContext

-

Get

default

login

context

function

.

.

.

.

.

.

.

.

. 1067

db2secGenerateInitialCred

-

Generate

initial

credentials

function

.

.

.

.

.

.

.

.

.

. 1069

db2secValidatePassword

-

Validate

password

function

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1070

db2secProcessServerPrincipalName

-

Process

service

principal

name

returned

from

server

function

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1073

db2secFreeToken

-

Free

memory

held

by

token

function

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1073

db2secFreeInitInfo

-

Clean

up

resources

held

by

db2secGenerateInitialCred()

function

.

.

. 1074

db2secServerAuthPluginInit

-

Initialize

server

authentication

plug-in

function

.

.

.

.

.

. 1075

db2secServerAuthPluginTerm

-

Clean

up

server

authentication

plug-in

resources

function

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1077

db2secGetAuthIDs

-

Get

authentication

IDs

function

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1077

db2secDoesAuthIDExist

-

Check

if

authentication

ID

exists

function

.

.

.

.

. 1079

GSS-API

plug-in

APIs

.

.

.

.

.

.

.

.

.

. 1080

Required

APIs

and

Definitions

for

GSS-API

authentication

plug-ins

.

.

.

.

.

.

.

.

. 1080

Restrictions

for

GSS-API

authentication

plug-ins

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1081

Security

plug-in

API

versioning

.

.

.

.

.

.

. 1081

Chapter

31.

Security

plug-in

deployment

limitations

.

.

.

.

.

.

. 1083

Chapter

32.

Security

Plug-In

Configuration

Parameters

.

.

.

.

. 1085

clnt_krb_plugin

-

Client

Kerberos

plug-in

.

.

. 1085

Contents

vii

clnt_pw_plugin

-

Client

userid-password

plug-in

1085

group_plugin

-

Group

plug-in

.

.

.

.

.

.

. 1086

local_gssplugin

-

GSS

API

plug-in

used

for

local

instance

level

authorization

.

.

.

.

.

.

.

. 1086

srvcon_auth

-

Authentication

type

for

incoming

connections

at

the

server

.

.

.

.

.

.

.

.

. 1087

srvcon_gssplugin_list

-

List

of

GSS

API

plug-ins

for

incoming

connections

at

the

server

.

.

.

. 1087

srvcon_pw_plugin

-

Userid-password

plug-in

for

incoming

connections

at

the

server

.

.

.

.

.

. 1088

srv_plugin_mode

-

Server

plug-in

mode

.

.

.

. 1088

Part

4.

Appendixes

.

.

.

.

.

.

. 1091

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1093

Notices

.

.

.

.

.

.

.

.

.

.

.

.

. 1109

Trademarks

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1111

Contacting

IBM

.

.

.

.

.

.

.

.

.

. 1113

Product

information

.

.

.

.

.

.

.

.

.

.

. 1113

viii

Common

Criteria

Certification:

Administration

and

User

Documentation

Common

Criteria

certification

of

DB2

Universal

Database

products

For

Version

8.2,

DB2

Universal

Database

(DB2

UDB)

products

are

certified

according

to

the

Common

Criteria

evaluation

assurance

level

4

(EAL4),

augmented

with

Flaw

remediation

ALC_FLR.1.

The

following

products

are

certified

on

the

following

operating

systems:

Table

1.

Certified

DB2

Universal

Database

configurations

Windows®

2000

Linux

SuSE

Enterprise

Server

V8

AIX®

5.2

Solaris

Operating

Environment,

8

Enterprise

Server

Edition

Note:

Single-partition

environment

only.

Yes

(32-bit

only)

Yes

(32-bit

only)

Yes

(64-bit

only)

Yes

(64-bit

only)

Workgroup

Server

Edition

Yes

(32-bit

only)

Yes

(32-bit

only)

Yes

(64-bit

only)

Yes

(64-bit

only)

Personal

Edition

Yes

(32-bit

only)

Yes

(32-bit

only)

N/A

N/A

Express

Edition

Yes

(32-bit

only)

Yes

(32-bit

only)

N/A

N/A

Notes:

1.

DB2

UDB

configurations

on

the

Linux

SuSE

environment

are

Common

Criteria

certified

on

Intel-based

hardware

only.

2.

In

a

Common

Criteria

certified

DB2

UDB

environment,

DB2

UDB

clients

are

supported

on

the

following

operating

systems:

v

Windows

2000

v

Linux

SuSE

Enterprise

Server

V8

v

AIX

5.2

v

Solaris

Operating

Environment,

8

Only

32-bit

clients

are

supported.

For

more

information

about

Common

Criteria,

see

the

Common

Criteria

web

site

at:

http://niap.nist.gov/cc-scheme/.

For

information

about

installing

and

configuring

a

DB2

UDB

system

that

conforms

to

the

Common

Criteria

EAL4,

see

the

following

books:

v

DB2

Universal

Database

Common

Criteria

Certification:

Installing

DB2

Universal

Database

Enterprise

Server

Edition

and

DB2

Universal

Database

Workgroup

Server

Edition

v

DB2

Universal

Database

Common

Criteria

Certification:

Installing

DB2

Universal

Database

Personal

Edition

v

DB2

Universal

Database

Common

Criteria

Certification:

Installing

DB2

Universal

Database

Express

Edition

v

DB2

Universal

Database

Common

Criteria

Certification:

Administration

and

User

Documentation

©

Copyright

IBM

Corp.

1993-2004

ix

http://niap.nist.gov/cc-scheme/

These

books

are

available

in

PDF

format

from

the

DB2

Information

Management

Library.

x

Common

Criteria

Certification:

Administration

and

User

Documentation

http://www.ibm.com/software/data/db2/library/
http://www.ibm.com/software/data/db2/library/

Supported

interfaces

for

a

Common

Criteria

evaluated

configuration

The

set

of

DB2

Universal

Database

interfaces

that

are

used

in

the

Common

Criteria

evaluation

of

DB2

Universal

Database

are

as

follows:

v

The

DB2

Universal

Database

install

program

v

The

command

line

processor

v

DB2

commands

v

DB2

application

programming

interfaces

(APIs)

v

SQL

statements

You

can

use

these

DB2

Universal

Database

interfaces

when

installing

and

configuring

a

Common

Criteria

compliant

DB2

Universal

Database

system.

Other

interfaces

that

are

provided

by

DB2

Universal

Database,

such

as

the

Control

Center

or

Command

Editor

were

not

used

during

the

Common

Criteria

evaluation

of

DB2

Universal

Database,

and

must

not

be

used

in

the

Common

Criteria

evaluation

configuration.

NOT

FENCED

routines

are

not

supported.

©

Copyright

IBM

Corp.

1993-2004

xi

|
|
|
|

xii

Common

Criteria

Certification:

Administration

and

User

Documentation

About

This

Book

This

book

is

intended

for

use

by

assessors

validating

that

DB2

Universal

Database

(DB2

UDB)

conforms

to

the

Common

Critera

EAL4

specification.

It

is

also

intended

for

those

who

want

to

set

up

a

DB2

UDB

environment

that

conforms

to

the

characteristics

of

the

evaluated

environment.

This

book

is

divided

into

three

parts.

Part

1,

“Administration,”

on

page

1,

provides

information

that

is

intended

for

use

by

database

administrators,

and

includes

information

on:

v

The

DB2

UDB

process

model

v

The

DB2

UDB

security

model,

and

the

facilities

available

to

set

up

and

maintain

security

v

How

to

set

up

the

DB2

UDB

environment

so

that

it

conforms

to

the

requirements

of

the

Common

Criteria

EAL4

specification

v

How

to

audit

activity

in

the

environment

Part

1,

“Administration,”

on

page

1

also

provides

background

information

that

you

should

be

familiar

with

before

setting

up

the

DB2

UDB

environment.

Part

2,

“User

Information,”

on

page

833,

describes

the

security-related

considerations

that

are

applicable

to

users

of

the

DB2

UDB

environment,

including

the

type

of

authorization

that

the

administrator

must

give

to

a

user

before

that

user

can

work

with

DB2

utilities.

This

part

of

the

book

also

lists

the

DB2

UDB

commands

and

SQL

statements

that

are

appropriate

for

DB2

UDB

users.

In

addition,

the

security-related

considerations

for

writing

applications

that

interact

with

DB2

UDB

are

also

provided.

Part

3,

“Security

Plug-Ins,”

on

page

1019

provides

information

on

security

plug-ins.

Note

that

only

the

default

IBM-supplied

operating-system

based

authentication

and

group

plug-ins

are

supported

in

Common

Criteria

compliant

environments.

Note:

This

book

does

not

provide

information

on

how

to

install

DB2

UDB.

For

installation

information,

see

the

following

books:

v

DB2

Universal

Database

Common

Criteria

Certification:

Installing

DB2

Universal

Database

Enterprise

Server

Edition

and

DB2

Universal

Database

Workgroup

Server

Edition

v

DB2

Universal

Database

Common

Criteria

Certification:

Installing

DB2

Universal

Database

Personal

Edition

v

DB2

Universal

Database

Common

Criteria

Certification:

Installing

DB2

Universal

Database

Express

Edition

Some

topics

in

this

book

may

link

to

topics

that

are

not

in

any

of

the

books

listed

above.

Topics

that

are

referenced

outside

of

the

Common

Criteria

certification

documentation

are

for

informational

purposes

only,

and

are

not

required

for

either

installing

or

configuring

a

Common

Criteria

compliant

environment.

©

Copyright

IBM

Corp.

1993-2004

xiii

xiv

Common

Criteria

Certification:

Administration

and

User

Documentation

Part

1.

Administration

The

information

in

this

section

is

provided

for

use

by

system

administrators

who

are

not

careless,

willfully

negligent,

or

hostile,

and

who

will

follow

and

abide

by

the

instructions

provided

by

the

administrator

documentation.

©

Copyright

IBM

Corp.

1993-2004

1

|
|
|

2

Common

Criteria

Certification:

Administration

and

User

Documentation

Chapter

1.

Process

Overview

DB2

architecture

and

process

overview

.

.

.

.

. 3

Client-server

processing

model

.

.

.

.

.

.

.

. 5

Database

agents

.

.

.

.

.

.

.

.

.

.

.

.

. 9

DB2

architecture

and

process

overview

General

information

about

DB2®

architecture

and

processes

can

help

you

understand

detailed

information

provided

for

specific

topics.

The

following

figure

shows

a

general

overview

of

the

architecture

and

processes

for

DB2

UDB.

On

the

client

side,

either

local

or

remote

applications,

or

both,

are

linked

with

the

DB2

Universal

Database™

client

library.

Local

clients

communicate

using

shared

memory

and

semaphores;

remote

clients

use

a

protocol

such

as

Named

Pipes

(NPIPE),

TCP/IP,

NetBIOS,

or

SNA.

Page cleaners

Shared memory and semaphores,
TCPIP, Named pipes, NetBIOS,
SNA, IPX/SPX

Logger

Log buffer

Clients

UDB server

Buffer
Pool(s)

Hard disksHard drive

Log

Hard disks

Scatter/Gather
I/Os

Write log
requests

Async I/O
prefetch
requests

Common prefetch
request queue

Coordinator
agent

Subagents Subagents

UDB Client Library

Client
application

Client
application

Parallel, page
write requests

Prefetchers

Logical
agents

Parallel,
big-block,
read requests

Hard disks

Coordinator
agent

Deadlock
detector

Victim
notifications

Figure

1.

Architecture

and

Processes

Overview

©

Copyright

IBM

Corp.

1993-2004

3

On

the

server

side,

activity

is

controlled

by

engine

dispatchable

units

(EDUs).

In

all

figures

in

this

section,

EDUs

are

shown

as

circles

or

groups

of

circles.

EDUs

are

implemented

as

threads

in

a

single

process

on

Windows®-based

platforms

and

as

processes

on

UNIX®.

DB2

agents

are

the

most

common

type

of

EDUs.

These

agents

perform

most

of

the

SQL

processing

on

behalf

of

applications.

Prefetchers

and

page

cleaners

are

other

common

EDUs.

A

set

of

subagents

might

be

assigned

to

process

the

client

application

requests.

Multiple

subagents

can

be

assigned

if

the

machine

where

the

server

resides

has

multiple

processors

or

is

part

of

a

partitioned

database.

For

example,

in

a

symmetric

multiprocessing

(SMP)

environment,

multiple

SMP

subagents

can

exploit

the

many

processors.

All

agents

and

subagents

are

managed

using

a

pooling

algorithm

that

minimizes

the

creation

and

destruction

of

EDUs.

Buffer

pools

are

areas

of

database

server

memory

where

database

pages

of

user

table

data,

index

data,

and

catalog

data

are

temporarily

moved

and

can

be

modified.

Buffer

pools

are

a

key

determinant

of

database

performance

because

data

can

be

accessed

much

faster

from

memory

than

from

disk.

If

more

of

the

data

needed

by

applications

is

present

in

a

buffer

pool,

less

time

is

required

to

access

the

data

than

to

find

it

on

disk.

The

configuration

of

the

buffer

pools,

as

well

as

prefetcher

and

page

cleaner

EDUs,

controls

how

quickly

data

can

be

accessed

and

how

readily

available

it

is

to

applications.

v

Prefetchers

retrieve

data

from

disk

and

move

it

into

the

buffer

pool

before

applications

need

the

data.

For

example,

applications

needing

to

scan

through

large

volumes

of

data

would

have

to

wait

for

data

to

be

moved

from

disk

into

the

buffer

pool

if

there

were

no

data

prefetchers.

Agents

of

the

application

send

asynchronous

read-ahead

requests

to

a

common

prefetch

queue.

As

prefetchers

become

available,

they

implement

those

requests

by

using

big-block

or

scatter-read

input

operations

to

bring

the

requested

pages

from

disk

to

the

buffer

pool.

If

you

have

multiple

disks

for

storage

of

the

database

data,

the

data

can

be

striped

across

the

disks.

Striping

data

lets

the

prefetchers

use

multiple

disks

at

the

same

time

to

retrieve

data.

v

Page

cleaners

move

data

from

the

buffer

pool

back

out

to

disk.

Page

cleaners

are

background

EDUs

that

are

independent

of

the

application

agents.

They

look

for

pages

from

the

buffer

pool

that

are

no

longer

needed

and

write

the

pages

to

disk.

Page

cleaners

ensure

that

there

is

room

in

the

buffer

pool

for

the

pages

being

retrieved

by

the

prefetchers.

Without

the

independent

prefetchers

and

the

page

cleaner

EDUs,

the

application

agents

would

have

to

do

all

of

the

reading

and

writing

of

data

between

the

buffer

pool

and

disk

storage.

Related

concepts:

v

“Prefetching

data

into

the

buffer

pool”

in

the

Administration

Guide:

Performance

v

“Deadlocks

between

applications”

on

page

155

v

“Database

directories

and

files”

on

page

101

v

“Log

processing”

in

the

Administration

Guide:

Performance

v

“Update

processing”

in

the

Administration

Guide:

Performance

v

“Client-server

processing

model”

on

page

5

v

“Memory

management”

in

the

Administration

Guide:

Performance

4

Common

Criteria

Certification:

Administration

and

User

Documentation

v

“Connection-concentrator

improvements

for

client

connections”

in

the

Administration

Guide:

Performance

Related

reference:

v

“max_coordagents

-

Maximum

number

of

coordinating

agents

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“max_connections

-

Maximum

number

of

client

connections

configuration

parameter”

in

the

Administration

Guide:

Performance

Client-server

processing

model

Local

and

remote

application

processes

can

work

with

the

same

database.

A

remote

application

is

one

that

initiates

a

database

action

from

a

machine

that

is

remote

from

the

database

machine.

Local

applications

are

directly

attached

to

the

database

at

the

server

machine.

Note:

How

DB2®

manages

client

connections

depends

on

whether

the

connection

concentrator

is

on

or

off.

The

connection

concentrator

is

ON

when

the

max_connections

database

manager

configuration

parameter

is

set

larger

than

the

max_coordagents

configuration

parameter.

v

If

the

connection

concentrator

is

OFF,

each

client

application

is

assigned

a

unique

EDU

called

a

coordinator

agent

that

coordinates

the

processing

for

that

application

and

communicates

with

it.

v

If

the

connection

concentrator

is

ON,

each

coordinator

agent

can

manage

many

client

connections,

one

at

a

time,

and

might

coordinate

the

other

worker

agents

to

do

this

work.

For

Internet

applications

with

many

relatively

transient

connections,

or

similar

applications

with

many

relatively

small

transactions,

the

connection

concentrator

improves

performance

by

allowing

many

more

client

applications

to

be

connected.

It

also

reduces

system

resource

use

for

each

connection.

Each

of

the

circles

of

the

following

figure

represent

engine

dispatchable

units

(EDUs)

which

are

known

as

“processes”

on

UNIX®

platforms,

and

“threads”

on

Windows®

NT.

A

means

of

communicating

between

an

application

and

the

database

manager

must

be

established

before

the

work

the

application

wants

done

at

the

database

can

be

carried

out.

At

A1

in

the

figure

below,

a

local

client

establishes

communications

first

through

the

db2ipccm.

At

A2,

the

db2ipccm

works

with

a

db2agent

EDU,

which

becomes

the

coordinator

agent

for

the

application

requests

from

the

local

client.

The

coordinator

agent

then

contacts

the

client

application

at

A3

to

establish

shared

memory

communications

between

the

client

application

and

the

coordinator.

The

application

at

the

local

client

is

connected

to

the

database

at

A4.

At

B1

in

the

figure

below,

a

remote

client

establishes

communications

through

the

db2tcpcm

EDU.

If

any

other

communications

protocol

is

chosen,

the

appropriate

communication

manager

is

used.

The

db2tcpcm

EDU

establishes

TCP/IP

communication

between

the

client

application

and

the

db2tcpcm.

It

then

works

with

a

db2agent

at

B2,

which

becomes

the

coordinator

agent

for

the

application

and

passes

the

connection

to

this

agent.

At

B3

the

coordinator

agent

contacts

the

remote

client

application

and

is

connected

to

the

database.

Chapter

1.

Process

Overview

5

Other

things

to

notice

in

this

figure:

v

Worker

agents

carry

out

application

requests.

v

There

are

four

types

of

worker

agents:

active

coordinator

agents,

active

subagents,

associated

subagents,

and

idle

agents.

v

Each

client

connection

is

linked

to

an

active

coordinator

agent.

v

In

a

partitioned

database

environment,

and

enabled

intra-partition

parallelism

environments,

the

coordinator

agents

distribute

database

requests

to

subagents

(db2agntp).

The

subagents

perform

the

requests

for

the

application.

v

There

is

an

agent

pool

(db2agent)

where

idle

and

pooled

agents

wait

for

new

work.

v

Other

EDUs

manage

client

connections,

logs,

two-phase

COMMITs,

backup

and

restore

tasks,

and

other

tasks.

App B

Remote client

App A

App A

App B

Local client

Server machine

EDUs per connection

db2ipccm

db2agent

db2agent

db2wdog

db2sysc

db2resyn

db2gds

db2cart

db2dart

db2agent

Unassociated idle agents

db2agntp

db2agntp

Active
subagents

Idle
subagents

db2agntp

db2agntp

logical
agents

Coordinator
agent

Coordinator
agent

db2tcpcm
B2B1

B4
B5

A1

EDUs per instance

A4
shared memory and semaphores

TCP

A3

A2

B3

Figure

2.

Process

model

overview

6

Common

Criteria

Certification:

Administration

and

User

Documentation

This

figure

shows

additional

engine

dispatchable

units

(EDUs)

that

are

part

of

the

server

machine

environment.

Each

active

database

has

its

own

shared

pool

of

prefetchers

(db2pfchr)

and

page

cleaners

(db2pclnr),

and

its

own

logger

(db2loggr)

and

deadlock

detector

(db2dlock).

Fenced

user-defined

functions

(UDFs)

and

stored

procedures,

which

are

not

shown

in

the

figure,

are

managed

to

minimize

costs

associated

with

their

creation

and

destruction.

The

default

for

the

keepfenced

database

manager

configuration

parameter

is

“YES”,

which

keeps

the

stored

procedure

process

available

for

re-use

at

the

next

stored

procedure

call.

Note:

Unfenced

UDFs

and

stored

procedures

run

directly

in

an

agent’s

address

space

for

better

performance.

However,

because

they

have

unrestricted

access

to

the

agent’s

address

space,

they

need

to

be

rigorously

tested

before

being

used.

The

multiple

partition

processing

model

is

a

logical

extension

of

the

single

partition

processing

model.

In

fact,

a

single

common

code

base

supports

both

modes

of

operation.

The

following

figure

shows

the

similarities

and

differences

between

the

single

partition

processing

model

as

seen

in

the

previous

two

figures,

and

the

multiple

partition

processing

model.

Server machine

App A

App B

EDUs per connection

db2agent

db2agent

db2agntp

db2agntp

Active
subagents

Idle
subagents

db2agntp

db2agntp

Coordinator
agent

Coordinator
agent

TEST database

PROD database

EDUs per active database EDUs per request

db2pclnr

db2bm, db2med, . . .

db2pfchr

db2pclnr

db2pfchr

db2udfp

db2dari

Fenced processes

Fenced UDF
processes

Fenced stored
procedure processes

db2loggr db2dlock

db2loggr db2dlock

Figure

3.

Process

model,

part

2

Chapter

1.

Process

Overview

7

Most

engine

dispatchable

units

(EDUs)

are

the

same

between

the

single

partition

processing

model

and

the

multiple

partition

processing

model.

In

a

multiple

partition

(or

node)

environment,

one

of

the

partitions

is

the

catalog

node.

The

catalog

keeps

all

of

the

information

relating

to

the

objects

in

the

database.

As

shown

in

the

figure

above,

because

Application

A

creates

the

PROD

database

on

Node0000,

the

catalog

for

the

PROD

database

is

created

on

this

node.

Similarly,

because

Application

B

creates

the

TEST

database

on

Node0001,

the

catalog

for

the

TEST

database

is

created

on

this

node.

You

might

want

to

create

your

databases

on

different

nodes

to

balance

the

extra

activity

associated

with

the

catalogs

for

each

database

across

the

nodes

in

your

system

environment.

Catalog node for TEST
db2glock

App A App B 2 create database
2 connect to TEST
2 load. . .
2 select . . .

DB TEST
DB
DB
DB

DB2 create database PROD
2 connect to PROD
2 load. . .
2 select . . .

DB
DB
DB

Catalog node for PROD
db2glock

db2pdbc db2pdbcdb2fcmd db2fcmd

App A App A

PROD database PROD databaseTEST database TEST database

App B App B

Node0000 Node0001

Figure

4.

Process

model

and

multiple

partitions

8

Common

Criteria

Certification:

Administration

and

User

Documentation

There

are

additional

EDUs

(db2pdbc

and

db2fcmd)

associated

with

the

instance

and

these

are

found

on

each

node

in

a

multiple

partition

database

environment.

These

EDUs

are

needed

to

coordinate

requests

across

database

partitions

and

to

enable

the

Fast

Communication

Manager

(FCM).

There

is

also

an

additional

EDU

(db2glock)

associated

with

the

catalog

node

for

the

database.

This

EDU

controls

global

deadlocks

across

the

nodes

where

the

active

database

is

located.

Each

CONNECT

from

an

application

is

represented

by

a

connection

that

is

associated

with

a

coordinator

agent

to

handle

the

connection.

The

coordinator

agent

is

the

agent

that

communicates

with

the

application,

receiving

requests

and

sending

replies.

It

can

either

satisfy

the

request

itself

or

coordinate

multiple

subagents

to

work

on

the

request.

The

partition

where

the

coordinator

agent

exists

is

called

the

coordinator

node

of

that

application.

The

coordinator

node

can

also

be

set

with

the

SET

CLIENT

CONNECT_NODE

command.

Parts

of

the

database

requests

from

the

application

are

sent

by

the

coordinator

node

to

subagents

at

the

other

partitions;

and

all

results

from

the

other

partitions

are

consolidated

at

the

coordinator

node

before

being

sent

back

to

the

application.

The

database

partition

where

the

CREATE

DATABASE

command

was

issued

is

called

the

“catalog

node”

for

the

database.

It

is

at

this

database

partition

that

the

catalog

tables

are

stored.

Typically,

all

user

tables

are

partitioned

across

a

set

of

nodes.

Note:

Any

number

of

partitions

can

be

configured

to

run

on

the

same

machine.

This

is

known

as

a

“multiple

logical

partition”,

or

“multiple

logical

node”,

configuration.

Such

a

configuration

is

very

useful

on

large

symmetric

multiprocessor

(SMP)

machines

with

very

large

main

memory.

In

this

environment,

communications

between

partitions

can

be

optimized

to

use

shared

memory

and

semaphores.

Related

concepts:

v

“DB2

architecture

and

process

overview”

on

page

3

v

“Log

processing”

in

the

Administration

Guide:

Performance

v

“Update

processing”

in

the

Administration

Guide:

Performance

v

“Memory

management”

in

the

Administration

Guide:

Performance

v

“Connection-concentrator

improvements

for

client

connections”

in

the

Administration

Guide:

Performance

Database

agents

For

each

database

that

an

application

accesses,

various

processes

or

threads

start

to

perform

the

various

application

tasks.

These

tasks

include

logging,

communication,

and

prefetching.

Database

agents

are

engine

dispatchable

unit

(EDU)

processes

or

threads.

Database

agents

do

the

work

in

the

database

manager

that

applications

request.

In

UNIX®

environments,

these

agents

run

as

processes.

In

Intel-based

operating

systems

such

Windows®,

the

agents

run

as

threads.

Chapter

1.

Process

Overview

9

The

maximum

number

of

application

connections

is

controlled

by

the

max_connections

database

manager

configuration

parameter.

The

work

of

each

application

connection

is

coordinated

by

a

single

worker

agent.

A

worker

agent

carries

out

application

requests

but

has

no

permanent

attachment

to

any

particular

application.

The

coordinator

worker

agent

has

all

the

information

and

control

blocks

required

to

complete

actions

within

the

database

manager

that

were

requested

by

the

application.

There

are

four

types

of

worker

agents:

v

Idle

agents

v

Inactive

agents

v

Active

coordinator

agents

v

Subagents

Idle

agents

This

is

the

simplest

form

of

worker

agent.

It

does

not

have

an

outbound

connection

and

it

does

not

have

a

local

database

connection

or

an

instance

attachment.

Inactive

agents

An

inactive

agent

is

a

worker

agent

that

is

not

in

an

active

transaction,

does

not

have

an

outbound

connection,

and

does

not

have

a

local

database

connection

or

an

instance

attachment.

Inactive

agents

are

free

to

begin

doing

work

for

an

application

connection.

Active

coordinator

agents

Each

process

or

thread

of

a

client

application

has

a

single

active

agent

that

coordinates

its

work

on

a

database.

After

the

coordinator

agent

is

created,

it

performs

all

database

requests

on

behalf

of

its

application,

and

communicates

to

other

agents

using

inter-process

communication

(IPC)

or

remote

communication

protocols.

Each

agent

operates

with

its

own

private

memory

and

shares

database

manager

and

database

global

resources

such

as

the

buffer

pool

with

other

agents.

When

a

transaction

completes,

the

active

coordinator

agent

may

become

an

inactive

agent.

When

a

client

disconnects

from

a

database

or

detaches

from

an

instance

its

coordinating

agent

will

be:

v

An

active

agent.

If

other

connections

are

waiting,

the

worker

agent

becomes

an

active

coordinator

agent.

v

Freed

and

marked

as

idle,

if

no

connections

are

waiting

and

the

maximum

number

of

pool

agents

has

not

been

reached.

v

Terminated

and

its

storage

freed,

if

no

connections

are

waiting

and

the

maximum

number

of

pool

agents

has

been

reached.

Subagents

In

partitioned

database

environments

and

environments

with

intra-partition

parallelism

enabled,

the

coordinator

agent

distributes

database

requests

to

subagents,

and

these

agents

perform

the

requests

for

the

application.

After

the

coordinator

agent

is

created,

it

handles

all

database

requests

on

behalf

of

its

application

by

coordinating

the

subagents

that

perform

requests

on

the

database.

Agents

that

are

not

performing

work

for

any

applications

and

that

are

waiting

to

be

assigned

are

considered

to

be

idle

agents

and

reside

in

an

agent

pool.

These

agents

are

available

for

requests

from

coordinator

agents

operating

for

client

10

Common

Criteria

Certification:

Administration

and

User

Documentation

programs

or

for

subagents

operating

for

existing

coordinator

agents.

The

number

of

available

agents

depends

on

the

database

manager

configuration

parameters

maxagents

and

num_poolagents.

When

an

agent

finishes

its

work

but

still

has

a

connection

to

a

database,

it

is

placed

in

the

agent

pool.

Regardless

of

whether

the

connection

concentrator

is

enabled

for

the

database,

if

an

agent

is

not

waked

up

to

serve

a

new

request

within

a

certain

period

of

time

and

the

current

number

of

active

and

pooled

agents

is

greater

than

num_poolagents,

the

agent

is

terminated.

Agents

from

the

agent

pool

(num_poolagents)

are

re-used

as

coordinator

agents

for

the

following

kinds

of

applications:

v

Remote

TCP/IP-based

applications

v

Local

applications

on

UNIX-based

operating

systems

v

Both

local

and

remote

applications

on

Windows

operating

systems.

Other

kinds

of

remote

applications

always

create

a

new

agent.

If

no

idle

agents

exist

when

an

agent

is

required,

a

new

agent

is

created

dynamically.

Because

creating

a

new

agent

requires

a

certain

amount

of

overhead

CONNECT

and

ATTACH

performance

is

better

if

an

idle

agent

can

be

activated

for

a

client.

When

a

subagent

is

performing

work

for

of

an

application,

it

is

associated

with

that

application.

After

it

completes

the

assigned

work,

it

can

be

placed

in

the

agent

pool,

but

it

remains

associated

with

the

original

application.

When

the

application

requests

additional

work,

the

database

manager

first

checks

the

idle

pool

for

associated

agents

before

it

creates

a

new

agent.

Related

concepts:

v

“Database

agent

management”

in

the

Administration

Guide:

Performance

v

“Agents

in

a

partitioned

database”

in

the

Administration

Guide:

Performance

v

“Connection-concentrator

improvements

for

client

connections”

in

the

Administration

Guide:

Performance

v

“Configuration

parameters

that

affect

the

number

of

agents”

in

the

Administration

Guide:

Performance

Chapter

1.

Process

Overview

11

12

Common

Criteria

Certification:

Administration

and

User

Documentation

Chapter

2.

Security

Authentications,

authorizations,

privileges,

and

authorities

Security

.

.

.

.

.

.

.

.

.

.

.

.

.

. 13

Authentication

.

.

.

.

.

.

.

.

.

.

.

. 13

Authorization

.

.

.

.

.

.

.

.

.

.

.

. 15

Privileges,

authority

levels,

and

database

authorities

.

.

.

.

.

.

.

.

.

.

.

.

.

. 15

Object

creation,

ownership,

and

privileges

.

.

. 19

Schemas

.

.

.

.

.

.

.

.

.

.

.

.

.

. 20

Details

on

privileges,

authorities,

and

authorization

.

.

.

.

.

.

.

.

.

.

.

.

. 21

System

administration

authority

(SYSADM)

21

System

control

authority

(SYSCTRL)

.

.

.

. 21

System

maintenance

authority

(SYSMAINT)

22

System

monitor

authority

(SYSMON)

.

.

.

. 23

Database

authorities

.

.

.

.

.

.

.

.

. 24

Database

administration

authority

(DBADM)

25

LOAD

authority

.

.

.

.

.

.

.

.

.

.

. 25

Implicit

schema

authority

(IMPLICIT_SCHEMA)

considerations

.

.

.

. 26

Schema

privileges

.

.

.

.

.

.

.

.

.

. 27

Table

space

privileges

.

.

.

.

.

.

.

.

. 28

Table

and

view

privileges

.

.

.

.

.

.

.

. 28

Package

privileges

.

.

.

.

.

.

.

.

.

. 30

Index

privileges

.

.

.

.

.

.

.

.

.

.

. 31

Sequence

privileges

.

.

.

.

.

.

.

.

.

. 31

Routine

privileges

.

.

.

.

.

.

.

.

.

. 31

Authorizations

and

binding

of

routines

that

contain

SQL

.

.

.

.

.

.

.

.

.

.

.

. 32

Routines

that

are

migrated

from

version

previous

to

version

8

.

.

.

.

.

.

.

.

. 35

Controlling

Database

Access

.

.

.

.

.

.

.

. 35

Security

issues

when

installing

DB2

Universal

Database

.

.

.

.

.

.

.

.

.

.

.

.

.

. 36

Authentication

methods

for

your

server

.

.

.

. 38

Authentication

considerations

for

remote

clients

43

Controlling

access

to

database

objects

.

.

.

.

. 43

Details

on

controlling

access

to

database

objects

44

Granting

privileges

.

.

.

.

.

.

.

.

.

. 44

Revoking

privileges

.

.

.

.

.

.

.

.

. 45

Managing

implicit

authorizations

by

creating

and

dropping

objects

.

.

.

.

.

.

.

.

. 47

Establishing

ownership

of

a

package

.

.

.

. 47

Indirect

privileges

through

a

package

.

.

.

. 47

Indirect

privileges

through

a

package

containing

nicknames

.

.

.

.

.

.

.

.

. 48

Controlling

access

to

data

with

views

.

.

.

. 49

Monitoring

access

to

data

using

the

audit

facility

.

.

.

.

.

.

.

.

.

.

.

.

.

. 51

Data

encryption

.

.

.

.

.

.

.

.

.

.

. 52

Tasks

and

required

authorizations

.

.

.

.

.

. 53

Acquiring

Windows

users’

group

information

using

an

access

token

.

.

.

.

.

.

.

.

.

. 54

Details

on

security

based

on

operating

system

.

. 56

Windows

NT

platform

security

considerations

for

users

.

.

.

.

.

.

.

.

.

.

.

.

. 56

UNIX

platform

security

considerations

for

users

.

.

.

.

.

.

.

.

.

.

.

.

.

. 56

Security

To

protect

data

and

resources

associated

with

a

database

server,

DB2®

Universal

Database

uses

a

combination

of

external

security

services

and

internal

access

control

information.

To

access

a

database

server,

you

must

pass

some

security

checks

before

you

are

given

access

to

database

data

or

resources.

The

first

step

in

database

security

is

called

authentication,

where

you

must

prove

that

you

are

who

you

say

you

are.

The

second

step

is

called

authorization,

where

the

database

manager

decides

if

the

validated

user

is

allowed

to

perform

the

requested

action,

or

access

the

requested

data.

Related

concepts:

v

“Authentication”

on

page

13

v

“Authorization”

on

page

15

Authentication

Authentication

of

a

user

is

completed

using

a

security

facility

outside

of

DB2®

Universal

Database

(DB2

UDB).

The

security

facility

can

be

part

of

the

operating

©

Copyright

IBM

Corp.

1993-2004

13

system,

a

separate

product

or,

in

certain

cases,

may

not

exist

at

all.

On

UNIX®

based

systems,

the

security

facility

is

in

the

operating

system

itself.

Note:

In

a

Common

Criteria

compliant

environment,

the

security

facility

must

be

available.

The

security

facility

requires

two

items

to

authenticate

a

user:

a

user

ID

and

a

password.

The

user

ID

identifies

the

user

to

the

security

facility.

By

supplying

the

correct

password

(information

known

only

to

the

user

and

the

security

facility)

the

user’s

identity

(corresponding

to

the

user

ID)

is

verified.

Once

authenticated:

v

The

user

must

be

identified

to

DB2

UDB

using

an

SQL

authorization

name

or

authid.

This

name

can

be

the

same

as

the

user

ID,

or

a

mapped

value.

For

example,

on

UNIX

based

systems,

a

DB2

UDB

authid

is

derived

by

transforming

to

uppercase

letters

a

UNIX

user

ID

that

follows

DB2

UDB

naming

conventions.

v

A

list

of

groups

to

which

the

user

belongs

is

obtained.

Group

membership

may

be

used

when

authorizing

the

user.

Groups

are

security

facility

entities

that

must

also

map

to

DB2

UDB

authorization

names.

This

mapping

is

done

in

a

method

similar

to

that

used

for

user

IDs.

DB2

UDB

uses

the

security

facility

to

authenticate

users

in

one

of

two

ways:

v

DB2

UDB

uses

a

successful

security

system

login

as

evidence

of

identity,

and

allows:

–

Use

of

local

commands

to

access

local

data

–

Use

of

remote

connections

where

the

server

trusts

the

client

authentication.
v

DB2

UDB

accepts

a

user

ID

and

password

combination.

It

uses

successful

validation

of

this

pair

by

the

security

facility

as

evidence

of

identity

and

allows:

–

Use

of

remote

connections

where

the

server

requires

proof

of

authentication

–

Use

of

operations

where

the

user

wants

to

run

a

command

under

an

identity

other

than

the

identity

used

for

login.

DB2

UDB

on

AIX®

can

log

failed

password

attempts

with

the

operating

system,

and

detect

when

a

client

has

exceeded

the

number

of

allowable

login

tries,

as

specified

by

the

LOGINRETRIES

parameter.

Creation

and

management

of

groups

and

users:

DB2

requires

that

user

IDs,

passwords,

and

groups

be

created

at

the

operating

system

level.

In

addition,

DB2

also

requires

that

these

user

IDs,

passwords,

and

groups

be

managed

using

facilities

that

are

provided

by

the

operating

system.

If

you

are

responsible

for

creating

or

managing

user

IDs,

passwords,

or

groups,

or

for

assigning

user

IDs

to

groups,

refer

to

your

operating

system

documentation

for

the

utilities

and

procedures

for

performing

these

tasks.

Related

concepts:

v

“Authentication

methods

for

your

server”

on

page

38

v

“Privileges,

authority

levels,

and

database

authorities”

on

page

15

v

“Security”

on

page

13

v

“Authorization”

on

page

15

14

Common

Criteria

Certification:

Administration

and

User

Documentation

|
|

|

|

|
|
|
|
|
|

Authorization

Authorization

is

the

process

whereby

DB2®

obtains

information

about

an

authenticated

DB2

user,

indicating

the

database

operations

that

user

may

perform,

and

what

data

objects

may

be

accessed.

With

each

user

request,

there

may

be

more

than

one

authorization

check,

depending

on

the

objects

and

operations

involved.

Authorization

is

performed

using

DB2

facilities.

DB2

tables

and

configuration

files

are

used

to

record

the

permissions

associated

with

each

authorization

name.

The

authorization

name

of

an

authenticated

user,

and

those

of

groups

to

which

the

user

belongs,

are

compared

with

the

recorded

permissions.

Based

on

this

comparison,

DB2

decides

whether

to

allow

the

requested

access.

There

are

two

types

of

permissions

recorded

by

DB2

Universal

Database™

(DB2

UDB):

privileges

and

authority

levels.

A

privilege

defines

a

single

permission

for

an

authorization

name,

enabling

a

user

to

create

or

access

database

resources.

Privileges

are

stored

in

the

database

catalogs.

Authority

levels

provide

a

method

of

grouping

privileges

and

control

over

higher-level

database

manager

maintenance

and

utility

operations.

Database-specific

authorities

are

stored

in

the

database

catalogs;

system

authorities

are

associated

with

group

membership,

and

the

group

names

that

are

associated

with

the

authority

levels

are

stored

in

the

database

manager

configuration

file

for

a

given

instance.

Groups

provide

a

convenient

means

of

performing

authorization

for

a

collection

of

users

without

having

to

grant

or

revoke

privileges

for

each

user

individually.

Unless

otherwise

specified,

group

authorization

names

can

be

used

anywhere

that

authorization

names

are

used

for

authorization

purposes.

In

general,

group

membership

is

considered

for

dynamic

SQL

and

non-database

object

authorizations

(such

as

instance

level

commands

and

utilities),

but

is

not

considered

for

static

SQL.

The

exception

to

this

general

case

occurs

when

privileges

are

granted

to

PUBLIC:

these

are

considered

when

static

SQL

is

processed.

Specific

cases

where

group

membership

does

not

apply

are

noted

throughout

the

DB2

UDB

documentation,

where

applicable.

Related

concepts:

v

“Authorization

and

privileges”

in

the

SQL

Reference,

Volume

1

v

“Privileges,

authority

levels,

and

database

authorities”

on

page

15

v

“Security”

on

page

13

Privileges,

authority

levels,

and

database

authorities

Privileges

enable

users

to

create

or

access

database

resources.

Authority

levels

provide

a

method

of

grouping

privileges

and

higher-level

database

manager

maintenance

and

utility

operations.

Database

authorities

enable

users

to

perform

activities

at

the

database

level.

Privileges,

authority

levels,

and

database

authorities

can

be

used

together

to

control

access

to

the

database

manager

and

its

database

objects.

Users

can

access

only

those

objects

for

which

they

have

the

required

privilege,

authority

level,

or

database

authority,

which

DB2®

Universal

Database

(DB2

UDB)

determines

when

it

performs

an

authorization

check

for

an

authenticated

user.

The

database

manager

requires

that

each

user

be

specifically

authorized,

either

implicitly

or

explicitly,

to

use

each

database

function

needed

to

perform

a

specific

task.

Explicit

authorities

or

privileges

are

granted

to

the

user

(GRANTEETYPE

of

U

in

the

database

catalogs).

Implicit

authorities

or

privileges

are

granted

to

a

group

to

Chapter

2.

Security

15

which

the

user

belongs

(GRANTEETYPE

of

G

in

the

database

catalogs).

Thus,

to

create

a

table,

a

user

must

be

authorized

to

create

tables;

to

alter

a

table,

a

user

must

be

authorized

to

alter

the

table,

and

so

on.

Figure

5

illustrates

the

relationship

between

authorities

and

their

span

of

control

(database,

database

manager).

A

user

or

group

can

have

one

or

more

of

the

following

authorities

or

privileges:

v

Administrative

authority:

–

SYSADM

(system

administrator)

The

SYSADM

authority

level

provides

control

over

all

the

resources

created

and

maintained

by

the

database

manager.

The

system

administrator

possesses

all

the

authorities

of

DBADM,

SYSCTRL,

SYSMAINT,

and

SYSMON,

and

the

authority

to

grant

and

revoke

DBADM

authority.

The

user

who

possesses

SYSADM

authority

is

responsible

both

for

controlling

the

database

manager,

and

for

ensuring

the

safety

and

integrity

of

the

data.

SYSADM

authority

provides

implicit

privileges

on

all

objects

in

the

database,

control

over

which

users

can

access

the

database

manager,

and

the

extent

of

this

access.

For

more

information

about

SYSADM

authority,

see

″System

administration

authority

(SYSADM)″.

–

DBADM

(database

administrator)

The

DBADM

database

authority

provides

administrative

authority

over

a

single

database.

This

database

administrator

possesses

the

privileges

required

to

create

objects,

issue

database

commands,

and

access

table

data.

The

database

administrator

can

also

grant

and

revoke

CONTROL

and

individual

privileges.

For

more

information

about

DBADM

authority,

see

″Database

administration

authority

(DBADM)″.
v

System

control

authority:

–

SYSCTRL

(system

control)

SYSADM

SYSCTRL

Authority levels Instance

CUSTOMER

Database
authorities

EMPLOYEE

Database
authorities

SYSMAINT

SYSMON

Figure

5.

Hierarchy

of

Authorities

16

Common

Criteria

Certification:

Administration

and

User

Documentation

The

SYSCTRL

authority

level

provides

control

over

operations

that

affect

system

resources.

For

example,

a

user

with

SYSCTRL

authority

can

create,

update,

stop,

or

drop

a

database.

This

user

can

also

stop

an

instance,

but

cannot

access

table

data.

Users

with

SYSCTRL

authority

also

have

SYSMON

authority.

For

more

information

about

SYSCTRL

authority,

see

″System

control

authority

(SYSCTRL)″.

–

SYSMAINT

(system

maintenance)

The

SYSMAINT

authority

level

provides

the

authority

required

to

perform

maintenance

operations

on

all

databases

associated

with

an

instance.

A

user

with

SYSMAINT

authority

can

update

the

database

configuration,

backup

a

database

or

table

space,

restore

an

existing

database,

and

monitor

a

database.

Like

SYSCTRL,

SYSMAINT

does

not

provide

access

to

table

data.

Users

with

SYSMAINT

authority

also

have

SYSMON

authority.

For

more

information

about

SYSMAINT

authority,

see

″System

maintenance

authority

(SYSMAINT)″.
v

SYSMON

(system

monitor

authority)

The

SYSMON

authority

level

provides

the

authority

required

to

use

the

database

system

monitor.

For

more

information

about

SYSMON

authority,

see

″System

monitor

authority

(SYSMON)″

v

Database

authorities

To

perform

activities

such

as

creating

a

table

or

a

routine,

or

for

loading

data

into

a

table,

specific

database

authorities

are

required.

For

more

information,

see

″Database

authorities″.

v

Privileges:

Privileges

are

required

to

perform

activities

on

database

objects

(for

example,

to

create

and

drop

an

index).

Privileges

strictly

define

the

tasks

that

a

user

can

perform.

For

example,

a

user

may

have

the

privilege

to

create

an

index

on

a

table,

but

not

a

trigger

on

the

same

table.

–

CONTROL

privilege

Possessing

the

CONTROL

privilege

on

an

object

allows

a

user

to

access

that

database

object,

and

to

grant

and

revoke

privileges

to

or

from

other

users

on

that

object.

Note:

The

CONTROL

privilege

only

apples

to

tables,

views,

nicknames,

indexes,

and

packages.

If

a

different

user

requires

the

CONTROL

privilege

to

that

object,

a

user

with

SYSADM

or

DBADM

authority

must

grant

the

CONTROL

privilege

to

that

object.

In

some

situations,

the

creator

of

an

object

automatically

obtains

the

CONTROL

privilege

on

that

object.

For

more

information,

see

″Object

creation,

ownership,

and

privileges″.

–

Individual

privileges

can

be

granted

to

allow

a

user

to

carry

out

specific

tasks

on

specific

objects.

Users

with

administrative

authority

(SYSADM

or

DBADM)

or

the

CONTROL

privilege

can

grant

and

revoke

privileges

to

and

from

users.

Individual

privileges

and

database

authorities

allow

a

specific

function,

but

do

not

include

the

right

to

grant

the

same

privileges

or

authorities

to

other

users.

The

right

to

grant

table,

view,

schema,

package,

routine,

and

sequence

privileges

to

others

can

be

extended

to

other

users

through

the

WITH

GRANT

OPTION

on

the

GRANT

statement.

However,

the

WITH

GRANT

OPTION

does

not

allow

the

person

granting

the

privilege

to

revoke

the

Chapter

2.

Security

17

|
|
|

privilege

once

granted.

You

must

have

SYSADM

authority,

DBADM

authority,

or

the

CONTROL

privilege

to

revoke

the

privilege.

Privileges

can

also

be

granted

to

PUBLIC.

PUBLIC

privileges

apply

to

all

users

(authorization

names),

including

any

future

users,

regardless

of

whether

any

individual

users

have

previously

been

granted

the

privilege.

–

Implicit

privileges

may

be

granted

to

a

user

who

has

the

privilege

to

execute

a

package.

While

users

can

run

the

application,

they

do

not

necessarily

require

explicit

privileges

on

the

data

objects

used

within

the

package.

A

user

or

group

can

be

authorized

for

any

combination

of

individual

privileges

or

authorities.

When

a

privilege

is

associated

with

an

object,

that

object

must

exist.

For

example,

a

user

cannot

be

given

the

SELECT

privilege

on

a

table

unless

that

table

has

previously

been

created.

Note:

Care

must

be

taken

when

an

authorization

name

is

given

authorities

and

privileges

and

there

is

no

user

created

with

that

authorization

name.

At

some

later

time,

a

user

can

be

created

with

that

authorization

name

and

automatically

receive

all

of

the

authorities

and

privileges

associated

with

that

authorization

name.

The

REVOKE

statement

is

used

to

revoke

previously

granted

privileges.

In

DB2

UDB,

the

revoking

of

a

privilege

from

an

authorization

name

revokes

the

privilege

granted

by

all

authorization

names.

Revoking

a

privilege

from

an

authorization

name

does

not

revoke

that

same

privilege

from

any

other

authorization

names

that

were

granted

the

privilege

by

that

authorization

name.

For

example,

assume

that

CLAIRE

grants

SELECT

WITH

GRANT

OPTION

to

RICK,

then

RICK

grants

SELECT

to

BOBBY

and

CHRIS.

If

CLAIRE

revokes

the

SELECT

privilege

from

RICK,

BOBBY

and

CHRIS

still

retain

the

select

privilege.

Related

concepts:

v

“System

administration

authority

(SYSADM)”

on

page

21

v

“System

control

authority

(SYSCTRL)”

on

page

21

v

“System

maintenance

authority

(SYSMAINT)”

on

page

22

v

“Database

administration

authority

(DBADM)”

on

page

25

v

“LOAD

authority”

on

page

25

v

“Database

authorities”

on

page

24

v

“Schema

privileges”

on

page

27

v

“Table

space

privileges”

on

page

28

v

“Table

and

view

privileges”

on

page

28

v

“Package

privileges”

on

page

30

v

“Index

privileges”

on

page

31

v

“Sequence

privileges”

on

page

31

v

“Controlling

access

to

database

objects”

on

page

43

v

“Indirect

privileges

through

a

package”

on

page

47

v

“Routine

privileges”

on

page

31

v

“Object

creation,

ownership,

and

privileges”

on

page

19

v

“System

monitor

authority

(SYSMON)”

on

page

23

18

Common

Criteria

Certification:

Administration

and

User

Documentation

Object

creation,

ownership,

and

privileges

When

an

object

is

created,

one

authorization

name

is

assigned

ownership

of

the

object.

Ownership

means

that

the

user

is

authorized

to

reference

the

object

in

any

SQL

statement.

When

an

object

is

created

within

a

schema,

the

authorization

ID

of

the

statement

must

have

the

required

privilege

to

create

objects

in

the

implicitly

or

explicitly

specified

schema.

That

is,

the

authorization

name

must

either

be

the

owner

of

the

schema,

or

possess

the

CREATEIN

privilege

on

the

schema.

Note:

This

requirement

is

not

applicable

when

creating

table

spaces,

buffer

pools

or

database

partition

groups.

These

objects

are

not

created

in

schemas.

When

an

object

is

created,

the

authorization

ID

of

the

statement

is

the

owner

of

that

object.

Note:

One

exception

exists.

If

the

AUTHORIZATION

option

is

specified

for

the

CREATE

SCHEMA

statement,

any

other

object

that

is

created

as

part

of

the

CREATE

SCHEMA

operation

is

owned

by

the

authorization

ID

specified

by

the

AUTHORIZATION

option.

Any

objects

that

are

created

in

the

schema

after

the

initial

CREATE

SCHEMA

operation,

however,

are

owned

by

the

authorization

ID

associated

with

the

specific

CREATE

statement.

For

example,

the

statement

CREATE

SCHEMA

SCOTTSTUFF

AUTHORIZATION

SCOTT

CREATE

TABLE

T1

(C!

INT)

creates

the

schema

SCOTTSTUFF

and

the

table

SCOTTSTUFF.T1,

which

are

both

owned

by

SCOTT.

Assume

that

the

user

BOBBY

is

granted

the

CREATEIN

privilege

on

the

SCOTTSTUFF

schema

and

creates

an

index

on

the

SCOTTSTUFF.T1

table.

Because

the

index

is

created

after

the

schema,

BOBBY

owns

the

index

on

SCOTTSTUFF.T1.

Privileges

are

assigned

to

the

object

owner

based

on

the

type

of

object

being

created:

v

The

CONTROL

privilege

is

implicitly

granted

on

newly

created

tables,

indexes,

and

packages.

This

privilege

allows

the

object

creator

to

access

the

database

object,

and

to

grant

and

revoke

privileges

to

or

from

other

users

on

that

object.

If

a

different

user

requires

the

CONTROL

privilege

to

that

object,

a

user

with

SYSADM

or

DBADM

authority

must

grant

the

CONTROL

privilege

to

that

object.

The

CONTROL

privilege

cannot

be

revoked

by

the

object

owner.

v

The

CONTROL

privilege

is

implicitly

granted

on

newly

created

views

if

the

object

owner

has

the

CONTROL

privilege

on

all

the

tables,

views,

and

nicknames

referenced

by

the

view

definition.

v

Other

objects

like

triggers,

routines,

sequences,

table

spaces,

and

buffer

pools

do

not

have

a

CONTROL

privilege

associated

with

them.

The

object

owner

does,

however,

automatically

receive

each

of

the

privileges

associated

with

the

object

(and

can

provide

these

privileges

to

other

users,

where

supported,

by

using

the

WITH

GRANT

option

of

the

GRANT

statement).

In

addition,

the

object

owner

can

alter,

add

a

comment

on,

or

drop

the

object.

These

authorizations

are

implicit

for

the

object

owner

and

cannot

be

revoked.

Related

concepts:

v

“Privileges,

authority

levels,

and

database

authorities”

on

page

15

v

“Schema

privileges”

on

page

27

v

“Table

space

privileges”

on

page

28

Chapter

2.

Security

19

v

“Table

and

view

privileges”

on

page

28

v

“Package

privileges”

on

page

30

v

“Index

privileges”

on

page

31

v

“Sequence

privileges”

on

page

31

v

“Routine

privileges”

on

page

31

Schemas

A

schema

is

a

collection

of

named

objects.

Schemas

provide

a

logical

classification

of

objects

in

the

database.

A

schema

can

contain

tables,

views,

nicknames,

triggers,

functions,

packages,

and

other

objects.

A

schema

is

also

an

object

in

the

database.

It

is

explicitly

created

using

the

CREATE

SCHEMA

statement

with

the

current

user

or

a

specified

authorization

ID

recorded

as

the

schema

owner.

It

can

also

be

implicitly

created

when

another

object

is

created,

provided

that

the

user

has

IMPLICIT_SCHEMA

database

authority.

A

schema

name

is

used

as

the

high

order

part

of

a

two-part

object

name.

If

the

object

is

specifically

qualified

with

a

schema

name

when

created,

the

object

is

assigned

to

that

schema.

If

no

schema

name

is

specified

when

the

object

is

created,

the

default

schema

name

is

used.

For

example,

a

user

with

DBADM

authority

creates

a

schema

called

C

for

user

A:

CREATE

SCHEMA

C

AUTHORIZATION

A

User

A

can

then

issue

the

following

statement

to

create

a

table

called

X

in

schema

C

(provided

that

user

A

has

the

CREATETAB

database

authority):

CREATE

TABLE

C.X

(COL1

INT)

Some

schema

names

are

reserved.

For

example,

built-in

functions

belong

to

the

SYSIBM

schema,

and

the

pre-installed

user-defined

functions

belong

to

the

SYSFUN

schema.

When

a

database

is

created,

all

users

have

IMPLICIT_SCHEMA

authority.

This

allows

any

user

to

create

objects

in

any

schema

not

already

in

existence.

An

implicitly

created

schema

allows

any

user

to

create

other

objects

in

this

schema.The

ability

to

create

aliases,

distinct

types,

functions,

and

triggers

is

extended

to

implicitly

created

schemas.

The

default

privileges

on

an

implicitly

created

schema

provide

backward

compatibility

with

previous

versions.

If

IMPLICIT_SCHEMA

authority

is

revoked

from

PUBLIC,

schemas

can

be

explicitly

created

using

the

CREATE

SCHEMA

statement,

or

implicitly

created

by

users

(such

as

those

with

DBADM

authority)

who

have

been

granted

IMPLICIT_SCHEMA

authority.

Although

revoking

IMPLICIT_SCHEMA

authority

from

PUBLIC

increases

control

over

the

use

of

schema

names,

it

can

result

in

authorization

errors

when

existing

applications

attempt

to

create

objects.

Schemas

also

have

privileges,

allowing

the

schema

owner

to

control

which

users

have

the

privilege

to

create,

alter,

and

drop

objects

in

the

schema.

A

schema

owner

is

initially

given

all

of

these

privileges

on

the

schema,

with

the

ability

to

grant

them

to

others.

An

implicitly

created

schema

is

owned

by

the

system,

and

all

users

are

initially

given

the

privilege

to

create

objects

in

such

a

schema.

A

user

with

SYSADM

or

DBADM

authority

can

change

the

privileges

held

by

users

on

any

20

Common

Criteria

Certification:

Administration

and

User

Documentation

schema.

Therefore,

access

to

create,

alter,

and

drop

objects

in

any

schema

(even

one

that

was

implicitly

created)

can

be

controlled.

Related

concepts:

v

“Schema

privileges”

on

page

27

Details

on

privileges,

authorities,

and

authorization

Each

authority

is

discussed

in

this

section

followed

by

the

different

privileges.

System

administration

authority

(SYSADM)

The

SYSADM

authority

level

is

the

highest

level

of

administrative

authority.

Users

with

SYSADM

authority

can

run

utilities,

issue

database

and

database

manager

commands,

and

access

the

data

in

any

table

in

any

database

within

the

database

manager

instance.

It

provides

the

ability

to

control

all

database

objects

in

the

instance,

including

databases,

tables,

views,

indexes,

packages,

schemas,

servers,

aliases,

data

types,

functions,

procedures,

triggers,

table

spaces,

database

partition

groups,

buffer

pools,

and

event

monitors.

SYSADM

authority

is

assigned

to

the

group

specified

by

the

sysadm_group

configuration

parameter.

Membership

in

that

group

is

controlled

outside

the

database

manager

through

the

security

facility

used

on

your

platform.

Only

a

user

with

SYSADM

authority

can

perform

the

following

functions:

v

Migrate

a

database

v

Change

the

database

manager

configuration

file

(including

specifying

the

groups

having

SYSCTRL,

SYSMAINT,

or

SYSMON

authority)

v

Grant

DBADM

authority.

Note:

When

a

user

with

SYSADM

authority

creates

a

database,

that

user

is

automatically

granted

explicit

DBADM

authority

on

the

database.

If

the

database

creator

is

removed

from

the

SYSADM

group

and

you

want

to

prevent

that

user

from

accessing

that

database

as

a

DBADM,

you

must

explicitly

revoke

the

user’s

DBADM

authority.

Related

concepts:

v

“System

control

authority

(SYSCTRL)”

on

page

21

v

“System

maintenance

authority

(SYSMAINT)”

on

page

22

v

“Data

encryption”

on

page

52

v

“System

monitor

authority

(SYSMON)”

on

page

23

System

control

authority

(SYSCTRL)

SYSCTRL

authority

is

the

highest

level

of

system

control

authority.

This

authority

provides

the

ability

to

perform

maintenance

and

utility

operations

against

the

database

manager

instance

and

its

databases.

These

operations

can

affect

system

resources,

but

they

do

not

allow

direct

access

to

data

in

the

databases.

System

control

authority

is

designed

for

users

administering

a

database

manager

instance

containing

sensitive

data.

SYSCTRL

authority

is

assigned

to

the

group

specified

by

the

sysctrl_group

configuration

parameter.

If

a

group

is

specified,

membership

in

that

group

is

controlled

outside

the

database

manager

through

the

security

facility

used

on

your

platform.

Schemas

Chapter

2.

Security

21

Only

a

user

with

SYSCTRL

authority

or

higher

can

do

the

following:

v

Update

a

database,

node,

or

distributed

connection

services

(DCS)

directory

v

Force

users

off

the

system

v

Create

or

drop

a

database

v

Drop,

create,

or

alter

a

table

space

v

Restore

to

a

new

database.

In

addition,

a

user

with

SYSCTRL

authority

can

perform

the

functions

of

users

with

system

maintenance

authority

(SYSMAINT)

and

system

monitor

authority

(SYSMON).

Users

with

SYSCTRL

authority

also

have

the

implicit

privilege

to

connect

to

a

database.

Note:

When

users

with

SYSCTRL

authority

create

databases,

they

are

automatically

granted

explicit

DBADM

authority

on

the

database.

If

the

database

creator

is

removed

from

the

SYSCTRL

group,

and

if

you

want

to

also

prevent

them

from

accessing

that

database

as

a

DBADM,

you

must

explicitly

revoke

this

DBADM

authority.

Related

concepts:

v

“System

maintenance

authority

(SYSMAINT)”

on

page

22

v

“Database

administration

authority

(DBADM)”

on

page

25

v

“System

monitor

authority

(SYSMON)”

on

page

23

System

maintenance

authority

(SYSMAINT)

SYSMAINT

authority

is

the

second

level

of

system

control

authority.

This

authority

provides

the

ability

to

perform

maintenance

and

utility

operations

against

the

database

manager

instance

and

its

databases.

These

operations

can

affect

system

resources,

but

they

do

not

allow

direct

access

to

data

in

the

databases.

System

maintenance

authority

is

designed

for

users

maintaining

databases

within

a

database

manager

instance

that

contains

sensitive

data.

SYSMAINT

authority

is

assigned

to

the

group

specified

by

the

sysmaint_group

configuration

parameter.

If

a

group

is

specified,

membership

in

that

group

is

controlled

outside

the

database

manager

through

the

security

facility

used

on

your

platform.

Only

a

user

with

SYSMAINT

or

higher

system

authority

can

do

the

following:

v

Update

database

configuration

files

v

Back

up

a

database

or

table

space

v

Restore

to

an

existing

database

v

Perform

roll

forward

recovery

v

Start

or

stop

an

instance

v

Restore

a

table

space

v

Run

trace

v

Take

database

system

monitor

snapshots

of

a

database

manager

instance

or

its

databases.

A

user

with

SYSMAINT,

DBADM,

or

higher

authority

can

do

the

following:

v

Query

the

state

of

a

table

space

Schemas

22

Common

Criteria

Certification:

Administration

and

User

Documentation

v

Update

log

history

files

v

Quiesce

a

table

space

v

Reorganize

a

table

v

Collect

catalog

statistics

using

the

RUNSTATS

utility.

Users

with

SYSMAINT

authority

also

have

the

implicit

privilege

to

connect

to

a

database,

and

can

perform

the

functions

of

users

with

system

monitor

authority

(SYSMON).

Related

concepts:

v

“Database

administration

authority

(DBADM)”

on

page

25

v

“System

monitor

authority

(SYSMON)”

on

page

23

System

monitor

authority

(SYSMON)

SYSMON

authority

provides

the

ability

to

take

database

system

monitor

snapshots

of

a

database

manager

instance

or

its

databases.

SYSMON

authority

is

assigned

to

the

group

specified

by

the

sysmon_group

configuration

parameter.

If

a

group

is

specified,

membership

in

that

group

is

controlled

outside

the

database

manager

through

the

security

facility

used

on

your

platform.

SYSMON

authority

enables

the

user

to

run

the

following

commands:

v

GET

DATABASE

MANAGER

MONITOR

SWITCHES

v

GET

MONITOR

SWITCHES

v

GET

SNAPSHOT

v

LIST

ACTIVE

DATABASES

v

LIST

APPLICATIONS

v

LIST

DCS

APPLICATIONS

v

RESET

MONITOR

v

UPDATE

MONITOR

SWITCHES

SYSMON

authority

enables

the

user

to

use

the

following

APIs:

v

db2GetSnapshot

-

Get

Snapshot

v

db2GetSnapshotSize

-

Estimate

Size

Required

for

db2GetSnapshot()

Output

Buffer

v

db2MonitorSwitches

-

Get/Update

Monitor

Switches

v

db2ResetMonitor

-

Reset

Monitor

SYSMON

authority

enables

the

user

use

the

following

SQL

table

functions:

v

All

snapshot

table

functions

without

previously

running

SYSPROC.SNAPSHOT_FILEW

SYSPROC.SNAPSHOT_FILEW

takes

a

snapshot

and

saves

its

content

into

a

file.

If

any

snapshot

table

functions

are

called

with

null

input

parameters,

the

file

content

is

returned

instead

of

a

real-time

system

snapshot.

Users

with

the

SYSADM,

SYSCTRL,

or

SYSMAINT

authority

level

also

possess

SYSMON

authority.

Related

reference:

v

“sysmon_group

-

System

monitor

authority

group

name”

on

page

790

Schemas

Chapter

2.

Security

23

Database

authorities

Figure

6

shows

the

database

authorities.

Database

authorities

involve

actions

on

a

database

as

a

whole.

Any

user

with

DBADM

authority

possesses

the

complete

set

of

database

authorities,

which

are

as

follows:

v

CONNECT

allows

a

user

to

access

the

database

v

BINDADD

allows

a

user

to

create

new

packages

in

the

database

v

CREATETAB

allows

a

user

to

create

new

tables

in

the

database

v

CREATE_EXTERNAL_ROUTINE

allows

a

user

to

create

a

procedure

for

use

by

applications

and

other

users

of

the

database.

v

CREATE_NOT_FENCED_ROUTINE

allows

a

user

to

create

a

user-defined

function

(UDF)

or

procedure

that

is

“not

fenced”.

UDFs

or

procedures

that

are

“not

fenced”

must

be

extremely

well

tested

because

the

database

manager

does

not

protect

its

storage

or

control

blocks

from

these

UDFs

or

procedures.

(As

a

result,

a

poorly

written

and

tested

UDF

or

procedure

that

is

allowed

to

run

“not

fenced”

can

cause

serious

problems

for

your

system.)

Note:

CREATE_EXTERNAL_ROUTINE

is

automatically

granted

to

any

user

who

is

granted

CREATE_NOT_FENCED_ROUTINE.

v

IMPLICIT_SCHEMA

allows

any

user

to

create

a

schema

implicitly

by

creating

an

object

using

a

CREATE

statement

with

a

schema

name

that

does

not

already

exist.

SYSIBM

becomes

the

owner

of

the

implicitly

created

schema

and

PUBLIC

is

given

the

privilege

to

create

objects

in

this

schema.

v

LOAD

allows

a

user

to

load

data

into

a

table.

v

QUIESCE_CONNECT

allows

a

user

to

access

the

database

while

it

is

quiesced.

Only

users

with

SYSADM

or

DBADM

authority

can

grant

and

revoke

these

database

authorities

to

and

from

other

users.

Note:

When

a

database

is

created,

the

following

database

authorities

are

automatically

granted

to

PUBLIC:

v

CREATETAB

database

authority

v

BINDADD

database

authority

v

CONNECT

database

authority

CREATETAB

IMPLICIT_SCHEMA

BINDADD

CREATE_EXTERNAL_ROUTINE

LOAD

QUIESCE_CONNECT

CREATE_NOT_FENCED_ROUTINE

CONNECT

DBADM
database authority

Figure

6.

Database

authorities

Schemas

24

Common

Criteria

Certification:

Administration

and

User

Documentation

v

IMPLICIT_SCHEMA

database

authority

v

USE

privilege

on

USERSPACE1

table

space

v

SELECT

privilege

on

the

system

catalog

views.

To

remove

any

database

authority,

a

DBADM

or

SYSADM

must

explicitly

revoke

the

database

authority

from

PUBLIC.

Related

tasks:

v

“Granting

privileges”

on

page

44

v

“Revoking

privileges”

on

page

45

Database

administration

authority

(DBADM)

DBADM

authority

is

the

second

highest

level

of

administrative

authority.

It

applies

only

to

a

specific

database,

and

allows

the

user

to

run

certain

utilities,

issue

database

commands,

and

access

the

data

in

any

table

in

the

database.

When

DBADM

authority

is

granted,

BINDADD,

CONNECT,

CREATETAB,

CREATE_EXTERNAL_ROUTINE,

CREATE_NOT_FENCED_ROUTINE,

IMPLICIT_SCHEMA,

QUIESCE_CONNECT,

and

LOAD

database

authorities

are

granted

as

well.

Only

a

user

with

SYSADM

authority

can

grant

or

revoke

DBADM

authority.

Users

with

DBADM

authority

can

grant

privileges

on

the

database

to

others

and

can

revoke

any

privilege

from

any

user

regardless

of

who

granted

it.

Only

a

user

with

DBADM

or

higher

authority

can

do

the

following:

v

Read

log

files

v

Create,

activate,

and

drop

event

monitors.

A

user

with

DBADM,

SYSMAINT,

or

higher

authority

can

do

the

following:

v

Query

the

state

of

a

table

space

v

Update

log

history

files

v

Quiesce

a

table

space.

v

Reorganize

a

table

v

Collect

catalog

statistics

using

the

RUNSTATS

utility.

Note:

A

DBADM

can

only

perform

the

above

functions

on

the

database

for

which

DBADM

authority

is

held.

Related

concepts:

v

“System

administration

authority

(SYSADM)”

on

page

21

v

“System

control

authority

(SYSCTRL)”

on

page

21

v

“System

maintenance

authority

(SYSMAINT)”

on

page

22

v

“LOAD

authority”

on

page

25

v

“Database

authorities”

on

page

24

v

“Implicit

schema

authority

(IMPLICIT_SCHEMA)

considerations”

on

page

26

LOAD

authority

Users

having

LOAD

authority

at

the

database

level,

as

well

as

INSERT

privilege

on

a

table,

can

use

the

LOAD

command

to

load

data

into

a

table.

Schemas

Chapter

2.

Security

25

Users

having

LOAD

authority

at

the

database

level,

as

well

as

INSERT

privilege

on

a

table,

can

LOAD

RESTART

or

LOAD

TERMINATE

if

the

previous

load

operation

is

a

load

to

insert

data.

Users

having

LOAD

authority

at

the

database

level,

as

well

as

the

INSERT

and

DELETE

privileges

on

a

table,

can

use

the

LOAD

REPLACE

command.

If

the

previous

load

operation

was

a

load

replace,

the

DELETE

privilege

must

also

have

been

granted

to

that

user

before

the

user

can

LOAD

RESTART

or

LOAD

TERMINATE.

If

the

exception

tables

are

used

as

part

of

a

load

operation,

the

user

must

have

INSERT

privilege

on

the

exception

tables.

The

user

with

this

authority

can

perform

QUIESCE

TABLESPACES

FOR

TABLE,

RUNSTATS,

and

LIST

TABLESPACES

commands.

Related

concepts:

v

“Privileges,

authorities,

and

authorizations

required

to

use

Load”

on

page

838

v

“Table

and

view

privileges”

on

page

28

Related

reference:

v

“RUNSTATS

Command”

in

the

Command

Reference

v

“QUIESCE

TABLESPACES

FOR

TABLE”

on

page

340

v

“LIST

TABLESPACES

Command”

in

the

Command

Reference

v

“LOAD”

on

page

304

Implicit

schema

authority

(IMPLICIT_SCHEMA)

considerations

When

a

new

database

is

created,

PUBLIC

is

given

IMPLICIT_SCHEMA

database

authority.

With

this

authority,

any

user

can

create

a

schema

by

creating

an

object

and

specifying

a

schema

name

that

does

not

already

exist.

SYSIBM

becomes

the

owner

of

the

implicitly

created

schema

and

PUBLIC

is

given

the

privilege

to

create

objects

in

this

schema.

If

control

of

who

can

implicitly

create

schema

objects

is

required

for

the

database,

IMPLICIT_SCHEMA

database

authority

should

be

revoked

from

PUBLIC.

Once

this

is

done,

there

are

only

three

(3)

ways

that

a

schema

object

is

created:

v

Any

user

can

create

a

schema

using

their

own

authorization

name

on

a

CREATE

SCHEMA

statement.

v

Any

user

with

DBADM

authority

can

explicitly

create

any

schema

which

does

not

already

exist,

and

can

optionally

specify

another

user

as

the

owner

of

the

schema.

v

Any

user

with

DBADM

authority

has

IMPLICIT_SCHEMA

database

authority

(independent

of

PUBLIC)

so

that

they

can

implicitly

create

a

schema

with

any

name

at

the

time

they

are

creating

other

database

objects.

SYSIBM

becomes

the

owner

of

the

implicitly

created

schema

and

PUBLIC

has

the

privilege

to

create

objects

in

the

schema.

Related

tasks:

v

“Granting

privileges”

on

page

44

v

“Revoking

privileges”

on

page

45

Schemas

26

Common

Criteria

Certification:

Administration

and

User

Documentation

Schema

privileges

Schema

privileges

are

in

the

object

privilege

category.

Object

privileges

are

shown

in

Figure

7.

Schema

privileges

involve

actions

on

schemas

in

a

database.

A

user

may

be

granted

any

of

the

following

privileges:

v

CREATEIN

allows

the

user

to

create

objects

within

the

schema.

v

ALTERIN

allows

the

user

to

alter

objects

within

the

schema.

v

DROPIN

allows

the

user

to

drop

objects

from

within

the

schema.

The

owner

of

the

schema

has

all

of

these

privileges

and

the

ability

to

grant

them

to

others.

The

objects

that

are

manipulated

within

the

schema

object

include:

tables,

views,

indexes,

packages,

data

types,

functions,

triggers,

procedures,

and

aliases.

Related

tasks:

v

“Granting

privileges”

on

page

44

v

“Revoking

privileges”

on

page

45

Database
objects

CONTROL
(Tables)

CONTROL
(Indexes)

DELETE
INSERT
SELECT
UPDATE

CONTROL
(Views)

(Table spaces)

USE

(Schema
Owners)

ALTERIN
CREATEIN
DROPIN

(Server)

PASSTHRU

(Sequences)

USAGE

ALTER

CONTROL
(Nicknames)

BIND
EXECUTE

EXECUTE

CONTROL
(Packages)

(Procedures,
functions, methods)

ALTER
DELETE
INDEX

INSERT
REFERENCES

SELECT
UPDATE

ALTER
DELETE
INDEX

INSERT
REFERENCES

SELECT
UPDATE

Figure

7.

Object

Privileges

Schemas

Chapter

2.

Security

27

Related

reference:

v

“ALTER

SEQUENCE

statement”

in

the

SQL

Reference,

Volume

2

Table

space

privileges

The

table

space

privileges

involve

actions

on

the

table

spaces

in

a

database.

A

user

may

be

granted

the

USE

privilege

for

a

table

space

which

then

allows

them

to

create

tables

within

the

table

space.

The

owner

of

the

table

space,

typically

the

creator

who

has

SYSADM

or

SYSCTRL

authority,

has

the

USE

privilege

and

the

ability

to

grant

this

privilege

to

others.

By

default,

at

database

creation

time

the

USE

privilege

for

table

space

USERSPACE1

is

granted

to

PUBLIC,

though

this

privilege

can

be

revoked.

The

USE

privilege

cannot

be

used

with

SYSCATSPACE

or

any

system

temporary

table

spaces.

Related

tasks:

v

“Granting

privileges”

on

page

44

v

“Revoking

privileges”

on

page

45

Related

reference:

v

“CREATE

TABLE”

on

page

591

Table

and

view

privileges

Table

and

view

privileges

involve

actions

on

tables

or

views

in

a

database.

A

user

must

have

CONNECT

authority

on

the

database

to

use

any

of

the

following

privileges:

v

CONTROL

provides

the

user

with

all

privileges

for

a

table

or

view

including

the

ability

to

drop

it,

and

to

grant

and

revoke

individual

table

privileges.

You

must

have

SYSADM

or

DBADM

authority

to

grant

CONTROL.

The

creator

of

a

table

automatically

receives

CONTROL

privilege

on

the

table.

The

creator

of

a

view

automatically

receives

CONTROL

privilege

only

if

they

have

CONTROL

privilege

on

all

tables,

views,

and

nicknames

referenced

in

the

view

definition,

or

they

have

SYSADM

or

DBADM

authority.

v

ALTER

allows

the

user

to

modify

on

a

table,

for

example,

to

add

columns

or

a

unique

constraint

to

the

table.

A

user

with

ALTER

privilege

can

also

COMMENT

ON

a

table,

or

on

columns

of

the

table.

For

information

about

the

possible

modifications

that

can

be

performed

on

a

table,

see

the

ALTER

TABLE

and

COMMENT

statements.

v

DELETE

allows

the

user

to

delete

rows

from

a

table

or

view.

v

INDEX

allows

the

user

to

create

an

index

on

a

table.

Creators

of

indexes

automatically

have

CONTROL

privilege

on

the

index.

v

INSERT

allows

the

user

to

insert

a

row

into

a

table

or

view,

and

to

run

the

IMPORT

utility.

v

REFERENCES

allows

the

user

to

create

and

drop

a

foreign

key,

specifying

the

table

as

the

parent

in

a

relationship.

The

user

might

have

this

privilege

only

on

specific

columns.

v

SELECT

allows

the

user

to

retrieve

rows

from

a

table

or

view,

to

create

a

view

on

a

table,

and

to

run

the

EXPORT

utility.

Schemas

28

Common

Criteria

Certification:

Administration

and

User

Documentation

v

UPDATE

allows

the

user

to

change

an

entry

in

a

table,

a

view,

or

for

one

or

more

specific

columns

in

a

table

or

view.

The

user

may

have

this

privilege

only

on

specific

columns.

The

privilege

to

grant

these

privileges

to

others

may

also

be

granted

using

the

WITH

GRANT

OPTION

on

the

GRANT

statement.

Note:

When

a

user

or

group

is

granted

CONTROL

privilege

on

a

table,

all

other

privileges

on

that

table

are

automatically

granted

WITH

GRANT

OPTION.

If

you

subsequently

revoke

the

CONTROL

privilege

on

the

table

from

a

user,

that

user

will

still

retain

the

other

privileges

that

were

automatically

granted.

To

revoke

all

the

privileges

that

are

granted

with

the

CONTROL

privilege,

you

must

either

explicitly

revoke

each

individual

privilege

or

specify

the

ALL

keyword

on

the

REVOKE

statement,

for

example:

REVOKE

ALL

ON

EMPLOYEE

FROM

USER

HERON

When

working

with

typed

tables,

there

are

implications

regarding

table

and

view

privileges.

Note:

Privileges

may

be

granted

independently

at

every

level

of

a

table

hierarchy.

As

a

result,

a

user

granted

a

privilege

on

a

supertable

within

a

hierarchy

of

typed

tables

may

also

indirectly

affect

any

subtables.

However,

a

user

can

only

operate

directly

on

a

subtable

if

the

necessary

privilege

is

held

on

that

subtable.

The

supertable/subtable

relationships

among

the

tables

in

a

table

hierarchy

mean

that

operations

such

as

SELECT,

UPDATE,

and

DELETE

will

affect

the

rows

of

the

operation’s

target

table

and

all

its

subtables

(if

any).

This

behavior

can

be

called

substitutability.

For

example,

suppose

that

you

have

created

an

Employee

table

of

type

Employee_t

with

a

subtable

Manager

of

type

Manager_t.

A

manager

is

a

(specialized)

kind

of

employee,

as

indicated

by

the

type/subtype

relationship

between

the

structured

types

Employee_t

and

Manager_t

and

the

corresponding

table/subtable

relationship

between

the

tables

Employee

and

Manager.

As

a

result

of

this

relationship,

the

SQL

query:

SELECT

*

FROM

Employee

will

return

the

object

identifier

and

Employee_t

attributes

for

both

employees

and

managers.

Similarly,

the

update

operation:

UPDATE

Employee

SET

Salary

=

Salary

+

1000

will

give

a

thousand

dollar

raise

to

managers

as

well

as

regular

employees.

A

user

with

SELECT

privilege

on

Employee

will

be

able

to

perform

this

SELECT

operation

even

if

they

do

not

have

an

explicit

SELECT

privilege

on

Manager.

However,

such

a

user

will

not

be

permitted

to

perform

a

SELECT

operation

directly

on

the

Manager

subtable,

and

will

therefore

not

be

able

to

access

any

of

the

non-inherited

columns

of

the

Manager

table.

Similarly,

a

user

with

UPDATE

privilege

on

Employee

will

be

able

to

perform

an

UPDATE

operation

on

Manager,

thereby

affecting

both

regular

employees

and

managers,

even

without

having

the

explicit

UPDATE

privilege

on

the

Manager

table.

However,

such

a

user

will

not

be

permitted

to

perform

UPDATE

operations

directly

on

the

Manager

subtable,

and

will

therefore

not

be

able

to

update

non-inherited

columns

of

the

Manager

table.

Schemas

Chapter

2.

Security

29

Related

concepts:

v

“Index

privileges”

on

page

31

Related

tasks:

v

“Granting

privileges”

on

page

44

v

“Revoking

privileges”

on

page

45

Related

reference:

v

“ALTER

TABLE”

on

page

525

v

“CREATE

VIEW”

on

page

656

v

“SELECT”

on

page

902

Package

privileges

A

package

is

a

database

object

that

contains

the

information

needed

by

the

database

manager

to

access

data

in

the

most

efficient

way

for

a

particular

application

program.

Package

privileges

enable

a

user

to

create

and

manipulate

packages.

The

user

must

have

CONNECT

authority

on

the

database

to

use

any

of

the

following

privileges:

v

CONTROL

provides

the

user

with

the

ability

to

rebind,

drop,

or

execute

a

package

as

well

as

the

ability

to

extend

those

privileges

to

others.

The

creator

of

a

package

automatically

receives

this

privilege.

A

user

with

CONTROL

privilege

is

granted

the

BIND

and

EXECUTE

privileges,

and

can

also

grant

these

privileges

to

other

users

by

using

the

GRANT

statement.

(If

a

privilege

is

granted

using

WITH

GRANT

OPTION,

a

user

who

receives

the

BIND

or

EXECUTE

privilege

can,

in

turn,

grant

this

privilege

to

other

users.)

To

grant

CONTROL

privilege,

the

user

must

have

SYSADM

or

DBADM

authority.

v

BIND

privilege

on

a

package

allows

the

user

to

rebind

or

bind

that

package

and

to

add

new

package

versions

of

the

same

package

name

and

creator.

v

EXECUTE

allows

the

user

to

execute

or

run

a

package.

Note:

All

package

privileges

apply

to

all

VERSIONs

that

share

the

same

package

name

and

creator.

In

addition

to

these

package

privileges,

the

BINDADD

database

privilege

allows

users

to

create

new

packages

or

rebind

an

existing

package

in

the

database.

Objects

referenced

by

nicknames

need

to

pass

authentication

checks

at

the

data

sources

containing

the

objects.

In

addition,

package

users

must

have

the

appropriate

privileges

or

authority

levels

for

data

source

objects

at

the

data

source.

It

is

possible

that

packages

containing

nicknames

might

require

additional

authorization

steps

because

DB2®

Universal

Database

(DB2

UDB)

uses

dynamic

SQL

when

communicating

with

DB2

Family

data

sources.

The

authorization

ID

running

the

package

at

the

data

source

must

have

the

appropriate

authority

to

execute

the

package

dynamically

at

that

data

source.

Related

concepts:

v

“Database

authorities”

on

page

24

Related

tasks:

v

“Granting

privileges”

on

page

44

v

“Revoking

privileges”

on

page

45

Schemas

30

Common

Criteria

Certification:

Administration

and

User

Documentation

Index

privileges

The

creator

of

an

index

or

an

index

specification

automatically

receives

CONTROL

privilege

on

the

index.

CONTROL

privilege

on

an

index

is

really

the

ability

to

drop

the

index.

To

grant

CONTROL

privilege

on

an

index,

a

user

must

have

SYSADM

or

DBADM

authority.

The

table-level

INDEX

privilege

allows

a

user

to

create

an

index

on

that

table.

The

nickname-level

INDEX

privilege

allows

a

user

to

create

an

index

specification

on

that

nickname.

Related

concepts:

v

“Table

and

view

privileges”

on

page

28

Related

tasks:

v

“Granting

privileges”

on

page

44

v

“Revoking

privileges”

on

page

45

Sequence

privileges

The

creator

of

a

sequence

automatically

receives

the

USAGE

and

ALTER

privileges

on

the

sequence.

The

USAGE

privilege

is

needed

to

use

NEXT

VALUE

and

PREVIOUS

VALUE

expressions

for

the

sequence.

To

allow

other

users

to

use

the

NEXT

VALUE

and

PREVIOUS

VALUE

expressions,

sequence

privileges

must

be

granted

to

PUBLIC.

This

allows

all

users

to

use

the

expressions

with

the

specified

sequence.

ALTER

privilege

on

the

sequence

allows

the

user

to

perform

tasks

such

as

restarting

the

sequence

or

changing

the

increment

for

future

sequence

values.

The

creator

of

the

sequence

can

grant

the

ALTER

privilege

to

other

users,

and

if

WITH

GRANT

OPTION

is

used,

these

users

can,

in

turn,

grant

these

privileges

to

other

users.

Related

tasks:

v

“Granting

privileges”

on

page

44

v

“Revoking

privileges”

on

page

45

Related

reference:

v

“ALTER

SEQUENCE

statement”

in

the

SQL

Reference,

Volume

2

Routine

privileges

Execute

privileges

involve

actions

on

all

types

of

routines

such

as

functions,

procedures,

and

methods

within

a

database.

Once

having

EXECUTE

privilege,

a

user

can

then

invoke

that

routine,

create

a

function

that

is

sourced

from

that

routine

(applies

to

functions

only),

and

reference

the

routine

in

any

DDL

statement

such

as

CREATE

VIEW

or

CREATE

TRIGGER.

The

user

who

defines

the

externally

stored

procedure,

function,

or

method

receives

EXECUTE

WITH

GRANT

privilege.

If

the

EXECUTE

privilege

is

granted

to

another

user

via

WITH

GRANT

OPTION,

that

user

can,

in

turn,

grant

the

EXECUTE

privilege

to

another

user.

Related

tasks:

Schemas

Chapter

2.

Security

31

v

“Granting

privileges”

on

page

44

v

“Revoking

privileges”

on

page

45

Authorizations

and

binding

of

routines

that

contain

SQL

When

discussing

routine

level

authorization

it

is

important

to

define

some

roles

related

to

routines,

the

determination

of

the

roles,

and

the

privileges

related

to

these

roles:

Package

Owner

The

owner

of

a

particular

package

that

participates

in

the

implementation

of

a

routine.

The

package

owner

is

the

user

who

executes

the

BIND

command

to

bind

a

package

with

a

database,

unless

the

OWNER

precompile/BIND

option

is

used

to

override

the

package

ownership

and

set

it

to

an

alternate

user.

Upon

execution

of

the

BIND

command,

the

package

owner

is

granted

EXECUTE

WITH

GRANT

privilege

on

the

package.

A

routine

library

or

executable

can

be

comprised

of

multiple

packages

and

therefore

can

have

multiple

package

owners

associated

with

it.

Routine

Definer

The

ID

that

issues

the

CREATE

statement

to

register

a

routine.

The

routine

definer

is

generally

a

DBA,

but

is

also

often

the

routine

package

owner.

When

a

routine

is

invoked,

at

package

load

time,

the

authorization

to

run

the

routine

is

checked

against

the

definer’s

authorization

to

execute

the

package

or

packages

associated

with

the

routine

(not

against

the

authorization

of

the

routine

invoker).

For

a

routine

to

be

successfully

invoked,

the

routine

definer

must

have

one

of:

v

EXECUTE

privilege

on

the

package

or

packages

of

the

routine

and

EXECUTE

privilege

on

the

routine

v

SYSADM

or

DBADM

authority

If

the

routine

definer

and

the

routine

package

owner

are

the

same

user,

then

the

routine

definer

will

have

the

required

EXECUTE

privileges

on

the

packages.

If

the

definer

is

not

the

package

owner,

the

definer

must

be

explicitly

granted

EXECUTE

privilege

on

the

packages

by

the

package

owner

or

any

user

with

SYSADM

or

DBADM

authority.

Upon

issuing

the

CREATE

statement

that

registers

the

routine,

the

definer

is

implicitly

granted

the

EXECUTE

WITH

GRANT

OPTION

privilege

on

the

routine.

The

routine

definer’s

role

is

to

encapsulate

under

one

authorization

ID,

the

privileges

of

running

the

packages

associated

with

a

routine

and

the

privilege

of

granting

EXECUTE

privilege

on

the

routine

to

PUBLIC

or

to

specific

users

that

need

to

invoke

the

routine.

Note:

For

SQL

routines

the

routine

definer

is

also

implicitly

the

package

owner.

Therefore

the

definer

will

have

EXECUTE

WITH

GRANT

OPTION

on

both

the

routine

and

on

the

routine

package

upon

execution

of

the

CREATE

statement

for

the

routine.

Routine

Invoker

The

ID

that

invokes

the

routine.

To

determine

which

users

will

be

invokers

of

a

routine,

it

is

necessary

to

consider

how

a

routine

can

be

invoked.

Routines

can

be

invoked

from

a

command

window

or

from

within

an

embedded

SQL

application.

In

the

case

of

methods

and

UDFs

the

routine

Schemas

32

Common

Criteria

Certification:

Administration

and

User

Documentation

reference

will

be

embedded

in

another

SQL

statement.

A

procedure

is

invoked

by

using

the

CALL

statement.

For

dynamic

SQL

in

an

application,

the

invoker

is

the

runtime

authorization

ID

of

the

immediately

higher-level

routine

or

application

containing

the

routine

invocation

(however,

this

ID

can

also

depend

on

the

DYNAMICRULES

option

with

which

the

higher-level

routine

or

application

was

bound).

For

static

SQL,

the

invoker

is

the

value

of

the

OWNER

precompile/BIND

option

of

the

package

that

contains

the

reference

to

the

routine.

To

successfully

invoke

the

routine,

these

users

will

require

EXECUTE

privilege

on

the

routine.

This

privilege

can

be

granted

by

any

user

with

EXECUTE

WITH

GRANT

OPTION

privilege

on

the

routine

(this

includes

the

routine

definer

unless

the

privilege

has

been

explicitly

revoked),

SYSADM

or

DBADM

authority

by

explicitly

issuing

a

GRANT

statement.

As

an

example,

if

a

package

associated

with

an

application

containing

dynamic

SQL

was

bound

with

DYNAMICRULES

BIND,

then

its

runtime

authorization

ID

will

be

its

package

owner,

not

the

person

invoking

the

package.

Also,

the

package

owner

will

be

the

actual

binder

or

the

value

of

the

OWNER

precompile/bind

option.

In

this

case,

the

invoker

of

the

routine

assumes

this

value

rather

than

the

ID

of

the

user

who

is

executing

the

application.

Notes:

1.

For

static

SQL

within

a

routine,

the

package

owner’s

privileges

must

be

sufficient

to

execute

the

SQL

statements

in

the

routine

body.

These

SQL

statements

might

require

table

access

privileges

or

execute

privileges

if

there

are

any

nested

references

to

routines.

2.

For

dynamic

SQL

within

a

routine,

the

userid

whose

privileges

will

be

validated

are

governed

by

the

DYNAMICRULES

option

of

the

BIND

of

the

routine

body.

3.

The

routine

package

owner

must

GRANT

EXECUTE

on

the

package

to

the

routine

definer.

This

can

be

done

before

or

after

the

routine

is

registered,

but

it

must

be

done

before

the

routine

is

invoked

otherwise

an

error

(SQLSTATE

42051)

will

be

returned.

The

steps

involved

in

managing

the

execute

privilege

on

a

routine

are

detailed

in

the

diagram

and

text

that

follows:

Schemas

Chapter

2.

Security

33

1.

Definer

performs

the

appropriate

CREATE

statement

to

register

the

routine.

This

registers

the

routine

in

DB2®

with

its

intended

level

of

SQL

access,

establishes

the

routine

signature,

and

also

points

to

the

routine

executable.

The

definer,

if

not

also

the

package

owner,

needs

to

communicate

with

the

package

owners

and

authors

of

the

routine

programs

to

be

clear

on

where

the

routine

libraries

reside

so

that

this

can

be

correctly

specified

in

the

EXTERNAL

clause

of

the

CREATE

statement.

By

virtue

of

a

successful

CREATE

statement,

the

definer

has

EXECUTE

WITH

GRANT

privilege

on

the

routine,

however

the

definer

does

not

yet

have

EXECUTE

privilege

on

the

packages

of

the

routine.

2.

Definer

must

grant

EXECUTE

privilege

on

the

routine

to

any

users

who

are

to

be

permitted

use

of

the

routine.

(If

the

package

for

this

routine

will

recursively

call

this

routine,

then

this

step

must

be

done

before

the

next

step.)

3.

Package

owners

precompile

and

bind

the

routine

program,

or

have

it

done

on

their

behalf.

Upon

a

successful

precompile

and

bind,

the

package

owner

is

implicitly

granted

EXECUTE

WITH

GRANT

OPTION

privilege

on

the

respective

package.

This

step

follows

step

one

in

this

list

only

to

cover

the

possibility

of

SQL

recursion

in

the

routine.

If

such

recursion

does

not

exist

in

any

particular

case,

the

precompile/bind

could

precede

the

issuing

of

the

CREATE

statement

for

the

routine.

Database
administrator 1 has:

User ID of the
routine invoker has:

EXECUTE on package
privilege

EXECUTE WITH GRANT
OPTION on routine privilege

Binds the routine package
using the BIND command

Discuss the
location of the
routine library

Grants the EXECUTE
on package privilege

Grants the EXECUTE on routine

privilege to the routine invoker

Database
administrator 1

Programmer 1

Creates the routine using
the CREATE statement

The routine is

successfully invoked

EXECUTE on
routine privilege

Invokes the routine

Programmer 1 has:

EXECUTE WITH GRANT
OPTION on package privilege

Figure

8.

Managing

the

EXECUTE

privilege

on

routines

Schemas

34

Common

Criteria

Certification:

Administration

and

User

Documentation

4.

Each

package

owner

must

explicitly

grant

EXECUTE

privilege

on

their

respective

routine

package

to

the

definer

of

the

routine.

This

step

must

come

at

some

time

after

the

previous

step.

If

the

package

owner

is

also

the

routine

definer,

this

step

can

be

skipped.

5.

Static

usage

of

the

routine:

the

bind

owner

of

the

package

referencing

the

routine

must

have

been

given

EXECUTE

privilege

on

the

routine,

so

the

previous

step

must

be

completed

at

this

point.

When

the

routine

executes,

DB2

verifies

that

the

definer

has

the

EXECUTE

privilege

on

any

package

that

is

needed,

so

step

3

must

be

completed

for

each

such

package.

6.

Dynamic

usage

of

the

routine:

the

authorization

ID

as

controlled

by

the

DYNAMICRULES

option

for

the

invoking

application

must

have

EXECUTE

privilege

on

the

routine

(step

4),

and

the

definer

of

the

routine

must

have

the

EXECUTE

privilege

on

the

packages

(step

3).

Related

concepts:

v

“Privileges,

authority

levels,

and

database

authorities”

on

page

15

v

“Effect

of

DYNAMICRULES

bind

option

on

dynamic

SQL”

on

page

952

v

“Routine

privileges”

on

page

31

Related

reference:

v

“CREATE

FUNCTION”

on

page

574

v

“CREATE

PROCEDURE”

on

page

588

v

“BIND”

on

page

232

Routines

that

are

migrated

from

version

previous

to

version

8

As

of

DB2

Version

8.1,

a

routine

level

EXECUTE

privilege

exists

to

ensure

the

safe

and

manageable

use

of

routines.

To

successfully

invoke

a

routine,

a

user

will

now

require

EXECUTE

privilege

on

the

routine

and

will

no

longer

require

EXECUTE

privilege

on

each

of

the

packages

of

the

routine.

The

definer

of

a

routine,

the

user

that

registers

a

routine

with

the

CREATE

statement,

requires

EXECUTE

privilege

on

the

packages

of

the

routine.

When

a

user

invokes

a

routine,

it

is

now

the

routine

definer’s

authorization

ID

that

is

checked

for

authority

to

execute

the

packages

of

a

routine.

Controlling

Database

Access

One

of

the

most

important

responsibilities

of

the

database

administrator

and

the

system

administrator

is

database

security.

Securing

your

database

involves

several

activities:

v

Preventing

accidental

loss

of

data

or

data

integrity

through

equipment

or

system

malfunction.

v

Preventing

unauthorized

access

to

valuable

data.

You

must

ensure

that

sensitive

information

is

not

accessed

by

those

without

a

“need

to

know”.

v

Preventing

unauthorized

persons

from

committing

mischief

through

malicious

deletion

or

tampering

with

data.

v

Monitoring

access

of

data

by

users.

The

following

topics

are

discussed:

v

“Security

issues

when

installing

DB2

Universal

Database”

on

page

36

v

“Authentication

methods

for

your

server”

on

page

38

v

“Authentication

considerations

for

remote

clients”

on

page

43

v

“Introduction

to

firewall

support”

on

page

209

Schemas

Chapter

2.

Security

35

v

“Privileges,

authority

levels,

and

database

authorities”

on

page

15

v

“Controlling

access

to

database

objects”

on

page

43

v

“Tasks

and

required

authorizations”

on

page

53

v

“Using

the

system

catalog

for

security

issues”

on

page

189.

Planning

for

Security:

Start

by

defining

your

objectives

for

a

database

access

control

plan,

and

specifying

who

shall

have

access

to

what

and

under

what

circumstances.

Your

plan

should

also

describe

how

to

meet

these

objectives

by

using

database

functions,

functions

of

other

programs,

and

administrative

procedures.

Security

issues

when

installing

DB2

Universal

Database

Security

issues

are

important

to

the

DB2®

administrator

from

the

moment

the

product

is

installed.

To

complete

the

installation

of

DB2

Universal

Database™

(DB2

UDB),

a

user

ID,

a

group

name,

and

a

password

are

required.

The

GUI-based

DB2

UDB

install

program

creates

default

values

for

different

user

IDs

and

the

group.

Different

defaults

are

created,

depending

on

whether

you

are

installing

on

UNIX®

or

Windows®

platforms:

v

On

UNIX

platforms,

the

DB2

UDB

install

program

creates

different

default

users

for

the

DAS

(dasusr),

the

instance

owner

(db2inst),

and

the

fenced

user

(db2fenc).

The

DB2

UDB

install

program

appends

a

number

from

1-99

to

the

default

user

name,

until

a

user

ID

that

does

not

already

exist

can

be

created.

For

example,

if

the

users

db2inst1

and

db2inst2

already

exist,

the

DB2

UDB

install

program

creates

the

user

db2inst3.

If

a

number

greater

than

10

is

used,

the

character

portion

of

the

name

is

truncated

in

the

default

user

ID.

For

example,

if

the

user

ID

db2fenc9

already

exists,

the

DB2

UDB

install

program

truncates

the

c

in

the

user

ID,

then

appends

the

10

(db2fen10).

Truncation

does

not

occur

when

the

numeric

value

is

appended

to

the

default

DAS

user

(for

example,

dasusr24).

v

On

Windows

platforms,

the

DB2

UDB

install

program

creates

the

default

user

db2admin

for

the

DAS

user,

the

instance

owner,

and

fenced

users.

Unlike

UNIX

platforms,

no

numeric

value

is

appended

to

the

user

ID.

To

minimize

the

risk

of

a

user

other

than

the

administrator

from

learning

of

the

defaults

and

using

them

in

an

improper

fashion

within

databases

and

instances,

change

the

defaults

during

the

install

to

a

new

or

existing

user

ID

of

your

choice.

Note:

Response

file

installations

do

not

use

default

values

for

user

IDs

or

group

names.

These

values

must

be

specified

in

the

response

file.

Passwords

are

very

important

when

authenticating

users.

If

no

authentication

requirements

are

set

at

the

operating

system

level

and

the

database

is

using

the

operating

system

to

authenticate

users,

users

will

be

allowed

to

connect.

For

example

on

UNIX

operating

systems,

undefined

passwords

are

treated

as

NULL.

In

this

situation,

any

user

without

a

defined

password

will

be

considered

to

have

a

NULL

password.

From

the

operating

system’s

perspective,

this

is

a

match

and

the

user

is

validated

and

able

to

connect

to

the

database.

Use

passwords

at

the

operating

system

level

if

you

want

the

operating

system

to

do

the

authentication

of

users

for

your

database.

Schemas

36

Common

Criteria

Certification:

Administration

and

User

Documentation

Note:

You

cannot

use

undefined

passwords

if

you

want

your

database

environment

to

adhere

to

Common

Criteria

requirements.

After

installing

DB2

Universal

Database

also

review,

and

change

(if

required),

the

default

privileges

that

have

been

granted

to

users.

By

default,

the

installation

process

grants

system

administration

(SYSADM)

privileges

to

the

following

users

on

each

operating

system:

Windows

9x

Any

Windows

98,

or

Windows

ME

user.

Other

Windows

environments

On

Windows

NT®,

Windows

2000,

Windows

XP,

or

Windows

Server

2003,

a

valid

DB2

UDB

username

that

belongs

to

the

Administrators

group.

UNIX

platforms

A

valid

DB2

UDB

username

that

belongs

to

the

primary

group

of

the

instance

owner.

The

SYSADM

authority

level

provides

the

most

powerful

set

of

privileges

available

within

DB2

Universal

Database.

As

a

result,

you

may

not

want

all

of

these

users

to

have

SYSADM

authority

by

default.

DB2

UDB

provides

the

administrator

with

the

ability

to

grant

and

revoke

privileges

to

groups

and

individual

user

IDs.

By

updating

the

database

manager

configuration

parameter

sysadm_group,

the

administrator

can

control

which

group

of

users

possesses

SYSADM

authority.

You

must

follow

the

guidelines

below

to

complete

the

security

requirements

for

both

DB2

UDB

installation

and

the

subsequent

instance

and

database

creation.

Any

group

defined

as

the

system

administration

group

(by

updating

sysadm_group)

must

exist.

The

name

of

this

group

should

allow

for

easy

identification

as

the

group

created

for

instance

owners.

User

IDs

and

groups

that

belong

to

this

group

have

system

administrator

authority

for

their

respective

instances.

The

administrator

should

consider

creating

an

instance

owner

user

ID

that

is

easily

recognized

as

being

associated

with

a

particular

instance.

This

user

ID

should

have

as

one

of

its

groups

the

name

of

the

SYSADM

group

created

above.

Another

recommendation

is

to

use

this

instance-owner

user

ID

only

as

a

member

of

the

instance

owner

group

and

not

to

use

it

in

any

other

group.

This

should

control

the

proliferation

of

user

IDs

and

groups

that

can

modify

the

instance,

or

any

object

within

the

instance.

The

created

user

ID

must

be

associated

with

a

password

to

provide

authentication

before

being

permitted

entry

into

the

data

and

databases

within

the

instance.

The

recommendation

when

creating

a

password

is

to

follow

your

organization’s

password

naming

guidelines.

Related

concepts:

v

“Naming

rules

in

an

NLS

environment”

on

page

99

v

“Naming

rules

in

a

Unicode

environment”

on

page

100

v

“Windows

NT

platform

security

considerations

for

users”

on

page

56

v

“UNIX

platform

security

considerations

for

users”

on

page

56

v

“Authentication”

on

page

13

v

“Authorization”

on

page

15

v

“Location

of

the

instance

directory”

in

the

Administration

Guide:

Implementation

v

“General

naming

rules”

on

page

95

Schemas

Chapter

2.

Security

37

v

“User,

user

ID

and

group

naming

rules”

on

page

97

Authentication

methods

for

your

server

Access

to

an

instance

or

a

database

first

requires

that

the

user

be

authenticated.

The

authentication

type

for

each

instance

determines

how

and

where

a

user

will

be

verified.

The

authentication

type

is

stored

in

the

database

manager

configuration

file

at

the

server.

It

is

initially

set

when

the

instance

is

created.

There

is

one

authentication

type

per

instance,

which

covers

access

to

that

database

server

and

all

the

databases

under

its

control.

If

you

intend

to

access

data

sources

from

a

federated

database,

you

must

consider

data

source

authentication

processing

and

definitions

for

federated

authentication

types.

The

following

authentication

types

are

provided:

SERVER

Specifies

that

authentication

occurs

on

the

server

using

local

operating

system

security.

If

a

user

ID

and

password

are

specified

during

the

connection

or

attachment

attempt,

they

are

compared

to

the

valid

user

ID

and

password

combinations

at

the

server

to

determine

if

the

user

is

permitted

to

access

the

instance.

This

is

the

default

security

mechanism.

Notes:

1.

The

server

code

detects

whether

a

connection

is

local

or

remote.

For

local

connections,

when

authentication

is

SERVER,

a

user

ID

and

password

are

not

required

for

authentication

to

be

successful.

2.

If

you

are

installing

DB2®

Universal

Database

(DB2

UDB)

to

set

up

a

Common

Criteria

certified

configuation,

you

must

specify

SERVER.

SERVER_ENCRYPT

Specifies

that

the

server

accepts

encrypted

SERVER

authentication

schemes.

If

the

client

authentication

is

not

specified,

the

client

is

authenticated

using

the

method

selected

at

the

server.

If

the

client

authentication

is

SERVER,

the

client

is

authenticated

by

passing

the

user

ID

and

password

to

the

server.

If

the

client

authentication

is

SERVER_ENCRYPT,

the

client

is

authenticated

by

passing

an

encrypted

user

ID

and

encrypted

password.

If

SERVER_ENCRYPT

is

specified

at

the

client

and

SERVER

is

specified

at

the

server,

an

error

is

returned

because

of

the

mismatch

in

the

authentication

levels.

CLIENT

Specifies

that

authentication

occurs

on

the

database

partition

where

the

application

is

invoked

using

operating

system

security.

The

user

ID

and

password

specified

during

a

connection

or

attachment

attempt

are

compared

with

the

valid

user

ID

and

password

combinations

on

the

client

node

to

determine

if

the

user

ID

is

permitted

access

to

the

instance.

No

further

authentication

will

take

place

on

the

database

server.

This

is

sometimes

called

single

signon.

If

the

user

performs

a

local

or

client

login,

the

user

is

known

only

to

that

local

client

workstation.

If

the

remote

instance

has

CLIENT

authentication,

two

other

parameters

determine

the

final

authentication

type:

trust_allclnts

and

trust_clntauth.

Schemas

38

Common

Criteria

Certification:

Administration

and

User

Documentation

CLIENT

level

security

for

TRUSTED

clients

only:

Trusted

clients

are

clients

that

have

a

reliable,

local

security

system.

Specifically,

all

clients

are

trusted

clients

except

for

Windows®

9x

operating

systems.

When

the

authentication

type

of

CLIENT

has

been

selected,

an

additional

option

may

be

selected

to

protect

against

clients

whose

operating

environment

has

no

inherent

security.

To

protect

against

unsecured

clients,

the

administrator

can

select

Trusted

Client

Authentication

by

setting

the

trust_allclnts

parameter

to

NO.

This

implies

that

all

trusted

platforms

can

authenticate

the

user

on

behalf

of

the

server.

Untrusted

clients

are

authenticated

on

the

Server

and

must

provide

a

user

ID

and

password.

You

use

the

trust_allclnts

configuration

parameter

to

indicate

whether

you

are

trusting

clients.

The

default

for

this

parameter

is

YES.

Note:

It

is

possible

to

trust

all

clients

(trust_allclnts

is

YES)

yet

have

some

of

those

clients

as

those

who

do

not

have

a

native

safe

security

system

for

authentication.

You

may

also

want

to

complete

authentication

at

the

server

even

for

trusted

clients.

To

indicate

where

to

validate

trusted

clients,

you

use

the

trust_clntauth

configuration

parameter.

The

default

for

this

parameter

is

CLIENT.

Note:

For

trusted

clients

only,

if

no

user

ID

or

password

is

explicitly

provided

when

attempting

to

CONNECT

or

ATTACH,

then

validation

of

the

user

takes

place

at

the

client.

The

trust_clntauth

parameter

is

only

used

to

determine

where

to

validate

the

information

provided

on

the

USER

or

USING

clauses.

To

protect

against

all

clients

except

DRDA®

clients

from

DB2

for

OS/390®

and

z/OS™,

DB2

for

VM

and

VSE,

and

DB2

for

iSeries™,

set

the

trust_allclnts

parameter

to

DRDAONLY.

Only

these

clients

can

be

trusted

to

perform

client-side

authentication.

All

other

clients

must

provide

a

user

ID

and

password

to

be

authenticated

by

the

server.

The

trust_clntauth

parameter

is

used

to

determine

where

the

above

clients

are

authenticated:

if

trust_clntauth

is

″client″,

authentication

takes

place

at

the

client.

If

trust_clntauth

is

″server″,

authentication

takes

place

at

the

client

when

no

password

is

provided

and

at

the

server

when

a

password

is

provided.

Table

2.

Authentication

Modes

using

TRUST_ALLCLNTS

and

TRUST_CLNTAUTH

Parameter

Combinations.

TRUST_

ALLCLNTS

TRUST_

CLNTAUTH

Untrusted

non–

DRDA

Client

Authen-

tication

no

password

Untrusted

non–

DRDA

Client

Authen-

tication

with

password

Trusted

non–

DRDA

Client

Authen-

tication

no

password

Trusted

non–

DRDA

Client

Authen-

tication

with

password

DRDA

Client

Authen-

tication

no

password

DRDA

Client

Authen-

tication

with

password

YES

CLIENT

CLIENT

CLIENT

CLIENT

CLIENT

CLIENT

CLIENT

YES

SERVER

CLIENT

SERVER

CLIENT

SERVER

CLIENT

SERVER

NO

CLIENT

SERVER

SERVER

CLIENT

CLIENT

CLIENT

CLIENT

NO

SERVER

SERVER

SERVER

CLIENT

SERVER

CLIENT

SERVER

Schemas

Chapter

2.

Security

39

Table

2.

Authentication

Modes

using

TRUST_ALLCLNTS

and

TRUST_CLNTAUTH

Parameter

Combinations.

(continued)

TRUST_

ALLCLNTS

TRUST_

CLNTAUTH

Untrusted

non–

DRDA

Client

Authen-

tication

no

password

Untrusted

non–

DRDA

Client

Authen-

tication

with

password

Trusted

non–

DRDA

Client

Authen-

tication

no

password

Trusted

non–

DRDA

Client

Authen-

tication

with

password

DRDA

Client

Authen-

tication

no

password

DRDA

Client

Authen-

tication

with

password

DRDAONLY

CLIENT

SERVER

SERVER

SERVER

SERVER

CLIENT

CLIENT

DRDAONLY

SERVER

SERVER

SERVER

SERVER

SERVER

CLIENT

SERVER

KERBEROS

Used

when

both

the

DB2

UDB

client

and

server

are

on

operating

systems

that

support

the

Kerberos

security

protocol.

The

Kerberos

security

protocol

performs

authentication

as

a

third

party

authentication

service

by

using

conventional

cryptography

to

create

a

shared

secret

key.

This

key

becomes

a

user’s

credential

and

is

used

to

verify

the

identity

of

users

during

all

occasions

when

local

or

network

services

are

requested.

The

key

eliminates

the

need

to

pass

the

user

name

and

password

across

the

network

as

clear

text.

Using

the

Kerberos

security

protocol

enables

the

use

of

a

single

sign-on

to

a

remote

DB2

UDB

server.

The

KERBEROS

authentication

type

is

supported

on

clients

and

servers

running

Windows

2000,

AIX®,

and

Solaris

operating

environment.

Kerberos

authentication

works

as

follows:

1.

A

user

logging

on

to

the

client

machine

using

a

domain

account

authenticates

to

the

Kerberos

key

distribution

center

(KDC)

at

the

domain

controller.

The

key

distribution

center

issues

a

ticket-granting

ticket

(TGT)

to

the

client.

2.

During

the

first

phase

of

the

connection

the

server

sends

the

target

principal

name,

which

is

the

service

account

name

for

the

DB2

UDB

server

service,

to

the

client.

Using

the

server’s

target

principal

name

and

the

target-granting

ticket,

the

client

requests

a

service

ticket

from

the

ticket-granting

service

(TGS)

which

also

resides

at

the

domain

controller.

If

both

the

client’s

ticket-granting

ticket

and

the

server’s

target

principal

name

are

valid,

the

TGS

issues

a

service

ticket

to

the

client.

The

principal

name

recorded

in

the

database

directory

may

now

be

specified

as

name/instance@REALM.

(This

is

in

addition

to

the

current

DOMAIN\userID

and

userID@xxx.xxx.xxx.com

formats

accepted

on

Windows

2000

with

DB2

UDB

Version

7.1

and

following.)

3.

The

client

sends

this

service

ticket

to

the

server

via

the

communication

channel

(which

may

be,

as

an

example,

TCP/IP).

4.

The

server

validates

the

client’s

server

ticket.

If

the

client’s

service

ticket

is

valid,

then

the

authentication

is

completed.

It

is

possible

to

catalog

the

databases

on

the

client

machine

and

explicitly

specify

the

Kerberos

authentication

type

with

the

server’s

target

principal

name.

In

this

way,

the

first

phase

of

the

connection

can

be

bypassed.

If

a

user

ID

and

a

password

are

specified,

the

client

will

request

the

ticket-granting

ticket

for

that

user

account

and

use

it

for

authentication.

KRB_SERVER_ENCRYPT

Specifies

that

the

server

accepts

KERBEROS

authentication

or

encrypted

Schemas

40

Common

Criteria

Certification:

Administration

and

User

Documentation

SERVER

authentication

schemes.

If

the

client

authentication

is

KERBEROS,

the

client

is

authenticated

using

the

Kerberos

security

system.

If

the

client

authentication

is

SERVER_ENCRYPT,

the

client

is

authenticated

using

a

user

ID

and

encryption

password.

If

the

client

authentication

is

not

specified,

then

the

client

will

use

Kerberos

if

available,

otherwise

it

will

use

password

encryption.

For

other

client

authentication

types,

an

authentication

error

is

returned.

The

authenticaion

type

of

the

client

cannot

be

specified

as

KRB_SERVER_ENCRYPT

Note:

The

Kerberos

authentication

types

are

only

supported

on

clients

and

servers

running

Windows

2000,

Windows

XP,

Windows

Windows

Server

2003,

and

AIX

operating

systems,

as

well

as

Solaris

operating

environment.

Also,

both

client

and

server

machines

must

either

belong

to

the

same

Windows

domain

or

belong

to

trusted

domains.

This

authentication

type

should

be

used

when

the

server

supports

Kerberos

and

some,

but

not

all,

of

the

client

machines

support

Kerberos

authentication.

DATA_ENCRYPT

The

server

accepts

encrypted

SERVER

authentication

schemes

and

the

encryption

of

user

data.

The

authentication

works

exactly

the

same

way

as

that

shown

with

SERVER_ENCRYPT.

See

that

authentication

type

for

more

information.

The

following

user

data

are

encrypted

when

using

this

authentication

type:

v

SQL

statements.

v

SQL

program

variable

data.

v

Output

data

from

the

server

processing

of

an

SQL

statement

and

including

a

description

of

the

data.

v

Some

or

all

of

the

answer

set

data

resulting

from

a

query.

v

Large

object

(LOB)

data

streaming.

v

SQLDA

descriptors.

DATA_ENCRYPT_CMP

The

server

accepts

encrypted

SERVER

authentication

schemes

and

the

encryption

of

user

data.

In

addition,

this

authentication

type

allows

compatibility

with

down

level

products

not

supporting

DATA_ENCRYPT

authentication

type.

These

products

are

permitted

to

connect

with

the

SERVER_ENCRYPT

authentication

type

and

without

encrypting

user

data.

Products

supporting

the

new

authentication

type

must

use

it.

This

authentication

type

is

only

valid

in

the

server’s

database

manager

configuration

file

and

is

not

valid

when

used

on

on

the

CATALOG

DATABASE

command.

GSSPLUGIN

Specifies

that

the

server

uses

a

GSS-API

plug-in

to

perform

authentication.

If

the

client

authentication

is

not

specified,

the

server

returns

a

list

of

server-supported

plug-ins,

including

any

Kerberos

plug-in

that

is

listed

in

the

srvcon_gssplugin_list

database

manager

configuration

parameter,

to

the

client.

The

client

selects

the

first

plug-in

found

in

the

client

plug-in

directory

from

the

list.

If

the

client

does

not

support

any

plug-in

in

the

list,

the

client

is

authenticated

using

the

Kerberos

authentication

scheme

(if

it

is

returned).

If

the

client

authentication

is

the

GSSPLUGIN

authentication

scheme,

the

client

is

authenticated

using

the

first

supported

plug-in

in

the

list.

Schemas

Chapter

2.

Security

41

GSS_SERVER_ENCRYPT

Specifies

that

the

server

accepts

plug-in

authentication

or

encrypted

server

authentication

schemes.

If

client

authentication

occurs

via

a

plug-in,

the

client

is

authenticated

using

the

first

client-supported

plug-in

in

the

list

of

server-supported

plug-ins.

If

the

client

authentication

is

not

specified

and

an

implicit

connect

is

being

performed

(that

is,

the

client

does

not

supply

a

user

ID

and

password

when

making

the

connection),

the

server

returns

a

list

of

server-supported

plug-ins,

the

Kerberos

authentication

scheme

(if

one

of

the

plug-ins

in

the

list

is

Kerberos-based),

and

the

encrypted

server

authentication

scheme.

The

client

is

authenticated

using

the

first

supported

plug-in

found

in

the

client

plug-in

directory.

If

the

client

does

not

support

any

of

the

plug-ins

that

are

in

the

list,

the

client

is

authenticated

using

the

Kerberos

authentication

scheme.

If

the

client

does

not

support

the

Kerberos

authentication

scheme,

the

client

is

authenticated

using

the

encrypted

server

authentication

scheme,

and

the

connection

will

fail

because

of

a

missing

password.

A

client

supports

the

Kerberos

authentication

scheme

if

a

DB2

UDB-supplied

Kerberos

plug-in

exists

for

the

operating

system,

or

a

Kerberos-based

plug-in

is

specified

for

the

srvcon_gssplugin_list

database

manager

configuration

parameter.

If

the

client

authentication

is

not

specified

and

an

explicit

connection

is

being

performed

(that

is,

both

the

user

ID

and

password

are

supplied),

the

authentication

type

is

equivalent

to

SERVER_ENCRYPT.

Notes:

1.

Do

not

inadvertently

lock

yourself

out

of

your

instance

when

you

are

changing

the

authentication

information,

since

access

to

the

configuration

file

itself

is

protected

by

information

in

the

configuration

file.

The

following

database

manager

configuration

file

parameters

control

access

to

the

instance:

v

AUTHENTICATION

*

v

SYSADM_GROUP

*

v

TRUST_ALLCLNTS

v

TRUST_CLNTAUTH

v

SYSCTRL_GROUP

v

SYSMAINT_GROUP

*

Indicates

the

two

most

important

parameters,

and

those

most

likely

to

cause

a

problem.

There

are

some

things

that

can

be

done

to

ensure

this

does

not

happen:

If

you

do

accidentally

lock

yourself

out

of

the

DB2

UDB

system,

you

have

a

fail-safe

option

available

on

all

platforms

that

will

allow

you

to

override

the

usual

DB2

UDB

security

checks

to

update

the

database

manager

configuration

file

using

a

highly

privileged

local

operating

system

security

user.

This

user

always

has

the

privilege

to

update

the

database

manager

configuration

file

and

thereby

correct

the

problem.

However,

this

security

bypass

is

restricted

to

a

local

update

of

the

database

manager

configuration

file.

You

cannot

use

a

fail-safe

user

remotely

or

for

any

other

DB2

UDB

command.

This

special

user

is

identified

as

follows:

v

UNIX®

platforms:

the

instance

owner

v

NT

platform:

someone

belonging

to

the

local

“administrators”

group

v

Other

platforms:

there

is

no

local

security

on

the

other

platforms,

so

all

users

pass

local

security

checks

anyway

Related

concepts:

Schemas

42

Common

Criteria

Certification:

Administration

and

User

Documentation

v

“Authentication

considerations

for

remote

clients”

on

page

43

v

“Partitioned

database

authentication

considerations”

in

the

Administration

Guide:

Implementation

v

“DB2

for

Windows

NT

and

Windows

NT

security

introduction”

in

the

Administration

Guide:

Implementation

Related

reference:

v

“authentication

-

Authentication

type”

on

page

783

v

“trust_allclnts

-

Trust

all

clients”

on

page

790

v

“trust_clntauth

-

Trusted

clients

authentication”

on

page

791

Authentication

considerations

for

remote

clients

When

cataloging

a

database

for

remote

access,

the

authentication

type

can

be

specified

in

the

database

directory

entry.

For

databases

accessed

using

DB2®

Connect:

If

a

value

is

not

specified,

SERVER

authentication

is

assumed.

The

authentication

type

is

not

required.

If

it

is

not

specified,

the

client

will

default

to

SERVER_ENCRYPT.

However,

if

the

server

does

not

support

SERVER_ENCRYPT,

the

client

attempts

to

retry

using

a

value

supported

by

the

server.

If

the

server

supports

multiple

authentication

types,

the

client

will

not

choose

among

them,

but

instead

returns

an

error.

The

error

is

returned

to

ensure

that

the

correct

authentication

type

is

used.

In

this

case,

the

client

must

catalog

the

database

using

a

supported

authentication

type.

If

an

authentication

type

is

specified,

authentication

can

begin

immediately

provided

that

value

specified

matches

that

at

the

server.

If

a

mismatch

is

detected,

DB2

Universal

Database™

(DB2

UDB)

attempts

to

recover.

Recovery

may

result

in

more

flows

to

reconcile

the

difference,

or

in

an

error

if

DB2

UDB

cannot

recover.

In

the

case

of

a

mismatch,

the

value

at

the

server

is

assumed

to

be

correct.

Related

concepts:

v

“Authentication

methods

for

your

server”

on

page

38

Controlling

access

to

database

objects

Controlling

data

access

requires

an

understanding

of

direct

and

indirect

privileges,

administrative

authorities,

and

packages.

This

section

explains

these

topics

and

provides

some

examples.

Directly

granted

privileges

are

stored

in

the

system

catalog.

Authorization

is

controlled

in

three

ways:

v

Explicit

authorization

is

controlled

through

privileges

controlled

with

the

GRANT

and

REVOKE

statements

v

Implicit

authorization

is

controlled

by

creating

and

dropping

objects

v

Indirect

privileges

are

associated

with

packages.

Note:

A

database

group

name

must

be

8

characters

or

less

when

used

in

a

GRANT

or

REVOKE

statement,

or

in

the

Control

Center.

Even

though

a

Schemas

Chapter

2.

Security

43

database

group

name

longer

than

8

characters

is

accepted,

the

longer

name

results

in

an

error

message

when

users

belonging

to

the

group

access

database

objects.

Related

concepts:

v

“Using

the

system

catalog

for

security

issues”

on

page

189

Related

tasks:

v

“Granting

privileges”

on

page

44

v

“Revoking

privileges”

on

page

45

Details

on

controlling

access

to

database

objects

The

control

of

access

to

database

objects

is

through

the

use

of

GRANT

and

REVOKE

statements.

Implicit

access

authorization

and

indirect

privileges

are

also

discussed.

Granting

privileges

Restrictions:

To

grant

privileges

on

most

database

objects,

the

user

must

have

SYSADM

authority,

DBADM

authority,

or

CONTROL

privilege

on

that

object;

or,

the

user

must

hold

the

privilege

WITH

GRANT

OPTION.

Privileges

can

be

granted

only

on

existing

objects.

To

grant

CONTROL

privilege

to

someone

else,

the

user

must

have

SYSADM

or

DBADM

authority.

To

grant

DBADM

authority,

the

user

must

have

SYSADM

authority.

Procedure:

The

GRANT

statement

allows

an

authorized

user

to

grant

privileges.

A

privilege

can

be

granted

to

one

or

more

authorization

names

in

one

statement;

or

to

PUBLIC,

which

makes

the

privileges

available

to

all

users.

Note

that

an

authorization

name

can

be

either

an

individual

user

or

a

group.

On

operating

systems

where

users

and

groups

exist

with

the

same

name,

you

should

specify

whether

you

are

granting

the

privilege

to

the

user

or

group.

Both

the

GRANT

and

REVOKE

statements

support

the

keywords

USER

and

GROUP.

If

these

optional

keywords

are

not

used,

the

database

manager

checks

the

operating

system

security

facility

to

determine

whether

the

authorization

name

identifies

a

user

or

a

group.

If

the

authorization

name

could

be

both

a

user

and

a

group,

an

error

is

returned.

The

following

example

grants

SELECT

privileges

on

the

EMPLOYEE

table

to

the

user

HERON:

GRANT

SELECT

ON

EMPLOYEE

TO

USER

HERON

The

following

example

grants

SELECT

privileges

on

the

EMPLOYEE

table

to

the

group

HERON:

GRANT

SELECT

ON

EMPLOYEE

TO

GROUP

HERON

Related

concepts:

v

“Controlling

access

to

database

objects”

on

page

43

Schemas

44

Common

Criteria

Certification:

Administration

and

User

Documentation

Related

tasks:

v

“Revoking

privileges”

on

page

45

Related

reference:

v

“GRANT

(Database

Authorities)”

on

page

700

v

“GRANT

(Index

Privileges)”

on

page

704

v

“GRANT

(Package

Privileges)”

on

page

705

v

“GRANT

(Schema

Privileges)”

on

page

711

v

“GRANT

(Table,

View,

or

Nickname

Privileges)”

on

page

718

v

“GRANT

(Server

Privileges)”

on

page

715

v

“GRANT

(Table

Space

Privileges)”

on

page

716

v

“GRANT

(Sequence

Privileges)”

on

page

713

v

“GRANT

(Routine

Privileges)”

on

page

708

Revoking

privileges

The

REVOKE

statement

allows

authorized

users

to

revoke

privileges

previously

granted

to

other

users.

Restrictions:

To

revoke

privileges

on

database

objects,

you

must

have

DBADM

authority,

SYSADM

authority,

or

CONTROL

privilege

on

that

object.

Note

that

holding

a

privilege

WITH

GRANT

OPTION

is

not

sufficient

to

revoke

that

privilege.

To

revoke

CONTROL

privilege

from

another

user,

you

must

have

SYSADM

or

DBADM

authority.

To

revoke

DBADM

authority,

you

must

have

SYSADM

authority.

Privileges

can

only

be

revoked

on

existing

objects.

Note:

A

user

without

DBADM

authority

or

CONTROL

privilege

is

not

able

to

revoke

a

privilege

that

they

granted

through

their

use

of

the

WITH

GRANT

OPTION.

Also,

there

is

no

cascade

on

the

revoke

to

those

who

have

received

privileges

granted

by

the

person

being

revoked.

If

an

explicitly

granted

table

(or

view)

privilege

is

revoked

from

a

user

with

DBADM

authority,

privileges

will

not

be

revoked

from

other

views

defined

on

that

table.

This

is

because

the

view

privileges

are

available

through

the

DBADM

authority

and

are

not

dependent

on

explicit

privileges

on

the

underlying

tables.

Procedure:

If

a

privilege

has

been

granted

to

both

a

user

and

a

group

with

the

same

name,

you

must

specify

the

GROUP

or

USER

keyword

when

revoking

the

privilege.

The

following

example

revokes

the

SELECT

privilege

on

the

EMPLOYEE

table

from

the

user

HERON:

REVOKE

SELECT

ON

EMPLOYEE

FROM

USER

HERON

The

following

example

revokes

the

SELECT

privilege

on

the

EMPLOYEE

table

from

the

group

HERON:

REVOKE

SELECT

ON

EMPLOYEE

FROM

GROUP

HERON

Schemas

Chapter

2.

Security

45

Note

that

revoking

a

privilege

from

a

group

may

not

revoke

it

from

all

members

of

that

group.

If

an

individual

name

has

been

directly

granted

a

privilege,

it

will

keep

it

until

that

privilege

is

directly

revoked.

If

a

table

privilege

is

revoked

from

a

user,

privileges

are

also

revoked

on

any

view

created

by

that

user

which

depends

on

the

revoked

table

privilege.

However,

only

the

privileges

implicitly

granted

by

the

system

are

revoked.

If

a

privilege

on

the

view

was

granted

directly

by

another

user,

the

privilege

is

still

held.

You

may

have

a

situation

where

you

want

to

GRANT

a

privilege

to

a

group

and

then

REVOKE

the

privilege

from

just

one

member

of

the

group.

There

are

only

a

couple

of

ways

to

do

that

without

receiving

the

error

message

SQL0556N:

v

You

can

remove

the

member

from

the

group;

or,

create

a

new

group

with

fewer

members

and

GRANT

the

privilege

to

the

new

group.

v

You

can

REVOKE

the

privilege

from

the

group

and

then

GRANT

it

to

individual

users

(authorization

IDs).

Note:

When

CONTROL

privilege

is

revoked

from

a

user

on

a

table

or

a

view,

the

user

continues

to

have

the

ability

to

grant

privileges

to

others.

When

given

CONTROL

privilege,

the

user

also

receives

all

other

privileges

WITH

GRANT

OPTION.

Once

CONTROL

is

revoked,

all

of

the

other

privileges

remain

WITH

GRANT

OPTION

until

they

are

explicitly

revoked.

All

packages

that

are

dependent

on

revoked

privileges

are

marked

invalid,

but

can

be

validated

if

rebound

by

a

user

with

appropriate

authority.

Packages

can

also

be

rebuilt

if

the

privileges

are

subsequently

granted

again

to

the

binder

of

the

application;

running

the

application

will

trigger

a

successful

implicit

rebind.

If

privileges

are

revoked

from

PUBLIC,

all

packages

bound

by

users

having

only

been

able

to

bind

based

on

PUBLIC

privileges

are

invalidated.

If

DBADM

authority

is

revoked

from

a

user,

all

packages

bound

by

that

user

are

invalidated

including

those

associated

with

database

utilities.

Attempting

to

use

a

package

that

has

been

marked

invalid

causes

the

system

to

attempt

to

rebind

the

package.

If

this

rebind

attempt

fails,

an

error

occurs

(SQLCODE

-727).

In

this

case,

the

packages

must

be

explicitly

rebound

by

a

user

with:

v

Authority

to

rebind

the

packages

v

Appropriate

authority

for

the

objects

used

within

the

packages

These

packages

should

be

rebound

at

the

time

the

privileges

are

revoked.

If

you

define

a

trigger

or

SQL

function

based

on

one

or

more

privileges

and

you

lose

one

or

more

of

these

privileges,

the

trigger

or

SQL

function

cannot

be

used.

Related

tasks:

v

“Granting

privileges”

on

page

44

Related

reference:

v

“REVOKE

(Database

Authorities)”

on

page

733

v

“REVOKE

(Index

Privileges)”

on

page

738

v

“REVOKE

(Package

Privileges)”

on

page

740

v

“REVOKE

(Schema

Privileges)”

on

page

745

v

“REVOKE

(Table,

View,

or

Nickname

Privileges)”

on

page

752

v

“REVOKE

(Server

Privileges)”

on

page

749

v

“REVOKE

(Table

Space

Privileges)”

on

page

750

Schemas

46

Common

Criteria

Certification:

Administration

and

User

Documentation

v

“REVOKE

(Routine

Privileges)”

on

page

742

Managing

implicit

authorizations

by

creating

and

dropping

objects

Procedure:

The

database

manager

implicitly

grants

certain

privileges

to

a

user

creates

a

database

object

such

as

a

table

or

a

package.

Privileges

are

also

granted

when

objects

are

created

by

users

with

SYSADM

or

DBADM

authority.

Similarly,

privileges

are

removed

when

an

object

is

dropped.

When

the

created

object

is

a

table,

nickname,

index,

or

package,

the

user

receives

CONTROL

privilege

on

the

object.

When

the

object

is

a

view,

the

CONTROL

privilege

for

the

view

is

granted

implicitly

only

if

the

user

has

CONTROL

privilege

for

all

tables,

views,

and

nicknames

referenced

in

the

view

definition.

When

the

object

explicitly

created

is

a

schema,

the

schema

owner

is

given

ALTERIN,

CREATEIN,

and

DROPIN

privileges

WITH

GRANT

OPTION.

An

implicitly

created

schema

has

CREATEIN

granted

to

PUBLIC.

Related

tasks:

v

“Granting

privileges”

on

page

44

v

“Revoking

privileges”

on

page

45

Establishing

ownership

of

a

package

Procedure:

The

BIND

and

PRECOMPILE

commands

create

or

change

an

application

package.

On

either

one,

use

the

OWNER

option

to

name

the

owner

of

the

resulting

package.

There

are

simple

rules

for

naming

the

owner

of

a

package:

v

Any

user

can

name

themselves

as

the

owner.

This

is

the

default

if

the

OWNER

option

is

not

specified.

v

An

ID

with

SYSADM

or

DBADM

authority

can

name

any

authorization

ID

as

the

owner

using

the

OWNER

option.

Not

all

operating

systems

that

can

bind

a

package

using

DB2

Universal

Database™

(DB2

UDB)

database

products

support

the

OWNER

option.

Related

reference:

v

“BIND”

on

page

232

v

“PRECOMPILE”

on

page

842

Indirect

privileges

through

a

package

Access

to

data

within

a

database

can

be

requested

by

application

programs,

as

well

as

by

persons

engaged

in

an

interactive

workstation

session.

A

package

contains

statements

that

allow

users

to

perform

a

variety

of

actions

on

many

database

objects.

Each

of

these

actions

requires

one

or

more

privileges.

Privileges

granted

to

individuals

binding

the

package

and

to

PUBLIC

are

used

for

authorization

checking

when

static

SQL

is

bound.

Privileges

granted

through

groups

are

not

used

for

authorization

checking

when

static

SQL

is

bound.

The

user

with

a

valid

authID

who

binds

a

package

must

either

have

been

explicitly

granted

Schemas

Chapter

2.

Security

47

all

the

privileges

required

to

execute

the

static

SQL

statements

in

the

package

or

have

been

implicitly

granted

the

necessary

privileges

through

PUBLIC

unless

VALIDATE

RUN

was

specified

when

binding

the

package.

If

VALIDATE

RUN

was

specified

at

BIND

time,

all

authorization

failures

for

any

static

SQL

statements

within

this

package

will

not

cause

the

BIND

to

fail,

and

those

SQL

statements

are

revalidated

at

run

time.

PUBLIC,

group,

and

user

privileges

are

all

used

when

checking

to

ensure

the

user

has

the

appropriate

authorization

(BIND

or

BINDADD

privilege)

to

bind

the

package.

Packages

may

include

both

static

and

dynamic

SQL.

To

process

a

package

with

static

SQL,

a

user

need

only

have

EXECUTE

privilege

on

the

package.

This

user

can

then

indirectly

obtain

the

privileges

of

the

package

binder

for

any

static

SQL

in

the

package

but

only

within

the

restrictions

imposed

by

the

package.

If

the

package

includes

dynamic

SQL,

the

required

privileges

depend

on

the

value

that

was

specified

for

DYNAMICRULES

when

the

package

was

precompiled

or

bound.

For

more

information,

see

the

topic

that

describes

the

effect

of

DYNAMICRULES

on

dynamic

SQL.

Related

concepts:

v

“Indirect

privileges

through

a

package

containing

nicknames”

on

page

48

v

“Effect

of

DYNAMICRULES

bind

option

on

dynamic

SQL”

on

page

952

Related

reference:

v

“BIND”

on

page

232

Indirect

privileges

through

a

package

containing

nicknames

When

a

package

contains

references

to

nicknames,

authorization

processing

for

package

creators

and

package

users

is

slightly

more

complex.

When

a

package

creator

successfully

binds

packages

that

contain

nicknames,

the

package

creator

does

not

have

to

pass

authentication

checking

or

privilege

checking

for

the

tables

and

views

that

the

nicknames

reference

at

the

data

source.

However,

the

package

executor

must

pass

authentication

and

authorization

checking

at

data

sources.

For

example,

assume

that

a

package

creator’s

.SQC

file

contains

several

SQL

statements.

One

static

statement

references

a

local

table.

Another

dynamic

statement

references

a

nickname.

When

the

package

is

bound,

the

package

creator’s

authid

is

used

to

verify

privileges

for

the

local

table

and

the

nickname,

but

no

checking

is

done

for

the

data

source

objects

that

the

nickname

identifies.

When

another

user

executes

the

package,

assuming

they

have

the

EXECUTE

privilege

for

that

package,

that

user

does

not

have

to

pass

any

additional

privilege

checking

for

the

statement

referencing

the

table.

However,

for

the

statement

referencing

the

nickname,

the

user

executing

the

package

must

pass

authentication

checking

and

privilege

checking

at

the

data

source.

When

the

.SQC

file

contains

only

dynamic

SQL

statements

and

a

mixture

of

table

and

nickname

references,

DB2®

Universal

Database

(DB2

UDB)

authorization

checking

for

local

objects

and

nicknames

is

similar.

Package

users

must

pass

privilege

checking

for

any

local

objects

(tables,

views)

within

the

statements

and

also

pass

privilege

checking

for

nickname

objects

(package

users

must

pass

authentication

and

privilege

checking

at

the

data

source

containing

the

objects

that

the

nicknames

identify).

In

both

cases,

users

of

the

package

must

have

the

EXECUTE

privilege.

Schemas

48

Common

Criteria

Certification:

Administration

and

User

Documentation

The

ID

and

password

of

the

package

executor

is

used

for

all

data

source

authentication

and

privilege

processing.

This

information

can

be

changed

by

creating

a

user

mapping.

Note:

Nicknames

cannot

be

specified

in

static

SQL.

Do

not

use

the

DYNAMICRULES

option

(set

to

BIND)

with

packages

containing

nicknames.

It

is

possible

that

packages

containing

nicknames

might

require

additional

authorization

steps

because

DB2

UDB

uses

dynamic

SQL

when

communicating

with

DB2

Family

data

sources.

The

authorization

ID

running

the

package

at

the

data

source

must

have

the

appropriate

authority

to

execute

the

package

dynamically

at

that

data

source.

Related

concepts:

v

“Indirect

privileges

through

a

package”

on

page

47

Controlling

access

to

data

with

views

A

view

provides

a

means

of

controlling

access

or

extending

privileges

to

a

table

by

allowing:

v

Access

only

to

designated

columns

of

the

table.

For

users

and

application

programs

that

require

access

only

to

specific

columns

of

a

table,

an

authorized

user

can

create

a

view

to

limit

the

columns

addressed

only

to

those

required.

v

Access

only

to

a

subset

of

the

rows

of

the

table.

By

specifying

a

WHERE

clause

in

the

subquery

of

a

view

definition,

an

authorized

user

can

limit

the

rows

addressed

through

a

view.

v

Access

only

to

a

subset

of

the

rows

or

columns

in

data

source

tables

or

views.

If

you

are

accessing

data

sources

through

nicknames,

you

can

create

local

DB2®

Universal

Database

(DB2

UDB)

views

that

reference

nicknames.

These

views

can

reference

nicknames

from

one

or

many

data

sources.

Note:

Because

you

can

create

a

view

that

contains

nickname

references

for

more

than

one

data

source,

your

users

can

access

data

in

multiple

data

sources

from

one

view.

These

views

are

called

multi-location

views.

Such

views

are

useful

when

joining

information

in

columns

of

sensitive

tables

across

a

distributed

environment

or

when

individual

users

lack

the

privileges

needed

at

data

sources

for

specific

objects.

To

create

a

view,

a

user

must

have

SYSADM

authority,

DBADM

authority,

or

CONTROL

or

SELECT

privilege

for

each

table,

view,

or

nickname

referenced

in

the

view

definition.

The

user

must

also

be

able

to

create

an

object

in

the

schema

specified

for

the

view.

That

is,

CREATEIN

privilege

for

an

existing

schema

or

IMPLICIT_SCHEMA

authority

on

the

database

if

the

schema

does

not

already

exist.

If

you

are

creating

views

that

reference

nicknames,

you

do

not

need

additional

authority

on

the

data

source

objects

(tables

and

views)

referenced

by

nicknames

in

the

view;

however,

users

of

the

view

must

have

SELECT

authority

or

the

equivalent

authorization

level

for

the

underlying

data

source

objects

when

they

access

the

view.

If

your

users

do

not

have

the

proper

authority

at

the

data

source

for

underlying

objects

(tables

and

views),

you

can:

Schemas

Chapter

2.

Security

49

1.

Create

a

data

source

view

over

those

columns

in

the

data

source

table

that

are

OK

for

the

user

to

access

2.

Grant

the

SELECT

privilege

on

this

view

to

users

3.

Create

a

nickname

to

reference

the

view

Users

can

then

access

the

columns

by

issuing

a

SELECT

statement

that

references

the

new

nickname.

The

following

scenario

provides

a

more

detailed

example

of

how

views

can

be

used

to

restrict

access

to

information.

Many

people

might

require

access

to

information

in

the

STAFF

table,

for

different

reasons.

For

example:

v

The

personnel

department

needs

to

be

able

to

update

and

look

at

the

entire

table.

This

requirement

can

be

easily

met

by

granting

SELECT

and

UPDATE

privileges

on

the

STAFF

table

to

the

group

PERSONNL:

GRANT

SELECT,UPDATE

ON

TABLE

STAFF

TO

GROUP

PERSONNL

v

Individual

department

managers

need

to

look

at

the

salary

information

for

their

employees.

This

requirement

can

be

met

by

creating

a

view

for

each

department

manager.

For

example,

the

following

view

can

be

created

for

the

manager

of

department

number

51:

CREATE

VIEW

EMP051

AS

SELECT

NAME,SALARY,JOB

FROM

STAFF

WHERE

DEPT=51

GRANT

SELECT

ON

TABLE

EMP051

TO

JANE

The

manager

with

the

authorization

name

JANE

would

query

the

EMP051

view

just

like

the

STAFF

table.

When

accessing

the

EMP051

view

of

the

STAFF

table,

this

manager

views

the

following

information:

NAME

SALARY

JOB

Fraye

45150.0

Mgr

Williams

37156.5

Sales

Smith

35654.5

Sales

Lundquist

26369.8

Clerk

Wheeler

22460.0

Clerk

v

All

users

need

to

be

able

to

locate

other

employees.

This

requirement

can

be

met

by

creating

a

view

on

the

NAME

column

of

the

STAFF

table

and

the

LOCATION

column

of

the

ORG

table,

and

by

joining

the

two

tables

on

their

respective

DEPT

and

DEPTNUMB

columns:

CREATE

VIEW

EMPLOCS

AS

SELECT

NAME,

LOCATION

FROM

STAFF,

ORG

WHERE

STAFF.DEPT=ORG.DEPTNUMB

GRANT

SELECT

ON

TABLE

EMPLOCS

TO

PUBLIC

Users

who

access

the

employee

location

view

will

see

the

following

information:

NAME

LOCATION

Molinare

New

York

Lu

New

York

Daniels

New

York

Schemas

50

Common

Criteria

Certification:

Administration

and

User

Documentation

NAME

LOCATION

Jones

New

York

Hanes

Boston

Rothman

Boston

Ngan

Boston

Kermisch

Boston

Sanders

Washington

Pernal

Washington

James

Washington

Sneider

Washington

Marenghi

Atlanta

O’Brien

Atlanta

Quigley

Atlanta

Naughton

Atlanta

Abrahams

Atlanta

Koonitz

Chicago

Plotz

Chicago

Yamaguchi

Chicago

Scoutten

Chicago

Fraye

Dallas

Williams

Dallas

Smith

Dallas

Lundquist

Dallas

Wheeler

Dallas

Lea

San

Francisco

Wilson

San

Francisco

Graham

San

Francisco

Gonzales

San

Francisco

Burke

San

Francisco

Quill

Denver

Davis

Denver

Edwards

Denver

Gafney

Denver

Related

tasks:

v

“Creating

a

view”

on

page

146

v

“Granting

privileges”

on

page

44

Monitoring

access

to

data

using

the

audit

facility

The

DB2®

Universal

Database

(DB2

UDB)

audit

facility

generates,

and

allows

you

to

maintain,

an

audit

trail

for

a

series

of

predefined

database

events.

While

not

a

facility

that

prevents

access

to

data,

the

audit

facility

can

monitor

and

keep

a

record

of

attempts

to

access

or

modify

data

objects.

Schemas

Chapter

2.

Security

51

SYSADM

authority

is

required

to

use

the

audit

facility

administrator

tool,

db2audit.

Related

concepts:

v

“Introduction

to

the

DB2

Universal

Database

(DB2

UDB)

audit

facility”

on

page

57

Data

encryption

One

part

of

your

security

plan

may

involve

encrypting

your

data.

To

do

this,

you

can

use

encryption

and

decryption

built-in

functions:

ENCRYPT,

DECRYPT_BIN,

DECRYPT_CHAR,

and

GETHINT.

The

ENCRYPT

function

encrypts

data

using

a

password-based

encryption

method.

These

functions

also

allow

you

to

encapsulate

a

password

hint.

The

password

hint

is

embedded

in

the

encrypted

data.

Once

encrypted,

the

only

way

to

decrypt

the

data

is

by

using

the

correct

password.

Developers

that

choose

to

use

these

functions

should

plan

for

the

management

of

forgotten

passwords

and

unusable

data.

The

result

of

the

ENCRYPT

functions

is

VARCHAR

FOR

BIT

DATA

(with

a

limit

of

32

631).

Only

CHAR,

VARCHAR,

and

FOR

BIT

DATA

can

be

encrypted.

The

DECRYPT_BIN

and

DECRYPT_CHAR

functions

decrypt

data

using

password-based

decryption.

DECRYPT_BIN

always

returns

VARCHAR

FOR

BIT

DATA

while

DECRYPT_CHAR

always

returns

VARCHAR.

Since

the

first

argument

may

be

CHAR

FOR

BIT

DATA

or

VARCHAR

FOR

BIT

DATA,

there

are

cases

where

the

result

is

not

the

same

as

the

first

argument.

The

length

of

the

result

depends

on

the

bytes

to

the

next

8

byte

boundary.

The

length

of

the

result

could

be

the

length

of

the

data

argument

plus

40

plus

the

number

of

bytes

to

the

next

8

byte

boundary

when

the

optional

hint

parameter

is

specified.

Or,

the

length

of

the

result

could

be

the

length

of

the

data

argument

plus

8

plus

the

number

of

bytes

to

the

next

8

byte

boundary

when

the

optional

hint

parameter

is

not

specified.

The

GETHINT

function

returns

an

encapsulated

password

hint.

A

password

hint

is

a

phrase

that

will

help

data

owners

remember

passwords.

For

example,

the

word

“Ocean”

can

be

used

as

a

hint

to

remember

the

password

″Pacific″.

The

password

that

is

used

to

encrypt

the

data

is

determined

in

one

of

two

ways:

v

Password

Argument.

The

password

is

a

string

that

is

explicitly

passed

when

the

ENCRYPT

function

is

invoked.

The

data

is

encrypted

and

decrypted

with

the

given

password.

v

Encryption

password

special

register.

The

SET

ENCRYPTION

PASSWORD

statement

encrypts

the

password

value

and

sends

the

encrypted

password

to

the

database

manager

to

store

in

a

special

register.

ENCRYPT,

DECRYPT_BIN

and

DECRYPT_CHAR

functions

invoked

without

a

password

parameter

use

the

value

in

the

ENCRYPTION

PASSWORD

special

register.

The

ENCRYPTION

PASSWORD

special

register

is

only

stored

in

encrypted

form.

The

initial

or

default

value

for

the

special

register

is

an

empty

string.

Schemas

52

Common

Criteria

Certification:

Administration

and

User

Documentation

Valid

lengths

for

passwords

are

between

6

and

127

inclusive.

Valid

lengths

for

hints

are

between

0

and

32

inclusive.

Related

reference:

v

“SET

ENCRYPTION

PASSWORD

statement”

in

the

SQL

Reference,

Volume

2

v

“DECRYPT_BIN

and

DECRYPT_CHAR

scalar

functions”

in

the

SQL

Reference,

Volume

1

v

“ENCRYPT

scalar

function”

in

the

SQL

Reference,

Volume

1

v

“GETHINT

scalar

function”

in

the

SQL

Reference,

Volume

1

Tasks

and

required

authorizations

Not

all

organizations

divide

job

responsibilities

in

the

same

manner.

Table

3

lists

some

other

common

job

titles,

the

tasks

that

usually

accompany

them,

and

the

authorities

or

privileges

that

are

needed

to

carry

out

those

tasks.

Table

3.

Common

Job

Titles,

Tasks,

and

Required

Authorization

JOB

TITLE

TASKS

REQUIRED

AUTHORIZATION

Department

Administrator

Oversees

the

departmental

system;

creates

databases

SYSCTRL

authority.

SYSADM

authority

if

the

department

has

its

own

instance.

Security

Administrator

Authorizes

other

users

for

some

or

all

authorizations

and

privileges

SYSADM

or

DBADM

authority.

Database

Administrator

Designs,

develops,

operates,

safeguards,

and

maintains

one

or

more

databases

DBADM

and

SYSMAINT

authority

over

one

or

more

databases.

SYSCTRL

authority

in

some

cases.

System

Operator

Monitors

the

database

and

carries

out

backup

functions

SYSMAINT

authority.

Application

Programmer

Develops

and

tests

the

database

manager

application

programs;

may

also

create

tables

of

test

data

BINDADD,

BIND

on

an

existing

package,

CONNECT

and

CREATETAB

on

one

or

more

databases,

some

specific

schema

privileges,

and

a

list

of

privileges

on

some

tables.

CREATE_EXTERNAL_ROUTINE

may

also

be

required.

User

Analyst

Defines

the

data

requirements

for

an

application

program

by

examining

the

system

catalog

views

SELECT

on

the

catalog

views;

CONNECT

on

one

or

more

databases.

Program

End

User

Executes

an

application

program

EXECUTE

on

the

package;

CONNECT

on

one

or

more

databases.

See

the

note

following

this

table.

Information

Center

Consultant

Defines

the

data

requirements

for

a

query

user;

provides

the

data

by

creating

tables

and

views

and

by

granting

access

to

database

objects

DBADM

authority

over

one

or

more

databases.

Query

User

Issues

SQL

statements

to

retrieve,

add,

delete,

or

change

data;

may

save

results

as

tables

CONNECT

on

one

or

more

databases;

CREATEIN

on

the

schema

of

the

tables

and

views

being

created;

and,

SELECT,

INSERT,

UPDATE,

DELETE

on

some

tables

and

views.

Schemas

Chapter

2.

Security

53

Note:

If

an

application

program

contains

dynamic

SQL

statements,

the

Program

End

User

may

need

other

privileges

in

addition

to

EXECUTE

and

CONNECT

(such

as

SELECT,

INSERT,

DELETE,

and

UPDATE).

Related

concepts:

v

“System

administration

authority

(SYSADM)”

on

page

21

v

“System

control

authority

(SYSCTRL)”

on

page

21

v

“System

maintenance

authority

(SYSMAINT)”

on

page

22

v

“Database

administration

authority

(DBADM)”

on

page

25

v

“LOAD

authority”

on

page

25

v

“Database

authorities”

on

page

24

Related

tasks:

v

“Granting

privileges”

on

page

44

v

“Revoking

privileges”

on

page

45

Acquiring

Windows

users’

group

information

using

an

access

token

An

access

token

is

an

object

that

describes

the

security

context

of

a

process

or

thread.

The

information

in

an

access

token

includes

the

identity

and

privileges

of

the

user

account

associated

with

the

process

or

thread.

When

you

log

on,

the

system

verifies

your

password

by

comparing

it

with

information

stored

in

a

security

database.

If

the

password

is

authenticated,

the

system

produces

an

access

token.

Every

process

run

on

your

behalf

uses

a

copy

of

this

access

token.

An

access

token

can

also

be

acquired

based

on

cached

credentials.

Once

you

have

been

authenticated

to

the

system,

your

credentials

are

cached

by

the

operating

system.

The

access

token

of

the

last

logon

can

be

referenced

in

the

cache

when

it

is

not

possible

to

contact

the

domain

controller.

The

access

token

includes

information

about

all

of

the

groups

you

belong

to:

local

groups

and

various

domain

groups

(global

groups,

domain

local

groups,

and

universal

groups).

Note:

Group

lookup

using

client

authentication

is

not

supported

using

a

remote

connection

even

though

access

token

support

is

enabled.

To

enable

access

token

support,

you

must

use

the

db2set

command

to

update

the

DB2®_GRP_LOOKUP

registry

variable.

Your

choices

when

updating

this

registry

variable

include:

v

TOKEN

This

choice

enables

access

token

support

to

lookup

all

groups

that

the

user

belongs

to

at

the

location

where

the

user

account

is

defined.

This

location

is

typically

either

at

the

domain

or

local

to

the

DB2

Universal

Database™

(DB2

UDB)

server.

v

TOKENLOCAL

This

choice

enables

access

token

support

to

lookup

all

local

groups

that

the

user

belongs

to

on

the

DB2

UDB

server.

v

TOKENDOMAIN

Schemas

54

Common

Criteria

Certification:

Administration

and

User

Documentation

This

choice

enables

access

token

support

to

lookup

all

domain

groups

that

the

user

belongs

to

on

the

domain.

When

enabling

access

token

support,

there

are

several

limitations

that

affect

your

account

management

infrastructure.

When

this

support

is

enabled,

DB2

UDB

collects

group

information

about

the

user

who

is

connecting

to

the

database.

Subsequent

operations

after

a

successful

CONNECT

or

ATTACH

request

that

have

dependencies

on

other

authorization

IDs

will

still

need

to

use

conventional

group

enumeration.

The

access

token

advantages

of

nested

global

groups,

domain

local

groups,

and

cached

credentials

will

not

be

available.

For

example,

if,

after

a

connection,

the

SET

SESSION_USER

is

used

to

run

under

another

authorization

ID,

only

the

conventional

group

enumeration

is

used

to

check

what

rights

are

given

to

the

new

authorization

ID

for

the

session.

You

will

still

need

to

grant

and

revoke

explicit

privileges

to

individual

authorization

IDs

known

to

DB2

UDB,

as

opposed

to

the

granting

and

revoking

of

privileges

to

groups

to

which

the

authorization

IDs

belongs.

If

you

intend

to

assign

groups

to

SYSADM,

SYSMAINT,

or

SYSCTRL,

you

need

to

ensure

that

the

assigned

groups

are

not

nested

global

groups,

nor

domain

local

groups,

and

then

the

cached

credential

capability

is

not

needed.

You

should

consider

using

the

DB2_GRP_LOOKUP

registry

variable

and

specify

the

group

lookup

location

to

indicate

where

DB2

UDB

should

lookup

groups

using

the

conventional

group

enumeration

methodology.

For

example,

db2set

DB2_GRP_LOOKUP=LOCAL,TOKENLOCAL

This

enables

the

access

token

support

for

enumerating

local

groups.

Group

lookup

for

an

authorization

ID

different

from

the

connected

user

is

performed

at

the

DB2

UDB

server.

db2set

DB2_GRP_LOOKUP=,TOKEN

This

enables

the

access

token

support

for

enumerating

groups

at

the

location

where

the

user

ID

is

defined.

Group

lookup

for

an

authorization

ID

different

from

the

connected

user

is

performed

where

the

user

ID

is

defined.

db2set

DB2_GRP_LOOKUP=DOMAIN,TOKENDOMAIN

This

enables

the

access

token

support

for

enumerating

domain

groups.

Group

lookup

for

an

authorization

ID

different

from

the

connected

user

is

performed

where

the

user

ID

is

defined.

Applications

using

dynamic

SQL

in

a

package

bound

using

DYNAMICRULES

RUN

(which

is

the

default)

is

run

under

the

privileges

of

the

person

who

runs

the

application.

In

this

case,

the

already

mentioned

limitations

do

not

apply.

This

would

include

applications

written

to

use

JDBC

and

DB2

CLI.

Access

token

support

can

be

enabled

with

all

authentications

types

except

CLIENT

authentication.

Note:

For

Windows®

NT

4.0

users,

the

access

token

support

only

supports

the

security

context

at

the

process

level

if

your

DB2

UDB

applications

are

using

local

implicit

connections.

That

is,

all

threads

in

the

applications

are

treated

as

if

they

were

running

under

the

security

context

of

the

user

executing

the

applications.

If

you

require

different

user

security

contexts

for

different

threads,

you

should

consider

moving

to

Windows

2000

or

later;

or

consider

changing

your

DB2

UDB

applications

to

use

explicit

connections.

Schemas

Chapter

2.

Security

55

Related

concepts:

v

“Security

issues

when

installing

DB2

Universal

Database”

on

page

36

Details

on

security

based

on

operating

system

Each

operating

system

provides

ways

to

manage

security.

Some

of

the

security

issues

associated

with

the

operating

systems

are

discussed

in

this

section.

Windows

NT

platform

security

considerations

for

users

System

Administration

(SYSADM)

authority

is

granted

to

any

valid

DB2®

Universal

Database

(DB2

UDB)

user

account

which

belongs

to

the

local

Administrators

group

on

the

machine

where

the

account

is

defined.

By

default

in

a

Windows®

domain

environment,

only

domain

users

that

belong

to

the

Administrators

group

at

the

Domain

Controller

have

SYSADM

authority

on

an

instance.

Since

DB2

UDB

always

performs

authorization

at

the

machine

where

the

account

is

defined,

adding

a

domain

user

to

the

local

Administrators

group

on

the

server

does

not

grant

the

domain

user

SYSADM

authority

to

the

group.

Note:

In

a

domain

environment

such

as

is

found

in

Windows

NT®,

DB2

UDB

only

authenticates

the

first

64

groups

that

meet

the

requirements

and

restrictions,

and

to

which

a

user

ID

belongs.

You

may

have

more

than

64

groups.

To

avoid

adding

a

domain

user

to

the

Administrators

group

at

the

PDC,

you

should

create

a

global

group

and

add

the

users

(both

domain

and

local)

that

you

want

to

grant

SYSADM

authority.

To

do

this,

enter

the

following

commands:

DB2STOP

DB2

UPDATE

DBM

CFG

USING

SYSADM_GROUP

global_group

DB2START

Related

concepts:

v

“UNIX

platform

security

considerations

for

users”

on

page

56

UNIX

platform

security

considerations

for

users

DB2®

Universal

Database

(DB2

UDB)

does

not

support

root

acting

directly

as

a

database

administrator.

You

should

use

su

-

<instance

owner>

as

the

database

administrator.

For

security

reasons,

we

recommend

you

do

not

use

the

instance

name

as

the

Fenced

ID.

However,

if

you

are

not

planning

to

use

fenced

UDFs

or

stored

procedures,

you

can

set

the

Fenced

ID

to

the

instance

name

instead

of

creating

another

user

ID.

The

recommendation

is

to

create

a

user

ID

that

will

be

recognized

as

being

associated

with

this

group.

The

user

for

fenced

UDFs

and

stored

procedures

is

specified

as

a

parameter

of

the

instance

creation

script

(db2icrt

...

-u

<FencedID>).

This

is

not

required

if

you

install

the

DB2

Clients

or

the

DB2

Software

Developer’s

Kit.

Related

concepts:

v

“Windows

NT

platform

security

considerations

for

users”

on

page

56

Schemas

56

Common

Criteria

Certification:

Administration

and

User

Documentation

Chapter

3.

Auditing

DB2

Universal

Database™

(DB2

UDB)

activities

Introduction

to

the

DB2

Universal

Database

(DB2

UDB)

audit

facility

Authentication,

authorities,

and

privileges

can

be

used

to

control

known

or

anticipated

access

to

data,

but

these

methods

may

be

insufficient

to

prevent

unknown

or

unanticipated

access

to

data.

To

assist

in

the

detection

of

this

latter

type

of

data

access,

DB2®

Universal

Database

(DB2

UDB)

provides

an

audit

facility.

Successful

monitoring

of

unwanted

data

access

and

subsequent

analysis

can

lead

to

improvements

in

the

control

of

data

access

and

the

ultimate

prevention

of

malicious

or

careless

unauthorized

access

to

the

data.

The

monitoring

of

application

and

individual

user

access,

including

system

administration

actions,

can

provide

a

historical

record

of

activity

on

your

database

systems.

The

DB2

UDB

audit

facility

generates,

and

allows

you

to

maintain,

an

audit

trail

for

a

series

of

predefined

database

events.

The

records

generated

from

this

facility

are

kept

in

an

audit

log

file.

The

analysis

of

these

records

can

reveal

usage

patterns

which

would

identify

system

misuse.

Once

identified,

actions

can

be

taken

to

reduce

or

eliminate

such

system

misuse.

The

audit

facility

acts

at

an

instance

level,

recording

all

instance

level

activities

and

database

level

activities.

When

working

in

a

partitioned

database

environment,

many

of

the

auditable

events

occur

at

the

partition

at

which

the

user

is

connected

(the

coordinator

node)

or

at

the

catalog

node

(if

they

are

not

the

same

partition).

The

implication

of

this

is

that

audit

records

can

be

generated

by

more

than

one

partition.

Part

of

each

audit

record

contains

information

on

the

coordinator

node

and

originating

node

identifiers.

The

audit

log

(db2audit.log)

and

the

audit

configuration

file

(db2audit.cfg)

are

located

in

the

instance’s

security

subdirectory.

At

the

time

you

create

an

instance,

read/write

permissions

are

set

on

these

files,

where

possible,

by

the

operating

system.

By

default,

the

permissions

are

read/write

for

the

instance

owner

only.

It

is

recommended

that

you

do

not

change

these

permissions.

Users

of

the

audit

facility

administrator

tool,

db2audit,

must

have

SYSADM

authority.

The

audit

facility

must

be

stopped

and

started

explicitly.

When

starting,

the

audit

facility

uses

existing

audit

configuration

information.

Since

the

audit

facility

is

independent

of

the

DB2

UDB

server,

it

will

remain

active

even

if

the

instance

is

stopped.

In

fact,

when

the

instance

is

stopped,

an

audit

record

may

be

generated

in

the

audit

log.

Authorized

users

of

the

audit

facility

can

control

the

following

actions

within

the

audit

facility:

v

Start

recording

auditable

events

within

the

DB2

UDB

instance.

v

Stop

recording

auditable

events

within

the

DB2

UDB

instance.

©

Copyright

IBM

Corp.

1993-2004

57

v

Configure

the

behavior

of

the

audit

facility,

including

selecting

the

categories

of

the

auditable

events

to

be

recorded.

v

Request

a

description

of

the

current

audit

configuration.

v

Flush

any

pending

audit

records

from

the

instance

and

write

them

to

the

audit

log.

v

Extract

audit

records

by

formatting

and

copying

them

from

the

audit

log

to

a

flat

file

or

ASCII

delimited

files.

Extraction

is

done

for

one

of

two

reasons:

in

preparation

for

analysis

of

log

records

or

in

preparation

for

pruning

of

log

records.

v

Prune

audit

records

from

the

current

audit

log.

Note:

Ensure

that

the

audit

facility

has

been

turned

on

by

issuing

the

db2audit

start

command

before

using

the

audit

utilities.

There

are

different

categories

of

audit

records

that

may

be

generated.

In

the

description

of

the

categories

of

events

available

for

auditing

(below),

you

should

notice

that

following

the

name

of

each

category

is

a

one-word

keyword

used

to

identify

the

category

type.

The

categories

of

events

available

for

auditing

are:

v

Audit

(AUDIT).

Generates

records

when

audit

settings

are

changed

or

when

the

audit

log

is

accessed.

v

Authorization

Checking

(CHECKING).

Generates

records

during

authorization

checking

of

attempts

to

access

or

manipulate

DB2

UDB

objects

or

functions.

v

Object

Maintenance

(OBJMAINT).

Generates

records

when

creating

or

dropping

data

objects.

v

Security

Maintenance

(SECMAINT).

Generates

records

when

granting

or

revoking:

object

or

database

privileges,

or

DBADM

authority.

Records

are

also

generated

when

the

database

manager

security

configuration

parameters

SYSADM_GROUP,

SYSCTRL_GROUP,

or

SYSMAINT_GROUP

are

modified.

v

System

Administration

(SYSADMIN).

Generates

records

when

operations

requiring

SYSADM,

SYSMAINT,

or

SYSCTRL

authority

are

performed.

v

User

Validation

(VALIDATE).

Generates

records

when

authenticating

users

or

retrieving

system

security

information.

v

Operation

Context

(CONTEXT).

Generates

records

to

show

the

operation

context

when

a

database

operation

is

performed.

This

category

allows

for

better

interpretation

of

the

audit

log

file.

When

used

with

the

log’s

event

correlator

field,

a

group

of

events

can

be

associated

back

to

a

single

database

operation.

For

example,

an

SQL

statement

for

dynamic

SQL,

a

package

identifier

for

static

SQL,

or

an

indicator

of

the

type

of

operation

being

performed,

such

as

CONNECT,

can

provide

needed

context

when

analyzing

audit

results.

Note:

The

SQL

statement

providing

the

operation

context

might

be

very

long

and

is

completely

shown

within

the

CONTEXT

record.

This

can

make

the

CONTEXT

record

very

large.

v

You

can

audit

failures,

successes,

or

both.

Any

operation

on

the

database

may

generate

several

records.

The

actual

number

of

records

generated

and

moved

to

the

audit

log

depends

on

the

number

of

categories

of

events

to

be

recorded

as

specified

by

the

audit

facility

configuration.

It

also

depends

on

whether

successes,

failures,

or

both,

are

audited.

For

this

reason,

it

is

important

to

be

selective

of

the

events

to

audit.

Related

concepts:

v

“Audit

facility

behavior”

on

page

59

58

Common

Criteria

Certification:

Administration

and

User

Documentation

v

“Audit

facility

record

layouts

(introduction)”

on

page

72

v

“Audit

facility

tips

and

techniques”

on

page

88

Related

tasks:

v

“Controlling

DB2

UDB

audit

facility

activities”

on

page

89

Related

reference:

v

“Audit

facility

usage”

on

page

60

v

“Audit

facility

messages”

on

page

72

Audit

facility

behavior

The

audit

facility

records

auditable

events

including

those

affecting

database

instances.

For

this

reason,

the

audit

facility

is

an

independent

part

of

DB2®

Universal

Database

(DB2

UDB)

that

can

operate

even

if

the

DB2

UDB

instance

is

stopped.

If

the

audit

facility

is

active,

then

when

a

stopped

instance

is

started,

auditing

of

database

events

in

the

instance

resumes.

The

timing

of

the

writing

of

audit

records

to

the

audit

log

can

have

a

significant

impact

on

the

performance

of

databases

in

the

instance.

The

writing

of

the

audit

records

can

take

place

synchronously

or

asynchronously

with

the

occurrence

of

the

events

causing

the

generation

of

those

records.

The

value

of

the

audit_buf_sz

database

manager

configuration

parameter

determines

when

the

writing

of

audit

records

is

done.

If

the

value

of

this

parameter

is

zero

(0),

the

writing

is

done

synchronously.

The

event

generating

the

audit

record

will

wait

until

the

record

is

written

to

disk.

The

wait

associated

with

each

record

causes

the

performance

of

DB2

UDB

to

decrease.

If

the

value

of

audit_buf_sz

is

greater

than

zero,

the

record

writing

is

done

asynchronously.

The

value

of

the

audit_buf_sz,

when

it

is

greater

than

zero,

is

the

number

of

4

KB

pages

used

to

create

an

internal

buffer.

The

internal

buffer

is

used

to

keep

a

number

of

audit

records

before

writing

a

group

of

them

out

to

disk.

The

statement

generating

the

audit

record

as

a

result

of

an

audit

event

will

not

wait

until

the

record

is

written

to

disk,

and

can

continue

its

operation.

Note:

The

time

stamp

on

an

audit

record

is

the

same,

regardless

of

whether

the

records

are

written

synchronously

or

asynchronously.

In

the

asynchronous

case,

it

could

be

possible

for

audit

records

to

remain

in

an

unfilled

buffer

for

up

to

10

minutes.

To

prevent

this

from

happening

for

an

extended

period,

the

database

manager

will

force

the

writing

of

the

audit

records

regularly.

An

authorized

user

of

the

audit

facility

may

also

flush

the

audit

buffer

with

an

explicit

request.

There

are

differences

when

an

error

occurs

dependent

on

whether

there

is

synchronous

or

asynchronous

record

writing.

In

asynchronous

mode

there

may

be

some

records

lost

because

the

audit

records

are

buffered

before

being

written

to

disk.

In

synchronous

mode

there

may

be

one

record

lost

because

the

error

could

only

prevent

at

most

one

audit

record

from

being

written.

The

setting

of

the

ERRORTYPE

audit

facility

parameter

controls

how

errors

are

managed

between

DB2

UDB

and

the

audit

facility.

When

the

audit

facility

is

active,

and

the

setting

of

the

ERRORTYPE

audit

facility

parameter

is

AUDIT,

then

the

audit

Chapter

3.

Auditing

DB2

UDB

activities

59

|
|

|
|
|
|
|

facility

is

treated

in

the

same

way

as

any

other

part

of

DB2

UDB.

An

audit

record

must

be

written

(to

disk

in

synchronous

mode;

or

to

the

audit

buffer

in

asynchronous

mode)

for

an

audit

event

associated

with

a

statement

to

be

considered

successful.

Whenever

an

error

is

encountered

when

running

in

this

mode,

a

negative

SQLCODE

is

returned

to

the

application

for

the

statement

generating

an

audit

record.

If

the

error

type

is

set

to

NORMAL,

then

any

error

from

db2audit

is

ignored

and

the

operation’s

SQLCODE

is

returned.

Depending

on

the

API

or

SQL

statement

and

the

audit

settings

for

the

DB2

UDB

instance,

none,

one,

or

several

audit

records

may

be

generated

for

a

particular

event.

For

example,

an

SQL

UPDATE

statement

with

a

SELECT

subquery

may

result

in

one

audit

record

containing

the

results

of

the

authorization

check

for

UPDATE

privilege

on

a

table

and

another

record

containing

the

results

of

the

authorization

check

for

SELECT

privilege

on

a

table.

For

dynamic

data

manipulation

language

(DML)

statements,

audit

records

are

generated

for

all

authorization

checking

at

the

time

that

the

statement

is

prepared.

Reuse

of

those

statements

by

the

same

user

will

not

be

audited

again

since

no

authorization

checking

takes

place

at

that

time.

However,

if

a

change

has

been

made

to

one

of

the

catalog

tables

containing

privilege

information,

then

in

the

next

unit

of

work,

the

statement

privileges

for

the

cached

dynamic

SQL

statements

are

checked

again

and

one

or

more

new

audit

records

created.

For

a

package

containing

only

static

DML

statements,

the

only

auditable

event

that

could

generate

an

audit

record

is

the

authorization

check

to

see

if

a

user

has

the

privilege

to

execute

that

package.

The

authorization

checking

and

possible

audit

record

creation

required

for

the

static

SQL

statements

in

the

package

is

carried

out

at

the

time

the

package

is

precompiled

or

bound.

The

execution

of

the

static

SQL

statements

within

the

package

is

not

auditable.

When

a

package

is

bound

again

either

explicitly

by

the

user,

or

implicitly

by

the

system,

audit

records

are

generated

for

the

authorization

checks

required

by

the

static

SQL

statements.

For

statements

where

authorization

checking

is

performed

at

statement

execution

time

(for

example,

data

definition

language

(DDL),

GRANT,

and

REVOKE

statements),

audit

records

are

generated

whenever

these

statements

are

used.

Note:

When

executing

DDL,

the

section

number

recorded

for

all

events

(except

the

context

events)

in

the

audit

record

will

be

zero

(0)

no

matter

what

the

actual

section

number

of

the

statement

might

have

been.

Related

concepts:

v

“Introduction

to

the

DB2

Universal

Database

(DB2

UDB)

audit

facility”

on

page

57

Related

reference:

v

“audit_buf_sz

-

Audit

buffer

size”

on

page

782

v

“Audit

facility

usage”

on

page

60

Audit

facility

usage

A

review

of

each

part

of

the

following

syntax

diagrams

will

assist

you

in

the

understanding

of

how

the

audit

facility

can

be

used.

60

Common

Criteria

Certification:

Administration

and

User

Documentation

��

db2audit

configure

reset

Audit

Configuration

describe

extract

Audit

Extraction

flush

prune

all

date

YYYYMMDDHH

pathname

Path_with_temp_space

start

stop

��

Audit

Configuration:

�

scope

all

,

audit

checking

objmaint

secmaint

sysadmin

validate

context

status

both

success

failure

�

�

errortype

audit

normal

Audit

Extraction:

file

output-file

delasc

delimiter

load-delimiter

�

,

category

audit

checking

objmaint

secmaint

sysadmin

validate

context

�

�

database

database-name

status

success

failure

The

following

is

a

description

and

the

implied

use

of

each

parameter:

configure

This

parameter

allows

the

modification

of

the

db2audit.cfg

configuration

file

in

the

instance’s

security

subdirectory.

Updates

to

this

file

can

occur

even

when

the

instance

is

shut

down.

Updates

occurring

when

the

instance

is

active

dynamically

affect

the

auditing

being

done

by

DB2

Universal

Database™

(DB2

UDB)

across

all

partitions.

The

configure

action

on

the

configuration

file

causes

the

creation

of

an

audit

record

if

the

audit

facility

has

been

started

and

the

audit

category

of

auditable

events

is

being

audited.

Chapter

3.

Auditing

DB2

UDB

activities

61

Note:

The

db2audit.cfg

file

should

be

created

as

part

of

the

installation.

You

should

set

the

permission

flags

(on

applicable

platforms)

so

that

only

the

instance

owner

has

the

read/write

privilege

to

this

file.

The

following

are

the

possible

actions

on

the

configuration

file:

v

RESET.

This

action

causes

the

configuration

file

to

revert

to

the

initial

configuration

(where

SCOPE

is

all

of

the

categories

except

CONTEXT,

STATUS

is

FAILURE,

ERRORTYPE

is

NORMAL,

and

the

audit

facility

is

OFF).

This

action

will

create

a

new

audit

configuration

file

if

the

original

has

been

lost

or

damaged.

v

SCOPE.

This

action

specifies

which

category

or

categories

of

events

are

to

be

audited.

This

action

also

allows

a

particular

focus

for

auditing

and

reduces

the

growth

of

the

log.

It

is

recommended

that

the

number

and

type

of

events

being

logged

be

limited

as

much

as

possible,

otherwise

the

audit

log

will

grow

rapidly.

Note:

Please

notice

that

the

default

SCOPE

is

all

categories

except

CONTEXT

and

may

result

in

records

being

generated

rapidly.

In

conjunction

with

the

mode

(synchronous

or

asynchronous),

the

selection

of

the

categories

may

result

in

a

significant

performance

reduction

and

significantly

increased

disk

requirements.

v

STATUS.

This

action

specifies

whether

only

successful

or

failing

events,

or

both

successful

and

failing

events,

should

be

logged.

Note:

Context

events

occur

before

the

status

of

an

operation

is

known.

Therefore,

such

events

are

logged

regardless

of

the

value

associated

with

this

parameter.

v

ERRORTYPE.

This

action

specifies

whether

audit

errors

are

returned

to

the

user

or

are

ignored.

The

value

for

this

parameter

can

be:

–

AUDIT.

All

errors

including

errors

occurring

within

the

audit

facility

are

managed

by

DB2

UDB

and

all

negative

SQLCODEs

are

reported

back

to

the

caller.

–

NORMAL.

Any

errors

generated

by

db2audit

are

ignored

and

only

the

SQLCODEs

for

the

errors

associated

with

the

operation

being

performed

are

returned

to

the

application.

describe

This

parameter

displays

to

standard

output

the

current

audit

configuration

information

and

status.

extract

This

parameter

allows

the

movement

of

audit

records

from

the

audit

log

to

an

indicated

destination.

If

no

optional

clauses

are

specified,

all

of

the

audit

records

are

extracted

and

placed

in

a

flat

report

file.

If

output_file

already

exists,

an

error

message

is

returned.

The

following

are

the

possible

options

that

can

be

used

when

extracting:

v

FILE.

The

extracted

audit

records

are

placed

in

a

file

(output_file).

If

no

file

name

is

specified,

records

are

written

to

the

db2audit.out

file

in

the

security

subdirectory

of

sqllib.

If

no

directory

is

specified,

output_file

is

written

to

the

current

working

directory.

v

DELASC.

The

extracted

audit

records

are

placed

in

a

delimited

ASCII

format

suitable

for

loading

into

DB2

UDB

relational

tables.

The

output

is

placed

in

separate

files:

one

for

each

category.

The

filenames

are:

–

audit.del

–

checking.del

–

objmaint.del

62

Common

Criteria

Certification:

Administration

and

User

Documentation

|
|
|

–

secmaint.del

–

sysadmin.del

–

validate.del

–

context.del

These

files

are

always

written

to

the

security

subdirectory

of

sqllib.

The

DELASC

choice

also

allows

you

to

override

the

default

audit

character

string

delimiter

(“0xff”)

when

extracting

from

the

audit

log.

You

would

use

DELASC

DELIMITER

followed

by

the

new

delimiter

that

you

wish

to

use

in

preparation

for

loading

into

a

table

that

will

hold

the

audit

records.

The

new

load

delimiter

can

be

either

a

single

character

(such

as

!)

or

a

four-byte

string

representing

a

hexadecimal

number

(such

as

0xff).

v

CATEGORY.

The

audit

records

for

the

specified

categories

of

audit

events

are

to

be

extracted.

If

not

specified,

all

categories

are

eligible

for

extraction.

v

DATABASE.

The

audit

records

for

a

specified

database

are

to

be

extracted.

If

not

specified,

all

databases

are

eligible

for

extraction.

v

STATUS.

The

audit

records

for

the

specified

status

are

to

be

extracted.

If

not

specified,

all

records

are

eligible

for

extraction.

flush

This

parameter

forces

any

pending

audit

records

to

be

written

to

the

audit

log.

Also,

the

audit

state

is

reset

in

the

engine

from

“unable

to

log”

to

a

state

of

“ready

to

log”

if

the

audit

facility

is

in

an

error

state.

prune

This

parameter

allows

for

the

deletion

of

audit

records

from

the

audit

log.

If

the

audit

facility

is

active

and

the

“audit”

category

of

events

has

been

specified

for

auditing,

then

an

audit

record

will

be

logged

after

the

audit

log

is

pruned.

The

following

are

the

possible

options

that

can

be

used

when

pruning:

v

ALL.

All

of

the

audit

records

in

the

audit

log

are

to

be

deleted.

v

DATE

yyyymmddhh.

The

user

can

specify

that

all

audit

records

that

occurred

on

or

before

the

date/time

specified

are

to

be

deleted

from

the

audit

log.

The

user

may

optionally

supply

a

pathname

which

the

audit

facility

will

use

as

a

temporary

space

when

pruning

the

audit

log.

This

temporary

space

allows

for

the

pruning

of

the

audit

log

when

the

disk

it

resides

on

is

full

and

does

not

have

enough

space

to

allow

for

a

pruning

operation.

start

This

parameter

causes

the

audit

facility

to

begin

auditing

events

based

on

the

contents

of

the

db2audit.cfg

file.

In

a

partitioned

DB2

UDB

instance,

auditing

will

begin

on

all

partitions

when

this

clause

is

specified.

If

the

“audit”

category

of

events

has

been

specified

for

auditing,

then

an

audit

record

will

be

logged

when

the

audit

facility

is

started.

stop

This

parameter

causes

the

audit

facility

to

stop

auditing

events.

In

a

partitioned

DB2

UDB

instance,

auditing

will

be

stopped

on

all

partitions

when

this

clause

is

specified.

If

the

“audit”

category

of

events

has

been

specified

for

auditing,

then

an

audit

record

will

be

logged

when

the

audit

facility

is

stopped.

Related

concepts:

v

“Introduction

to

the

DB2

Universal

Database

(DB2

UDB)

audit

facility”

on

page

57

Chapter

3.

Auditing

DB2

UDB

activities

63

v

“Audit

facility

tips

and

techniques”

on

page

88

Related

reference:

v

“db2audit

-

Audit

Facility

Administrator

Tool”

on

page

260

Working

with

DB2

audit

data

in

DB2

tables

The

following

topics

describe

how

to

create

DB2

audit

data,

how

to

create

tables

to

hold

this

data,

how

to

populate

the

tables

with

the

DB2

audit

data,

and

how

to

select

the

DB2

audit

data

from

the

tables.

Working

with

DB2

audit

data

in

DB2

tables

When

you

use

the

DB2

audit

facility

to

maintain

an

audit

trail

of

database

activities,

by

default

the

audit

facility

places

the

audit

records

in

a

log

file.

If

you

want,

you

can

write

the

audit

records

from

the

log

file

to

a

text

file,

or

you

can

write

the

audit

records

from

the

log

file

to

delimited

ASCII

files,

then

load

the

contents

of

the

ASCII

files

into

DB2

tables.

When

the

audit

data

is

in

DB2

tables,

you

can

select

the

data

from

the

tables

to

answer

questions

that

you

may

have

about

activity

on

your

DB2

instance.

Procedure:

To

work

with

audit

data

in

DB2

tables:

1.

Create

tables

to

hold

the

DB2

audit

data.

2.

Create

the

DB2

audit

data

files.

3.

Use

the

load

utility

to

populate

the

tables

with

the

data.

4.

Select

the

table

data.

Related

concepts:

v

“Audit

facility

behavior”

on

page

59

v

“Audit

facility

tips

and

techniques”

on

page

88

Related

tasks:

v

“Creating

tables

to

hold

the

DB2

audit

data”

on

page

64

v

“Creating

DB2

audit

data

files”

on

page

67

v

“Loading

DB2

audit

data

into

tables”

on

page

69

v

“Selecting

DB2

audit

data

from

tables”

on

page

71

Related

reference:

v

“Audit

facility

usage”

on

page

60

Creating

tables

to

hold

the

DB2

audit

data

Before

you

can

work

with

audit

data

in

tables,

you

need

to

create

the

tables

to

hold

the

data.

You

should

consider

creating

these

tables

in

a

separate

schema

to

isolate

the

data

in

the

tables

from

unauthorized

users.

Prerequisites:

v

See

the

CREATE

SCHEMA

statement

for

the

authorities

and

privileges

that

you

require

to

create

a

schema.

64

Common

Criteria

Certification:

Administration

and

User

Documentation

v

See

the

CREATE

TABLE

statement

for

the

authorities

and

privileges

that

you

require

to

create

a

table.

v

Decide

which

table

space

you

want

to

use

to

hold

the

tables.

(This

topic

does

not

describe

how

to

create

table

spaces.)

Procedure:

The

examples

that

follow

show

how

to

the

create

tables

that

will

hold

all

of

the

records

from

all

of

the

ASCII

files.

If

you

want,

you

can

create

a

separate

schema

to

contain

these

tables.

If

you

do

not

want

to

use

all

of

the

data

that

is

contained

in

the

files,

you

can

omit

columns

from

the

table

definitions,

or

bypass

creating

tables,

as

required.

If

you

omit

columns

from

the

table

definitions,

you

must

modify

the

commands

that

you

use

to

load

data

into

these

tables.

1.

Issue

the

db2

command

to

open

a

DB2

command

window.

2.

Optional.

Create

a

schema

to

hold

the

tables.

Issue

the

following

command.

For

this

example,

the

schema

is

called

AUDIT

CREATE

SCHEMA

AUDIT

3.

Optional.

If

you

created

the

AUDIT

schema,

switch

to

the

schema

before

creating

any

tables.

Issue

the

following

command:

SET

CURRENT

SCHEMA

=

’AUDIT’

4.

To

create

the

table

that

will

contain

records

from

the

audit.del

file,

issue

the

following

SQL

statement:

CREATE

TABLE

AUDIT

(TIMESTAMP

CHAR(26),

CATEGORY

CHAR(8),

EVENT

VARCHAR(32),

CORRELATOR

INTEGER,

STATUS

INTEGER,

USERID

VARCHAR(1024),

AUTHID

VARCHAR(128))

5.

To

create

the

table

that

will

contain

records

from

the

checking.del

file,

issue

the

following

SQL

statement:

CREATE

TABLE

CHECKING

(TIMESTAMP

CHAR(26),

CATEGORY

CHAR(8),

EVENT

VARCHAR(32),

CORRELATOR

INTEGER,

STATUS

INTEGER,

DATABASE

CHAR(8),

USERID

VARCHAR(1024),

AUTHID

VARCHAR(128),

NODENUM

SMALLINT,

COORDNUM

SMALLINT,

APPID

VARCHAR(255),

APPNAME

VARCHAR(1024),

PKGSCHEMA

VARCHAR(128),

PKGNAME

VARCHAR(128),

PKGSECNUM

SMALLINT,

OBJSCHEMA

VARCHAR(128),

OBJNAME

VARCHAR(128),

OBJTYPE

VARCHAR(32),

ACCESSAPP

CHAR(18),

ACCESSATT

CHAR(18),

PKGVER

VARCHAR(64))

6.

To

create

the

table

that

will

contain

records

from

the

objmaint.del

file,

issue

the

following

SQL

statement:

Chapter

3.

Auditing

DB2

UDB

activities

65

CREATE

TABLE

OBJMAINT

(TIMESTAMP

CHAR(26),

CATEGORY

CHAR(8),

EVENT

VARCHAR(32),

CORRELATOR

INTEGER,

STATUS

INTEGER,

DATABASE

CHAR(8),

USERID

VARCHAR(1024),

AUTHID

VARCHAR(128),

NODENUM

SMALLINT,

COORDNUM

SMALLINT,

APPID

VARCHAR(255),

APPNAME

VARCHAR(1024),

PKGSCHEMA

VARCHAR(128),

PKGNAME

VARCHAR(128),

PKGSECNUM

SMALLINT,

OBJSCHEMA

VARCHAR(128),

OBJNAME

VARCHAR(128),

OBJTYPE

VARCHAR(32),

PACKVER

VARCHAR(64))

7.

To

create

the

table

that

will

contain

records

from

the

secmaint.del

file,

issue

the

following

SQL

statement:

CREATE

TABLE

SECMAINT

(TIMESTAMP

CHAR(26),

CATEGORY

CHAR(8),

EVENT

VARCHAR(32),

CORRELATOR

INTEGER,

STATUS

INTEGER,

DATABASE

CHAR(8),

USERID

VARCHAR(1024),

AUTHID

VARCHAR(128),

NODENUM

SMALLINT,

COORDNUM

SMALLINT,

APPID

VARCHAR(255),

APPNAME

VARCHAR(1024),

PKGSCHEMA

VARCHAR(128),

PKGNAME

VARCHAR(128),

PKGSECNUM

SMALLINT,

OBJSCHEMA

VARCHAR(128),

OBJNAME

VARCHAR(128),

OBJTYPE

VARCHAR(32),

GRANTOR

VARCHAR(128),

GRANTEE

VARCHAR(128),

GRANTEETYPE

VARCHAR(32),

PRIVAUTH

CHAR(18),

PKGVER

VARCHAR(64))

8.

To

create

the

table

that

will

contain

records

from

the

sysadmin.del

file,

issue

the

following

SQL

statement:

CREATE

TABLE

SYSADMIN

(TIMESTAMP

CHAR(26),

CATEGORY

CHAR(8),

EVENT

VARCHAR(32),

CORRELATOR

INTEGER,

STATUS

INTEGER,

DATABASE

CHAR(8),

USERID

VARCHAR(1024),

AUTHID

VARCHAR(128),

NODENUM

SMALLINT,

COORDNUM

SMALLINT,

APPID

VARCHAR(255),

APPNAME

VARCHAR(1024),

PKGSCHEMA

VARCHAR(128),

PKGNAME

VARCHAR(128),

PKGSECNUM

SMALLINT,

PKGVER

VARCHAR(64))

9.

To

create

the

table

that

will

contain

records

from

the

validate.del

file,

issue

the

following

SQL

statement:

66

Common

Criteria

Certification:

Administration

and

User

Documentation

CREATE

TABLE

VALIDATE

(TIMESTAMP

CHAR(26),

CATEGORY

CHAR(8),

EVENT

VARCHAR(32),

CORRELATOR

INTEGER,

STATUS

INTEGER,

DATABASE

CHAR(8),

USERID

VARCHAR(1024),

AUTHID

VARCHAR(128),

EXECID

VARCHAR(1024),

NODENUM

SMALLINT,

COORDNUM

SMALLINT,

APPID

VARCHAR(255),

APPNAME

VARCHAR(1024),

AUTHTYPE

VARCHAR(32),

PKGSCHEMA

VARCHAR(128),

PKGNAME

VARCHAR(128),

PKGSECNUM

SMALLINT,

PKGVER

VARCHAR(64)

PLUGINNAME

VARCHAR(32))

10.

To

create

the

table

that

will

contain

records

from

the

context.del

file,

issue

the

following

SQL

statement:

CREATE

TABLE

CONTEXT

(TIMESTAMP

CHAR(26),

CATEGORY

CHAR(8),

EVENT

VARCHAR(32),

CORRELATOR

INTEGER,

DATABASE

CHAR(8),

USERID

VARCHAR(1024),

AUTHID

VARCHAR(128),

NODENUM

SMALLINT,

COORDNUM

SMALLINT,

APPID

VARCHAR(255),

APPNAME

VARCHAR(1024),

PKGSCHEMA

VARCHAR(128),

PKGNAME

VARCHAR(128),

PKGSECNUM

SMALLING,

STMTTEXT

CLOB(2M),

PKGVER

VARCHAR(64))

11.

After

creating

the

tables,

issue

the

COMMIT

statement

to

ensure

that

the

table

definitions

are

written

to

disk.

12.

When

you

have

created

the

tables,

you

are

ready

to

extract

the

audit

records

from

the

db2audit.log

file

to

delimited

ASCII

files.

Related

tasks:

v

“Creating

DB2

audit

data

files”

on

page

67

v

“Setting

a

schema”

on

page

141

Related

reference:

v

“CREATE

SCHEMA”

on

page

588

v

“CREATE

TABLE”

on

page

591

Creating

DB2

audit

data

files

By

default,

the

DB2

audit

facility

writes

audit

data

to

the

db2audit.log

file.

The

records

in

this

file

cannot

be

loaded

into

tables.

You

must

extract

the

audit

records

to

delimited

ASCII

files,

which

can

you

use

to

populate

tables.

Prerequisites:

You

require

SYSADM

authority

to

use

the

db2audit

command.

Chapter

3.

Auditing

DB2

UDB

activities

67

Procedure:

To

write

the

audit

facility

records

to

delimited

ASCII

files:

1.

Review

the

topic

on

audit

facility

usage

to

determine

the

type

of

DB2

activities

that

you

want

to

audit.

When

you

are

satisfied

with

the

configuration

that

you

have

set

up

for

the

audit

facility,

issue

the

following

command

to

begin

auditing:

db2audit

start

2.

Issue

the

following

command

to

ensure

that

all

audit

records

are

flushed

from

memory

to

the

db2audit.log

file:

db2audit

flush

3.

Issue

the

following

command

to

move

the

audit

records

from

the

db2audit.log

to

delimited

ASCII

files:

db2audit

extract

delasc

The

following

files

are

created

in

the

security

subdirectory

of

sqllib.

If

you

are

not

auditing

a

particular

type

of

event,

the

file

for

that

event

is

created,

but

the

file

is

empty.

v

audit.del

v

checking.del

v

objmaint.del

v

secmaint.del

v

sysadmin.del

v

validate.del

v

context.del
4.

Issue

the

following

command

to

delete

the

audit

records

from

the

db2audit.log

file

that

you

just

extracted:

db2audit

prune

date

YYYYMMDDHH

Where

YYYYMMDDHH

is

the

current

year,

month,

day,

and

hour.

Write

down

the

value

that

you

use

because

you

will

require

this

information

in

the

next

step

when

you

populate

the

tables

with

the

audit

data.

The

audit

facility

will

continue

to

write

new

audit

records

to

the

db2audit.log

file,

and

these

records

will

have

a

timestamp

that

is

later

than

YYYYMMDDHH.

Pruning

records

from

the

db2audit.log

file

that

you

have

already

extracted

prevents

you

from

extracting

the

same

records

a

second

time.

All

audit

records

that

are

written

after

YYYYMMDDHH

will

be

written

to

the

.del

files

the

next

time

you

extract

the

audit

data.

5.

After

you

create

the

audit

data

files,

the

next

step

is

to

use

the

load

utility

to

populate

the

tables

with

the

audit

data.

Related

tasks:

v

“Loading

DB2

audit

data

into

tables”

on

page

69

Related

reference:

v

“db2audit

-

Audit

Facility

Administrator

Tool”

on

page

260

v

“Audit

facility

usage”

on

page

60

v

“Audit

record

layout

for

AUDIT

events”

on

page

73

v

“Audit

record

layout

for

CHECKING

events”

on

page

74

v

“Audit

record

layout

for

OBJMAINT

events”

on

page

79

v

“Audit

record

layout

for

SECMAINT

events”

on

page

80

v

“Audit

record

layout

for

SYSADMIN

events”

on

page

84

v

“Audit

record

layout

for

VALIDATE

events”

on

page

85

68

Common

Criteria

Certification:

Administration

and

User

Documentation

v

“Audit

record

layout

for

CONTEXT

events”

on

page

87

Loading

DB2

audit

data

into

tables

When

you

have

created

the

tables

to

hold

the

audit

data,

you

then

load

the

data

in

the

ASCII

files

into

the

tables.

Prerequisites:

See

the

topic

on

the

privileges,

authorities,

and

authorizations

required

to

use

the

load

utility

for

more

information.

Procedure:

Use

the

load

utility

to

load

the

data

into

the

tables.

Issue

a

separate

load

command

for

each

table.

If

you

omitted

one

or

more

columns

from

the

table

definitions,

you

must

modify

the

version

of

the

LOAD

command

that

you

use

to

successfully

load

the

data.

Also,

if

you

specified

a

delimiter

character

other

than

the

default

(0xff)

when

you

extracted

the

audit

data,

you

must

also

modify

the

version

of

the

LOAD

command

that

you

use

(see

the

topic

″

File

type

modifiers

for

load″

for

more

information).

1.

Issue

the

db2

command

to

open

a

DB2

command

window.

2.

To

load

the

AUDIT

table,

issue

the

following

command:

LOAD

FROM

audit.del

OF

del

MODIFIED

BY

CHARDEL0xff

INSERT

INTO

schema.AUDIT

Note:

When

specifying

the

file

name,

usen

the

fully

qualified

path

name.

For

example,

if

you

have

DB2

UDB

installed

on

the

C:

drive

of

a

Windows-based

computer,

you

would

specify

C:\Program

Files\IBM\SQLLIB\instance\security\audit.del

as

the

fully

qualified

file

name

for

the

audit.del

file.

After

loading

the

AUDIT

table,

issue

the

following

DELETE

statement

to

ensure

that

you

do

not

load

duplicate

rows

into

the

table

the

next

time

you

load

it.

When

you

extracted

the

audit

records

from

the

db2audit.log

file,

all

records

in

the

file

were

written

to

the

.del

files.

Likely,

the

.del

files

contained

records

that

were

written

after

the

hour

to

which

the

audit

log

was

subsequently

pruned

(because

the

db2audit

prune

command

only

prunes

records

to

a

specified

hour).

The

next

time

you

extract

the

audit

records,

the

new

.del

files

will

contain

records

that

were

previously

extracted,

but

not

deleted

by

the

db2audit

prune

command

(because

they

were

written

after

the

hour

specified

for

the

prune

operation).

Deleting

rows

from

the

table

to

the

same

hour

to

which

the

db2audit.log

file

was

pruned

ensures

that

the

table

does

not

contain

duplicate

rows,

and

that

no

audit

records

are

lost.

DELETE

FROM

schema.AUDIT

WHERE

TIMESTAMP

>

TIMESTAMP(’YYYYMMDDHH0000’)

Where

YYYYMMDDHH

is

the

value

that

you

specified

when

you

pruned

the

db2audit.log

file.

Because

the

DB2

audit

facility

continues

to

write

audit

records

to

the

db2audit.log

file

after

it

is

pruned,

you

must

specify

0000

for

the

minutes

and

seconds

to

ensure

that

audit

records

that

were

written

after

the

db2audit.log

file

was

pruned

are

not

deleted

from

the

table.

3.

To

load

the

CHECKING

table,

issue

the

following

command:

LOAD

FROM

checking.del

OF

del

MODIFIED

BY

CHARDEL0xff

INSERT

INTO

schema.CHECKING

Chapter

3.

Auditing

DB2

UDB

activities

69

After

loading

the

CHECKING

table,

issue

the

following

SQL

statement

to

ensure

that

you

do

not

load

duplicate

rows

into

the

table

the

next

time

you

load

it:

DELETE

FROM

schema.CHECKING

WHERE

TIMESTAMP

>

TIMESTAMP(’YYYYMMDDHH0000’)

Where

YYYYMMDDHH

is

the

value

that

you

specified

when

you

pruned

the

log

file.

4.

To

load

the

OBJMAINT

table,

issue

the

following

command:

LOAD

FROM

objmaint.del

OF

del

MODIFIED

BY

CHARDEL0xff

INSERT

INTO

schema.OBJMAINT

After

loading

the

OBJMAINT

table,

issue

the

following

SQL

statement

to

ensure

that

you

do

not

load

duplicate

rows

into

the

table

the

next

time

you

load

it:

DELETE

FROM

schema.OBJMAINT

WHERE

TIMESTAMP

>

TIMESTAMP(’YYYYMMDDHH0000’)

Where

YYYYMMDDHH

is

the

value

that

you

specified

when

you

pruned

the

log

file.

5.

To

load

the

SECMAINT

table,

issue

the

following

command:

LOAD

FROM

secmaint.del

OF

del

MODIFIED

BY

CHARDEL0xff

INSERT

INTO

schema.SECMAINT

After

loading

the

SECMAINT

table,

issue

the

following

SQL

statement

to

ensure

that

you

do

not

load

duplicate

rows

into

the

table

the

next

time

you

load

it:

DELETE

FROM

schema.SECMAINT

WHERE

TIMESTAMP

>

TIMESTAMP(’YYYYMMDDHH0000’)

Where

YYYYMMDDHH

is

the

value

that

you

specified

when

you

pruned

the

log

file.

6.

To

load

the

SYSADMIN

table,

issue

the

following

command:

LOAD

FROM

sysadmin.del

OF

del

MODIFIED

BY

CHARDEL0xff

INSERT

INTO

schema.SYSADMIN

After

loading

the

SYSADMIN

table,

issue

the

following

SQL

statement

to

ensure

that

you

do

not

load

duplicate

rows

into

the

table

the

next

time

you

load

it:

DELETE

FROM

schema.SYSADMIN

WHERE

TIMESTAMP

>

TIMESTAMP(’YYYYMMDDHH0000’)

Where

YYYYMMDDHH

is

the

value

that

you

specified

when

you

pruned

the

log

file.

7.

To

load

the

VALIDATE

table,

issue

the

following

command:

LOAD

FROM

validate.del

OF

del

MODIFIED

BY

CHARDEL0xff

INSERT

INTO

schema.VALIDATE

After

loading

the

VALIDATE

table,

issue

the

following

SQL

statement

to

ensure

that

you

do

not

load

duplicate

rows

into

the

table

the

next

time

you

load

it:

DELETE

FROM

schema.VALIDATE

WHERE

TIMESTAMP

>

TIMESTAMP(’YYYYMMDDHH0000’)

Where

YYYYMMDDHH

is

the

value

that

you

specified

when

you

pruned

the

log

file.

8.

To

load

the

CONTEXT

table,

issue

the

following

command:

LOAD

FROM

context.del

OF

del

MODIFIED

BY

CHARDEL0xff

INSERT

INTO

schema.CONTEXT

After

loading

the

CONTEXT

table,

issue

the

following

SQL

statement

to

ensure

that

you

do

not

load

duplicate

rows

into

the

table

the

next

time

you

load

it:

70

Common

Criteria

Certification:

Administration

and

User

Documentation

DELETE

FROM

schema.CONTEXT

WHERE

TIMESTAMP

>

TIMESTAMP(’YYYYMMDDHH0000’)

Where

YYYYMMDDHH

is

the

value

that

you

specified

when

you

pruned

the

log

file.

9.

After

you

finish

loading

the

data

into

the

tables,

delete

the

.del

files

from

the

security

subdirectory

of

the

sqllib

directory.

10.

When

you

have

loaded

the

audit

data

into

the

tables,

you

are

ready

to

select

data

from

these

tables.

If

you

have

already

populated

the

tables

a

first

time,

and

want

to

do

so

again,

use

the

INSERT

option

to

have

the

new

table

data

added

to

the

existing

table

data.

If

you

want

to

have

the

records

from

the

previous

db2audit

extract

operation

removed

from

the

tables,

load

the

tables

again

using

the

REPLACE

option.

In

either

situation,

remember

both

to

flush

the

audit

records

to

the

db2audit.log

file

before

extracting

the

records

to

the

.del

files,

and

to

prune

the

db2audit.log

file

after

extracting

the

records

so

that

you

do

not

load

the

same

records

into

the

tables

more

than

once.

Related

concepts:

v

“Privileges,

authorities,

and

authorizations

required

to

use

Load”

on

page

838

Related

tasks:

v

“Selecting

DB2

audit

data

from

tables”

on

page

71

Related

reference:

v

“File

type

modifiers

for

load”

on

page

326

Selecting

DB2

audit

data

from

tables

When

the

audit

data

is

successfully

loaded

into

the

tables,

you

can

select

data

from

these

tables

for

further

analysis.

Prerequisites:

See

the

topic

on

the

SELECT

statement

for

information

about

the

authorities

and

privileges

required

to

select

data

from

a

table.

Procedure:

To

select

all

the

rows

in

a

table:

1.

Issue

the

db2

command

to

open

a

DB2

command

window.

2.

Issue

an

SQL

statement

of

the

following

form

for

each

table

from

which

you

want

to

select

audit

data:

SELECT

*

FROM

schema.table

For

example,

to

select

all

the

data

from

the

CHECKING

table

in

the

AUDIT

schema,

use

the

following

statement:

SELECT

*

FROM

AUDIT.CHECKING

The

select

that

you

perform

should

reflect

the

type

of

analysis

that

you

want

to

do

on

the

data.

For

example,

you

can

select

records

according

to

an

authorization

ID

(authid)

to

determine

the

type

of

activities

that

this

authorization

ID

has

been

performing:

SELECT

*

FROM

AUDIT.CHECKING

WHERE

AUTHID

=

authorization

ID

Chapter

3.

Auditing

DB2

UDB

activities

71

Where

authorization

ID

is

the

user

ID

for

which

you

want

to

analyze

the

data.

For

a

description

of

the

values

that

can

be

included

in

audit

data,

see

the

corresponding

audit

record

layout

topic

for

the

table,

and

the

list

of

possible

returned

values

for

the

table.

Related

reference:

v

“Subselect”

on

page

904

v

“SELECT”

on

page

902

v

“Audit

record

layout

for

AUDIT

events”

on

page

73

v

“Audit

record

layout

for

CHECKING

events”

on

page

74

v

“List

of

possible

CHECKING

access

approval

reasons”

on

page

76

v

“List

of

possible

CHECKING

access

attempted

types”

on

page

77

v

“Audit

record

layout

for

OBJMAINT

events”

on

page

79

v

“Audit

record

layout

for

SECMAINT

events”

on

page

80

v

“List

of

possible

SECMAINT

privileges

or

authorities”

on

page

81

v

“Audit

record

layout

for

SYSADMIN

events”

on

page

84

v

“List

of

possible

SYSADMIN

audit

events”

on

page

84

v

“Audit

record

layout

for

VALIDATE

events”

on

page

85

v

“Audit

record

layout

for

CONTEXT

events”

on

page

87

v

“List

of

possible

CONTEXT

audit

events”

on

page

87

Audit

facility

messages

SQL1322N

An

error

occurred

when

writing

to

the

audit

log

file.

Explanation:

The

DB2

Universal

Database™

(DB2

UDB)

audit

facility

encountered

an

error

when

invoked

to

record

an

audit

event

to

the

audit

log

file.

There

is

no

space

on

the

file

system

where

the

audit

log

resides.

User

Response:

The

system

administrator

should

free

up

space

on

this

file

system

or

prune

the

audit

log

to

reduce

its

size.

When

more

space

is

available,

use

db2audit

to

flush

out

any

data

in

memory,

and

to

reset

the

auditor

to

a

ready

state.

Ensure

that

appropriate

extracts

have

occurred,

or

a

copy

of

the

log

has

been

made

before

pruning

the

log,

as

deleted

records

are

not

recoverable.

sqlcode:

-1322

sqlstate:

50830

SQL1323N

An

error

occurred

when

accessing

the

audit

configuration

file.

Explanation:

The

audit

configuration

file

(db2audit.cfg)

could

not

be

opened,

or

was

invalid.

Possible

reasons

for

this

error

are

that

the

db2audit.cfg

file

either

does

not

exist,

or

has

been

damaged.

User

Response:

Take

one

of

the

following

actions:

v

Restore

from

a

saved

version

of

the

file.

v

Reset

the

audit

facility

configuration

file

by

issuing

db2audit

reset

sqlcode:

-1323

sqlstate:

57019

Related

concepts:

v

“Introduction

to

the

DB2

Universal

Database

(DB2

UDB)

audit

facility”

on

page

57

Audit

facility

record

layouts

(introduction)

When

an

audit

record

is

extracted

from

the

audit

log

using

the

DELASC

extract

option,

each

record

will

have

one

of

the

formats

shown

in

the

following

tables.

Each

table

will

begin

by

showing

the

contents

of

a

sample

record.

The

description

of

each

item

of

the

record

is

shown

one

row

at

a

time

in

the

associated

table.

If

the

72

Common

Criteria

Certification:

Administration

and

User

Documentation

item

is

important,

the

name

of

the

item

will

be

highlighted

(bold).

These

items

contain

information

that

are

of

most

interest

to

you.

Notes:

1.

Not

all

fields

in

the

sample

records

will

have

values.

2.

Some

fields

such

as

“Access

Attempted”

are

stored

in

the

delimited

ASCII

format

as

bitmaps.

In

this

flat

report

file,

however,

these

fields

will

appear

as

a

set

of

strings

representing

the

bitmap

values.

3.

A

new

field

called

“Package

Version”

has

been

added

to

the

record

layout

for

the

CHECKING,

OBJMAINT,

SECMAINT,

SYSADMIN,

VALIDATE,

and

CONTEXT

events.

Related

reference:

v

“Audit

record

layout

for

AUDIT

events”

on

page

73

v

“Audit

record

layout

for

CHECKING

events”

on

page

74

v

“Audit

record

layout

for

OBJMAINT

events”

on

page

79

v

“Audit

record

layout

for

SECMAINT

events”

on

page

80

v

“Audit

record

layout

for

SYSADMIN

events”

on

page

84

v

“Audit

record

layout

for

VALIDATE

events”

on

page

85

v

“Audit

record

layout

for

CONTEXT

events”

on

page

87

Details

on

audit

facility

record

layouts

The

various

audit

facility

record

layouts

are

shown

in

this

section.

Audit

record

layout

for

AUDIT

events

Table

4.

Audit

Record

Layout

for

AUDIT

Events

timestamp=1998-06-24-11.54.05.151232;category=AUDIT;audit

event=START;

event

correlator=0;event

status=0;

userid=boss;authid=BOSS;

NAME

FORMAT

DESCRIPTION

Timestamp

CHAR(26)

Date

and

time

of

the

audit

event.

Category

CHAR(8)

Category

of

audit

event.

Possible

values

are:

AUDIT

Audit

Event

VARCHAR(32)

Specific

Audit

Event.

Possible

values

include:

CONFIGURE,

DB2AUD,

EXTRACT,

FLUSH,

PRUNE,

START,

STOP,

and

UPDATE_ADMIN_CFG

Event

Correlator

INTEGER

Correlation

identifier

for

the

operation

being

audited.

Can

be

used

to

identify

what

audit

records

are

associated

with

a

single

event.

Event

Status

INTEGER

Status

of

audit

event,

represented

by

an

SQLCODE

where

Successful

event

>

=

0

Failed

event

<

0

User

ID

VARCHAR(1024)

User

ID

at

time

of

audit

event.

Authorization

ID

VARCHAR(128)

Authorization

ID

at

time

of

audit

event.

Related

concepts:

v

“Audit

facility

record

layouts

(introduction)”

on

page

72

Chapter

3.

Auditing

DB2

UDB

activities

73

Audit

record

layout

for

CHECKING

events

Table

5.

Audit

record

layout

for

CHECKING

events

timestamp=1998-06-24-08.42.11.622984;category=CHECKING;audit

event=CHECKING_OBJECT;

event

correlator=2;event

status=0;

database=FOO;userid=boss;authid=BOSS;

application

id=*LOCAL.newton.980624124210;application

name=testapp;

package

schema=NULLID;package

name=SYSSH200;

package

section=0;object

schema=GSTAGER;object

name=NONE;object

type=REOPT_VALUES;

access

approval

reason=DBADM;access

attempted=STORE;

NAME

FORMAT

DESCRIPTION

Timestamp

CHAR(26)

Date

and

time

of

the

audit

event.

Category

CHAR(8)

Category

of

audit

event.

Possible

values

are:

CHECKING

Audit

Event

VARCHAR(32)

Specific

Audit

Event.

Possible

values

include:

CHECKING_OBJECT

and

CHECKING_FUNCTION

Event

Correlator

INTEGER

Correlation

identifier

for

the

operation

being

audited.

Can

be

used

to

identify

what

audit

records

are

associated

with

a

single

event.

Event

Status

INTEGER

Status

of

audit

event,

represented

by

an

SQLCODE

where

Successful

event

>

=

0

Failed

event

<

0

Database

Name

CHAR(8)

Name

of

the

database

for

which

the

event

was

generated.

Blank

if

this

was

an

instance

level

audit

event.

User

ID

VARCHAR(1024)

User

ID

at

time

of

audit

event.

Authorization

ID

VARCHAR(128)

Authorization

ID

at

time

of

audit

event.

Origin

Node

Number

SMALLINT

Node

number

at

which

the

audit

event

occurred.

Coordinator

Node

Number

SMALLINT

Node

number

of

the

coordinator

node.

Application

ID

VARCHAR

(255)

Application

ID

in

use

at

the

time

the

audit

event

occurred.

Application

Name

VARCHAR

(1024)

Application

name

in

use

at

the

time

the

audit

event

occurred.

Package

Schema

VARCHAR

(128)

Schema

of

the

package

in

use

at

the

time

of

the

audit

event.

Package

Name

VARCHAR

(128)

Name

of

package

in

use

at

the

time

the

audit

event

occurred.

Package

Section

Number

SMALLINT

Section

number

in

package

being

used

at

the

time

the

audit

event

occurred.

Object

Schema

VARCHAR

(128)

Schema

of

the

object

for

which

the

audit

event

was

generated.

Object

Name

VARCHAR

(128)

Name

of

object

for

which

the

audit

event

was

generated.

Object

Type

VARCHAR

(32)

Type

of

object

for

which

the

audit

event

was

generated.

Possible

values

include:

those

shown

in

the

topic

titled

“Audit

record

object

types”.

Access

Approval

Reason

CHAR(18)

Indicates

the

reason

why

access

was

approved

for

this

audit

event.

Possible

values

include:

those

shown

in

the

topic

titled

“List

of

possible

CHECKING

access

approval

reasons”.

Access

Attempted

CHAR(18)

Indicates

the

type

of

access

that

was

attempted.

Possible

values

include:

those

shown

in

the

topic

titled

“List

of

possible

CHECKING

access

attempted

types”.

74

Common

Criteria

Certification:

Administration

and

User

Documentation

Table

5.

Audit

record

layout

for

CHECKING

events

(continued)

timestamp=1998-06-24-08.42.11.622984;category=CHECKING;audit

event=CHECKING_OBJECT;

event

correlator=2;event

status=0;

database=FOO;userid=boss;authid=BOSS;

application

id=*LOCAL.newton.980624124210;application

name=testapp;

package

schema=NULLID;package

name=SYSSH200;

package

section=0;object

schema=GSTAGER;object

name=NONE;object

type=REOPT_VALUES;

access

approval

reason=DBADM;access

attempted=STORE;

NAME

FORMAT

DESCRIPTION

Package

Version

VARCHAR

(64)

Version

of

the

package

in

use

at

the

time

that

the

audit

event

occurred.

Related

concepts:

v

“Audit

facility

record

layouts

(introduction)”

on

page

72

Related

reference:

v

“List

of

possible

CHECKING

access

approval

reasons”

on

page

76

v

“List

of

possible

CHECKING

access

attempted

types”

on

page

77

v

“Audit

record

object

types”

on

page

75

Audit

record

object

types

Table

6.

Audit

Record

Object

Types

Based

on

Audit

Events

Object

type

CHECKING

events

OBJMAINT

events

SECMAINT

events

NONE

X

X

X

TABLE

X

X

X

VIEW

X

X

X

ALIAS

X

X

FUNCTION

X

X

X

INDEX

X

X

X

INDEX

EXTENSION

X

PACKAGE

X

X

X

PACKAGE

CACHE

X

DATA_TYPE

X

NODEGROUP

X

X

SCHEMA

X

X

X

STORED_PROCEDURE

X

X

X

METHOD_BODY

X

X

X

BUFFERPOOL

X

X

SEQUENCE

X

X

TABLESPACE

X

X

X

EVENT_MONITOR

X

X

TRIGGER

X

DATABASE

X

X

INSTANCE

X

FOREIGN_KEY

X

PRIMARY_KEY

X

Chapter

3.

Auditing

DB2

UDB

activities

75

Table

6.

Audit

Record

Object

Types

Based

on

Audit

Events

(continued)

Object

type

CHECKING

events

OBJMAINT

events

SECMAINT

events

UNIQUE_CONSTRAINT

X

CHECK_CONSTRAINT

X

WRAPPER

X

X

SERVER

X

X

X

NICKNAME

X

X

X

USER

MAPPING

X

X

SERVER

OPTION

X

X

TYPE&TRANSFORM

X

X

TYPE

MAPPING

X

X

FUNCTION

MAPPING

X

X

SUMMARY

TABLES

X

X

X

JAR_FILE

X

ALL

X

REOPT_VALUES

X

Related

reference:

v

“Audit

record

layout

for

CHECKING

events”

on

page

74

v

“Audit

record

layout

for

OBJMAINT

events”

on

page

79

v

“Audit

record

layout

for

SECMAINT

events”

on

page

80

List

of

possible

CHECKING

access

approval

reasons

The

following

is

the

list

of

possible

CHECKING

access

approval

reasons:

0x0000000000000001

ACCESS

DENIED

Access

is

not

approved;

rather,

it

was

denied.

0x0000000000000002

SYSADM

Access

is

approved;

the

application/user

has

SYSADM

authority.

0x0000000000000004

SYSCTRL

Access

is

approved;

the

application/user

has

SYSCTRL

authority.

0x0000000000000008

SYSMAINT

Access

is

approved;

the

application/user

has

SYSMAINT

authority.

0x0000000000000010

DBADM

Access

is

approved;

the

application/user

has

DBADM

authority.

0x0000000000000020

DATABASE

PRIVILEGE

Access

is

approved;

the

application/user

has

an

explicit

privilege

on

the

database.

0x0000000000000040

OBJECT

PRIVILEGE

Access

is

approved;

the

application/user

has

an

explicit

privilege

on

the

object

or

function.

0x0000000000000080

DEFINER

Access

is

approved;

the

application/user

is

the

definer

of

the

object

or

function.

76

Common

Criteria

Certification:

Administration

and

User

Documentation

0x0000000000000100

OWNER

Access

is

approved;

the

application/user

is

the

owner

of

the

object

or

function.

0x0000000000000200

CONTROL

Access

is

approved;

the

application/user

has

CONTROL

privilege

on

the

object

or

function.

0x0000000000000400

BIND

Access

is

approved;

the

application/user

has

bind

privilege

on

the

package.

0x0000000000000800

SYSQUIESCE

Access

is

approved;

if

the

instance

or

database

is

in

quiesce

mode,

the

application/user

may

connect

or

attach.

0x0000000000001000

SYSMON

Access

is

approved;

the

application/user

has

SYSMON

authority.

Related

reference:

v

“Audit

record

layout

for

CHECKING

events”

on

page

74

v

“List

of

possible

CHECKING

access

attempted

types”

on

page

77

List

of

possible

CHECKING

access

attempted

types

The

following

is

the

list

of

possible

CHECKING

access

attempted

types:

0x0000000000000002

ALTER

Attempt

to

alter

an

object.

0x0000000000000004

DELETE

Attempt

to

delete

an

object.

0x0000000000000008

INDEX

Attempt

to

use

an

index.

0x0000000000000010

INSERT

Attempt

to

insert

into

an

object.

0x0000000000000020

SELECT

Attempt

to

query

a

table

or

view.

0x0000000000000040

UPDATE

Attempt

to

update

data

in

an

object.

0x0000000000000080

REFERENCE

Attempt

to

establish

referential

constraints

between

objects.

0x0000000000000100

CREATE

Attempt

to

create

an

object.

0x0000000000000200

DROP

Attempt

to

drop

an

object.

0x0000000000000400

CREATEIN

Attempt

to

create

an

object

within

another

schema.

0x0000000000000800

DROPIN

Attempt

to

drop

an

object

found

within

another

schema.

0x0000000000001000

ALTERIN

Attempt

to

alter

or

modify

an

object

found

within

another

schema.

Chapter

3.

Auditing

DB2

UDB

activities

77

0x0000000000002000

EXECUTE

Attempt

to

execute

or

run

an

application

or

to

invoke

a

routine,

create

a

function

sourced

from

the

routine

(applies

to

functions

only),

or

reference

a

routine

in

any

DDL

statement.

0x0000000000004000

BIND

Attempt

to

bind

or

prepare

an

application.

0x0000000000008000

SET

EVENT

MONITOR

Attempt

to

set

event

monitor

switches.

0x0000000000010000

SET

CONSTRAINTS

Attempt

to

set

constraints

on

an

object.

0x0000000000020000

COMMENT

ON

Attempt

to

create

comments

on

an

object.

0x0000000000040000

GRANT

Attempt

to

grant

privileges

on

an

object

to

another

user

ID.

0x0000000000080000

REVOKE

Attempt

to

revoke

privileges

on

an

object

from

a

user

ID.

0x0000000000100000

LOCK

Attempt

to

lock

an

object.

0x0000000000200000

RENAME

Attempt

to

rename

an

object.

0x0000000000400000

CONNECT

Attempt

to

connect

to

an

object.

0x0000000000800000

Member

of

SYS

Group

Attempt

to

access

or

use

a

member

of

the

SYS

group.

0x0000000001000000

Access

All

Attempt

to

execute

a

statement

with

all

required

privileges

on

objects

held

(only

used

for

DBADM/SYSADM).

0x0000000002000000

Drop

All

Attempt

to

drop

multiple

objects.

0x0000000004000000

LOAD

Attempt

to

load

a

table

in

a

table

space.

0x0000000008000000

USE

Attempt

to

create

a

table

in

a

table

space.

0x0000000010000000

SET

SESSION_USER

Attempt

to

execute

the

SET

SESSION_USER

statement.

0x0000000020000000

FLUSH

Attempt

to

execute

the

FLUSH

statement.

0x0000000040000000

STORE

Attempt

to

view

the

values

of

a

re-optimized

statement

in

the

EXPLAIN_PREDICATE

table.

Related

reference:

v

“Audit

record

layout

for

CHECKING

events”

on

page

74

v

“List

of

possible

CHECKING

access

approval

reasons”

on

page

76

78

Common

Criteria

Certification:

Administration

and

User

Documentation

Audit

record

layout

for

OBJMAINT

events

Table

7.

Audit

Record

Layout

for

OBJMAINT

Events

timestamp=1998-06-24-08.42.41.957524;category=OBJMAINT;audit

event=CREATE_OBJECT;

event

correlator=3;event

status=0;

database=FOO;userid=boss;authid=BOSS;

application

id=*LOCAL.newton.980624124210;application

name=testapp;

package

schema=NULLID;package

name=SQLC28A1;

package

section=0;object

schema=BOSS;object

name=AUDIT;object

type=TABLE;

NAME

FORMAT

DESCRIPTION

Timestamp

CHAR(26)

Date

and

time

of

the

audit

event.

Category

CHAR(8)

Category

of

audit

event.

Possible

values

are:

OBJMAINT

Audit

Event

VARCHAR(32)

Specific

Audit

Event.

Possible

values

include:

CREATE_OBJECT,

RENAME_OBJECT,

and

DROP_OBJECT

Event

Correlator

INTEGER

Correlation

identifier

for

the

operation

being

audited.

Can

be

used

to

identify

what

audit

records

are

associated

with

a

single

event.

Event

Status

INTEGER

Status

of

audit

event,

represented

by

an

SQLCODE

where

Successful

event

>

=

0

Failed

event

<

0

Database

Name

CHAR(8)

Name

of

the

database

for

which

the

event

was

generated.

Blank

if

this

was

an

instance

level

audit

event.

User

ID

VARCHAR(1024)

User

ID

at

time

of

audit

event.

Authorization

ID

VARCHAR(128)

Authorization

ID

at

time

of

audit

event.

Origin

Node

Number

SMALLINT

Node

number

at

which

the

audit

event

occurred.

Coordinator

Node

Number

SMALLINT

Node

number

of

the

coordinator

node.

Application

ID

VARCHAR

(255)

Application

ID

in

use

at

the

time

the

audit

event

occurred.

Application

Name

VARCHAR

(1024)

Application

name

in

use

at

the

time

the

audit

event

occurred.

Package

Schema

VARCHAR

(128)

Schema

of

the

package

in

use

at

the

time

of

the

audit

event.

Package

Name

VARCHAR

(128)

Name

of

package

in

use

at

the

time

the

audit

event

occurred.

Package

Section

Number

SMALLINT

Section

number

in

package

being

used

at

the

time

the

audit

event

occurred.

Object

Schema

VARCHAR

(128)

Schema

of

the

object

for

which

the

audit

event

was

generated.

Object

Name

VARCHAR

(128)

Name

of

object

for

which

the

audit

event

was

generated.

Object

Type

VARCHAR

(32)

Type

of

object

for

which

the

audit

event

was

generated.

Possible

values

include:

those

shown

in

the

topic

titled

“Audit

record

object

types”.

Package

Version

VARCHAR

(64)

Version

of

the

package

in

use

at

the

time

the

audit

event

occurred.

Related

concepts:

v

“Introduction

to

the

DB2

Universal

Database

(DB2

UDB)

audit

facility”

on

page

57

Related

reference:

Chapter

3.

Auditing

DB2

UDB

activities

79

v

“Audit

record

object

types”

on

page

75

Audit

record

layout

for

SECMAINT

events

Table

8.

Audit

Record

Layout

for

SECMAINT

Events

timestamp=1998-06-24-11.57.45.188101;category=SECMAINT;audit

event=GRANT;

event

correlator=4;event

status=0;

database=FOO;userid=boss;authid=BOSS;

application

id=*LOCAL.boss.980624155728;application

name=db2bp;

package

schema=NULLID;package

name=SQLC28A1;

package

section=0;object

schema=BOSS;object

name=T1;object

type=TABLE;

grantor=BOSS;grantee=WORKER;grantee

type=USER;privilege=SELECT;

NAME

FORMAT

DESCRIPTION

Timestamp

CHAR(26)

Date

and

time

of

the

audit

event.

Category

CHAR(8)

Category

of

audit

event.

Possible

values

are:

SECMAINT

Audit

Event

VARCHAR(32)

Specific

Audit

Event.

Possible

values

include:

GRANT,

REVOKE,

IMPLICIT_GRANT,

IMPLICIT_REVOKE,

SET_SESSION_USER,

and

UPDATE_DBM_CFG.

Event

Correlator

INTEGER

Correlation

identifier

for

the

operation

being

audited.

Can

be

used

to

identify

what

audit

records

are

associated

with

a

single

event.

Event

Status

INTEGER

Status

of

audit

event,

represented

by

an

SQLCODE

where

Successful

event

>

=

0

Failed

event

<

0

Database

Name

CHAR(8)

Name

of

the

database

for

which

the

event

was

generated.

Blank

if

this

was

an

instance

level

audit

event.

User

ID

VARCHAR(1024)

User

ID

at

time

of

audit

event.

Authorization

ID

VARCHAR(128)

Authorization

ID

at

time

of

audit

event.

Origin

Node

Number

SMALLINT

Node

number

at

which

the

audit

event

occurred.

Coordinator

Node

Number

SMALLINT

Node

number

of

the

coordinator

node.

Application

ID

VARCHAR

(255)

Application

ID

in

use

at

the

time

the

audit

event

occurred.

Application

Name

VARCHAR

(1024)

Application

name

in

use

at

the

time

the

audit

event

occurred.

Package

Schema

VARCHAR

(128)

Schema

of

the

package

in

use

at

the

time

of

the

audit

event.

Package

Name

VARCHAR

(128)

Name

of

package

in

use

at

the

time

the

audit

event

occurred.

Package

Section

Number

SMALLINT

Section

number

in

package

being

used

at

the

time

the

audit

event

occurred.

Object

Schema

VARCHAR

(128)

Schema

of

the

object

for

which

the

audit

event

was

generated.

Object

Name

VARCHAR

(128)

Name

of

object

for

which

the

audit

event

was

generated.

Object

Type

VARCHAR

(32)

Type

of

object

for

which

the

audit

event

was

generated.

Possible

values

include:

those

shown

in

the

topic

titled

“Audit

record

object

types”.

Grantor

VARCHAR

(128)

Grantor

ID.

Grantee

VARCHAR

(128)

Grantee

ID

for

which

a

privilege

or

authority

was

granted

or

revoked.

80

Common

Criteria

Certification:

Administration

and

User

Documentation

Table

8.

Audit

Record

Layout

for

SECMAINT

Events

(continued)

timestamp=1998-06-24-11.57.45.188101;category=SECMAINT;audit

event=GRANT;

event

correlator=4;event

status=0;

database=FOO;userid=boss;authid=BOSS;

application

id=*LOCAL.boss.980624155728;application

name=db2bp;

package

schema=NULLID;package

name=SQLC28A1;

package

section=0;object

schema=BOSS;object

name=T1;object

type=TABLE;

grantor=BOSS;grantee=WORKER;grantee

type=USER;privilege=SELECT;

NAME

FORMAT

DESCRIPTION

Grantee

Type

VARCHAR

(32)

Type

of

the

grantee

that

was

granted

to

or

revoked

from.

Possible

values

include:

USER,

GROUP,

or

BOTH.

Privilege

or

Authority

CHAR(18)

Indicates

the

type

of

privilege

or

authority

granted

or

revoked.

Possible

values

include:

those

shown

in

the

topic

titled

“List

of

possible

SECMAINT

privileges

or

authorities”.

Package

Version

VARCHAR

(64)

Version

of

the

package

in

use

at

the

time

the

audit

event

occurred.

Related

concepts:

v

“Audit

facility

record

layouts

(introduction)”

on

page

72

Related

reference:

v

“List

of

possible

SECMAINT

privileges

or

authorities”

on

page

81

v

“Audit

record

object

types”

on

page

75

List

of

possible

SECMAINT

privileges

or

authorities

The

following

is

the

list

of

possible

SECMAINT

privileges

or

authorities:

0x0000000000000001

Control

Table

Control

privilege

granted

or

revoked

on

a

table

or

view.

0x0000000000000002

ALTER

TABLE

Privilege

granted

or

revoked

to

alter

a

table.

0x0000000000000004

ALTER

TABLE

with

GRANT

Privilege

granted

or

revoked

to

alter

a

table

with

granting

of

privileges

allowed.

0x0000000000000008

DELETE

TABLE

Privilege

granted

or

revoked

to

drop

a

table

or

view.

0x0000000000000010

DELETE

TABLE

with

GRANT

Privilege

granted

or

revoked

to

drop

a

table

with

granting

of

privileges

allowed.

0x0000000000000020

Table

Index

Privilege

granted

or

revoked

on

an

index.

0x0000000000000040

Table

Index

with

GRANT

Privilege

granted

or

revoked

on

an

index

with

granting

of

privileges

allowed.

0x0000000000000080

Table

INSERT

Privilege

granted

or

revoked

on

an

insert

on

a

table

or

view.

0x0000000000000100

Table

INSERT

with

GRANT

Privilege

granted

or

revoked

on

an

insert

on

a

table

with

granting

of

privileges

allowed.

Chapter

3.

Auditing

DB2

UDB

activities

81

0x0000000000000200

Table

SELECT

Privilege

granted

or

revoked

on

a

select

on

a

table.

0x0000000000000400

Table

SELECT

with

GRANT

Privilege

granted

or

revoked

on

a

select

on

a

table

with

granting

of

privileges

allowed.

0x0000000000000800

Table

UPDATE

Privilege

granted

or

revoked

on

an

update

on

a

table

or

view.

0x0000000000001000

Table

UPDATE

with

GRANT

Privilege

granted

or

revoked

on

an

update

on

a

table

or

view

with

granting

of

privileges

allowed.

0x0000000000002000

Table

REFERENCE

Privilege

granted

or

revoked

on

a

reference

on

a

table.

0x0000000000004000

Table

REFERENCE

with

GRANT

Privilege

granted

or

revoked

on

a

reference

on

a

table

with

granting

of

privileges

allowed.

0x0000000000020000

CREATEIN

Schema

CREATEIN

privilege

granted

or

revoked

on

a

schema.

0x0000000000040000

CREATEIN

Schema

with

GRANT

CREATEIN

privilege

granted

or

revoked

on

a

schema

with

granting

of

privileges

allowed.

0x0000000000080000

DROPIN

Schema

DROPIN

privilege

granted

or

revoked

on

a

schema.

0x0000000000100000

DROPIN

Schema

with

GRANT

DROPIN

privilege

granted

or

revoked

on

a

schema

with

granting

of

privileges

allowed.

0x0000000000200000

ALTERIN

Schema

ALTERIN

privilege

granted

or

revoked

on

a

schema.

0x0000000000400000

ALTERIN

Schema

with

GRANT

ALTERIN

privilege

granted

or

revoked

on

a

schema

with

granting

of

privileges

allowed.

0x0000000000800000

DBADM

Authority

DBADM

authority

granted

or

revoked.

0x0000000001000000

CREATETAB

Authority

Createtab

authority

granted

or

revoked.

0x0000000002000000

BINDADD

Authority

Bindadd

authority

granted

or

revoked.

0x0000000004000000

CONNECT

Authority

CONNECT

authority

granted

or

revoked.

0x0000000008000000

Create

not

fenced

Authority

Create

not

fenced

authority

granted

or

revoked.

0x0000000010000000

Implicit

Schema

Authority

Implicit

schema

authority

granted

or

revoked.

0x0000000020000000

Server

PASSTHRU

Privilege

granted

or

revoked

to

use

the

pass-through

facility

with

this

server

(federated

database

data

source).

82

Common

Criteria

Certification:

Administration

and

User

Documentation

0x0000000100000000

Table

Space

USE

Privilege

granted

or

revoked

to

create

a

table

in

a

table

space.

0x0000000200000000

Table

Space

USE

with

GRANT

Privilege

granted

or

revoked

to

create

a

table

in

a

table

space

with

granting

of

privileges

allowed.

0x0000000400000000

Column

UPDATE

Privilege

granted

or

revoked

on

an

update

on

one

or

more

specific

columns

of

a

table.

0x0000000800000000

Column

UPDATE

with

GRANT

Privilege

granted

or

revoked

on

an

update

on

one

or

more

specific

columns

of

a

table

with

granting

of

privileges

allowed.

0x0000001000000000

Column

REFERENCE

Privilege

granted

or

revoked

on

a

reference

on

one

or

more

specific

columns

of

a

table.

0x0000002000000000

Column

REFERENCE

with

GRANT

Privilege

granted

or

revoked

on

a

reference

on

one

or

more

specific

columns

of

a

table

with

granting

of

privileges

allowed.

0x0000004000000000

LOAD

Authority

LOAD

authority

granted

or

revoked.

0x0000008000000000

Package

BIND

BIND

privilege

granted

or

revoked

on

a

package.

0x0000010000000000

Package

BIND

with

GRANT

BIND

privilege

granted

or

revoked

on

a

package

with

granting

of

privileges

allowed.

0x0000020000000000

EXECUTE

EXECUTE

privilege

granted

or

revoked

on

a

package

or

a

routine.

0x0000040000000000

EXECUTE

with

GRANT

EXECUTE

privilege

granted

or

revoked

on

a

package

or

a

routine

with

granting

of

privileges

allowed.

0x0000080000000000

EXECUTE

IN

SCHEMA

EXECUTE

privilege

granted

or

revoked

for

all

routines

in

a

schema.

0x0000100000000000

EXECUTE

IN

SCHEMA

with

GRANT

EXECUTE

privilege

granted

or

revoked

for

all

routines

in

a

schema

with

granting

of

privileges

allowed.

0x000020000000000

EXECUTE

IN

TYPE

EXECUTE

privilege

granted

or

revoked

for

all

routines

in

a

type.

0x0000400000000000

EXECUTE

IN

TYPE

with

GRANT

EXECUTE

privilege

granted

or

revoked

for

all

routines

in

a

type

with

granting

of

privileges

allowed.

0x000080000000000

CREATE

EXTERNAL

ROUTINE

CREATE

EXTERNAL

ROUTINE

privilege

granted

or

revoked.

0x0001000000000000

QUIESCE_CONNECT

QUIESCE_CONNECT

privilege

granted

or

revoked.

Related

reference:

v

“Audit

record

layout

for

SECMAINT

events”

on

page

80

Chapter

3.

Auditing

DB2

UDB

activities

83

Audit

record

layout

for

SYSADMIN

events

Table

9.

Audit

Record

Layout

for

SYSADMIN

Events

timestamp=1998-06-24-11.54.04.129923;category=SYSADMIN;audit

event=DB2AUDIT;

event

correlator=1;event

status=0;

userid=boss;authid=BOSS;

application

id=*LOCAL.boss.980624155404;application

name=db2audit;

NAME

FORMAT

DESCRIPTION

Timestamp

CHAR(26)

Date

and

time

of

the

audit

event.

Category

CHAR(8)

Category

of

audit

event.

Possible

values

are:

SYSADMIN

Audit

Event

VARCHAR(32)

Specific

Audit

Event.

Possible

values

include:

Those

shown

in

the

list

following

this

table.

Event

Correlator

INTEGER

Correlation

identifier

for

the

operation

being

audited.

Can

be

used

to

identify

what

audit

records

are

associated

with

a

single

event.

Event

Status

INTEGER

Status

of

audit

event,

represented

by

an

SQLCODE

where

Successful

event

>

=

0

Failed

event

<

0

Database

Name

CHAR(8)

Name

of

the

database

for

which

the

event

was

generated.

Blank

if

this

was

an

instance

level

audit

event.

User

ID

VARCHAR(1024)

User

ID

at

time

of

audit

event.

Authorization

ID

VARCHAR(128)

Authorization

ID

at

time

of

audit

event.

Origin

Node

Number

SMALLINT

Node

number

at

which

the

audit

event

occurred.

Coordinator

Node

Number

SMALLINT

Node

number

of

the

coordinator

node.

Application

ID

VARCHAR

(255)

Application

ID

in

use

at

the

time

the

audit

event

occurred.

Application

Name

VARCHAR

(1024)

Application

name

in

use

at

the

time

the

audit

event

occurred.

Package

Schema

VARCHAR

(128)

Schema

of

the

package

in

use

at

the

time

of

the

audit

event.

Package

Name

VARCHAR

(128)

Name

of

package

in

use

at

the

time

the

audit

event

occurred.

Package

Section

Number

SMALLINT

Section

number

in

package

being

used

at

the

time

the

audit

event

occurred.

Package

Version

VARCHAR

(64)

Version

of

the

package

in

use

at

the

time

the

audit

event

occurred.

Related

concepts:

v

“Audit

facility

record

layouts

(introduction)”

on

page

72

Related

reference:

v

“List

of

possible

SYSADMIN

audit

events”

on

page

84

List

of

possible

SYSADMIN

audit

events

The

following

is

the

list

of

possible

SYSADMIN

audit

events:

84

Common

Criteria

Certification:

Administration

and

User

Documentation

Table

10.

SYSADMIN

Audit

Events

START_DB2

STOP_DB2

CREATE_DATABASE

DROP_DATABASE

UPDATE_DBM_CFG

UPDATE_DB_CFG

CREATE_TABLESPACE

DROP_TABLESPACE

ALTER_TABLESPACE

RENAME_TABLESPACE

CREATE_NODEGROUP

DROP_NODEGROUP

ALTER_NODEGROUP

CREATE_BUFFERPOOL

DROP_BUFFERPOOL

ALTER_BUFFERPOOL

CREATE_EVENT_MONITOR

DROP_EVENT_MONITOR

ENABLE_MULTIPAGE

MIGRATE_DB_DIR

DB2TRC

DB2SET

ACTIVATE_DB

ADD_NODE

BACKUP_DB

CATALOG_NODE

CATALOG_DB

CATALOG_DCS_DB

CHANGE_DB_COMMENT

DEACTIVATE_DB

DROP_NODE_VERIFY

FORCE_APPLICATION

GET_SNAPSHOT

LIST_DRDA_INDOUBT_TRANSACTIONS

MIGRATE_DB

RESET_ADMIN_CFG

RESET_DB_CFG

RESET_DBM_CFG

RESET_MONITOR

RESTORE_DB

ROLLFORWARD_DB

SET_RUNTIME_DEGREE

SET_TABLESPACE_CONTAINERS

UNCATALOG_DB

UNCATALOG_DCS_DB

UNCATALOG_NODE

UPDATE_ADMIN_CFG

UPDATE_MON_SWITCHES

LOAD_TABLE

DB2AUDIT

SET_APPL_PRIORITY

CREATE_DB_AT_NODE

KILLDBM

MIGRATE_SYSTEM_DIRECTORY

DB2REMOT

DB2AUD

MERGE_DBM_CONFIG_FILE

UPDATE_CLI_CONFIGURATION

OPEN_TABLESPACE_QUERY

SINGLE_TABLESPACE_QUERY

CLOSE_TABLESPACE_QUERY

FETCH_TABLESPACE

OPEN_CONTAINER_QUERY

FETCH_CONTAINER_QUERY

CLOSE_CONTAINER_QUERY

GET_TABLESPACE_STATISTICS

DESCRIBE_DATABASE

ESTIMATE_SNAPSHOT_SIZE

READ_ASYNC_LOG_RECORD

PRUNE_RECOVERY_HISTORY

UPDATE_RECOVERY_HISTORY

QUIESCE_TABLESPACE

UNLOAD_TABLE

UPDATE_DATABASE_VERSION

CREATE_INSTANCE

DELETE_INSTANCE

SET_EVENT_MONITOR

GRANT_DBADM

REVOKE_DBADM

GRANT_DB_AUTHORITIES

REVOKE_DB_AUTHORITIES

REDIST_NODEGROUP

Related

reference:

v

“Audit

record

layout

for

SYSADMIN

events”

on

page

84

Audit

record

layout

for

VALIDATE

events

Table

11.

Audit

Record

Layout

for

VALIDATE

Events

timestamp=1998-06-24-08.42.11.527490;category=VALIDATE;audit

event=CHECK_GROUP_MEMBERSHIP;

event

correlator=2;event

status=-1092;

database=FOO;userid=boss;authid=BOSS;execution

id=newton;

application

id=*LOCAL.newton.980624124210;application

name=testapp;

auth

type=SERVER;

NAME

FORMAT

DESCRIPTION

Timestamp

CHAR(26)

Date

and

time

of

the

audit

event.

Chapter

3.

Auditing

DB2

UDB

activities

85

Table

11.

Audit

Record

Layout

for

VALIDATE

Events

(continued)

timestamp=1998-06-24-08.42.11.527490;category=VALIDATE;audit

event=CHECK_GROUP_MEMBERSHIP;

event

correlator=2;event

status=-1092;

database=FOO;userid=boss;authid=BOSS;execution

id=newton;

application

id=*LOCAL.newton.980624124210;application

name=testapp;

auth

type=SERVER;

NAME

FORMAT

DESCRIPTION

Category

CHAR(8)

Category

of

audit

event.

Possible

values

are:

VALIDATE

Audit

Event

VARCHAR(32)

Specific

Audit

Event.

Possible

values

include:

GET_GROUPS,

GET_USERID,

AUTHENTICATE_PASSWORD,

and

VALIDATE_USER.

Event

Correlator

INTEGER

Correlation

identifier

for

the

operation

being

audited.

Can

be

used

to

identify

what

audit

records

are

associated

with

a

single

event.

Event

Status

INTEGER

Status

of

audit

event,

represented

by

an

SQLCODE

where

Successful

event

>

=

0

Failed

event

<

0

Database

Name

CHAR(8)

Name

of

the

database

for

which

the

event

was

generated.

Blank

if

this

was

an

instance

level

audit

event.

User

ID

VARCHAR(1024)

User

ID

at

time

of

audit

event.

Authorization

ID

VARCHAR(128)

Authorization

ID

at

time

of

audit

event.

Execution

ID

VARCHAR(1024)

Execution

ID

in

use

at

the

time

of

the

audit

event.

Origin

Node

Number

SMALLINT

Node

number

at

which

the

audit

event

occurred.

Coordinator

Node

Number

SMALLINT

Node

number

of

the

coordinator

node.

Application

ID

VARCHAR

(255)

Application

ID

in

use

at

the

time

the

audit

event

occurred.

Application

Name

VARCHAR

(1024)

Application

name

in

use

at

the

time

the

audit

event

occurred.

Authentication

Type

VARCHAR

(32)

Authentication

type

at

the

time

of

the

audit

event.

Package

Schema

VARCHAR

(128)

Schema

of

the

package

in

use

at

the

time

of

the

audit

event.

Package

Name

VARCHAR

(128)

Name

of

package

in

use

at

the

time

the

audit

event

occurred.

Package

Section

Number

SMALLINT

Section

number

in

package

being

used

at

the

time

the

audit

event

occurred.

Package

Version

VARCHAR

(64)

Version

of

the

package

in

use

at

the

time

the

audit

event

occurred.

Plug-in

Name

VARCHAR(32)

The

name

of

the

plug-in

in

use

at

the

time

the

audit

event

occurred.

Related

concepts:

v

“Audit

facility

record

layouts

(introduction)”

on

page

72

86

Common

Criteria

Certification:

Administration

and

User

Documentation

Audit

record

layout

for

CONTEXT

events

Table

12.

Audit

Record

Layout

for

CONTEXT

Events

timestamp=1998-06-24-08.42.41.476840;category=CONTEXT;audit

event=EXECUTE_IMMEDIATE;

event

correlator=3;

database=FOO;userid=boss;authid=BOSS;

application

id=*LOCAL.newton.980624124210;application

name=testapp;

package

schema=NULLID;package

name=SQLC28A1;

package

section=203;text=create

table

audit(c1

char(10),

c2

integer);

NAME

FORMAT

DESCRIPTION

Timestamp

CHAR(26)

Date

and

time

of

the

audit

event.

Category

CHAR(8)

Category

of

audit

event.

Possible

values

are:

CONTEXT

Audit

Event

VARCHAR(32)

Specific

Audit

Event.

Possible

values

include:

Those

shown

in

the

list

following

this

table.

Event

Correlator

INTEGER

Correlation

identifier

for

the

operation

being

audited.

Can

be

used

to

identify

what

audit

records

are

associated

with

a

single

event.

Database

Name

CHAR(8)

Name

of

the

database

for

which

the

event

was

generated.

Blank

if

this

was

an

instance

level

audit

event.

User

ID

VARCHAR(1024)

User

ID

at

time

of

audit

event.

Authorization

ID

VARCHAR(128)

Authorization

ID

at

time

of

audit

event.

Origin

Node

Number

SMALLINT

Node

number

at

which

the

audit

event

occurred.

Coordinator

Node

Number

SMALLINT

Node

number

of

the

coordinator

node.

Application

ID

VARCHAR

(255)

Application

ID

in

use

at

the

time

the

audit

event

occurred.

Application

Name

VARCHAR

(1024)

Application

name

in

use

at

the

time

the

audit

event

occurred.

Package

Schema

VARCHAR

(128)

Schema

of

the

package

in

use

at

the

time

of

the

audit

event.

Package

Name

VARCHAR

(128)

Name

of

package

in

use

at

the

time

the

audit

event

occurred.

Package

Section

Number

SMALLINT

Section

number

in

package

being

used

at

the

time

the

audit

event

occurred.

Statement

Text

(statement)

CLOB

(2M)

Text

of

the

SQL

statement,

if

applicable.

Null

if

no

SQL

statement

text

is

available.

Package

Version

VARCHAR

(64)

Version

of

the

package

in

use

at

the

time

the

audit

event

occurred.

Related

concepts:

v

“Audit

facility

record

layouts

(introduction)”

on

page

72

Related

reference:

v

“List

of

possible

CONTEXT

audit

events”

on

page

87

List

of

possible

CONTEXT

audit

events

The

following

is

the

list

of

possible

CONTEXT

audit

events:

Chapter

3.

Auditing

DB2

UDB

activities

87

Table

13.

CONTEXT

Audit

Events

CONNECT

CONNECT_RESET

ATTACH

DETACH

DARI_START

DARI_STOP

BACKUP_DB

RESTORE_DB

ROLLFORWARD_DB

OPEN_TABLESPACE_QUERY

FETCH_TABLESPACE

CLOSE_TABLESPACE_QUERY

OPEN_CONTAINER_QUERY

CLOSE_CONTAINER_QUERY

FETCH_CONTAINER_QUERY

SET_TABLESPACE_CONTAINERS

GET_TABLESPACE_STATISTIC

READ_ASYNC_LOG_RECORD

QUIESCE_TABLESPACE

LOAD_TABLE

UNLOAD_TABLE

UPDATE_RECOVERY_HISTORY

PRUNE_RECOVERY_HISTORY

SINGLE_TABLESPACE_QUERY

LOAD_MSG_FILE

UNQUIESCE_TABLESPACE

ENABLE_MULTIPAGE

DESCRIBE_DATABASE

DROP_DATABASE

CREATE_DATABASE

ADD_NODE

FORCE_APPLICATION

SET_APPL_PRIORITY

RESET_DB_CFG

GET_DB_CFG

GET_DFLT_CFG

UPDATE_DBM_CFG

SET_MONITOR

GET_SNAPSHOT

ESTIMATE_SNAPSHOT_SIZE

RESET_MONITOR

OPEN_HISTORY_FILE

CLOSE_HISTORY_FILE

FETCH_HISTORY_FILE

SET_RUNTIME_DEGREE

UPDATE_AUDIT

DBM_CFG_OPERATION

DISCOVER

OPEN_CURSOR

CLOSE_CURSOR

FETCH_CURSOR

EXECUTE

EXECUTE_IMMEDIATE

PREPARE

DESCRIBE

BIND

REBIND

RUNSTATS

REORG

REDISTRIBUTE

COMMIT

ROLLBACK

REQUEST_ROLLBACK

IMPLICIT_REBIND

Related

reference:

v

“Audit

record

layout

for

CONTEXT

events”

on

page

87

Audit

facility

tips

and

techniques

In

most

cases,

when

working

with

CHECKING

events,

the

object

type

field

in

the

audit

record

is

the

object

being

checked

to

see

if

the

required

privilege

or

authority

is

held

by

the

user

ID

attempting

to

access

the

object.

For

example,

if

a

user

attempts

to

ALTER

a

table

by

adding

a

column,

then

the

CHECKING

event

audit

record

will

indicate

the

access

attempted

was

“ALTER”

and

the

object

type

being

checked

was

“TABLE”

(note:

not

the

column

since

it

is

table

privileges

that

must

be

checked).

However,

when

the

checking

involves

verifying

if

a

database

authority

exists

to

allow

a

user

ID

to

CREATE

or

BIND

an

object,

or

to

delete

an

object,

then

although

there

is

a

check

against

the

database,

the

object

type

field

will

specify

the

object

being

created,

bound,

or

dropped

(rather

than

the

database

itself).

When

creating

an

index

on

a

table,

the

privilege

to

create

an

index

is

required,

therefore

the

CHECKING

event

audit

record

will

have

an

access

attempt

type

of

“index”

rather

than

“create”.

88

Common

Criteria

Certification:

Administration

and

User

Documentation

When

binding

a

package

that

already

exists,

then

an

OBJMAINT

event

audit

record

is

created

for

the

DROP

of

the

package

and

then

another

OBJMAINT

event

audit

record

is

created

for

the

CREATE

of

the

new

copy

of

the

package.

SQL

Data

Definition

Language

(DDL)

may

generate

OBJMAINT

or

SECMAINT

events

that

are

logged

as

successful.

It

is

possible

however

that

following

the

logging

of

the

event,

a

subsequent

error

may

cause

a

ROLLBACK

to

occur.

This

would

leave

the

object

as

not

created;

or

the

GRANT

or

REVOKE

actions

as

incomplete.

The

use

of

CONTEXT

events

becomes

important

in

this

case.

Such

CONTEXT

event

audit

records,

especially

the

statement

that

ends

the

event,

will

indicate

the

nature

of

the

completion

of

the

attempted

operation.

When

extracting

audit

records

in

a

delimited

ASCII

format

suitable

for

loading

into

a

DB2®

Universal

Database

(DB2

UDB)

relational

table,

you

should

be

clear

regarding

the

delimiter

used

within

the

statement

text

field.

This

can

be

done

when

extracting

the

delimited

ASCII

file

and

is

done

using:

db2audit

extract

delasc

delimiter

<load

delimiter>

The

load

delimiter

can

be

a

single

character

(such

as

")

or

a

four-byte

string

representing

a

hexadecimal

value

(such

as

“0xff”).

Examples

of

valid

commands

are:

db2audit

extract

delasc

db2audit

extract

delasc

delimiter

!

db2audit

extract

delasc

delimiter

0xff

If

you

have

used

anything

other

than

the

default

load

delimiter

(“″”)

as

the

delimiter

when

extracting,

you

should

use

the

MODIFIED

BY

option

on

the

LOAD

command.

A

partial

example

of

the

LOAD

command

with

“0xff”

used

as

the

delimiter

follows:

db2

load

from

context.del

of

del

modified

by

chardel0xff

replace

into

...

This

will

override

the

default

load

character

string

delimiter

which

is

“0xff”.

Related

concepts:

v

“Audit

facility

record

layouts

(introduction)”

on

page

72

Related

reference:

v

“Audit

facility

usage”

on

page

60

Controlling

DB2

UDB

audit

facility

activities

Procedure:

As

part

of

our

discussion

on

the

control

of

the

audit

facility

activities,

we

will

use

a

simple

scenario:

A

user,

newton,

runs

an

application

called

testapp

that

connects

and

creates

a

table.

This

same

application

is

used

in

each

of

the

examples

discussed

below.

We

begin

by

presenting

an

extreme

example:

You

have

determined

to

audit

all

successful

and

unsuccessful

audit

events,

therefore

you

will

configure

the

audit

facility

in

the

following

way:

db2audit

configure

scope

all

status

both

Chapter

3.

Auditing

DB2

UDB

activities

89

Note:

This

creates

audit

records

for

every

possible

auditable

event.

As

a

result,

many

records

are

written

to

the

audit

log

and

this

reduces

the

performance

of

your

database

manager.

This

extreme

case

is

shown

here

for

demonstration

purposes

only;

there

is

no

recommendation

that

you

configure

the

audit

facility

with

the

command

shown

above.

After

beginning

the

audit

facility

with

this

configuration

(using

“db2audit

start”),

and

then

running

the

testapp

application,

the

following

records

are

generated

and

placed

in

the

audit

log.

By

extracting

the

audit

records

from

the

log,

you

will

see

the

following

records

generated

for

the

two

actions

carried

out

by

the

application:

Action

Type

of

Record

Created

CONNECT

timestamp=1998-06-24-08.42.10.555345;category=CONTEXT;

audit

event=CONNECT;event

correlator=2;database=FOO;

application

id=*LOCAL.newton.980624124210;

application

name=testapp;

timestamp=1998-06-24-08.42.10.944374;category=VALIDATE;

audit

event=AUTHENTICATION;event

correlator=2;event

status=0;

database=FOO;userid=boss;authid=BOSS;execution

id=newton;

application

id=*LOCAL.newton.980624124210;application

name=testapp;

auth

type=SERVER;

timestamp=1998-06-24-08.42.11.527490;category=VALIDATE;

audit

event=CHECK_GROUP_MEMBERSHIP;event

correlator=2;

event

status=-1092;database=FOO;userid=boss;authid=BOSS;

execution

id=newton;application

id=*LOCAL.newton.980624124210;

application

name=testapp;auth

type=SERVER;

timestamp=1998-06-24-08.42.11.561187;category=VALIDATE;

audit

event=CHECK_GROUP_MEMBERSHIP;event

correlator=2;

event

status=-1092;database=FOO;userid=boss;authid=BOSS;

execution

id=newton;application

id=*LOCAL.newton.980624124210;

application

name=testapp;auth

type=SERVER;

timestamp=1998-06-24-08.42.11.594620;category=VALIDATE;

audit

event=CHECK_GROUP_MEMBERSHIP;event

correlator=2;

event

status=-1092;database=FOO;userid=boss;authid=BOSS;

execution

id=newton;application

id=*LOCAL.newton.980624124210;

application

name=testapp;auth

type=SERVER;

timestamp=1998-06-24-08.42.11.622984;category=CHECKING;

audit

event=CHECKING_OBJECT;event

correlator=2;event

status=0;

database=FOO;userid=boss;authid=BOSS;

application

id=*LOCAL.newton.980624124210;application

name=testapp;

object

name=FOO;object

type=DATABASE;access

approval

reason=DATABASE;

access

attempted=CONNECT;

timestamp=1998-06-24-08.42.11.801554;category=CONTEXT;

audit

event=COMMIT;event

correlator=2;database=FOO;userid=boss;

authid=BOSS;application

id=*LOCAL.newton.980624124210;

application

name=testapp;

timestamp=1998-06-24-08.42.41.450975;category=CHECKING;

audit

event=CHECKING_OBJECT;event

correlator=2;event

status=0;

database=FOO;userid=boss;authid=BOSS;

application

id=*LOCAL.newton.980624124210;application

name=testapp;

package

schema=NULLID;package

name=SQLC28A1;object

schema=NULLID;

object

name=SQLC28A1;object

type=PACKAGE;

access

approval

reason=OBJECT;access

attempted=EXECUTE;

90

Common

Criteria

Certification:

Administration

and

User

Documentation

CREATE

TABLE

timestamp=1998-06-24-08.42.41.476840;category=CONTEXT;

audit

event=EXECUTE_IMMEDIATE;event

correlator=3;database=FOO;

userid=boss;authid=BOSS;application

id=*LOCAL.newton.980624124210;

application

name=testapp;package

schema=NULLID;package

name=SQLC28A1;

package

section=203;text=create

table

audit(c1

char(10),

c2

integer);

timestamp=1998-06-24-08.42.41.539692;category=CHECKING;

audit

event=CHECKING_OBJECT;event

correlator=3;event

status=0;

database=FOO;userid=boss;authid=BOSS;

application

id=*LOCAL.newton.980624124210;application

name=testapp;

package

schema=NULLID;package

name=SQLC28A1;package

section=0;

object

schema=BOSS;object

name=AUDIT;object

type=TABLE;

access

approval

reason=DATABASE;access

attempted=CREATE;

timestamp=1998-06-24-08.42.41.570876;category=CHECKING;

audit

event=CHECKING_OBJECT;event

correlator=3;event

status=0;

database=FOO;userid=boss;authid=BOSS;

application

id=*LOCAL.newton.980624124210;application

name=testapp;

package

schema=NULLID;package

name=SQLC28A1;package

section=0;

object

name=BOSS;object

type=SCHEMA;access

approval

reason=DATABASE;

access

attempted=CREATE;

timestamp=1998-06-24-08.42.41.957524;category=OBJMAINT;

audit

event=CREATE_OBJECT;event

correlator=3;event

status=0;

database=FOO;userid=boss;authid=BOSS;

application

id=*LOCAL.newton.980624124210;application

name=testapp;

package

schema=NULLID;package

name=SQLC28A1;package

section=0;

object

schema=BOSS;object

name=AUDIT;object

type=TABLE;

timestamp=1998-06-24-08.42.42.018900;category=CONTEXT;

audit

event=COMMIT;event

correlator=3;database=FOO;userid=boss;

authid=BOSS;application

id=*LOCAL.newton.980624124210;

application

name=testapp;package

schema=NULLID;

package

name=SQLC28A1;

As

you

can

see,

there

are

a

significant

number

of

audit

records

generated

from

the

audit

configuration

that

requests

the

auditing

of

all

possible

audit

events

and

types.

In

most

cases,

you

will

configure

the

audit

facility

for

a

more

restricted

or

focused

view

of

the

events

you

wish

to

audit.

For

example,

you

may

want

to

only

audit

those

events

that

fail.

In

this

case,

the

audit

facility

could

be

configured

as

follows:

db2audit

configure

scope

audit,checking,objmaint,secmaint,sysadmin,

validate

status

failure

Note:

This

configuration

is

the

initial

audit

configuration

or

the

one

that

occurs

when

the

audit

configuration

is

reset.

After

beginning

the

audit

facility

with

this

configuration,

and

then

running

the

testapp

application,

the

following

records

are

generated

and

placed

in

the

audit

log.

(And

we

assume

testapp

has

not

been

run

before.)

By

extracting

the

audit

records

from

the

log,

you

will

see

the

following

records

generated

for

the

two

actions

carried

out

by

the

application:

Action

Type

of

Record

Created

CONNECT

timestamp=1998-06-24-08.42.11.527490;category=VALIDATE;

audit

event=CHECK_GROUP_MEMBERSHIP;event

correlator=2;

event

status=-1092;database=FOO;userid=boss;authid=BOSS;

execution

id=newton;application

id=*LOCAL.newton.980624124210;

application

name=testapp;auth

type=SERVER;

Chapter

3.

Auditing

DB2

UDB

activities

91

timestamp=1998-06-24-08.42.11.561187;category=VALIDATE;

audit

event=CHECK_GROUP_MEMBERSHIP;event

correlator=2;

event

status=-1092;database=FOO;userid=boss;authid=BOSS;

execution

id=newton;application

id=*LOCAL.newton.980624124210;

application

name=testapp;auth

type=SERVER;

timestamp=1998-06-24-08.42.11.594620;category=VALIDATE;

audit

event=CHECK_GROUP_MEMBERSHIP;event

correlator=2;

event

status=-1092;database=FOO;userid=boss;authid=BOSS;

execution

id=newton;application

id=*LOCAL.newton.980624124210;

application

name=testapp;auth

type=SERVER;

CREATE

TABLE

(none)

The

are

far

fewer

audit

records

generated

from

the

audit

configuration

that

requests

the

auditing

of

all

possible

audit

events

(except

CONTEXT)

but

only

when

the

event

attempt

fails.

By

changing

the

audit

configuration

you

can

control

the

type

and

nature

of

the

audit

records

that

are

generated.

The

audit

facility

can

allow

you

to

create

audit

records

when

those

you

want

to

audit

have

been

successfully

granted

privileges

on

an

object.

In

this

case,

you

could

configure

the

audit

facility

as

follows:

db2audit

configure

scope

checking

status

success

After

beginning

the

audit

facility

with

this

configuration,

and

then

running

the

testapp

application,

the

following

records

are

generated

and

placed

in

the

audit

log.

(And

we

assume

testapp

has

not

been

run

before.)

By

extracting

the

audit

records

from

the

log,

you

will

see

the

following

records

generated

for

the

two

actions

carried

out

by

the

application:

Action

Type

of

Record

Created

CONNECT

timestamp=1998-06-24-08.42.11.622984;category=CHECKING;

audit

event=CHECKING_OBJECT;event

correlator=2;event

status=0;

database=FOO;userid=boss;authid=BOSS;

timestamp=1998-06-24-08.42.41.450975;category=CHECKING;

audit

event=CHECKING_OBJECT;event

correlator=2;event

status=0;

database=FOO;userid=boss;authid=BOSS;

application

id=*LOCAL.newton.980624124210;application

name=testapp;

package

schema=NULLID;package

name=SQLC28A1;object

schema=NULLID;

object

name=SQLC28A1;object

type=PACKAGE;

access

approval

reason=OBJECT;access

attempted=EXECUTE;

timestamp=1998-06-24-08.42.41.539692;category=CHECKING;

audit

event=CHECKING_OBJECT;event

correlator=3;event

status=0;

database=FOO;userid=boss;authid=BOSS;

application

id=*LOCAL.newton.980624124210;application

name=testapp;

package

schema=NULLID;package

name=SQLC28A1;package

section=0;

object

schema=BOSS;object

name=AUDIT;object

type=TABLE;

access

approval

reason=DATABASE;access

attempted=CREATE;

timestamp=1998-06-24-08.42.41.570876;category=CHECKING;

audit

event=CHECKING_OBJECT;event

correlator=3;event

status=0;

database=FOO;userid=boss;authid=BOSS;

application

id=*LOCAL.newton.980624124210;application

name=testapp;

package

schema=NULLID;package

name=SQLC28A1;package

section=0;

object

name=BOSS;object

type=SCHEMA;access

approval

reason=DATABASE;

access

attempted=CREATE;

92

Common

Criteria

Certification:

Administration

and

User

Documentation

CREATE

TABLE

(none)

Related

concepts:

v

“Audit

facility

record

layouts

(introduction)”

on

page

72

Related

reference:

v

“Audit

facility

usage”

on

page

60

Chapter

3.

Auditing

DB2

UDB

activities

93

94

Common

Criteria

Certification:

Administration

and

User

Documentation

Chapter

4.

Naming

rules

General

naming

rules

.

.

.

.

.

.

.

.

.

.

. 95

DB2

UDB

object

naming

rules

.

.

.

.

.

.

.

. 95

User,

user

ID

and

group

naming

rules

.

.

.

.

. 97

Workstation

naming

rules

.

.

.

.

.

.

.

.

. 98

Naming

rules

in

an

NLS

environment

.

.

.

.

. 99

Naming

rules

in

a

Unicode

environment

.

.

.

. 100

General

naming

rules

Rules

exist

for

the

naming

of

all

objects

and

users.

Some

of

these

rules

are

specific

to

the

platform

you

are

working

on.

For

example,

there

is

a

rule

regarding

the

use

of

upper

and

lower

case

letters

in

a

name.

v

On

UNIX®

platforms,

names

must

be

in

lower

case.

v

On

Windows®

platforms,

names

can

be

in

upper,

lower,

and

mixed-case.

Unless

otherwise

specified,

all

names

can

include

the

following

characters:

v

A

through

Z.

When

used

in

most

names,

characters

A

through

Z

are

converted

from

lowercase

to

uppercase.

v

0

through

9.

v

!

%

(

)

{

}

.

–

^

~

_

(underscore)

@,

#,

$,

and

space.

v

\

(backslash).

Names

cannot

begin

with

a

number

or

with

the

underscore

character.

Do

not

use

SQL

reserved

words

to

name

tables,

views,

columns,

indexes,

or

authorization

IDs.

There

are

other

special

characters

that

might

work

separately

depending

on

your

operating

system

and

where

you

are

working

with

DB2®

Universal

Database

(DB2

UDB).

However,

while

they

might

work,

there

is

no

guarantee

that

they

will

work.

It

is

not

recommended

that

you

use

these

other

special

characters

when

naming

objects

in

your

database.

You

also

need

to

consider

object

naming

rules,

workstation

naming

rules,

naming

rules

in

an

NLS

environment,

and

naming

rules

in

a

Unicode

environment.

Related

concepts:

v

“DB2

UDB

object

naming

rules”

on

page

95

v

“Workstation

naming

rules”

on

page

98

v

“User,

user

ID

and

group

naming

rules”

on

page

97

v

“Federated

database

object

naming

rules”

in

the

Administration

Guide:

Implementation

DB2

UDB

object

naming

rules

All

objects

follow

the

General

Naming

Rules.

In

addition,

some

objects

have

additional

restrictions

shown

in

the

accompanying

tables.

©

Copyright

IBM

Corp.

1993-2004

95

Table

14.

Database,

database

alias

and

instance

naming

rules

Objects

Guidelines

v

Databases

v

Database

aliases

v

Instances

v

Database

names

must

be

unique

within

the

location

in

which

they

are

cataloged.

On

UNIX®-based

implementations

of

DB2®

Universal

Database

(DB2

UDB),

this

location

is

a

directory

path,

while

on

Windows®

implementations,

it

is

a

logical

disk.

v

Database

alias

names

must

be

unique

within

the

system

database

directory.

When

a

new

database

is

created,

the

alias

defaults

to

the

database

name.

As

a

result,

you

cannot

create

a

database

using

a

name

that

exists

as

a

database

alias,

even

if

there

is

no

database

with

that

name.

v

Database,

database

alias

and

instance

names

can

have

up

to

8

bytes.

v

On

Windows

NT®,

Windows

2000,

Windows

XP

and

Windows

Server

2003

systems,

no

instance

can

have

the

same

name

as

a

service

name.

Note:

To

avoid

potential

problems,

do

not

use

the

special

characters

@,

#,

and

$

in

a

database

name

if

you

intend

to

use

the

database

in

a

communications

environment.

Also,

because

these

characters

are

not

common

to

all

keyboards,

do

not

use

them

if

you

plan

to

use

the

database

in

another

language.

Table

15.

Database

object

naming

rules

Objects

Guidelines

v

Aliases

v

Buffer

pools

v

Columns

v

Event

monitors

v

Indexes

v

Methods

v

Nodegroups

v

Packages

v

Package

versions

v

Schemas

v

Stored

procedures

v

Tables

v

Table

spaces

v

Triggers

v

UDFs

v

UDTs

v

Views

Can

contain

up

to

18

bytes

except

for

the

following:

v

Table

names

(including

view

names,

summary

table

names,

alias

names,

and

correlation

names),

which

can

contain

up

to

128

bytes

v

Column

names

can

contain

up

to

30

bytes

v

Package

names,

which

can

contain

up

to

8

bytes

v

Schema

names,

which

can

contain

up

to

30

bytes

v

Package

versions,

which

can

contain

up

to

64

bytes

v

Object

names

can

also

include:

–

valid

accented

characters

(such

as

ö)

–

multibyte

characters,

except

multibyte

spaces

(for

multibyte

environments)

v

Package

names

and

package

versions

can

also

include

periods

(.),

hyphens

(-),

and

colons

(:).

Table

16.

Federated

database

object

naming

rules

Objects

Guidelines

v

Function

mappings

v

Index

specifications

v

Nicknames

v

Servers

v

Type

mappings

v

User

mappings

v

Wrappers

v

Nicknames,

mappings,

index

specifications,

servers,

and

wrapper

names

cannot

exceed

128

bytes.

v

Server

and

nickname

options

and

option

settings

are

limited

to

255

bytes.

v

Names

for

federated

database

objects

can

also

include:

–

Valid

accented

letters

(such

as

ö)

–

Multibyte

characters,

except

multibyte

spaces

(for

multibyte

environments)

Delimited

identifiers

and

object

names:

96

Common

Criteria

Certification:

Administration

and

User

Documentation

Keywords

can

be

used.

If

a

keyword

is

used

in

a

context

where

it

could

also

be

interpreted

as

an

SQL

keyword,

it

must

be

specified

as

a

delimited

identifier.

Using

delimited

identifiers,

it

is

possible

to

create

an

object

that

violates

these

naming

rules;

however,

subsequent

use

of

the

object

could

result

in

errors.

For

example,

if

you

create

a

column

with

a

+

or

−

sign

included

in

the

name

and

you

subsequently

use

that

column

in

an

index,

you

will

experience

problems

when

you

attempt

to

reorganize

the

table.

Additional

schema

names

information:

v

User-defined

types

(UDTs)

cannot

have

schema

names

longer

than

8

bytes.

v

The

following

schema

names

are

reserved

words

and

must

not

be

used:

SYSCAT,

SYSFUN,

SYSIBM,

SYSSTAT.

v

To

avoid

potential

migration

problems

in

the

future,

do

not

use

schema

names

that

begin

with

SYS.

The

database

manager

will

not

allow

you

to

create

triggers,

user-defined

types

or

user-defined

functions

using

a

schema

name

beginning

with

SYS.

v

It

is

recommended

that

you

not

use

SESSION

as

a

schema

name.

Declared

temporary

tables

must

be

qualified

by

SESSION.

It

is

therefore

possible

to

have

an

application

declare

a

temporary

table

with

a

name

identical

to

that

of

a

persistent

table,

in

which

case

the

application

logic

can

become

overly

complicated.

Avoid

the

use

of

the

schema

SESSION,

except

when

dealing

with

declared

temporary

tables.

Related

concepts:

v

“General

naming

rules”

on

page

95

User,

user

ID

and

group

naming

rules

Table

17.

User,

user

ID

and

group

naming

rules

Objects

Guidelines

v

Group

names

v

User

names

v

User

IDs

v

Group

names

can

contain

up

to

30

characters.

v

User

IDs

on

Linux

and

UNIX®-based

systems

can

contain

up

to

8

characters.

v

User

names

on

Windows®

can

contain

up

to

30

characters.

Windows

NT®,

Windows

2000,

Windows

XP

and

Windows

Server

2003

currently

have

a

practical

limit

of

20

characters.

v

When

not

using

Client

authentication,

non-Windows

32-bit

clients

connecting

to

Windows

NT,

Windows

2000,

Windows

XP

and

Windows

Server

2003

with

user

names

longer

than

8

characters

are

supported

when

the

user

name

and

password

are

specified

explicitly.

v

Names

and

IDs

cannot:

–

Be

USERS,

ADMINS,

GUESTS,

PUBLIC,

LOCAL

or

any

SQL

reserved

word

–

Begin

with

IBM®,

SQL

or

SYS.

–

Include

accented

characters.

Chapter

4.

Naming

rules

97

Notes:

1.

Some

operating

systems

allow

case

sensitive

user

IDs

and

passwords.

You

should

check

your

operating

system

documentation

to

see

if

this

is

the

case.

2.

The

authorization

ID

returned

from

a

successful

CONNECT

or

ATTACH

is

truncated

to

8

characters.

An

ellipsis

(...)

is

appended

to

the

authorization

ID

and

the

SQLWARN

fields

contain

warnings

to

indicate

truncation.

3.

Trailing

blanks

from

user

IDs

and

passwords

are

removed.

Related

concepts:

v

“General

naming

rules”

on

page

95

v

“Federated

database

object

naming

rules”

in

the

Administration

Guide:

Implementation

Workstation

naming

rules

A

workstation

name

specifies

the

NetBIOS

name

for

a

database

server,

database

client,

or

DB2®

Universal

Database

(DB2

UDB)

Personal

Edition

that

resides

on

the

local

workstation.

This

name

is

stored

in

the

database

manager

configuration

file.

The

workstation

name

is

known

as

the

workstation

nname.

In

addition,

the

name

you

specify:

v

Can

contain

1

to

8

characters

v

Cannot

include

&,

#,

or

@

v

Must

be

unique

within

the

network

In

a

partitioned

database

system,

there

is

still

only

one

workstation

nname

that

represents

the

entire

partitioned

database

system,

but

each

node

has

its

own

derived

unique

NetBIOS

nname.

The

workstation

nname

that

represents

the

partitioned

database

system

is

stored

in

the

database

manager

configuration

file

for

the

database

partition

server

that

owns

the

instance.

Each

node’s

unique

nname

is

a

derived

combination

of

the

workstation

nname

and

the

node

number.

If

a

node

does

not

own

an

instance,

its

NetBIOS

nname

is

derived

as

follows:

1.

The

first

character

of

the

instance-owning

machine’s

workstation

nname

is

used

as

the

first

character

of

the

node’s

NetBIOS

nname.

2.

The

next

1

to

3

characters

represent

the

node

number.

The

range

is

from

1

to

999.

3.

The

remaining

characters

are

taken

from

the

instance-owning

machine’s

workstation

nname.

The

number

of

remaining

characters

depends

on

the

length

of

the

instance-owning

machine’s

workstation

nname.

This

number

can

be

from

0

to

4.

For

example:

Instance-Owning

Machine’s

Workstation

nname

Node

Number

Derived

Node

NetBIOS

nname

GEORGE

3

G3ORGE

A

7

A7

98

Common

Criteria

Certification:

Administration

and

User

Documentation

Instance-Owning

Machine’s

Workstation

nname

Node

Number

Derived

Node

NetBIOS

nname

B2

94

B942

N0076543

21

N216543

GEORGE5

1

G1RGE5

If

you

have

changed

the

default

workstation

nname

during

the

installation,

the

workstation

nname’s

last

4

characters

should

be

unique

across

the

NetBIOS

network

to

minimize

the

chance

of

deriving

a

conflicting

NetBIOS

nname.

Related

concepts:

v

“General

naming

rules”

on

page

95

Naming

rules

in

an

NLS

environment

The

basic

character

set

that

can

be

used

in

database

names

consists

of

the

single-byte

uppercase

and

lowercase

Latin

letters

(A...Z,

a...z),

the

Arabic

numerals

(0...9)

and

the

underscore

character

(_).

This

list

is

augmented

with

three

special

characters

(#,

@,

and

$)

to

provide

compatibility

with

host

database

products.

Use

special

characters

#,

@,

and

$

with

care

in

an

NLS

environment

because

they

are

not

included

in

the

NLS

host

(EBCDIC)

invariant

character

set.

Characters

from

the

extended

character

set

can

also

be

used,

depending

on

the

code

page

that

is

being

used.

If

you

are

using

the

database

in

a

multiple

code

page

environment,

you

must

ensure

that

all

code

pages

support

any

elements

from

the

extended

character

set

you

plan

to

use.

When

naming

database

objects

(such

as

tables

and

views),

program

labels,

host

variables,

cursors,

and

elements

from

the

extended

character

set

(for

example,

letters

with

diacritical

marks)

can

also

be

used.

Precisely

which

characters

are

available

depends

on

the

code

page

in

use.

Extended

Character

Set

Definition

for

DBCS

Identifiers:

In

DBCS

environments,

the

extended

character

set

consists

of

all

the

characters

in

the

basic

character

set,

plus

the

following:

v

All

double-byte

characters

in

each

DBCS

code

page,

except

the

double-byte

space,

are

valid

letters.

v

The

double-byte

space

is

a

special

character.

v

The

single-byte

characters

available

in

each

mixed

code

page

are

assigned

to

various

categories

as

follows:

Category

Valid

Code

Points

within

each

Mixed

Code

Page

Digits

x30-39

Letters

x23-24,

x40-5A,

x61-7A,

xA6-DF

(A6-DF

for

code

pages

932

and

942

only)

Special

Characters

All

other

valid

single-byte

character

code

points

Related

concepts:

v

“General

naming

rules”

on

page

95

v

“DB2

UDB

object

naming

rules”

on

page

95

Chapter

4.

Naming

rules

99

v

“Workstation

naming

rules”

on

page

98

Naming

rules

in

a

Unicode

environment

In

a

UCS-2

database,

all

identifiers

are

in

multibyte

UTF-8.

Therefore,

it

is

possible

to

use

any

UCS-2

character

in

identifiers

where

the

use

of

a

character

in

the

extended

character

set

(for

example,

an

accented

character,

or

a

multibyte

character)

is

allowed

by

DB2®

Universal

Database

(DB2

UDB).

Clients

can

enter

any

character

that

is

supported

by

their

environment,

and

all

the

characters

in

the

identifiers

will

be

converted

to

UTF-8

by

the

database

manager.

Two

points

must

be

taken

into

account

when

specifying

national

language

characters

in

identifiers

for

a

UCS-2

database:

v

Each

non-ASCII

character

requires

two

to

four

bytes.

Therefore,

an

n-byte

identifier

can

only

hold

somewhere

between

n/4

and

n

characters,

depending

on

the

ratio

of

ASCII

to

non-ASCII

characters.

If

you

have

only

one

or

two

non-ASCII

(for

example,

accented)

characters,

the

limit

is

closer

to

n

characters,

while

for

an

identifier

that

is

completely

non-ASCII

(for

example,

in

Japanese),

only

n/4

to

n/3

characters

can

be

used.

v

If

identifiers

are

to

be

entered

from

different

client

environments,

they

should

be

defined

using

the

common

subset

of

characters

available

to

those

clients.

For

example,

if

a

UCS-2

database

is

to

be

accessed

from

Latin-1,

Arabic,

and

Japanese

environments,

all

identifiers

should

realistically

be

limited

to

ASCII.

Related

concepts:

v

“General

naming

rules”

on

page

95

v

“DB2

UDB

object

naming

rules”

on

page

95

v

“Workstation

naming

rules”

on

page

98

100

Common

Criteria

Certification:

Administration

and

User

Documentation

Chapter

5.

Considerations

for

Creating

a

Database

System

Database

directories

and

files

.

.

.

.

.

.

.

. 101

Space

requirements

for

database

objects

.

.

.

. 103

Space

requirements

for

system

catalog

tables

.

.

. 104

Space

requirements

for

user

table

data

.

.

.

.

. 105

Space

requirements

for

long

field

data

.

.

.

.

. 106

Space

requirements

for

large

object

data

.

.

.

. 107

Space

requirements

for

indexes

.

.

.

.

.

.

. 108

Space

requirements

for

log

files

.

.

.

.

.

.

. 110

Table

space

design

.

.

.

.

.

.

.

.

.

.

.

. 111

System

managed

space

.

.

.

.

.

.

.

.

.

. 114

Database

managed

space

.

.

.

.

.

.

.

.

. 116

Comparison

of

SMS

and

DMS

table

spaces

.

.

. 117

Relationship

between

table

spaces

and

buffer

pools

118

Catalog

table

space

design

.

.

.

.

.

.

.

.

. 119

Database

directories

and

files

When

you

create

a

database,

information

about

the

database

including

default

information

is

stored

in

a

directory

hierarchy.

The

hierarchical

directory

structure

is

created

for

you

at

a

location

that

is

determined

by

the

information

you

provide

in

the

CREATE

DATABASE

command.

If

you

do

not

specify

the

location

of

the

directory

path

or

drive

when

you

create

the

database,

the

default

location

is

used.

It

is

recommended

that

you

explicitly

state

where

you

would

like

the

database

created.

In

the

directory

you

specify

in

the

CREATE

DATABASE

command,

a

subdirectory

that

uses

the

name

of

the

instance

is

created.

This

subdirectory

ensures

that

databases

created

in

different

instances

under

the

same

directory

do

not

use

the

same

path.

Below

the

instance-name

subdirectory,

a

subdirectory

named

NODE0000

is

created.

This

subdirectory

differentiates

partitions

in

a

logically

partitioned

database

environment.

Below

the

node-name

directory,

a

subdirectory

named

SQL00001

is

created.

This

name

of

this

subdirectory

uses

the

database

token

and

represents

the

database

being

created.

SQL00001

contains

objects

associated

with

the

first

database

created,

and

subsequent

databases

are

given

higher

numbers:

SQL00002,

and

so

on.

These

subdirectories

differentiate

databases

created

in

this

instance

on

the

directory

that

you

specified

in

the

CREATE

DATABASE

command.

The

directory

structure

appears

as

follows:

<your_directory>/<your_instance>/NODE0000/SQL00001/

The

database

directory

contains

the

following

files

that

are

created

as

part

of

the

CREATE

DATABASE

command.

v

The

files

SQLBP.1

and

SQLBP.2

contain

buffer

pool

information.

Each

file

has

a

duplicate

copy

to

provide

a

backup.

v

The

files

SQLSPCS.1

and

SQLSPCS.2

contain

table

space

information.

Each

file

has

a

duplicate

copy

to

provide

a

backup.

v

The

SQLDBCON

file

contains

database

configuration

information.

Do

not

edit

this

file.

To

change

configuration

parameters,

use

either

the

Control

Center

or

the

command-line

statements

UPDATE

DATABASE

CONFIGURATION

and

RESET

DATABASE

CONFIGURATION.

v

The

DB2RHIST.ASC

history

file

and

its

backup

DB2RHIST.BAK

contain

history

information

about

backups,

restores,

loading

of

tables,

reorganization

of

tables,

altering

of

a

table

space,

and

other

changes

to

a

database.

The

DB2TSCHNG.HIS

file

contains

a

history

of

table

space

changes

at

a

log-file

level.

For

each

log

file,

DB2TSCHG.HIS

contains

information

that

helps

to

©

Copyright

IBM

Corp.

1993-2004

101

identify

which

table

spaces

are

affected

by

the

log

file.

Table

space

recovery

uses

information

from

this

file

to

determine

which

log

files

to

process

during

table

space

recovery.

You

can

examine

the

contents

of

both

history

files

in

a

text

editor.

v

The

log

control

files,

SQLOGCTL.LFH

and

SQLOGMIR.LFH,

contain

information

about

the

active

logs.

Recovery

processing

uses

information

from

this

file

to

determine

how

far

back

in

the

logs

to

begin

recovery.

The

SQLOGDIR

subdirectory

contains

the

actual

log

files.

Note:

You

should

ensure

the

log

subdirectory

is

mapped

to

different

disks

than

those

used

for

your

data.

A

disk

problem

could

then

be

restricted

to

your

data

or

the

logs

but

not

both.

This

can

provide

a

substantial

performance

benefit

because

the

log

files

and

database

containers

do

not

compete

for

movement

of

the

same

disk

heads.

To

change

the

location

of

the

log

subdirectory,

change

the

newlogpath

database

configuration

parameter.

v

The

SQLINSLK

file

helps

to

ensure

that

a

database

is

used

by

only

one

instance

of

the

database

manager.

At

the

same

time

a

database

is

created,

a

detailed

deadlocks

event

monitor

is

also

created.

The

detailed

deadlocks

event

monitor

files

are

stored

in

the

database

directory

of

the

catalog

node.

When

the

event

monitor

reaches

its

maximum

number

of

files

to

output,

it

will

deactivate

and

a

message

is

written

to

the

notification

log.

This

prevents

the

event

monitor

from

consuming

too

much

disk

space.

Removing

output

files

that

are

no

longer

needed

will

allow

the

event

monitor

to

activate

again

on

the

next

database

activation.

Additional

information

for

SMS

database

directories

The

SQLT*

subdirectories

contain

the

default

System

Managed

Space

(SMS)

table

spaces

required

for

an

operational

database.

Three

default

table

spaces

are

created:

v

SQLT0000.0

subdirectory

contains

the

catalog

table

space

with

the

system

catalog

tables.

v

SQLT0001.0

subdirectory

contains

the

default

temporary

table

space.

v

SQLT0002.0

subdirectory

contains

the

default

user

data

table

space.

Each

subdirectory

or

container

has

a

file

created

in

it

called

SQLTAG.NAM.

This

file

marks

the

subdirectory

as

being

in

use

so

that

subsequent

table

space

creation

does

not

attempt

to

use

these

subdirectories.

In

addition,

a

file

called

SQL*.DAT

stores

information

about

each

table

that

the

subdirectory

or

container

contains.

The

asterisk

(*)

is

replaced

by

a

unique

set

of

digits

that

identifies

each

table.

For

each

SQL*.DAT

file

there

might

be

one

or

more

of

the

following

files,

depending

on

the

table

type,

the

reorganization

status

of

the

table,

or

whether

indexes,

LOB,

or

LONG

fields

exist

for

the

table:

v

SQL*.BKM

(contains

block

allocation

information

if

it

is

an

MDC

table)

v

SQL*.LF

(contains

LONG

VARCHAR

or

LONG

VARGRAPHIC

data)

v

SQL*.LB

(contains

BLOB,

CLOB,

or

DBCLOB

data)

v

SQL*.LBA

(contains

allocation

and

free

space

information

about

SQL*.LB

files)

v

SQL*.INX

(contains

index

table

data)

v

SQL*.IN1

(contains

index

table

data)

v

SQL*.DTR

(contains

temporary

data

for

a

reorganization

of

an

SQL*.DAT

file)

102

Common

Criteria

Certification:

Administration

and

User

Documentation

v

SQL*.LFR

(contains

temporary

data

for

a

reorganization

of

an

SQL*.LF

file)

v

SQL*.RLB

(contains

temporary

data

for

a

reorganization

of

an

SQL*.LB

file)

v

SQL*.RBA

(contains

temporary

data

for

a

reorganization

of

an

SQL*.LBA

file)

Related

concepts:

v

“Comparison

of

SMS

and

DMS

table

spaces”

on

page

117

v

“DMS

device

considerations”

in

the

Administration

Guide:

Performance

v

“SMS

table

spaces”

in

the

Administration

Guide:

Performance

v

“DMS

table

spaces”

in

the

Administration

Guide:

Performance

v

“Illustration

of

the

DMS

table-space

address

map”

in

the

Administration

Guide:

Performance

v

“Understanding

the

recovery

history

file”

in

the

Data

Recovery

and

High

Availability

Guide

and

Reference

Related

reference:

v

“CREATE

DATABASE”

on

page

252

Space

requirements

for

database

objects

Estimating

the

size

of

database

objects

is

an

imprecise

undertaking.

Overhead

caused

by

disk

fragmentation,

free

space,

and

the

use

of

variable

length

columns

makes

size

estimation

difficult,

because

there

is

such

a

wide

range

of

possibilities

for

column

types

and

row

lengths.

After

initially

estimating

your

database

size,

create

a

test

database

and

populate

it

with

representative

data.

From

the

Control

Center,

you

can

access

a

number

of

utilities

that

are

designed

to

assist

you

in

determining

the

size

requirements

of

various

database

objects:

v

You

can

select

an

object

and

then

use

the

″Estimate

Size″

utility.

This

utility

can

tell

you

the

current

size

of

an

existing

object,

such

as

a

table.

You

can

then

change

the

object,

and

the

utility

will

calculate

new

estimated

values

for

the

object.

The

utility

will

help

you

approximate

storage

requirements,

taking

future

growth

into

account.

It

gives

more

than

a

single

estimate

of

the

size

of

the

object.

It

also

provides

possible

size

ranges

for

the

object:

both

the

smallest

size,

based

on

current

values,

and

the

largest

possible

size.

v

You

can

determine

the

relationships

between

objects

by

using

the

″Show

Related″

window.

v

You

can

select

any

database

object

on

the

instance

and

request

″Generate

DDL″.

This

function

uses

the

db2look

utility

to

generate

data

definition

statements

for

the

database.

In

each

of

these

cases,

either

the

″Show

SQL″

or

the

″Show

Command″

button

is

available

to

you.

You

can

also

save

the

resulting

SQL

statements

or

commands

in

script

files

to

be

used

later.

All

of

these

utilities

have

online

help

to

assist

you.

Keep

these

utilities

in

mind

as

you

work

through

the

planning

of

your

physical

database

requirements.

When

estimating

the

size

of

a

database,

the

contribution

of

the

following

must

be

considered:

v

System

Catalog

Tables

v

User

Table

Data

v

Long

Field

Data

Chapter

5.

Considerations

for

Creating

a

Database

System

103

v

Large

Object

(LOB)

Data

v

Index

Space

v

Log

File

Space

v

Temporary

Work

Space

Space

requirements

related

to

the

following

are

not

discussed:

v

The

local

database

directory

file

v

The

system

database

directory

file

v

The

file

management

overhead

required

by

the

operating

system,

including:

–

file

block

size

–

directory

control

space

Related

concepts:

v

“Space

requirements

for

system

catalog

tables”

on

page

104

v

“Space

requirements

for

user

table

data”

on

page

105

v

“Space

requirements

for

long

field

data”

on

page

106

v

“Space

requirements

for

large

object

data”

on

page

107

v

“Space

requirements

for

indexes”

on

page

108

v

“Space

requirements

for

log

files”

on

page

110

v

“Space

requirements

for

temporary

tables”

in

the

Administration

Guide:

Planning

Related

reference:

v

“db2look

-

DB2

Statistics

and

DDL

Extraction

Tool

Command”

in

the

Command

Reference

Space

requirements

for

system

catalog

tables

System

catalog

tables

are

created

when

a

database

is

created.

The

system

tables

grow

as

database

objects

and

privileges

are

added

to

the

database.

Initially,

they

use

approximately

3.5

MB

of

disk

space.

The

amount

of

space

allocated

for

the

catalog

tables

depends

on

the

type

of

table

space,

and

the

extent

size

of

the

table

space

containing

the

catalog

tables.

For

example,

if

a

DMS

table

space

with

an

extent

size

of

32

is

used,

the

catalog

table

space

will

initially

be

allocated

20

MB

of

space.

Note:

For

databases

with

multiple

partitions,

the

catalog

tables

reside

only

on

the

partition

from

which

the

CREATE

DATABASE

command

was

issued.

Disk

space

for

the

catalog

tables

is

only

required

for

that

partition.

Related

concepts:

v

“Space

requirements

for

database

objects”

on

page

103

v

“Definition

of

system

catalog

tables”

on

page

136

104

Common

Criteria

Certification:

Administration

and

User

Documentation

Space

requirements

for

user

table

data

By

default,

table

data

is

stored

on

4

KB

pages.

Each

page

(regardless

of

page

size)

contains

68

bytes

of

overhead

for

the

database

manager.

This

leaves

4028

bytes

to

hold

user

data

(or

rows),

although

no

row

on

a

4

KB

page

can

exceed

4005

bytes

in

length.

A

row

will

not

span

multiple

pages.

You

can

have

a

maximum

of

500

columns

when

using

a

4

KB

page

size.

Table

data

pages

do

not

contain

the

data

for

columns

defined

with

LONG

VARCHAR,

LONG

VARGRAPHIC,

BLOB,

CLOB,

or

DBCLOB

data

types.

The

rows

in

a

table

data

page

do,

however,

contain

a

descriptor

for

these

columns.

Rows

are

usually

inserted

into

a

regular

table

in

first-fit

order.

The

file

is

searched

(using

a

free

space

map)

for

the

first

available

space

that

is

large

enough

to

hold

the

new

row.

When

a

row

is

updated,

it

is

updated

in

place,

unless

there

is

insufficient

space

left

on

the

page

to

contain

it.

If

this

is

the

case,

a

record

is

created

in

the

original

row

location

that

points

to

the

new

location

in

the

table

file

of

the

updated

row.

If

the

ALTER

TABLE

APPEND

ON

statement

is

invoked,

data

is

always

appended,

and

information

about

any

free

space

on

the

data

pages

is

not

kept.

If

the

table

has

a

clustering

index

defined

on

it,

DB2®

Universal

Database

(DB2

UDB)

will

attempt

to

physically

cluster

the

data

according

to

the

key

order

of

that

clustering

index.

When

a

row

is

inserted

into

the

table,

DB2

UDB

will

first

look

up

its

key

value

in

the

clustering

index.

If

the

key

value

is

found,

DB2

UDB

attempts

to

insert

the

record

on

the

data

page

pointed

to

by

that

key;

if

the

key

value

is

not

found,

the

next

higher

key

value

is

used,

so

that

the

record

is

inserted

on

the

page

containing

records

having

the

next

higher

key

value.

If

there

is

insufficient

space

on

the

“target”

page

in

the

table,

the

free

space

map

is

used

to

search

neighboring

pages

for

space.

Over

time,

as

space

on

the

data

pages

is

completely

used

up,

records

are

placed

further

and

further

from

the

“target”

page

in

the

table.

The

table

data

would

then

be

considered

unclustered,

and

a

table

reorganization

can

be

used

to

restore

clustered

order.

If

the

table

is

a

multidimensional

clustering

(MDC)

table,

DB2

UDB

will

guarantee

that

records

are

always

physically

clustered

along

one

or

more

defined

dimensions,

or

clustering

indexes.

When

an

MDC

table

is

defined

with

certain

dimensions,

a

block

index

is

created

for

each

of

the

dimensions,

and

a

composite

block

index

is

created

which

maps

cells

(unique

combinations

of

dimension

values)

to

blocks.

This

composite

block

index

is

used

to

determine

to

which

cell

a

particular

record

belongs,

and

exactly

which

blocks

or

extents

in

the

table

contains

records

belonging

to

that

cell.

As

a

result,

when

inserting

records,

DB2

UDB

searches

the

composite

block

index

for

the

list

of

blocks

containing

records

having

the

same

dimension

values,

and

limits

the

search

for

space

to

those

blocks

only.

If

the

cell

does

not

yet

exist,

or

if

there

is

insufficient

space

in

the

cell’s

existing

blocks,

then

another

block

is

assigned

to

the

cell

and

the

record

is

inserted

into

it.

A

free

space

map

is

still

used

within

blocks

to

quickly

find

available

space

in

the

blocks.

The

number

of

4

KB

pages

for

each

user

table

in

the

database

can

be

estimated

by

calculating:

ROUND

DOWN(4028/(average

row

size

+

10))

=

records_per_page

and

then

inserting

the

result

into:

(number_of_records/records_per_page)

*

1.1

=

number_of_pages

Chapter

5.

Considerations

for

Creating

a

Database

System

105

where

the

average

row

size

is

the

sum

of

the

average

column

sizes,

and

the

factor

of

″1.1″

is

for

overhead.

Note:

This

formula

only

provides

an

estimate.

Accuracy

of

the

estimate

is

reduced

if

the

record

length

varies

because

of

fragmentation

and

overflow

records.

You

also

have

the

option

to

create

buffer

pools

or

table

spaces

that

have

an

8

KB,

16

KB,

or

32

KB

page

size.

All

tables

created

within

a

table

space

of

a

particular

size

have

a

matching

page

size.

A

single

table

or

index

object

can

be

as

large

as

512

GB,

assuming

a

32

KB

page

size.

You

can

have

a

maximum

of

1012

columns

when

using

an

8

KB,

16

KB,

or

32

KB

page

size.

The

maximum

number

of

columns

is

500

for

a

4

KB

page

size.

Maximum

row

lengths

also

vary,

depending

on

page

size:

v

When

the

page

size

is

4

KB,

the

row

length

can

be

up

to

4005

bytes.

v

When

the

page

size

is

8

KB,

the

row

length

can

be

up

to

8101

bytes.

v

When

the

page

size

is

16

KB,

the

row

length

can

be

up

to

16

293

bytes.

v

When

the

page

size

is

32

KB,

the

row

length

can

be

up

to

32

677

bytes.

Having

a

larger

page

size

facilitates

a

reduction

in

the

number

of

levels

in

any

index.

If

you

are

working

with

OLTP

(online

transaction

processing)

applications,

which

perform

random

row

reads

and

writes,

a

smaller

page

size

is

better,

because

it

wastes

less

buffer

space

with

undesired

rows.

If

you

are

working

with

DSS

(decision

support

system)

applications,

which

access

large

numbers

of

consecutive

rows

at

a

time,

a

larger

page

size

is

better,

because

it

reduces

the

number

of

I/O

requests

required

to

read

a

specific

number

of

rows.

An

exception

occurs

when

the

row

size

is

smaller

than

the

page

size

divided

by

255.

In

such

a

case,

there

is

wasted

space

on

each

page.

(There

is

a

maximum

of

only

255

rows

per

page.)

To

reduce

this

wasted

space,

a

smaller

page

size

may

be

more

appropriate.

You

cannot

restore

a

backup

to

a

different

page

size.

You

cannot

import

IXF

data

files

that

represent

more

than

755

columns.

Declared

temporary

tables

can

only

be

created

in

their

own

″user

temporary″

table

space

type.

There

is

no

default

user

temporary

table

space.

Temporary

tables

cannot

have

LONG

data.

The

tables

are

dropped

implicitly

when

an

application

disconnects

from

the

database,

and

estimates

of

their

space

requirements

should

take

this

into

account.

Related

concepts:

v

“Space

requirements

for

database

objects”

on

page

103

Space

requirements

for

long

field

data

Long

field

data

is

stored

in

a

separate

table

object

that

is

structured

differently

than

the

storage

space

for

other

data

types.

Data

is

stored

in

32

KB

areas

that

are

broken

up

into

segments

whose

sizes

are

″powers

of

two″

times

512

bytes.

(Hence

these

segments

can

be

512

bytes,

1024

bytes,

2048

bytes,

and

so

on,

up

to

32

768

bytes.)

Long

field

data

types

(LONG

VARCHAR

or

LONG

VARGRAPHIC)

are

stored

in

a

way

that

enables

free

space

to

be

reclaimed

easily.

Allocation

and

free

space

information

is

stored

in

4

KB

allocation

pages,

which

appear

infrequently

throughout

the

object.

106

Common

Criteria

Certification:

Administration

and

User

Documentation

The

amount

of

unused

space

in

the

object

depends

on

the

size

of

the

long

field

data,

and

whether

this

size

is

relatively

constant

across

all

occurrences

of

the

data.

For

data

entries

larger

than

255

bytes,

this

unused

space

can

be

up

to

50

percent

of

the

size

of

the

long

field

data.

If

character

data

is

less

than

the

page

size,

and

it

fits

into

the

record

along

with

the

rest

of

the

data,

the

CHAR,

GRAPHIC,

VARCHAR,

or

VARGRAPHIC

data

types

should

be

used

instead

of

LONG

VARCHAR

or

LONG

VARGRAPHIC.

Related

concepts:

v

“Space

requirements

for

database

objects”

on

page

103

Space

requirements

for

large

object

data

Large

Object

(LOB)

data

is

stored

in

two

separate

table

objects

that

are

structured

differently

than

the

storage

space

for

other

data

types.

To

estimate

the

space

required

by

LOB

data,

you

need

to

consider

the

two

table

objects

used

to

store

data

defined

with

these

data

types:

v

LOB

Data

Objects

Data

is

stored

in

64

MB

areas

that

are

broken

up

into

segments

whose

sizes

are

″powers

of

two″

times

1024

bytes.

(Hence

these

segments

can

be

1024

bytes,

2048

bytes,

4096

bytes,

and

so

on,

up

to

64

MB.)

To

reduce

the

amount

of

disk

space

used

by

LOB

data,

you

can

specify

the

COMPACT

option

on

the

lob-options

clause

of

the

CREATE

TABLE

and

the

ALTER

TABLE

statements.

The

COMPACT

option

minimizes

the

amount

of

disk

space

required

by

allowing

the

LOB

data

to

be

split

into

smaller

segments.

This

process

does

not

involve

data

compression,

but

simply

uses

the

minimum

amount

of

space,

to

the

nearest

1

KB

boundary.

Using

the

COMPACT

option

may

result

in

reduced

performance

when

appending

to

LOB

values.

The

amount

of

free

space

contained

in

LOB

data

objects

is

influenced

by

the

amount

of

update

and

delete

activity,

as

well

as

the

size

of

the

LOB

values

being

inserted.

v

LOB

Allocation

Objects

Allocation

and

free

space

information

is

stored

in

4

KB

allocation

pages

that

are

separated

from

the

actual

data.

The

number

of

these

4

KB

pages

is

dependent

on

the

amount

of

data,

including

unused

space,

allocated

for

the

large

object

data.

The

overhead

is

calculated

as

follows:

one

4

KB

page

for

every

64

GB,

plus

one

4

KB

page

for

every

8

MB.

If

character

data

is

less

than

the

page

size,

and

it

fits

into

the

record

along

with

the

rest

of

the

data,

the

CHAR,

GRAPHIC,

VARCHAR,

or

VARGRAPHIC

data

types

should

be

used

instead

of

BLOB,

CLOB,

or

DBCLOB.

Related

concepts:

v

“Space

requirements

for

database

objects”

on

page

103

Related

reference:

v

“Large

objects

(LOBs)”

in

the

SQL

Reference,

Volume

1

Chapter

5.

Considerations

for

Creating

a

Database

System

107

Space

requirements

for

indexes

For

each

index,

the

space

needed

can

be

estimated

as:

(average

index

key

size

+

9)

*

number

of

rows

*

2

where:

v

The

″average

index

key

size″

is

the

byte

count

of

each

column

in

the

index

key.

(When

estimating

the

average

column

size

for

VARCHAR

and

VARGRAPHIC

columns,

use

an

average

of

the

current

data

size,

plus

two

bytes.

Do

not

use

the

maximum

declared

size.)

v

The

factor

of

″2″

is

for

overhead,

such

as

non-leaf

pages

and

free

space.

Notes:

1.

For

every

column

that

allows

NULLs,

add

one

extra

byte

for

the

null

indicator.

2.

For

block

indexes

created

internally

for

multidimensional

clustering

(MDC)

tables,

the

“number

of

rows”

would

be

replaced

by

the

“number

of

blocks”.

Temporary

space

is

required

when

creating

the

index.

The

maximum

amount

of

temporary

space

required

during

index

creation

can

be

estimated

as:

(average

index

key

size

+

9)

*

number

of

rows

*

3.2

where

the

factor

of

″3.2″

is

for

index

overhead,

and

space

required

for

sorting

during

index

creation.

Note:

In

the

case

of

non-unique

indexes,

only

five

bytes

are

required

to

store

duplicate

key

entries.

The

estimates

shown

above

assume

no

duplicates.

The

space

required

to

store

an

index

may

be

over-estimated

by

the

formula

shown

above.

The

following

two

formulas

can

be

used

to

estimate

the

number

of

leaf

pages

(the

second

provides

a

more

accurate

estimate).

The

accuracy

of

these

estimates

depends

largely

on

how

well

the

averages

reflect

the

actual

data.

Note:

For

SMS

table

spaces,

the

minimum

required

space

is

12

KB.

For

DMS

table

spaces,

the

minimum

is

an

extent.

v

A

rough

estimate

of

the

average

number

of

keys

per

leaf

page

is:

(.9

*

(U

-

(M*2)))

*

(D

+

1)

K

+

7

+

(5

*

D)

where:

–

U,

the

usable

space

on

a

page,

is

approximately

equal

to

the

page

size

minus

100.

For

a

page

size

of

4096,

U

is

3996.

–

M

=

U

/

(9

+

minimumKeySize)

–

D

=

average

number

of

duplicates

per

key

value

–

K

=

averageKeySize

Remember

that

minimumKeySize

and

averageKeysize

must

have

an

extra

byte

for

each

nullable

key

part,

and

an

extra

two

bytes

for

the

length

of

each

variable

length

key

part.

If

there

are

include

columns,

they

should

be

accounted

for

in

minimumKeySize

and

averageKeySize.

The

.9

can

be

replaced

by

any

(100

-

pctfree)/100

value,

if

a

percent

free

value

other

than

the

default

value

of

ten

percent

was

specified

during

index

creation.

108

Common

Criteria

Certification:

Administration

and

User

Documentation

v

A

more

accurate

estimate

of

the

average

number

of

keys

per

leaf

page

is:

L

=

number

of

leaf

pages

=

X

/

(avg

number

of

keys

on

leaf

page)

where

X

is

the

total

number

of

rows

in

the

table.

You

can

estimate

the

original

size

of

an

index

as:

(L

+

2L/(average

number

of

keys

on

leaf

page))

*

pagesize

For

DMS

table

spaces,

add

together

the

sizes

of

all

indexes

on

a

table,

and

round

up

to

a

multiple

of

the

extent

size

for

the

table

space

on

which

the

index

resides.

You

should

provide

additional

space

for

index

growth

due

to

INSERT/UPDATE

activity,

which

may

result

in

page

splits.

Use

the

following

calculations

to

obtain

a

more

accurate

estimate

of

the

original

index

size,

as

well

as

an

estimate

of

the

number

of

levels

in

the

index.

(This

may

be

of

particular

interest

if

include

columns

are

being

used

in

the

index

definition.)

The

average

number

of

keys

per

non-leaf

page

is

roughly:

(.9

*

(U

-

(M*2)))

*

(D

+

1)

K

+

13

+

(9

*

D)

where:

–

U,

the

usable

space

on

a

page,

is

approximately

equal

to

the

page

size

minus

100.

For

a

page

size

of

4096,

U

is

3996.

–

D

is

the

average

number

of

duplicates

per

key

value

on

non-leaf

pages

(this

will

be

much

smaller

than

on

leaf

pages,

and

you

may

want

to

simplify

the

calculation

by

setting

the

value

to

0).

–

M

=

U

/

(9

+

minimumKeySize

for

non-leaf

pages)

–

K

=

averageKeySize

for

non-leaf

pages

The

minimumKeySize

and

the

averageKeySize

for

non-leaf

pages

will

be

the

same

as

for

leaf

pages,

except

when

there

are

include

columns.

Include

columns

are

not

stored

on

non-leaf

pages.

You

should

not

replace

.9

with

(100

-

pctfree)/100,

unless

this

value

is

greater

than

.9,

because

a

maximum

of

10

percent

free

space

will

be

left

on

non-leaf

pages

during

index

creation.

The

number

of

non-leaf

pages

can

be

estimated

as

follows:

if

L

>

1

then

{P++;

Z++}

While

(Y

>

1)

{

P

=

P

+

Y

Y

=

Y

/

N

Z++

}

where:

–

P

is

the

number

of

pages

(0

initially).

–

L

is

the

number

of

leaf

pages.

–

N

is

the

number

of

keys

for

each

non-leaf

page.

–

Y

=

L

/

N

–

Z

is

the

number

of

levels

in

the

index

tree

(1

initially).

Total

number

of

pages

is:

T

=

(L

+

P

+

2)

*

1.0002

The

additional

0.02

percent

is

for

overhead,

including

space

map

pages.

The

amount

of

space

required

to

create

the

index

is

estimated

as:

Chapter

5.

Considerations

for

Creating

a

Database

System

109

T

*

pagesize

Related

concepts:

v

“Indexes”

in

the

SQL

Reference,

Volume

1

v

“Space

requirements

for

database

objects”

on

page

103

v

“Index

cleanup

and

maintenance”

in

the

Administration

Guide:

Performance

Space

requirements

for

log

files

You

will

require

32

KB

of

space

for

log

control

files.

You

will

also

need

at

least

enough

space

for

your

active

log

configuration,

which

you

can

calculate

as

(logprimary

+

logsecond)

*

(logfilsiz

+

2

)

*

4096

where:

v

logprimary

is

the

number

of

primary

log

files,

defined

in

the

database

configuration

file

v

logsecond

is

the

number

of

secondary

log

files,

defined

in

the

database

configuration

file;

in

this

calculation,

logsecond

cannot

be

set

to

-1.

(When

logsecond

is

set

to

-1,

you

are

requesting

an

infinite

active

log

space.)

v

logfilsiz

is

the

number

of

pages

in

each

log

file,

defined

in

the

database

configuration

file

v

2

is

the

number

of

header

pages

required

for

each

log

file

v

4096

is

the

number

of

bytes

in

one

page.

If

the

database

is

enabled

for

circular

logging,

the

result

of

this

formula

will

provide

a

sufficient

amount

of

disk

space.

If

the

database

is

enabled

for

roll-forward

recovery,

special

log

space

requirements

should

be

taken

into

consideration:

v

With

the

logretain

configuration

parameter

enabled,

the

log

files

will

be

archived

in

the

log

path

directory.

The

online

disk

space

will

eventually

fill

up,

unless

you

move

the

log

files

to

a

different

location.

v

With

the

userexit

configuration

parameter

enabled,

a

user

exit

program

moves

the

archived

log

files

to

a

different

location.

Extra

log

space

is

still

required

to

allow

for:

–

Online

archived

logs

that

are

waiting

to

be

moved

by

the

user

exit

program

–

New

log

files

being

formatted

for

future

use.

If

the

database

is

enabled

for

infinite

logging

(that

is,

you

set

logsecond

to

-1),

the

userexit

configuration

parameter

must

be

enabled,

so

you

will

have

the

same

disk

space

considerations.

DB2®

Universal

Database

(DB2

UDB)

will

keep

at

least

the

number

of

active

log

files

specified

by

logprimary

in

the

log

path,

so

you

should

not

use

the

value

of

-1

for

logsecond

in

the

above

formula.

Ensure

you

provide

extra

disk

space

to

allow

the

delay

caused

by

archiving

log

files.

If

you

are

mirroring

the

log

path,

you

will

need

to

double

the

estimated

log

file

space

requirements.

Related

concepts:

v

“Space

requirements

for

database

objects”

on

page

103

110

Common

Criteria

Certification:

Administration

and

User

Documentation

v

“Understanding

recovery

logs”

on

page

804

v

“Log

mirroring”

in

the

Data

Recovery

and

High

Availability

Guide

and

Reference

Related

reference:

v

“logfilsiz

-

Size

of

log

files

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“logprimary

-

Number

of

primary

log

files

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“logsecond

-

Number

of

secondary

log

files

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“mirrorlogpath

-

Mirror

log

path

configuration

parameter”

in

the

Administration

Guide:

Performance

Table

space

design

A

table

space

is

a

storage

structure

containing

tables,

indexes,

large

objects,

and

long

data.

Table

spaces

reside

in

database

partition

groups.

They

allow

you

to

assign

the

location

of

database

and

table

data

directly

onto

containers.

(A

container

can

be

a

directory

name,

a

device

name,

or

a

file

name.)

This

can

provide

improved

performance

and

more

flexible

configuration.

Since

table

spaces

reside

in

database

partition

groups,

the

table

space

selected

to

hold

a

table

defines

how

the

data

for

that

table

is

distributed

across

the

database

partitions

in

a

database

partition

group.

A

single

table

space

can

span

several

containers.

It

is

possible

for

multiple

containers

(from

one

or

more

table

spaces)

to

be

created

on

the

same

physical

disk

(or

drive).

For

improved

performance,

each

container

should

use

a

different

disk.

Figure

9

illustrates

the

relationship

between

tables

and

table

spaces

within

a

database,

and

the

containers

associated

with

that

database.

Database partition group

Database

SCHED
table space

HUMANRES
table space

DEPARTMENT
table

PROJECT
table

EMPLOYEE
table

Container
4

Container
0

Container
1

Container
2

Container
3

Figure

9.

Table

spaces

and

tables

in

a

database

Chapter

5.

Considerations

for

Creating

a

Database

System

111

The

EMPLOYEE

and

DEPARTMENT

tables

are

in

the

HUMANRES

table

space,

which

spans

containers

0,

1,

2

and

3.

The

PROJECT

table

is

in

the

SCHED

table

space

in

container

4.

This

example

shows

each

container

existing

on

a

separate

disk.

The

database

manager

attempts

to

balance

the

data

load

across

containers.

As

a

result,

all

containers

are

used

to

store

data.

The

number

of

pages

that

the

database

manager

writes

to

a

container

before

using

a

different

container

is

called

the

extent

size.

The

database

manager

does

not

always

start

storing

table

data

in

the

first

container.

Figure

10

shows

the

HUMANRES

table

space

with

an

extent

size

of

two

4

KB

pages,

and

four

containers,

each

with

a

small

number

of

allocated

extents.

The

DEPARTMENT

and

EMPLOYEE

tables

both

have

seven

pages,

and

span

all

four

containers.

A

database

must

contain

at

least

three

table

spaces:

v

One

catalog

table

space,

which

contains

all

of

the

system

catalog

tables

for

the

database.

This

table

space

is

called

SYSCATSPACE,

and

it

cannot

be

dropped.

IBMCATGROUP

is

the

default

database

partition

group

for

this

table

space.

v

One

or

more

user

table

spaces,

which

contain

all

user

defined

tables.

By

default,

one

table

space,

USERSPACE1,

is

created.

IBMDEFAULTGROUP

is

the

default

database

partition

group

for

this

table

space.

You

should

specify

a

table

space

name

when

you

create

a

table,

or

the

results

may

not

be

what

you

intend.

A

table’s

page

size

is

determined

either

by

row

size,

or

the

number

of

columns.

The

maximum

allowable

length

for

a

row

is

dependent

upon

the

page

size

of

the

table

space

in

which

the

table

is

created.

Possible

values

for

page

size

are

4

KB

(the

default),

8

KB,

16

KB,

and

32

KB.

You

can

use

a

table

space

with

one

page

size

for

the

base

table,

and

a

different

table

space

with

a

different

page

size

for

long

or

LOB

data.

(Recall

that

SMS

does

not

support

tables

that

span

table

spaces,

but

that

DMS

does.)

If

the

number

of

columns

or

the

row

size

exceeds

the

limits

for

a

table

space’s

page

size,

an

error

is

returned

(SQLSTATE

42997).

v

One

or

more

temporary

table

spaces,

which

contain

temporary

tables.

Temporary

table

spaces

can

be

system

temporary

table

spaces

or

user

temporary

table

spaces.

A

HUMANRES table space

DEPARTMENT DEPARTMENT

EMPLOYEE EMPLOYEEEMPLOYEE

Container 0 Container 1 Container 2 Container 3

Extent size

EMPLOYEE

DEPARTMENT

4 KB page

DEPARTMENT

Figure

10.

Containers

and

extents

in

a

table

space

112

Common

Criteria

Certification:

Administration

and

User

Documentation

database

must

have

at

least

one

system

temporary

table

space;

by

default,

one

system

temporary

table

space

called

TEMPSPACE1

is

created

at

database

creation

time.

IBMTEMPGROUP

is

the

default

database

partition

group

for

this

table

space.

User

temporary

table

spaces

are

not

created

by

default

at

database

creation

time.

If

a

database

uses

more

than

one

temporary

table

space

and

a

new

temporary

object

is

needed,

the

optimizer

will

choose

an

appropriate

page

size

for

this

object.

That

object

will

then

be

allocated

to

the

temporary

table

space

with

the

corresponding

page

size.

If

there

is

more

than

one

temporary

table

space

with

that

page

size,

then

the

table

space

will

be

chosen

in

a

round-robin

fashion.

In

most

circumstances,

it

is

not

recommended

to

have

more

than

one

temporary

table

space

of

any

one

page

size.

If

queries

are

running

against

tables

in

table

spaces

that

are

defined

with

a

page

size

larger

than

the

4

KB

default

(for

example,

an

ORDER

BY

on

1012

columns),

some

of

them

may

fail.

This

will

occur

if

there

are

no

temporary

table

spaces

defined

with

a

larger

page

size.

You

may

need

to

create

a

temporary

table

space

with

a

larger

page

size

(8

KB,

16

KB,

or

32

KB).

Any

DML

(Data

Manipulation

Language)

statement

could

fail

unless

there

exists

a

temporary

table

space

with

the

same

page

size

as

the

largest

page

size

in

the

user

table

space.

You

should

define

a

single

SMS

temporary

table

space

with

a

page

size

equal

to

the

page

size

used

in

the

majority

of

your

user

table

spaces.

This

should

be

adequate

for

typical

environments

and

workloads.

In

a

partitioned

database

environment,

the

catalog

node

will

contain

all

three

default

table

spaces,

and

the

other

database

partitions

will

each

contain

only

TEMPSPACE1

and

USERSPACE1.

There

are

two

types

of

table

space,

both

of

which

can

be

used

in

a

single

database:

v

System

managed

space,

in

which

the

operating

system’s

file

manager

controls

the

storage

space.

v

Database

managed

space,

in

which

the

database

manager

controls

the

storage

space.

Related

concepts:

v

“Table

spaces

and

other

storage

structures”

in

the

SQL

Reference,

Volume

1

v

“System

managed

space”

on

page

114

v

“Database

managed

space”

on

page

116

v

“Comparison

of

SMS

and

DMS

table

spaces”

on

page

117

v

“Table

space

disk

I/O”

in

the

Administration

Guide:

Planning

v

“Workload

considerations

in

table

space

design”

in

the

Administration

Guide:

Planning

v

“Extent

size”

in

the

Administration

Guide:

Planning

v

“Relationship

between

table

spaces

and

buffer

pools”

on

page

118

v

“Relationship

between

table

spaces

and

database

partition

groups”

in

the

Administration

Guide:

Planning

v

“Temporary

table

space

design”

in

the

Administration

Guide:

Planning

v

“Catalog

table

space

design”

on

page

119

Related

tasks:

v

“Creating

a

table

space”

on

page

137

Chapter

5.

Considerations

for

Creating

a

Database

System

113

v

“Optimizing

table

space

performance

when

data

is

on

RAID

devices”

in

the

Administration

Guide:

Planning

Related

reference:

v

“CREATE

TABLE”

on

page

591

v

“CREATE

TABLESPACE”

on

page

648

System

managed

space

In

an

SMS

(System

Managed

Space)

table

space,

the

operating

system’s

file

system

manager

allocates

and

manages

the

space

where

the

table

is

stored.

The

storage

model

typically

consists

of

many

files,

representing

table

objects,

stored

in

the

file

system

space.

The

user

decides

on

the

location

of

the

files,

DB2®

Universal

Database

(DB2

UDB)

controls

their

names,

and

the

file

system

is

responsible

for

managing

them.

By

controlling

the

amount

of

data

written

to

each

file,

the

database

manager

distributes

the

data

evenly

across

the

table

space

containers.

By

default,

the

initial

table

spaces

created

at

database

creation

time

are

SMS.

Each

table

has

at

least

one

SMS

physical

file

associated

with

it.

If

you

need

improved

insert

performance,

you

should

consider

enabling

multipage

file

allocation.

This

allows

the

system

to

allocate

or

extend

the

file

by

a

full

extent

instead

of

one

page

at

a

time.

For

performance

reasons,

if

you

will

be

storing

multidimensional

(MDC)

tables

in

your

SMS

table

space,

you

should

enable

multipage

file

allocation.

Starting

in

version

8.2,

when

you

create

a

database

(including

a

partitioned

database),

multipage

file

allocation

is

enabled

by

default.

However,

multipage

file

allocation

may

not

be

the

default

when

creating

a

new

database

if

you

have

turned

on

the

DB2_NO_MPFA_FOR_NEW_DB

registry

variable.

The

db2empfa

utility

is

used

to

enable

multipage

file

allocation

for

a

database.

In

a

partitioned

database

environment,

this

utility

must

be

run

on

each

database

partition.

Once

multipage

file

allocation

is

enabled,

it

cannot

be

disabled.

SMS

table

spaces

are

defined

using

the

MANAGED

BY

SYSTEM

option

on

the

CREATE

DATABASE

command,

or

on

the

CREATE

TABLESPACE

statement.

You

must

consider

two

key

factors

when

you

design

your

SMS

table

spaces:

v

Containers

for

the

table

space.

You

must

specify

the

number

of

containers

that

you

want

to

use

for

your

table

space.

It

is

very

important

to

identify

all

the

containers

you

want

to

use,

because

you

cannot

add

or

delete

containers

after

an

SMS

table

space

is

created.

In

a

partitioned

database

environment,

when

a

new

partition

is

added

to

the

database

partition

group

for

an

SMS

table

space,

the

ALTER

TABLESPACE

statement

can

be

used

to

add

containers

for

the

new

partition.

Each

container

used

for

an

SMS

table

space

identifies

an

absolute

or

relative

directory

name.

Each

of

these

directories

can

be

located

on

a

different

file

system

(or

physical

disk).

The

maximum

size

of

the

table

space

can

be

estimated

by:

number

of

containers

*

(maximum

file

system

size

supported

by

the

operating

system)

This

formula

assumes

that

there

is

a

distinct

file

system

mapped

to

each

container,

and

that

each

file

system

has

the

maximum

amount

of

space

available.

In

practice,

this

may

not

be

the

case,

and

the

maximum

table

space

size

may

be

much

smaller.

There

are

also

SQL

limits

on

the

size

of

database

objects,

which

may

affect

the

maximum

size

of

a

table

space.

114

Common

Criteria

Certification:

Administration

and

User

Documentation

Note:

Care

must

be

taken

when

defining

the

containers.

If

there

are

existing

files

or

directories

on

the

containers,

an

error

(SQL0298N)

is

returned.

v

Extent

size

for

the

table

space.

The

extent

size

can

only

be

specified

when

the

table

space

is

created.

Because

it

cannot

be

changed

later,

it

is

important

to

select

an

appropriate

value

for

the

extent

size.

If

you

do

not

specify

the

extent

size

when

creating

a

table

space,

the

database

manager

will

create

the

table

space

using

the

default

extent

size,

defined

by

the

dft_extent_sz

database

configuration

parameter.

This

configuration

parameter

is

initially

set

based

on

information

provided

when

the

database

is

created.

If

the

dft_extent_sz

parameter

is

not

specified

on

the

CREATE

DATABASE

command,

the

default

extent

size

will

be

set

to

32.

To

choose

appropriate

values

for

the

number

of

containers

and

the

extent

size

for

the

table

space,

you

must

understand:

v

The

limitation

that

your

operating

system

imposes

on

the

size

of

a

logical

file

system.

For

example,

some

operating

systems

have

a

2

GB

limit.

Therefore,

if

you

want

a

64

GB

table

object,

you

will

need

at

least

32

containers

on

this

type

of

system.

When

you

create

the

table

space,

you

can

specify

containers

that

reside

on

different

file

systems

and

as

a

result,

increase

the

amount

of

data

that

can

be

stored

in

the

database.

v

How

the

database

manager

manages

the

data

files

and

containers

associated

with

a

table

space.

The

first

table

data

file

(SQL00001.DAT)

is

created

in

the

first

container

specified

for

the

table

space,

and

this

file

is

allowed

to

grow

to

the

extent

size.

After

it

reaches

this

size,

the

database

manager

writes

data

to

SQL00001.DAT

in

the

next

container.

This

process

continues

until

all

of

the

containers

contain

SQL00001.DAT

files,

at

which

time

the

database

manager

returns

to

the

first

container.

This

process

(known

as

striping)

continues

through

the

container

directories

until

a

container

becomes

full

(SQL0289N),

or

no

more

space

can

be

allocated

from

the

operating

system

(disk

full

error).

Striping

is

also

used

for

index

(SQLnnnnn.INX),

long

field

(SQLnnnnn.LF),

and

LOB

(SQLnnnnn.LB

and

SQLnnnnn.LBA)

files.

Note:

The

SMS

table

space

is

full

as

soon

as

any

one

of

its

containers

is

full.

Thus,

it

is

important

to

have

the

same

amount

of

space

available

to

each

container.

To

help

distribute

data

across

the

containers

more

evenly,

the

database

manager

determines

which

container

to

use

first

by

taking

the

table

identifier

(SQL00001.DAT

in

the

above

example)

and

factoring

into

account

the

number

of

containers.

Containers

are

numbered

sequentially,

starting

at

0.

Related

concepts:

v

“Table

space

design”

on

page

111

v

“Database

managed

space”

on

page

116

v

“Comparison

of

SMS

and

DMS

table

spaces”

on

page

117

Related

reference:

v

“db2empfa

-

Enable

Multipage

File

Allocation

Command”

in

the

Command

Reference

Chapter

5.

Considerations

for

Creating

a

Database

System

115

Database

managed

space

In

a

DMS

(Database

Managed

Space)

table

space,

the

database

manager

controls

the

storage

space.

The

storage

model

consists

of

a

limited

number

of

devices

or

files

whose

space

is

managed

by

DB2®

Universal

Database

(DB2

UDB).

The

database

administrator

decides

which

devices

and

files

to

use,

and

DB2

UDB

manages

the

space

on

those

devices

and

files.

The

table

space

is

essentially

an

implementation

of

a

special

purpose

file

system

designed

to

best

meet

the

needs

of

the

database

manager.

A

DMS

table

space

containing

user

defined

tables

and

data

can

be

defined

as:

v

A

regular

table

space

to

store

any

table

data

and

optionally

index

data

v

A

large

table

space

to

store

long

field

or

LOB

data

or

index

data.

When

designing

your

DMS

table

spaces

and

containers,

you

should

consider

the

following:

v

The

database

manager

uses

striping

to

ensure

an

even

distribution

of

data

across

all

containers.

v

The

maximum

size

of

regular

table

spaces

is

64

GB

for

4

KB

pages;

128

GB

for

8

KB

pages;

256

GB

for

16

KB

pages;

and

512

GB

for

32

KB

pages.

The

maximum

size

of

large

table

spaces

is

2

TB.

v

Unlike

SMS

table

spaces,

the

containers

that

make

up

a

DMS

table

space

do

not

need

to

be

the

same

size;

however,

this

is

not

normally

recommended,

because

it

results

in

uneven

striping

across

the

containers,

and

sub-optimal

performance.

If

any

container

is

full,

DMS

table

spaces

use

available

free

space

from

other

containers.

v

Because

space

is

pre-allocated,

it

must

be

available

before

the

table

space

can

be

created.

When

using

device

containers,

the

device

must

also

exist

with

enough

space

for

the

definition

of

the

container.

Each

device

can

have

only

one

container

defined

on

it.

To

avoid

wasted

space,

the

size

of

the

device

and

the

size

of

the

container

should

be

equivalent.

If,

for

example,

the

device

is

allocated

with

5

000

pages,

and

the

device

container

is

defined

to

allocate

3

000

pages,

2

000

pages

on

the

device

will

not

be

usable.

v

By

default,

one

extent

in

every

container

is

reserved

for

overhead.

Only

full

extents

are

used,

so

for

optimal

space

management,

you

can

use

the

following

formula

to

determine

an

appropriate

size

to

use

when

allocating

a

container:

extent_size

*

(n

+

1)

where

extent_size

is

the

size

of

each

extent

in

the

table

space,

and

n

is

the

number

of

extents

that

you

want

to

store

in

the

container.

v

The

minimum

size

of

a

DMS

table

space

is

five

extents.

Attempting

to

create

a

table

space

smaller

than

five

extents

will

result

in

an

error

(SQL1422N).

–

Three

extents

in

the

table

space

are

reserved

for

overhead.

–

At

least

two

extents

are

required

to

store

any

user

table

data.

(These

extents

are

required

for

the

regular

data

for

one

table,

and

not

for

any

index,

long

field

or

large

object

data,

which

require

their

own

extents.)
v

Device

containers

must

use

logical

volumes

with

a

“character

special

interface,”

not

physical

volumes.

v

You

can

use

files

instead

of

devices

with

DMS

table

spaces.

No

operational

difference

exists

between

a

file

and

a

device;

however,

a

file

can

be

less

efficient

because

of

the

run-time

overhead

associated

with

the

file

system.

Files

are

useful

when:

116

Common

Criteria

Certification:

Administration

and

User

Documentation

–

Devices

are

not

directly

supported

–

A

device

is

not

available

–

Maximum

performance

is

not

required

–

You

do

not

want

to

set

up

devices.
v

If

your

workload

involves

LOBs

or

LONG

VARCHAR

data,

you

may

derive

performance

benefits

from

file

system

caching.

Note

that

LOBs

and

LONG

VARCHARs

are

not

buffered

by

DB2

UDB’s

buffer

pool.

v

Some

operating

systems

allow

you

to

have

physical

devices

greater

than

2

GB

in

size.

You

should

consider

partitioning

the

physical

device

into

multiple

logical

devices,

so

that

no

container

is

larger

than

the

size

allowed

by

the

operating

system.

Related

concepts:

v

“Table

space

design”

on

page

111

v

“System

managed

space”

on

page

114

v

“Comparison

of

SMS

and

DMS

table

spaces”

on

page

117

v

“Table

space

maps”

in

the

Administration

Guide:

Planning

v

“How

containers

are

added

and

extended

in

DMS

table

spaces”

in

the

Administration

Guide:

Planning

Comparison

of

SMS

and

DMS

table

spaces

There

are

a

number

of

trade-offs

to

consider

when

determining

which

type

of

table

space

you

should

use

to

store

your

data.

Advantages

of

an

SMS

Table

Space:

v

Space

is

not

allocated

by

the

system

until

it

is

required.

v

Creating

a

table

space

requires

less

initial

work,

because

you

do

not

have

to

predefine

the

containers.

Advantages

of

a

DMS

Table

Space:

v

The

size

of

a

table

space

can

be

increased

by

adding

or

extending

containers,

using

the

ALTER

TABLESPACE

statement.

Existing

data

can

be

automatically

rebalanced

across

the

new

set

of

containers

to

retain

optimal

I/O

efficiency.

v

A

table

can

be

split

across

multiple

table

spaces,

based

on

the

type

of

data

being

stored:

–

Long

field

and

LOB

data

–

Indexes

–

Regular

table

data

You

might

want

to

separate

your

table

data

for

performance

reasons,

or

to

increase

the

amount

of

data

stored

for

a

table.

For

example,

you

could

have

a

table

with

64

GB

of

regular

table

data,

64

GB

of

index

data

and

2

TB

of

long

data.

If

you

are

using

8

KB

pages,

the

table

data

and

the

index

data

can

be

as

much

as

128

GB.

If

you

are

using

16

KB

pages,

it

can

be

as

much

as

256

GB.

If

you

are

using

32

KB

pages,

the

table

data

and

the

index

data

can

be

as

much

as

512

GB.

v

The

location

of

the

data

on

the

disk

can

be

controlled,

if

this

is

allowed

by

the

operating

system.

v

If

all

table

data

is

in

a

single

table

space,

a

table

space

can

be

dropped

and

redefined

with

less

overhead

than

dropping

and

redefining

a

table.

Chapter

5.

Considerations

for

Creating

a

Database

System

117

v

In

general,

a

well-tuned

set

of

DMS

table

spaces

will

outperform

SMS

table

spaces.

Note:

On

the

Solaris™

Operating

Environment,

DMS

table

spaces

with

raw

devices

are

strongly

recommended

for

performance-critical

workloads.

In

general,

small

personal

databases

are

easiest

to

manage

with

SMS

table

spaces.

On

the

other

hand,

for

large,

growing

databases

you

will

probably

only

want

to

use

SMS

table

spaces

for

the

temporary

table

spaces

and

catalog

table

space,

and

separate

DMS

table

spaces,

with

multiple

containers,

for

each

table.

In

addition,

you

will

probably

want

to

store

long

field

data

and

indexes

on

their

own

table

spaces.

If

you

choose

to

use

DMS

table

spaces

with

device

containers,

you

must

be

willing

to

tune

and

administer

your

environment.

Related

concepts:

v

“Table

space

design”

on

page

111

v

“System

managed

space”

on

page

114

v

“Database

managed

space”

on

page

116

Relationship

between

table

spaces

and

buffer

pools

Each

table

space

is

associated

with

a

specific

buffer

pool.

The

default

buffer

pool

is

IBMDEFAULTBP.

If

another

buffer

pool

is

to

be

associated

with

a

table

space,

the

buffer

pool

must

exist

(it

is

defined

with

the

CREATE

BUFFERPOOL

statement),

it

must

have

the

same

page

size,

and

the

association

is

defined

when

the

table

space

is

created

(using

the

CREATE

TABLESPACE

statement).

The

association

between

the

table

space

and

the

buffer

pool

can

be

changed

using

the

ALTER

TABLESPACE

statement.

Having

more

than

one

buffer

pool

allows

you

to

configure

the

memory

used

by

the

database

to

improve

overall

performance.

For

example,

if

you

have

a

table

space

with

one

or

more

large

(larger

than

available

memory)

tables

that

are

accessed

randomly

by

users,

the

size

of

the

buffer

pool

can

be

limited,

because

caching

the

data

pages

might

not

be

beneficial.

The

table

space

for

an

online

transaction

application

might

be

associated

with

a

larger

buffer

pool,

so

that

the

data

pages

used

by

the

application

can

be

cached

longer,

resulting

in

faster

response

times.

Care

must

be

taken

in

configuring

new

buffer

pools.

Note:

If

you

have

determined

that

a

page

size

of

8

KB,

16

KB,

or

32

KB

is

required

by

your

database,

each

table

space

with

one

of

these

page

sizes

must

be

mapped

to

a

buffer

pool

with

the

same

page

size.

The

storage

required

for

all

the

buffer

pools

must

be

available

to

the

database

manager

when

the

database

is

started.

If

DB2®

Universal

Database

(DB2

UDB)

is

unable

to

obtain

the

required

storage,

the

database

manager

will

start

up

with

default

buffer

pools

(one

each

of

4

KB,

8

KB,

16

KB,

and

32

KB

page

sizes),

and

issue

a

warning.

In

a

partitioned

database

environment,

you

can

create

a

buffer

pool

of

the

same

size

for

all

partitions

in

the

database.

You

can

also

create

buffer

pools

of

different

sizes

on

different

partitions.

Related

concepts:

118

Common

Criteria

Certification:

Administration

and

User

Documentation

v

“Table

spaces

and

other

storage

structures”

in

the

SQL

Reference,

Volume

1

Related

reference:

v

“ALTER

BUFFERPOOL

statement”

in

the

SQL

Reference,

Volume

2

v

“ALTER

TABLESPACE”

on

page

557

v

“CREATE

BUFFERPOOL

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

TABLESPACE”

on

page

648

Catalog

table

space

design

An

SMS

table

space

is

recommended

for

database

catalogs,

for

the

following

reasons:

v

The

database

catalog

consists

of

many

tables

of

varying

sizes.

When

using

a

DMS

table

space,

a

minimum

of

two

extents

are

allocated

for

each

table

object.

Depending

on

the

extent

size

chosen,

a

significant

amount

of

allocated

and

unused

space

may

result.

When

using

a

DMS

table

space,

a

small

extent

size

(two

to

four

pages)

should

be

chosen;

otherwise,

an

SMS

table

space

should

be

used.

v

There

are

large

object

(LOB)

columns

in

the

catalog

tables.

LOB

data

is

not

kept

in

the

buffer

pool

with

other

data,

but

is

read

from

disk

each

time

it

is

needed.

Reading

LOBs

from

disk

reduces

performance.

Since

a

file

system

usually

has

its

own

cache,

using

an

SMS

table

space,

or

a

DMS

table

space

built

on

file

containers,

makes

avoidance

of

I/O

possible

if

the

LOB

has

previously

been

referenced.

Given

these

considerations,

an

SMS

table

space

is

a

somewhat

better

choice

for

the

catalogs.

Another

factor

to

consider

is

whether

you

will

need

to

enlarge

the

catalog

table

space

in

the

future.

While

some

platforms

have

support

for

enlarging

the

underlying

storage

for

SMS

containers,

and

while

you

can

use

redirected

restore

to

enlarge

an

SMS

table

space,

the

use

of

a

DMS

table

space

facilitates

the

addition

of

new

containers.

Related

concepts:

v

“Definition

of

system

catalog

tables”

on

page

136

v

“Table

space

design”

on

page

111

v

“System

managed

space”

on

page

114

v

“Database

managed

space”

on

page

116

Chapter

5.

Considerations

for

Creating

a

Database

System

119

120

Common

Criteria

Certification:

Administration

and

User

Documentation

Chapter

6.

Before

Creating

the

Database

Starting

DB2

UDB

on

UNIX

.

.

.

.

.

.

.

. 121

Starting

DB2

UDB

on

Windows

.

.

.

.

.

.

. 122

Grouping

objects

by

schema

.

.

.

.

.

.

.

. 122

Stopping

an

instance

on

UNIX

.

.

.

.

.

.

. 123

Stopping

an

instance

on

Windows

.

.

.

.

.

. 124

Instance

creation

.

.

.

.

.

.

.

.

.

.

.

. 125

Setting

the

DB2

UDB

environment

automatically

on

UNIX

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 127

Setting

the

DB2

UDB

environment

manually

on

UNIX

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 128

UNIX

details

when

creating

instances

.

.

.

.

. 128

Windows

details

when

creating

instances

.

.

.

. 129

License

management

.

.

.

.

.

.

.

.

.

.

. 130

Starting

DB2

UDB

on

UNIX

You

may

need

to

start

or

stop

DB2

Universal

Database™

(DB2

UDB)

during

normal

business

operations;

for

example,

you

must

start

an

instance

before

you

can

perform

the

following

tasks:

v

Connect

to

a

database

on

the

instance

v

Precompile

an

application

v

Bind

a

package

to

a

database

v

Access

host

databases.

Prerequisites:

To

start

a

DB2

UDB

instance

on

your

system:

1.

Log

in

with

a

user

ID

or

name

that

has

SYSADM,

SYSCTRL,

or

SYSMAINT

authority

on

the

instance;

or

log

in

as

the

instance

owner.

2.

Run

the

startup

script

as

follows:

.

INSTHOME/sqllib/db2profile

(for

Bourne

or

Korn

shell)

source

INSTHOME/sqllib/db2cshrc

(for

C

shell)

where

INSTHOME

is

the

home

directory

of

the

instance

you

want

to

use.

Procedure:

Use

one

of

these

two

methods

to

start

the

instance:

1.

To

start

the

instance

using

the

Control

Center:

1.

Expand

the

object

tree

until

you

see

the

Instances

folder.

2.

Right-click

the

instance

that

you

want

to

start,

and

select

start

from

the

pop-up

menu.

2.

To

start

the

instance

using

the

command

line,

enter:

db2start

Related

tasks:

v

“Stopping

an

instance

on

UNIX”

on

page

123

v

“Setting

the

current

instance”

in

the

Administration

Guide:

Implementation

v

“Starting

DB2

UDB

on

Windows”

on

page

122

©

Copyright

IBM

Corp.

1993-2004

121

Starting

DB2

UDB

on

Windows

You

may

need

to

start

or

stop

DB2

Universal

Database™

(DB2

UDB)

during

normal

business

operations;

for

example,

you

must

start

an

instance

before

you

can

perform

the

following

tasks:

v

Connect

to

a

database

on

the

instance

v

Precompile

an

application

v

Bind

a

package

to

a

database

v

Access

host

databases.

Prerequisites:

In

order

to

successfully

launch

DB2

UDB

as

a

service

from

db2start,

the

user

account

must

have

the

correct

privilege

as

defined

by

the

Windows

NT

operating

system

to

start

a

Windows

service.

The

user

account

can

be

a

member

of

the

Administrators,

Server

Operators,

or

Power

Users

group.

Procedure:

Use

one

of

these

two

methods

to

start

the

instance:

1.

To

start

the

instance

using

the

Control

Center:

1.

Expand

the

object

tree

until

you

see

the

Instances

folder.

2.

Right-click

the

instance

that

you

want

to

start,

and

select

start

from

the

pop-up

menu.

2.

To

start

the

instance

using

the

command

line,

enter:

db2start

The

db2start

command

will

launch

DB2

UDB

as

a

Windows

service.

DB2

UDB

on

Windows

can

still

be

run

as

a

process

by

specifying

the

″/D″

switch

when

invoking

db2start.

DB2

UDB

can

also

be

started

as

a

service

using

the

Control

Panel

or

″NET

START″

command.

When

running

in

a

partitioned

database

environment,

each

database

partition

server

is

started

as

a

Windows

service.

You

can

not

use

the

″/D″

switch

to

start

DB2

as

a

process

in

a

partitioned

database

environment.

Related

tasks:

v

“Starting

DB2

UDB

on

UNIX”

on

page

121

v

“Stopping

an

instance

on

UNIX”

on

page

123

v

“Stopping

an

instance

on

Windows”

on

page

124

Grouping

objects

by

schema

Database

object

names

may

be

made

up

of

a

single

identifier

or

they

may

be

schema-qualified

objects

made

up

of

two

identifiers.

The

schema,

or

high-order

part,

of

a

schema-qualified

object

provides

a

means

to

classify

or

group

objects

in

the

database.

When

an

object

such

as

a

table,

view,

alias,

distinct

type,

function,

index,

package

or

trigger

is

created,

it

is

assigned

to

a

schema.

This

assignment

is

done

either

explicitly

or

implicitly.

122

Common

Criteria

Certification:

Administration

and

User

Documentation

Explicit

use

of

the

schema

occurs

when

you

use

the

high-order

part

of

a

two-part

object

name

when

referring

to

that

object

in

a

statement.

For

example,

USER

A

issues

a

CREATE

TABLE

statement

in

schema

C

as

follows:

CREATE

TABLE

C.X

(COL1

INT)

Implicit

use

of

the

schema

occurs

when

you

do

not

use

the

high-order

part

of

a

two-part

object

name.

When

this

happens,

the

CURRENT

SCHEMA

special

register

is

used

to

identify

the

schema

name

used

to

complete

the

high-order

part

of

the

object

name.

The

initial

value

of

CURRENT

SCHEMA

is

the

authorization

ID

of

the

current

session

user.

If

you

wish

to

change

this

during

the

current

session,

you

can

use

the

SET

SCHEMA

statement

to

set

the

special

register

to

another

schema

name.

Some

objects

are

created

within

certain

schemas

and

stored

in

the

system

catalog

tables

when

the

database

is

created.

In

dynamic

SQL

statements,

a

schema

qualified

object

name

implicitly

uses

the

CURRENT

SCHEMA

special

register

value

as

the

qualifier

for

unqualified

object

name

references.

In

static

SQL

statements,

the

QUALIFIER

precompile/bind

option

implicitly

specifies

the

qualifier

for

unqualified

database

object

names.

Before

creating

your

own

objects,

you

need

to

consider

whether

you

want

to

create

them

in

your

own

schema

or

by

using

a

different

schema

that

logically

groups

the

objects.

If

you

are

creating

objects

that

will

be

shared,

using

a

different

schema

name

can

be

very

beneficial.

Related

concepts:

v

“Definition

of

system

catalog

tables”

on

page

136

Related

tasks:

v

“Creating

a

schema”

on

page

140

Related

reference:

v

“SET

SCHEMA”

on

page

902

v

“CURRENT

SCHEMA”

on

page

801

Stopping

an

instance

on

UNIX

You

may

need

to

stop

the

current

instance

of

the

database

manager.

Prerequisites:

To

stop

an

instance

on

your

system,

you

must

do

the

following:

1.

Log

in

or

attach

to

an

instance

with

a

user

ID

or

name

that

has

SYSADM,

SYSCTRL,

or

SYSMAINT

authority

on

the

instance;

or,

log

in

as

the

instance

owner.

2.

Display

all

applications

and

users

that

are

connected

to

the

specific

database

that

you

want

to

stop.

To

ensure

that

no

vital

or

critical

applications

are

running,

list

applications.

You

need

SYSADM,

SYSCTRL,

or

SYSMAINT

authority

for

this.

3.

Force

all

applications

and

users

off

the

database.

You

require

SYSADM

or

SYSCTRL

authority

to

force

users.

Chapter

6.

Before

Creating

the

Database

123

Restrictions:

The

db2stop

command

can

only

be

run

at

the

server.

No

database

connections

are

allowed

when

running

this

command;

however,

if

there

are

any

instance

attachments,

they

are

forced

off

before

the

instance

is

stopped.

Note:

If

command

line

processor

sessions

are

attached

to

an

instance,

you

must

run

the

terminate

command

to

end

each

session

before

running

the

db2stop

command.

The

db2stop

command

stops

the

instance

defined

by

the

DB2INSTANCE

environment

variable.

Procedure:

Use

one

of

these

two

methods

to

stop

the

instance:

1.

To

stop

the

instance

using

the

Control

Center:

1.

Expand

the

object

tree

until

you

find

the

Instances

folder.

2.

Click

each

instance

you

want

to

stop.

3.

Right-click

any

of

the

selected

instances,

and

select

stop

from

the

pop-up

menu.

4.

On

the

Confirm

stop

window,

click

OK.

2.

To

stop

the

instance

using

the

command

line,

enter:

db2stop

You

can

use

the

db2stop

command

to

stop,

or

drop,

individual

partitions

within

a

partitioned

database

environment.

When

working

in

a

partitioned

database

and

you

are

attempting

to

drop

a

logical

partition

using

db2stop

drop

nodenum

<0>

you

must

ensure

that

no

users

are

attempting

to

access

the

database.

If

they

are,

you

will

receive

an

error

message

SQL6030N.

Related

reference:

v

“db2stop

-

Stop

DB2

Command”

in

the

Command

Reference

v

“TERMINATE

Command”

in

the

Command

Reference

Stopping

an

instance

on

Windows

You

may

need

to

stop

the

current

instance

of

the

database

manager.

Prerequisites:

To

stop

an

instance

on

your

system,

you

must

do

the

following:

1.

The

user

account

stopping

the

DB2

Universal

Database™

(DB2

UDB)

service

must

have

the

correct

privilege

as

defined

by

the

Windows

operating

system.

The

user

account

can

be

a

member

of

the

Administrators,

Server

Operators,

or

Power

Users

group.

2.

Display

all

applications

and

users

that

are

connected

to

the

specific

database

that

you

want

to

stop.

To

ensure

that

no

vital

or

critical

applications

are

running,

list

applications.

You

need

SYSADM,

SYSCTRL,

or

SYSMAINT

authority

for

this.

3.

Force

all

applications

and

users

off

the

database.

You

require

SYSADM

or

SYSCTRL

authority

to

force

users.

124

Common

Criteria

Certification:

Administration

and

User

Documentation

Restrictions:

The

db2stop

command

can

only

be

run

at

the

server.

No

database

connections

are

allowed

when

running

this

command;

however,

if

there

are

any

instance

attachments,

they

are

forced

off

before

DB2

UDB

is

stopped.

Note:

If

command

line

processor

sessions

are

attached

to

an

instance,

you

must

run

the

terminate

command

to

end

each

session

before

running

the

db2stop

command.

The

db2stop

command

stops

the

instance

defined

by

the

DB2INSTANCE

environment

variable.

Procedure:

To

stop

an

instance

on

your

system,

use

one

of

the

following

methods:

v

db2stop

v

Stop

the

service

using

the

Control

Center

1.

Expand

the

object

tree

until

you

find

the

Instances

folder.

2.

Click

each

instance

you

want

to

stop.

3.

Right-click

any

of

the

selected

instances,

and

select

stop

from

the

pop-up

menu.

4.

On

the

Confirm

stop

window,

click

OK.

v

Stop

using

the

“NET

STOP”

command.

v

Stop

the

instance

from

within

an

application.

Recall

that

when

you

are

using

DB2

UDB

in

a

partitioned

database

environment,

each

database

partition

server

is

started

as

a

service.

Each

service

must

be

stopped.

Related

reference:

v

“db2stop

-

Stop

DB2

Command”

in

the

Command

Reference

Instance

creation

An

instance

is

a

logical

database

manager

environment

where

you

catalog

databases

and

set

configuration

parameters.

Depending

on

your

needs,

you

can

create

more

than

one

instance.

You

can

use

multiple

instances

to

do

the

following:

v

Use

one

instance

for

a

development

environment

and

another

instance

for

a

production

environment.

v

Tune

an

instance

for

a

particular

environment.

v

Restrict

access

to

sensitive

information.

v

Control

the

assignment

of

SYSADM,

SYSCTRL,

and

SYSMAINT

authority

for

each

instance.

v

Optimize

the

database

manager

configuration

for

each

instance.

v

Limit

the

impact

of

an

instance

failure.

In

the

event

of

an

instance

failure,

only

one

instance

is

affected.

Other

instances

can

continue

to

function

normally.

It

should

be

noted

that

multiple

instances

have

some

minor

disadvantages:

v

Additional

system

resources

(virtual

memory

and

disk

space)

are

required

for

each

instance.

v

More

administration

is

required

because

of

the

additional

instances

to

manage.

Chapter

6.

Before

Creating

the

Database

125

The

instance

directory

stores

all

information

that

pertains

to

a

database

instance.

You

cannot

change

the

location

of

the

instance

directory

once

it

is

created.

The

directory

contains:

v

The

database

manager

configuration

file

v

The

system

database

directory

v

The

node

directory

v

The

node

configuration

file

(db2nodes.cfg)

v

Any

other

files

that

contain

debugging

information,

such

as

the

exception

or

register

dump

or

the

call

stack

for

the

DB2®

Universal

Database

(DB2

UDB)

processes.

On

UNIX®

operating

systems,

the

instance

directory

is

located

in

the

INSTHOME/sqllib

directory,

where

INSTHOME

is

the

home

directory

of

the

instance

owner.

On

Windows®

operating

systems,

the

instance

directory

is

located

in

the

/sqllib

sub-directory,

in

the

directory

where

DB2

UDB

was

installed.

In

a

partitioned

database

system,

the

instance

directory

is

shared

between

all

database

partition

servers

belonging

to

the

instance.

Therefore,

the

instance

directory

must

be

created

on

a

network

share

drive

that

all

machines

in

the

instance

can

access.

As

part

of

your

installation

procedure,

you

create

an

initial

instance

of

DB2

UDB

called

“DB2”.

On

UNIX,

the

initial

instance

can

be

called

anything

you

want

within

the

naming

rules

guidelines.

The

instance

name

is

used

to

set

up

the

directory

structure.

To

support

the

immediate

use

of

this

instance,

the

following

are

set

during

installation:

v

The

environment

variable

DB2INSTANCE

is

set

to

“DB2”.

v

The

DB2

registry

variable

DB2INSTDEF

is

set

to

“DB2”.

On

UNIX,

the

default

can

be

called

anything

you

want

within

the

naming

rules

guidelines.

On

Windows,

the

instance

name

is

the

same

as

the

name

of

the

service,

so

it

should

not

conflict.

You

must

have

the

correct

authorization

to

create

a

service.

These

settings

establish

“DB2”

as

the

default

instance.

You

can

change

the

instance

that

is

used

by

default,

but

first

you

have

to

create

an

additional

instance.

Before

using

DB2

UDB,

the

database

environment

for

each

user

must

be

updated

so

that

it

can

access

an

instance

and

run

the

DB2

UDB

programs.

This

applies

to

all

users

(including

administrative

users).

On

UNIX

operating

systems,

sample

script

files

are

provided

to

help

you

set

the

database

environment.

The

files

are:

db2profile

for

Bourne

or

Korn

shell,

and

db2cshrc

for

C

shell.

These

scripts

are

located

in

the

sqllib

subdirectory

under

the

home

directory

of

the

instance

owner.

The

instance

owner

or

any

user

belonging

to

the

instance’s

SYSADM

group

can

customize

the

script

for

all

users

of

an

instance.

Alternatively,

the

script

can

be

copied

and

customized

for

each

user.

The

sample

script

contains

statements

to:

126

Common

Criteria

Certification:

Administration

and

User

Documentation

v

Update

a

user’s

PATH

by

adding

the

following

directories

to

the

existing

search

path:

the

bin,

adm,

and

misc

subdirectories

under

the

sqllib

subdirectory

of

the

instance

owner’s

home

directory.

v

Set

the

DB2INSTANCE

environment

variable

to

the

instance

name.

Related

concepts:

v

“Multiple

instances

on

a

UNIX

operating

system”

in

the

Administration

Guide:

Implementation

v

“Multiple

instances

on

a

Windows

operating

system”

in

the

Administration

Guide:

Implementation

Related

tasks:

v

“Add

an

instance”

in

the

Administration

Guide:

Implementation

v

“UNIX

details

when

creating

instances”

on

page

128

v

“Windows

details

when

creating

instances”

on

page

129

v

“Setting

the

current

instance”

in

the

Administration

Guide:

Implementation

v

“Auto-starting

instances”

in

the

Administration

Guide:

Implementation

v

“Running

multiple

instances

concurrently”

in

the

Administration

Guide:

Implementation

v

“Listing

instances”

in

the

Administration

Guide:

Implementation

v

“Creating

additional

instances”

in

the

Administration

Guide:

Implementation

Setting

the

DB2

UDB

environment

automatically

on

UNIX

By

default,

the

scripts

that

set

up

the

database

environment

when

you

create

an

instance

affect

the

user

environment

for

the

duration

of

the

current

session

only.

You

can

change

the

.profile

file

to

enable

it

to

run

the

db2profile

script

automatically

when

the

user

logs

on

using

the

Bourne

or

Korn

shell.

For

users

of

the

C

shell,

you

can

change

the

.login

file

to

enable

it

to

run

the

db2shrc

script

file.

Procedure:

Add

one

of

the

following

statements

to

the

.profile

or

.login

script

files:

v

For

users

who

share

one

version

of

the

script,

add:

.

INSTHOME/sqllib/db2profile

(for

Bourne

or

Korn

shell)

source

INSTHOME/sqllib/db2cshrc

(for

C

shell)

where

INSTHOME

is

the

home

directory

of

the

instance

that

you

wish

to

use.

v

For

users

who

have

a

customized

version

of

the

script

in

their

home

directory,

add:

.

USERHOME/db2profile

(for

Bourne

or

Korn

shell)

source

USERHOME/db2cshrc

(in

C

shell)

where

USERHOME

is

the

home

directory

of

the

user.

Related

tasks:

v

“Setting

the

DB2

UDB

environment

manually

on

UNIX”

on

page

128

Chapter

6.

Before

Creating

the

Database

127

Setting

the

DB2

UDB

environment

manually

on

UNIX

Procedure:

To

choose

which

instance

you

want

to

use,

enter

one

of

the

following

statements

at

a

command

prompt.

The

period

(.)

and

the

space

are

required.

v

For

users

who

share

one

version

of

the

script,

add:

.

INSTHOME/sqllib/db2profile

(for

Bourne

or

Korn

shell)

source

INSTHOME/sqllib/db2cshrc

(for

C

shell)

where

INSTHOME

is

the

home

directory

of

the

instance

that

you

wish

to

use.

v

For

users

who

have

a

customized

version

of

the

script

in

their

home

directory,

add:

.

USERHOME/db2profile

(for

Bourne

or

Korn

shell)

source

USERHOME/db2cshrc

(in

C

shell)

where

USERHOME

is

the

home

directory

of

the

user.

If

you

want

to

work

with

more

than

one

instance

at

the

same

time,

run

the

script

for

each

instance

that

you

want

to

use

in

separate

windows.

For

example,

assume

that

you

have

two

instances

called

test

and

prod,

and

their

home

directories

are

/u/test

and

/u/prod.

In

window

1:

v

In

Bourne

or

Korn

shell,

enter:

.

/u/test/sqllib/db2profile

v

In

C

shell,

enter:

source

/u/test/sqllib/db2cshrc

In

window

2:

v

In

Bourne

or

Korn

shell,

enter:

.

/u/prod/sqllib/db2profile

v

In

C

shell,

enter:

source

/u/prod/sqllib/db2cshrc

Use

window

1

to

work

with

the

test

instance

and

window

2

to

work

with

the

prod

instance.

Note:

Enter

the

which

db2

command

to

ensure

that

your

search

path

has

been

set

up

correctly.

This

command

returns

the

absolute

path

of

the

CLP

executable.

Verify

that

it

is

located

under

the

instance’s

sqllib

directory.

Related

tasks:

v

“Setting

the

DB2

UDB

environment

automatically

on

UNIX”

on

page

127

UNIX

details

when

creating

instances

When

working

with

UNIX

operating

systems,

the

db2icrt

command

has

the

following

optional

parameters:

v

–h

or

–?

This

parameter

is

used

to

display

a

help

menu

for

the

command.

128

Common

Criteria

Certification:

Administration

and

User

Documentation

v

–d

This

parameter

sets

the

debug

mode

for

use

during

problem

determination.

v

–a

AuthType

This

parameter

specifies

the

authentication

type

for

the

instance.

Valid

authentication

types

are

SERVER,

SERVER_ENCRYPT,

or

CLIENT.

If

not

specified,

the

default

is

SERVER,

if

a

DB2

Universal

Database™

(DB2

UDB)

server

is

installed.

Otherwise,

it

is

set

to

CLIENT.

Notes:

1.

The

authentication

type

of

the

instance

applies

to

all

databases

owned

by

the

instance.

2.

On

UNIX

operating

systems,

the

authentication

type

DCE

is

not

a

valid

choice.
v

–u

FencedID

This

parameter

is

the

user

under

which

the

fenced

user-defined

functions

(UDFs)

and

stored

procedures

will

execute.

This

is

not

required

if

you

install

the

DB2

UDB

client

or

the

DB2

UDB

Application

Development

Client.

For

other

DB2

UDB

products,

this

is

a

required

parameter.

Note:

FencedID

may

not

be

“root”

or

“bin”.

v

–p

PortName

This

parameter

specifies

the

TCP/IP

service

name

or

port

number

to

be

used.

This

value

will

then

be

set

in

the

instance’s

database

configuration

file

for

every

database

in

the

instance.

v

–s

InstType

Allows

different

types

of

instances

to

be

created.

Valid

instance

types

are:

ese,

wse,

client,

and

standalone.

Examples:

v

To

add

an

instance

for

a

DB2

UDB

server,

you

can

use

the

following

command:

db2icrt

-u

db2fenc1

db2inst1

v

If

you

installed

the

DB2

Connect

Enterprise

Edition

only,

you

can

use

the

instance

name

as

the

Fenced

ID

also:

db2icrt

-u

db2inst1

db2inst1

v

To

add

an

instance

for

a

DB2

UDB

client,

you

can

use

the

following

command:

db2icrt

db2inst1

–s

client

–u

fencedID

DB2

UDB

client

instances

are

created

when

you

want

a

workstation

to

connect

to

other

database

servers

and

you

have

no

need

for

a

local

database

on

that

workstation.

Related

reference:

v

“db2icrt

-

Create

Instance”

on

page

260

Windows

details

when

creating

instances

When

working

with

the

Windows

operating

systems,

the

db2icrt

command

has

the

following

optional

parameters:

v

–s

InstType

Allows

different

types

of

instances

to

be

created.

Valid

instance

types

are:

ese,

wse,

client,

and

standalone.

Chapter

6.

Before

Creating

the

Database

129

v

–p:InstProf_Path

This

is

an

optional

parameter

to

specify

a

different

instance

profile

path.

If

you

do

not

specify

the

path,

the

instance

directory

is

created

under

the

SQLLIB

directory,

and

given

the

shared

name

DB2

concatenated

to

the

instance

name.

Read

and

write

permissions

are

automatically

granted

to

everyone

in

the

domain.

Permissions

can

be

changed

to

restrict

access

to

the

directory.

If

you

do

specify

a

different

instance

profile

path,

you

must

create

a

shared

drive

or

directory.

This

will

allow

the

opportunity

for

everyone

in

the

domain

to

access

the

instance

directory

unless

permissions

have

been

changed.

v

–u:username,password

When

creating

a

partitioned

database

environment,

you

must

declare

the

domain/user

account

name

and

password

of

the

DB2

Universal

Database

service.

v

–r:base_port,end_port

This

is

an

optional

parameter

to

specify

the

TCP/IP

port

range

for

the

Fast

Communications

Manager

(FCM).

If

you

specify

the

TCP/IP

port

range,

you

must

ensure

that

the

port

range

is

available

on

all

machines

in

the

partition

database

system.

The

following

example

could

be

used,

on

DB2

Universal

Database

(DB2

UDB)

Enterprise

Server

Edition

for

Windows:

db2icrt

inst1

–s

ese

–p:\\machineA\db2mpp

–u:<user

account

name>,<password>

–r:9010,9015

Note:

If

you

change

the

service

account;

that

is,

if

you

no

longer

use

the

default

service

created

when

the

first

instance

was

created

during

product

installation,

then

you

must

grant

the

domain/user

account

name

used

to

create

the

instance

the

following

advanced

rights:

v

Act

as

a

part

of

the

operating

system

v

Create

a

token

object

v

Increase

quota

v

Log

on

as

a

service

v

Replace

a

process

level

token

v

Lock

page

in

memory

The

instance

requires

these

user

rights

to

access

the

shared

drive,

authenticate

the

user

account,

and

run

DB2

UDB

as

a

Windows

service.

The

“Lock

page

in

memory”

right

is

needed

for

Address

Windowing

Extensions

(AWE)

support.

Related

reference:

v

“db2icrt

-

Create

Instance”

on

page

260

License

management

The

management

of

licenses

for

your

DB2®

Universal

Database

(DB2

UDB)

products

is

done

primarily

through

the

License

Center

within

the

Control

Center

of

the

online

interface

to

the

product.

From

the

License

Center

you

can

check

the

license

information,

statistics,

registered

users,

and

current

users

for

each

of

the

installed

products.

130

Common

Criteria

Certification:

Administration

and

User

Documentation

When

the

Control

Center

cannot

be

used,

the

db2licm

Licensed

Management

Tool

command

performs

basic

license

functions.

With

this

command,

you

are

able

to

add,

remove,

list,

and

modify

licenses

and

policies

installed

on

your

local

system.

Related

reference:

v

“db2licm

-

License

Management

Tool

Command”

in

the

Command

Reference

Chapter

6.

Before

Creating

the

Database

131

132

Common

Criteria

Certification:

Administration

and

User

Documentation

Chapter

7.

Creating

a

Database

and

Database

Objects

Creating

a

database

.

.

.

.

.

.

.

.

.

.

. 133

Defining

initial

table

spaces

.

.

.

.

.

.

.

. 134

Definition

of

system

catalog

tables

.

.

.

.

.

. 136

Definition

of

the

database

recovery

log

.

.

.

.

. 136

Binding

utilities

to

the

database

.

.

.

.

.

.

. 137

Creating

a

table

space

.

.

.

.

.

.

.

.

.

. 137

Creating

a

schema

.

.

.

.

.

.

.

.

.

.

.

. 140

Setting

a

schema

.

.

.

.

.

.

.

.

.

.

.

. 141

Creating

and

populating

a

table

.

.

.

.

.

.

. 142

Large

object

(LOB)

column

considerations

.

.

.

. 144

Creating

a

view

.

.

.

.

.

.

.

.

.

.

.

. 146

Creating

an

index

.

.

.

.

.

.

.

.

.

.

.

. 148

Using

an

index

.

.

.

.

.

.

.

.

.

.

.

.

. 149

Options

on

the

CREATE

INDEX

statement

.

.

. 150

Creating

a

database

Prerequisites:

You

should

have

spent

sufficient

time

designing

the

contents,

layout,

potential

growth,

and

use

of

your

database

before

you

create

it.

Procedure:

When

you

create

a

database,

each

of

the

following

tasks

are

done

for

you:

v

Setting

up

of

all

the

system

catalog

tables

that

are

needed

by

the

database

v

Allocation

of

the

database

recovery

log

v

Creation

of

the

database

configuration

file

and

the

default

values

are

set

v

Binding

of

the

database

utilities

to

the

database

The

following

database

privileges

are

automatically

granted

to

PUBLIC:

CREATETAB,

BINDADD,

CONNECT,

IMPLICIT_SCHEMA,

and

SELECT

privilege

on

the

system

catalog

views.

To

create

a

database

using

the

Control

Center:

1.

Expand

the

object

tree

until

you

find

the

Databases

folder.

2.

Right-click

the

Databases

folder,

and

select

Create

—>

Standard

or

Create

—>

With

Automatic

Maintenance

from

the

pop-up

menu.

3.

Follow

the

steps

to

complete

this

task.

The

following

command

line

processor

command

creates

a

database

called

personl,

in

the

default

location,

with

the

associated

comment

″Personnel

DB

for

BSchiefer

Co″.

CREATE

DATABASE

personl

WITH

"Personnel

DB

for

BSchiefer

Co"

When

creating

a

database,

you

can

also

request

to

use

the

Configuration

Advisor

to

assist

the

configuration

of

the

database

instead

of

accepting

the

default

values

for

all

of

the

configuration

parameters.

You

can

do

this

by

using

the

AUTOCONFIGURE

option

on

the

CREATE

DATABASE

command:

CREATE

DATABASE

<database

name>

AUTOCONFIGURE

There

are

several

options

on

the

AUTOCONFIGURE

clause.

You

cannot

use

the

AUTOCONFIGURE

clause

when

creating

a

database

in

a

partitioned

environment.

©

Copyright

IBM

Corp.

1993-2004

133

At

the

same

time

a

database

is

created,

a

detailed

deadlocks

event

monitor

is

also

created.

As

with

any

monitor,

there

is

some

overhead

associated

with

this

event

monitor.

If

you

do

not

want

the

detailed

deadlocks

event

monitor,

then

the

event

monitor

can

be

dropped

using

the

command:

DROP

EVENT

MONITOR

db2detaildeadlock

To

limit

the

amount

of

disk

space

that

this

event

monitor

consumes,

the

event

monitor

deactivates,

and

a

message

is

written

to

the

administration

notification

log,

once

it

has

reached

its

maximum

number

of

output

files.

Removing

output

files

that

are

no

longer

needed

allows

the

event

monitor

to

activate

again

on

the

next

database

activation.

You

have

the

ability

to

create

a

database

in

a

different,

possibly

remote,

database

manager

instance.

In

this

type

of

environment

you

have

the

ability

to

perform

instance-level

administration

against

an

instance

other

than

your

default

instance,

including

remote

instances.

Related

concepts:

v

“What

to

record

in

a

database”

in

the

Administration

Guide:

Planning

v

“Multiple

instances

of

the

database

manager”

in

the

Administration

Guide:

Implementation

v

“Database

authorities”

on

page

24

v

“Additional

database

design

considerations”

in

the

Administration

Guide:

Planning

Related

reference:

v

“CREATE

DATABASE”

on

page

252

Defining

initial

table

spaces

When

a

database

is

created,

three

table

spaces

are

defined:

v

SYSCATSPACE

for

the

system

catalog

tables

v

TEMPSPACE1

for

system

temporary

tables

created

during

database

processing

v

USERSPACE1

for

user-defined

tables

and

indexes

Note:

When

you

first

create

a

database

no

user

temporary

table

space

is

created.

If

you

do

not

specify

any

table

space

parameters

with

the

CREATE

DATABASE

command,

the

database

manager

creates

these

table

spaces

using

system

managed

storage

(SMS)

directory

containers.

These

directory

containers

are

created

in

the

subdirectory

created

for

the

database.

The

extent

size

for

these

table

spaces

is

set

to

the

default.

Prerequisites:

The

database

must

be

created

and

you

must

have

the

authority

to

create

table

spaces.

Procedure:

134

Common

Criteria

Certification:

Administration

and

User

Documentation

To

define

initial

table

spaces

using

the

Control

Center:

1.

Expand

the

object

tree

until

you

see

the

Databases

folder.

2.

Right-click

the

Databases

folder,

and

select

Create

—>

Standard

or

Create

—>

With

Automatic

Maintenance

from

the

pop-up

menu.

3.

Follow

the

steps

to

complete

this

task.

To

define

initial

table

spaces

using

the

command

line,

enter:

CREATE

DATABASE

<name>

CATALOG

TABLESPACE

MANAGED

BY

SYSTEM

USING

(’<path>’)

EXTENTSIZE

<value>

PREFETCHSIZE

<value>

USER

TABLESPACE

MANAGED

BY

DATABASE

USING

(FILE’<path>’

5000,

FILE’<path>’

5000)

EXTENTSIZE

<value>

PREFETCHSIZE

<value>

TEMPORARY

TABLESPACE

MANAGED

BY

SYSTEM

USING

(’<path>’)

WITH

"<comment>"

If

you

do

not

want

to

use

the

default

definition

for

these

table

spaces,

you

may

specify

their

characteristics

on

the

CREATE

DATABASE

command.

For

example,

the

following

command

could

be

used

to

create

your

database

on

Windows:

CREATE

DATABASE

PERSONL

CATALOG

TABLESPACE

MANAGED

BY

SYSTEM

USING

(’d:\pcatalog’,’e:\pcatalog’)

EXTENTSIZE

16

PREFETCHSIZE

32

USER

TABLESPACE

MANAGED

BY

DATABASE

USING

(FILE’d:\db2data\personl’

5000,

FILE’d:\db2data\personl’

5000)

EXTENTSIZE

32

PREFETCHSIZE

64

TEMPORARY

TABLESPACE

MANAGED

BY

SYSTEM

USING

(’f:\db2temp\personl’)

WITH

"Personnel

DB

for

BSchiefer

Co"

In

this

example,

the

definition

for

each

of

the

initial

table

spaces

is

explicitly

provided.

You

only

need

to

specify

the

table

space

definitions

for

those

table

spaces

for

which

you

do

not

want

to

use

the

default

definition.

Note:

When

working

in

a

partitioned

database

environment,

you

cannot

create

or

assign

containers

to

specific

partitions.

First,

you

must

create

the

database

with

default

user

and

temporary

table

spaces.

Then

you

should

use

the

CREATE

TABLESPACE

statement

to

create

the

required

table

spaces.

Finally,

you

can

drop

the

default

table

spaces.

The

coding

of

the

MANAGED

BY

phrase

on

the

CREATE

DATABASE

command

follows

the

same

format

as

the

MANAGED

BY

phrase

on

the

CREATE

TABLESPACE

statement.

Related

concepts:

v

“Definition

of

system

catalog

tables”

on

page

136

v

“Table

space

design”

on

page

111

Related

tasks:

v

“Creating

a

table

space”

on

page

137

Related

reference:

Chapter

7.

Creating

a

Database

and

Database

Objects

135

v

“CREATE

DATABASE”

on

page

252

Definition

of

system

catalog

tables

A

set

of

system

catalog

tables

is

created

and

maintained

for

each

database.

These

tables

contain

information

about

the

definitions

of

the

database

objects

(for

example,

tables,

views,

indexes,

and

packages),

and

security

information

about

the

type

of

access

that

users

have

to

these

objects.

These

tables

are

stored

in

the

SYSCATSPACE

table

space.

These

tables

are

updated

during

the

operation

of

a

database;

for

example,

when

a

table

is

created.

You

cannot

explicitly

create

or

drop

these

tables,

but

you

can

query

and

view

their

content.

When

the

database

is

created,

in

addition

to

the

system

catalog

table

objects,

the

following

database

objects

are

defined

in

the

system

catalog:

v

A

set

of

routines

(functions

and

procedures)

in

the

schemas

SYSIBM,

SYSFUN,

and

SYSPROC.

v

A

set

of

read-only

views

for

the

system

catalog

tables

is

created

in

the

SYSCAT

schema.

v

A

set

of

updatable

catalog

views

is

created

in

the

SYSSTAT

schema.

These

updatable

views

allow

you

to

update

certain

statistical

information

to

investigate

the

performance

of

a

hypothetical

database,

or

to

update

statistics

without

using

the

RUNSTATS

utility.

After

your

database

has

been

created,

you

may

wish

to

limit

the

access

to

the

system

catalog

views.

Related

concepts:

v

“User-defined

functions”

in

the

SQL

Reference,

Volume

1

v

“Catalog

views”

in

the

SQL

Reference,

Volume

1

v

“Functions

overview”

in

the

SQL

Reference,

Volume

1

Related

tasks:

v

“Securing

the

system

catalog

view”

on

page

192

Related

reference:

v

“Functions”

in

the

SQL

Reference,

Volume

1

Definition

of

the

database

recovery

log

A

database

recovery

log

keeps

a

record

of

all

changes

made

to

a

database,

including

the

addition

of

new

tables

or

updates

to

existing

ones.

This

log

is

made

up

of

a

number

of

log

extents,

each

contained

in

a

separate

file

called

a

log

file.

The

database

recovery

log

can

be

used

to

ensure

that

a

failure

(for

example,

a

system

power

outage

or

application

error)

does

not

leave

the

database

in

an

inconsistent

state.

In

case

of

a

failure,

the

changes

already

made

but

not

committed

are

rolled

back,

and

all

committed

transactions,

which

may

not

have

been

physically

written

to

disk,

are

redone.

These

actions

ensure

the

integrity

of

the

database.

Related

concepts:

136

Common

Criteria

Certification:

Administration

and

User

Documentation

v

“Understanding

recovery

logs”

on

page

804

Binding

utilities

to

the

database

When

a

database

is

created,

the

database

manager

attempts

to

bind

the

utilities

in

db2ubind.lst

to

the

database.

This

file

is

stored

in

the

bnd

subdirectory

of

your

sqllib

directory.

Binding

a

utility

creates

a

package,

which

is

an

object

that

includes

all

the

information

needed

to

process

specific

SQL

statements

from

a

single

source

file.

Note:

If

you

wish

to

use

these

utilities

from

a

client,

you

must

bind

them

explicitly.

If

for

some

reason

you

need

to

bind

or

rebind

the

utilities

to

a

database,

issue

the

following

commands

using

the

command

line

processor:

connect

to

sample

bind

@db2ubind.lst

Note:

You

must

be

in

the

directory

where

these

files

reside

to

create

the

packages

in

the

sample

database.

The

bind

files

are

found

in

the

bnd

subdirectory

of

the

sqllib

directory.

In

this

example,

sample

is

the

name

of

the

database.

Related

tasks:

v

“Creating

a

database”

on

page

133

Related

reference:

v

“BIND”

on

page

232

Creating

a

table

space

Table

spaces

establish

the

relationship

between

the

physical

storage

devices

used

by

your

database

system

and

the

logical

containers

or

tables

used

to

store

data.

Prerequisites:

You

must

know

the

device

or

file

names

of

the

containers

that

you

will

reference

when

creating

your

table

spaces.

In

addition,

you

must

know

the

space

associated

with

each

device

or

file

name

that

you

will

allocate

to

the

table

space.

Procedure:

Creating

a

table

space

within

a

database

assigns

containers

to

the

table

space

and

records

its

definitions

and

attributes

in

the

database

system

catalog.

You

can

then

create

tables

within

this

table

space.

To

create

a

table

space

using

the

Control

Center:

1.

Expand

the

object

tree

until

you

see

the

Table

spaces

folder.

2.

Right-click

the

Table

spaces

folder,

and

select

Create

—>

Table

Space

Using

Wizard

from

the

pop-up

menu.

3.

Follow

the

steps

in

the

wizard

to

complete

your

task.

Chapter

7.

Creating

a

Database

and

Database

Objects

137

To

create

an

SMS

table

space

using

the

command

line,

enter:

CREATE

TABLESPACE

<NAME>

MANAGED

BY

SYSTEM

USING

(’<path>’)

To

create

a

DMS

table

space

using

the

command

line,

enter:

CREATE

TABLESPACE

<NAME>

MANAGED

BY

DATABASE

USING

(FILE’<path>’

<size>)

The

following

SQL

statement

creates

an

SMS

table

space

on

Windows

using

three

directories

on

three

separate

drives:

CREATE

TABLESPACE

RESOURCE

MANAGED

BY

SYSTEM

USING

(’d:\acc_tbsp’,

’e:\acc_tbsp’,

’f:\acc_tbsp’)

The

following

SQL

statement

creates

a

DMS

table

space

using

two

file

containers,

each

with

5,000

pages:

CREATE

TABLESPACE

RESOURCE

MANAGED

BY

DATABASE

USING

(FILE’d:\db2data\acc_tbsp’

5000,

FILE’e:\db2data\acc_tbsp’

5000)

In

the

previous

two

examples,

explicit

names

are

provided

for

the

containers.

However,

if

you

specify

relative

container

names,

the

container

is

created

in

the

subdirectory

created

for

the

database.

In

addition,

if

part

of

the

path

name

specified

does

not

exist,

the

database

manager

creates

it.

If

a

subdirectory

is

created

by

the

database

manager,

it

may

also

be

deleted

by

the

database

manager

when

the

table

space

is

dropped.

The

assumption

in

the

above

examples

is

that

the

table

spaces

are

not

associated

with

a

specific

database

partition

group.

The

default

database

partition

group

IBMDEFAULTGROUP

is

used

when

the

following

parameter

is

not

specified

in

the

statement:

IN

database_partition_group_name

The

following

SQL

statement

creates

a

DMS

table

space

on

a

UNIX-based

system

using

three

logical

volumes

of

10

000

pages

each,

and

specifies

their

I/O

characteristics:

CREATE

TABLESPACE

RESOURCE

MANAGED

BY

DATABASE

USING

(DEVICE

’/dev/rdblv6’

10000,

DEVICE

’/dev/rdblv7’

10000,

DEVICE

’/dev/rdblv8’

10000)

OVERHEAD

12.67

TRANSFERRATE

0.18

The

UNIX

devices

mentioned

in

this

SQL

statement

must

already

exist,

and

the

instance

owner

and

the

SYSADM

group

must

be

able

to

write

to

them.

The

following

example

creates

a

DMS

table

space

on

a

database

partition

group

called

ODDGROUP

in

a

UNIX

partitioned

database.

ODDGROUP

must

be

previously

created

with

a

CREATE

DATABASE

PARTITION

GROUP

statement.

In

this

case,

the

ODDGROUP

database

partition

group

is

assumed

to

be

made

up

of

138

Common

Criteria

Certification:

Administration

and

User

Documentation

database

partitions

numbered

1,

3,

and

5.

On

all

database

partitions,

use

the

device

/dev/hdisk0

for

10

000

4

KB

pages.

In

addition,

declare

a

device

for

each

database

partition

of

40

000

4

KB

pages.

CREATE

TABLESPACE

PLANS

IN

ODDGROUP

MANAGED

BY

DATABASE

USING

(DEVICE

’/dev/HDISK0’

10000,

DEVICE

’/dev/n1hd01’

40000)

ON

DBPARTITIONNUM

1

(DEVICE

’/dev/HDISK0’

10000,

DEVICE

’/dev/n3hd03’

40000)

ON

DBPARTITIONNUM

3

(DEVICE

’/dev/HDISK0’

10000,

DEVICE

’/dev/n5hd05’

40000)

ON

DBPARTITIONNUM

5

UNIX

devices

are

classified

into

two

categories:

character

serial

devices

and

block-structured

devices.

For

all

file-system

devices,

it

is

normal

to

have

a

corresponding

character

serial

device

(or

raw

device)

for

each

block

device

(or

cooked

device).

The

block-structured

devices

are

typically

designated

by

names

similar

to

“hd0”

or

“fd0”.

The

character

serial

devices

are

typically

designated

by

names

similar

to

“rhd0”,

“rfd0”,

or

“rmt0”.

These

character

serial

devices

have

faster

access

than

block

devices.

The

character

serial

device

names

should

be

used

on

the

CREATE

TABLESPACE

command

and

not

block

device

names.

The

overhead

and

transfer

rate

help

to

determine

the

best

access

path

to

use

when

the

SQL

statement

is

compiled.

The

current

defaults

are:

v

OVERHEAD

12.67

ms

v

TRANSFERRATE

0.18

ms

DB2

UDB

can

greatly

improve

the

performance

of

sequential

I/O

using

the

sequential

prefetch

facility,

which

uses

parallel

I/O.

You

can

also

create

a

table

space

that

uses

a

page

size

larger

than

the

default

4

KB

size.

The

following

SQL

statement

creates

an

SMS

table

space

on

a

UNIX-based

system

with

an

8

KB

page

size.

CREATE

TABLESPACE

SMS8K

PAGESIZE

8192

MANAGED

BY

SYSTEM

USING

(’FSMS_8K_1’)

BUFFERPOOL

BUFFPOOL8K

Notice

that

the

associated

buffer

pool

must

also

have

the

same

8

KB

page

size.

The

created

table

space

cannot

be

used

until

the

buffer

pool

it

references

is

activated.

You

can

use

the

ALTER

TABLESPACE

SQL

statement

to

add,

drop,

or

resize

containers

to

a

DMS

table

space

and

modify

the

PREFETCHSIZE,

OVERHEAD,

and

TRANSFERRATE

settings

for

a

table

space.

You

should

commit

the

transaction

issuing

the

table

space

statement

as

soon

as

possible

to

prevent

system

catalog

contention.

Note:

The

PREFETCHSIZE

should

be

a

multiple

of

the

EXTENTSIZE.

For

example

if

the

EXTENTSIZE

is

10,

the

PREFETCHSIZE

should

be

20

or

30.

You

should

use

the

following

equation

to

set

your

prefetch

size

manually

when

creating

a

table

space:

prefetch

size

=

(number

of

containers)

X

(number

of

physical

spindles

per

container)

X

extent

size

Chapter

7.

Creating

a

Database

and

Database

Objects

139

You

should

also

consider

letting

DB2

UDB

automatically

determine

the

prefetch

size.

Related

concepts:

v

“Table

space

design”

on

page

111

v

“System

managed

space”

on

page

114

v

“Database

managed

space”

on

page

116

v

“Sequential

prefetching”

in

the

Administration

Guide:

Performance

Related

tasks:

v

“Enabling

large

page

support

in

a

64-bit

environment

(AIX)”

in

the

Administration

Guide:

Planning

Related

reference:

v

“ALTER

TABLESPACE”

on

page

557

v

“CREATE

TABLESPACE”

on

page

648

Creating

a

schema

While

organizing

your

data

into

tables,

it

may

also

be

beneficial

to

group

tables

and

other

related

objects

together.

This

is

done

by

defining

a

schema

through

the

use

of

the

CREATE

SCHEMA

statement.

Information

about

the

schema

is

kept

in

the

system

catalog

tables

of

the

database

to

which

you

are

connected.

As

other

objects

are

created,

they

can

be

placed

within

this

schema.

Prerequisites:

The

database

tables

and

other

related

objects

that

are

to

be

grouped

together

must

exist.

Restrictions:

This

statement

must

be

issued

by

a

user

with

DBADM

authority.

Schemas

may

also

be

implicitly

created

when

a

user

has

IMPLICIT_SCHEMA

authority.

With

this

authority,

users

implicitly

create

a

schema

whenever

they

create

an

object

with

a

schema

name

that

does

not

already

exist.

If

users

do

not

have

IMPLICIT_SCHEMA

authority,

the

only

schema

they

can

create

is

one

that

has

the

same

name

as

their

own

authorization

ID.

Unqualified

access

to

objects

within

a

schema

is

not

allowed

since

the

schema

is

used

to

enforce

uniqueness

in

the

database.

This

becomes

clear

when

considering

the

possibility

that

two

users

could

create

two

tables

(or

other

objects)

with

the

same

name.

Without

a

schema

to

enforce

uniqueness,

ambiguity

would

exist

if

a

third

user

attempted

to

query

the

table.

It

is

not

possible

to

determine

which

table

to

use

without

some

further

qualification.

The

new

schema

name

cannot

already

exist

in

the

system

catalogs

and

it

cannot

begin

with

″SYS″.

Procedure:

140

Common

Criteria

Certification:

Administration

and

User

Documentation

If

a

user

has

SYSADM

or

DBADM

authority,

then

the

user

can

create

a

schema

with

any

valid

name.

When

a

database

is

created,

IMPLICIT_SCHEMA

authority

is

granted

to

PUBLIC

(that

is,

to

all

users).

The

definer

of

any

objects

created

as

part

of

the

CREATE

SCHEMA

statement

is

the

schema

owner.

This

owner

can

GRANT

and

REVOKE

schema

privileges

to

other

users.

To

allow

another

user

to

access

a

table

without

entering

a

schema

name

as

part

of

the

qualification

on

the

table

name

requires

that

a

view

be

established

for

that

user.

The

definition

of

the

view

would

define

the

fully-qualified

table

name

including

the

user’s

schema;

the

user

would

simply

need

to

query

using

the

view

name.

The

view

would

be

fully-qualified

by

the

user’s

schema

as

part

of

the

view

definition.

To

create

a

schema

using

the

Control

Center:

1.

Expand

the

object

tree

until

you

see

the

Schema

folder

within

a

database.

2.

Right-click

the

Schema

folder,

and

click

Create.

3.

Complete

the

information

for

the

new

schema,

and

click

OK.

To

create

a

schema

using

the

command

line,

enter:

CREATE

SCHEMA

<name>

AUTHORIZATION

<name>

The

following

is

an

example

of

a

CREATE

SCHEMA

statement

that

creates

a

schema

for

an

individual

user

with

the

authorization

ID

″joe″:

CREATE

SCHEMA

joeschma

AUTHORIZATION

joe

Related

concepts:

v

“Grouping

objects

by

schema”

on

page

122

v

“Implicit

schema

authority

(IMPLICIT_SCHEMA)

considerations”

on

page

26

v

“Schema

privileges”

on

page

27

Related

tasks:

v

“Setting

a

schema”

on

page

141

Related

reference:

v

“CREATE

SCHEMA”

on

page

588

Setting

a

schema

Once

you

have

several

schemas

in

existence,

you

may

want

to

designate

one

as

the

default

for

schema

for

use

by

unqualified

object

references

in

dynamic

SQL

statements

issued

from

within

a

specific

DB2

connection.

Procedure:

Establishing

a

default

schema

is

done

by

setting

the

special

register

CURRENT

SCHEMA

to

the

schema

you

wish

to

use

as

the

default.

Any

user

can

set

this

special

register:

no

authorization

is

required.

The

following

is

an

example

of

how

to

set

the

CURRENT

SCHEMA

special

register:

Chapter

7.

Creating

a

Database

and

Database

Objects

141

SET

CURRENT

SCHEMA

=

’SCHEMA01’

This

statement

can

be

used

from

within

an

application

program

or

issued

interactively.

Once

set,

the

value

of

the

CURRENT

SCHEMA

special

register

is

used

as

the

qualifier

(schema)

for

unqualified

object

references

in

dynamic

SQL

statements,

with

the

exception

of

the

CREATE

SCHEMA

statement

where

an

unqualified

reference

to

a

database

object

exists.

The

initial

value

of

the

CURRENT

SCHEMA

special

register

is

equal

to

the

authorization

ID

of

the

current

session

user.

Related

concepts:

v

“Schemas”

on

page

20

Related

reference:

v

“SET

SCHEMA”

on

page

902

v

“Reserved

schema

names

and

reserved

words”

in

the

SQL

Reference,

Volume

1

v

“CURRENT

SCHEMA”

on

page

801

Creating

and

populating

a

table

Tables

are

the

main

repository

of

data

within

databases.

Creating

the

tables

and

entering

data

to

fill

the

tables

will

occur

when

you

are

creating

an

new

database.

Prerequisites:

You

must

take

the

time

to

design

and

organize

the

tables

that

will

hold

your

data.

Procedure:

After

you

determine

how

to

organize

your

data

into

tables,

the

next

step

is

to

create

those

tables,

by

using

the

CREATE

TABLE

statement.

The

table

descriptions

are

stored

in

the

system

catalog

of

the

database

to

which

you

are

connected.

The

CREATE

TABLE

statement

gives

the

table

a

name,

which

is

a

qualified

or

unqualified

identifier,

and

a

definition

for

each

of

its

columns.

You

can

store

each

table

in

a

separate

table

space,

so

that

a

table

space

contains

only

one

table.

If

a

table

will

be

dropped

and

created

often,

it

is

more

efficient

to

store

it

in

a

separate

table

space

and

then

drop

the

table

space

instead

of

the

table.

You

can

also

store

many

tables

within

a

single

table

space.

In

a

partitioned

database

environment,

the

table

space

chosen

also

defines

the

database

partition

group

and

the

database

partitions

on

which

table

data

is

stored.

The

table

does

not

contain

any

data

at

first.

To

add

rows

of

data

to

it,

use

one

of

the

following:

v

The

INSERT

statement

v

The

LOAD

or

IMPORT

commands

v

The

autoloader

utility

if

working

in

a

partitioned

database

environment

Adding

data

to

a

table

can

be

done

without

logging

the

change.

The

NOT

LOGGED

INITIALLY

clause

on

the

CREATE

TABLE

statement

prevents

logging

the

change

to

the

table.

Any

changes

made

to

the

table

by

an

INSERT,

DELETE,

142

Common

Criteria

Certification:

Administration

and

User

Documentation

UPDATE,

CREATE

INDEX,

DROP

INDEX,

or

ALTER

TABLE

operation

in

the

same

unit

of

work

in

which

the

table

is

created

are

not

logged.

Logging

begins

in

subsequent

units

of

work.

A

table

consists

of

one

or

more

column

definitions.

A

maximum

of

500

columns

can

be

defined

for

a

table.

Columns

represent

the

attributes

of

an

entity.

The

values

in

any

column

are

all

the

same

type

of

information.

Note:

The

maximum

of

500

columns

is

true

when

using

a

4

KB

page

size.

The

maximum

is

1012

columns

when

using

an

8

KB,

16

KB,

or

32

KB

page

size.

A

column

definition

includes

a

column

name,

data

type,

and

any

necessary

null

attribute,

or

default

value

(optionally

chosen

by

the

user).

The

column

name

describes

the

information

contained

in

the

column

and

should

be

something

that

will

be

easily

recognizable.

It

must

be

unique

within

the

table;

however,

the

same

name

can

be

used

in

other

tables.

The

data

type

of

a

column

indicates

the

length

of

the

values

in

it

and

the

kind

of

data

that

is

valid

for

it.

The

database

manager

uses

character

string,

numeric,

date,

time

and

large

object

data

types.

Graphic

string

data

types

are

only

available

for

database

environments

using

multi-byte

character

sets.

In

addition,

columns

can

be

defined

with

user-defined

distinct

types.

The

default

attribute

specification

indicates

what

value

is

to

be

used

if

no

value

is

provided.

The

default

value

can

be

specified,

or

a

system-defined

default

value

used.

Default

values

may

be

specified

for

columns

with,

and

without,

the

null

attribute

specification.

The

null

attribute

specification

indicates

whether

or

not

a

column

can

contain

null

values.

To

create

a

table

using

the

Control

Center:

1.

Expand

the

object

tree

until

you

see

the

Tables

folder.

2.

Right-click

the

Tables

folder,

and

click

Create.

3.

Follow

the

steps

in

the

wizard

to

complete

your

tasks.

To

create

a

table

using

the

command

line,

enter:

CREATE

TABLE

<NAME>

(<column_name>

<data_type>

<null_attribute>)

IN

<TABLE_SPACE_NAME)

The

following

is

an

example

of

a

CREATE

TABLE

statement

that

creates

the

EMPLOYEE

table

in

the

RESOURCE

table

space.

This

table

is

defined

in

the

sample

database:

CREATE

TABLE

EMPLOYEE

(EMPNO

CHAR(6)

NOT

NULL

PRIMARY

KEY,

FIRSTNME

VARCHAR(12)

NOT

NULL,

MIDINIT

CHAR(1)

NOT

NULL

WITH

DEFAULT,

LASTNAME

VARCHAR(15)

NOT

NULL,

WORKDEPT

CHAR(3),

PHONENO

CHAR(4),

PHOTO

BLOB(10M)

NOT

NULL)

IN

RESOURCE

Chapter

7.

Creating

a

Database

and

Database

Objects

143

When

creating

a

table,

you

can

choose

to

have

the

columns

of

the

table

based

on

the

attributes

of

a

structured

type.

Such

a

table

is

called

a

“typed

table”.

A

typed

table

can

be

defined

to

inherit

some

of

its

columns

from

another

typed

table.

Such

a

table

is

called

a

“subtable”,

and

the

table

from

which

it

inherits

is

called

its

“supertable”.

The

combination

of

a

typed

table

and

all

its

subtables

is

called

a

“table

hierarchy”.

The

topmost

table

in

the

table

hierarchy

(the

one

with

no

supertable)

is

called

the

“root

table”

of

the

hierarchy.

To

declare

a

global

temporary

table,

use

the

DECLARE

GLOBAL

TEMPORARY

TABLE

statement.

You

can

also

create

a

table

that

is

defined

based

on

the

result

of

a

query.

This

type

of

table

is

called

a

materialized

query

table.

Related

concepts:

v

“Import

Overview”

in

the

Data

Movement

Utilities

Guide

and

Reference

v

“Load

Overview”

in

the

Data

Movement

Utilities

Guide

and

Reference

v

“Moving

data

across

platforms

-

file

format

considerations”

in

the

Data

Movement

Utilities

Guide

and

Reference

v

“User-defined

type

(UDT)”

in

the

Administration

Guide:

Implementation

Related

tasks:

v

“Creating

a

materialized

query

table”

in

the

Administration

Guide:

Implementation

Related

reference:

v

“CREATE

TABLE”

on

page

591

v

“INSERT”

on

page

724

v

“DECLARE

GLOBAL

TEMPORARY

TABLE

statement”

in

the

SQL

Reference,

Volume

2

v

“IMPORT”

on

page

285

v

“LOAD”

on

page

304

Large

object

(LOB)

column

considerations

Before

creating

a

table

that

contains

large

object

columns,

you

need

to

make

the

following

decisions:

1.

Do

you

want

to

log

changes

to

LOB

columns?

If

you

do

not

want

to

log

these

changes,

you

must

turn

logging

off

by

specifying

the

NOT

LOGGED

clause

when

you

create

the

table:

CREATE

TABLE

EMPLOYEE

(EMPNO

CHAR(6)

NOT

NULL

PRIMARY

KEY,

FIRSTNME

VARCHAR(12)

NOT

NULL,

MIDINIT

CHAR(1)

NOT

NULL

WITH

DEFAULT,

LASTNAME

VARCHAR(15)

NOT

NULL,

WORKDEPT

CHAR(3),

PHONENO

CHAR(4),

PHOTO

BLOB(10M)

NOT

NULL

NOT

LOGGED)

IN

RESOURCE

If

the

LOB

column

is

larger

than

1

GB,

logging

must

be

turned

off.

(As

a

rule

of

thumb,

you

may

not

want

to

log

LOB

columns

larger

than

10

MB.)

As

with

other

options

specified

on

a

column

definition,

the

only

way

to

change

the

logging

option

is

to

re-create

the

table.

144

Common

Criteria

Certification:

Administration

and

User

Documentation

Even

if

you

choose

not

to

log

changes,

LOB

columns

are

shadowed

to

allow

changes

to

be

rolled

back,

whether

the

roll

back

is

the

result

of

a

system

generated

error,

or

an

application

request.

Shadowing

is

a

recovery

technique

where

current

storage

page

contents

are

never

overwritten.

That

is,

old,

unmodified

pages

are

kept

as

“shadow”

copies.

These

copies

are

discarded

when

they

are

no

longer

needed

to

support

a

transaction

rollback.

Note:

When

recovering

a

database

using

the

RESTORE

and

ROLLFORWARD

commands,

LOB

data

that

was

“NOT

LOGGED”and

was

written

since

the

last

backup

will

be

replaced

by

binary

zeros.

2.

Do

you

want

to

minimize

the

space

required

for

the

LOB

column?

You

can

make

the

LOB

column

as

small

as

possible

using

the

COMPACT

clause

on

the

CREATE

TABLE

statement.

For

example:

CREATE

TABLE

EMPLOYEE

(EMPNO

CHAR(6)

NOT

NULL

PRIMARY

KEY,

FIRSTNME

VARCHAR(12)

NOT

NULL,

MIDINIT

CHAR(1)

NOT

NULL

WITH

DEFAULT,

LASTNAME

VARCHAR(15)

NOT

NULL,

WORKDEPT

CHAR(3),

PHONENO

CHAR(4),

PHOTO

BLOB(10M)

NOT

NULL

NOT

LOGGED

COMPACT)

IN

RESOURCE

There

is

a

performance

cost

when

appending

to

a

table

with

a

compact

LOB

column,

particularly

if

the

size

of

LOB

values

are

increased

(because

of

storage

adjustments

that

must

be

made).

On

platforms

where

sparse

file

allocation

is

not

supported

and

where

LOBs

are

placed

in

SMS

table

spaces,

consider

using

the

COMPACT

clause.

Sparse

file

allocation

has

to

do

with

how

physical

disk

space

is

used

by

an

operating

system.

An

operating

system

that

supports

sparse

file

allocation

does

not

use

as

much

physical

disk

space

to

store

LOBs

as

compared

to

an

operating

system

not

supporting

sparse

file

allocation.

The

COMPACT

option

allows

for

even

greater

physical

disk

space

“savings”

regardless

of

the

support

of

sparse

file

allocation.

Because

you

can

get

some

physical

disk

space

savings

when

using

COMPACT,

you

should

consider

using

COMPACT

if

your

operating

system

does

not

support

sparse

file

allocation.

Note:

DB2®

system

catalogs

use

LOB

columns

and

may

take

up

more

space

than

in

previous

versions.

3.

Do

you

want

better

performance

for

LOB

columns,

including

those

LOB

columns

in

the

DB2

system

catalogs?

There

are

large

object

(LOB)

columns

in

the

catalog

tables.

LOB

data

is

not

kept

in

the

buffer

pool

with

other

data

but

is

read

from

disk

each

time

it

is

needed.

Reading

from

disk

slows

down

the

performance

of

DB2

where

the

LOB

columns

of

the

catalogs

are

involved.

Since

a

file

system

usually

has

its

own

place

for

storing

(or

caching)

data,

using

a

SMS

table

space,

or

a

DMS

table

space

built

on

file

containers,

make

avoidance

of

I/O

possible

when

the

LOB

has

previously

been

referenced.

Related

concepts:

v

“Space

requirements

for

large

object

data”

on

page

107

Related

reference:

v

“CREATE

TABLE”

on

page

591

v

“Large

objects

(LOBs)”

in

the

SQL

Reference,

Volume

1

Chapter

7.

Creating

a

Database

and

Database

Objects

145

Creating

a

view

Views

are

derived

from

one

or

more

base

tables,

nicknames,

or

views,

and

can

be

used

interchangeably

with

base

tables

when

retrieving

data.

When

changes

are

made

to

the

data

shown

in

a

view,

the

data

is

changed

in

the

table

itself.

A

view

can

be

created

to

limit

access

to

sensitive

data,

while

allowing

more

general

access

to

other

data.

When

inserting

into

a

view

where

the

SELECT-list

of

the

view

definition

directly

or

indirectly

includes

the

name

of

an

identity

column

of

a

base

table,

the

same

rules

apply

as

if

the

INSERT

statement

directly

referenced

the

identity

column

of

the

base

table.

In

addition

to

using

views

as

described

above,

a

view

can

also

be

used

to:

v

Alter

a

table

without

affecting

application

programs.

This

can

happen

by

creating

a

view

based

on

an

underlying

table.

Applications

that

use

the

underlying

table

are

not

affected

by

the

creation

of

the

new

view.

New

applications

can

use

the

created

view

for

different

purposes

than

those

applications

that

use

the

underlying

table.

v

Sum

the

values

in

a

column,

select

the

maximum

values,

or

average

the

values.

v

Provide

access

to

information

in

one

or

more

data

sources.

You

can

reference

nicknames

within

the

CREATE

VIEW

statement

and

create

multi-location/global

views

(the

view

could

join

information

in

multiple

data

sources

located

on

different

systems).

When

you

create

a

view

that

references

nicknames

using

standard

CREATE

VIEW

syntax,

you

will

see

a

warning

alerting

you

to

the

fact

that

the

authentication

ID

of

view

users

will

be

used

to

access

the

underlying

object

or

objects

at

data

sources

instead

of

the

view

creator

authentication

ID.

Use

the

FEDERATED

keyword

to

suppress

this

warning.

An

alternative

to

creating

a

view

is

to

use

a

nested

or

common

table

expression

to

reduce

catalog

lookup

and

improve

performance.

Prerequisites:

The

base

table,

nickname,

or

view

on

which

the

view

is

to

be

based

must

already

exist

before

the

view

can

be

created.

Restrictions:

You

can

create

a

view

that

uses

a

UDF

in

its

definition.

However,

to

update

this

view

so

that

it

contains

the

latest

functions,

you

must

drop

it

and

then

re-create

it.

If

a

view

is

dependent

on

a

UDF,

that

function

cannot

be

dropped.

The

following

SQL

statement

creates

a

view

with

a

function

in

its

definition:

CREATE

VIEW

EMPLOYEE_PENSION

(NAME,

PENSION)

AS

SELECT

NAME,

PENSION(HIREDATE,BIRTHDATE,SALARY,BONUS)

FROM

EMPLOYEE

The

UDF

function

PENSION

calculates

the

current

pension

an

employee

is

eligible

to

receive,

based

on

a

formula

involving

their

HIREDATE,

BIRTHDATE,

SALARY,

and

BONUS.

146

Common

Criteria

Certification:

Administration

and

User

Documentation

Procedure:

To

create

a

view

using

the

Control

Center:

1.

Expand

the

object

tree

until

you

see

the

Views

folder.

2.

Right-click

the

Views

folder,

and

select

Create

from

the

pop-up

menu.

3.

Complete

the

information,

and

click

Ok.

To

create

a

view

using

the

command

line,

enter:

CREATE

VIEW

<name>

(<column>,

<column>,

<column>)

SELECT

<column_names>

FROM

<table_name>

WITH

CHECK

OPTION

For

example,

the

EMPLOYEE

table

may

have

salary

information

in

it,

which

should

not

be

made

available

to

everyone.

The

employee’s

phone

number,

however,

should

be

generally

accessible.

In

this

case,

a

view

could

be

created

from

the

LASTNAME

and

PHONENO

columns

only.

Access

to

the

view

could

be

granted

to

PUBLIC,

while

access

to

the

entire

EMPLOYEE

table

could

be

restricted

to

those

who

have

the

authorization

to

see

salary

information.

With

a

view,

you

can

make

a

subset

of

table

data

available

to

an

application

program

and

validate

data

that

is

to

be

inserted

or

updated.

A

view

can

have

column

names

that

are

different

from

the

names

of

corresponding

columns

in

the

original

tables.

The

use

of

views

provides

flexibility

in

the

way

your

programs

and

end-user

queries

can

look

at

the

table

data.

The

following

SQL

statement

creates

a

view

on

the

EMPLOYEE

table

that

lists

all

employees

in

Department

A00

with

their

employee

and

telephone

numbers:

CREATE

VIEW

EMP_VIEW

(DA00NAME,

DA00NUM,

PHONENO)

AS

SELECT

LASTNAME,

EMPNO,

PHONENO

FROM

EMPLOYEE

WHERE

WORKDEPT

=

’A00’

WITH

CHECK

OPTION

The

first

line

of

this

statement

names

the

view

and

defines

its

columns.

The

name

EMP_VIEW

must

be

unique

within

its

schema

in

SYSCAT.TABLES.

The

view

name

appears

as

a

table

name

although

it

contains

no

data.

The

view

will

have

three

columns

called

DA00NAME,

DA00NUM,

and

PHONENO,

which

correspond

to

the

columns

LASTNAME,

EMPNO,

and

PHONENO

from

the

EMPLOYEE

table.

The

column

names

listed

apply

one-to-one

to

the

select

list

of

the

SELECT

statement.

If

column

names

are

not

specified,

the

view

uses

the

same

names

as

the

columns

of

the

result

table

of

the

SELECT

statement.

The

second

line

is

a

SELECT

statement

that

describes

which

values

are

to

be

selected

from

the

database.

It

may

include

the

clauses

ALL,

DISTINCT,

FROM,

WHERE,

GROUP

BY,

and

HAVING.

The

name

or

names

of

the

data

objects

from

which

to

select

columns

for

the

view

must

follow

the

FROM

clause.

The

WITH

CHECK

OPTION

clause

indicates

that

any

updated

or

inserted

row

to

the

view

must

be

checked

against

the

view

definition,

and

rejected

if

it

does

not

conform.

This

enhances

data

integrity

but

requires

additional

processing.

If

this

clause

is

omitted,

inserts

and

updates

are

not

checked

against

the

view

definition.

Chapter

7.

Creating

a

Database

and

Database

Objects

147

The

following

SQL

statement

creates

the

same

view

on

the

EMPLOYEE

table

using

the

SELECT

AS

clause:

CREATE

VIEW

EMP_VIEW

SELECT

LASTNAME

AS

DA00NAME,

EMPNO

AS

DA00NUM,

PHONENO

FROM

EMPLOYEE

WHERE

WORKDEPT

=

’A00’

WITH

CHECK

OPTION

Related

concepts:

v

“Views”

in

the

SQL

Reference,

Volume

1

v

“Table

and

view

privileges”

on

page

28

v

“Controlling

access

to

data

with

views”

on

page

49

v

“Using

triggers

to

update

view

contents”

in

the

Administration

Guide:

Implementation

Related

tasks:

v

“Creating

a

typed

view”

in

the

Administration

Guide:

Implementation

v

“Removing

rows

from

a

table

or

view”

in

the

Administration

Guide:

Implementation

v

“Altering

or

dropping

a

view”

in

the

Administration

Guide:

Implementation

v

“Recovering

inoperative

views”

in

the

Administration

Guide:

Implementation

Related

reference:

v

“CREATE

VIEW”

on

page

656

v

“INSERT”

on

page

724

Creating

an

index

An

index

is

a

set

of

one

or

more

keys,

each

pointing

to

rows

in

a

table.

An

index

allows

more

efficient

access

to

rows

in

a

table

by

creating

a

direct

path

to

the

data

through

pointers.

Procedure:

Performance

Tip:

If

you

are

going

to

carry

out

the

following

series

of

tasks:

1.

Create

Table

2.

Load

Table

3.

Create

Index

(without

the

COLLECT

STATISTICS

option)

4.

Perform

RUNSTATS

Or,

if

you

are

going

to

carry

out

the

following

series

of

tasks:

1.

Create

Table

2.

Load

Table

3.

Create

Index

(with

the

COLLECT

STATISTICS

option)

then

you

should

consider

ordering

the

execution

of

tasks

in

the

following

way:

1.

Create

the

table

2.

Create

the

index

3.

Load

the

table

with

the

statistics

yes

option

requested.

148

Common

Criteria

Certification:

Administration

and

User

Documentation

Indexes

are

maintained

after

they

are

created.

Subsequently,

when

application

programs

use

a

key

value

to

randomly

access

and

process

rows

in

a

table,

the

index

based

on

that

key

value

can

be

used

to

access

rows

directly.

This

is

important,

because

the

physical

storage

of

rows

in

a

base

table

is

not

ordered.

When

creating

the

table,

you

can

choose

to

create

a

multi-dimensional

clustering

(MDC)

table.

By

creating

this

type

of

table,

block

indexes

are

created.

Regular

indexes

point

to

individual

rows;

block

indexes

point

to

blocks

or

extents

of

data,

and

are

much

smaller

than

regular

indexes.

Block

indexes

are

stored,

along

with

regular

indexes,

in

the

same

table

space.

When

a

row

is

inserted,

unless

there

is

a

clustering

index

defined,

the

row

is

placed

in

the

most

convenient

storage

location

that

can

accommodate

it.

When

searching

for

rows

of

a

table

that

meet

a

particular

selection

condition

and

the

table

has

no

indexes,

the

entire

table

is

scanned.

An

index

optimizes

data

retrieval

without

performing

a

lengthy

sequential

search.

The

data

for

your

indexes

can

be

stored

in

the

same

table

space

as

your

table

data,

or

in

a

separate

table

space

containing

index

data.

The

table

space

used

to

store

the

index

data

is

determined

when

the

table

is

created.

To

create

an

index

using

the

Control

Center:

1.

Expand

the

object

tree

until

you

see

the

Indexes

folder.

2.

Right-click

the

Indexes

folder,

and

select

Create

—>

Index

Using

Wizard

from

the

pop-up

menu.

3.

Follow

the

steps

in

the

wizard

to

complete

your

task.

To

create

an

index

using

the

command

line,

enter:

CREATE

INDEX

<name>

ON

<table_name>

(<column_name>)

Related

concepts:

v

“Optimizing

load

performance”

in

the

Data

Movement

Utilities

Guide

and

Reference

v

“Using

an

index”

on

page

149

v

“Options

on

the

CREATE

INDEX

statement”

on

page

150

v

“Index

privileges”

on

page

31

Related

tasks:

v

“Renaming

an

existing

table

or

index”

in

the

Administration

Guide:

Implementation

v

“Dropping

an

index,

index

extension,

or

an

index

specification”

in

the

Administration

Guide:

Implementation

Related

reference:

v

“CREATE

INDEX”

on

page

575

Using

an

index

An

index

is

never

directly

used

by

an

application

program.

The

decision

on

whether

to

use

an

index

and

which

of

the

potentially

available

indexes

to

use

is

the

responsibility

of

the

optimizer.

The

best

index

on

a

table

is

one

that:

Chapter

7.

Creating

a

Database

and

Database

Objects

149

v

Uses

high-speed

disks

v

Is

highly-clustered

v

Is

made

up

of

only

a

few

narrow

columns

v

Uses

columns

with

high

cardinality

Related

concepts:

v

“Index

planning

tips”

in

the

Administration

Guide:

Performance

v

“Index

performance

tips”

in

the

Administration

Guide:

Performance

v

“Data

access

through

index

scans”

in

the

Administration

Guide:

Performance

v

“Table

and

index

management

for

standard

tables”

in

the

Administration

Guide:

Performance

v

“Table

and

index

management

for

MDC

tables”

in

the

Administration

Guide:

Performance

Options

on

the

CREATE

INDEX

statement

You

can

create

an

index

that

will

allow

duplicates

(a

non-unique

index)

to

enable

efficient

retrieval

by

columns

other

than

the

primary

key,

and

allow

duplicate

values

to

exist

in

the

indexed

column

or

columns.

The

following

SQL

statement

creates

a

non-unique

index

called

LNAME

from

the

LASTNAME

column

on

the

EMPLOYEE

table,

sorted

in

ascending

order:

CREATE

INDEX

LNAME

ON

EMPLOYEE

(LASTNAME

ASC)

The

following

SQL

statement

creates

a

unique

index

on

the

phone

number

column:

CREATE

UNIQUE

INDEX

PH

ON

EMPLOYEE

(PHONENO

DESC)

A

unique

index

ensures

that

no

duplicate

values

exist

in

the

indexed

column

or

columns.

The

constraint

is

enforced

at

the

end

of

the

SQL

statement

that

updates

rows

or

inserts

new

rows.

This

type

of

index

cannot

be

created

if

the

set

of

one

or

more

columns

already

has

duplicate

values.

The

keyword

ASC

puts

the

index

entries

in

ascending

order

by

column,

while

DESC

puts

them

in

descending

order

by

column.

The

default

is

ascending

order.

You

can

create

a

unique

index

on

two

columns,

one

of

which

is

an

include

column.

The

primary

key

is

defined

on

the

column

that

is

not

the

include

column.

Both

of

them

are

shown

in

the

catalog

as

primary

keys

on

the

same

table.

Normally

there

is

only

one

primary

key

per

table.

The

INCLUDE

clause

specifies

additional

columns

to

be

appended

to

the

set

of

index

key

columns.

Any

columns

included

with

this

clause

are

not

used

to

enforce

uniqueness.

The

included

columns

may

improve

the

performance

of

some

queries

through

index-only

access.

The

columns

must

be

distinct

from

the

columns

used

to

enforce

uniqueness

(otherwise

you

will

receive

error

message

SQLSTATE

42711).

The

limits

for

the

number

of

columns

and

sum

of

the

length

attributes

apply

to

all

of

the

columns

in

the

unique

key

and

in

the

index.

A

check

is

performed

to

determine

if

an

existing

index

matches

the

primary

key

definition

(ignoring

any

INCLUDE

columns

in

the

index).

An

index

definition

matches

if

it

identifies

the

same

set

of

columns

without

regard

to

the

order

of

the

columns

or

the

direction

(either

ascending

or

descending)

specifications.

If

a

matching

index

definition

is

found,

the

description

of

the

index

is

changed

to

150

Common

Criteria

Certification:

Administration

and

User

Documentation

indicate

that

it

is

the

primary

index,

as

required

by

the

system,

and

it

is

changed

to

unique

(after

ensuring

uniqueness)

if

it

was

a

non-unique

index.

This

is

why

it

is

possible

to

have

more

than

one

primary

key

on

the

same

table

as

indicated

in

the

catalog.

When

working

with

a

structured

type,

it

might

be

necessary

to

create

user-defined

index

types.

This

requires

a

means

of

defining

index

maintenance,

index

search,

and

index

exploitation

functions.

The

following

SQL

statement

creates

a

clustering

index

called

INDEX1

on

the

LASTNAME

column

of

the

EMPLOYEE

table:

CREATE

INDEX

INDEX1

ON

EMPLOYEE

(LASTNAME)

CLUSTER

To

use

the

internal

storage

of

the

database

effectively,

use

clustering

indexes

with

the

PCTFREE

parameter

associated

with

the

ALTER

TABLE

statement

so

that

new

data

can

be

inserted

on

the

correct

pages.

When

data

is

inserted

on

the

correct

pages,

clustering

order

is

maintained.

Typically,

the

greater

the

INSERT

activity

on

the

table,

the

larger

the

PCTFREE

value

(on

the

table)

that

will

be

needed

in

order

to

maintain

clustering.

Since

this

index

determines

the

order

by

which

the

data

is

laid

out

on

physical

pages,

only

one

clustering

index

can

be

defined

for

any

particular

table.

If

the

index

key

values

of

these

new

rows

are

always

new

high

key

values

for

example,

then

the

clustering

attribute

of

the

table

will

try

to

place

them

at

the

end

of

the

table.

Having

free

space

in

other

pages

will

do

little

to

preserve

clustering.

In

this

case,

placing

the

table

in

append

mode

may

be

a

better

choice

than

a

clustering

index

and

altering

the

table

to

have

a

large

PCTFREE

value.

You

can

place

the

table

in

append

mode

by

issuing:

ALTER

TABLE

APPEND

ON.

The

above

discussion

also

applies

to

new

″overflow″

rows

that

result

from

UPDATEs

that

increase

the

size

of

a

row.

A

single

index

created

using

the

ALLOW

REVERSE

SCANS

parameter

on

the

CREATE

INDEX

statement

can

be

scanned

in

a

forward

or

a

backward

direction.

That

is,

such

indexes

support

scans

in

the

direction

defined

when

the

index

was

created

and

scans

in

the

opposite

or

reverse

direction.

The

statement

could

look

something

like:

CREATE

INDEX

iname

ON

tname

(cname

DESC)

ALLOW

REVERSE

SCANS

In

this

case,

the

index

(iname)

is

formed

based

on

descending

values

(DESC)

in

the

given

column

(cname).

By

allowing

reverse

scans,

although

the

index

on

the

column

is

defined

for

scans

in

descending

order,

a

scan

can

be

done

in

ascending

order

(reverse

order).

The

actual

use

of

the

index

in

both

directions

is

not

controlled

by

you

but

by

the

optimizer

when

creating

and

considering

access

plans.

The

MINPCTUSED

clause

of

the

CREATE

INDEX

statement

specifies

the

threshold

for

the

minimum

amount

of

used

space

on

an

index

leaf

page.

If

this

clause

is

used,

online

index

defragmentation

is

enabled

for

this

index.

Once

enabled,

the

following

considerations

are

used

to

determine

if

an

online

index

defragmentation

takes

place:

After

a

key

is

physically

removed

from

a

leaf

page

of

this

index

and

a

percentage

of

used

space

on

the

page

is

less

than

the

specified

threshold

value,

the

neighboring

index

leaf

pages

are

checked

to

determine

if

the

keys

on

the

two

leaf

pages

can

be

merged

into

a

single

index

leaf

page.

Chapter

7.

Creating

a

Database

and

Database

Objects

151

For

example,

the

following

SQL

statement

creates

an

index

with

online

index

defragmentation

enabled:

CREATE

INDEX

LASTN

ON

EMPLOYEE

(LASTNAME)

MINPCTUSED

20

When

a

key

is

physically

removed

from

an

index

page

of

this

index,

if

the

remaining

keys

on

the

index

page

take

up

twenty

percent

or

less

space

on

the

index

page,

then

an

attempt

is

made

to

delete

an

index

page

by

merging

the

keys

of

this

index

page

with

those

of

a

neighboring

index

page.

If

the

combined

keys

can

all

fit

on

a

single

page,

this

merge

is

performed

and

one

of

the

index

pages

is

deleted.

The

CREATE

INDEX

statement

allows

you

to

create

the

index

while,

at

the

same

time,

allowing

read

and

write

access

to

the

underlying

table

and

any

previously

existing

indexes.

To

restrict

access

to

the

table

while

creating

the

index,

use

the

LOCK

TABLE

statement

to

lock

the

table

before

creating

the

index.

The

new

index

is

created

by

scanning

the

underlying

table.

Any

changes

made

to

the

table

while

the

index

is

being

created

are

logged.

Once

the

new

index

is

created,

the

changes

are

applied

to

the

index.

To

apply

the

logged

changes

more

quickly

during

the

index

creation,

a

separate

copy

of

the

changes

is

maintained

in

memory

buffer

space,

which

is

allocated

on

demand

from

the

utility

heap.

This

allows

the

index

creation

to

process

the

changes

by

directly

reading

from

memory

first,

and

reading

through

the

logs,

if

necessary,

at

a

much

later

time.

Once

all

the

changes

have

been

applied

to

the

index,

the

table

is

quiesced

while

the

new

index

is

made

visible.

When

creating

a

unique

index,

ensure

that

there

are

no

duplicate

keys

in

the

table

and

that

the

concurrent

inserts

during

index

creation

are

not

going

to

introduce

duplicate

keys.

Index

creation

uses

a

deferred

unique

scheme

to

detect

duplicate

keys,

and

therefore

no

duplicate

keys

will

be

detected

until

the

very

end

of

index

creation,

at

which

point

the

index

creation

will

fail

because

of

the

duplicate

keys.

The

PCTFREE

clause

of

the

CREATE

INDEX

statement

specifies

the

percentage

of

each

index

page

to

leave

as

free

space

when

the

index

is

built.

Leaving

more

free

space

on

the

index

pages

will

result

in

fewer

page

splits.

This

will

reduce

the

need

to

reorganize

the

table

in

order

to

regain

sequential

index

pages

which

increases

prefetching.

And

prefetching

is

one

important

component

that

may

improve

performance.

Again,

if

there

are

always

high

key

values,

then

you

will

want

to

consider

lowering

the

value

of

the

PCTFREE

clause

of

the

CREATE

INDEX

statement.

In

this

way

there

will

be

limited

wasted

space

reserved

on

each

index

page.

The

LEVEL2

PCTFREE

clause

directs

the

system

to

preserve

a

specified

percentage

of

free

space

on

each

page

in

the

second

level

of

an

index.

You

specify

a

percentage

of

free

space

when

the

index

is

created

to

accommodate

future

insertions

and

updates.

The

second

level

is

the

level

immediately

above

the

leaf

level.

The

default

is

to

preserve

a

minimum

of

10

and

the

PCTFREE

value

in

all

non-leaf

pages.

The

LEVEL2

PCTFREE

parameter

allows

the

default

to

be

overwritten;

if

you

use

the

LEVEL2

PCTFREE

integer

option

in

the

CREATE

INDEX

statement,

the

integer

percent

of

free

space

is

left

on

level

2

intermediate

pages.

A

minimum

of

10

and

the

integer

percent

of

free

space

is

left

on

level

3

and

higher

intermediate

pages.

By

leaving

more

free

space

on

the

second

level,

the

number

of

page

splits

that

occur

at

the

second

level

of

the

index

is

reduced.

The

PAGE

SPLIT

SYMMETRIC,

PAGE

SPLIT

HIGH,

and

PAGE

SPLIT

LOW

clauses

allow

a

choice

in

the

page

split

behavior

when

inserting

into

an

index.

152

Common

Criteria

Certification:

Administration

and

User

Documentation

The

PAGE

SPLIT

SYMMETRIC

clause

is

a

default

page

split

behavior

that

splits

roughly

in

the

middle

of

an

index

page.

Using

this

default

behavior

is

best

when

the

insertion

into

an

index

is

random

or

does

not

follow

one

of

the

patterns

that

are

addressed

by

the

PAGE

SPLIT

HIGH

and

PAGE

SPLIT

LOW

clauses.

The

PAGE

SPLIT

HIGH

behavior

is

useful

when

there

are

ever

increasing

ranges

in

the

index.

Increasing

ranges

in

the

index

may

occur

when:

v

There

is

an

index

with

multiple

key

parts

and

there

are

many

values

(multiple

index

pages

worth)

where

all

except

the

last

key

part

have

the

same

value

v

All

inserts

into

the

table

would

consist

of

a

new

value

which

has

the

same

value

as

existing

keys

for

all

but

the

last

key

part

v

The

last

key

part

of

the

inserted

value

is

larger

than

that

of

the

existing

keys

For

example,

if

we

have

the

following

key

values

in

the

index;

(1,1),(1,2),(1,3),

...

(1,n),

(2,1),(2,2),(2,3),

...

(2,n),

...

(m,1),(m,2),(m,3),

...(m,n)

then

the

next

key

to

be

inserted

would

have

the

value

(x,y)

where

1

<=

x

<=

m

and

y

>

n.

If

the

insertions

follow

such

a

pattern,

the

PAGE

SPLIT

HIGH

clause

can

be

used

so

that

page

splits

do

not

result

in

many

pages

that

are

fifty

percent

empty.

Similarly,

PAGE

SPLIT

LOW

can

be

used

when

there

are

ever-decreasing

ranges

in

the

index,

to

avoid

leaving

pages

50

percent

empty.

Note:

If

you

want

to

add

a

primary

or

unique

key,

and

you

want

the

underlying

index

to

use

SPLIT

HIGH,

SPLIT

LOW,

PCTFREE,

LEVEL2

PCTFREE,

MINPCTUSED,

CLUSTER,

or

ALLOW

REVERSE

SCANS

you

must

first

create

an

index

specifying

the

desired

keys

and

parameters.

Then

use

an

ALTER

TABLE

statement

to

add

the

primary

or

unique

key.

The

ALTER

TABLE

statement

will

pick

up

and

reuse

the

index

that

you

have

already

created.

You

can

collect

index

statistics

as

part

of

the

creation

of

the

index.

At

the

time

when

you

use

the

CREATE

INDEX

statement,

the

key

value

statistics

and

the

physical

statistics

are

available

for

use.

By

collecting

the

index

statistics

as

part

of

the

CREATE

INDEX

statement,

you

will

not

need

to

run

the

RUNSTATS

utility

immediately

following

the

completion

of

the

CREATE

INDEX

statement.

For

example,

the

following

SQL

statement

will

collect

basic

index

statistics

as

part

of

the

creation

of

an

index:

CREATE

INDEX

IDX1

ON

TABL1

(COL1)

COLLECT

STATISTICS

If

you

have

a

replicated

summary

table,

its

base

table

(or

tables)

must

have

a

unique

index,

and

the

index

key

columns

must

be

used

in

the

query

that

defines

the

replicated

summary

table.

For

intra-partition

parallelism,

create

index

performance

is

improved

by

using

multiple

processors

for

the

scanning

and

sorting

of

data

that

is

performed

during

index

creation.

The

use

of

multiple

processors

is

enabled

by

setting

intra_parallel

to

YES(1)

or

ANY(-1).

The

number

of

processors

used

during

index

creation

is

Chapter

7.

Creating

a

Database

and

Database

Objects

153

determined

by

the

system

and

is

not

affected

by

the

configuration

parameters

dft_degree

or

max_querydegree,

by

the

application

runtime

degree,

or

by

the

SQL

statement

compilation

degree.

In

multiple

partition

databases,

unique

indexes

must

be

defined

as

supersets

of

the

partitioning

key.

Related

concepts:

v

“Index

performance

tips”

in

the

Administration

Guide:

Performance

v

“Index

reorganization”

in

the

Administration

Guide:

Performance

v

“Table

and

index

management

for

standard

tables”

in

the

Administration

Guide:

Performance

v

“Online

index

defragmentation”

in

the

Administration

Guide:

Performance

v

“Table

and

index

management

for

MDC

tables”

in

the

Administration

Guide:

Performance

Related

tasks:

v

“Changing

table

attributes”

in

the

Administration

Guide:

Implementation

Related

reference:

v

“max_querydegree

-

Maximum

query

degree

of

parallelism

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“intra_parallel

-

Enable

intra-partition

parallelism

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“dft_degree

-

Default

degree

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“CREATE

INDEX”

on

page

575

154

Common

Criteria

Certification:

Administration

and

User

Documentation

Chapter

8.

Concurrency,

Isolation

Levels,

and

Locking

Deadlocks

between

applications

.

.

.

.

.

.

. 155

Concurrency

Control

and

Isolation

Levels

.

.

.

. 156

Concurrency

issues

.

.

.

.

.

.

.

.

.

. 156

Performance

impact

of

isolation

levels

.

.

.

. 157

Specifying

the

isolation

level

.

.

.

.

.

.

. 160

Concurrency

Control

and

Locking

.

.

.

.

.

. 163

Locks

and

concurrency

control

.

.

.

.

.

. 163

Lock

attributes

.

.

.

.

.

.

.

.

.

.

.

. 164

Locks

and

performance

.

.

.

.

.

.

.

.

. 166

Guidelines

for

locking

.

.

.

.

.

.

.

.

. 170

Correcting

lock

escalation

problems

.

.

.

.

. 172

Lock

type

compatibility

.

.

.

.

.

.

.

.

. 173

Lock

modes

and

access

paths

for

standard

tables

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 174

Lock

modes

for

table

and

RID

index

scans

of

MDC

tables

.

.

.

.

.

.

.

.

.

.

.

.

. 177

Locking

for

block

index

scans

for

MDC

tables

180

Factors

that

affect

locking

.

.

.

.

.

.

.

.

. 182

Factors

That

Affect

Locking

.

.

.

.

.

.

.

. 183

Locks

and

types

of

application

processing

.

.

. 183

Locks

and

data-access

methods

.

.

.

.

.

. 184

Index

types

and

next-key

locking

.

.

.

.

.

. 185

Deadlocks

between

applications

With

multiple

applications

working

with

data

from

the

database

there

are

opportunities

for

a

deadlock

to

occur

between

two

or

more

applications.

A

deadlock

is

created

when

one

application

is

waiting

for

another

application

to

release

a

lock

on

data.

Each

of

the

waiting

applications

is

locking

data

needed

by

another

application.

Mutual

waiting

for

the

other

application

to

release

a

lock

on

held

data

leads

to

a

deadlock.

The

applications

can

wait

forever

until

one

application

releases

the

lock

on

the

held

data.

A

deadlock

is

illustrated

in

the

following

figure.

Because

applications

do

not

voluntarily

release

locks

on

data

that

they

need,

a

deadlock

detector

process

is

required

to

break

deadlocks

and

allow

application

processing

to

continue.

As

its

name

suggests,

the

deadlock

detector

monitors

the

information

about

agents

waiting

on

locks.

The

deadlock

detector

arbitrarily

selects

one

of

the

applications

in

the

deadlock

and

releases

the

locks

currently

held

by

that

“volunteered”

application.

By

releasing

the

locks

of

that

application,

the

data

x

x

Deadlock concept
Table 1

Table 2

Row 1

Row 1

Row 2

Row 2

T : update row 1 of table 11
T : update row 2 of table 2
T : deadlock

2

3

Application A
T : update row 2 of table 21
T : update row 1 of table 1
T : deadlock

2

3

Application B

...

...

...

...

...

...

Figure

11.

Deadlock

detector

©

Copyright

IBM

Corp.

1993-2004

155

required

by

other

waiting

applications

is

made

available

for

use.

The

waiting

applications

can

then

access

the

data

required

to

complete

transactions.

Related

concepts:

v

“Locks

and

performance”

on

page

166

v

“DB2

architecture

and

process

overview”

on

page

3

Concurrency

Control

and

Isolation

Levels

Concurrency

issues

Because

many

users

access

and

change

data

in

a

relational

database,

the

database

manager

must

be

able

both

to

allow

users

to

make

these

changes

and

to

ensure

that

data

integrity

is

preserved.

Concurrency

refers

to

the

sharing

of

resources

by

multiple

interactive

users

or

application

programs

at

the

same

time.

The

database

manager

controls

this

access

to

prevent

undesirable

effects,

such

as:

v

Lost

updates.

Two

applications,

A

and

B,

might

both

read

the

same

row

from

the

database

and

both

calculate

new

values

for

one

of

its

columns

based

on

the

data

these

applications

read.

If

A

updates

the

row

with

its

new

value

and

B

then

also

updates

the

row,

the

update

performed

by

A

is

lost.

v

Access

to

uncommitted

data.

Application

A

might

update

a

value

in

the

database,

and

application

B

might

read

that

value

before

it

was

committed.

Then,

if

the

value

of

A

is

not

later

committed,

but

backed

out,

the

calculations

performed

by

B

are

based

on

uncommitted

(and

presumably

invalid)

data.

v

Nonrepeatable

reads.

Some

applications

involve

the

following

sequence

of

events:

application

A

reads

a

row

from

the

database,

then

goes

on

to

process

other

SQL

requests.

In

the

meantime,

application

B

either

modifies

or

deletes

the

row

and

commits

the

change.

Later,

if

application

A

attempts

to

read

the

original

row

again,

it

receives

the

modified

row

or

discovers

that

the

original

row

has

been

deleted.

v

Phantom

Read

Phenomenon.

The

phantom

read

phenomenon

occurs

when:

1.

Your

application

executes

a

query

that

reads

a

set

of

rows

based

on

some

search

criterion.

2.

Another

application

inserts

new

data

or

updates

existing

data

that

would

satisfy

your

application’s

query.

3.

Your

application

repeats

the

query

from

step

1

(within

the

same

unit

of

work).

Some

additional

(“phantom”)

rows

are

returned

as

part

of

the

result

set

that

were

not

returned

when

the

query

was

initially

executed

(step

1).

Note:

Declared

temporary

tables

have

no

concurrency

issues

because

they

are

available

only

to

the

application

that

declared

them.

This

type

of

table

only

exists

from

the

time

that

the

application

declares

it

until

the

application

completes

or

disconnects.

Concurrency

control

in

federated

database

systems

A

federated

database

system

supports

applications

and

users

submitting

SQL

statements

that

reference

two

or

more

database

management

systems

(DBMSs)

or

databases

in

a

single

statement.

To

reference

the

data

sources,

which

consist

of

a

DBMS

and

data,

DB2®

uses

nicknames.

Nicknames

are

aliases

for

objects

in

other

database

managers.

In

a

federated

system,

DB2

relies

on

the

concurrency

control

protocols

of

the

database

manager

that

hosts

the

requested

data.

156

Common

Criteria

Certification:

Administration

and

User

Documentation

A

DB2

federated

system

provides

location

transparency

for

database

objects.

For

example,

with

location

transparency

if

information

about

tables

and

views

is

moved,

references

to

that

information

through

nicknames

can

be

updated

without

changing

applications

that

request

the

information.

When

an

application

accesses

data

through

nicknames,

DB2

relies

on

the

concurrency

control

protocols

of

data-source

database

managers

to

ensure

isolation

levels.

Although

DB2

tries

to

match

the

requested

level

of

isolation

at

the

data

source

with

a

logical

equivalent,

results

may

vary

depending

on

data

source

capabilities.

Related

concepts:

v

“Performance

impact

of

isolation

levels”

on

page

157

Related

tasks:

v

“Specifying

the

isolation

level”

on

page

160

Related

reference:

v

“locklist

-

Maximum

storage

for

lock

list

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“maxlocks

-

Maximum

percent

of

lock

list

before

escalation”

on

page

794

Performance

impact

of

isolation

levels

An

isolation

level

determines

how

data

is

locked

or

isolated

from

other

processes

while

the

data

is

being

accessed.

The

isolation

level

will

be

in

effect

for

the

duration

of

the

unit

of

work.

Applications

that

use

a

cursor

declared

with

a

DECLARE

CURSOR

statement

using

the

WITH

HOLD

clause

will

keep

the

chosen

isolation

level

for

the

duration

of

the

unit

of

work

in

which

the

OPEN

CURSOR

was

performed.

DB2®

supports

the

following

isolation

levels:

v

Repeatable

Read

v

Read

Stability

v

Cursor

Stability

v

Uncommitted

Read.

Note:

Some

host

database

servers

support

the

no

commit

isolation

level.

On

other

databases,

this

isolation

level

behaves

like

the

uncommitted

read

isolation

level.

Detailed

explanations

for

each

of

the

isolation

levels

follows

in

decreasing

order

of

performance

impact,

but

in

increasing

order

of

care

required

when

accessing

and

updating

data.

Repeatable

Read

Repeatable

Read

(RR)

locks

all

the

rows

an

application

references

within

a

unit

of

work.

Using

Repeatable

Read,

a

SELECT

statement

issued

by

an

application

twice

within

the

same

unit

of

work

in

which

the

cursor

was

opened,

gives

the

same

result

each

time.

With

Repeatable

Read,

lost

updates,

access

to

uncommitted

data,

and

phantom

rows

are

not

possible.

The

Repeatable

Read

application

can

retrieve

and

operate

on

the

rows

as

many

times

as

needed

until

the

unit

of

work

completes.

However,

no

other

applications

can

update,

delete,

or

insert

a

row

that

would

affect

the

result

table,

until

the

unit

of

work

completes.

Repeatable

Read

applications

cannot

see

uncommitted

changes

of

other

applications.

Chapter

8.

Concurrency,

Isolation

Levels,

and

Locking

157

With

Repeatable

Read,

every

row

that

is

referenced

is

locked,

not

just

the

rows

that

are

retrieved.

Appropriate

locking

is

performed

so

that

another

application

cannot

insert

or

update

a

row

that

would

be

added

to

the

list

of

rows

referenced

by

your

query,

if

the

query

was

re-executed.

This

prevents

phantom

rows

from

occurring.

For

example,

if

you

scan

10

000

rows

and

apply

predicates

to

them,

locks

are

held

on

all

10

000

rows,

even

though

only

10

rows

qualify.

Note:

The

Repeatable

Read

isolation

level

ensures

that

all

returned

data

remains

unchanged

until

the

time

the

application

sees

the

data,

even

when

temporary

tables

or

row

blocking

are

used.

Since

Repeatable

Read

may

acquire

and

hold

a

considerable

number

of

locks,

these

locks

may

exceed

the

number

of

locks

available

as

a

result

of

the

locklist

and

maxlocks

configuration

parameters.

In

order

to

avoid

lock

escalation,

the

optimizer

may

elect

to

acquire

a

single

table-level

lock

immediately

for

an

index

scan,

if

it

believes

that

lock

escalation

is

very

likely

to

occur.

This

functions

as

though

the

database

manager

has

issued

a

LOCK

TABLE

statement

on

your

behalf.

If

you

do

not

want

a

table-level

lock

to

be

obtained

ensure

that

enough

locks

are

available

to

the

transaction

or

use

the

Read

Stability

isolation

level.

Read

Stability

Read

Stability

(RS)

locks

only

those

rows

that

an

application

retrieves

within

a

unit

of

work.

It

ensures

that

any

qualifying

row

read

during

a

unit

of

work

is

not

changed

by

other

application

processes

until

the

unit

of

work

completes,

and

that

any

row

changed

by

another

application

process

is

not

read

until

the

change

is

committed

by

that

process.

That

is,

“nonrepeatable

read”

behavior

is

not

possible.

Unlike

repeatable

read,

with

Read

Stability,

if

your

application

issues

the

same

query

more

than

once,

you

may

see

additional

phantom

rows

(the

phantom

read

phenomenon).

Recalling

the

example

of

scanning

10

000

rows,

Read

Stability

only

locks

the

rows

that

qualify.

Thus,

with

Read

Stability,

only

10

rows

are

retrieved,

and

a

lock

is

held

only

on

those

ten

rows.

Contrast

this

with

Repeatable

Read,

where

in

this

example,

locks

would

be

held

on

all

10

000

rows.

The

locks

that

are

held

can

be

share,

next

share,

update,

or

exclusive

locks.

Note:

The

Read

Stability

isolation

level

ensures

that

all

returned

data

remains

unchanged

until

the

time

the

application

sees

the

data,

even

when

temporary

tables

or

row

blocking

are

used.

One

of

the

objectives

of

the

Read

Stability

isolation

level

is

to

provide

both

a

high

degree

of

concurrency

as

well

as

a

stable

view

of

the

data.

To

assist

in

achieving

this

objective,

the

optimizer

ensures

that

table

level

locks

are

not

obtained

until

lock

escalation

occurs.

The

Read

Stability

isolation

level

is

best

for

applications

that

include

all

of

the

following:

v

Operate

in

a

concurrent

environment

v

Require

qualifying

rows

to

remain

stable

for

the

duration

of

the

unit

of

work

v

Do

not

issue

the

same

query

more

than

once

within

the

unit

of

work,

or

do

not

require

that

the

query

get

the

same

answer

when

issued

more

than

once

in

the

same

unit

of

work.

Cursor

Stability

158

Common

Criteria

Certification:

Administration

and

User

Documentation

Cursor

Stability

(CS)

locks

any

row

accessed

by

a

transaction

of

an

application

while

the

cursor

is

positioned

on

the

row.

This

lock

remains

in

effect

until

the

next

row

is

fetched

or

the

transaction

is

terminated.

However,

if

any

data

on

a

row

is

changed,

the

lock

must

be

held

until

the

change

is

committed

to

the

database.

No

other

applications

can

update

or

delete

a

row

that

a

Cursor

Stability

application

has

retrieved

while

any

updatable

cursor

is

positioned

on

the

row.

Cursor

Stability

applications

cannot

see

uncommitted

changes

of

other

applications.

Recalling

the

example

of

scanning

10

000

rows,

if

you

use

Cursor

Stability,

you

will

only

have

a

lock

on

the

row

under

your

current

cursor

position.

The

lock

is

removed

when

you

move

off

that

row

(unless

you

update

that

row).

With

Cursor

Stability,

both

nonrepeatable

read

and

the

phantom

read

phenomenon

are

possible.

Cursor

Stability

is

the

default

isolation

level

and

should

be

used

when

you

want

the

maximum

concurrency

while

seeing

only

committed

rows

from

other

applications.

Uncommitted

Read

Uncommitted

Read

(UR)

allows

an

application

to

access

uncommitted

changes

of

other

transactions.

The

application

also

does

not

lock

other

applications

out

of

the

row

it

is

reading,

unless

the

other

application

attempts

to

drop

or

alter

the

table.

Uncommitted

Read

works

differently

for

read-only

and

updatable

cursors.

Read-only

cursors

can

access

most

uncommitted

changes

of

other

transactions.

However,

tables,

views,

and

indexes

that

are

being

created

or

dropped

by

other

transactions

are

not

available

while

the

transaction

is

processing.

Any

other

changes

by

other

transactions

can

be

read

before

they

are

committed

or

rolled

back.

Note:

Cursors

that

are

updatable

operating

under

the

Uncommitted

Read

isolation

level

will

behave

as

if

the

isolation

level

was

cursor

stability.

When

it

runs

a

program

using

isolation

level

UR,

an

application

can

use

isolation

level

CS.

This

happens

because

the

cursors

used

in

the

application

program

are

ambiguous.

The

ambiguous

cursors

can

be

escalated

to

isolation

level

CS

because

of

a

BLOCKING

option.

The

default

for

the

BLOCKING

option

is

UNAMBIG.

This

means

that

ambiguous

cursors

are

treated

as

updatable

and

the

escalation

of

the

isolation

level

to

CS

occurs.

To

prevent

this

escalation,

you

have

the

following

two

choices:

v

Modify

the

cursors

in

the

application

program

so

that

they

are

unambiguous.

Change

the

SELECT

statements

to

include

the

FOR

READ

ONLY

clause.

v

Leave

cursors

ambiguous

in

the

application

program,

but

precompile

the

program

or

bind

it

with

the

BLOCKING

ALL

option

to

allow

any

ambiguous

cursors

to

be

treated

as

read-only

when

the

program

is

run.

As

in

the

example

given

for

Repeatable

Read,

of

scanning

10

000

rows,

if

you

use

Uncommitted

Read,

you

do

not

acquire

any

row

locks.

With

Uncommitted

Read,

both

nonrepeatable

read

behavior

and

the

phantom

read

phenomenon

are

possible.

The

Uncommitted

Read

isolation

level

is

most

Chapter

8.

Concurrency,

Isolation

Levels,

and

Locking

159

commonly

used

for

queries

on

read-only

tables,

or

if

you

are

executing

only

select

statements

and

you

do

not

care

whether

you

see

uncommitted

data

from

other

applications.

Summary

of

isolation

levels

The

following

table

summarizes

the

different

isolation

levels

in

terms

of

their

undesirable

effects.

Table

18.

Summary

of

isolation

levels

Isolation

Level

Access

to

uncommitted

data

Nonrepeatable

reads

Phantom

read

phenomenon

Repeatable

Read

(RR)

Not

possible

Not

possible

Not

possible

Read

Stability

(RS)

Not

possible

Not

possible

Possible

Cursor

Stability

(CS)

Not

possible

Possible

Possible

Uncommitted

Read

(UR)

Possible

Possible

Possible

The

table

below

provides

a

simple

heuristic

to

help

you

choose

an

initial

isolation

level

for

your

applications.

Consider

this

table

a

starting

point,

and

refer

to

the

previous

discussions

of

the

various

levels

for

factors

that

might

make

another

isolation

level

more

appropriate.

Table

19.

Guidelines

for

choosing

an

isolation

level

Application

Type

High

data

stability

required

High

data

stability

not

required

Read-write

transactions

RS

CS

Read-only

transactions

RR

or

RS

UR

Choosing

the

appropriate

isolation

level

for

an

application

is

very

important

to

avoid

the

phenomena

that

are

intolerable

for

that

application.

The

isolation

level

affects

not

only

the

degree

of

isolation

among

applications

but

also

the

performance

characteristics

of

an

individual

application

since

the

CPU

and

memory

resources

that

are

required

to

obtain

and

free

locks

vary

with

the

isolation

level.

The

potential

for

deadlock

situations

also

varies

with

the

isolation

level.

Related

concepts:

v

“Concurrency

issues”

on

page

156

Related

tasks:

v

“Specifying

the

isolation

level”

on

page

160

Specifying

the

isolation

level

Because

the

isolation

level

determines

how

data

is

locked

and

isolated

from

other

processes

while

the

data

is

being

accessed,

you

should

select

an

isolation

level

that

balances

the

requirements

of

concurrency

and

data

integrity.

The

isolation

level

that

you

specify

is

in

effect

for

the

duration

of

the

unit

of

work.

The

isolation

level

can

be

specified

in

several

different

ways.

The

following

heuristics

are

used

in

determining

which

isolation

level

will

be

used

in

compiling

an

SQL

statement:

160

Common

Criteria

Certification:

Administration

and

User

Documentation

Static

SQL:

v

If

an

isolation

clause

is

specified

in

the

statement,

then

the

value

of

that

clause

is

used.

v

If

no

isolation

clause

is

specifed

in

the

statement,

then

the

isolation

level

used

is

the

one

specified

for

the

package

at

the

time

when

the

package

was

bound

to

the

database.

Dynamic

SQL:

v

If

an

isolation

clause

is

specified

in

the

statement,

then

the

value

of

that

clause

is

used.

v

If

no

isolation

clause

is

specifed

in

the

statement,

and

a

SET

CURRENT

ISOLATION

statement

has

been

issued

within

the

current

session,

then

the

value

of

the

CURRENT

ISOLATION

special

register

is

used.

v

If

no

isolation

clause

is

specifed

in

the

statement,

and

no

SET

CURRENT

ISOLATION

statement

has

been

issued

within

the

current

session,

then

the

isolation

level

used

is

the

one

specified

for

the

package

at

the

time

when

the

package

was

bound

to

the

database.

Note:

Many

commercially

written

applications

provide

a

method

for

choosing

the

isolation

level.

Refer

to

the

application

documentation

for

information.

Procedure:

To

specify

the

isolation

level:

1.

At

precompile

or

bind

time:

For

an

application

written

in

a

supported

compiled

language,

use

the

ISOLATION

option

of

the

command

line

processor

PREP

or

BIND

commands.

You

can

also

use

the

PREP

or

BIND

APIs

to

specify

the

isolation

level.

v

If

you

create

a

bind

file

at

precompile

time,

the

isolation

level

is

stored

in

the

bind

file.

If

you

do

not

specify

an

isolation

level

at

bind

time,

the

default

is

the

isolation

level

used

during

precompilation.

v

If

you

do

not

specify

an

isolation

level,

the

default

of

cursor

stability

is

used.

Note:

To

determine

the

isolation

level

of

a

package,

execute

the

following

query:

SELECT

ISOLATION

FROM

SYSCAT.PACKAGES

WHERE

PKGNAME

=

’XXXXXXXX’

AND

PKGSCHEMA

=

’YYYYYYYY’

where

XXXXXXXX

is

the

name

of

the

package

and

YYYYYYYY

is

the

schema

name

of

the

package.

Both

of

these

names

must

be

in

all

capital

letters.

2.

On

database

servers

that

support

REXX:

When

a

database

is

created,

multiple

bind

files

that

support

the

different

isolation

levels

for

SQL

in

REXX

are

bound

to

the

database.

Other

command-line

processor

packages

are

also

bound

to

the

database

when

a

database

is

created.

REXX

and

the

command

line

processor

connect

to

a

database

using

a

default

isolation

level

of

cursor

stability.

Changing

to

a

different

isolation

level

does

not

change

the

connection

state.

It

must

be

executed

in

the

CONNECTABLE

AND

UNCONNECTED

state

or

in

the

IMPLICITLY

CONNECTABLE

state.

To

verify

the

isolation

level

in

use

by

a

REXX

application,

check

the

value

of

the

SQLISL

REXX

variable.

The

value

is

updated

every

time

the

CHANGE

SQLISL

command

is

executed.

Chapter

8.

Concurrency,

Isolation

Levels,

and

Locking

161

3.

At

the

statement

level:

Use

the

WITH

clause.

The

statement-level

isolation

level

overrides

the

isolation

level

specified

for

the

package

in

which

the

statement

appears.

You

can

specify

an

isolation

level

for

the

following

SQL

statements:

v

SELECT

v

SELECT

INTO

v

Searched

DELETE

v

INSERT

v

Searched

UPDATE

v

DECLARE

CURSOR
The

following

conditions

apply

to

isolation

levels

specified

for

statements:

v

The

WITH

clause

cannot

be

used

on

subqueries

v

The

WITH

UR

option

applies

only

to

read-only

operations.

In

other

cases,

the

statement

is

automatically

changed

from

UR

to

CS.
4.

From

CLI

or

ODBC

at

runtime:

Use

the

CHANGE

ISOLATION

LEVEL

command.

For

DB2

Call

Level

Interface

(DB2

CLI),

you

can

change

the

isolation

level

as

part

of

the

DB2

CLI

configuration.

At

runtime,

use

the

SQLSetConnectAttr

function

with

the

SQL_ATTR_TXN_ISOLATION

attribute

to

set

the

transaction

isolation

level

for

the

current

connection

referenced

by

the

ConnectionHandle.

You

can

also

use

the

TXNISOLATION

keyword

in

the

db2cli.ini

file

.

5.

When

working

with

JDBC

or

SQLJ

at

run

time:

Note:

JDBC

and

SQLJ

are

implemented

with

CLI

on

DB2,

which

means

the

db2cli.ini

settings

might

affect

what

is

written

and

run

using

JDBC

and

SQLJ.

Use

the

setTransactionIsolation

method

in

the

java.sql

interface

connection.

In

SQLJ,

you

run

the

db2profc

SQLJ

optimizer

to

create

a

package.

The

options

that

you

can

specify

for

this

package

include

its

isolation

level.

6.

For

dynamic

SQL

within

the

current

session:

Use

the

SET

CURRENT

ISOLATION

statement

to

set

the

isolation

level

for

dynamic

SQL

issued

within

a

session.

Issuing

this

statement

sets

the

CURRENT

ISOLATION

special

register

to

a

value

that

specifies

the

level

of

isolation

for

any

dynamic

SQL

statements

issued

within

the

current

session.

Once

set,

the

CURRENT

ISOLATION

special

register

provides

the

isolation

level

for

any

subsequent

dynamic

SQL

statement

compiled

within

the

session,

regardless

of

the

package

issuing

the

statement.

This

isolation

level

will

apply

until

the

session

is

ended

or

until

a

SET

CURRENT

ISOLATION

statement

is

issued

with

the

RESET

option.

Related

concepts:

v

“Concurrency

issues”

on

page

156

Related

reference:

v

“SQLSetConnectAttr

function

(CLI)

-

Set

connection

attributes”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“CONNECT

(Type

1)”

on

page

887

v

“Statement

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

162

Common

Criteria

Certification:

Administration

and

User

Documentation

Concurrency

Control

and

Locking

Locks

and

concurrency

control

To

provide

concurrency

control

and

prevent

uncontrolled

data

access,

the

database

manager

places

locks

on

buffer

pools,

tables,

table

blocks,

or

table

rows.

A

lock

associates

a

database

manager

resource

with

an

application,

called

the

lock

owner,

to

control

how

other

applications

can

access

the

same

resource.

Although

most

locking

occurs

on

tables,

when

a

buffer

pool

is

created,

altered,

or

dropped,

a

buffer

pool

lock

is

set.

The

mode

used

with

this

lock

is

EXCLUSIVE

(X).

You

may

encounter

this

lock

when

a

snapshot

is

taken

using

the

Command

Line

Processor

(CLP).

When

viewing

the

snapshot,

you

will

see

that

the

lock

name

used

is

the

identifier

(ID)

of

the

buffer

pool

itself.

The

database

manager

uses

record-level

locking

or

table-level

locking

as

appropriate

based

on:

v

The

isolation

level

specified

at

precompile

time

or

when

an

application

is

bound

to

the

database.

The

isolation

level

can

be

one

of

the

following:

–

Uncommitted

Read

(UR)

–

Cursor

Stability

(CS)

–

Read

Stability

(RS)

–

Repeatable

Read

(RR)

The

different

isolation

levels

are

used

to

control

access

to

uncommitted

data,

prevent

lost

updates,

allow

non-repeatable

reads

of

data,

and

prevent

phantom

reads.

Use

the

minimum

isolation

level

that

satisfies

your

application

needs.

v

The

access

plan

selected

by

the

optimizer.

Table

scans,

index

scans,

and

other

methods

of

data

access

each

require

different

types

of

access

to

the

data.

v

The

LOCKSIZE

attribute

for

the

table.

The

LOCKSIZE

clause

on

the

ALTER

TABLE

statement

indicates

the

granularity

of

the

locks

used

when

the

table

is

accessed.

The

choices

are

either

ROW

for

row

locks,

or

TABLE

for

table

locks.

Use

ALTER

TABLE...

LOCKSIZE

TABLE

for

read-only

tables.

This

reduces

the

number

of

locks

required

by

database

activity.

v

The

amount

of

memory

devoted

to

locking.

The

amount

of

memory

devoted

to

locking

is

controlled

by

the

locklist

database

configuration

parameter.

If

the

lock

list

fills,

performance

can

degrade

due

to

lock

escalations

and

reduced

concurrency

on

shared

objects

in

the

database.

If

lock

escalations

occur

frequently,

increase

the

value

of

either

locklist

or

maxlocks,

or

both.

Ensure

that

all

transactions

COMMIT

frequently

to

free

held

locks.

In

general,

record-level

locking

is

used

unless

one

of

the

following

is

the

case:

v

The

isolation

level

chosen

is

uncommitted

read

(UR).

v

The

isolation

level

chosen

is

repeatable

read

(RR)

and

the

access

plan

requires

a

scan

with

no

predicates.

v

The

table

LOCKSIZE

attribute

is

“TABLE”.

v

The

lock

list

fills,

causing

escalation.

v

There

is

an

explicit

table

lock

acquired

via

the

LOCK

TABLE

statement.

The

LOCK

TABLE

statement

prevents

concurrent

application

processes

from

either

changing

a

table

or

using

a

table.

Chapter

8.

Concurrency,

Isolation

Levels,

and

Locking

163

A

lock

escalation

occurs

when

the

number

of

locks

held

on

rows

and

tables

in

the

database

equals

the

percentage

of

the

locklist

specified

by

the

maxlocks

database

configuration

parameter.

Lock

escalation

might

not

affect

the

table

that

acquires

the

lock

that

triggers

escalation.

To

reduce

the

number

of

locks

to

about

half

the

number

held

when

lock

escalation

begins,

the

database

manager

begins

converting

many

small

row

locks

to

table

locks

for

all

active

tables,

beginning

with

any

locks

on

large

object

(LOB)

or

long

VARCHAR

elements.

An

exclusive

lock

escalation

is

a

lock

escalation

in

which

the

table

lock

acquired

is

an

exclusive

lock.

Lock

escalations

reduce

concurrency.

Conditions

that

might

cause

lock

escalations

should

be

avoided.

The

duration

of

row

locking

varies

with

the

isolation

level

being

used:

v

UR

scans:

No

row

locks

are

held

unless

row

data

is

changing.

v

CS

scans:

Row

locks

are

only

held

while

the

cursor

is

positioned

on

the

row.

v

RS

scans:

Only

qualifying

row

locks

are

held

for

the

duration

of

the

transaction.

v

RR

scans:

All

row

locks

are

held

for

the

duration

of

the

transaction.

Related

concepts:

v

“Lock

attributes”

on

page

164

v

“Locks

and

performance”

on

page

166

v

“Guidelines

for

locking”

on

page

170

Related

reference:

v

“locklist

-

Maximum

storage

for

lock

list

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“dlchktime

-

Time

interval

for

checking

deadlock”

on

page

792

v

“diaglevel

-

Diagnostic

error

capture

level

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“locktimeout

-

Lock

timeout”

on

page

793

v

“Lock

type

compatibility”

on

page

173

v

“Lock

modes

and

access

paths

for

standard

tables”

on

page

174

v

“Lock

modes

for

table

and

RID

index

scans

of

MDC

tables”

on

page

177

v

“Locking

for

block

index

scans

for

MDC

tables”

on

page

180

Lock

attributes

Database

manager

locks

have

the

following

basic

attributes:

Mode

The

type

of

access

allowed

for

the

lock

owner

as

well

as

the

type

of

access

permitted

for

concurrent

users

of

the

locked

object.

It

is

sometimes

referred

to

as

the

state

of

the

lock.

Object

The

resource

being

locked.

The

only

type

of

object

that

you

can

lock

explicitly

is

a

table.

The

database

manager

also

imposes

locks

on

other

types

of

resources,

such

as

rows,

tables,

and

table

spaces.

For

multidimensional

clustering

(MDC)

tables,

block

locks

can

also

be

imposed.

The

object

being

locked

determines

the

granularity

of

the

lock.

Duration

The

length

of

time

a

lock

is

held.

The

isolation

level

in

which

the

query

runs

affects

the

lock

duration.

164

Common

Criteria

Certification:

Administration

and

User

Documentation

The

following

table

shows

the

modes

and

their

effects

in

order

of

increasing

control

over

resources.

For

detailed

information

about

locks

at

various

levels,

refer

to

the

lock-mode

reference

tables.

Table

20.

Lock

Mode

Summary

Lock

Mode

Applicable

Object

Type

Description

IN

(Intent

None)

Table

spaces,

blocks,

tables

The

lock

owner

can

read

any

data

in

the

object,

including

uncommitted

data,

but

cannot

update

any

of

it.

Other

concurrent

applications

can

read

or

update

the

table.

IS

(Intent

Share)

Table

spaces,

blocks,

tables

The

lock

owner

can

read

data

in

the

locked

table,

but

cannot

update

this

data.

Other

applications

can

read

or

update

the

table.

NS

(Next

Key

Share)

Rows

The

lock

owner

and

all

concurrent

applications

can

read,

but

not

update,

the

locked

row.

This

lock

is

acquired

on

rows

of

a

table,

instead

of

an

S

lock,

where

the

isolation

level

of

the

application

is

either

RS

or

CS.

NS

lock

mode

is

not

used

for

next-key

locking.

It

is

used

instead

of

S

mode

during

CS

and

RS

scans

to

minimize

the

impact

of

next-key

locking

on

these

scans.

S

(Share)

Rows,

blocks,

tables

The

lock

owner

and

all

concurrent

applications

can

read,

but

not

update,

the

locked

data.

IX

(Intent

Exclusive)

Table

spaces,

blocks,

tables

The

lock

owner

and

concurrent

applications

can

read

and

update

data.

Other

concurrent

applications

can

both

read

and

update

the

table.

SIX

(Share

with

Intent

Exclusive)

Tables,

blocks

The

lock

owner

can

read

and

update

data.

Other

concurrent

applications

can

read

the

table.

U

(Update)

Rows,

blocks,

tables

The

lock

owner

can

update

data.

Other

units

of

work

can

read

the

data

in

the

locked

object,

but

cannot

attempt

to

update

it.

NW

(Next

Key

Weak

Exclusive)

Rows

When

a

row

is

inserted

into

an

index,

an

NW

lock

is

acquired

on

the

next

row.

For

type

2

indexes,

this

occurs

only

if

the

next

row

is

currently

locked

by

an

RR

scan.

The

lock

owner

can

read

but

not

update

the

locked

row.

This

lock

mode

is

similar

to

an

X

lock,

except

that

it

is

also

compatible

with

W

and

NS

locks.

X

(Exclusive)

Rows,

blocks,

tables,

buffer

pools

The

lock

owner

can

both

read

and

update

data

in

the

locked

object.

Only

uncommitted

read

applications

can

access

the

locked

object.

W

(Weak

Exclusive)

Rows

This

lock

is

acquired

on

the

row

when

a

row

is

inserted

into

a

table

that

does

not

have

type-2

indexes

defined.

The

lock

owner

can

change

the

locked

row.

To

determine

if

a

duplicate

value

has

been

committed

when

a

duplicate

value

is

found,

this

lock

is

also

used

during

insertion

into

a

unique

index.

This

lock

is

similar

to

an

X

lock

except

that

it

is

compatible

with

the

NW

lock.

Only

uncommitted

read

applications

can

access

the

locked

row.

Z

(Super

Exclusive)

Table

spaces,

tables

This

lock

is

acquired

on

a

table

in

certain

conditions,

such

as

when

the

table

is

altered

or

dropped,

an

index

on

the

table

is

created

or

dropped,

or

for

some

types

of

table

reorganization.

No

other

concurrent

application

can

read

or

update

the

table.

Related

concepts:

v

“Locks

and

concurrency

control”

on

page

163

v

“Locks

and

performance”

on

page

166

Related

reference:

v

“maxlocks

-

Maximum

percent

of

lock

list

before

escalation”

on

page

794

v

“Lock

type

compatibility”

on

page

173

Chapter

8.

Concurrency,

Isolation

Levels,

and

Locking

165

v

“Lock

modes

and

access

paths

for

standard

tables”

on

page

174

Locks

and

performance

Several

related

factors

affect

the

uses

of

locks

and

their

effect

on

application

performance.

The

following

factors

are

discussed

here:

v

Concurrency

and

granularity

v

Lock

compatibility

v

Lock

conversion

v

Lock

escalation

v

Lock

waits

and

timeouts

v

Deadlocks

Concurrency

and

granularity

If

one

application

holds

a

lock

on

a

database

object,

another

application

might

not

be

able

to

access

that

object.

For

this

reason,

row-level

locks

are

better

for

maximum

concurrency

than

table-level

locks.

However,

locks

require

storage

and

processing

time,

so

a

single

table

lock

minimizes

lock

overhead.

The

LOCKSIZE

clause

of

the

ALTER

TABLE

statement

specifies

the

scope

(granularity)

of

locks

at

either

row

or

table

level.

By

default,

row

locks

are

used.

Only

S

(Shared)

and

X

(Exclusive)

locks

are

requested

by

these

defined

table

locks.

The

ALTER

TABLE

statement

LOCKSIZE

ROW

clause

does

not

prevent

normal

lock

escalation

from

occurring.

A

permanent

table

lock

defined

by

the

ALTER

TABLE

statement

might

be

preferable

to

a

single-transaction

table

lock

using

LOCK

TABLE

statement

in

the

following

cases:

v

The

table

is

read-only,

and

will

always

need

only

S

locks.

Other

users

can

also

obtain

S

locks

on

the

table.

v

The

table

is

usually

accessed

by

read-only

applications,

but

is

sometimes

accessed

by

a

single

user

for

brief

maintenance,

and

that

user

requires

an

X

lock.

While

the

maintenance

program

runs,

the

read-only

applications

are

locked

out,

but

in

other

circumstances,

read-only

applications

can

access

the

table

concurrently

with

a

minimum

of

locking

overhead.

The

ALTER

TABLE

statement

specifies

locks

globally,

affecting

all

applications

and

users

that

access

that

table.

Individual

applications

might

use

the

LOCK

TABLE

statement

to

specify

table

locks

at

an

application

level

instead.

Lock

compatibility

Lock

compatibility

is

another

important

factor

in

concurrent

access

of

tables.

Lock

compatibility

refers

to

the

current

lock

on

the

object

and

the

type

of

lock

being

requested

on

that

object

and

determines

whether

the

request

can

be

granted.

Assume

that

application

A

holds

a

lock

on

a

table

that

application

B

also

wants

to

access.

The

database

manager

requests,

on

behalf

of

application

B,

a

lock

of

some

particular

mode.

If

the

mode

of

the

lock

held

by

A

permits

the

lock

requested

by

B,

the

two

locks

(or

modes)

are

said

to

be

compatible.

166

Common

Criteria

Certification:

Administration

and

User

Documentation

If

the

lock

mode

requested

for

application

B

is

not

compatible

with

the

lock

held

by

application

A,

application

B

cannot

continue.

Instead,

it

must

wait

until

application

A

releases

its

lock,

and

all

other

existing

incompatible

locks

are

released.

Lock

conversion

Changing

the

mode

of

a

lock

already

held

is

called

a

conversion.

Lock

conversion

occurs

when

a

process

accesses

a

data

object

on

which

it

already

holds

a

lock,

and

the

access

mode

requires

a

more

restrictive

lock

than

the

one

already

held.

A

process

can

hold

only

one

lock

on

a

data

object

at

any

time,

although

it

can

request

a

lock

many

times

on

the

same

data

object

indirectly

through

a

query.

Some

lock

modes

apply

only

to

tables,

others

only

to

rows

or

blocks.

For

rows

or

blocks,

conversion

usually

occurs

if

an

X

is

needed

and

an

S

or

U

(Update)

lock

is

held.

IX

(Intent

Exclusive)

and

S

(Shared)

locks

are

special

cases

with

regard

to

lock

conversion,

however.

Neither

S

nor

IX

is

considered

to

be

more

restrictive

than

the

other,

so

if

one

of

these

is

held

and

the

other

is

required,

the

resulting

conversion

is

to

a

SIX

(Share

with

Intent

Exclusive)

lock.

All

other

conversions

result

in

the

requested

lock

mode

becoming

the

mode

of

the

lock

held

if

the

requested

mode

is

more

restrictive.

A

dual

conversion

might

also

occur

when

a

query

updates

a

row.

If

the

row

is

read

through

an

index

access

and

locked

as

S,

the

table

that

contains

the

row

has

a

covering

intention

lock.

But

if

the

lock

type

is

IS

instead

of

IX,

if

the

row

is

subsequently

changed

the

table

lock

is

converted

to

an

IX

and

the

row

to

an

X.

Lock

conversion

usually

takes

place

implicitly

as

a

query

is

executed.

Understanding

the

kinds

of

locks

obtained

for

different

queries

and

table

and

index

combinations

can

assist

you

in

designing

and

tuning

your

application.

Lock

Escalation

Lock

escalation

is

an

internal

mechanism

that

reduces

the

number

of

locks

held.

In

a

single

table,

locks

are

escalated

to

a

table

lock

from

many

row

locks,

or

for

multi-dimensional

clustering

(MDC)

tables,

from

many

row

or

block

locks.

Lock

escalation

occurs

when

applications

hold

too

many

locks

of

any

type.

Lock

escalation

can

occur

for

a

specific

database

agent

if

the

agent

exceeds

its

allocation

of

the

lock

list.

Such

escalation

is

handled

internally;

the

only

externally

detectable

result

might

be

a

reduction

in

concurrent

access

on

one

or

more

tables.

In

an

appropriately

configured

database,

lock

escalation

occurs

infrequently.

For

example,

lock

escalation

might

occur

when

an

application

designer

creates

an

index

on

a

large

table

to

increase

performance

and

concurrency

but

a

transaction

accesses

most

of

the

records

in

the

table.

In

this

case,

because

the

database

manager

cannot

predict

how

much

of

the

table

will

be

locked,

it

locks

each

record

individually

instead

of

locking

only

the

table

either

S

or

X.

In

this

case,

the

database

designer

might

consult

with

the

application

designer,

and

recommend

a

LOCK

TABLE

statement

for

this

transaction.

Occasionally,

the

process

receiving

the

internal

escalation

request

holds

few

or

no

row

locks

on

any

table,

but

locks

are

escalated

because

one

or

more

processes

hold

Chapter

8.

Concurrency,

Isolation

Levels,

and

Locking

167

many

locks.

The

process

might

not

request

another

lock

or

access

the

database

again

except

to

end

the

transaction.

Then

another

process

might

request

the

lock

or

locks

that

trigger

the

escalation

request.

Note:

Lock

escalation

might

also

cause

deadlocks.

For

example,

suppose

a

read-only

application

and

an

update

application

are

both

accessing

the

same

table.

If

the

update

application

has

exclusive

locks

on

many

rows

on

the

table,

the

database

manager

might

try

to

escalate

the

locks

on

this

table

to

an

exclusive

table

lock.

However,

the

table

lock

held

by

the

read-only

application

will

cause

the

exclusive

lock

escalation

request

to

wait.

If

the

read-only

application

requires

a

row

lock

on

a

row

already

locked

by

the

update

application,

this

creates

a

deadlock.

To

avoid

this

kind

of

problem,

either

code

the

update

application

to

lock

the

table

exclusively

when

it

starts

or

increase

the

size

of

the

lock

list.

Lock

waits

and

timeouts

Lock

timeout

detection

is

a

database

manager

feature

that

prevents

applications

from

waiting

indefinitely

for

a

lock

to

be

released

in

an

abnormal

situation.

For

example,

a

transaction

might

be

waiting

for

a

lock

held

by

another

user’s

application,

but

the

other

user

has

left

the

workstation

without

allowing

the

application

to

commit

the

transaction

that

would

release

the

lock.

To

avoid

stalling

an

application

in

such

a

case,

set

the

locktimeout

configuration

parameter

to

the

maximum

time

that

any

application

should

wait

to

obtain

a

lock.

Setting

this

parameter

helps

avoid

global

deadlocks,

especially

in

distributed

unit

of

work

(DUOW)

applications.

If

the

time

that

the

lock

request

is

pending

is

greater

than

the

locktimeout

value,

the

requesting

application

receives

an

error

and

its

transaction

is

rolled

back.

For

example,

if

program1

tries

to

acquire

a

lock

which

is

already

held

by

program2,

program1

returns

SQLCODE

-911

(SQLSTATE

40001)

with

reason

code

68

if

the

timeout

period

expires.

The

default

value

for

locktimeout

is

-1,

which

turns

off

lock

timeout

detection.

Note:

For

table,

row,

and

MDC

block

locks,

an

application

can

override

the

database

level

locktimeout

setting

by

using

SET

CURRENT

LOCK

TIMEOUT.

To

log

more

information

about

lock-request

timeouts

in

the

administration

notification

log,

set

the

database

manager

configuration

parameter

notifylevel

to

four.

The

logged

information

includes

the

locked

object,

the

lock

mode,

and

the

application

holding

the

lock.

The

current

dynamic

SQL

statement

or

static

package

name

might

also

be

logged.

A

dynamic

SQL

statement

is

logged

only

at

notifylevel

four.

Deadlocks

Contention

for

locks

can

result

in

deadlocks.

For

example,

suppose

that

Process

1

locks

table

A

in

X

(exclusive)

mode

and

Process

2

locks

table

B

in

X

mode.

If

Process

1

then

tries

to

lock

table

B

in

X

mode

and

Process

2

tries

to

lock

table

A

in

X

mode,

the

processes

are

in

a

deadlock.

In

a

deadlock,

both

processes

are

suspended

until

their

second

lock

request

is

granted,

but

neither

request

is

granted

until

one

of

the

processes

performs

a

commit

or

rollback.

This

state

continues

indefinitely

until

an

external

agent

activates

one

of

the

processes

and

forces

it

to

perform

a

rollback.

To

handle

deadlocks,

the

database

manager

uses

an

asynchronous

system

background

process

called

the

deadlock

detector.

The

deadlock

detector

becomes

168

Common

Criteria

Certification:

Administration

and

User

Documentation

active

at

intervals

specified

by

the

dlchktime

configuration

parameter.

When

activated,

the

deadlock

detector

examines

the

lock

system

for

deadlocks.

In

a

partitioned

database,

each

partition

sends

lock

graphs

to

the

database

partition

that

contains

the

system

catalog

views.

Global

deadlock

detection

takes

place

on

this

partition.

If

it

finds

a

deadlock,

the

deadlock

detector

selects

one

deadlocked

process

as

the

victim

process

to

roll

back.

The

victim

process

is

awakened,

and

returns

SQLCODE

-911

(SQLSTATE

40001),

with

reason

code

2,

to

the

calling

application.

The

database

manager

rolls

back

the

selected

process

automatically.

When

the

rollback

is

complete,

the

locks

that

belonged

to

the

victim

process

are

released,

and

the

other

processes

involved

in

the

deadlock

can

continue.

To

ensure

good

performance,

select

the

proper

interval

for

the

deadlock

detector.

An

interval

that

is

too

short

causes

unnecessary

overhead,

and

an

interval

that

is

too

long

allows

a

deadlock

to

delay

a

process

for

an

unacceptable

amount

of

time.

For

example,

a

wake-up

interval

of

5

minutes

allows

a

deadlock

to

exist

for

almost

5

minutes,

which

can

seem

like

a

long

time

for

short

transaction

processing.

Balance®

the

possible

delays

in

resolving

deadlocks

with

the

overhead

of

detecting

them.

In

a

partitioned

database,

the

dlchktime

configuration

parameter

interval

is

applied

only

at

the

catalog

node.

If

a

large

number

of

deadlocks

are

detected

in

a

partitioned

database,

increase

the

value

of

the

dlchktime

parameter

to

account

for

lock

waits

and

communication

waits.

A

different

problem

occurs

when

an

application

with

more

than

one

independent

process

that

accesses

the

database

is

structured

to

make

deadlocks

likely.

An

example

is

an

application

in

which

several

processes

access

the

same

table

for

reads

and

then

writes.

If

the

processes

do

read-only

SQL

queries

at

first

and

then

do

SQL

updates

on

the

same

table,

the

chance

of

deadlocks

increases

because

of

potential

contention

between

the

processes

for

the

same

data.

For

instance,

if

two

processes

read

the

table,

and

then

update

the

table,

process

A

might

try

to

get

an

X

lock

on

a

row

on

which

process

B

has

an

S

lock,

and

vice

versa.

To

avoid

such

deadlocks,

applications

that

access

data

with

the

intention

of

modifying

it

should

do

one

of

the

following:

v

Use

the

FOR

UPDATE

OF

clause

when

performing

a

select.

This

clause

ensures

that

a

U

lock

is

imposed

when

process

A

attempts

to

read

the

data.

Row

blocking,

however,

is

disabled.

v

Use

the

WITH

RR

USE

AND

KEEP

UPDATE

LOCKS

or

the

WITH

RS

USE

AND

KEEP

UPDATE

LOCKS

clause

when

performing

the

query.

Either

clause

ensures

that

a

U

lock

is

imposed

when

process

A

attempts

to

read

the

data,

and

allows

row

blocking.

Note:

You

might

consider

defining

a

monitor

that

records

when

deadlocks

occur.

Use

the

SQL

statement

CREATE

EVENT

to

create

a

monitor.

At

the

same

time

a

database

is

created,

a

detailed

deadlocks

event

monitor

is

also

created.

As

with

any

monitor,

there

is

some

overhead

associated

with

this

event

monitor.

If

you

do

not

want

the

detailed

deadlocks

event

monitor,

then

the

event

monitor

can

be

dropped

using

the

command:

DROP

EVENT

MONITOR

db2detaildeadlock

To

limit

the

amount

of

disk

space

that

this

event

monitor

consumes,

the

event

monitor

deactivates,

and

a

message

is

written

to

the

administration

Chapter

8.

Concurrency,

Isolation

Levels,

and

Locking

169

notification

log,

once

it

has

reached

its

maximum

number

of

output

files.

Removing

output

files

that

are

no

longer

needed

allows

the

event

monitor

to

activate

again

on

the

next

database

activation.

In

a

federated

system

environment

in

which

an

application

accesses

nicknames,

the

data

requested

by

the

application

might

not

be

available

because

of

a

deadlock

at

a

data

source.

When

this

happens,

DB2®

relies

on

the

deadlock

handling

facilities

at

the

data

source.

If

deadlocks

occur

across

more

than

one

data

source,

DB2

relies

on

data

source

timeout

mechanisms

to

break

the

deadlock.

To

log

more

information

about

deadlocks,

set

the

database

manager

configuration

parameter

notifylevel

to

four.

The

administration

notification

log

stores

information

that

includes

the

object,

the

lock

mode,

and

the

application

holding

the

lock

on

the

object.

The

current

dynamic

SQL

statement

or

static

package

name

might

also

be

logged.

The

dynamic

SQL

statement

is

logged

only

if

notifylevel

is

four.

Related

concepts:

v

“Locks

and

concurrency

control”

on

page

163

v

“Deadlocks

between

applications”

on

page

155

Related

tasks:

v

“Correcting

lock

escalation

problems”

on

page

172

Related

reference:

v

“diaglevel

-

Diagnostic

error

capture

level

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“locktimeout

-

Lock

timeout”

on

page

793

Guidelines

for

locking

Consider

the

following

guidelines

when

you

tune

locking

for

concurrency

and

data

integrity:

v

Create

small

units

of

work

with

frequent

COMMIT

statements

to

promote

concurrent

access

of

data

by

many

users.

Include

COMMIT

statements

when

your

application

is

logically

consistent,

that

is,

when

the

data

you

have

changed

is

consistent.

When

a

COMMIT

is

issued,

locks

are

released

except

for

table

locks

associated

with

cursors

declared

WITH

HOLD.

v

Specify

an

appropriate

isolation

level.

Locks

are

acquired

even

if

your

application

merely

reads

rows,

so

it

is

still

important

to

commit

read-only

units

of

work.

This

is

because

shared

locks

are

acquired

by

repeatable

read,

read

stability,

and

cursor

stability

isolation

levels

in

read-only

applications.

With

repeatable

read

and

read

stability,

all

locks

are

held

until

a

COMMIT

is

issued,

preventing

other

processes

from

updating

the

locked

data,

unless

you

close

your

cursor

using

the

WITH

RELEASE

clause.

In

addition,

catalog

locks

are

acquired

even

in

uncommitted

read

applications

using

dynamic

SQL.

The

database

manager

ensures

that

your

application

does

not

retrieve

uncommitted

data

(rows

that

have

been

updated

by

other

applications

but

are

not

yet

committed)

unless

you

are

using

the

uncommitted

read

isolation

level.

v

Use

the

LOCK

TABLE

statement

appropriately.

The

statement

locks

an

entire

table.

Only

the

table

specified

in

the

LOCK

TABLE

statement

is

locked.

Parent

and

dependent

tables

of

the

specified

table

are

not

170

Common

Criteria

Certification:

Administration

and

User

Documentation

locked.

You

must

determine

whether

locking

other

tables

that

can

be

accessed

is

necessary

to

achieve

the

desired

result

in

terms

of

concurrency

and

performance.

The

lock

is

not

released

until

the

unit

of

work

is

committed

or

rolled

back.

LOCK

TABLE

IN

SHARE

MODE

You

want

to

access

data

that

is

consistent

in

time;

that

is,

data

current

for

a

table

at

a

specific

point

in

time.

If

the

table

experiences

frequent

activity,

the

only

way

to

ensure

that

the

entire

table

remains

stable

is

to

lock

it.

For

example,

your

application

wants

to

take

a

snapshot

of

a

table.

However,

during

the

time

your

application

needs

to

process

some

rows

of

a

table,

other

applications

are

updating

rows

you

have

not

yet

processed.

This

is

allowed

with

repeatable

read,

but

this

action

is

not

what

you

want.

As

an

alternative,

your

application

can

issue

the

LOCK

TABLE

IN

SHARE

MODE

statement:

no

rows

can

be

changed,

regardless

of

whether

you

have

retrieved

them

or

not.

You

can

then

retrieve

as

many

rows

as

you

need,

knowing

that

the

rows

you

have

retrieved

have

not

been

changed

just

before

you

retrieved

them.

With

LOCK

TABLE

IN

SHARE

MODE,

other

users

can

retrieve

data

from

the

table,

but

they

cannot

update,

delete,

or

insert

rows

into

the

table.

LOCK

TABLE

IN

EXCLUSIVE

MODE

You

want

to

update

a

large

part

of

the

table.

It

is

less

expensive

and

more

efficient

to

prevent

all

other

users

from

accessing

the

table

than

it

is

to

lock

each

row

as

it

is

updated,

and

then

unlock

the

row

later

when

all

changes

are

committed.

With

LOCK

TABLE

IN

EXCLUSIVE

MODE,

all

other

users

are

locked

out;

no

other

applications

can

access

the

table

unless

they

are

uncommitted

read

applications.
v

Use

ALTER

TABLE

statements

in

applications.

The

ALTER

TABLE

statement

with

the

LOCKSIZE

parameter

is

an

alternative

to

the

LOCK

TABLE

statement.

The

LOCKSIZE

parameter

lets

you

specify

a

lock

granularity

of

either

ROW

locks

or

TABLE

locks

for

the

next

table

access.

The

selection

of

ROW

locks

is

no

different

from

selecting

the

default

lock

size

when

a

table

is

created.

The

selection

of

TABLE

locks

may

improve

the

performance

of

queries

by

limiting

the

number

of

locks

that

need

to

be

acquired.

However,

concurrency

might

be

reduced

because

all

locks

are

on

the

complete

table.

Neither

choice

prevents

normal

lock

escalation.

v

Close

cursors

to

release

the

locks

that

they

hold.

When

you

close

a

cursor

with

the

CLOSE

CURSOR

statement

that

includes

the

WITH

RELEASE

clause,

the

database

manager

attempts

to

release

all

read

locks

that

have

been

held

for

the

cursor.

Table

read

locks

are

IS,

S,

and

U

table

locks.

Row-read

locks

are

S,

NS,

and

U

row

locks.

Block-read

locks

are

IS,

S,

and

U

block

locks.

The

WITH

RELEASE

clause

has

no

effect

on

cursors

that

are

operating

under

the

CS

or

UR

isolation

levels.

When

specified

for

cursors

that

are

operating

under

the

RS

or

RR

isolation

levels,

the

WITH

RELEASE

clause

ends

some

of

the

guarantees

of

those

isolation

levels.

Specifically,

a

RS

cursor

may

experience

the

nonrepeatable

read

phenomenon,

and

a

RR

cursor

may

experience

either

the

nonrepeatable

read

or

phantom

read

phenomenon.

If

a

cursor

that

is

originally

RR

or

RS

is

reopened

after

being

closed

using

the

WITH

RELEASE

clause,

then

new

read

locks

are

acquired.

Chapter

8.

Concurrency,

Isolation

Levels,

and

Locking

171

In

CLI

applications,

the

DB2®

CLI

connection

attribute

SQL_ATTR_CLOSE_BEHAVIOR

can

be

used

to

achieve

the

same

results

as

CLOSE

CURSOR

WITH

RELEASE.

v

In

a

partitioned

database,

when

you

changing

the

configuration

parameters

that

affecting

locking,

ensure

that

the

changes

are

made

to

all

of

the

partitions.

Related

concepts:

v

“Locks

and

concurrency

control”

on

page

163

v

“Lock

attributes”

on

page

164

v

“Locks

and

performance”

on

page

166

v

“Factors

that

affect

locking”

on

page

182

Correcting

lock

escalation

problems

The

database

manager

can

automatically

escalate

locks

from

row

or

block

level

to

table

level.

The

maxlocks

database

configuration

parameter

specifies

when

lock

escalation

is

triggered.

The

table

that

acquires

the

lock

that

triggers

lock

escalation

might

not

be

affected.

Locks

are

first

escalated

for

the

table

with

the

most

locks,

beginning

with

tables

for

which

long

object

(LOBs)

and

long

VARCHAR

descriptors

are

locked,

then

the

table

with

the

next

highest

number

of

locks,

and

so

on,

until

the

number

of

locks

held

is

decreased

to

about

half

of

the

value

specified

by

maxlocks.

In

a

well

designed

database,

lock

escalation

rarely

occurs.

If

lock

escalation

reduces

concurrency

to

an

unacceptable

level,

however,

you

need

to

analyze

the

problem

and

decide

how

to

solve

it.

Prerequisites:

Ensure

that

lock

escalation

information

is

recorded.

Set

the

database

manager

configuration

parameter

notifylevel

to

3,

which

is

the

default,

or

to

4.

At

notifylevel

of

2,

only

the

error

SQLCODE

is

reported.

At

notifylevel

of

3

or

4,

when

lock

escalation

fails,

information

is

recorded

for

the

error

SQLCODE

and

the

table

for

which

the

escalation

failed.

The

current

SQL

statement

is

logged

only

if

it

is

a

currently

executing,

dynamic

SQL

statement

and

notifylevelis

set

to

4.

Procedure:

Follow

these

general

steps

to

diagnose

the

cause

of

unacceptable

lock

escalations

and

apply

a

remedy:

1.

Analyze

in

the

administration

notification

log

on

all

tables

for

which

locks

are

escalated.

This

log

file

includes

the

following

information:

v

The

number

of

locks

currently

held.

v

The

number

of

locks

needed

before

lock

escalation

is

completed.

v

The

table

identifier

information

and

table

name

of

each

table

being

escalated.

v

The

number

of

non-table

locks

currently

held.

v

The

new

table

level

lock

to

be

acquired

as

part

of

the

escalation.

Usually,

an

“S,”

or

Share

lock,

or

an

“X,”

or

eXclusive

lock

is

acquired.

v

The

internal

return

code

of

the

result

of

the

acquisition

of

the

new

table

lock

level.
2.

Use

the

information

in

administration

notification

log

to

decide

how

to

resolve

the

escalation

problem.

Consider

the

following

possibilities:

172

Common

Criteria

Certification:

Administration

and

User

Documentation

v

Increase

the

number

of

locks

allowed

globally

by

increasing

the

value

of

the

maxlocks

or

the

locklist

parameters,

or

both,

in

the

database

configuration

file.

In

a

partitioned

database,

make

this

change

on

all

partitions.

You

might

choose

this

method

if

concurrent

access

to

the

table

by

other

processes

is

most

important.

However,

the

overhead

of

obtaining

record

level

locks

can

induce

more

delay

to

other

processes

than

is

saved

by

concurrent

access

to

a

table.

v

Adjust

the

process

or

processes

that

caused

the

escalation.

For

these

processes,

you

might

issue

LOCK

TABLE

statements

explicitly.

v

Change

the

degree

of

isolation.

Note

that

this

may

lead

to

decreased

concurrency,

however.

v

Increase

the

frequency

of

commits

to

reduce

the

number

of

locks

held

at

a

given

time.

v

Consider

frequent

COMMIT

statements

for

transactions

that

require

long

VARCHAR

or

various

kinds

of

long

object

(LOB)

data.

Although

this

kind

of

data

is

not

retrieved

from

disk

until

the

result

set

is

materialized,

the

descriptor

is

locked

when

the

data

is

first

referenced.

As

a

result,

many

more

locks

might

be

held

than

for

rows

that

contain

more

ordinary

kinds

of

data.

Related

reference:

v

“maxlocks

-

Maximum

percent

of

lock

list

before

escalation”

on

page

794

v

“diaglevel

-

Diagnostic

error

capture

level

configuration

parameter”

in

the

Administration

Guide:

Performance

Lock

type

compatibility

The

following

table

displays

information

about

the

circumstances

in

which

a

lock

request

can

be

granted

when

another

process

holds

or

is

requesting

a

lock

on

the

same

resource

in

a

given

state.

A

no

indicates

that

the

requestor

must

wait

until

all

incompatible

locks

are

released

by

other

processes.

Note

that

a

timeout

can

occur

when

a

requestor

is

waiting

for

a

lock.

A

yes

indicates

that

the

lock

is

granted

unless

an

earlier

requestor

is

waiting

for

the

resource.

Chapter

8.

Concurrency,

Isolation

Levels,

and

Locking

173

Table

21.

Lock

Type

Compatibility

State

of

Held

Resource

State

Being

Requested

none

IN

IS

NS

S

IX

SIX

U

X

Z

NW

W

none

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

IN

yes

yes

yes

yes

yes

yes

yes

yes

yes

no

yes

yes

IS

yes

yes

yes

yes

yes

yes

yes

yes

no

no

no

no

NS

yes

yes

yes

yes

yes

no

no

yes

no

no

yes

no

S

yes

yes

yes

yes

yes

no

no

yes

no

no

no

no

IX

yes

yes

yes

no

no

yes

no

no

no

no

no

no

SIX

yes

yes

yes

no

no

no

no

no

no

no

no

no

U

yes

yes

yes

yes

yes

no

no

no

no

no

no

no

X

yes

yes

no

no

no

no

no

no

no

no

no

no

Z

yes

no

no

no

no

no

no

no

no

no

no

no

NW

yes

yes

no

yes

no

no

no

no

no

no

no

yes

W

yes

yes

no

no

no

no

no

no

no

no

yes

no

Note:

I

Intent

N

None

NS

Next

Key

Share

S

Share

X

Exclusive

U

Update

Z

Super

Exclusive

NW

Next

Key

Weak

Exclusive

W

Weak

Exclusive

Note:

v

yes

-

grant

lock

requested

immediately

v

no

-

wait

for

held

lock

to

be

released

or

timeout

to

occur

Related

concepts:

v

“Locks

and

concurrency

control”

on

page

163

v

“Lock

attributes”

on

page

164

v

“Locks

and

performance”

on

page

166

Related

reference:

v

“Lock

modes

and

access

paths

for

standard

tables”

on

page

174

v

“Locking

for

block

index

scans

for

MDC

tables”

on

page

180

Lock

modes

and

access

paths

for

standard

tables

This

topic

includes

reference

information

about

locking

methods

for

standard

tables

for

different

data-access

plans.

The

following

tables

list

the

types

of

locks

obtained

for

standard

tables

at

each

level

for

different

access

plans.

Each

entry

is

made

up

of

two

parts:

table

lock

and

row

lock.

A

dash

indicates

that

a

particular

level

of

locking

is

not

done.

174

Common

Criteria

Certification:

Administration

and

User

Documentation

Notes:

1.

In

a

multi-dimensional

clustering

(MDC)

environment,

an

additional

lock

level,

BLOCK,

is

used.

2.

Lock

modes

can

be

changed

explicitly

with

the

lock-request-clause

of

a

select

statement.

Table

22.

Lock

Modes

for

Table

Scans

Isolation

Level

Read-only

and

ambiguous

scans

Cursored

operation

Searched

update

or

delete

Scan

Where

current

of

Scan

Update

or

delete

Access

Method:

Table

scan

with

no

predicates

RR

S/-

U/-

SIX/X

X/-

X/-

RS

IS/NS

IX/U

IX/X

IX/X

IX/X

CS

IS/NS

IX/U

IX/X

IX/X

IX/X

UR

IN/-

IX/U

IX/X

IX/X

IX/X

Access

Method:

Table

Scan

with

predicates

RR

S/-

U/-

SIX/X

U/-

SIX/X

RS

IS/NS

IX/U

IX/X

IX/U

IX/X

CS

IS/NS

IX/U

IX/X

IX/U

IX/X

UR

IN/-

IX/U

IX/X

IX/U

IX/X

Note:

At

UR

isolation

level

with

IN

lock

for

type-1

indexes

or

if

there

are

predicates

on

include

columns

in

the

index,

the

isolation

level

is

upgraded

to

CS

and

the

locks

to

an

IS

table

lock

and

NS

row

locks.

Table

23.

Lock

Modes

for

RID

Index

Scans

Isolation

Level

Read-only

and

ambiguous

scans

Cursored

operations

Searched

update

or

delete

Scan

Where

current

of

Scan

Update

or

Delete

Access

Method:

RID

index

scan

with

no

predicates

RR

S/-

IX/S

IX/X

X/-

X/-

RS

IS/NS

IX/U

IX/X

IX/X

IX/X

CS

IS/NS

IX/U

IX/X

IX/X

IX/X

UR

IN/-

IX/U

IX/X

IX/X

IX/X

Access

Method:

RID

index

scan

with

a

single

qualifying

row

RR

IS/S

IX/U

IX/X

IX/X

IX/X

RS

IS/NS

IX/U

IX/X

IX/X

IX/X

CS

IS/NS

IX/U

IX/X

IX/X

IX/X

UR

IN/-

IX/U

IX/X

IX/X

IX/X

Access

Method:

Index

scan

with

start

and

stop

predicates

only

RR

IS/S

IX/S

IX/X

IX/X

IX/X

RS

IS/NS

IX/U

IX/X

IX/X

IX/X

CS

IS/NS

IX/U

IX/X

IX/X

IX/X

UR

IN/-

IX/U

IX/X

IX/X

IX/X

Chapter

8.

Concurrency,

Isolation

Levels,

and

Locking

175

Table

23.

Lock

Modes

for

RID

Index

Scans

(continued)

Isolation

Level

Read-only

and

ambiguous

scans

Cursored

operations

Searched

update

or

delete

Scan

Where

current

of

Scan

Update

or

Delete

Access

Method:

Index

Scan

with

index

and

other

predicates

(sargs,

resids)

only

RR

IS/S

IX/S

IX/X

IX/S

IX/X

RS

IS/NS

IX/U

IX/X

IX/U

IX/X

CS

IS/NS

IX/U

IX/X

IX/U

IX/X

UR

IN/-

IX/U

IX/X

IX/U

IX/X

The

following

table

shows

the

lock

modes

for

cases

in

which

reading

of

the

data

pages

is

deferred

to

allow

the

list

of

rows

to

be:

v

Further

qualified

using

multiple

indexes

v

Sorted

for

efficient

prefetching

Table

24.

Lock

modes

for

index

scans

used

for

deferred

data

page

access

Isolation

Level

Read-only

and

ambiguous

scans

Cursored

operations

Searched

update

or

delete

Scan

Where

current

of

Scan

Update

or

delete

Access

Method:

RID

index

scan

with

no

predicates

RR

IS/S

IX/S

X/-

RS

IN/-

IN/-

IN/-

CS

IN/-

IN/-

IN/-

UR

IN/-

IN/-

IN/-

Access

Method:

Deferred

Data

Page

Access,

after

a

RID

index

scan

with

no

predicates

RR

IN/-

IX/S

IX/X

X/-

X/-

RS

IS/NS

IX/U

IX/X

IX/X

IX/X

CS

IS/NS

IX/U

IX/X

IX/X

IX/X

UR

IN/-

IX/U

IX/X

IX/X

IX/X

Access

Method:

RID

index

scan

with

predicates

(sargs,

resids)

RR

IS/S

IX/S

IX/S

RS

IN/-

IN/-

IN/-

CS

IN/-

IN/-

IN/-

UR

IN/-

IN/-

IN/-

Access

Method:

RID

index

scan

with

start

and

stop

predicates

only

RR

IS/S

IX/S

IX/X

RS

IN/-

IN/-

IN/-

CS

IN/-

IN/-

IN/-

UR

IN/-

IN/-

IN/-

Access

Method:

Deferred

data-page

access

after

a

RID

index

scan

with

start

and

stop

predicates

only

176

Common

Criteria

Certification:

Administration

and

User

Documentation

Table

24.

Lock

modes

for

index

scans

used

for

deferred

data

page

access

(continued)

Isolation

Level

Read-only

and

ambiguous

scans

Cursored

operations

Searched

update

or

delete

Scan

Where

current

of

Scan

Update

or

delete

RR

IN/-

IX/S

IX/X

IX/X

IX/X

RS

IS/NS

IX/U

IX/X

IX/U

IX/X

CS

IS/NS

IX/U

IX/X

IX/U

IX/X

UR

IS/-

IX/U

IX/X

IX/U

IX/X

Access

Method:

Deferred

data-page

Access,

after

a

RID

index

scan

with

predicates

RR

IN/-

IX/S

IX/X

IX/S

IX/X

RS

IS/NS

IX/U

IX/X

IX/U

IX/X

CS

IS/NS

IX/U

IX/X

IX/U

IX/X

UR

IN/-

IX/U

IX/X

IX/U

IX/X

Related

concepts:

v

“Lock

attributes”

on

page

164

v

“Locks

and

performance”

on

page

166

Related

reference:

v

“Lock

type

compatibility”

on

page

173

v

“Lock

modes

for

table

and

RID

index

scans

of

MDC

tables”

on

page

177

v

“Locking

for

block

index

scans

for

MDC

tables”

on

page

180

Lock

modes

for

table

and

RID

index

scans

of

MDC

tables

In

a

multi-dimensional

clustering

(MDC)

environment,

an

additional

lock

level,

BLOCK,

is

used.

The

following

tables

list

the

types

of

locks

obtained

at

each

level

for

different

access

plans.

Each

entry

is

made

up

of

three

parts:

table

lock,

block

lock,

and

row

lock.

A

dash

indicates

that

a

particular

level

of

locking

is

not

used.

Note:

Lock

modes

can

be

changed

explicitly

with

the

lock-request-clause

of

a

select

statement.

Table

25.

Lock

Modes

for

Table

Scans

Isolation

Level

Read-only

and

ambiguous

scans

Cursored

operation

Searched

update

or

delete

Scan

Where

current

of

Scan

or

delete

Update

Access

Method:

Table

scan

with

no

predicates

RR

S/-/-

U/-/-

SIX/IX/X

X/-/-

X/-/-

RS

IS/IS/NS

IX/IX/U

IX/IX/U

IX/X/-

IX/I/-

CS

IS/IS/NS

IX/IX/U

IX/IX/X

IX/X/-

IX/X/-

UR

IN/IN/-

IX/IX/U

IX/IX/X

IX/X/-

IX/X/-

Access

Method:

Table

Scan

with

predicates

on

dimension

columns

only

RR

S/-/-

U/-/-

SIX/IX/X

U/-/-

SIX/X/-

Chapter

8.

Concurrency,

Isolation

Levels,

and

Locking

177

Table

25.

Lock

Modes

for

Table

Scans

(continued)

Isolation

Level

Read-only

and

ambiguous

scans

Cursored

operation

Searched

update

or

delete

Scan

Where

current

of

Scan

or

delete

Update

RS

IS/IS/NS

IX/IX/U

IX/IX/X

IX/U/-

X/X/-

CS

IS/IS/NS

IX/IX/U

IX/IX/X

IX/U/-

X/X/-

UR

IN/IN/-

IX/IX/U

IX/IX/X

IX/U/-

X/X/-

Access

Method:

Table

Scan

with

other

predicates

(sargs,

resids)

RR

S/-/-

U/-/-

SIX/IX/X

U/-/-

SIX/IX/X

RS

IS/IS/NS

IX/IX/U

IX/IX/X

IX/IX/U

IX/IX/X

CS

IS/IS/NS

IX/IX/U

IX/IX/X

IX/IX/U

IX/IX/X

UR

IN/IN/-

IX/IX/U

IX/IX/X

IX/IX/U

IX/IX/X

The

following

two

tables

show

lock

modes

for

RID

indexes

on

MDC

tables.

Table

26.

Lock

Modes

for

RID

Index

Scans

Isolation

Level

Read-only

and

ambiguous

scans

Cursored

operations

Searched

update

or

delete

Scan

Where

current

of

Scan

Delete

Update

Access

Method:

RID

index

scan

with

no

predicates

RR

S/-/-

IX/IX/S

IX/IX/X

X/-/-

X/-/-

RS

IS/IS/NS

IX/IX/U

IX/IX/X

X/X/X

X/X/X

CS

IS/IS/NS

IX/IX/U

IX/IX/X

X/X/X

X/X/X

UR

IN/IN/-

IX/IX/U

IX/IX/X

X/X/X

X/X/X

Access

Method:

RID

index

scan

with

single

qualifying

row

RR

IS/IS/S

IX/IX/U

IX/IX/X

X/X/X

X/X/X

RS

IS/IS/NS

IX/IX/U

IX/IX/X

X/X/X

X/X/X

CS

IS/IS/NS

IX/IX/U

IX/IX/X

X/X/X

X/X/X

UR

IN/IN/-

IX/IX/U

IX/IX/X

X/X/X

X/X/X

Access

Method:

RID

index

scan

with

start

and

stop

predicates

only

RR

IS/IS/S

IX/IX/S

IX/IX/X

IX/IX/X

IX/IX/X

RS

IS/IS/NS

IX/IX/U

IX/IX/X

IX/IX/X

IX/IX/X

CS

IS/IS/NS

IX/IX/U

IX/IX/X

IX/IX/X

IX/IX/X

UR

IN/IN/-

IX/IX/U

IX/IX/X

IX/IX/X

IX/IX/X

Access

Method:

Index

scan

with

index

predicates

only

RR

IS/S/S

IX/IX/S

IX/IX/X

IX/IX/S

IX/IX/X

RS

IS/IS/NS

IX/IX/U

IX/IX/X

IX/IX/U

IX/IX/X

CS

IS/IS/NS

IX/IX/U

IX/IX/X

IX/IX/U

IX/IX/X

UR

IN/IN/-

IX/IX/U

IX/IX/X

IX/IX/U

IX/IX/X

Access

Method:

Index

scan

with

other

predicates

(sargs,

resids)

RR

IS/S/S

IX/IX/S

IX/IX/X

IX/IX/S

IX/IX/X

RS

IS/IS/NS

IX/IX/U

IX/IX/X

IX/IX/U

IX/IX/X

178

Common

Criteria

Certification:

Administration

and

User

Documentation

Table

26.

Lock

Modes

for

RID

Index

Scans

(continued)

Isolation

Level

Read-only

and

ambiguous

scans

Cursored

operations

Searched

update

or

delete

Scan

Where

current

of

Scan

Delete

Update

CS

IS/IS/NS

IX/IX/U

IX/IX/X

IX/IX/U

IX/IX/X

UR

IN/IN/-

IX/IX/U

IX/IX/X

IX/IX/U

IX/IX/X

Note:

In

the

following

table,

which

shows

lock

modes

for

RID

index

scans

used

for

deferred

data-page

access,

at

UR

isolation

level

with

IN

lock

for

type-1

indexes

or

if

there

are

predicates

on

include

columns

in

the

index,

the

isolation

level

is

upgraded

to

CS

and

the

locks

are

upgraded

to

an

IS

table

lock,

an

IS

block

lock,

and

NS

row

locks.

Table

27.

Lock

modes

for

RID

index

scans

used

for

deferred

data-page

access

Isolation

Level

Read-only

and

ambiguous

scans

Cursored

operations

Searched

update

or

delete

Scan

Where

current

of

Scan

Delete

Update

Access

Method:

RID

index

scan

with

no

predicates

RR

IS/S/S

IX/IX/S

X/-/-

RS

IN/IN/-

IN/IN/-

IN/IN/-

CS

IN/IN/-

IN/IN/-

IN/IN/-

UR

IN/IN/-

IN/IN/-

IN/IN/-

Access

Method:

Deferred

data-page

access

after

a

RID

index

scan

with

no

predicates

RR

IN/IN/-

IX/IX/S

IX/IX/X

X/-/-

X/-/-

RS

IS/IS/NS

IX/IX/U

IX/IX/X

IX/IX/X

IX/IX/X

CS

IS/IS/NS

IX/IX/U

IX/IX/X

IX/IX/X

IX/IX/X

UR

IN/IN/-

IX/IX/U

IX/IX/X

IX/IX/X

IX/IX/X

Access

Method:

RID

index

scan

with

predicates

(sargs,

resids)

RR

IS/S/-

IX/IX/S

IX/IX/S

RS

IN/IN/-

IN/IN/-

IN/IN/-

CS

IN/IN/-

IN/IN/-

IN/IN/-

UR

IN/IN/-

IN/IN/-

IN/IN/-

Access

Method:

Deferred

data-page

access

after

a

RID

index

scan

with

predicates

(sargs,

resids)

RR

IN/IN/-

IX/IX/S

IX/IX/X

IX/IX/S

IX/IX/X

RS

IS/IS/NS

IX/IX/U

IX/IX/X

IX/IX/U

IX/IX/X

CS

IS/IS/NS

IX/IX/U

IX/IX/X

IX/IX/U

IX/IX/X

UR

IN/IN/-

IX/IX/U

IX/IX/X

IX/IX/U

IX/IX/X

Access

Method:

RID

index

scan

with

start

and

stop

predicates

only

RR

IS/IS/S

IX/IX/S

IX/IX/X

RS

IN/IN/-

IN/IN/-

IN/IN/-

CS

IN/IN/-

IN/IN/-

IN/IN/-

Chapter

8.

Concurrency,

Isolation

Levels,

and

Locking

179

Table

27.

Lock

modes

for

RID

index

scans

used

for

deferred

data-page

access

(continued)

Isolation

Level

Read-only

and

ambiguous

scans

Cursored

operations

Searched

update

or

delete

Scan

Where

current

of

Scan

Delete

Update

UR

IN/IN/-

IN/IN/-

IN/IN/-

Access

Method:

Deferred

data-page

access

after

a

RID

index

scan

with

start

and

stop

predicates

only

RR

IN/IN/-

IX/IX/S

IX/IX/X

IX/IX/X

IX/IX/X

RS

IS/IS/NS

IX/IX/U

IX/IX/X

IX/IX/U

IX/IX/X

CS

IS/IS/NS

IX/IX/U

IX/IX/X

IX/IX/U

IX/IX/X

UR

IS/-/-

IX/IX/U

IX/IX/X

IX/IX/U

IX/IX/X

Related

concepts:

v

“Locks

and

concurrency

control”

on

page

163

v

“Lock

attributes”

on

page

164

v

“Locks

and

performance”

on

page

166

Related

reference:

v

“Lock

type

compatibility”

on

page

173

v

“Lock

modes

and

access

paths

for

standard

tables”

on

page

174

v

“Locking

for

block

index

scans

for

MDC

tables”

on

page

180

Locking

for

block

index

scans

for

MDC

tables

The

following

tables

list

the

types

of

locks

obtained

at

each

level

for

different

access

plans.

Each

entry

is

made

up

of

three

parts:

table

lock,

block

lock,

and

row

lock.

A

dash

indicates

that

a

particular

level

of

locking

is

not

done.

Note:

Lock

modes

can

be

changed

explicitly

with

the

lock-request-clause

of

a

select

statement.

Table

28.

Lock

Modes

for

Index

Scans

Isolation

Level

Read-only

and

ambiguous

scans

Cursored

operations

Searched

update

or

delete

Scan

Where

current

of

Scan

Delete

Update

Access

Method:

With

no

predicates

RR

S/--/--

IX/IX/S

IX/IX/X

X/--/--

X/--/--

RS

IS/IS/NS

IX/IX/U

IX/IX/X

X/X/--

X/X/--

CS

IS/IS/NS

IX/IX/U

IX/IX/X

X/X/--

X/X/--

UR

IN/IN/-

IX/IX/U

IX/IX/X

X/X/--

X/X/--

Access

Method:

With

dimension

predicates

only

RR

IS/-/-

IX/IX/S

IX/IX/X

X/-/-

X/-/-

RS

IS/IS/NS

IX/IX/U

IX/IX/X

IX/X/-

IX/X/-

CS

IS/IS/NS

IX/IX/U

IX/IX/X

IX/X/-

IX/X/-

UR

IN/IN/-

IX/IX/U

IX/IX/X

IX/X/-

IX/X/-

180

Common

Criteria

Certification:

Administration

and

User

Documentation

Table

28.

Lock

Modes

for

Index

Scans

(continued)

Isolation

Level

Read-only

and

ambiguous

scans

Cursored

operations

Searched

update

or

delete

Scan

Where

current

of

Scan

Delete

Update

Access

Method:

With

dimension

start

and

stop

predicates

only

RR

IS/S/-

IX/IX/S

IX/IX/S

IX/IX/S

IX/IX/S

RS

IX/IX/S

IX/IX/U

IX/IX/X

IX/IX/-

IX/IX/-

CS

IX/IX/S

IX/IX/U

IX/IX/X

IX/IX/-

IX/IX/-

UR

IN/IN/-

IX/IX/U

IX/IX/X

IX/IX/-

IX/IX/-

Access

Method:

Index

Scan

with

predicates

RR

IS/S/-

IX/IX/S

IX/IX/X

IX/IX/S

IX/IX/X

RS

IS/IS/NS

IX/IX/U

IX/IX/X

IX/IX/U

IX/IX/X

CS

IS/IS/NS

IX/IX/U

IX/IX/X

IX/IX/U

IX/IX/X

UR

IN/IN/-

IX/IX/U

IX/IX/X

IX/IX/U

IX/IX/X

The

following

table

lists

lock

modes

for

block

index

scans

used

for

deferred

data-page

access:

Table

29.

Lock

modes

for

block

index

scans

used

for

deferred

data-page

access

Isolation

Level

Read-only

and

ambiguous

scans

Cursored

operations

Searched

update

or

delete

Scan

Where

current

of

Scan

Delete

Update

Access

Method:

Block

index

scan

with

no

predicates

RR

IS/S/--

IX/IX/S

X/--/--

RS

IN/IN/--

IN/IN/--

IN/IN/--

CS

IN/IN/--

IN/IN/--

IN/IN/--

UR

IN/IN/--

IN/IN/--

IN/IN/--

Access

Method:

Deferred

data-page

access

after

a

block

index

scan

with

no

predicates

RR

IN/IN/--

IX/IX/S

IX/IX/X

X/--/--

X/--/--

RS

IS/IS/NS

IX/IX/U

IX/IX/X

X/X/--

X/X/--

CS

IS/IS/NS

IX/IX/U

IX/IX/X

X/X/--

X/X/--

UR

IN/IN/--

IX/IX/U

IX/IX/X

X/X/--

X/X/--

Access

Method:

Block

index

scan

with

dimension

predicates

only

RR

IS/S/--

IX/IX/--

IX/S/--

RS

IS/IS/NS

IX/--/--

IX/--/--

CS

IS/IS/NS

IX/--/--

IX/--/--

UR

IN/IN/--

IX/--/--

IX/--/--

Access

Method:

Deferred

data-page

access

after

a

block

index

scan

with

dimension

predicates

only

RR

IN/IN/--

IX/IX/S

IX/IX/X

IX/S/--

IX/X/--

RS

IS/IS/NS

IX/IX/U

IX/IX/X

IX/U/--

IX/X/--

CS

IS/IS/NS

IX/IX/U

IX/IX/X

IX/U/--

IX/X/--

Chapter

8.

Concurrency,

Isolation

Levels,

and

Locking

181

Table

29.

Lock

modes

for

block

index

scans

used

for

deferred

data-page

access

(continued)

Isolation

Level

Read-only

and

ambiguous

scans

Cursored

operations

Searched

update

or

delete

Scan

Where

current

of

Scan

Delete

Update

UR

IN/IN/--

IX/IX/U

IX/IX/X

IX/U/--

IX/X/--

Access

Method:

Block

index

scan

with

start

and

stop

predicates

only

RR

IS/S/--

IX/IX/--

IX/X/--

RS

IN/IN/--

IN/IN/--

IN/IN/--

CS

IN/IN/--

IN/IN/--

IN/IN/--

UR

IN/IN/--

IN/IN/--

IN/IN/--

Access

Method:

Deferred

data-page

access

after

a

block

index

scan

with

start

and

stop

predicates

only

RR

IN/IN/--

IX/IX/X

IX/X/--

RS

IS/IS/NS

IN/IN/--

IN/IN/--

CS

IS/IS/NS

IN/IN/--

IN/IN/--

UR

IS/--/--

IN/IN/--

IN/IN/--

Access

Method:

Block

index

scan

other

predicates

(sargs,

resids)

RR

IS/S/--

IX/IX/--

IX/IX/--

RS

IN/IN/--

IN/IN/--

IN/IN/--

CS

IN/IN/--

IN/IN/--

IN/IN/--

UR

IN/IN/--

IN/IN/--

IN/IN/--

Access

Method:

Deferred

data-page

access

after

a

block

index

scan

with

other

predicates

(sargs,

resids

RR

IN/IN/--

IX/IX/S

IX/IX/X

IX/IX/S

IX/IX/X

RS

IS/IS/NS

IX/IX/U

IX/IX/X

IX/IX/U

IX/IX/X

CS

IS/IS/NS

IX/IX/U

IX/IX/X

IX/IX/U

IX/IX/X

UR

IN/IN/--

IX/IX/U

IX/IX/X

IX/IX/U

IX/IX/X

Related

concepts:

v

“Locks

and

performance”

on

page

166

Related

reference:

v

“Lock

type

compatibility”

on

page

173

v

“Lock

modes

and

access

paths

for

standard

tables”

on

page

174

v

“Lock

modes

for

table

and

RID

index

scans

of

MDC

tables”

on

page

177

Factors

that

affect

locking

The

following

factors

affect

the

mode

and

granularity

of

database

manager

locks:

v

The

type

of

processing

that

the

application

performs

v

The

data

access

method

v

Whether

indexes

are

type-2

or

type-1

v

Various

configuration

parameters

182

Common

Criteria

Certification:

Administration

and

User

Documentation

Related

concepts:

v

“Locks

and

concurrency

control”

on

page

163

v

“Lock

attributes”

on

page

164

v

“Locks

and

performance”

on

page

166

v

“Guidelines

for

locking”

on

page

170

v

“Index

cleanup

and

maintenance”

in

the

Administration

Guide:

Performance

v

“Locks

and

types

of

application

processing”

on

page

183

v

“Locks

and

data-access

methods”

on

page

184

v

“Index

types

and

next-key

locking”

on

page

185

Factors

That

Affect

Locking

Locks

and

types

of

application

processing

For

the

purpose

of

determining

lock

attributes,

application

processing

can

be

classified

as

one

of

the

following

types:

v

Read-only

This

type

includes

all

select

statements

that

are

intrinsically

read-only,

have

an

explicit

FOR

READ

ONLY

clause,

or

are

ambiguous

but

which

the

SQL

compiler

assumes

to

be

read-only

because

of

the

value

of

the

BLOCKING

option

that

the

PREP

or

BIND

command

specifies.

This

processing

type

requires

only

Share

locks

(S,

NS,

or

IS).

v

Intent

to

change

This

type

includes

all

select

statements

with

the

FOR

UPDATE

clause,

with

the

USE

AND

KEEP

UPDATE

LOCKS

clause,

with

the

USE

AND

KEEP

EXCLUSIVE

LOCKS

clause,

or

for

which

the

SQL

compiler

interprets

an

ambiguous

statement

to

imply

that

change

is

intended.

This

type

uses

Share

and

Update

locks

(S,

U,

and

X

for

rows;

IX,

U,

X,

and

S

for

blocks;

IX,

U,

and

X

for

tables).

v

Change

This

type

includes

UPDATE,

INSERT,

and

DELETE,

but

not

UPDATE

WHERE

CURRENT

OF

or

DELETE

WHERE

CURRENT

OF.

This

type

requires

Exclusive

locks

(X

or

IX).

v

Cursor

controlled

This

type

includes

UPDATE

WHERE

CURRENT

OF

and

DELETE

WHERE

CURRENT

OF.

It

also

requires

Exclusive

locks

(X

or

IX).

A

statement

that

inserts,

updates

or

deletes

data

in

a

target

table,

based

on

the

result

from

a

sub-select

statement,

does

two

types

of

processing.

The

rules

for

read-only

processing

determine

the

locks

for

the

tables

returned

in

the

sub-select

statement.

The

rules

for

change

processing

determine

the

locks

for

the

target

table.

Related

concepts:

v

“Locks

and

concurrency

control”

on

page

163

v

“Lock

attributes”

on

page

164

v

“Locks

and

performance”

on

page

166

v

“Guidelines

for

locking”

on

page

170

v

“Deadlocks

between

applications”

on

page

155

v

“Locks

and

data-access

methods”

on

page

184

v

“Index

types

and

next-key

locking”

on

page

185

Chapter

8.

Concurrency,

Isolation

Levels,

and

Locking

183

Related

tasks:

v

“Correcting

lock

escalation

problems”

on

page

172

Related

reference:

v

“Lock

type

compatibility”

on

page

173

Locks

and

data-access

methods

An

access

plan

is

the

method

that

the

optimizer

selects

to

retrieve

data

from

a

specific

table.

The

access

plan

can

have

a

significant

effect

on

lock

modes.

For

example,

when

an

index

scan

is

used

to

locate

a

specific

row,

the

optimizer

will

probably

choose

row-level

locking

(IS)

for

the

table.

For

example,

if

the

EMPLOYEE

table

that

has

an

index

on

employee

number

(EMPNO),

access

through

an

index

might

be

used

to

select

information

for

a

single

employee

with

a

statement

that

contains

the

following

SELECT

clause:

SELECT

*

FROM

EMPLOYEE

WHERE

EMPNO

=

'000310';

If

an

index

is

not

used,

the

entire

table

must

be

scanned

in

sequence

to

find

the

selected

rows,

and

may

thus

acquire

a

single

table

level

lock

(S).

For

example,

if

there

is

no

index

on

the

column

SEX,

a

table

scan

might

be

used

to

select

all

male

employees

with

a

a

statement

that

contains

the

following

SELECT

clause:

SELECT

*

FROM

EMPLOYEE

WHERE

SEX

=

'M';

Note:

Cursor

controlled

processing

uses

the

lock

mode

of

the

underlying

cursor

until

the

application

finds

a

row

to

update

or

delete.

For

this

type

of

processing,

no

matter

what

the

lock

mode

of

a

cursor,

an

exclusive

lock

is

always

obtained

to

perform

the

update

or

delete.

Locking

in

range-clustered

tables

works

slighly

differently

from

standard

key

or

next-key

locking.

In

accessing

a

range

of

rows

in

a

range-clustered

table,

all

rows

in

the

range

are

locked,

even

when

some

of

those

rows

are

empty.

In

standard

key

or

next

key

locking,

only

rows

with

existing

records

are

locked.

Reference

tables

provide

detailed

information

about

which

locks

are

obtained

for

what

kind

of

access

plan.

Deferred

access

of

the

data

pages

implies

that

access

to

the

row

occurs

in

two

steps,

which

results

in

more

complex

locking

scenarios.

The

timing

of

lock

aquisition

and

the

persistence

of

the

locks

depend

on

the

isolation

level.

Because

the

Repeatable

Read

isolation

level

retains

all

locks

until

the

end

of

the

transaction,

the

locks

acquired

in

the

first

step

are

held

and

there

is

no

need

to

acquire

further

locks

in

the

second

step.

For

the

Read

Stability

and

Cursor

Stability

isolation

levels,

locks

must

be

acquired

during

the

second

step.

To

maximize

concurrency,

locks

are

not

acquired

during

the

first

step

and

rely

on

the

reapplication

of

all

predicates

to

ensure

that

only

qualifying

rows

are

returned.

Related

concepts:

v

“Locks

and

concurrency

control”

on

page

163

v

“Lock

attributes”

on

page

164

v

“Locks

and

performance”

on

page

166

184

Common

Criteria

Certification:

Administration

and

User

Documentation

v

“Guidelines

for

locking”

on

page

170

v

“Locks

and

types

of

application

processing”

on

page

183

v

“Index

types

and

next-key

locking”

on

page

185

Related

tasks:

v

“Correcting

lock

escalation

problems”

on

page

172

Related

reference:

v

“Lock

type

compatibility”

on

page

173

v

“Lock

modes

and

access

paths

for

standard

tables”

on

page

174

v

“Lock

modes

for

table

and

RID

index

scans

of

MDC

tables”

on

page

177

v

“Locking

for

block

index

scans

for

MDC

tables”

on

page

180

Index

types

and

next-key

locking

As

transactions

cause

changes

to

type-1

indexes,

some

next-key

locking

occurs.

For

type-2

indexes,

minimal

next-key

locking

occurs.

v

Next-key

locking

for

type

2

indexes

Next-key

locking

occurs

when

a

key

is

inserted

into

an

index.

During

insertion

of

a

key

into

an

index,

the

row

that

corresponds

to

the

key

that

will

follow

the

new

key

in

the

index

is

locked

only

if

that

row

is

currently

locked

by

an

RR

index

scan.

The

lock

mode

used

for

the

next-key

lock

is

NW.

This

next-key

lock

is

released

before

the

key

insertion

is

actually

performed.

Key

insertion

occurs

when

a

row

is

inserted

into

a

table.

When

updates

to

a

row

result

in

a

change

to

the

value

of

the

index

key

for

that

row,

key

insertion

also

occurs

because

the

original

key

value

is

marked

deleted

and

the

new

key

value

is

inserted

into

the

index.

For

updates

that

affect

only

the

include

columns

of

an

index,

the

key

can

be

updated

in

place

and

no

next-key

locking

occurs.

During

RR

scans,

the

row

that

corresponds

to

the

key

that

follows

the

end

of

the

scan

range

is

locked

in

S

mode.

If

no

keys

follow

the

end

of

the

scan

range,

an

end-of-table

lock

is

acquired

to

lock

the

end

of

the

index.

If

the

key

that

follows

the

end

of

the

scan

range

is

marked

deleted,

the

scan

continues

to

lock

the

corresponding

rows

until

it

finds

a

key

that

is

not

marked

deleted,

when

it

locks

the

corresponding

row

for

that

key,

or

until

the

end

of

the

index

is

locked.

v

Next-key

locking

for

type-1

indexes:

Next-key

locks

occur

during

deletes

and

inserts

to

indexes

and

during

index

scans.

When

a

row

is

updated

in,

deleted

from,

or

inserted

into

a

table,

an

X

lock

is

obtained

on

that

row.

For

insertions

this

might

be

downgraded

to

a

W

lock.

When

the

key

is

deleted

from

the

table

index

or

inserted

into

it,

the

table

row

that

corresponds

to

the

key

that

follows

the

deleted

or

inserted

key

in

the

index

is

locked.

For

updates

that

affect

the

value

of

the

key,

the

original

key

value

is

first

deleted

and

the

new

value

is

inserted,

so

two

next-key

locks

are

acquired.

The

duration

of

these

locks

is

determined

as

follows:

–

During

index

key

deletion,

the

lock

mode

on

the

next

key

is

X

and

the

lock

is

held

until

commit

time.

–

During

index

key

insertion,

the

lock

mode

on

the

next

key

is

NW.

This

lock

is

acquired

only

if

there

is

contention

for

the

lock,

in

which

case

the

lock

is

released

before

the

key

is

actually

inserted

into

the

index.

Chapter

8.

Concurrency,

Isolation

Levels,

and

Locking

185

–

During

RR

scans,

the

table

row

that

corresponds

to

the

key

just

beyond

the

end

of

the

index

scan

range

is

locked

in

S

mode

and

is

held

until

commit

time.

–

During

CS/RS

scans,

the

row

corresponding

to

the

key

just

beyond

the

end

of

the

index

scan

range

is

locked

in

NS

mode

if

there

is

contention

for

the

lock.

This

lock

is

released

once

the

end

of

the

scan

range

is

verified.
The

next-key

locking

for

type-1

indexes

during

key

insertions

and

key

deletion

might

result

in

deadlocks.

The

following

example

shows

how

two

transactions

could

deadlock.

With

type

2

indexes,

such

deadlocks

do

not

occur.

Consider

the

following

example

of

an

index

that

contains

6

rows

with

the

following

values:

1

5

6

7

8

12.

1.

Transaction

1

deletes

the

row

with

key

value

8.

The

row

with

value

8

is

locked

in

X

mode.

When

the

corresponding

key

from

the

index

is

deleted,

the

row

with

value

12

is

locked

in

X

mode.

2.

Transaction

2

deletes

the

row

with

key

value

5.

The

row

with

value

5

is

locked

in

X

mode.

When

the

corresponding

key

from

the

index

is

deleted,

the

row

with

value

6

is

locked

in

X

mode.

3.

Transaction

1

inserts

a

row

with

key

value

4.

This

row

is

locked

in

W

mode.

When

inserting

the

new

key

into

the

index

is

attempted,

the

row

with

value

6

is

locked

in

NW

mode.

This

lock

attempt

will

wait

on

the

X

lock

that

transaction

2

has

on

this

row.

4.

Transaction

2

inserts

a

row

with

key

value

9.

This

row

is

locked

in

W

mode.

When

inserting

the

new

key

into

the

index

is

attempted,

the

row

with

key

value

12

is

locked

in

NW

mode.

This

lock

attempt

will

wait

on

the

X

lock

that

transaction

1

has

on

this

row.

When

type-1

indexes

are

used,

this

scenario

will

result

in

a

deadlock

and

one

of

these

transactions

will

be

rolled

back.

Related

concepts:

v

“Advantages

and

disadvantages

of

indexes”

in

the

Administration

Guide:

Performance

v

“Index

performance

tips”

in

the

Administration

Guide:

Performance

v

“Index

structure”

in

the

Administration

Guide:

Performance

v

“Index

reorganization”

in

the

Administration

Guide:

Performance

v

“Online

index

defragmentation”

in

the

Administration

Guide:

Performance

v

“Index

cleanup

and

maintenance”

in

the

Administration

Guide:

Performance

186

Common

Criteria

Certification:

Administration

and

User

Documentation

Chapter

9.

Configuring

DB2

to

be

Common

Criteria

compliant

A

Common

Criteria

compliant

DB2

instance

must

be

configured

so

that:

v

Any

request

made

by

a

DB2

client

to

a

DB2

server

is

authenticated

by

the

server

before

being

processed,

and

v

Communications

occur

using

TCP/IP

The

following

topic

provides

the

steps

required

to

configure

your

environment

so

that

it

is

Common

Criteria

compliant.

Configuring

DB2

to

be

Common

Criteria

compliant

Immediately

after

installing

DB2,

you

modify

the

values

of

the

authentication

and

svcename

database

manager

configuration

parameters.

Changing

the

values

of

these

configuration

parameters

will

ensure

that

your

environment

conforms

to

the

Common

Criteria

requirements.

Prerequisites:

To

update

configuration

parameter

values,

you

require

the

SYSADM

authority

level.

Procedure:

1.

Update

the

database

manager

configuration

so

that

clients

must

authenticate

themselves

at

the

DB2

server

via

a

user

ID

and

password.

Issue

the

following

command:

db2

update

dbm

cfg

using

authentication

server

2.

Update

the

database

manager

configuration

to

specify

the

TCP/IP

port

that

DB2

will

use

to

await

communications

with

remote

client

nodes.

Issue

the

following

command:

db2

update

dbm

cfg

using

svcename

port-number

The

port

number

that

you

specify

must

be

the

first

of

two

consecutive

ports

that

are

reserved

for

use

by

DB2.

For

additional

information

about

the

svcename

database

manager

configuration

parameter,

see

″svcename

-

TCP/IP

service

name″

3.

Stop

DB2.

Issue

the

following

command:

db2stop

4.

Start

DB2.

Issue

the

following

command:

db2start

The

updated

database

manager

configuration

parameters

take

effect

when

DB2

is

restarted.

Related

concepts:

v

“System

administration

authority

(SYSADM)”

on

page

21

Related

reference:

v

“svcename

-

TCP/IP

service

name”

on

page

786

v

“authentication

-

Authentication

type”

on

page

783

©

Copyright

IBM

Corp.

1993-2004

187

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION”

on

page

384

v

“ATTACH”

on

page

839

188

Common

Criteria

Certification:

Administration

and

User

Documentation

Chapter

10.

System

catalogs

and

security

maintenance

Using

the

system

catalog

for

security

issues

.

.

. 189

Details

on

using

the

system

catalog

for

security

issues

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 190

Retrieving

authorization

names

with

granted

privileges

.

.

.

.

.

.

.

.

.

.

.

.

.

. 190

Retrieving

all

names

with

DBADM

authority

190

Retrieving

names

authorized

to

access

a

table

191

Retrieving

all

privileges

granted

to

users

.

.

. 191

Securing

the

system

catalog

view

.

.

.

.

.

. 192

System

Catalog

Views

.

.

.

.

.

.

.

.

.

. 193

SYSCAT.COLAUTH

.

.

.

.

.

.

.

.

.

. 193

SYSCAT.DBAUTH

.

.

.

.

.

.

.

.

.

.

. 194

SYSCAT.INDEXAUTH

.

.

.

.

.

.

.

.

. 195

SYSCAT.PACKAGEAUTH

.

.

.

.

.

.

.

. 195

SYSCAT.PACKAGEDEP

.

.

.

.

.

.

.

.

. 196

SYSCAT.PASSTHRUAUTH

.

.

.

.

.

.

.

. 197

SYSCAT.SCHEMAAUTH

.

.

.

.

.

.

.

. 198

SYSCAT.SCHEMATA

.

.

.

.

.

.

.

.

.

. 198

SYSCAT.SEQUENCEAUTH

.

.

.

.

.

.

.

. 198

SYSCAT.SEQUENCES

.

.

.

.

.

.

.

.

. 199

SYSCAT.TABCONST

.

.

.

.

.

.

.

.

.

. 200

SYSCAT.TABLES

.

.

.

.

.

.

.

.

.

.

. 201

SYSCAT.TABLESPACES

.

.

.

.

.

.

.

.

. 205

SYSCAT.TBSPACEAUTH

.

.

.

.

.

.

.

. 206

SYSCAT.USEROPTIONS

.

.

.

.

.

.

.

.

. 206

SYSCAT.TABAUTH

.

.

.

.

.

.

.

.

.

. 206

Using

the

system

catalog

for

security

issues

Information

about

each

database

is

automatically

maintained

in

a

set

of

views

called

the

system

catalog,

which

is

created

when

the

database

is

generated.

This

system

catalog

describes

tables,

columns,

indexes,

programs,

privileges,

and

other

objects.

These

views

list

the

privileges

held

by

users

and

the

identity

of

the

user

granting

each

privilege:

SYSCAT.DBAUTH

Lists

the

database

privileges

SYSCAT.TABAUTH

Lists

the

table

and

view

privileges

SYSCAT.COLAUTH

Lists

the

column

privileges

SYSCAT.PACKAGEAUTH

Lists

the

package

privileges

SYSCAT.INDEXAUTH

Lists

the

index

privileges

SYSCAT.SCHEMAAUTH

Lists

the

schema

privileges

SYSCAT.PASSTHRUAUTH

Lists

the

server

privilege

SYSCAT.ROUTINEAUTH

Lists

the

routine

(functions,

methods,

and

stored

procedures)

privileges

Privileges

granted

to

users

by

the

system

will

have

SYSIBM

as

the

grantor.

SYSADM,

SYSMAINT

and

SYSCTRL

are

not

listed

in

the

system

catalog.

The

CREATE

and

GRANT

statements

place

privileges

in

the

system

catalog.

Users

with

SYSADM

and

DBADM

authorities

can

grant

and

revoke

SELECT

privilege

on

the

system

catalog

views.

Related

tasks:

v

“Retrieving

authorization

names

with

granted

privileges”

on

page

190

v

“Retrieving

all

names

with

DBADM

authority”

on

page

190

v

“Retrieving

names

authorized

to

access

a

table”

on

page

191

v

“Retrieving

all

privileges

granted

to

users”

on

page

191

v

“Securing

the

system

catalog

view”

on

page

192

©

Copyright

IBM

Corp.

1993-2004

189

Related

reference:

v

“SYSCAT.COLAUTH”

on

page

193

v

“SYSCAT.DBAUTH”

on

page

194

v

“SYSCAT.INDEXAUTH”

on

page

195

v

“SYSCAT.PACKAGEAUTH”

on

page

195

v

“SYSCAT.SCHEMAAUTH”

on

page

198

v

“SYSCAT.TABAUTH”

on

page

206

v

“SYSCAT.PASSTHRUAUTH”

on

page

197

v

“SYSCAT.ROUTINEAUTH

catalog

view”

in

the

SQL

Reference,

Volume

1

Details

on

using

the

system

catalog

for

security

issues

This

section

reviews

some

of

the

ways

to

determine

who

has

what

privileges

within

the

database.

Retrieving

authorization

names

with

granted

privileges

Procedure:

No

single

system

catalog

view

contains

information

about

all

privileges.

The

following

statement

retrieves

all

authorization

names

with

privileges:

SELECT

DISTINCT

GRANTEE,

GRANTEETYPE,

’DATABASE’

FROM

SYSCAT.DBAUTH

UNION

SELECT

DISTINCT

GRANTEE,

GRANTEETYPE,

’TABLE

’

FROM

SYSCAT.TABAUTH

UNION

SELECT

DISTINCT

GRANTEE,

GRANTEETYPE,

’PACKAGE

’

FROM

SYSCAT.PACKAGEAUTH

UNION

SELECT

DISTINCT

GRANTEE,

GRANTEETYPE,

’INDEX

’

FROM

SYSCAT.INDEXAUTH

UNION

SELECT

DISTINCT

GRANTEE,

GRANTEETYPE,

’COLUMN

’

FROM

SYSCAT.COLAUTH

UNION

SELECT

DISTINCT

GRANTEE,

GRANTEETYPE,

’SCHEMA

’

FROM

SYSCAT.SCHEMAAUTH

UNION

SELECT

DISTINCT

GRANTEE,

GRANTEETYPE,

’SERVER

’

FROM

SYSCAT.PASSTHRUAUTH

ORDER

BY

GRANTEE,

GRANTEETYPE,

3

Periodically,

the

list

retrieved

by

this

statement

should

be

compared

with

lists

of

user

and

group

names

defined

in

the

system

security

facility.

You

can

then

identify

those

authorization

names

that

are

no

longer

valid.

Note:

If

you

are

supporting

remote

database

clients,

it

is

possible

that

the

authorization

name

is

defined

at

the

remote

client

only

and

not

on

your

database

server

machine.

Related

concepts:

v

“Using

the

system

catalog

for

security

issues”

on

page

189

Retrieving

all

names

with

DBADM

authority

Procedure:

The

following

statement

retrieves

all

authorization

names

that

have

been

directly

granted

DBADM

authority:

SELECT

DISTINCT

GRANTEE

FROM

SYSCAT.DBAUTH

WHERE

DBADMAUTH

=

’Y’

190

Common

Criteria

Certification:

Administration

and

User

Documentation

Related

concepts:

v

“Database

administration

authority

(DBADM)”

on

page

25

v

“Using

the

system

catalog

for

security

issues”

on

page

189

Retrieving

names

authorized

to

access

a

table

Procedure:

The

following

statement

retrieves

all

authorization

names

that

are

directly

authorized

to

access

the

table

EMPLOYEE

with

the

qualifier

JAMES:

SELECT

DISTINCT

GRANTEETYPE,

GRANTEE

FROM

SYSCAT.TABAUTH

WHERE

TABNAME

=

’EMPLOYEE’

AND

TABSCHEMA

=

’JAMES’

UNION

SELECT

DISTINCT

GRANTEETYPE,

GRANTEE

FROM

SYSCAT.COLAUTH

WHERE

TABNAME

=

’EMPLOYEE’

AND

TABSCHEMA

=

’JAMES’

To

find

out

who

can

update

the

table

EMPLOYEE

with

the

qualifier

JAMES,

issue

the

following

statement:

SELECT

DISTINCT

GRANTEETYPE,

GRANTEE

FROM

SYSCAT.TABAUTH

WHERE

TABNAME

=

’EMPLOYEE’

AND

TABSCHEMA

=

’JAMES’

AND

(CONTROLAUTH

=

’Y’

OR

UPDATEAUTH

=

’Y’

OR

UPDATEAUTH

=

’G’)

UNION

SELECT

DISTINCT

GRANTEETYPE,

GRANTEE

FROM

SYSCAT.DBAUTH

WHERE

DBADMAUTH

=

’Y’

UNION

SELECT

DISTINCT

GRANTEETYPE,

GRANTEE

FROM

SYSCAT.COLAUTH

WHERE

TABNAME

=

’EMPLOYEE’

AND

TABSCHEMA

=

’JAMES’

AND

PRIVTYPE

=

’U’

This

retrieves

any

authorization

names

with

DBADM

authority,

as

well

as

those

names

to

which

CONTROL

or

UPDATE

privileges

have

been

directly

granted.

However,

it

will

not

return

the

authorization

names

of

users

who

only

hold

SYSADM

authority.

Remember

that

some

of

the

authorization

names

may

be

groups,

not

just

individual

users.

Related

concepts:

v

“Table

and

view

privileges”

on

page

28

v

“Using

the

system

catalog

for

security

issues”

on

page

189

Retrieving

all

privileges

granted

to

users

Procedure:

By

making

queries

on

the

system

catalog

views,

users

can

retrieve

a

list

of

the

privileges

they

hold

and

a

list

of

the

privileges

they

have

granted

to

other

users.

For

example,

the

following

statement

retrieves

a

list

of

the

database

privileges

that

have

been

directly

granted

to

an

individual

authorization

name:

SELECT

*

FROM

SYSCAT.DBAUTH

WHERE

GRANTEE

=

USER

AND

GRANTEETYPE

=

’U’

The

following

statement

retrieves

a

list

of

the

table

privileges

that

were

directly

granted

by

a

specific

user:

Chapter

10.

System

catalogs

and

security

maintenance

191

SELECT

*

FROM

SYSCAT.TABAUTH

WHERE

GRANTOR

=

USER

The

following

statement

retrieves

a

list

of

the

individual

column

privileges

that

were

directly

granted

by

a

specific

user:

SELECT

*

FROM

SYSCAT.COLAUTH

WHERE

GRANTOR

=

USER

The

keyword

USER

in

these

statements

is

always

equal

to

the

value

of

a

user’s

authorization

name.

USER

is

a

read-only

special

register.

Related

concepts:

v

“Privileges,

authority

levels,

and

database

authorities”

on

page

15

v

“Database

authorities”

on

page

24

v

“Using

the

system

catalog

for

security

issues”

on

page

189

Related

tasks:

v

“Granting

privileges”

on

page

44

v

“Revoking

privileges”

on

page

45

Securing

the

system

catalog

view

Procedure:

During

database

creation,

SELECT

privilege

on

the

system

catalog

views

is

granted

to

PUBLIC.

In

most

cases,

this

does

not

present

any

security

problems.

For

very

sensitive

data,

however,

it

may

be

inappropriate,

as

these

tables

describe

every

object

in

the

database.

If

this

is

the

case,

consider

revoking

the

SELECT

privilege

from

PUBLIC;

then

grant

the

SELECT

privilege

as

required

to

specific

users.

Granting

and

revoking

SELECT

on

the

system

catalog

views

is

done

in

the

same

way

as

for

any

view,

but

you

must

have

either

SYSADM

or

DBADM

authority

to

do

this.

At

a

minimum,

you

should

consider

restricting

access

to

the

following

catalog

views:

v

SYSCAT.DBAUTH

v

SYSCAT.TABAUTH

v

SYSCAT.PACKAGEAUTH

v

SYSCAT.INDEXAUTH

v

SYSCAT.COLAUTH

v

SYSCAT.PASSTHRUAUTH

v

SYSCAT.SCHEMAAUTH

This

would

prevent

information

on

user

privileges

from

becoming

available

to

everyone

with

access

to

the

database.

With

this

information,

an

unethical

user

could

gain

unauthorized

access

to

the

database.

You

should

also

examine

the

columns

for

which

statistics

are

gathered.

Some

of

the

statistics

recorded

in

the

system

catalog

contain

data

values

which

could

be

sensitive

information

in

your

environment.

If

these

statistics

contain

sensitive

data,

you

may

wish

to

revoke

SELECT

privilege

from

PUBLIC

for

the

SYSCAT.COLUMNS

and

SYSCAT.COLDIST

catalog

views.

192

Common

Criteria

Certification:

Administration

and

User

Documentation

If

you

wish

to

limit

access

to

the

system

catalog

views,

you

could

define

views

to

let

each

authorization

name

retrieve

information

about

its

own

privileges.

For

example,

the

following

view

MYSELECTS

includes

the

owner

and

name

of

every

table

on

which

a

user’s

authorization

name

has

been

directly

granted

SELECT

privilege:

CREATE

VIEW

MYSELECTS

AS

SELECT

TABSCHEMA,

TABNAME

FROM

SYSCAT.TABAUTH

WHERE

GRANTEETYPE

=

’U’

AND

GRANTEE

=

USER

AND

SELECTAUTH

=

’Y’

The

keyword

USER

in

this

statement

is

always

equal

to

the

value

of

the

authorization

name.

The

following

statement

makes

the

view

available

to

every

authorization

name:

GRANT

SELECT

ON

TABLE

MYSELECTS

TO

PUBLIC

And

finally,

remember

to

revoke

SELECT

privilege

on

the

base

table:

REVOKE

SELECT

ON

TABLE

SYSCAT.TABAUTH

FROM

PUBLIC

Related

concepts:

v

“Catalog

statistics”

in

the

Administration

Guide:

Performance

v

“Database

authorities”

on

page

24

v

“Using

the

system

catalog

for

security

issues”

on

page

189

Related

tasks:

v

“Granting

privileges”

on

page

44

v

“Revoking

privileges”

on

page

45

System

Catalog

Views

SYSCAT.COLAUTH

Contains

one

or

more

rows

for

each

user

or

group

who

is

granted

a

column

level

privilege,

indicating

the

type

of

privilege

and

whether

or

not

it

is

grantable.

Table

30.

SYSCAT.COLAUTH

Catalog

View

Column

Name

Data

Type

Nullable

Description

GRANTOR

VARCHAR(128)

Authorization

ID

of

the

user

who

granted

the

privileges

or

SYSIBM.

GRANTEE

VARCHAR(128)

Authorization

ID

of

the

user

or

group

who

holds

the

privileges.

GRANTEETYPE

CHAR(1)

U

=

Grantee

is

an

individual

user.

G

=

Grantee

is

a

group.

TABSCHEMA

VARCHAR(128)

Qualified

name

of

the

table

or

view.

TABNAME

VARCHAR(128)

COLNAME

VARCHAR(128)

Name

of

the

column

to

which

this

privilege

applies.

COLNO

SMALLINT

Number

of

this

column

in

the

table

or

view.

Chapter

10.

System

catalogs

and

security

maintenance

193

Table

30.

SYSCAT.COLAUTH

Catalog

View

(continued)

Column

Name

Data

Type

Nullable

Description

PRIVTYPE

CHAR(1)

Indicates

the

type

of

privilege

held

on

the

table

or

view:

U

=

Update

privilege

R

=

Reference

privilege

GRANTABLE

CHAR(1)

Indicates

if

the

privilege

is

grantable.

G

=

Grantable

N

=

Not

grantable

SYSCAT.DBAUTH

Records

the

database

authorities

held

by

users.

Table

31.

SYSCAT.DBAUTH

Catalog

View

Column

Name

Data

Type

Nullable

Description

GRANTOR

VARCHAR(128)

SYSIBM

or

authorization

ID

of

the

user

who

granted

the

privileges.

GRANTEE

VARCHAR(128)

Authorization

ID

of

the

user

or

group

who

holds

the

privileges.

GRANTEETYPE

CHAR(1)

U

=

Grantee

is

an

individual

user.

G

=

Grantee

is

a

group.

DBADMAUTH

CHAR(1)

Whether

grantee

holds

DBADM

authority

over

the

database:

Y

=

Authority

is

held.

N

=

Authority

is

not

held.

CREATETABAUTH

CHAR(1)

Whether

grantee

can

create

tables

in

the

database

(CREATETAB):

Y

=

Privilege

is

held.

N

=

Privilege

is

not

held.

BINDADDAUTH

CHAR(1)

Whether

grantee

can

create

new

packages

in

the

database

(BINDADD):

Y

=

Privilege

is

held.

N

=

Privilege

is

not

held.

CONNECTAUTH

CHAR(1)

Whether

grantee

can

connect

to

the

database

(CONNECT):

Y

=

Privilege

is

held.

N

=

Privilege

is

not

held.

NOFENCEAUTH

CHAR(1)

Whether

grantee

holds

privilege

to

create

non-fenced

functions.

Y

=

Privilege

is

held.

N

=

Privilege

is

not

held.

IMPLSCHEMAAUTH

CHAR(1)

Whether

grantee

can

implicitly

create

schemas

in

the

database

(IMPLICIT_SCHEMA):

Y

=

Privilege

is

held.

N

=

Privilege

is

not

held.

SYSCAT.COLAUTH

194

Common

Criteria

Certification:

Administration

and

User

Documentation

Table

31.

SYSCAT.DBAUTH

Catalog

View

(continued)

Column

Name

Data

Type

Nullable

Description

LOADAUTH

CHAR(1)

Whether

grantee

holds

LOAD

authority

over

the

database:

Y

=

Authority

is

held.

N

=

Authority

is

not

held.

EXTERNALROUTINEAUTH

CHAR(1)

Whether

grantee

can

create

external

routines

(CREATE_EXTERNAL_ROUTINE):

Y

=

Authority

is

held.

N

=

Authority

is

not

held.

QUIESCECONNECTAUTH

CHAR(1)

Whether

grantee

can

connect

to

a

database

(QUIESCE_CONNECT):

Y

=

Authority

is

held.

N

=

Authority

is

not

held.

SYSCAT.INDEXAUTH

Contains

a

row

for

every

privilege

held

on

an

index.

Table

32.

SYSCAT.INDEXAUTH

Catalog

View

Column

Name

Data

Type

Nullable

Description

GRANTOR

VARCHAR(128)

Authorization

ID

of

the

user

who

granted

the

privileges.

GRANTEE

VARCHAR(128)

Authorization

ID

of

the

user

or

group

who

holds

the

privileges.

GRANTEETYPE

CHAR(1)

U

=

Grantee

is

an

individual

user.

G

=

Grantee

is

a

group.

INDSCHEMA

VARCHAR(128)

Qualified

name

of

the

index.

INDNAME

VARCHAR(18)

CONTROLAUTH

CHAR(1)

Whether

grantee

holds

CONTROL

privilege

over

the

index:

Y

=

Privilege

is

held.

N

=

Privilege

is

not

held.

SYSCAT.PACKAGEAUTH

Contains

a

row

for

every

privilege

held

on

a

package.

Table

33.

SYSCAT.PACKAGEAUTH

Catalog

View

Column

Name

Data

Type

Nullable

Description

GRANTOR

VARCHAR(128)

Authorization

ID

of

the

user

who

granted

the

privileges.

GRANTEE

VARCHAR(128)

Authorization

ID

of

the

user

or

group

who

holds

the

privileges.

GRANTEETYPE

CHAR(1)

U

=

Grantee

is

an

individual

user.

G

=

Grantee

is

a

group.

SYSCAT.DBAUTH

Chapter

10.

System

catalogs

and

security

maintenance

195

Table

33.

SYSCAT.PACKAGEAUTH

Catalog

View

(continued)

Column

Name

Data

Type

Nullable

Description

PKGSCHEMA

VARCHAR(128)

Name

of

the

package

on

which

the

privileges

are

held.

PKGNAME

CHAR(8)

CONTROLAUTH

CHAR(1)

Indicates

whether

grantee

holds

CONTROL

privilege

on

the

package:

Y

=

Privilege

is

held.

N

=

Privilege

is

not

held.

BINDAUTH

CHAR(1)

Indicates

whether

grantee

holds

BIND

privilege

on

the

package:

Y

=

Privilege

is

held.

N

=

Privilege

is

not

held.

G

=

Privilege

is

held

and

grantable.

EXECUTEAUTH

CHAR(1)

Indicates

whether

grantee

holds

EXECUTE

privilege

on

the

package:

Y

=

Privilege

is

held.

N

=

Privilege

is

not

held.

G

=

Privilege

is

held

and

grantable.

SYSCAT.PACKAGEDEP

Contains

a

row

for

each

dependency

that

packages

have

on

indexes,

tables,

views,

triggers,

functions,

aliases,

types,

and

hierarchies.

Table

34.

SYSCAT.PACKAGEDEP

Catalog

View

Column

Name

Data

Type

Nullable

Description

PKGSCHEMA

VARCHAR(128)

Name

of

the

package.

PKGNAME

CHAR(8)

UNIQUEID

CHAR(8)

Internal

date

and

time

information

indicating

when

the

package

was

first

created.

Useful

for

identifying

a

specific

package

when

multiple

packages

having

the

same

name

exist.

PKGVERSION

VARCHAR(64)

Version

identifier

of

the

package.

BINDER

VARCHAR(128)

Yes

Binder

of

the

package.

SYSCAT.PACKAGEAUTH

196

Common

Criteria

Certification:

Administration

and

User

Documentation

Table

34.

SYSCAT.PACKAGEDEP

Catalog

View

(continued)

Column

Name

Data

Type

Nullable

Description

BTYPE

CHAR(1)

Type

of

object

BNAME:

A

=

Alias

B

=

Trigger

D

=

Server

definition

F

=

Function

instance

I

=

Index

M

=

Function

mapping

N

=

Nickname

O

=

Privilege

dependency

on

all

subtables

or

subviews

in

a

table

or

view

hierarchy

P

=

Page

size

R

=

Structured

type

S

=

Materialized

query

table

T

=

Table

U

=

Typed

table

V

=

View

W

=

Typed

view

BSCHEMA

VARCHAR(128)

Qualified

name

of

an

object

on

which

the

package

depends.

BNAME

VARCHAR(128)

TABAUTH

SMALLINT

Yes

If

BTYPE

is

O,

S,

T,

U,

V

or

W

then

it

encodes

the

privileges

that

are

required

by

this

package

(Select,

Insert,

Delete,

Update).

Note:

If

a

function

instance

with

dependencies

is

dropped,

the

package

is

put

into

an

“inoperative”

state,

and

it

must

be

explicitly

rebound.

If

any

other

object

with

dependencies

is

dropped,

the

package

is

put

into

an

“invalid”

state,

and

the

system

will

attempt

to

rebind

the

package

automatically

when

it

is

first

referenced.

SYSCAT.PASSTHRUAUTH

This

catalog

view

contains

information

about

authorizations

to

query

data

sources

in

pass-through

sessions.

A

constraint

on

the

base

table

requires

that

the

values

in

SERVER

correspond

to

the

values

in

the

SERVER

column

of

SYSCAT.SERVERS.

None

of

the

fields

in

SYSCAT.PASSTHRUAUTH

are

nullable.

Table

35.

Columns

in

SYSCAT.PASSTHRUAUTHCatalog

View

Column

Name

Data

Type

Nullable

Description

GRANTOR

VARCHAR(128)

Authorization

ID

of

the

user

who

granted

the

privilege.

GRANTEE

VARCHAR(128)

Authorization

ID

of

the

user

or

group

who

holds

the

privilege.

GRANTEETYPE

CHAR(1)

A

letter

that

specifies

the

type

of

grantee:

U

=

Grantee

is

an

individual

user.

G

=

Grantee

is

a

group.

SERVERNAME

VARCHAR(128)

Name

of

the

data

source

that

the

user

or

group

is

being

granted

authorization

to.

SYSCAT.PACKAGEDEP

Chapter

10.

System

catalogs

and

security

maintenance

197

SYSCAT.SCHEMAAUTH

Contains

one

or

more

rows

for

each

user

or

group

who

is

granted

a

privilege

on

a

particular

schema

in

the

database.

All

schema

privileges

for

a

single

schema

granted

by

a

specific

grantor

to

a

specific

grantee

appear

in

a

single

row.

Table

36.

SYSCAT.SCHEMAAUTH

Catalog

View

Column

Name

Data

Type

Nullable

Description

GRANTOR

VARCHAR(128)

Authorization

ID

of

the

user

who

granted

the

privileges

or

SYSIBM.

GRANTEE

VARCHAR(128)

Authorization

ID

of

the

user

or

group

who

holds

the

privileges.

GRANTEETYPE

CHAR(1)

U

=

Grantee

is

an

individual

user.

G

=

Grantee

is

a

group.

SCHEMANAME

VARCHAR(128)

Name

of

the

schema.

ALTERINAUTH

CHAR(1)

Indicates

whether

grantee

holds

ALTERIN

privilege

on

the

schema:

Y

=

Privilege

is

held.

G

=

Privilege

is

held

and

grantable.

N

=

Privilege

is

not

held.

CREATEINAUTH

CHAR(1)

Indicates

whether

grantee

holds

CREATEIN

privilege

on

the

schema:

Y

=

Privilege

is

held.

G

=

Privilege

is

held

and

grantable.

N

=

Privilege

is

not

held.

DROPINAUTH

CHAR(1)

Indicates

whether

grantee

holds

DROPIN

privilege

on

the

schema:

Y

=

Privilege

is

held.

G

=

Privilege

is

held

and

grantable.

N

=

Privilege

is

not

held.

SYSCAT.SCHEMATA

Contains

a

row

for

each

schema.

Table

37.

SYSCAT.SCHEMATA

Catalog

View

Column

Name

Data

Type

Nullable

Description

SCHEMANAME

VARCHAR(128)

Name

of

the

schema.

OWNER

VARCHAR(128)

Authorization

id

of

the

schema.

The

value

for

implicitly

created

schemas

is

SYSIBM.

DEFINER

VARCHAR(128)

User

who

created

the

schema.

CREATE_TIME

TIMESTAMP

Timestamp

indicating

when

the

object

was

created.

REMARKS

VARCHAR(254)

Yes

User-provided

comment.

SYSCAT.SEQUENCEAUTH

Contains

a

row

for

each

authorization

ID

that

can

be

used

to

use

or

to

alter

a

sequence.

SYSCAT.SCHEMAAUTH

198

Common

Criteria

Certification:

Administration

and

User

Documentation

Table

38.

SYSCAT.SEQUENCEAUTH

Catalog

View

Column

Name

Data

Type

Nullable

Description

GRANTOR

VARCHAR(128)

SYSIBM

or

authorization

ID

that

granted

the

privilege.

GRANTEE

VARCHAR(128)

Authorization

ID

that

holds

the

privilege.

GRANTEETYPE

CHAR(1)

Type

of

authorization

ID

that

holds

the

privilege.

U

=

grantee

is

an

individual

user

SEQSCHEMA

VARCHAR(128)

Qualified

name

of

the

sequence.

SEQNAME

VARCHAR(128)

USAGEAUTH

CHAR(1)

Y

=

privilege

is

held

N

=

privilege

is

not

held

G

=

privilege

is

held

and

is

grantable

ALTERAUTH

CHAR(1)

Y

=

privilege

is

held

N

=

privilege

is

not

held

G

=

privilege

is

held

and

is

grantable

SYSCAT.SEQUENCES

Contains

a

row

for

each

sequence

or

identity

column

defined

in

the

database.

Table

39.

Columns

in

SYSCAT.SEQUENCES

Catalog

View

Column

Name

Data

Type

Nullable

Description

SEQSCHEMA

VARCHAR(128)

Qualified

name

of

the

sequence

(generated

by

DB2

for

an

identity

column).

SEQNAME

VARCHAR(128)

DEFINER

VARCHAR(128)

Definer

of

the

sequence.

OWNER

VARCHAR(128)

Owner

of

the

sequence.

SEQID

INTEGER

Internal

ID

of

the

sequence.

SEQTYPE

CHAR(1)

Sequence

type

S

=

Regular

sequence

I

=

Identity

sequence

INCREMENT

DECIMAL(31,0)

Increment

value.

START

DECIMAL(31,0)

Starting

value.

MAXVALUE

DECIMAL(31,0)

Maximal

value.

MINVALUE

DECIMAL(31,0)

Minimum

value.

CYCLE

CHAR(1)

Whether

cycling

will

occur

when

a

boundary

is

reached:

Y

-

cycling

will

occur

N

-

cycling

will

not

occur

CACHE

INTEGER

Number

of

sequence

values

to

preallocate

in

memory

for

faster

access.

0

indicates

that

values

are

not

preallocated.

SYSCAT.SEQUENCEAUTH

Chapter

10.

System

catalogs

and

security

maintenance

199

Table

39.

Columns

in

SYSCAT.SEQUENCES

Catalog

View

(continued)

Column

Name

Data

Type

Nullable

Description

ORDER

CHAR(1)

Whether

or

not

the

sequence

numbers

must

be

generated

in

order

of

request:

Y

-

sequence

numbers

must

be

generated

in

order

of

request

N

-

sequence

numbers

are

not

required

to

be

generated

in

order

of

request

DATATYPEID

INTEGER

For

built-in

types,

the

internal

ID

of

the

built-in

type.

For

distinct

types,

the

internal

ID

of

the

distinct

type.

SOURCETYPEID

INTEGER

For

a

built-in

type,

this

has

a

value

of

0.

For

a

distinct

type,

this

is

the

internal

ID

of

the

built-in

type

that

is

the

source

type

for

the

distinct

type.

CREATE_TIME

TIMESTAMP

Time

when

the

sequence

was

created.

ALTER_TIME

TIMESTAMP

Time

when

the

last

ALTER

SEQUENCE

statement

was

executed

for

this

sequence.

PRECISION

SMALLINT

The

precision

of

the

data

type

of

the

sequence.

Values

are:

5

for

a

SMALLINT,

10

for

INTEGER,

and

19

for

BIGINT.

For

DECIMAL,

it

is

the

precision

of

the

specified

DECIMAL

data

type.

ORIGIN

CHAR(1)

Sequence

Origin

U

-

User

generated

sequence

S

-

System

generated

sequence

REMARKS

VARCHAR(254)

Yes

User

supplied

comments,

or

null.

SYSCAT.TABCONST

Each

row

represents

a

table

constraint

of

type

CHECK,

UNIQUE,

PRIMARY

KEY,

or

FOREIGN

KEY.

Table

40.

SYSCAT.TABCONST

Catalog

View

Column

Name

Data

Type

Nullable

Description

CONSTNAME

VARCHAR(18)

Name

of

the

constraint

(unique

within

a

table).

TABSCHEMA

VARCHAR(128)

Qualified

name

of

the

table

to

which

this

constraint

applies.

TABNAME

VARCHAR(128)

DEFINER

VARCHAR(128)

Authorization

ID

under

which

the

constraint

was

defined.

TYPE

CHAR(1)

Indicates

the

constraint

type:

F

=

Foreign

key

I

=

Functional

dependency

K

=

Check

P

=

Primary

key

U

=

Unique

REMARKS

VARCHAR(254)

Yes

User-supplied

comment,

or

null.

ENFORCED

CHAR(1)

Y

=

Enforce

constraint

N

=

Do

not

enforce

constraint

SYSCAT.SEQUENCES

200

Common

Criteria

Certification:

Administration

and

User

Documentation

Table

40.

SYSCAT.TABCONST

Catalog

View

(continued)

Column

Name

Data

Type

Nullable

Description

CHECKEXISTINGDATA

CHAR(1)

D

=

Defer

checking

of

existing

data

I

=

Immediately

check

existing

data

N

=

Never

check

existing

data

ENABLEQUERYOPT

CHAR(1)

Y

=

Query

optimization

is

enabled

N

=

Query

optimization

is

disabled

SYSCAT.TABLES

Contains

one

row

for

each

table,

view,

nickname

or

alias

that

is

created.

All

of

the

catalog

tables

and

views

have

entries

in

the

SYSCAT.TABLES

catalog

view.

Table

41.

SYSCAT.TABLES

Catalog

View

Column

Name

Data

Type

Nullable

Description

TABSCHEMA

VARCHAR(128)

Qualified

name

of

the

table,

view,

nickname,

or

alias.

TABNAME

VARCHAR(128)

DEFINER

VARCHAR(128)

User

who

created

the

table,

view,

nickname

or

alias.

TYPE

CHAR(1)

The

type

of

object:

A

=

Alias

H

=

Hierarchy

table

N

=

Nickname

S

=

Materialized

query

table

T

=

Table

U

=

Typed

table

V

=

View

W

=

Typed

view

STATUS

CHAR(1)

The

check

pending

status

of

the

object:

N

=

Normal

table,

view,

alias

or

nickname

C

=

Check

pending

on

table

or

nickname

X

=

Inoperative

view

or

nickname

DROPRULE

CHAR(1)

N

=

No

rule

R

=

Restrict

rule

applies

on

drop

BASE_TABSCHEMA

VARCHAR(128)

Yes

If

TYPE

=

A,

these

columns

identify

the

table,

view,

alias,

or

nickname

that

is

referenced

by

this

alias;

otherwise

they

are

null.

BASE_TABNAME

VARCHAR(128)

Yes

ROWTYPESCHEMA

VARCHAR(128)

Yes

Contains

the

qualified

name

of

the

rowtype

of

this

table,

where

applicable.

Null

otherwise.

ROWTYPENAME

VARCHAR(18)

CREATE_TIME

TIMESTAMP

The

timestamp

indicating

when

the

object

was

created.

STATS_TIME

TIMESTAMP

Yes

Last

time

when

any

change

was

made

to

recorded

statistics

for

this

table.

Null

if

no

statistics

available.

SYSCAT.TABCONST

Chapter

10.

System

catalogs

and

security

maintenance

201

Table

41.

SYSCAT.TABLES

Catalog

View

(continued)

Column

Name

Data

Type

Nullable

Description

COLCOUNT

SMALLINT

Number

of

columns

in

the

table.

TABLEID

SMALLINT

Internal

table

identifier.

TBSPACEID

SMALLINT

Internal

identifier

of

primary

table

space

for

this

table.

CARD

BIGINT

Total

number

of

rows

in

the

table.

For

tables

in

a

table

hierarchy,

the

number

of

rows

at

the

given

level

of

the

hierarchy;

−1

if

statistics

are

not

gathered,

or

the

row

describes

a

view

or

alias;

−2

for

hierarchy

tables

(H-tables).

NPAGES

INTEGER

Total

number

of

pages

on

which

the

rows

of

the

table

exist;

−1

if

statistics

are

not

gathered,

or

the

row

describes

a

view

or

alias;

−2

for

subtables

or

H-tables.

FPAGES

INTEGER

Total

number

of

pages;

−1

if

statistics

are

not

gathered,

or

the

row

describes

a

view

or

alias;

−2

for

subtables

or

H-tables.

OVERFLOW

INTEGER

Total

number

of

overflow

records

in

the

table;

−1

if

statistics

are

not

gathered,

or

the

row

describes

a

view

or

alias;

−2

for

subtables

or

H-tables.

TBSPACE

VARCHAR(18)

Yes

Name

of

primary

table

space

for

the

table.

If

no

other

table

space

is

specified,

all

parts

of

the

table

are

stored

in

this

table

space.

Null

for

aliases

and

views.

INDEX_TBSPACE

VARCHAR(18)

Yes

Name

of

table

space

that

holds

all

indexes

created

on

this

table.

Null

for

aliases

and

views,

or

if

the

INDEX

IN

clause

was

omitted

or

specified

with

the

same

value

as

the

IN

clause

of

the

CREATE

TABLE

statement.

LONG_TBSPACE

VARCHAR(18)

Yes

Name

of

table

space

that

holds

all

long

data

(LONG

or

LOB

column

types)

for

this

table.

Null

for

aliases

and

views,

or

if

the

LONG

IN

clause

was

omitted

or

specified

with

the

same

value

as

the

IN

clause

of

the

CREATE

TABLE

statement.

PARENTS

SMALLINT

Yes

Number

of

parent

tables

of

this

table

(the

number

of

referential

constraints

in

which

this

table

is

a

dependent).

CHILDREN

SMALLINT

Yes

Number

of

dependent

tables

of

this

table

(the

number

of

referential

constraints

in

which

this

table

is

a

parent).

SELFREFS

SMALLINT

Yes

Number

of

self-referencing

referential

constraints

for

this

table

(the

number

of

referential

constraints

in

which

this

table

is

both

a

parent

and

a

dependent).

KEYCOLUMNS

SMALLINT

Yes

Number

of

columns

in

the

primary

key

of

the

table.

KEYINDEXID

SMALLINT

Yes

Index

ID

of

the

primary

index.

This

field

is

null

or

0

if

there

is

no

primary

key.

SYSCAT.TABLES

202

Common

Criteria

Certification:

Administration

and

User

Documentation

Table

41.

SYSCAT.TABLES

Catalog

View

(continued)

Column

Name

Data

Type

Nullable

Description

KEYUNIQUE

SMALLINT

Number

of

unique

constraints

(other

than

primary

key)

defined

on

this

table.

CHECKCOUNT

SMALLINT

Number

of

check

constraints

defined

on

this

table.

DATACAPTURE

CHAR(1)

Y

=

Table

participates

in

data

replication

N

=

Does

not

participate

L

=

Table

participates

in

data

replication,

including

replication

of

LONG

VARCHAR

and

LONG

VARGRAPHIC

columns

CONST_CHECKED

CHAR(32)

Byte

1

represents

foreign

key

constraints.

Byte

2

represents

check

constraints.

Byte

5

represents

materialized

query

table.

Byte

6

represents

generated

columns.

Byte

7

represents

staging

table.

Other

bytes

are

reserved.

Encodes

constraint

information

on

checking.

Values:

Y

=

Checked

by

system

U

=

Checked

by

user

N

=

Not

checked

(pending)

W

=

Was

in

a

’U’

state

when

the

table

was

placed

in

check

pending

(pending)

F

=

In

byte

5,

the

materialized

query

table

cannot

be

refreshed

incrementally.

In

byte

7,

the

content

of

the

staging

table

is

incomplete

and

cannot

be

used

for

incremental

refresh

of

the

associated

materialized

query

table.

PMAP_ID

SMALLINT

Yes

Identifier

of

the

partitioning

map

used

by

this

table.

Null

for

aliases

and

views.

PARTITION_MODE

CHAR(1)

Mode

used

for

tables

in

a

partitioned

database.

H

=

Hash

on

the

partitioning

key

R

=

Table

replicated

across

database

partitions

Blank

for

aliases,

views

and

tables

in

single

partition

database

partition

groups

with

no

partitioning

key

defined.

Also

blank

for

nicknames.

LOG_ATTRIBUTE

CHAR(1)

0

=

Default

logging

1

=

Table

created

not

logged

initially

PCTFREE

SMALLINT

Percentage

of

each

page

to

be

reserved

for

future

inserts.

Can

be

changed

by

ALTER

TABLE.

SYSCAT.TABLES

Chapter

10.

System

catalogs

and

security

maintenance

203

Table

41.

SYSCAT.TABLES

Catalog

View

(continued)

Column

Name

Data

Type

Nullable

Description

APPEND_MODE

CHAR(1)

Controls

how

rows

are

inserted

on

pages:

N

=

New

rows

are

inserted

into

existing

spaces

if

available

Y

=

New

rows

are

appended

at

end

of

data

Initial

value

is

N.

REFRESH

CHAR(1)

Refresh

mode:

D

=

Deferred

I

=

Immediate

O

=

Once

Blank

if

not

a

materialized

query

table

REFRESH_TIME

TIMESTAMP

Yes

For

REFRESH

=

D

or

O,

timestamp

of

the

REFRESH

TABLE

statement

that

last

refreshed

the

data.

Otherwise

null.

LOCKSIZE

CHAR(1)

Indicates

preferred

lock

granularity

for

tables

when

accessed

by

DML

statements.

Only

applies

to

tables.

Possible

values

are:

R

=

Row

T

=

Table

Blank

if

not

applicable

Initial

value

is

R.

VOLATILE

CHAR(1)

C

=

Cardinality

of

the

table

is

volatile

Blank

if

not

applicable

ROW_FORMAT

CHAR(1)

Not

used.

PROPERTY

VARCHAR(32)

Properties

for

the

table.

A

single

blank

indicates

that

the

table

has

no

properties.

STATISTICS_PROFILE

CLOB(32K)

Yes

RUNSTATS

command

used

to

register

a

statistical

profile

of

the

table.

COMPRESSION

CHAR(1)

V

=

Value

compression

is

activated,

and

a

row

format

that

supports

compression

is

used

N

=

No

compression.

A

row

format

that

does

not

support

compression

is

used

ACCESS_MODE

CHAR(1)

Access

mode

of

the

object.

This

access

mode

is

used

in

conjunction

with

the

STATUS

field

to

represent

one

of

four

states.

Possible

values

are:

N

=

No

access

(corresponds

to

a

status

value

of

C)

R

=

Read-only

(corresponds

to

a

status

value

of

C)

D

=

No

data

movement

(corresponds

to

a

status

value

of

N)

F

=

Full

access

(corresponds

to

a

status

value

of

N)

SYSCAT.TABLES

204

Common

Criteria

Certification:

Administration

and

User

Documentation

Table

41.

SYSCAT.TABLES

Catalog

View

(continued)

Column

Name

Data

Type

Nullable

Description

CLUSTERED

CHAR(1)

Yes

Y

=

multi-dimensional

clustering

(MDC)

table

Null

for

a

non-MDC

table

ACTIVE_BLOCKS

INTEGER

Yes

Total

number

of

in-use

blocks

in

an

MDC

table;

−1

if

statistics

are

not

gathered.

MAXFREESPACESEARCH

SMALLINT

Reserved

for

future

use.

REMARKS

VARCHAR(254)

Yes

User-provided

comment.

SYSCAT.TABLESPACES

Contains

a

row

for

each

table

space.

Table

42.

SYSCAT.TABLESPACES

Catalog

View

Column

Name

Data

Type

Nullable

Description

TBSPACE

VARCHAR(18)

Name

of

the

table

space.

DEFINER

VARCHAR(128)

Authorization

ID

of

the

table

space

definer.

CREATE_TIME

TIMESTAMP

Creation

time

of

the

table

space.

TBSPACEID

INTEGER

Internal

table

space

identifier.

TBSPACETYPE

CHAR(1)

The

type

of

table

space:

S

=

System

managed

space

D

=

Database

managed

space

DATATYPE

CHAR(1)

The

type

of

data

that

can

be

stored:

A

=

All

types

of

permanent

data

L

=

Large

data

-

long

data

or

index

data

T

=

System

temporary

tables

only

U

=

Declared

temporary

tables

only

EXTENTSIZE

INTEGER

Size

of

extent,

in

pages

of

size

PAGESIZE.

This

many

pages

are

written

to

one

container

in

the

table

space

before

switching

to

the

next

container.

PREFETCHSIZE

INTEGER

Number

of

pages

of

size

PAGESIZE

to

be

read

when

prefetch

is

performed;

-1

if

prefetch

size

is

AUTOMATIC.

OVERHEAD

DOUBLE

Controller

overhead

and

disk

seek

and

latency

time,

in

milliseconds.

TRANSFERRATE

DOUBLE

Time

to

read

one

page

of

size

PAGESIZE

into

the

buffer.

PAGESIZE

INTEGER

Size

(in

bytes)

of

pages

in

the

table

space.

DBPGNAME

VARCHAR(18)

Name

of

the

database

partition

group

for

the

table

space.

BUFFERPOOLID

INTEGER

ID

of

buffer

pool

used

by

this

table

space;

1

indicates

the

default

buffer

pool.

DROP_RECOVERY

CHAR(1)

N

=

table

is

not

recoverable

after

a

DROP

TABLE

statement

Y

=

table

is

recoverable

after

a

DROP

TABLE

statement

SYSCAT.TABLES

Chapter

10.

System

catalogs

and

security

maintenance

205

Table

42.

SYSCAT.TABLESPACES

Catalog

View

(continued)

Column

Name

Data

Type

Nullable

Description

REMARKS

VARCHAR(254)

Yes

User-provided

comment.

SYSCAT.TBSPACEAUTH

Contains

one

row

for

each

user

or

group

who

is

granted

USE

privilege

on

a

particular

table

space

in

the

database.

Table

43.

SYSCAT.TBSPACEAUTH

Catalog

View

Column

Name

Data

Type

Nullable

Description

GRANTOR

CHAR(128)

Authorization

ID

of

the

user

who

granted

the

privileges

or

SYSIBM.

GRANTEE

CHAR(128)

Authorization

ID

of

the

user

or

group

who

holds

the

privileges.

GRANTEETYPE

CHAR(1)

U

=

Grantee

is

an

individual

user.

G

=

Grantee

is

a

group.

TBSPACE

VARCHAR(18)

Name

of

the

table

space.

USEAUTH

CHAR(1)

Indicates

whether

grantee

holds

USE

privilege

on

the

table

space:

G

=

Privilege

is

held

and

grantable.

N

=

Privilege

is

not

held.

Y

=

Privilege

is

held.

SYSCAT.USEROPTIONS

Each

row

contains

server

specific

option

values.

Table

44.

SYSCAT.USEROPTIONS

Catalog

View

Column

Name

Data

Type

Nullable

Description

AUTHID

VARCHAR(128)

Local

authorization

ID

(always

uppercase)

SERVERNAME

VARCHAR(128)

Name

of

the

server

for

which

the

user

is

defined.

OPTION

VARCHAR(128)

Name

of

the

user

options.

SETTING

VARCHAR(255)

Value.

SYSCAT.TABAUTH

Contains

one

or

more

rows

for

each

user

or

group

who

is

granted

a

privilege

on

a

particular

table

or

view

in

the

database.

All

the

table

privileges

for

a

single

table

or

view

granted

by

a

specific

grantor

to

a

specific

grantee

appear

in

a

single

row.

Table

45.

SYSCAT.TABAUTH

Catalog

View

Column

Name

Data

Type

Nullable

Description

GRANTOR

VARCHAR(128)

Authorization

ID

of

the

user

who

granted

the

privileges

or

SYSIBM.

GRANTEE

VARCHAR(128)

Authorization

ID

of

the

user

or

group

who

holds

the

privileges.

SYSCAT.TABLESPACES

206

Common

Criteria

Certification:

Administration

and

User

Documentation

Table

45.

SYSCAT.TABAUTH

Catalog

View

(continued)

Column

Name

Data

Type

Nullable

Description

GRANTEETYPE

CHAR(1)

U

=

Grantee

is

an

individual

user.

G

=

Grantee

is

a

group.

TABSCHEMA

VARCHAR(128)

Qualified

name

of

the

table

or

view.

TABNAME

VARCHAR(128)

CONTROLAUTH

CHAR(1)

Indicates

whether

grantee

holds

CONTROL

privilege

on

the

table

or

view:

Y

=

Privilege

is

held.

N

=

Privilege

is

not

held.

ALTERAUTH

CHAR(1)

Indicates

whether

grantee

holds

ALTER

privilege

on

the

table:

Y

=

Privilege

is

held.

N

=

Privilege

is

not

held.

G

=

Privilege

is

held

and

grantable.

DELETEAUTH

CHAR(1)

Indicates

whether

grantee

holds

DELETE

privilege

on

the

table

or

view:

Y

=

Privilege

is

held.

N

=

Privilege

is

not

held.

G

=

Privilege

is

held

and

grantable.

INDEXAUTH

CHAR(1)

Indicates

whether

grantee

holds

INDEX

privilege

on

the

table:

Y

=

Privilege

is

held.

N

=

Privilege

is

not

held.

G

=

Privilege

is

held

and

grantable.

INSERTAUTH

CHAR(1)

Indicates

whether

grantee

holds

INSERT

privilege

on

the

table

or

view:

Y

=

Privilege

is

held.

N

=

Privilege

is

not

held.

G

=

Privilege

is

held

and

grantable.

SELECTAUTH

CHAR(1)

Indicates

whether

grantee

holds

SELECT

privilege

on

the

table

or

view:

Y

=

Privilege

is

held.

N

=

Privilege

is

not

held.

G

=

Privilege

is

held

and

grantable.

REFAUTH

CHAR(1)

Indicates

whether

grantee

holds

REFERENCE

privilege

on

the

table

or

view:

Y

=

Privilege

is

held.

N

=

Privilege

is

not

held.

G

=

Privilege

is

held

and

grantable.

UPDATEAUTH

CHAR(1)

Indicates

whether

grantee

holds

UPDATE

privilege

on

the

table

or

view:

Y

=

Privilege

is

held.

N

=

Privilege

is

not

held.

G

=

Privilege

is

held

and

grantable.

SYSCAT.TABAUTH

Chapter

10.

System

catalogs

and

security

maintenance

207

SYSCAT.TABAUTH

208

Common

Criteria

Certification:

Administration

and

User

Documentation

Chapter

11.

Other

security

considerations

Introduction

to

firewall

support

.

.

.

.

.

.

. 209

Screening

router

firewalls

.

.

.

.

.

.

.

.

. 209

Application

proxy

firewalls

.

.

.

.

.

.

.

.

. 210

Circuit

level

firewalls

.

.

.

.

.

.

.

.

.

.

. 210

Stateful

multi-layer

inspection

(SMLI)

firewalls

.

. 210

Guidelines

for

stored

procedures

.

.

.

.

.

.

. 210

Introduction

to

firewall

support

A

firewall

is

a

set

of

related

programs,

located

at

a

network

gateway

server,

that

are

used

to

prevent

unauthorized

access

to

a

system

or

network.

There

are

four

types

of

firewalls:

1.

Network

level,

packet-filter,

or

screening

router

firewalls

2.

Classical

application

level

proxy

firewalls

3.

Circuit

level

or

transparent

proxy

firewalls

4.

Stateful

multi-layer

inspection

(SMLI)

firewalls

There

are

existing

firewall

products

that

incorporate

one

of

the

firewall

types

listed

above.

There

are

many

other

firewall

products

that

incorporate

some

combination

of

the

above

types.

Related

concepts:

v

“Screening

router

firewalls”

on

page

209

v

“Application

proxy

firewalls”

on

page

210

v

“Circuit

level

firewalls”

on

page

210

v

“Stateful

multi-layer

inspection

(SMLI)

firewalls”

on

page

210

Screening

router

firewalls

This

type

of

firewall

is

also

known

as

a

network

level

or

packet-filter

firewall.

Such

a

firewall

works

by

screening

incoming

packets

by

protocol

attributes.

The

protocol

attributes

screened

may

include

source

or

destination

address,

type

of

protocol,

source

or

destination

port,

or

some

other

protocol-specific

attributes.

For

all

firewall

solutions

(except

SOCKS),

you

need

to

ensure

that

all

the

ports

used

by

DB2®

Universal

Database

(DB2

UDB)

are

open

for

incoming

and

outgoing

packets.

DB2

UDB

uses

port

523

for

the

DB2

Administration

Server

(DAS),

which

is

used

by

the

DB2

UDB

tools.

Determine

the

ports

used

by

all

your

server

instances

by

using

the

services

file

to

map

the

service

name

in

the

server

database

manager

configuration

file

to

its

port

number.

Related

concepts:

v

“Introduction

to

firewall

support”

on

page

209

©

Copyright

IBM

Corp.

1993-2004

209

Application

proxy

firewalls

A

proxy

or

proxy

server

is

a

technique

that

acts

as

an

intermediary

between

a

Web

client

and

a

Web

server.

A

proxy

firewall

acts

as

a

gateway

for

requests

arriving

from

clients.

When

client

requests

are

received

at

the

firewall,

the

final

server

destination

address

is

determined

by

the

proxy

software.

The

application

proxy

translates

the

address,

performs

additional

access

control

checking

and

logging

as

necessary,

and

connects

to

the

server

on

behalf

of

the

client.

The

DB2®

Connect

product

on

a

firewall

machine

can

act

as

a

proxy

to

the

destination

server.

Also,

a

DB2

Universal

Database™

(DB2

UDB)

server

on

the

firewall,

acting

as

a

hop

server

to

the

final

destination

server,

acts

like

an

application

proxy.

Related

concepts:

v

“Introduction

to

firewall

support”

on

page

209

Circuit

level

firewalls

This

type

of

firewall

is

also

known

as

a

transparent

proxy

firewall.

A

transparent

proxy

firewall

does

not

modify

the

request

or

response

beyond

what

is

required

for

proxy

authentication

and

identification.

An

example

of

a

transparent

proxy

firewall

is

SOCKS.

DB2®

Universal

Database

(DB2

UDB)

supports

SOCKS

Version

4.

Related

concepts:

v

“Introduction

to

firewall

support”

on

page

209

Stateful

multi-layer

inspection

(SMLI)

firewalls

This

type

of

firewall

is

a

sophisticated

form

of

packet-filtering

that

examines

all

seven

layers

of

the

Open

System

Interconnection

(OSI)

model.

Each

packet

is

examined

and

compared

against

known

states

of

friendly

packets.

While

screening

router

firewalls

only

examine

the

packet

header,

SMLI

firewalls

examine

the

entire

packet

including

the

data.

Related

concepts:

v

“Introduction

to

firewall

support”

on

page

209

Guidelines

for

stored

procedures

Stored

procedures

permit

one

call

to

a

remote

database

to

execute

a

preprogrammed

procedure

in

a

database

application

environment

in

which

many

situations

are

repetitive.

For

example,

for

receiving

a

fixed

set

of

data,

performing

the

same

set

of

multiple

requests

against

a

database,

or

returning

a

fixed

set

of

data

might

represent

several

accesses

to

the

database.

Processing

a

single

SQL

statement

for

a

remote

database

requires

sending

two

transmissions:

one

request

and

one

receive.

Because

an

application

contains

many

SQL

statements

it

requires

many

transmissions

to

complete

its

work.

210

Common

Criteria

Certification:

Administration

and

User

Documentation

However,

when

a

database

client

uses

a

stored

procedure

that

encapsulates

many

SQL

statements,

it

requires

only

two

transmissions

for

the

entire

process.

Stored

procedures

usually

run

in

processes

separate

from

the

database

agents.

This

separation

requires

the

stored

procedure

and

agent

processes

to

communicate

through

a

router.

However,

a

special

kind

of

stored

procedure

that

runs

in

the

agent

process

might

improve

performance,

although

it

carries

significant

risks

of

corrupting

data

and

databases.

These

risky

stored

procedures

are

those

created

as

not

fenced.

For

a

not-fenced

stored

procedure,

nothing

separates

the

stored

procedure

from

the

database

control

structures

that

the

database

agent

uses.

If

a

DBA

wants

to

ensure

that

the

stored

procedure

operations

will

not

accidentally

or

maliciously

damage

the

database

control

structures,

the

not

fenced

option

is

omitted.

Because

of

the

risk

of

damaging

your

database,

use

not

fenced

stored

procedures

only

when

you

need

the

maximum

possible

performance

benefits.

In

addition,

make

absolutely

sure

that

the

procedure

is

well

coded

and

has

been

thoroughly

tested

before

allowing

it

to

run

as

a

not-fenced

stored

procedure.

If

a

fatal

error

occurs

while

running

a

not-fenced

stored

procedure,

the

database

manager

determines

whether

the

error

occurred

in

the

application

or

database

manager

code

and

performs

the

appropriate

recovery.

A

not-fenced

stored

procedure

can

corrupt

the

database

manager

beyond

recovery,

possibly

resulting

in

lost

data

and

the

possibility

of

a

corrupt

database.

Exercise

extreme

caution

when

you

run

not-fenced

trusted

stored

procedures.

In

almost

all

cases,

the

proper

performance

analysis

of

an

application

results

in

the

good

performance

without

using

not-fenced

stored

procedures.

For

example,

triggers

might

improve

performance.

Related

concepts:

v

“Query

tuning

guidelines”

in

the

Administration

Guide:

Performance

Chapter

11.

Other

security

considerations

211

212

Common

Criteria

Certification:

Administration

and

User

Documentation

Chapter

12.

Command

Line

Processor

(CLP)

db2

-

Command

Line

Processor

Invocation

The

db2

command

starts

the

command

line

processor

(CLP).

The

CLP

is

used

to

execute

database

utilities,

SQL

statements

and

online

help.

It

offers

a

variety

of

command

options,

and

can

be

started

in:

v

Interactive

input

mode,

characterized

by

the

db2

=>

input

prompt

v

Command

mode,

where

each

command

must

be

prefixed

by

db2

v

Batch

mode,

which

uses

the

-f

file

input

option.

Note:

On

Windows,

db2cmd

opens

the

CLP-enabled

DB2

window,

and

initializes

the

DB2

command

line

environment.

Issuing

this

command

is

equivalent

to

clicking

on

the

DB2

Command

Window

icon.

QUIT

stops

the

command

line

processor.

TERMINATE

also

stops

the

command

line

processor,

but

removes

the

associated

back-end

process

and

frees

any

memory

that

is

being

used.

It

is

recommended

that

a

TERMINATE

be

issued

prior

to

every

STOP

DATABASE

MANAGER

(db2stop)

command.

It

might

also

be

necessary

for

a

TERMINATE

to

be

issued

after

database

configuration

parameters

have

been

changed,

in

order

for

these

changes

to

take

effect.

Note:

Existing

connections

should

be

reset

before

terminating

the

CLP.

The

shell

command

(!),

allows

operating

system

commands

to

be

executed

from

the

interactive

or

the

batch

mode

on

UNIX

based

systems,

and

on

Windows

operating

systems

(!ls

on

UNIX,

and

!dir

on

Windows

operating

systems,

for

example).

Command

Syntax:

��

db2

�

option-flag

db2-command

sql-statement

?

phrase

message

sqlstate

class-code

--

comment

��

option-flag

Specifies

a

CLP

option

flag.

db2-command

Specifies

a

DB2

command.

sql-statement

Specifies

an

SQL

statement.

?

Requests

CLP

general

help.

©

Copyright

IBM

Corp.

1993-2004

213

?

phrase

Requests

the

help

text

associated

with

a

specified

command

or

topic.

If

the

database

manager

cannot

find

the

requested

information,

it

displays

the

general

help

screen.

?

options

requests

a

description

and

the

current

settings

of

the

CLP

options.

?

help

requests

information

about

reading

the

online

help

syntax

diagrams.

?

message

Requests

help

for

a

message

specified

by

a

valid

SQLCODE

(?

sql10007n,

for

example).

?

sqlstate

Requests

help

for

a

message

specified

by

a

valid

SQLSTATE.

?

class-code

Requests

help

for

a

message

specified

by

a

valid

class-code.

--

comment

Input

that

begins

with

the

comment

characters

--

is

treated

as

a

comment

by

the

command

line

processor.

Note:

In

each

case,

a

blank

space

must

separate

the

question

mark

(?)

from

the

variable

name.

Related

concepts:

v

“Command

Line

Processor

(CLP)”

on

page

221

Related

reference:

v

“Command

line

processor

options”

on

page

214

v

“Command

Line

Processor

Return

Codes”

on

page

220

Command

line

processor

options

The

CLP

command

options

can

be

specified

by

setting

the

command

line

processor

DB2OPTIONS

environment

variable

(which

must

be

in

uppercase),

or

with

command

line

flags.

Users

can

set

options

for

an

entire

session

using

DB2OPTIONS.

View

the

current

settings

for

the

option

flags

and

the

value

of

DB2OPTIONS

using

LIST

COMMAND

OPTIONS.

Change

an

option

setting

from

the

interactive

input

mode

or

a

command

file

using

UPDATE

COMMAND

OPTIONS.

The

command

line

processor

sets

options

in

the

following

order:

1.

Sets

up

default

options.

2.

Reads

DB2OPTIONS

to

override

the

defaults.

3.

Reads

the

command

line

to

override

DB2OPTIONS.

4.

Accepts

input

from

UPDATE

COMMAND

OPTIONS

as

a

final

interactive

override.

Table

46

on

page

215

summarizes

the

CLP

option

flags.

These

options

can

be

specified

in

any

sequence

and

combination.

To

turn

an

option

on,

prefix

the

corresponding

option

letter

with

a

minus

sign

(-).

To

turn

an

option

off,

either

prefix

the

option

letter

with

a

minus

sign

and

follow

the

option

letter

with

another

db2

-

Command

Line

Processor

Invocation

214

Common

Criteria

Certification:

Administration

and

User

Documentation

minus

sign,

or

prefix

the

option

letter

with

a

plus

sign

(+).

For

example,

-c

turns

the

auto-commit

option

on,

and

either

-c-

or

+c

turns

it

off.

These

option

letters

are

not

case

sensitive,

that

is,

-a

and

-A

are

equivalent.

Table

46.

CLP

Command

Options

Option

Flag

Description

Default

Setting

-a

This

option

tells

the

command

line

processor

to

display

SQLCA

data.

OFF

-c

This

option

tells

the

command

line

processor

to

automatically

commit

SQL

statements.

ON

-e{c|s}

This

option

tells

the

command

line

processor

to

display

SQLCODE

or

SQLSTATE.

These

options

are

mutually

exclusive.

OFF

-ffilename

This

option

tells

the

command

line

processor

to

read

command

input

from

a

file

instead

of

from

standard

input.

OFF

-lfilename

This

option

tells

the

command

line

processor

to

log

commands

in

a

history

file.

OFF

-n

Removes

the

new

line

character

within

a

single

delimited

token.

If

this

option

is

not

specified,

the

new

line

character

is

replaced

with

a

space.

This

option

must

be

used

with

the

-t

option.

OFF

-o

This

option

tells

the

command

line

processor

to

display

output

data

and

messages

to

standard

output.

ON

-p

This

option

tells

the

command

line

processor

to

display

a

command

line

processor

prompt

when

in

interactive

input

mode.

ON

-rfilename

This

option

tells

the

command

line

processor

to

write

the

report

generated

by

a

command

to

a

file.

OFF

-s

This

option

tells

the

command

line

processor

to

stop

execution

if

errors

occur

while

executing

commands

in

a

batch

file

or

in

interactive

mode.

OFF

-t

This

option

tells

the

command

line

processor

to

use

a

semicolon

(;)

as

the

statement

termination

character.

OFF

-tdx

This

option

tells

the

command

line

processor

to

define

and

to

use

x

as

the

statement

termination

character.

OFF

-v

This

option

tells

the

command

line

processor

to

echo

command

text

to

standard

output.

OFF

-w

This

option

tells

the

command

line

processor

to

display

SQL

statement

warning

messages.

ON

-x

This

option

tells

the

command

line

processor

to

return

data

without

any

headers,

including

column

names.

OFF

-zfilename

This

option

tells

the

command

line

processor

to

redirect

all

output

to

a

file.

It

is

similar

to

the

-r

option,

but

includes

any

messages

or

error

codes

with

the

output.

OFF

Example

The

AIX

command:

export

DB2OPTIONS=’+a

-c

+ec

-o

-p’

db2

-

Command

Line

Processor

Invocation

Chapter

12.

Command

Line

Processor

(CLP)

215

sets

the

following

default

settings

for

the

session:

The

following

is

a

detailed

description

of

these

options:

Show

SQLCA

Data

Option

(-a):

Displays

SQLCA

data

to

standard

output

after

executing

a

DB2

command

or

an

SQL

statement.

The

SQLCA

data

is

displayed

instead

of

an

error

or

success

message.

The

default

setting

for

this

command

option

is

OFF

(+a

or

-a-).

The

-o

and

the

-r

options

affect

the

-a

option;

see

the

option

descriptions

for

details.

Auto-commit

Option

(-c):

This

option

specifies

whether

each

command

or

statement

is

to

be

treated

independently.

If

set

ON

(-c),

each

command

or

statement

is

automatically

committed

or

rolled

back.

If

the

command

or

statement

is

successful,

it

and

all

successful

commands

and

statements

that

were

issued

before

it

with

autocommit

OFF

(+c

or

-c-)

are

committed.

If,

however,

the

command

or

statement

fails,

it

and

all

successful

commands

and

statements

that

were

issued

before

it

with

autocommit

OFF

are

rolled

back.

If

set

OFF

(+c

or

-c-),

COMMIT

or

ROLLBACK

must

be

issued

explicitly,

or

one

of

these

actions

will

occur

when

the

next

command

with

autocommit

ON

(-c)

is

issued.

The

default

setting

for

this

command

option

is

ON.

The

auto-commit

option

does

not

affect

any

other

command

line

processor

option.

Example:

Consider

the

following

scenario:

1.

db2

create

database

test

2.

db2

connect

to

test

3.

db2

+c

"create

table

a

(c1

int)"

4.

db2

select

c2

from

a

The

SQL

statement

in

step

4

fails

because

there

is

no

column

named

C2

in

table

A.

Since

that

statement

was

issued

with

auto-commit

ON

(default),

it

rolls

back

not

only

the

statement

in

step

4,

but

also

the

one

in

step

3,

because

the

latter

was

issued

with

auto-commit

OFF.

The

command:

db2

list

tables

then

returns

an

empty

list.

Display

SQLCODE/SQLSTATE

Option

(-e):

The

-e{c|s}

option

tells

the

command

line

processor

to

display

the

SQLCODE

(-ec)

or

the

SQLSTATE

(-es)

to

standard

output.

Options

-ec

and

-es

are

not

valid

in

CLP

interactive

mode.

The

default

setting

for

this

command

option

is

OFF

(+e

or

-e-).

The

-o

and

the

-r

options

affect

the

-e

option;

see

the

option

descriptions

for

details.

Display

SQLCA

-

off

Auto

Commit

-

on

Display

SQLCODE

-

off

Display

Output

-

on

Display

Prompt

-

on

db2

-

Command

Line

Processor

Invocation

216

Common

Criteria

Certification:

Administration

and

User

Documentation

The

display

SQLCODE/SQLSTATE

option

does

not

affect

any

other

command

line

processor

option.

Example:

To

retrieve

SQLCODE

from

the

command

line

processor

running

on

AIX,

enter:

sqlcode=)db2

−ec

+o

db2–command)

Read

from

Input

File

Option

(-f):

The

-ffilename

option

tells

the

command

line

processor

to

read

input

from

a

specified

file,

instead

of

from

standard

input.

Filename

is

an

absolute

or

relative

file

name

which

can

include

the

directory

path

to

the

file.

If

the

directory

path

is

not

specified,

the

current

directory

is

used.

When

other

options

are

combined

with

option

-f,

option

-f

must

be

specified

last.

For

example:

db2

-tvf

filename

Note:

This

option

cannot

be

changed

from

within

the

interactive

mode.

The

default

setting

for

this

command

option

is

OFF

(+f

or

-f-).

Commands

are

processed

until

QUIT

or

TERMINATE

is

issued,

or

an

end-of-file

is

encountered.

If

both

this

option

and

a

database

command

are

specified,

the

command

line

processor

does

not

process

any

commands,

and

an

error

message

is

returned.

Input

file

lines

which

begin

with

the

comment

characters

--

are

treated

as

comments

by

the

command

line

processor.

Comment

characters

must

be

the

first

non-blank

characters

on

a

line.

If

the

-ffilename

option

is

specified,

the

-p

option

is

ignored.

The

read

from

input

file

option

does

not

affect

any

other

command

line

processor

option.

Log

Commands

in

History

File

Option

(-l):

The

-lfilename

option

tells

the

command

line

processor

to

log

commands

to

a

specified

file.

This

history

file

contains

records

of

the

commands

executed

and

their

completion

status.

Filename

is

an

absolute

or

relative

file

name

which

can

include

the

directory

path

to

the

file.

If

the

directory

path

is

not

specified,

the

current

directory

is

used.

If

the

specified

file

or

default

file

already

exists,

the

new

log

entry

is

appended

to

that

file.

When

other

options

are

combined

with

option

-l,

option

-l

must

be

specified

last.

For

example:

db2

-tvl

filename

The

default

setting

for

this

command

option

is

OFF

(+l

or

-l-).

The

log

commands

in

history

file

option

does

not

affect

any

other

command

line

processor

option.

Remove

New

Line

Character

Option

(-n):

Removes

the

new

line

character

within

a

single

delimited

token.

If

this

option

is

not

specified,

the

new

line

character

is

replaced

with

a

space.

Note:

This

option

cannot

be

changed

from

within

the

interactive

mode.

The

default

setting

for

this

command

option

is

OFF

(+n

or

-n-).

db2

-

Command

Line

Processor

Invocation

Chapter

12.

Command

Line

Processor

(CLP)

217

This

option

must

be

used

with

the

-t

option;

see

the

option

description

for

details.

Display

Output

Option

(-o):

The

-o

option

tells

the

command

line

processor

to

send

output

data

and

messages

to

standard

output.

The

default

setting

for

this

command

option

is

ON.

The

interactive

mode

start-up

information

is

not

affected

by

this

option.

Output

data

consists

of

report

output

from

the

execution

of

the

user-specified

command,

and

SQLCA

data

(if

requested).

The

following

options

might

be

affected

by

the

+o

option:

v

-rfilename:

Interactive

mode

start-up

information

is

not

saved.

v

-e:

SQLCODE

or

SQLSTATE

is

displayed

on

standard

output

even

if

+o

is

specified.

v

-a:

No

effect

if

+o

is

specified.

If

-a,

+o

and

-rfilename

are

specified,

SQLCA

information

is

written

to

a

file.

If

both

-o

and

-e

options

are

specified,

the

data

and

either

the

SQLCODE

or

the

SQLSTATE

are

displayed

on

the

screen.

If

both

-o

and

-v

options

are

specified,

the

data

is

displayed,

and

the

text

of

each

command

issued

is

echoed

to

the

screen.

The

display

output

option

does

not

affect

any

other

command

line

processor

option.

Display

DB2

Interactive

Prompt

Option

(-p):

The

-p

option

tells

the

command

line

processor

to

display

the

command

line

processor

prompt

when

the

user

is

in

interactive

mode.

The

default

setting

for

this

command

option

is

ON.

Turning

the

prompt

off

is

useful

when

commands

are

being

piped

to

the

command

line

processor.

For

example,

a

file

containing

CLP

commands

could

be

executed

by

issuing:

db2

+p

<

myfile.clp

The

-p

option

is

ignored

if

the

-ffilename

option

is

specified.

The

display

DB2

interactive

prompt

option

does

not

affect

any

other

command

line

processor

option.

Save

to

Report

File

Option

(-r):

The

-rfilename

option

causes

any

output

data

generated

by

a

command

to

be

written

to

a

specified

file,

and

is

useful

for

capturing

a

report

that

would

otherwise

scroll

off

the

screen.

Messages

or

error

codes

are

not

written

to

the

file.

Filename

is

an

absolute

or

relative

file

name

which

can

include

the

directory

path

to

the

file.

If

the

directory

path

is

not

specified,

the

current

directory

is

used.

New

report

entries

are

appended

to

the

file.

The

default

setting

for

this

command

option

is

OFF

(+r

or

-r-).

If

the

-a

option

is

specified,

SQLCA

data

is

written

to

the

file.

The

-r

option

does

not

affect

the

-e

option.

If

the

-e

option

is

specified,

SQLCODE

or

SQLSTATE

is

written

to

standard

output,

not

to

a

file.

db2

-

Command

Line

Processor

Invocation

218

Common

Criteria

Certification:

Administration

and

User

Documentation

If

-rfilename

is

set

in

DB2OPTIONS,

the

user

can

set

the

+r

(or

-r-)

option

from

the

command

line

to

prevent

output

data

for

a

particular

command

invocation

from

being

written

to

the

file.

The

save

to

report

file

option

does

not

affect

any

other

command

line

processor

option.

Stop

Execution

on

Command

Error

Option

(-s):

When

commands

are

issued

in

interactive

mode,

or

from

an

input

file,

and

syntax

or

command

errors

occur,

the

-s

option

causes

the

command

line

processor

to

stop

execution

and

to

write

error

messages

to

standard

output.

The

default

setting

for

this

command

option

is

OFF

(+s

or

-s-).

This

setting

causes

the

command

line

processor

to

display

error

messages,

continue

execution

of

the

remaining

commands,

and

to

stop

execution

only

if

a

system

error

occurs

(return

code

8).

The

following

table

summarizes

this

behavior:

Table

47.

CLP

Return

Codes

and

Command

Execution

Return

Code

-s

Option

Set

+s

Option

Set

0

(success)

execution

continues

execution

continues

1

(0

rows

selected)

execution

continues

execution

continues

2

(warning)

execution

continues

execution

continues

4

(DB2

or

SQL

error)

execution

stops

execution

continues

8

(System

error)

execution

stops

execution

stops

Statement

Termination

Character

Option

(-t):

The

-t

option

tells

the

command

line

processor

to

use

a

semicolon

(;)

as

the

statement

termination

character,

and

disables

the

backslash

(\)

line

continuation

character.

Note:

This

option

cannot

be

changed

from

within

the

interactive

mode.

The

default

setting

for

this

command

option

is

OFF

(+t

or

-t-).

To

define

a

termination

character,

use

-td

followed

by

the

chosen

termination

character.

For

example,

-tdx

sets

x

as

the

statement

termination

character.

The

termination

character

cannot

be

used

to

concatenate

multiple

statements

from

the

command

line,

since

only

the

last

non-blank

character

on

each

input

line

is

checked

for

a

termination

symbol.

The

statement

termination

character

option

does

not

affect

any

other

command

line

processor

option.

Verbose

Output

Option

(-v):

The

-v

option

causes

the

command

line

processor

to

echo

(to

standard

output)

the

command

text

entered

by

the

user

prior

to

displaying

the

output,

and

any

messages

from

that

command.

ECHO

is

exempt

from

this

option.

The

default

setting

for

this

command

option

is

OFF

(+v

or

-v-).

The

-v

option

has

no

effect

if

+o

(or

-o-)

is

specified.

The

verbose

output

option

does

not

affect

any

other

command

line

processor

option.

db2

-

Command

Line

Processor

Invocation

Chapter

12.

Command

Line

Processor

(CLP)

219

Show

Warning

Messages

Option

(-w):

The

-w

option

tells

the

command

line

processor

to

show

SQL

statement

warning

messages.

The

default

setting

for

this

command

option

is

ON.

Suppress

Printing

of

Column

Headings

Option

(-x):

The

-x

option

tells

the

command

line

processor

to

return

data

without

any

headers,

including

column

names.

The

default

setting

for

this

command

option

is

OFF.

Save

all

Output

to

File

Option

(-z):

The

-zfilename

option

causes

all

output

generated

by

a

command

to

be

written

to

a

specified

file,

and

is

useful

for

capturing

a

report

that

would

otherwise

scroll

off

the

screen.

It

is

similar

to

the

-r

option;

in

this

case,

however,

messages,

error

codes,

and

other

informational

output

are

also

written

to

the

file.

Filename

is

an

absolute

or

relative

file

name

which

can

include

the

directory

path

to

the

file.

If

the

directory

path

is

not

specified,

the

current

directory

is

used.

New

report

entries

are

appended

to

the

file.

The

default

setting

for

this

command

option

is

OFF

(+z

or

-z-).

If

the

-a

option

is

specified,

SQLCA

data

is

written

to

the

file.

The

-z

option

does

not

affect

the

-e

option.

If

the

-e

option

is

specified,

SQLCODE

or

SQLSTATE

is

written

to

standard

output,

not

to

a

file.

If

-zfilename

is

set

in

DB2OPTIONS,

the

user

can

set

the

+z

(or

-z-)

option

from

the

command

line

to

prevent

output

data

for

a

particular

command

invocation

from

being

written

to

the

file.

The

save

all

output

to

file

option

does

not

affect

any

other

command

line

processor

option.

Related

reference:

v

“db2

-

Command

Line

Processor

Invocation”

on

page

213

v

“Command

Line

Processor

Return

Codes”

on

page

220

Command

Line

Processor

Return

Codes

When

the

command

line

processor

finishes

processing

a

command

or

an

SQL

statement,

it

returns

a

return

(or

exit)

code.

These

codes

are

transparent

to

users

executing

CLP

functions

from

the

command

line,

but

they

can

be

retrieved

when

those

functions

are

executed

from

a

shell

script.

For

example,

the

following

Bourne

shell

script

executes

the

GET

DATABASE

MANAGER

CONFIGURATION

command,

then

inspects

the

CLP

return

code:

db2

get

database

manager

configuration

if

[

"$?"

=

"0"

]

then

echo

"OK!"

fi

The

return

code

can

be

one

of

the

following:

Code

Description

0

DB2

command

or

SQL

statement

executed

successfully

1

SELECT

or

FETCH

statement

returned

no

rows

2

DB2

command

or

SQL

statement

warning

db2

-

Command

Line

Processor

Invocation

220

Common

Criteria

Certification:

Administration

and

User

Documentation

4

DB2

command

or

SQL

statement

error

8

Command

line

processor

system

error

The

command

line

processor

does

not

provide

a

return

code

while

a

user

is

executing

statements

from

interactive

mode,

or

while

input

is

being

read

from

a

file

(using

the

-f

option).

A

return

code

is

available

only

after

the

user

quits

interactive

mode,

or

when

processing

of

an

input

file

ends.

In

these

cases,

the

return

code

is

the

logical

OR

of

the

distinct

codes

returned

from

the

individual

commands

or

statements

executed

to

that

point.

For

example,

if

a

user

in

interactive

mode

issues

commands

resulting

in

return

codes

of

0,

1,

and

2,

a

return

code

of

3

will

be

returned

after

the

user

quits

interactive

mode.

The

individual

codes

0,

1,

and

2

are

not

returned.

Return

code

3

tells

the

user

that

during

interactive

mode

processing,

one

or

more

commands

returned

a

1,

and

one

or

more

commands

returned

a

2.

A

return

code

of

4

results

from

a

negative

SQLCODE

returned

by

a

DB2

command

or

an

SQL

statement.

A

return

code

of

8

results

only

if

the

command

line

processor

encounters

a

system

error.

If

commands

are

issued

from

an

input

file

or

in

interactive

mode,

and

the

command

line

processor

experiences

a

system

error

(return

code

8),

command

execution

is

halted

immediately.

If

one

or

more

DB2

commands

or

SQL

statements

end

in

error

(return

code

4),

command

execution

stops

if

the

-s

(Stop

Execution

on

Command

Error)

option

is

set;

otherwise,

execution

continues.

Related

reference:

v

“db2

-

Command

Line

Processor

Invocation”

on

page

213

v

“Command

line

processor

options”

on

page

214

Command

Line

Processor

(CLP)

The

command

line

processor

operates

as

follows:

v

The

CLP

command

(in

either

case)

is

typed

at

the

command

prompt.

v

The

command

is

sent

to

the

command

shell

by

pressing

the

ENTER

key.

v

Output

is

automatically

directed

to

the

standard

output

device.

v

Piping

and

redirection

are

supported.

v

The

user

is

notified

of

successful

and

unsuccessful

completion.

v

Following

execution

of

the

command,

control

returns

to

the

operating

system

command

prompt,

and

the

user

can

enter

more

commands.

Certain

CLP

commands

and

SQL

statements

require

that

the

server

instance

is

running

and

a

database

connection

exists.

Connect

to

a

database

by

doing

one

of

the

following:

v

Issue

the

SQL

statement

DB2®

CONNECT

TO

database.

v

Establish

an

implicit

connection

to

the

default

database

defined

by

the

DB2

Universal

Database™

(UDB)

registry

variable

DB2DBDFT.

If

a

command

exceeds

the

character

limit

allowed

at

the

command

prompt,

a

backslash

(\)

can

be

used

as

the

line

continuation

character.

When

the

command

db2

-

Command

Line

Processor

Invocation

Chapter

12.

Command

Line

Processor

(CLP)

221

line

processor

encounters

the

line

continuation

character,

it

reads

the

next

line

and

concatenates

the

characters

contained

on

both

lines.

Alternatively,

the

-t

option

can

be

used

to

set

a

different

line

termination

character.

The

command

line

processor

recognizes

a

string

called

NULL

as

a

null

string.

Fields

that

have

been

set

previously

to

some

value

can

later

be

set

to

NULL.

For

example,

db2

update

database

manager

configuration

using

tm_database

NULL

sets

the

tm_database

field

to

NULL.

This

operation

is

case

sensitive.

A

lowercase

null

is

not

interpreted

as

a

null

string,

but

rather

as

a

string

containing

the

letters

null.

Customizing

the

Command

Line

Processor:

It

is

possible

to

customize

the

interactive

input

prompt

by

using

the

DB2_CLPPROMPT

registry

variable.

This

registry

variable

can

be

set

to

any

text

string

of

maximum

length

100

and

can

contain

the

tokens

%i,

%ia,

%d,

%da

and

%n.

Specific

values

will

be

substituted

for

these

tokens

at

run-time.

Table

48.

DB2_CLPPROMPT

tokens

and

run-time

values

DB2_CLPPROMPT

token

Value

at

run-time

%ia

Authorization

ID

of

the

current

instance

attachment

%i

Local

alias

of

the

currently

attached

instance.

If

no

instance

attachment

exists,

the

value

of

the

DB2INSTANCE

registry

variable.

On

Windows®

platforms

only,

if

the

DB2INSTANCE

registry

variable

is

not

set,

the

value

of

the

DB2INSTDEF

registry

variable.

%da

Authorization

ID

of

the

current

database

connection

%d

Local

alias

of

the

currently

connected

database.

If

no

database

connection

exists,

the

value

of

the

DB2DBDFT

registry

variable.

%n

New

line

v

If

any

token

has

no

associated

value

at

run-time,

the

empty

string

is

substituted

for

that

token.

v

The

interactive

input

prompt

will

always

present

the

authorization

IDs,

database

names,

and

instance

names

in

upper

case,

so

as

to

be

consistent

with

the

connection

and

attachment

information

displayed

at

the

prompt.

v

If

the

DB2_CLPPROMPT

registry

variable

is

changed

within

CLP

interactive

mode,

the

new

value

of

DB2_CLPPROMPT

will

not

take

effect

until

CLP

interactive

mode

has

been

closed

and

reopened.

Examples:

If

DB2_CLPPROMPT

is

defined

as

(%ia@%i,

%da@%d),

the

input

prompt

will

have

the

following

values:

v

No

instance

attachment

and

no

database

connection.

DB2INSTANCE

set

to

″DB2″.

DB2DBDFT

is

not

set.

(@DB2,

@)

v

(Windows)

No

instance

attachment

and

no

database

connection.

DB2INSTANCE

and

DB2DBDFT

not

set.

DB2INSTDEF

set

to

″DB2″.

(@DB2,

@)

db2

-

Command

Line

Processor

Invocation

222

Common

Criteria

Certification:

Administration

and

User

Documentation

v

No

instance

attachment

and

no

database

connection.

DB2INSTANCE

set

to

″DB2″.

DB2DBDFT

set

to

″SAMPLE″.

(@DB2,

@SAMPLE)

v

Instance

attachment

to

instance

″DB2″

with

authorization

ID

″tyronnem″.

DB2INSTANCE

set

to

″DB2″.

DB2DBDFT

set

to

″SAMPLE″.

(TYRONNEM@DB2,

@SAMPLE)

v

Database

connection

to

database

″sample″

with

authorization

ID

″horman″.

DB2INSTANCE

set

to

″DB2″.

DB2DBDFT

set

to

″SAMPLE″.

(@DB2,

HORMAN@SAMPLE)

v

Instance

attachment

to

instance

″DB2″

with

authorization

ID

″tyronnem″.

Database

connection

to

database

″sample″

with

authorization

ID

″horman″.

DB2INSTANCE

set

to

″DB2″.

DB2DBDFT

not

set.

(TYRONNEM@DB2,

HORMAN@SAMPLE)

Using

the

Command

Line

Processor

in

Command

Files:

CLP

requests

to

the

database

manager

can

be

imbedded

in

a

shell

script

command

file.

The

following

example

shows

how

to

enter

the

CREATE

TABLE

statement

in

a

shell

script

command

file:

db2

“create

table

mytable

(name

VARCHAR(20),

color

CHAR(10))”

For

more

information

about

commands

and

command

files,

see

the

appropriate

operating

system

manual.

Command

Line

Processor

Design:

The

command

line

processor

consists

of

two

processes:

the

front-end

process

(the

DB2

command),

which

acts

as

the

user

interface,

and

the

back-end

process

(db2bp),

which

maintains

a

database

connection.

Maintaining

Database

Connections

Each

time

that

db2

is

invoked,

a

new

front-end

process

is

started.

The

back-end

process

is

started

by

the

first

db2

invocation,

and

can

be

explicitly

terminated

with

TERMINATE.

All

front-end

processes

with

the

same

parent

are

serviced

by

a

single

back-end

process,

and

therefore

share

a

single

database

connection.

For

example,

the

following

db2

calls

from

the

same

operating

system

command

prompt

result

in

separate

front-end

processes

sharing

a

single

back-end

process,

which

holds

a

database

connection

throughout:

v

db2

'connect

to

sample’,

v

db2

'select

*

from

org’,

v

.

foo

(where

foo

is

a

shell

script

containing

DB2

commands),

and

v

db2

-tf

myfile.clp.

The

following

invocations

from

the

same

operating

system

prompt

result

in

separate

database

connections

because

each

has

a

distinct

parent

process,

and

therefore

a

distinct

back-end

process:

v

foo

v

.

foo

&

v

foo

&

v

sh

foo

db2

-

Command

Line

Processor

Invocation

Chapter

12.

Command

Line

Processor

(CLP)

223

Communication

between

Front-end

and

Back-end

Processes

The

front-end

process

and

back-end

processes

communicate

through

three

message

queues:

a

request

queue,

an

input

queue,

and

an

output

queue.

Environment

Variables

The

following

environment

variables

offer

a

means

of

configuring

communication

between

the

two

processes:

Table

49.

Environment

Variables

Variable

Minimum

Maximum

Default

DB2BQTIME

1

second

5294967295

1

second

DB2BQTRY

0

tries

5294967295

60

tries

DB2RQTIME

1

second

5294967295

5

seconds

DB2IQTIME

1

second

5294967295

5

seconds

DB2BQTIME

When

the

command

line

processor

is

invoked,

the

front-end

process

checks

if

the

back-end

process

is

already

active.

If

it

is

active,

the

front-end

process

reestablishes

a

connection

to

it.

If

it

is

not

active,

the

front-end

process

activates

it.

The

front-end

process

then

idles

for

the

duration

specified

by

the

DB2BQTIME

variable,

and

checks

again.

The

front-end

process

continues

to

check

for

the

number

of

times

specified

by

the

DB2BQTRY

variable,

after

which,

if

the

back-end

process

is

still

not

active,

it

times

out

and

returns

an

error

message.

DB2BQTRY

Works

in

conjunction

with

the

DB2BQTIME

variable,

and

specifies

the

number

of

times

the

front-end

process

tries

to

determine

whether

the

back-end

process

is

active.

The

values

of

DB2BQTIME

and

DB2BQTRY

can

be

increased

during

peak

periods

to

optimize

query

time.

DB2RQTIME

Once

the

back-end

process

has

been

started,

it

waits

on

its

request

queue

for

a

request

from

the

front-end.

It

also

waits

on

the

request

queue

between

requests

initiated

from

the

command

prompt.

The

DB2RQTIME

variable

specifies

the

length

of

time

the

back-end

process

waits

for

a

request

from

the

front-end

process.

At

the

end

of

this

time,

if

no

request

is

present

on

the

request

queue,

the

back-end

process

checks

whether

the

parent

of

the

front-end

process

still

exists,

and

terminates

itself

if

it

does

not

exist.

Otherwise,

it

continues

to

wait

on

the

request

queue.

DB2IQTIME

When

the

back-end

process

receives

a

request

from

the

front-end

process,

it

sends

an

acknowledgment

to

the

front-end

process

indicating

that

it

is

ready

to

receive

input

via

the

input

queue.

The

back-end

process

then

waits

on

its

input

queue.

It

also

waits

on

the

input

queue

while

a

batch

file

(specified

with

the

-f

option)

is

executing,

and

while

the

user

is

in

interactive

mode.

The

DB2IQTIME

variable

specifies

the

length

of

time

the

back-end

process

waits

on

the

input

queue

for

the

front-end

process

to

pass

the

commands.

After

this

time

has

elapsed,

the

back-end

process

checks

whether

the

db2

-

Command

Line

Processor

Invocation

224

Common

Criteria

Certification:

Administration

and

User

Documentation

front-end

process

is

active,

and

returns

to

wait

on

the

request

queue

if

the

front-end

process

no

longer

exists.

Otherwise,

the

back-end

process

continues

to

wait

for

input

from

the

front-end

process.

To

view

the

values

of

these

environment

variables,

use

LIST

COMMAND

OPTIONS.

The

back-end

environment

variables

inherit

the

values

set

by

the

front-end

process

at

the

time

the

back-end

process

is

initiated.

However,

if

the

front-end

environment

variables

are

changed,

the

back-end

process

will

not

inherit

these

changes.

The

back-end

process

must

first

be

terminated,

and

then

restarted

(by

issuing

the

db2

command)

to

inherit

the

changed

values.

An

example

of

when

the

back-end

process

must

be

terminated

is

provided

by

the

following

scenario:

1.

User

A

logs

on,

issues

some

CLP

commands,

and

then

logs

off

without

issuing

TERMINATE.

2.

User

B

logs

on

using

the

same

window.

3.

When

user

B

issues

certain

CLP

commands,

they

fail

with

message

DB21016

(system

error).

The

back-end

process

started

by

user

A

is

still

active

when

user

B

starts

using

the

CLP,

because

the

parent

of

user

B’s

front-end

process

(the

operating

system

window

from

which

the

commands

are

issued)

is

still

active.

The

back-end

process

attempts

to

service

the

new

commands

issued

by

user

B;

however,

user

B’s

front-end

process

does

not

have

enough

authority

to

use

the

message

queues

of

the

back-end

process,

because

it

needs

the

authority

of

user

A,

who

created

that

back-end

process.

A

CLP

session

must

end

with

a

TERMINATE

command

before

a

user

starts

a

new

CLP

session

using

the

same

operating

system

window.

This

creates

a

fresh

back-end

process

for

each

new

user,

preventing

authority

problems,

and

setting

the

correct

values

of

environment

variables

(such

as

DB2INSTANCE)

in

the

new

user’s

back-end

process.

CLP

Usage

Notes:

Commands

can

be

entered

either

in

upper

case

or

in

lowercase

from

the

command

prompt.

However,

parameters

that

are

case

sensitive

to

DB2

must

be

entered

in

the

exact

case

desired.

For

example,

the

comment-string

in

the

WITH

clause

of

the

CHANGE

DATABASE

COMMENT

command

is

a

case

sensitive

parameter.

Delimited

identifiers

are

allowed

in

SQL

statements.

Special

characters,

or

metacharacters

(such

as

$

&

*

(

)

;

<

>

?

\

'

")

are

allowed

within

CLP

commands.

If

they

are

used

outside

the

CLP

interactive

mode,

or

the

CLP

batch

input

mode,

these

characters

are

interpreted

by

the

operating

system

shell.

Quotation

marks

or

an

escape

character

are

required

if

the

shell

is

not

to

take

any

special

action.

For

example,

when

executed

inside

an

AIX

Korn

shell

environment,

db2

select

*

from

org

where

division

>

'Eastern'

is

interpreted

as

″select

<the

names

of

all

files>

from

org

where

division″.

The

result,

an

SQL

syntax

error,

is

redirected

to

the

file

Eastern.

The

following

syntax

produces

the

correct

output:

db2

"select

*

from

org

where

division

>

'Eastern'"

db2

-

Command

Line

Processor

Invocation

Chapter

12.

Command

Line

Processor

(CLP)

225

Special

characters

vary

from

platform

to

platform.

In

the

AIX

Korn

shell,

the

above

example

could

be

rewritten

using

an

escape

character

(\),

such

as

*,

\>,

or

\'.

Most

operating

system

environments

allow

input

and

output

to

be

redirected.

For

example,

if

a

connection

to

the

SAMPLE

database

has

been

made,

the

following

request

queries

the

STAFF

table,

and

sends

the

output

to

a

file

named

staflist.txt

in

the

mydata

directory:

db2

"select

*

from

staff"

>

mydata/staflist.txt

For

environments

where

output

redirection

is

not

supported,

CLP

options

can

be

used.

For

example,

the

request

can

be

rewritten

as

db2

-r

mydata\staflist.txt

"select

*

from

staff"

db2

-z

mydata\staflist.txt

"select

*

from

staff"

The

command

line

processor

is

not

a

programming

language.

For

example,

it

does

not

support

host

variables,

and

the

statement,

db2

connect

to

:HostVar

in

share

mode

is

syntactically

incorrect,

because

:HostVar

is

not

a

valid

database

name.

The

command

line

processor

represents

SQL

NULL

values

as

hyphens

(-).

If

the

column

is

numeric,

the

hyphen

is

placed

at

the

right

of

the

column.

If

the

column

is

not

numeric,

the

hyphen

is

at

the

left.

To

correctly

display

the

national

characters

for

single

byte

(SBCS)

languages

from

the

DB2

command

line

processor

window,

a

True

Type

font

must

be

selected.

For

example,

in

a

Windows

environment,

open

the

command

window

properties

notebook

and

select

a

font

such

as

Lucinda

Console.

db2

-

Command

Line

Processor

Invocation

226

Common

Criteria

Certification:

Administration

and

User

Documentation

Chapter

13.

DB2

UDB

Commands

for

Administrators

BACKUP

DATABASE

.

.

.

.

.

.

.

.

.

. 227

BIND

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 232

CATALOG

DATABASE

.

.

.

.

.

.

.

.

.

. 249

CREATE

DATABASE

.

.

.

.

.

.

.

.

.

.

. 252

db2audit

-

Audit

Facility

Administrator

Tool

.

.

. 260

db2icrt

-

Create

Instance

.

.

.

.

.

.

.

.

.

. 260

db2rbind

-

Rebind

all

Packages

.

.

.

.

.

.

. 263

db2secv82

-

Set

permissions

for

DB2

objects

.

.

. 264

db2set

-

DB2

Profile

Registry

.

.

.

.

.

.

.

. 265

db2undgp

-

Revoke

Execute

Privilege

.

.

.

.

. 267

DROP

DATABASE

.

.

.

.

.

.

.

.

.

.

. 268

EXPORT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 269

GET

AUTHORIZATIONS

.

.

.

.

.

.

.

.

. 274

GET

DATABASE

CONFIGURATION

.

.

.

.

. 275

GET

DATABASE

MANAGER

CONFIGURATION

281

IMPORT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 285

INSPECT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 298

LIST

APPLICATIONS

.

.

.

.

.

.

.

.

.

. 302

LOAD

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 304

File

type

modifiers

for

load

.

.

.

.

.

.

.

.

. 326

MIGRATE

DATABASE

.

.

.

.

.

.

.

.

.

. 336

QUIESCE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 338

QUIESCE

TABLESPACES

FOR

TABLE

.

.

.

.

. 340

RECONCILE

.

.

.

.

.

.

.

.

.

.

.

.

. 342

REORG

INDEXES/TABLE

.

.

.

.

.

.

.

.

. 346

RESTART

DATABASE

.

.

.

.

.

.

.

.

.

. 352

RESTORE

DATABASE

.

.

.

.

.

.

.

.

.

. 354

ROLLFORWARD

DATABASE

.

.

.

.

.

.

.

. 363

SET

WRITE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 371

START

DATABASE

MANAGER

.

.

.

.

.

.

. 373

STOP

DATABASE

MANAGER

.

.

.

.

.

.

. 378

UNQUIESCE

.

.

.

.

.

.

.

.

.

.

.

.

. 380

UPDATE

DATABASE

CONFIGURATION

.

.

.

. 381

UPDATE

DATABASE

MANAGER

CONFIGURATION

.

.

.

.

.

.

.

.

.

.

. 384

BACKUP

DATABASE

Creates

a

backup

copy

of

a

database

or

a

table

space.

Scope:

This

command

only

affects

the

database

partition

on

which

it

is

executed.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

v

sysmaint

Required

connection:

Database.

This

command

automatically

establishes

a

connection

to

the

specified

database.

Note:

If

a

connection

to

the

specified

database

already

exists,

that

connection

will

be

terminated

and

a

new

connection

established

specifically

for

the

backup

operation.

The

connection

is

terminated

at

the

completion

of

the

backup

operation.

Command

syntax:

��

BACKUP

DATABASE

database-alias

DB

USER

username

USING

password

�

©

Copyright

IBM

Corp.

1993-2004

227

�

�

,

TABLESPACE

(

tablespace-name

)

ONLINE

INCREMENTAL

DELTA

�

�

�

USE

TSM

XBSA

OPTIONS

″options-string″

OPEN

num-sessions

SESSIONS

@

file-name

,

TO

dir

dev

LOAD

library-name

OPTIONS

″options-string″

OPEN

num-sessions

SESSIONS

@

file-name

�

�

WITH

num-buffers

BUFFERS

BUFFER

buffer-size

PARALLELISM

n

�

�

COMPRESS

COMPRLIB

name

COMPROPTS

string

EXCLUDE

�

�

UTIL_IMPACT_PRIORITY

priority

EXCLUDE

LOGS

INCLUDE

LOGS

WITHOUT

PROMPTING

��

Command

parameters:

DATABASE

database-alias

Specifies

the

alias

of

the

database

to

back

up.

USER

username

Identifies

the

user

name

under

which

to

back

up

the

database.

USING

password

The

password

used

to

authenticate

the

user

name.

If

the

password

is

omitted,

the

user

is

prompted

to

enter

it.

TABLESPACE

tablespace-name

A

list

of

names

used

to

specify

the

table

spaces

to

be

backed

up.

ONLINE

Specifies

online

backup.

The

default

is

offline

backup.

Online

backups

are

only

available

for

databases

configured

with

logretain

or

userexit

enabled.

During

an

online

backup,

DB2

obtains

IN

(Intent

None)

locks

on

all

tables

existing

in

SMS

table

spaces

as

they

are

processed

and

S

(Share)

locks

on

LOB

data

in

SMS

table

spaces.

INCREMENTAL

Specifies

a

cumulative

(incremental)

backup

image.

An

incremental

backup

image

is

a

copy

of

all

database

data

that

has

changed

since

the

most

recent

successful,

full

backup

operation.

DELTA

Specifies

a

non-cumulative

(delta)

backup

image.

A

delta

backup

image

is

a

copy

of

all

database

data

that

has

changed

since

the

most

recent

successful

backup

operation

of

any

type.

USE

TSM

Specifies

that

the

backup

is

to

use

Tivoli

Storage

Manager

output.

USE

XBSA

Specifies

that

the

XBSA

interface

is

to

be

used.

Backup

Services

APIs

BACKUP

DATABASE

228

Common

Criteria

Certification:

Administration

and

User

Documentation

(XBSA)

are

an

open

application

programming

interface

for

applications

or

facilities

needing

data

storage

management

for

backup

or

archiving

purposes.

OPTIONS

″options-string″

Specifies

options

to

be

used

for

the

backup

operation.The

string

will

be

passed

to

the

vendor

support

library,

for

example

TSM,

exactly

as

it

was

entered,

without

the

quotes.

Note:

Specifying

this

option

overrides

the

value

specified

by

the

VENDOROPT

database

configuration

parameter.

@file-name

Specifies

that

the

options

to

be

used

for

the

backup

operation

are

contained

in

a

file

located

on

the

DB2

server.

The

string

will

be

passed

to

the

vendor

support

library,

for

example

TSM.

The

file

must

be

a

fully

qualified

file

name.

OPEN

num-sessions

SESSIONS

The

number

of

I/O

sessions

to

be

created

between

DB2

and

TSM

or

another

backup

vendor

product.

Note:

This

parameter

has

no

effect

when

backing

up

to

tape,

disk,

or

other

local

device.

TO

dir/dev

A

list

of

directory

or

tape

device

names.

The

full

path

on

which

the

directory

resides

must

be

specified.

If

USE

TSM,

TO,

and

LOAD

are

omitted,

the

default

target

directory

for

the

backup

image

is

the

current

working

directory

of

the

client

computer.

This

target

directory

or

device

must

exist

on

the

database

server.

This

parameter

can

be

repeated

to

specify

the

target

directories

and

devices

that

the

backup

image

will

span.

If

more

than

one

target

is

specified

(target1,

target2,

and

target3,

for

example),

target1

will

be

opened

first.

The

media

header

and

special

files

(including

the

configuration

file,

table

space

table,

and

history

file)

are

placed

in

target1.

All

remaining

targets

are

opened,

and

are

then

used

in

parallel

during

the

backup

operation.

Because

there

is

no

general

tape

support

on

Windows

operating

systems,

each

type

of

tape

device

requires

a

unique

device

driver.

To

back

up

to

the

FAT

file

system

on

Windows

operating

systems,

users

must

conform

to

the

8.3

naming

restriction.

Use

of

tape

devices

or

floppy

disks

might

generate

messages

and

prompts

for

user

input.

Valid

response

options

are:

c

Continue.

Continue

using

the

device

that

generated

the

warning

message

(for

example,

when

a

new

tape

has

been

mounted)

d

Device

terminate.

Stop

using

only

the

device

that

generated

the

warning

message

(for

example,

when

there

are

no

more

tapes)

t

Terminate.

Abort

the

backup

operation.

If

the

tape

system

does

not

support

the

ability

to

uniquely

reference

a

backup

image,

it

is

recommended

that

multiple

backup

copies

of

the

same

database

not

be

kept

on

the

same

tape.

LOAD

library-name

The

name

of

the

shared

library

(DLL

on

Windows

operating

systems)

containing

the

vendor

backup

and

restore

I/O

functions

to

be

used.

It

can

BACKUP

DATABASE

Chapter

13.

DB2

UDB

Commands

for

Administrators

229

contain

the

full

path.

If

the

full

path

is

not

given,

it

will

default

to

the

path

on

which

the

user

exit

program

resides.

WITH

num-buffers

BUFFERS

The

number

of

buffers

to

be

used.

DB2

will

automatically

choose

an

optimal

value

for

this

parameter

unless

you

explicitly

enter

a

value.

However,

when

creating

a

backup

to

multiple

locations,

a

larger

number

of

buffers

can

be

used

to

improve

performance.

BUFFER

buffer-size

The

size,

in

4

KB

pages,

of

the

buffer

used

when

building

the

backup

image.

DB2

will

automatically

choose

an

optimal

value

for

this

parameter

unless

you

explicitly

enter

a

value.

The

minimum

value

for

this

parameter

is

8

pages.

If

using

tape

with

variable

block

size,

reduce

the

buffer

size

to

within

the

range

that

the

tape

device

supports.

Otherwise,

the

backup

operation

might

succeed,

but

the

resulting

image

might

not

be

recoverable.

When

using

tape

devices

on

SCO

UnixWare

7,

specify

a

buffer

size

of

16.

With

most

versions

of

Linux,

using

DB2’s

default

buffer

size

for

backup

operations

to

a

SCSI

tape

device

results

in

error

SQL2025N,

reason

code

75.

To

prevent

the

overflow

of

Linux

internal

SCSI

buffers,

use

this

formula:

bufferpages

<=

ST_MAX_BUFFERS

*

ST_BUFFER_BLOCKS

/

4

where

bufferpages

is

the

value

you

want

to

use

with

the

BUFFER

parameter,

and

ST_MAX_BUFFERS

and

ST_BUFFER_BLOCKS

are

defined

in

the

Linux

kernel

under

the

drivers/scsi

directory.

PARALLELISM

n

Determines

the

number

of

table

spaces

which

can

be

read

in

parallel

by

the

backup

utility.

DB2

will

automatically

choose

an

optimal

value

for

this

parameter

unless

you

explicitly

enter

a

value.

UTIL_IMPACT_PRIORITY

priority

Specifies

that

the

backup

will

run

in

throttled

mode,

with

the

priority

specified.

Throttling

allows

you

to

regulate

the

performance

impact

of

the

backup

operation.

Priority

can

be

any

number

between

1

and

100,

with

1

representing

the

lowest

priority,

and

100

representing

the

highest

priority.

If

the

UTIL_IMPACT_PRIORITY

keyword

is

specified

with

no

priority,

the

backup

will

run

with

the

default

priority

of

50.

If

UTIL_IMPACT_PRIORITY

is

not

specified,

the

backup

will

run

in

unthrottled

mode.

An

impact

policy

must

be

defined

by

setting

the

util_impact_lim

configuration

parameter

for

a

backup

to

run

in

throttled

mode.

COMPRESS

Indicates

that

the

backup

is

to

be

compressed.

COMPRLIB

name

Indicates

the

name

of

the

library

to

be

used

to

perform

the

compression.

The

name

must

be

a

fully

qualified

path

referring

to

a

file

on

the

server.

If

this

parameter

is

not

specified,

the

default

DB2

compression

library

will

be

used.

If

the

specified

library

cannot

be

loaded,

the

backup

will

fail.

EXCLUDE

Indicates

that

the

compression

library

will

not

be

stored

in

the

backup

image.

BACKUP

DATABASE

230

Common

Criteria

Certification:

Administration

and

User

Documentation

COMPROPTS

string

Describes

a

block

of

binary

data

that

will

be

passed

to

the

initialization

routine

in

the

compression

library.

DB2

will

pass

this

string

directly

from

the

client

to

the

server,

so

any

issues

of

byte

reversal

or

code

page

conversion

will

have

to

be

handled

by

the

compression

library.

If

the

first

character

of

the

data

block

is

’@’,

the

remainder

of

the

data

will

be

interpreted

by

DB2

as

the

name

of

a

file

residing

on

the

server.

DB2

will

then

replace

the

contents

of

string

with

the

contents

of

this

file

and

will

pass

this

new

value

to

the

initialization

routine

instead.

The

maximum

length

for

string

is

1024

bytes.

EXCLUDE

LOGS

Specifies

that

the

backup

image

should

not

include

any

log

files.

Note:

When

performing

an

offline

backup

operation,

logs

are

excluded

whether

or

not

this

option

is

specified.

INCLUDE

LOGS

Specifies

that

the

backup

image

should

include

the

range

of

log

files

required

to

restore

and

roll

forward

this

image

to

some

consistent

point

in

time.

This

option

is

not

valid

for

an

offline

backup.

WITHOUT

PROMPTING

Specifies

that

the

backup

will

run

unattended,

and

that

any

actions

which

normally

require

user

intervention

will

return

an

error

message.

Examples:

1.

In

the

following

example,

the

database

WSDB

is

defined

on

all

4

partitions,

numbered

0

through

3.

The

path

/dev3/backup

is

accessible

from

all

partitions.

Partition

0

is

the

catalog

partition,

and

needs

to

be

backed-up

separately

since

this

is

an

offline

backup.

To

perform

an

offline

backup

of

all

the

WSDB

database

partitions

to

/dev3/backup,

issue

the

following

commands

from

one

of

the

database

partitions:

db2_all

’<<+0<

db2

BACKUP

DATABASE

wsdb

TO

/dev3/backup’

db2_all

’|<<-0<

db2

BACKUP

DATABASE

wsdb

TO

/dev3/backup’

In

the

second

command,

the

db2_all

utility

will

issue

the

same

backup

command

to

each

database

partition

in

turn

(except

partition

0).

All

four

database

partition

backup

images

will

be

stored

in

the

/dev3/backup

directory.

2.

In

the

following

example

database

SAMPLE

is

backed

up

to

a

TSM

server

using

two

concurrent

TSM

client

sessions.

DB2

calculates

the

optimal

buffer

size

for

this

environment.

db2

backup

database

sample

use

tsm

open

2

sessions

with

4

buffers

3.

In

the

following

example,

a

table

space-level

backup

of

table

spaces

(syscatspace,

userspace1)

of

database

payroll

is

done

to

tapes.

db2

backup

database

payroll

tablespace

(syscatspace,

userspace1)

to

/dev/rmt0,

/dev/rmt1

with

8

buffers

without

prompting

4.

The

USE

TSM

OPTIONS

keywords

can

be

used

to

specify

the

TSM

information

to

use

for

the

backup

operation.

The

following

example

shows

how

to

use

the

USE

TSM

OPTIONS

keywords

to

specify

a

fully

qualified

file

name:

db2

backup

db

sample

use

TSM

options

@/u/dmcinnis/myoptions.txt

The

file

myoptions.txt

contains

the

following

information:

-fromnode=bar

-fromowner=dmcinnis

BACKUP

DATABASE

Chapter

13.

DB2

UDB

Commands

for

Administrators

231

5.

Following

is

a

sample

weekly

incremental

backup

strategy

for

a

recoverable

database.

It

includes

a

weekly

full

database

backup

operation,

a

daily

non-cumulative

(delta)

backup

operation,

and

a

mid-week

cumulative

(incremental)

backup

operation:

(Sun)

db2

backup

db

sample

use

tsm

(Mon)

db2

backup

db

sample

online

incremental

delta

use

tsm

(Tue)

db2

backup

db

sample

online

incremental

delta

use

tsm

(Wed)

db2

backup

db

sample

online

incremental

use

tsm

(Thu)

db2

backup

db

sample

online

incremental

delta

use

tsm

(Fri)

db2

backup

db

sample

online

incremental

delta

use

tsm

(Sat)

db2

backup

db

sample

online

incremental

use

tsm

6.

In

the

following

example,

three

identical

target

directories

are

specified

for

a

backup

operation

on

database

SAMPLE.

You

might

want

to

do

this

if

the

target

file

system

is

made

up

of

multiple

physical

disks.

db2

backup

database

sample

to

/dev3/backup,

/dev3/backup,

/dev3/backup

The

data

will

be

concurrently

backed

up

to

the

three

target

directories,

and

three

backup

images

will

be

generated

with

extensions

.001,

.002,

and

.003.

Related

reference:

v

“RESTORE

DATABASE”

on

page

354

v

“ROLLFORWARD

DATABASE”

on

page

363

BIND

Invokes

the

bind

utility,

which

prepares

SQL

statements

stored

in

the

bind

file

generated

by

the

precompiler,

and

creates

a

package

that

is

stored

in

the

database.

Scope:

This

command

can

be

issued

from

any

database

partition

in

db2nodes.cfg.

It

updates

the

database

catalogs

on

the

catalog

database

partition.

Its

effects

are

visible

to

all

database

partitions.

Authorization:

One

of

the

following:

v

sysadm

or

dbadm

authority

v

BINDADD

privilege

if

a

package

does

not

exist

and

one

of:

–

IMPLICIT_SCHEMA

authority

on

the

database

if

the

schema

name

of

the

package

does

not

exist

–

CREATEIN

privilege

on

the

schema

if

the

schema

name

of

the

package

exists
v

ALTERIN

privilege

on

the

schema

if

the

package

exists

v

BIND

privilege

on

the

package

if

it

exists.

The

user

also

needs

all

privileges

required

to

compile

any

static

SQL

statements

in

the

application.

Privileges

granted

to

groups

are

not

used

for

authorization

checking

of

static

statements.

If

the

user

has

sysadm

authority,

but

not

explicit

privileges

to

complete

the

bind,

the

database

manager

grants

explicit

dbadm

authority

automatically.

Required

connection:

BACKUP

DATABASE

232

Common

Criteria

Certification:

Administration

and

User

Documentation

Database.

If

implicit

connect

is

enabled,

a

connection

to

the

default

database

is

established.

Command

syntax:

For

DB2

for

Windows

and

UNIX

��

BIND

filename

�

�

ACTION

ADD

REPLACE

RETAIN

NO

REPLVER

version-id

YES

�

�

BLOCKING

UNAMBIG

ALL

NO

CLIPKG

cli-packages

COLLECTION

schema-name

�

�

DATETIME

DEF

EUR

ISO

JIS

LOC

USA

DEGREE

1

degree-of-parallelism

ANY

�

�

DYNAMICRULES

RUN

BIND

INVOKERUN

INVOKEBIND

DEFINERUN

DEFINEBIND

EXPLAIN

NO

ALL

REOPT

YES

EXPLSNAP

NO

ALL

REOPT

YES

�

�

FEDERATED

NO

YES

�

,

FUNCPATH

schema-name

GENERIC

string

�

�

GRANT

authid

PUBLIC

GRANT_GROUP

group-name

GRANT_USER

user-name

DEF

INSERT

BUF

ISOLATION

CS

RR

RS

UR

�

�

MESSAGES

message-file

OWNER

authorization-id

QUALIFIER

qualifier-name

�

�

QUERYOPT

optimization-level

REOPT

NONE

REOPT

ONCE

REOPT

ALWAYS

SQLERROR

CHECK

CONTINUE

NOPACKAGE

�

�

SQLWARN

NO

YES

�

BIND

Chapter

13.

DB2

UDB

Commands

for

Administrators

233

�

NO

STATICREADONLY

YES

VALIDATE

BIND

TRANSFORM

GROUP

groupname

RUN

��

For

DB2

on

servers

other

than

Windows

and

UNIX

��

BIND

filename

�

�

ACTION

ADD

REPLACE

RETAIN

NO

REPLVER

version-id

YES

�

�

UNAMBIG

BLOCKING

ALL

NO

CCSIDG

double-ccsid

CCSIDM

mixed-ccsid

�

�

CCSIDS

sbcs-ccsid

CHARSUB

DEFAULT

BIT

MIXED

SBCS

CLIPKG

cli-packages

�

�

CNULREQD

NO

YES

COLLECTION

schema-name

�

�

(1)

DATETIME

DEF

EUR

ISO

JIS

LOC

USA

DBPROTOCOL

DRDA

PRIVATE

DEC

15

31

�

�

DECDEL

COMMA

PERIOD

(2)

DEGREE

1

degree-of-parallelism

ANY

�

�

RUN

DYNAMICRULES

BIND

INVOKERUN

INVOKEBIND

DEFINERUN

DEFINEBIND

ENCODING

ASCII

EBCDIC

UNICODE

CCSID

�

BIND

234

Common

Criteria

Certification:

Administration

and

User

Documentation

�

(3)

EXPLAIN

NO

YES

GENERIC

string

GRANT

authid

PUBLIC

�

�

IMMEDWRITE

NO

YES

PH1

INSERT

BUF

DEF

CS

ISOLATION

NC

RR

RS

UR

�

�

KEEPDYNAMIC

YES

NO

MESSAGES

message-file

OPTHINT

hint-id

�

�

OS400NAMING

SYSTEM

SQL

OWNER

authorization-id

PATH

schema-name

�

�

QUALIFIER

qualifier-name

RELEASE

COMMIT

DEALLOCATE

REOPT

NONE

REOPT

ONCE

REOPT

ALWAYS

�

�

REOPT

VARS

NOREOPT

VARS

SORTSEQ

JOBRUN

HEX

SQLERROR

CHECK

CONTINUE

NOPACKAGE

�

�

VALIDATE

BIND

RUN

STRDEL

APOSTROPHE

QUOTE

TEXT

label

��

Notes:

1 If

the

server

does

not

support

the

DATETIME

DEF

option,

it

is

mapped

to

DATETIME

ISO.

2 The

DEGREE

option

is

only

supported

by

DRDA

Level

2

Application

Servers.

3 DRDA

defines

the

EXPLAIN

option

to

have

the

value

YES

or

NO.

If

the

server

does

not

support

the

EXPLAIN

YES

option,

the

value

is

mapped

to

EXPLAIN

ALL.

Command

parameters:

filename

Specifies

the

name

of

the

bind

file

that

was

generated

when

the

application

program

was

precompiled,

or

a

list

file

containing

the

names

of

several

bind

files.

Bind

files

have

the

extension

.bnd.

The

full

path

name

can

be

specified.

If

a

list

file

is

specified,

the

@

character

must

be

the

first

character

of

the

list

file

name.

The

list

file

can

contain

several

lines

of

bind

file

names.

Bind

files

listed

on

the

same

line

must

be

separated

by

plus

(+)

characters,

but

a

+

cannot

appear

in

front

of

the

first

file

listed

on

each

line,

or

after

the

last

bind

file

listed.

For

example,

/u/smith/sqllib/bnd/@all.lst

BIND

Chapter

13.

DB2

UDB

Commands

for

Administrators

235

is

a

list

file

that

contains

the

following

bind

files:

mybind1.bnd+mybind.bnd2+mybind3.bnd+

mybind4.bnd+mybind5.bnd+

mybind6.bnd+

mybind7.bnd

ACTION

Indicates

whether

the

package

can

be

added

or

replaced.

ADD

Indicates

that

the

named

package

does

not

exist,

and

that

a

new

package

is

to

be

created.

If

the

package

already

exists,

execution

stops,

and

a

diagnostic

error

message

is

returned.

REPLACE

Indicates

that

the

existing

package

is

to

be

replaced

by

a

new

one

with

the

same

package

name

and

creator.

This

is

the

default

value

for

the

ACTION

option.

RETAIN

Indicates

whether

BIND

and

EXECUTE

authorities

are

to

be

preserved

when

a

package

is

replaced.

If

ownership

of

the

package

changes,

the

new

owner

grants

the

BIND

and

EXECUTE

authority

to

the

previous

package

owner.

NO

Does

not

preserve

BIND

and

EXECUTE

authorities

when

a

package

is

replaced.

This

value

is

not

supported

by

DB2.

YES

Preserves

BIND

and

EXECUTE

authorities

when

a

package

is

replaced.

This

is

the

default

value.

REPLVER

version-id

Replaces

a

specific

version

of

a

package.

The

version

identifier

specifies

which

version

of

the

package

is

to

be

replaced.

If

the

specified

version

does

not

exist,

an

error

is

returned.

If

the

REPLVER

option

of

REPLACE

is

not

specified,

and

a

package

already

exists

that

matches

the

package

name,

creator,

and

version

of

the

package

being

bound,

that

package

will

be

replaced;

if

not,

a

new

package

will

be

added.

BLOCKING

Specifies

the

type

of

row

blocking

for

cursors.

ALL

Specifies

to

block

for:

v

Read-only

cursors

v

Cursors

not

specified

as

FOR

UPDATE

OF

Ambiguous

cursors

are

treated

as

read-only.

NO

Specifies

not

to

block

any

cursors.

Ambiguous

cursors

are

treated

as

updatable.

UNAMBIG

Specifies

to

block

for:

v

Read-only

cursors

v

Cursors

not

specified

as

FOR

UPDATE

OF

Ambiguous

cursors

are

treated

as

updatable.

CCSIDG

double-ccsid

An

integer

specifying

the

coded

character

set

identifier

(CCSID)

to

be

used

BIND

236

Common

Criteria

Certification:

Administration

and

User

Documentation

for

double

byte

characters

in

character

column

definitions

(without

a

specific

CCSID

clause)

in

CREATE

and

ALTER

TABLE

SQL

statements.

This

DRDA

precompile/bind

option

is

not

supported

by

DB2.

The

DRDA

server

will

use

a

system

defined

default

value

if

this

option

is

not

specified.

CCSIDM

mixed-ccsid

An

integer

specifying

the

coded

character

set

identifier

(CCSID)

to

be

used

for

mixed

byte

characters

in

character

column

definitions

(without

a

specific

CCSID

clause)

in

CREATE

and

ALTER

TABLE

SQL

statements.

This

DRDA

precompile/bind

option

is

not

supported

by

DB2.

The

DRDA

server

will

use

a

system

defined

default

value

if

this

option

is

not

specified.

CCSIDS

sbcs-ccsid

An

integer

specifying

the

coded

character

set

identifier

(CCSID)

to

be

used

for

single

byte

characters

in

character

column

definitions

(without

a

specific

CCSID

clause)

in

CREATE

and

ALTER

TABLE

SQL

statements.

This

DRDA

precompile/bind

option

is

not

supported

by

DB2.

The

DRDA

server

will

use

a

system

defined

default

value

if

this

option

is

not

specified.

CHARSUB

Designates

the

default

character

sub-type

that

is

to

be

used

for

column

definitions

in

CREATE

and

ALTER

TABLE

SQL

statements.

This

DRDA

precompile/bind

option

is

not

supported

by

DB2

for

Windows

and

UNIX.

BIT

Use

the

FOR

BIT

DATA

SQL

character

sub-type

in

all

new

character

columns

for

which

an

explicit

sub-type

is

not

specified.

DEFAULT

Use

the

target

system

defined

default

in

all

new

character

columns

for

which

an

explicit

sub-type

is

not

specified.

MIXED

Use

the

FOR

MIXED

DATA

SQL

character

sub-type

in

all

new

character

columns

for

which

an

explicit

sub-type

is

not

specified.

SBCS

Use

the

FOR

SBCS

DATA

SQL

character

sub-type

in

all

new

character

columns

for

which

an

explicit

sub-type

is

not

specified.

CLIPKG

cli-packages

An

integer

between

3

and

30

specifying

the

number

of

CLI

large

packages

to

be

created

when

binding

CLI

bind

files

against

a

database.

CNULREQD

This

option

is

related

to

the

LANGLEVEL

precompile

option,

which

is

not

supported

by

DRDA.

It

is

valid

only

if

the

bind

file

is

created

from

a

C

or

a

C++

application.

This

DRDA

bind

option

is

not

supported

by

DB2

for

Windows

and

UNIX.

NO

The

application

was

coded

on

the

basis

of

the

LANGLEVEL

SAA1

precompile

option

with

respect

to

the

null

terminator

in

C

string

host

variables.

YES

The

application

was

coded

on

the

basis

of

the

LANGLEVEL

MIA

precompile

option

with

respect

to

the

null

terminator

in

C

string

host

variables.

BIND

Chapter

13.

DB2

UDB

Commands

for

Administrators

237

COLLECTION

schema-name

Specifies

a

30-character

collection

identifier

for

the

package.

If

not

specified,

the

authorization

identifier

for

the

user

processing

the

package

is

used.

DATETIME

Specifies

the

date

and

time

format

to

be

used.

DEF

Use

a

date

and

time

format

associated

with

the

territory

code

of

the

database.

EUR

Use

the

IBM

standard

for

Europe

date

and

time

format.

ISO

Use

the

date

and

time

format

of

the

International

Standards

Organization.

JIS

Use

the

date

and

time

format

of

the

Japanese

Industrial

Standard.

LOC

Use

the

date

and

time

format

in

local

form

associated

with

the

territory

code

of

the

database.

USA

Use

the

IBM

standard

for

U.S.

date

and

time

format.

DBPROTOCOL

Specifies

what

protocol

to

use

when

connecting

to

a

remote

site

that

is

identified

by

a

three-part

name

statement.

Supported

by

DB2

for

OS/390

only.

For

a

list

of

supported

option

values,

refer

to

the

documentation

for

DB2

for

OS/390.

DEC

Specifies

the

maximum

precision

to

be

used

in

decimal

arithmetic

operations.

This

DRDA

precompile/bind

option

is

not

supported

by

DB2

for

Windows

and

UNIX.

The

DRDA

server

will

use

a

system

defined

default

value

if

this

option

is

not

specified.

15

15-digit

precision

is

used

in

decimal

arithmetic

operations.

31

31-digit

precision

is

used

in

decimal

arithmetic

operations.

DECDEL

Designates

whether

a

period

(.)

or

a

comma

(,)

will

be

used

as

the

decimal

point

indicator

in

decimal

and

floating

point

literals.

This

DRDA

precompile/bind

option

is

not

supported

by

DB2

for

Windows

and

UNIX.

The

DRDA

server

will

use

a

system

defined

default

value

if

this

option

is

not

specified.

COMMA

Use

a

comma

(,)

as

the

decimal

point

indicator.

PERIOD

Use

a

period

(.)

as

the

decimal

point

indicator.

DEGREE

Specifies

the

degree

of

parallelism

for

the

execution

of

static

SQL

statements

in

an

SMP

system.

This

option

does

not

affect

CREATE

INDEX

parallelism.

1

The

execution

of

the

statement

will

not

use

parallelism.

degree-of-parallelism

Specifies

the

degree

of

parallelism

with

which

the

statement

can

be

executed,

a

value

between

2

and

32

767

(inclusive).

ANY

Specifies

that

the

execution

of

the

statement

can

involve

parallelism

using

a

degree

determined

by

the

database

manager.

BIND

238

Common

Criteria

Certification:

Administration

and

User

Documentation

DYNAMICRULES

Defines

which

rules

apply

to

dynamic

SQL

at

run

time

for

the

initial

setting

of

the

values

used

for

authorization

ID

and

for

the

implicit

qualification

of

unqualified

object

references.

RUN

Specifies

that

the

authorization

ID

of

the

user

executing

the

package

is

to

be

used

for

authorization

checking

of

dynamic

SQL

statements.

The

authorization

ID

will

also

be

used

as

the

default

package

qualifier

for

implicit

qualification

of

unqualified

object

references

within

dynamic

SQL

statements.

This

is

the

default

value.

BIND

Specifies

that

all

of

the

rules

that

apply

to

static

SQL

for

authorization

and

qualification

are

to

be

used

at

run

time.

That

is,

the

authorization

ID

of

the

package

owner

is

to

be

used

for

authorization

checking

of

dynamic

SQL

statements,

and

the

default

package

qualifier

is

to

be

used

for

implicit

qualification

of

unqualified

object

references

within

dynamic

SQL

statements.

DEFINERUN

If

the

package

is

used

within

a

routine

context,

the

authorization

ID

of

the

routine

definer

is

to

be

used

for

authorization

checking

and

for

implicit

qualification

of

unqualified

object

references

within

dynamic

SQL

statements

within

the

routine.

If

the

package

is

used

as

a

standalone

application,

dynamic

SQL

statements

are

processed

as

if

the

package

were

bound

with

DYNAMICRULES

RUN.

DEFINEBIND

If

the

package

is

used

within

a

routine

context,

the

authorization

ID

of

the

routine

definer

is

to

be

used

for

authorization

checking

and

for

implicit

qualification

of

unqualified

object

references

within

dynamic

SQL

statements

within

the

routine.

If

the

package

is

used

as

a

standalone

application,

dynamic

SQL

statements

are

processed

as

if

the

package

were

bound

with

DYNAMICRULES

BIND.

INVOKERUN

If

the

package

is

used

within

a

routine

context,

the

current

statement

authorization

ID

in

effect

when

the

routine

is

invoked

is

to

be

used

for

authorization

checking

of

dynamic

SQL

statements

and

for

implicit

qualification

of

unqualified

object

references

within

dynamic

SQL

statements

within

that

routine.

If

the

package

is

used

as

a

standalone

application,

dynamic

SQL

statements

are

processed

as

if

the

package

were

bound

with

DYNAMICRULES

RUN.

INVOKEBIND

If

the

package

is

used

within

a

routine

context,

the

current

statement

authorization

ID

in

effect

when

the

routine

is

invoked

is

to

be

used

for

authorization

checking

of

dynamic

SQL

statements

and

for

implicit

qualification

of

unqualified

object

references

within

dynamic

SQL

statements

within

that

routine.

If

the

package

is

used

as

a

standalone

application,

dynamic

SQL

statements

are

processed

as

if

the

package

were

bound

with

DYNAMICRULES

BIND.

BIND

Chapter

13.

DB2

UDB

Commands

for

Administrators

239

Note:

Because

dynamic

SQL

statements

will

be

using

the

authorization

ID

of

the

package

owner

in

a

package

exhibiting

bind

behavior,

the

binder

of

the

package

should

not

have

any

authorities

granted

to

them

that

the

user

of

the

package

should

not

receive.

Similarly,

when

defining

a

routine

that

will

exhibit

define

behavior,

the

definer

of

the

routine

should

not

have

any

authorities

granted

to

them

that

the

user

of

the

package

should

not

receive

since

a

dynamic

statement

will

be

using

the

authorization

ID

of

the

routine’s

definer.

The

following

dynamically

prepared

SQL

statements

cannot

be

used

within

a

package

that

was

not

bound

with

DYNAMICRULES

RUN:

GRANT,

REVOKE,

ALTER,

CREATE,

DROP,

COMMENT

ON,

RENAME,

SET

INTEGRITY,

and

SET

EVENT

MONITOR

STATE.

ENCODING

Specifies

the

encoding

for

all

host

variables

in

static

statements

in

the

plan

or

package.

Supported

by

DB2

for

OS/390

only.

For

a

list

of

supported

option

values,

refer

to

the

documentation

for

DB2

for

OS/390.

EXPLAIN

Stores

information

in

the

Explain

tables

about

the

access

plans

chosen

for

each

SQL

statement

in

the

package.

DRDA

does

not

support

the

ALL

value

for

this

option.

NO

Explain

information

will

not

be

captured.

YES

Explain

tables

will

be

populated

with

information

about

the

chosen

access

plan

at

prep/bind

time

for

static

statements

and

at

run

time

for

incremental

bind

statements.

If

the

package

is

to

be

used

for

a

routine

and

the

package

contains

incremental

bind

statements,

then

the

routine

must

be

defined

as

MODIFIES

SQL

DATA.

If

this

is

not

done,

incremental

bind

statements

in

the

package

will

cause

a

run

time

error

(SQLSTATE

42985).

REOPT

Explain

information

for

each

reoptimizable

incremental

bind

SQL

statement

is

placed

in

the

explain

tables

at

run

time.

In

addition,

explain

information

is

gathered

for

reoptimizable

dynamic

SQL

statements

at

run

time,

even

if

the

CURRENT

EXPLAIN

MODE

register

is

set

to

NO.

If

the

package

is

to

be

used

for

a

routine,

the

routine

must

be

defined

as

MODIFIES

SQL

DATA,

otherwise

incremental

bind

and

dynamic

statements

in

the

package

will

cause

a

run

time

error

(SQLSTATE

42985).

ALL

Explain

information

for

each

eligible

static

SQL

statement

will

be

placed

in

the

Explain

tables

at

prep/bind

time.

Explain

information

for

each

eligible

incremental

bind

SQL

statement

will

be

placed

in

the

Explain

tables

at

run

time.

In

addition,

Explain

information

will

be

gathered

for

eligible

dynamic

SQL

statements

at

run

time,

even

if

the

CURRENT

EXPLAIN

MODE

register

is

set

to

NO.

If

the

package

is

to

be

used

for

a

routine,

the

routine

must

be

defined

as

MODIFIES

SQL

DATA,

otherwise

incremental

bind

and

dynamic

statements

in

the

package

will

cause

a

run

time

error

(SQLSTATE

42985).

BIND

240

Common

Criteria

Certification:

Administration

and

User

Documentation

Note:

This

value

for

EXPLAIN

is

not

supported

by

DRDA.

EXPLSNAP

Stores

Explain

Snapshot

information

in

the

Explain

tables.

This

DB2

precompile/bind

option

is

not

supported

by

DRDA.

NO

An

Explain

Snapshot

will

not

be

captured.

YES

An

Explain

Snapshot

for

each

eligible

static

SQL

statement

will

be

placed

in

the

Explain

tables

at

prep/bind

time

for

static

statements

and

at

run

time

for

incremental

bind

statements.

If

the

package

is

to

be

used

for

a

routine

and

the

package

contains

incremental

bind

statements,

then

the

routine

must

be

defined

as

MODIFIES

SQL

DATA

or

incremental

bind

statements

in

the

package

will

cause

a

run

time

error

(SQLSTATE

42985).

REOPT

Explain

snapshot

information

for

each

reoptimizable

incremental

bind

SQL

statement

is

placed

in

the

explain

tables

at

run

time.

In

addition,

explain

snapshot

information

is

gathered

for

reoptimizable

dynamic

SQL

statements

at

run

time,

even

if

the

CURRENT

EXPLAIN

SNAPSHOT

register

is

set

to

NO.

If

the

package

is

to

be

used

for

a

routine,

the

routine

must

be

defined

as

MODIFIES

SQL

DATA,

otherwise

incremental

bind

and

dynamic

statements

in

the

package

will

cause

a

run

time

error

(SQLSTATE

42985).

ALL

An

Explain

Snapshot

for

each

eligible

static

SQL

statement

will

be

placed

in

the

Explain

tables

at

prep/bind

time.

Explain

snapshot

information

for

each

eligible

incremental

bind

SQL

statement

will

be

placed

in

the

Explain

tables

at

run

time.

In

addition,

explain

snapshot

information

will

be

gathered

for

eligible

dynamic

SQL

statements

at

run

time,

even

if

the

CURRENT

EXPLAIN

SNAPSHOT

register

is

set

to

NO.

If

the

package

is

to

be

used

for

a

routine,

then

the

routine

must

be

defined

as

MODIFIES

SQL

DATA,

otherwise

incremental

bind

and

dynamic

statements

in

the

package

will

cause

a

run

time

error

(SQLSTATE

42985).

Note:

This

value

is

not

supported

by

DRDA

FEDERATED

Specifies

whether

a

static

SQL

statement

in

a

package

references

a

nickname

or

a

federated

view.

If

this

option

is

not

specified

and

a

static

SQL

statement

in

the

package

references

a

nickname

or

a

federated

view,

a

warning

is

returned

and

the

package

is

created.

This

option

is

not

supported

for

DRDA.

NO

A

nickname

or

federated

view

is

not

referenced

in

the

static

SQL

statements

of

the

package.

If

a

nickname

or

federated

view

is

encountered

in

a

static

SQL

statement

during

the

prepare

or

bind

phase

of

this

package,

an

error

is

returned

and

the

package

is

not

created.

YES

A

nickname

or

federated

view

can

be

referenced

in

the

static

SQL

statements

of

the

package.

If

no

nicknames

or

federated

views

are

BIND

Chapter

13.

DB2

UDB

Commands

for

Administrators

241

encountered

in

static

SQL

statements

during

the

prepare

or

bind

of

the

package,

no

errors

or

warnings

are

returned

and

the

package

is

created.

FUNCPATH

Specifies

the

function

path

to

be

used

in

resolving

user-defined

distinct

types

and

functions

in

static

SQL.

If

this

option

is

not

specified,

the

default

function

path

is

″SYSIBM″,″SYSFUN″,USER

where

USER

is

the

value

of

the

USER

special

register.

schema-name

An

SQL

identifier,

either

ordinary

or

delimited,

which

identifies

a

schema

that

exists

at

the

application

server.

No

validation

that

the

schema

exists

is

made

at

precompile

or

at

bind

time.

The

same

schema

cannot

appear

more

than

once

in

the

function

path.

The

number

of

schemas

that

can

be

specified

is

limited

by

the

length

of

the

resulting

function

path,

which

cannot

exceed

254

bytes.

The

schema

SYSIBM

does

not

need

to

be

explicitly

specified;

it

is

implicitly

assumed

to

be

the

first

schema

if

it

is

not

included

in

the

function

path.

GENERIC

string

Supports

the

binding

of

new

options

that

are

defined

in

the

target

database,

but

are

not

supported

by

DRDA.

Do

not

use

this

option

to

pass

bind

options

that

are

defined

in

BIND

or

PRECOMPILE.

This

option

can

substantially

improve

dynamic

SQL

performance.

The

syntax

is

as

follows:

generic

"option1

value1

option2

value2

..."

Each

option

and

value

must

be

separated

by

one

or

more

blank

spaces.

For

example,

if

the

target

DRDA

database

is

DB2

Universal

Database,

Version

8,

one

could

use:

generic

"explsnap

all

queryopt

3

federated

yes"

to

bind

each

of

the

EXPLSNAP,

QUERYOPT,

and

FEDERATED

options.

The

maximum

length

of

the

string

is

1023

bytes.

GRANT

authid

Grants

EXECUTE

and

BIND

privileges

to

a

specified

user

name

or

group

ID.

PUBLIC

Grants

EXECUTE

and

BIND

privileges

to

PUBLIC.

GRANT_GROUP

group-name

Grants

EXECUTE

and

BIND

privileges

to

a

specified

group

ID.

GRANT_USER

user-name

Grants

EXECUTE

and

BIND

privileges

to

a

specified

user

name.

Note:

If

more

than

one

of

the

GRANT,

GRANT_GROUP,

and

GRANT_USER

options

are

specified,

only

the

last

option

specified

is

executed.

INSERT

Allows

a

program

being

precompiled

or

bound

against

a

DB2

Enterprise

Server

Edition

server

to

request

that

data

inserts

be

buffered

to

increase

performance.

BUF

Specifies

that

inserts

from

an

application

should

be

buffered.

BIND

242

Common

Criteria

Certification:

Administration

and

User

Documentation

DEF

Specifies

that

inserts

from

an

application

should

not

be

buffered.

ISOLATION

Determines

how

far

a

program

bound

to

this

package

can

be

isolated

from

the

effect

of

other

executing

programs.

CS

Specifies

Cursor

Stability

as

the

isolation

level.

NC

No

Commit.

Specifies

that

commitment

control

is

not

to

be

used.

This

isolation

level

is

not

supported

by

DB2

for

Windows

and

UNIX.

RR

Specifies

Repeatable

Read

as

the

isolation

level.

RS

Specifies

Read

Stability

as

the

isolation

level.

Read

Stability

ensures

that

the

execution

of

SQL

statements

in

the

package

is

isolated

from

other

application

processes

for

rows

read

and

changed

by

the

application.

UR

Specifies

Uncommitted

Read

as

the

isolation

level.

IMMEDWRITE

Indicates

whether

immediate

writes

will

be

done

for

updates

made

to

group

buffer

pool

dependent

pagesets

or

partitions.

Supported

by

DB2

for

OS/390

only.

For

a

list

of

supported

option

values,

refer

to

the

documentation

for

DB2

for

OS/390.

KEEPDYNAMIC

Specifies

whether

dynamic

SQL

statements

are

to

be

kept

after

commit

points.

Supported

by

DB2

for

OS/390

only.

For

a

list

of

supported

option

values,

refer

to

the

documentation

for

DB2

for

OS/390.

MESSAGES

message-file

Specifies

the

destination

for

warning,

error,

and

completion

status

messages.

A

message

file

is

created

whether

the

bind

is

successful

or

not.

If

a

message

file

name

is

not

specified,

the

messages

are

written

to

standard

output.

If

the

complete

path

to

the

file

is

not

specified,

the

current

directory

is

used.

If

the

name

of

an

existing

file

is

specified,

the

contents

of

the

file

are

overwritten.

OPTHINT

Controls

whether

query

optimization

hints

are

used

for

static

SQL.

Supported

by

DB2

for

OS/390

only.

For

a

list

of

supported

option

values,

refer

to

the

documentation

for

DB2

for

OS/390.

OS400NAMING

Specifies

which

naming

option

is

to

be

used

when

accessing

DB2

UDB

for

iSeries

data.

Supported

by

DB2

UDB

for

iSeries

only.

For

a

list

of

supported

option

values,

refer

to

the

documentation

for

DB2

for

iSeries.

Please

note

that

because

of

the

slashes

used

as

separators,

a

DB2

utility

can

still

report

a

syntax

error

at

execution

time

on

certain

SQL

statements

which

use

the

iSeries

system

naming

convention,

even

though

the

utility

might

have

been

precompiled

or

bound

with

the

OS400NAMING

SYSTEM

option.

For

example,

the

Command

Line

Processor

will

report

a

syntax

error

on

an

SQL

CALL

statement

if

the

iSeries

system

naming

convention

is

used,

whether

or

not

it

has

been

precompiled

or

bound

using

the

OS400NAMING

SYSTEM

option.

OWNER

authorization-id

Designates

a

30-character

authorization

identifier

for

the

package

owner.

The

owner

must

have

the

privileges

required

to

execute

the

SQL

BIND

Chapter

13.

DB2

UDB

Commands

for

Administrators

243

statements

contained

in

the

package.

Only

a

user

with

SYSADM

or

DBADM

authority

can

specify

an

authorization

identifier

other

than

the

user

ID.

The

default

value

is

the

primary

authorization

ID

of

the

precompile/bind

process.

SYSIBM,

SYSCAT,

and

SYSSTAT

are

not

valid

values

for

this

option.

PATH

Specifies

the

function

path

to

be

used

in

resolving

user-defined

distinct

types

and

functions

in

static

SQL.

If

this

option

is

not

specified,

the

default

function

path

is

″SYSIBM″,″SYSFUN″,USER

where

USER

is

the

value

of

the

USER

special

register.

schema-name

An

SQL

identifier,

either

ordinary

or

delimited,

which

identifies

a

schema

that

exists

at

the

application

server.

No

validation

that

the

schema

exists

is

made

at

precompile

or

at

bind

time.

QUALIFIER

qualifier-name

Provides

a

30-character

implicit

qualifier

for

unqualified

objects

contained

in

the

package.

The

default

is

the

owner’s

authorization

ID,

whether

or

not

owner

is

explicitly

specified.

QUERYOPT

optimization-level

Indicates

the

desired

level

of

optimization

for

all

static

SQL

statements

contained

in

the

package.

The

default

value

is

5.

The

SET

CURRENT

QUERY

OPTIMIZATION

statement

describes

the

complete

range

of

optimization

levels

available.

This

DB2

precompile/bind

option

is

not

supported

by

DRDA.

RELEASE

Indicates

whether

resources

are

released

at

each

COMMIT

point,

or

when

the

application

terminates.

This

DRDA

precompile/bind

option

is

not

supported

by

DB2

for

Windows

and

UNIX.

COMMIT

Release

resources

at

each

COMMIT

point.

Used

for

dynamic

SQL

statements.

DEALLOCATE

Release

resources

only

when

the

application

terminates.

SORTSEQ

Specifies

which

sort

sequence

table

to

use

on

the

iSeries

system.

Supported

by

DB2

UDB

for

iSeries

only.

For

a

list

of

supported

option

values,

refer

to

the

documentation

for

DB2

for

iSeries.

SQLERROR

Indicates

whether

to

create

a

package

or

a

bind

file

if

an

error

is

encountered.

CHECK

Specifies

that

the

target

system

performs

all

syntax

and

semantic

checks

on

the

SQL

statements

being

bound.

A

package

will

not

be

created

as

part

of

this

process.

If,

while

binding,

an

existing

package

with

the

same

name

and

version

is

encountered,

the

existing

package

is

neither

dropped

nor

replaced

even

if

action

replace

was

specified.

CONTINUE

Creates

a

package,

even

if

errors

occur

when

binding

SQL

statements.

Those

statements

that

failed

to

bind

for

authorization

or

existence

reasons

can

be

incrementally

bound

at

execution

time

BIND

244

Common

Criteria

Certification:

Administration

and

User

Documentation

if

VALIDATE

RUN

is

also

specified.

Any

attempt

to

execute

them

at

run

time

generates

an

error

(SQLCODE

-525,

SQLSTATE

51015).

NOPACKAGE

A

package

or

a

bind

file

is

not

created

if

an

error

is

encountered.

REOPT

Specifies

whether

to

have

DB2

determine

an

access

path

at

run

time

using

values

for

host

variables,

parameter

markers,

and

special

registers.

Valid

values

are:

NONE

The

access

path

for

a

given

SQL

statement

containing

host

variables,

parameter

markers,

or

special

registers

will

not

be

optimized

using

real

values.

The

default

estimates

for

the

these

variables

is

used,

and

the

plan

is

cached

and

will

be

used

subsequently.

This

is

the

default

value.

ONCE

The

access

path

for

a

given

SQL

statement

will

be

optimized

using

the

real

values

of

the

host

variables,

parameter

markers,

or

special

registers

when

the

query

is

first

executed.

This

plan

is

cached

and

used

subsequently.

ALWAYS

The

access

path

for

a

given

SQL

statement

will

always

be

compiled

and

reoptimized

using

the

values

of

the

host

variables,

parameter

markers,

or

special

registers

that

are

known

each

time

the

query

is

executed.

REOPT

/

NOREOPT

VARS

These

options

have

been

replaced

by

REOPT

ALWAYS

and

REOPT

NONE;

however,

they

are

still

supported

for

back-level

compatibility.

Specifies

whether

to

have

DB2

determine

an

access

path

at

run

time

using

values

for

host

variables,

parameter

markers,

and

special

registers.

Supported

by

DB2

for

OS/390

only.

For

a

list

of

supported

option

values,

refer

to

the

documentation

for

DB2

for

OS/390.

SQLWARN

Indicates

whether

warnings

will

be

returned

from

the

compilation

of

dynamic

SQL

statements

(via

PREPARE

or

EXECUTE

IMMEDIATE),

or

from

describe

processing

(via

PREPARE...INTO

or

DESCRIBE).

This

DB2

precompile/bind

option

is

not

supported

by

DRDA.

NO

Warnings

will

not

be

returned

from

the

SQL

compiler.

YES

Warnings

will

be

returned

from

the

SQL

compiler.

Note:

SQLCODE

+238

is

an

exception.

It

is

returned

regardless

of

the

sqlwarn

option

value.

STATICREADONLY

Determines

whether

static

cursors

will

be

treated

as

being

READ

ONLY.

This

DB2

precompile/bind

option

is

not

supported

by

DRDA.

NO

All

static

cursors

will

take

on

the

attributes

as

would

normally

be

generated

given

the

statement

text

and

the

setting

of

the

LANGLEVEL

precompile

option.

YES

Any

static

cursor

that

does

not

contain

the

FOR

UPDATE

BIND

Chapter

13.

DB2

UDB

Commands

for

Administrators

245

or

FOR

READ

ONLY

clause

will

be

considered

READ

ONLY.

This

is

the

default

value.

STRDEL

Designates

whether

an

apostrophe

(’)

or

double

quotation

marks

(")

will

be

used

as

the

string

delimiter

within

SQL

statements.

This

DRDA

precompile/bind

option

is

not

supported

by

DB2

for

Windows

and

UNIX.

The

DRDA

server

will

use

a

system

defined

default

value

if

this

option

is

not

specified.

APOSTROPHE

Use

an

apostrophe

(’)

as

the

string

delimiter.

QUOTE

Use

double

quotation

marks

(")

as

the

string

delimiter.

TEXT

label

The

description

of

a

package.

Maximum

length

is

255

characters.

The

default

value

is

blanks.

This

DRDA

precompile/bind

option

is

not

supported

by

DB2

for

Windows

and

UNIX.

TRANSFORM

GROUP

Specifies

the

transform

group

name

to

be

used

by

static

SQL

statements

for

exchanging

user-defined

structured

type

values

with

host

programs.

This

transform

group

is

not

used

for

dynamic

SQL

statements

or

for

the

exchange

of

parameters

and

results

with

external

functions

or

methods.

This

option

is

not

supported

by

DRDA.

groupname

An

SQL

identifier

of

up

to

18

characters

in

length.

A

group

name

cannot

include

a

qualifier

prefix

and

cannot

begin

with

the

prefix

SYS

since

this

is

reserved

for

database

use.

In

a

static

SQL

statement

that

interacts

with

host

variables,

the

name

of

the

transform

group

to

be

used

for

exchanging

values

of

a

structured

type

is

as

follows:

v

The

group

name

in

the

TRANSFORM

GROUP

bind

option,

if

any

v

The

group

name

in

the

TRANSFORM

GROUP

prep

option

as

specified

at

the

original

precompilation

time,

if

any

v

The

DB2_PROGRAM

group,

if

a

transform

exists

for

the

given

type

whose

group

name

is

DB2_PROGRAM

v

No

transform

group

is

used

if

none

of

the

above

conditions

exist.

The

following

errors

are

possible

during

the

bind

of

a

static

SQL

statement:

v

SQLCODE

yyyyy,

SQLSTATE

xxxxx:

A

transform

is

needed,

but

no

static

transform

group

has

been

selected.

v

SQLCODE

yyyyy,

SQLSTATE

xxxxx:

The

selected

transform

group

does

not

include

a

necessary

transform

(TO

SQL

for

input

variables,

FROM

SQL

for

output

variables)

for

the

data

type

that

needs

to

be

exchanged.

v

SQLCODE

yyyyy,

SQLSTATE

xxxxx:

The

result

type

of

the

FROM

SQL

transform

is

not

compatible

with

the

BIND

246

Common

Criteria

Certification:

Administration

and

User

Documentation

type

of

the

output

variable,

or

the

parameter

type

of

the

TO

SQL

transform

is

not

compatible

with

the

type

of

the

input

variable.

In

these

error

messages,

yyyyy

is

replaced

by

the

SQL

error

code,

and

xxxxx

by

the

SQL

state

code.

VALIDATE

Determines

when

the

database

manager

checks

for

authorization

errors

and

object

not

found

errors.

The

package

owner

authorization

ID

is

used

for

validity

checking.

BIND

Validation

is

performed

at

precompile/bind

time.

If

all

objects

do

not

exist,

or

all

authority

is

not

held,

error

messages

are

produced.

If

sqlerror

continue

is

specified,

a

package/bind

file

is

produced

despite

the

error

message,

but

the

statements

in

error

are

not

executable.

RUN

Validation

is

attempted

at

bind

time.

If

all

objects

exist,

and

all

authority

is

held,

no

further

checking

is

performed

at

execution

time.

If

all

objects

do

not

exist,

or

all

authority

is

not

held

at

precompile/bind

time,

warning

messages

are

produced,

and

the

package

is

successfully

bound,

regardless

of

the

sqlerror

continue

option

setting.

However,

authority

checking

and

existence

checking

for

SQL

statements

that

failed

these

checks

during

the

precompile/bind

process

can

be

redone

at

execution

time.

Examples:

The

following

example

binds

myapp.bnd

(the

bind

file

generated

when

the

myapp.sqc

program

was

precompiled)

to

the

database

to

which

a

connection

has

been

established:

db2

bind

myapp.bnd

Any

messages

resulting

from

the

bind

process

are

sent

to

standard

output.

Usage

notes:

Binding

a

package

using

the

REOPT

option

with

the

ONCE

or

ALWAYS

value

specified

might

change

the

static

and

dynamic

statement

compilation

and

performance.

Binding

can

be

done

as

part

of

the

precompile

process

for

an

application

program

source

file,

or

as

a

separate

step

at

a

later

time.

Use

BIND

when

binding

is

performed

as

a

separate

process.

The

name

used

to

create

the

package

is

stored

in

the

bind

file,

and

is

based

on

the

source

file

name

from

which

it

was

generated

(existing

paths

or

extensions

are

discarded).

For

example,

a

precompiled

source

file

called

myapp.sql

generates

a

default

bind

file

called

myapp.bnd

and

a

default

package

name

of

MYAPP.

However,

the

bind

file

name

and

the

package

name

can

be

overridden

at

precompile

time

by

using

the

bindfile

and

the

package

options.

BIND

Chapter

13.

DB2

UDB

Commands

for

Administrators

247

Binding

a

package

with

a

schema

name

that

does

not

already

exist

results

in

the

implicit

creation

of

that

schema.

The

schema

owner

is

SYSIBM.

The

CREATEIN

privilege

on

the

schema

is

granted

to

PUBLIC.

BIND

executes

under

the

transaction

that

was

started.

After

performing

the

bind,

BIND

issues

a

COMMIT

or

a

ROLLBACK

to

terminate

the

current

transaction

and

start

another

one.

Binding

stops

if

a

fatal

error

or

more

than

100

errors

occur.

If

a

fatal

error

occurs,

the

utility

stops

binding,

attempts

to

close

all

files,

and

discards

the

package.

When

a

package

exhibits

bind

behavior,

the

following

will

be

true:

1.

The

implicit

or

explicit

value

of

the

BIND

option

OWNER

will

be

used

for

authorization

checking

of

dynamic

SQL

statements.

2.

The

implicit

or

explicit

value

of

the

BIND

option

QUALIFIER

will

be

used

as

the

implicit

qualifier

for

qualification

of

unqualified

objects

within

dynamic

SQL

statements.

3.

The

value

of

the

special

register

CURRENT

SCHEMA

has

no

effect

on

qualification.

In

the

event

that

multiple

packages

are

referenced

during

a

single

connection,

all

dynamic

SQL

statements

prepared

by

those

packages

will

exhibit

the

behavior

as

specified

by

the

DYNAMICRULES

option

for

that

specific

package

and

the

environment

they

are

used

in.

Parameters

displayed

in

the

SQL0020W

message

are

correctly

noted

as

errors,

and

will

be

ignored

as

indicated

by

the

message.

If

an

SQL

statement

is

found

to

be

in

error

and

the

BIND

option

SQLERROR

CONTINUE

was

specified,

the

statement

will

be

marked

as

invalid.

In

order

to

change

the

state

of

the

SQL

statement,

another

BIND

must

be

issued

.

Implicit

and

explicit

rebind

will

not

change

the

state

of

an

invalid

statement.

In

a

package

bound

with

VALIDATE

RUN,

a

statement

can

change

from

static

to

incremental

bind

or

incremental

bind

to

static

across

implicit

and

explicit

rebinds

depending

on

whether

or

not

object

existence

or

authority

problems

exist

during

the

rebind.

Related

concepts:

v

“Isolation

levels”

in

the

SQL

Reference,

Volume

1

v

“Authorization

Considerations

for

Dynamic

SQL”

on

page

951

v

“Effect

of

DYNAMICRULES

bind

option

on

dynamic

SQL”

on

page

952

v

“Effects

of

REOPT

on

static

SQL”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Effects

of

REOPT

on

dynamic

SQL”

in

the

Application

Development

Guide:

Programming

Client

Applications

Related

reference:

v

“SET

CURRENT

QUERY

OPTIMIZATION

statement”

in

the

SQL

Reference,

Volume

2

v

“PRECOMPILE”

on

page

842

v

“DB2

CLI

bind

files

and

package

names”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Special

registers”

on

page

797

v

“Datetime

values”

in

the

SQL

Reference,

Volume

1

BIND

248

Common

Criteria

Certification:

Administration

and

User

Documentation

CATALOG

DATABASE

Stores

database

location

information

in

the

system

database

directory.

The

database

can

be

located

either

on

the

local

workstation

or

on

a

remote

node.

Scope:

In

a

partitioned

database

environment,

when

cataloging

a

local

database

into

the

system

database

directory,

this

command

must

be

issued

from

a

database

partition

on

the

server

where

the

database

resides.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

Required

connection:

None.

Directory

operations

affect

the

local

directory

only.

Command

syntax:

��

CATALOG

DATABASE

DB

database-name

AS

alias

ON

path

drive

AT

NODE

nodename

�

�

AUTHENTICATION

SERVER

CLIENT

SERVER_ENCRYPT

KERBEROS

TARGET

PRINCIPAL

principalname

DATA_ENCRYPT

DATA_ENCRYPT_CMP

GSSPLUGIN

�

�

WITH

″comment-string″

��

Command

parameters:

DATABASE

database-name

Specifies

the

name

of

the

database

to

catalog.

AS

alias

Specifies

an

alias

as

an

alternate

name

for

the

database

being

cataloged.

If

an

alias

is

not

specified,

the

database

manager

uses

database-name

as

the

alias.

ON

path/drive

On

UNIX

based

systems,

specifies

the

path

on

which

the

database

being

cataloged

resides.

On

Windows

operating

systems,

specifies

the

letter

of

the

drive

on

which

the

database

being

cataloged

resides.

AT

NODE

nodename

Specifies

the

name

of

the

node

where

the

database

being

cataloged

resides.

This

name

should

match

the

name

of

an

entry

in

the

node

directory.

If

the

CATALOG

DATABASE

Chapter

13.

DB2

UDB

Commands

for

Administrators

249

node

name

specified

does

not

exist

in

the

node

directory,

a

warning

is

returned,

but

the

database

is

cataloged

in

the

system

database

directory.

The

node

name

should

be

cataloged

in

the

node

directory

if

a

connection

to

the

cataloged

database

is

desired.

AUTHENTICATION

The

authentication

value

is

stored

for

remote

databases

(it

appears

in

the

output

from

the

LIST

DATABASE

DIRECTORY

command)

but

it

is

not

stored

for

local

databases.

Specifying

an

authentication

type

can

result

in

a

performance

benefit.

SERVER

Specifies

that

authentication

takes

place

on

the

node

containing

the

target

database.

CLIENT

Specifies

that

authentication

takes

place

on

the

node

where

the

application

is

invoked.

SERVER_ENCRYPT

Specifies

that

authentication

takes

place

on

the

node

containing

the

target

database,

and

that

passwords

are

encrypted

at

the

source.

Passwords

are

decrypted

at

the

target,

as

specified

by

the

authentication

type

cataloged

at

the

source.

KERBEROS

Specifies

that

authentication

takes

place

using

Kerberos

Security

Mechanism.

When

authentication

is

Kerberos,

and

an

APPC

connection

is

used

for

access,

only

SECURITY=NONE

is

supported.

TARGET

PRINCIPAL

principalname

Fully

qualified

Kerberos

principal

name

for

the

target

server;

that

is,

the

fully

qualified

Kerberos

principal

of

the

DB2

instance

owner

in

the

form

of

name/instance@REALM.

For

Windows

2000,

Windows

XP,

and

Windows

Server

2003,

this

is

the

logon

account

of

the

DB2

server

service

in

the

form

of

userid@DOMAIN,

userid@xxx.xxx.xxx.com

or

domain\userid.

DATA_ENCRYPT

Specifies

that

authentication

takes

place

on

the

node

containing

the

target

database,

and

that

connections

must

use

data

encryption.

DATA_ENCRYPT_CMP

Specifies

that

authentication

takes

place

on

the

node

containing

the

target

database,

and

that

connections

must

use

data

encryption.

This

option

is

provided

for

compatibility

with

downlevel

products

that

do

not

support

data

encryption,

in

which

case

they

will

be

allowed

to

connect

with

SERVER_ENCRYPT

and

not

encrypt

user

data.

Any

product

that

does

support

data

encryption

will

be

forced

to

use

it.

GSSPLUGIN

Specifies

that

authentication

takes

place

using

an

external

GSS

API-based

plug-in

security

mechanism.

When

CATALOG

DATABASE

250

Common

Criteria

Certification:

Administration

and

User

Documentation

authentication

is

GSSPLUGIN,

and

an

APPC

connection

is

used

for

access,

only

SECURITY=NONE

is

supported.

WITH

″comment-string″

Describes

the

database

or

the

database

entry

in

the

system

database

directory.

The

maximum

length

of

a

comment

string

is

30

characters.

A

carriage

return

or

a

line

feed

character

is

not

permitted.

The

comment

text

must

be

enclosed

by

double

quotation

marks.

Examples:

db2

catalog

database

sample

on

/databases/sample

with

"Sample

Database"

Usage

notes:

Use

CATALOG

DATABASE

to

catalog

databases

located

on

local

or

remote

nodes,

recatalog

databases

that

were

uncataloged

previously,

or

maintain

multiple

aliases

for

one

database

(regardless

of

database

location).

DB2

automatically

catalogs

databases

when

they

are

created.

It

catalogs

an

entry

for

the

database

in

the

local

database

directory

and

another

entry

in

the

system

database

directory.

If

the

database

is

created

from

a

remote

client

(or

a

client

which

is

executing

from

a

different

instance

on

the

same

machine),

an

entry

is

also

made

in

the

system

database

directory

at

the

client

instance.

If

neither

path

nor

node

name

is

specified,

the

database

is

assumed

to

be

local,

and

the

location

of

the

database

is

assumed

to

be

that

specified

in

the

database

manager

configuration

parameter

dftdbpath.

Databases

on

the

same

node

as

the

database

manager

instance

are

cataloged

as

indirect

entries.

Databases

on

other

nodes

are

cataloged

as

remote

entries.

CATALOG

DATABASE

automatically

creates

a

system

database

directory

if

one

does

not

exist.

The

system

database

directory

is

stored

on

the

path

that

contains

the

database

manager

instance

that

is

being

used,

and

is

maintained

outside

of

the

database.

List

the

contents

of

the

system

database

directory

using

the

LIST

DATABASE

DIRECTORY

command.

To

list

the

contents

of

the

local

database

directory

use

the

LIST

DATABASE

DIRECTORY

ON

/PATH,

where

PATH

is

where

the

database

was

created.

Note:

If

directory

caching

is

enabled,

database

and

node

directory

files

are

cached

in

memory.

An

application’s

directory

cache

is

created

during

its

first

directory

lookup.

Since

the

cache

is

only

refreshed

when

the

application

modifies

any

of

the

directory

files,

directory

changes

made

by

other

applications

might

not

be

effective

until

the

application

has

restarted.

To

refresh

the

CLP’s

directory

cache,

use

the

TERMINATE

command.

To

refresh

DB2’s

shared

cache,

stop

(db2stop)

and

then

restart

(db2start)

the

database

manager.

To

refresh

the

directory

cache

for

another

application,

stop

and

then

restart

that

application.

Related

reference:

v

“GET

DATABASE

MANAGER

CONFIGURATION”

on

page

281

CATALOG

DATABASE

Chapter

13.

DB2

UDB

Commands

for

Administrators

251

v

“LIST

DATABASE

DIRECTORY

Command”

in

the

Command

Reference

v

“TERMINATE

Command”

in

the

Command

Reference

v

“UNCATALOG

DATABASE

Command”

in

the

Command

Reference

CREATE

DATABASE

Initializes

a

new

database

with

an

optional

user-defined

collating

sequence,

creates

the

three

initial

table

spaces,

creates

the

system

tables,

and

allocates

the

recovery

log.

When

you

initialize

a

new

database

you

can

specify

the

AUTOCONFIGURE

option

to

display

and

optionally

apply

the

initial

values

for

the

buffer

pool

size,

database

and

database

manager

parameters.

The

AUTOCONFIGURE

option

is

not

available

in

a

partitioned

database

environment.

This

command

is

not

valid

on

a

client.

Scope:

In

a

partitioned

database

environment,

this

command

affects

all

database

partitions

that

are

listed

in

the

db2nodes.cfg

file.

The

database

partition

from

which

this

command

is

issued

becomes

the

catalog

database

partition

for

the

new

database.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

Required

connection:

Instance.

To

create

a

database

at

another

(remote)

node,

it

is

necessary

to

first

attach

to

that

node.

A

database

connection

is

temporarily

established

by

this

command

during

processing.

Command

syntax:

��

CREATE

DATABASE

DB

database-name

AT

DBPARTITIONNUM

Create

Database

options

��

Create

Database

options:

ON

path

drive

ALIAS

database-alias

�

�

USING

CODESET

codeset

TERRITORY

territory

SYSTEM

COLLATE

USING

COMPATIBILITY

IDENTITY

IDENTITY_16BIT

UCA400_NO

UCA400_LTH

NLSCHAR

�

CATALOG

DATABASE

252

Common

Criteria

Certification:

Administration

and

User

Documentation

�

NUMSEGS

numsegs

DFT_EXTENT_SZ

dft_extentsize

�

�

CATALOG

TABLESPACE

tblspace-defn

USER

TABLESPACE

tblspace-defn

�

�

TEMPORARY

TABLESPACE

tblspace-defn

WITH

″comment-string″

�

�

�

DB

ONLY

AUTOCONFIGURE

APPLY

DB

AND

DBM

NONE

USING

input-keyword

param-value

tblspace-defn:

MANAGED

BY

�

�

�

�

,

SYSTEM

USING

(

’container-string’

)

,

DATABASE

USING

(

FILE

’container-string’

number-of-pages

)

DEVICE

�

�

EXTENTSIZE

number-of-pages

PREFETCHSIZE

number-of-pages

�

�

OVERHEAD

number-of-milliseconds

TRANSFERRATE

number-of-milliseconds

Notes:

1.

The

combination

of

the

code

set

and

territory

values

must

be

valid.

2.

Not

all

collating

sequences

are

valid

with

every

code

set

and

territory

combination.

3.

The

table

space

definitions

specified

on

CREATE

DATABASE

apply

to

all

database

partitions

on

which

the

database

is

being

created.

They

cannot

be

specified

separately

for

each

database

partition.

If

the

table

space

definitions

are

to

be

created

differently

on

particular

database

partitions,

the

CREATE

TABLESPACE

statement

must

be

used.

When

defining

containers

for

table

spaces,

$N

can

be

used.

$N

will

be

replaced

by

the

database

partition

number

when

the

container

is

actually

created.

This

is

required

if

the

user

wants

to

specify

containers

in

a

multiple

logical

partition

database.

4.

In

a

partitioned

database

environment,

use

of

the

AUTOCONFIGURE

option

will

result

in

failure

of

the

CREATE

DATABASE

command.

If

you

want

to

use

the

AUTOCONFIGURE

option

in

a

partitioned

database

environment,

first

create

the

database

without

specifying

the

AUTOCONFIGURE

option,

then

run

the

AUTOCONFIGURE

command

on

each

partition.

5.

The

AUTOCONFIGURE

option

requires

sysadm

authority.

Command

parameters:

CREATE

DATABASE

Chapter

13.

DB2

UDB

Commands

for

Administrators

253

DATABASE

database-name

A

name

to

be

assigned

to

the

new

database.

This

must

be

a

unique

name

that

differentiates

the

database

from

any

other

database

in

either

the

local

database

directory

or

the

system

database

directory.

The

name

must

conform

to

naming

conventions

for

databases.

AT

DBPARTITIONNUM

Specifies

that

the

database

is

to

be

created

only

on

the

database

partition

that

issues

the

command.

You

do

not

specify

this

option

when

you

create

a

new

database.

You

can

use

it

to

recreate

a

database

partition

that

you

dropped

because

it

was

damaged.

After

you

use

the

CREATE

DATABASE

command

with

the

AT

DBPARITIONNUM

option,

the

database

at

this

partition

is

in

the

restore-pending

state.

You

must

immediately

restore

the

database

on

this

node.

This

parameter

is

not

intended

for

general

use.

For

example,

it

should

be

used

with

RESTORE

DATABASE

command

if

the

database

partition

at

a

node

was

damaged

and

must

be

re-created.

Improper

use

of

this

parameter

can

cause

inconsistencies

in

the

system,

so

it

should

only

be

used

with

caution.

ON

path/drive

On

UNIX

based

systems,

specifies

the

path

on

which

to

create

the

database.

If

a

path

is

not

specified,

the

database

is

created

on

the

default

database

path

specified

in

the

database

manager

configuration

file

(dftdbpath

parameter).

Maximum

length

is

205

characters.

On

the

Windows

operating

system,

specifies

the

letter

of

the

drive

on

which

to

create

the

database.

Note:

For

MPP

systems,

a

database

should

not

be

created

in

an

NFS-mounted

directory.

If

a

path

is

not

specified,

ensure

that

the

dftdbpath

database

manager

configuration

parameter

is

not

set

to

an

NFS-mounted

path

(for

example,

on

UNIX

based

systems,

it

should

not

specify

the

$HOME

directory

of

the

instance

owner).

The

path

specified

for

this

command

in

an

MPP

system

cannot

be

a

relative

path.

ALIAS

database-alias

An

alias

for

the

database

in

the

system

database

directory.

If

no

alias

is

provided,

the

specified

database

name

is

used.

USING

CODESET

codeset

Specifies

the

code

set

to

be

used

for

data

entered

into

this

database.

After

you

create

the

database,

you

cannot

change

the

specified

code

set.

TERRITORY

territory

Specifies

the

territory

to

be

used

for

data

entered

into

this

database.

After

you

create

the

database,

you

cannot

change

the

specified

territory.

COLLATE

USING

Identifies

the

type

of

collating

sequence

to

be

used

for

the

database.

Once

the

database

has

been

created,

the

collating

sequence

cannot

be

changed.

COMPATIBILITY

The

DB2

Version

2

collating

sequence.

Some

collation

tables

have

been

enhanced.

This

option

specifies

that

the

previous

version

of

these

tables

is

to

be

used.

IDENTITY

Identity

collating

sequence,

in

which

strings

are

compared

byte

for

byte.

CREATE

DATABASE

254

Common

Criteria

Certification:

Administration

and

User

Documentation

IDENTITY_16BIT

CESU-8

(Compatibility

Encoding

Scheme

for

UTF-16:

8-Bit)

collation

sequence

as

specified

by

the

Unicode

Technical

Report

#26,

which

is

available

at

the

Unicode

Corsortium

web

site

(www.unicode.org).

This

option

can

only

be

specified

when

creating

a

Unicode

database.

UCA400_NO

The

UCA

(Unicode

Collation

Algorithm)

collation

sequence

based

on

the

Unicode

Standard

version

4.00

with

normalization

implicitly

set

to

on.

Details

of

the

UCA

can

be

found

in

the

Unicode

Technical

Standard

#10,

which

is

available

at

the

Unicode

Consortium

web

site

(www.unicode.org).

This

option

can

only

be

used

when

creating

a

Unicode

database.

UCA400_LTH

The

UCA

(Unicode

Collation

Algorithm)

collation

sequence

based

on

the

Unicode

Standard

version

4.00,

but

will

sort

all

Thai

characters

according

to

the

Royal

Thai

Dictionary

order.

Details

of

the

UCA

can

be

found

in

the

Unicode

Technical

Standard

#10

available

at

the

Unicode

Consortium

web

site

(www.unicode.org).

This

option

can

only

be

used

when

creating

a

Unicode

database.

Note

that

this

collator

might

order

Thai

data

differently

from

the

NLSCHAR

collator

option.

NLSCHAR

System-defined

collating

sequence

using

the

unique

collation

rules

for

the

specific

code

set/territory.

Note:

This

option

can

only

be

used

with

the

Thai

code

page

(CP874).

If

this

option

is

specified

in

non-Thai

environments,

the

command

will

fail

and

return

the

error

SQL1083N

with

Reason

Code

4.

SYSTEM

Collating

sequence

based

on

the

database

territory.

This

option

cannot

be

specified

when

creating

a

Unicode

database.

NUMSEGS

numsegs

Specifies

the

number

of

segment

directories

that

will

be

created

and

used

to

store

DAT,

IDX,

LF,

LB,

and

LBA

files

for

any

default

SMS

table

spaces.

This

parameter

does

not

affect

DMS

table

spaces,

any

SMS

table

spaces

with

explicit

creation

characteristics

(created

when

the

database

is

created),

or

any

SMS

table

spaces

explicitly

created

after

the

database

is

created.

DFT_EXTENT_SZ

dft_extentsize

Specifies

the

default

extent

size

of

table

spaces

in

the

database.

CATALOG

TABLESPACE

tblspace-defn

Specifies

the

definition

of

the

table

space

which

will

hold

the

catalog

tables,

SYSCATSPACE.

If

not

specified,

SYSCATSPACE

will

be

created

as

a

System

Managed

Space

(SMS)

table

space

with

numsegs

number

of

directories

as

containers,

and

with

an

extent

size

of

dft_extentsize.

For

example,

the

following

containers

would

be

created

if

numsegs

were

specified

to

be

5:

/u/smith/smith/NODE0000/SQL00001/SQLT0000.0

/u/smith/smith/NODE0000/SQL00001/SQLT0000.1

/u/smith/smith/NODE0000/SQL00001/SQLT0000.2

/u/smith/smith/NODE0000/SQL00001/SQLT0000.3

/u/smith/smith/NODE0000/SQL00001/SQLT0000.4

CREATE

DATABASE

Chapter

13.

DB2

UDB

Commands

for

Administrators

255

http://www.unicode.org
http://www.unicode.org
http://www.unicode.org

In

a

partitioned

database

environment,

the

catalog

table

space

is

only

created

on

the

catalog

database

partition

(the

database

partition

on

which

the

CREATE

DATABASE

command

is

issued).

USER

TABLESPACE

tblspace-defn

Specifies

the

definition

of

the

initial

user

table

space,

USERSPACE1.

If

not

specified,

USERSPACE1

will

be

created

as

an

SMS

table

space

with

numsegs

number

of

directories

as

containers,

and

with

an

extent

size

of

dft_extentsize.

For

example,

the

following

containers

would

be

created

if

numsegs

were

specified

to

be

5:

/u/smith/smith/NODE0000/SQL00001/SQLT0001.0

/u/smith/smith/NODE0000/SQL00001/SQLT0001.1

/u/smith/smith/NODE0000/SQL00001/SQLT0001.2

/u/smith/smith/NODE0000/SQL00001/SQLT0001.3

/u/smith/smith/NODE0000/SQL00001/SQLT0001.4

TEMPORARY

TABLESPACE

tblspace-defn

Specifies

the

definition

of

the

initial

system

temporary

table

space,

TEMPSPACE1.

If

not

specified,

TEMPSPACE1

will

be

created

as

an

SMS

table

space

with

numsegs

number

of

directories

as

containers,

and

with

an

extent

size

of

dft_extentsize.

For

example,

the

following

containers

would

be

created

if

numsegs

were

specified

to

be

5:

/u/smith/smith/NODE0000/SQL00001/SQLT0002.0

/u/smith/smith/NODE0000/SQL00001/SQLT0002.1

/u/smith/smith/NODE0000/SQL00001/SQLT0002.2

/u/smith/smith/NODE0000/SQL00001/SQLT0002.3

/u/smith/smith/NODE0000/SQL00001/SQLT0002.4

WITH

″comment-string″

Describes

the

database

entry

in

the

database

directory.

Any

comment

that

helps

to

describe

the

database

can

be

entered.

Maximum

length

is

30

characters.

A

carriage

return

or

a

line

feed

character

is

not

permitted.

The

comment

text

must

be

enclosed

by

single

or

double

quotation

marks.

AUTOCONFIGURE

Based

on

user

input,

calculates

the

recommended

settings

for

buffer

pool

size,

database

configuration,

and

database

manager

configuration

and

optionally

applies

them.

USING

input-keyword

param-value

Table

50.

Valid

input

keywords

and

parameter

values

Keyword

Valid

values

Default

value

Explanation

mem_percent

1–100

25

Percentage

of

memory

to

dedicate.

If

other

applications

(other

than

the

operating

system)

are

running

on

this

server,

set

this

to

less

than

100.

workload_type

simple,

mixed,

complex

mixed

Simple

workloads

tend

to

be

I/O

intensive

and

mostly

transactions,

whereas

complex

workloads

tend

to

be

CPU

intensive

and

mostly

queries.

CREATE

DATABASE

256

Common

Criteria

Certification:

Administration

and

User

Documentation

Table

50.

Valid

input

keywords

and

parameter

values

(continued)

Keyword

Valid

values

Default

value

Explanation

num_stmts

1–1

000

000

25

Number

of

statements

per

unit

of

work

tpm

1–200

000

60

Transactions

per

minute

admin_priority

performance,

recovery,

both

both

Optimize

for

better

performance

(more

transactions

per

minute)

or

better

recovery

time

num_local_apps

0–5

000

0

Number

of

connected

local

applications

num_remote_apps

0–5

000

100

Number

of

connected

remote

applications

isolation

RR,

RS,

CS,

UR

RR

Isolation

level

of

applications

connecting

to

this

database

(Repeatable

Read,

Read

Stability,

Cursor

Stability,

Uncommitted

Read)

bp_resizeable

yes,

no

yes

Are

buffer

pools

resizeable?

APPLY

DB

ONLY

Displays

the

recommended

values

for

the

database

configuration

and

the

buffer

pool

settings

based

on

the

current

database

manager

configuration.

Applies

the

recommended

changes

to

the

database

configuration

and

the

buffer

pool

settings.

DB

AND

DBM

Displays

and

applies

the

recommended

changes

to

the

database

manager

configuration,

the

database

configuration,

and

the

buffer

pool

settings.

NONE

Displays

the

recommended

changes,

but

does

not

apply

them.

Usage

notes:

The

CREATE

DATABASE

command:

v

Creates

a

database

in

the

specified

subdirectory.

In

partitioned

database

environment,

creates

the

database

on

all

database

partitions

listed

in

db2nodes.cfg,

and

creates

a

$DB2INSTANCE/NODExxxx

directory

under

the

specified

subdirectory

at

each

database

partition.

In

a

non-partitioned

environment,

creates

a

$DB2INSTANCE/NODE0000

directory

under

the

specified

subdirectory.

v

Creates

the

system

catalog

tables

and

recovery

log.

v

Catalogs

the

database

in

the

following

database

directories:

CREATE

DATABASE

Chapter

13.

DB2

UDB

Commands

for

Administrators

257

–

Server’s

local

database

directory

on

the

path

indicated

by

path

or,

if

the

path

is

not

specified,

the

default

database

path

defined

in

the

database

manager

system

configuration

file

by

the

dftdbpath

parameter.

A

local

database

directory

resides

on

each

file

system

that

contains

a

database.

–

Server’s

system

database

directory

for

the

attached

instance.

The

resulting

directory

entry

will

contain

the

database

name

and

a

database

alias.

If

the

command

was

issued

from

a

remote

client,

the

client’s

system

database

directory

is

also

updated

with

the

database

name

and

an

alias.
Creates

a

system

or

a

local

database

directory

if

neither

exists.

If

specified,

the

comment

and

code

set

values

are

placed

in

both

directories.

v

Stores

the

specified

code

set,

territory,

and

collating

sequence.

A

flag

is

set

in

the

database

configuration

file

if

the

collating

sequence

consists

of

unique

weights,

or

if

it

is

the

identity

sequence.

v

Creates

the

schemas

called

SYSCAT,

SYSFUN,

SYSIBM,

and

SYSSTAT

with

SYSIBM

as

the

owner.

The

database

partition

server

on

which

this

command

is

issued

becomes

the

catalog

database

partition

for

the

new

database.

Two

database

partition

groups

are

created

automatically:

IBMDEFAULTGROUP

and

IBMCATGROUP.

v

Binds

the

previously

defined

database

manager

bind

files

to

the

database

(these

are

listed

in

the

utilities

bind

file

list,

db2ubind.lst).

If

one

or

more

of

these

files

do

not

bind

successfully,

CREATE

DATABASE

returns

a

warning

in

the

SQLCA,

and

provides

information

about

the

binds

that

failed.

If

a

bind

fails,

the

user

can

take

corrective

action

and

manually

bind

the

failing

file.

The

database

is

created

in

any

case.

A

schema

called

NULLID

is

implicitly

created

when

performing

the

binds

with

CREATEIN

privilege

granted

to

PUBLIC.

Note:

The

utilities

bind

file

list

contains

two

bind

files

that

cannot

be

bound

against

down-level

servers:

–

db2ugtpi.bnd

cannot

be

bound

against

DB2

Version

2

servers.

–

db2dropv.bnd

cannot

be

bound

against

DB2

Parallel

Edition

Version

1

servers.

If

db2ubind.lst

is

bound

against

a

down-level

server,

warnings

pertaining

to

these

two

files

are

returned,

and

can

be

disregarded.

v

Creates

SYSCATSPACE,

TEMPSPACE1,

and

USERSPACE1

table

spaces.

The

SYSCATSPACE

table

space

is

only

created

on

the

catalog

database

partition.

v

Grants

the

following:

–

EXECUTE

WITH

GRANT

privilege

to

PUBLIC

on

all

functions

in

the

SYSFUN

schema

–

EXECUTE

privilege

to

PUBLIC

on

all

procedures

in

SYSIBM

schema

–

DBADM

authority,

and

CONNECT,

CREATETAB,

BINDADD,

CREATE_NOT_FENCED,

IMPLICIT_SCHEMA

and

LOAD

privileges

to

the

database

creator

–

CONNECT,

CREATETAB,

BINDADD,

and

IMPLICIT_SCHEMA

privileges

to

PUBLIC

–

USE

privilege

on

the

USERSPACE1

table

space

to

PUBLIC

–

SELECT

privilege

on

each

system

catalog

to

PUBLIC

–

BIND

and

EXECUTE

privilege

to

PUBLIC

for

each

successfully

bound

utility.

–

EXECUTE

WITH

GRANT

privilege

to

PUBLIC

on

all

functions

in

the

SYSFUN

schema.

–

EXECUTE

privilege

to

PUBLIC

on

all

procedures

in

SYSIBM

schema.

CREATE

DATABASE

258

Common

Criteria

Certification:

Administration

and

User

Documentation

With

dbadm

authority,

one

can

grant

these

privileges

to

(and

revoke

them

from)

other

users

or

PUBLIC.

If

another

administrator

with

sysadm

or

dbadm

authority

over

the

database

revokes

these

privileges,

the

database

creator

nevertheless

retains

them.

In

an

MPP

environment,

the

database

manager

creates

a

subdirectory,

$DB2INSTANCE/NODExxxx,

under

the

specified

or

default

path

on

all

database

partitions.

The

xxxx

is

the

database

partition

number

as

defined

in

the

db2nodes.cfg

file

(that

is,

database

partition

0

becomes

NODE0000).

Subdirectories

SQL00001

through

SQLnnnnn

will

reside

on

this

path.

This

ensures

that

the

database

objects

associated

with

different

database

partitions

are

stored

in

different

directories

(even

if

the

subdirectory

$DB2INSTANCE

under

the

specified

or

default

path

is

shared

by

all

database

partitions).

If

LDAP

(Lightweight

Directory

Access

Protocol)

support

is

enabled

on

the

current

machine,

the

database

will

be

automatically

registered

in

the

LDAP

directory.

If

a

database

object

of

the

same

name

already

exists

in

the

LDAP

directory,

the

database

is

still

created

on

the

local

machine,

but

a

warning

message

is

returned,

indicating

that

there

is

a

naming

conflict.

In

this

case,

the

user

can

manually

catalog

an

LDAP

database

entry

by

using

the

CATALOG

LDAP

DATABASE

command.

CREATE

DATABASE

will

fail

if

the

application

is

already

connected

to

a

database.

When

a

database

is

created,

a

detailed

deadlocks

event

monitor

is

created.

As

with

any

monitor,

there

is

some

overhead

associated

with

this

event

monitor.

You

can

drop

the

deadlocks

event

monitor

by

issuing

the

DROP

EVENT

MONITOR

command.

Use

CATALOG

DATABASE

to

define

different

alias

names

for

the

new

database.

Compatibilities:

For

compatibility

with

versions

earlier

than

Version

8:

v

The

keyword

NODE

can

be

substituted

for

DBPARTITIONNUM.

Related

concepts:

v

“Isolation

levels”

in

the

SQL

Reference,

Volume

1

v

“Unicode

implementation

in

DB2

Universal

Database”

in

the

Administration

Guide:

Planning

Related

tasks:

v

“Collating

Thai

characters”

in

the

Administration

Guide:

Planning

v

“Creating

a

database”

on

page

133

Related

reference:

v

“CREATE

TABLESPACE”

on

page

648

v

“sqlecrea

-

Create

Database”

on

page

500

v

“BIND”

on

page

232

v

“CATALOG

DATABASE”

on

page

249

v

“DROP

DATABASE”

on

page

268

v

“RESTORE

DATABASE”

on

page

354

v

“CATALOG

LDAP

DATABASE

Command”

in

the

Command

Reference

CREATE

DATABASE

Chapter

13.

DB2

UDB

Commands

for

Administrators

259

v

“AUTOCONFIGURE

Command”

in

the

Command

Reference

db2audit

-

Audit

Facility

Administrator

Tool

DB2

provides

an

audit

facility

to

assist

in

the

detection

of

unknown

or

unanticipated

access

to

data.

The

DB2

audit

facility

generates

and

permits

the

maintenance

of

an

audit

trail

for

a

series

of

predefined

database

events.

The

records

generated

from

this

facility

are

kept

in

an

audit

log

file.

The

analysis

of

these

records

can

reveal

usage

patterns

which

would

identify

system

misuse.

Once

identified,

actions

can

be

taken

to

reduce

or

eliminate

such

system

misuse.

The

audit

facility

acts

at

an

instance

level,

recording

all

instance

level

activities

and

database

level

activities.

Authorized

users

of

the

audit

facility

can

control

the

following

actions

within

the

audit

facility,

using

db2audit:

v

Start

recording

auditable

events

within

the

DB2

instance.

v

Stop

recording

auditable

events

within

the

DB2

instance.

v

Configure

the

behavior

of

the

audit

facility.

v

Select

the

categories

of

the

auditable

events

to

be

recorded.

v

Request

a

description

of

the

current

audit

configuration.

v

Flush

any

pending

audit

records

from

the

instance

and

write

them

to

the

audit

log.

v

Extract

audit

records

by

formatting

and

copying

them

from

the

audit

log

to

a

flat

file

or

ASCII

delimited

files.

Extraction

is

done

for

one

of

two

reasons:

In

preparation

for

analysis

of

log

records,

or

in

preparation

for

pruning

of

log

records.

v

Prune

audit

records

from

the

current

audit

log.

db2icrt

-

Create

Instance

Creates

DB2

instances.

On

Windows

operating

systems,

the

db2icrt

utility

is

located

in

the

\sqllib\bin

subdirectory.

On

UNIX-based

systems,

the

db2icrt

utility

is

located

in

the

DB2DIR/instance

directory,

where

DB2DIR

represents

/usr/opt/db2_08_01

on

AIX,

and

/opt/IBM/db2/V8.1

on

all

other

UNIX-based

systems.

If

you

have

a

FixPak

or

modification

level

installed

in

an

alternate

path,

the

DB2DIR

directory

is

usr/opt/db2_08_FPn

on

AIX

and

opt/IBM/db2/V8.FPn

on

all

other

UNIX-based

systems,

where

n

represents

the

number

of

the

FixPak

or

modification

level.

The

db2icrt

utility

creates

an

instance

on

the

directory

from

which

you

invoke

it.

Authorization:

Root

access

on

UNIX-based

systems

or

Local

Administrator

authority

on

Windows

operating

systems.

Command

syntax:

For

UNIX-based

systems

CREATE

DATABASE

260

Common

Criteria

Certification:

Administration

and

User

Documentation

��

db2icrt

-h

-?

-d

-a

AuthType

-p

PortName

�

�

-s

InstType

-w

WordWidth

-u

FencedID

InstName

��

For

Windows

operating

systems

��

db2icrt

-s

InstType

-u

UserName,

Password

�

�

-p

InstProfPath

-h

HostName

-r

PortRange

InstName

��

Command

parameters:

For

UNIX-based

systems

-h

or

-?

Displays

the

usage

information.

-d

Turns

debug

mode

on.

Use

this

option

only

when

instructed

by

DB2

Support.

-a

AuthType

Specifies

the

authentication

type

(SERVER,

CLIENT

or

SERVER_ENCRYPT)

for

the

instance.

The

default

is

SERVER.

-p

PortName

Specifies

the

port

name

or

number

used

by

the

instance.

This

option

does

not

apply

to

client

instances.

-s

InstType

Specifies

the

type

of

instance

to

create.

Use

the

-s

option

only

when

you

are

creating

an

instance

other

than

the

default

for

your

system.

Valid

values

are:

CLIENT

Used

to

create

an

instance

for

a

client.

ESE

Used

to

create

an

instance

for

a

database

server

with

local

and

remote

clients.

Note:

Specify

this

option

if

you

are

creating

an

instance

for

a

PE

database

system,

a

single-partition

ESE

database

system,

or

DB2

Connect.

WSE

Used

to

create

an

instance

for

a

Workgroup

Server

Edition

server.

-w

WordWidth

Specifies

the

width,

in

bits,

of

the

instance

to

be

created

(31,

32

or

64).

You

must

have

the

requisite

version

of

DB2

installed

(31-bit,

32-bit,

or

64-bit)

to

be

able

to

select

the

appropriate

width.

The

default

value

is

the

lowest

bit

width

supported,

and

depends

on

the

installed

version

of

DB2

UDB,

the

platform

it

is

operating

on,

and

the

instance

type.

This

parameter

is

only

valid

on

AIX

5L,

HP-UX,

and

the

Solaris

Operating

Environment.

-u

Fenced

ID

Specifies

the

name

of

the

user

ID

under

which

fenced

user-defined

functions

and

fenced

stored

procedures

will

run.

The

-u

option

is

requred

if

you

are

creating

a

server

instance.

db2icrt

-

Create

Instance

Chapter

13.

DB2

UDB

Commands

for

Administrators

261

InstName

Specifies

the

name

of

the

instance.

For

Windows

operating

systems

-s

InstType

Specifies

the

type

of

instance

to

create.

Valid

values

are:

Client

Used

to

create

an

instance

for

a

client.

Note:

Use

this

value

if

you

are

using

DB2

Connect

Personal

Edition.

Standalone

Used

to

create

an

instance

for

a

database

server

with

local

clients.

ESE

Used

to

create

an

instance

for

a

database

server

with

local

and

remote

clients.

Note:

Specify

this

option

if

you

are

creating

an

instance

for

a

PE

database

system,

a

single

partition

ESE

database

system,

or

DB2

Connect.

WSE

Used

to

create

an

instance

for

a

Workgroup

Server

Edition

server.

-u

Username,

Password

Specifies

the

account

name

and

password

for

the

DB2

service.

This

option

is

required

when

creating

a

partitioned

database

instance.

-p

InstProfPath

Specifies

the

instance

profile

path.

-h

HostName

Overrides

the

default

TCP/IP

host

name

if

there

is

more

than

one

for

the

current

machine.

The

TCP/IP

host

name

is

used

when

creating

the

default

database

partition

(database

partition

0).

This

option

is

only

valid

for

partitioned

database

instances.

-r

PortRange

Specifies

a

range

of

TCP/IP

ports

to

be

used

by

the

partitioned

database

instance

when

running

in

MPP

mode.

The

services

file

of

the

local

machine

will

be

updated

with

the

following

entries

if

this

option

is

specified:

DB2_InstName

baseport/tcp

DB2_InstName_END

endport/tcp

InstName

Specifies

the

name

of

the

instance.

Examples:

Example

1:

On

an

AIX

machine,

to

create

an

instance

called

″db2inst1″

on

the

directory

/u/db2inst1/sqllib/bin,

issue

the

following

command

from

that

directory:

On

a

client

machine:

usr/opt/db2_08_01/instance/db2icrt

db2inst1

On

a

server

machine:

usr/opt/db2_08_01/instance/db2icrt

-u

db2fenc1

db2inst1

db2icrt

-

Create

Instance

262

Common

Criteria

Certification:

Administration

and

User

Documentation

where

db2fenc1

is

the

user

ID

under

which

fenced

user-defined

functions

and

fenced

stored

procedures

will

run.

Example

2:

On

an

AIX

machine,

if

you

have

Alternate

FixPak

1

installed,

run

the

following

command

to

create

an

instance

running

FixPak

1

code

from

the

Alternate

FixPak

1

install

path:

/usr/opt/db2_08_FP1/instance/db2icrt

-u

db2fenc1

db2inst1

Usage

notes:

The

-s

option

is

intended

for

situations

in

which

you

want

to

create

an

instance

that

does

not

use

the

full

functionality

of

the

system.

For

example,

if

you

are

using

Enterprise

Server

Edition

(ESE),

but

do

not

want

partition

capabilities,

you

could

create

a

Workgroup

Server

Edition

(WSE)

instance,

using

the

option

-s

WSE.

To

create

a

DB2

instance

that

supports

Microsoft

Cluster

Server,

first

create

an

instance,

then

use

the

db2iclus

command

to

migrate

it

to

run

in

a

MSCS

instance.

Related

reference:

v

“db2iclus

-

Microsoft

Cluster

Server

Command”

in

the

Command

Reference

db2rbind

-

Rebind

all

Packages

Rebinds

packages

in

a

database.

Authorization:

One

of

the

following:

v

sysadm

Required

connection:

None

Command

syntax:

��

db2rbind

database

/l

logfile

all

/u

userid

/p

password

�

�

conservative

/r

any

��

Command

parameters:

database

Specifies

an

alias

name

for

the

database

whose

packages

are

to

be

revalidated.

/l

Specifies

the

(optional)

path

and

the

(mandatory)

file

name

to

be

used

for

recording

errors

that

result

from

the

package

revalidation

procedure.

all

Specifies

that

rebinding

of

all

valid

and

invalid

packages

is

to

be

done.

If

this

option

is

not

specified,

all

packages

in

the

database

are

examined,

but

db2icrt

-

Create

Instance

Chapter

13.

DB2

UDB

Commands

for

Administrators

263

only

those

packages

that

are

marked

as

invalid

are

rebound,

so

that

they

are

not

rebound

implicitly

during

application

execution.

/u

User

ID.

This

parameter

must

be

specified

if

a

password

is

specified.

/p

Password.

This

parameter

must

be

specified

if

a

user

ID

is

specified.

/r

Resolve.

Specifies

whether

rebinding

of

the

package

is

to

be

performed

with

or

without

conservative

binding

semantics.

This

affects

whether

new

functions

and

data

types

are

considered

during

function

resolution

and

type

resolution

on

static

DML

statements

in

the

package.

This

option

is

not

supported

by

DRDA.

Valid

values

are:

conservative

Only

functions

and

types

in

the

SQL

path

that

were

defined

before

the

last

explicit

bind

time

stamp

are

considered

for

function

and

type

resolution.

Conservative

binding

semantics

are

used.

This

is

the

default.

This

option

is

not

supported

for

an

inoperative

package.

any

Any

of

the

functions

and

types

in

the

SQL

path

are

considered

for

function

and

type

resolution.

Conservative

binding

semantics

are

not

used.

Usage

notes:

v

This

command

uses

the

rebind

API

(sqlarbnd)

to

attempt

the

revalidation

of

all

packages

in

a

database.

v

Use

of

db2rbind

is

not

mandatory.

v

For

packages

that

are

invalid,

you

can

choose

to

allow

package

revalidation

to

occur

implicitly

when

the

package

is

first

used.

You

can

choose

to

selectively

revalidate

packages

with

either

the

REBIND

or

the

BIND

command.

v

If

the

rebind

of

any

of

the

packages

encounters

a

deadlock

or

a

lock

timeout

the

rebind

of

all

the

packages

will

be

rolled

back.

Related

reference:

v

“BIND”

on

page

232

v

“PRECOMPILE”

on

page

842

v

“REBIND”

on

page

866

db2secv82

-

Set

permissions

for

DB2

objects

Sets

the

permissions

for

DB2

objects

(for

example,

files,

directories,

network

shares,

registry

keys

and

services)

on

updated

DB2

Universal

Database

(UDB)

installations.

Authorization:

v

sysadm

Required

connection:

none

Command

syntax:

db2rbind

-

Rebind

all

Packages

264

Common

Criteria

Certification:

Administration

and

User

Documentation

��

db2secv82

/u

usergroup

/a

admingroup

/r

��

Command

parameters:

/u

usergroup

Specifies

the

name

of

the

user

group

to

be

added.

If

this

option

is

not

specified,

the

default

DB2

user

group

(DB2USERS)

is

used.

/a

admingroup

Specifies

the

name

of

the

administration

group

to

be

added.

If

this

option

is

not

specified,

the

default

DB2

administration

group

(DB2ADMNS)

is

used.

/r

Specifies

that

the

changes

made

by

previously

running

db2secv82.exe

should

be

reversed.

If

you

specify

this

option,

all

other

options

are

ignored.

Note:

This

option

will

only

work

if

no

other

DB2

commands

have

been

issued

since

the

db2secv82.exe

command

was

issued.

db2set

-

DB2

Profile

Registry

Displays,

sets,

or

removes

DB2

profile

variables.

An

external

environment

registry

command

that

supports

local

and

remote

administration,

via

the

DB2

Administration

Server,

of

DB2’s

environment

variables

stored

in

the

DB2

profile

registry.

Authorization:

sysadm

Required

connection:

None

Command

syntax:

��

db2set

variable=

value

-g

-i

instance

db-partition-number

-gl

�

�

-all

-null

-r

instance

db-partition-number

�

�

-n

DAS

node

-u

user

-p

password

-l

-lr

-v

-ul

-ur

�

�

-h

-?

��

Command

parameters:

db2secv82

-

Set

permissions

for

DB2

objects

Chapter

13.

DB2

UDB

Commands

for

Administrators

265

variable=

value

Sets

a

specified

variable

to

a

specified

value.

To

delete

a

variable,

do

not

specify

a

value

for

the

specified

variable.

Changes

to

settings

take

effect

after

the

instance

has

been

restarted.

-g

Accesses

the

global

profile

variables.

-i

Specifies

the

instance

profile

to

use

instead

of

the

current,

or

default.

db-partition-number

Specifies

a

number

listed

in

the

db2nodes.cfg

file.

-gl

Accesses

the

global

profile

variables

stored

in

LDAP.

This

option

is

only

effective

if

the

registry

variable

DB2_ENABLE_LDAP

has

been

set

to

YES.

-all

Displays

all

occurrences

of

the

local

environment

variables

as

defined

in:

v

The

environment,

denoted

by

[e]

v

The

node

level

registry,

denoted

by

[n]

v

The

instance

level

registry,

denoted

by

[i]

v

The

global

level

registry,

denoted

by

[g].

-null

Sets

the

value

of

the

variable

at

the

specified

registry

level

to

NULL.

This

avoids

having

to

look

up

the

value

in

the

next

registry

level,

as

defined

by

the

search

order.

-r

instance

Resets

the

profile

registry

for

the

given

instance.

If

no

instance

is

specified,

and

an

instance

attachment

exists,

resets

the

profile

for

the

current

instance.

If

no

instance

is

specified,

and

no

attachment

exists,

resets

the

profile

for

the

instance

specified

by

the

DB2INSTANCE

environment

variable.

-n

DAS

node

Specifies

the

remote

DB2

administration

server

node

name.

-u

user

Specifies

the

user

ID

to

use

for

the

administration

server

attachment.

-p

password

Specifies

the

password

to

use

for

the

administration

server

attachment.

-l

Lists

all

instance

profiles.

-lr

Lists

all

supported

registry

variables.

-v

Specifies

verbose

mode.

-ul

Accesses

the

user

profile

variables.

Note:

This

parameter

is

supported

on

Windows

operating

systems

only.

-ur

Refreshes

the

user

profile

variables.

Note:

This

parameter

is

supported

on

Windows

operating

systems

only.

-h/-?

Displays

help

information.

When

this

option

is

specified,

all

other

options

are

ignored,

and

only

the

help

information

is

displayed.

Examples:

v

Display

all

defined

profiles

(DB2

instances):

db2set

-l

v

Display

all

supported

registry

variables:

db2set

-

DB2

Profile

Registry

Command

266

Common

Criteria

Certification:

Administration

and

User

Documentation

db2set

-lr

v

Display

all

defined

global

variables:

db2set

-g

v

Display

all

defined

variables

for

the

current

instance:

db2set

v

Display

all

defined

values

for

the

current

instance:

db2set

-all

v

Display

all

defined

values

for

DB2COMM

for

the

current

instance:

db2set

-all

DB2COMM

v

Reset

all

defined

variables

for

the

instance

INST

on

node

3:

db2set

-r

-i

INST

3

v

Unset

the

variable

DB2CHKPTR

on

the

remote

instance

RMTINST

through

the

DAS

node

RMTDAS

using

user

ID

MYID

and

password

MYPASSWD:

db2set

-i

RMTINST

-n

RMTDAS

-u

MYID

-p

MYPASSWD

DB2CHKPTR=

v

Set

the

variable

DB2COMM

to

be

TCPIP,IPXSPX,NETBIOS

globally:

db2set

-g

DB2COMM=TCPIP,IPXSPX,NETBIOS

v

Set

the

variable

DB2COMM

to

be

only

TCPIP

for

instance

MYINST:

db2set

-i

MYINST

DB2COMM=TCPIP

v

Set

the

variable

DB2COMM

to

null

at

the

given

instance

level:

db2set

-null

DB2COMM

Usage

notes:

If

no

variable

name

is

specified,

the

values

of

all

defined

variables

are

displayed.

If

a

variable

name

is

specified,

only

the

value

of

that

variable

is

displayed.

To

display

all

the

defined

values

of

a

variable,

specify

variable

-all.

To

display

all

the

defined

variables

in

all

registries,

specify

-all.

To

modify

the

value

of

a

variable,

specify

variable=,

followed

by

its

new

value.

To

set

the

value

of

a

variable

to

NULL,

specify

variable

-null.

Note:

Changes

to

settings

take

effect

after

the

instance

has

been

restarted.

To

delete

a

variable,

specify

variable=,

followed

by

no

value.

db2undgp

-

Revoke

Execute

Privilege

Revoke

the

execute

privilege

on

external

stored

procedures.

This

command

can

be

used

against

external

stored

procedures.

During

the

database

migration,

EXECUTE

for

all

existing

functions,

methods,

and

External

stored

procedure

is

granted

to

PUBLIC.

This

will

cause

a

security

exposure

for

External

Stored

procedures

that

contain

SQL

data

access.

To

prevent

users

from

accessing

SQL

objects

which

the

user

might

not

have

privilege

for,

use

the

db2undgp

command.

Command

syntax:

��

db2undgp

-d

dbname

-h

-o

outfile

-r

��

Command

parameters:

db2set

-

DB2

Profile

Registry

Command

Chapter

13.

DB2

UDB

Commands

for

Administrators

267

-d

dbname

database

name

(maximum

of

8

characters)

-h

Displays

help

for

the

command.

-o

outfile

output

the

revoke

statements

in

the

specified

file

File

name

length

<=

80

-r

perform

the

revoke

Usage

notes:

Notes:

1.

At

least

one

of

the

-r

or

-o

options

must

be

specified.

DROP

DATABASE

Deletes

the

database

contents

and

all

log

files

for

the

database,

uncatalogs

the

database,

and

deletes

the

database

subdirectory.

Scope:

By

default,

this

command

affects

all

database

partitions

that

are

listed

in

the

db2nodes.cfg

file.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

Required

connection:

Instance.

An

explicit

attachment

is

not

required.

If

the

database

is

listed

as

remote,

an

instance

attachment

to

the

remote

node

is

established

for

the

duration

of

the

command.

Command

syntax:

��

DROP

DATABASE

DB

database-alias

AT

DBPARTITIONNUM

��

Command

parameters:

DATABASE

database-alias

Specifies

the

alias

of

the

database

to

be

dropped.

The

database

must

be

cataloged

in

the

system

database

directory.

AT

DBPARTITIONNUM

Specifies

that

the

database

is

to

be

deleted

only

on

the

database

partition

that

issued

the

DROP

DATABASE

command.

This

parameter

is

used

by

utilities

supplied

with

DB2

ESE,

and

is

not

intended

for

general

use.

Improper

use

of

this

parameter

can

cause

inconsistencies

in

the

system,

so

it

should

only

be

used

with

caution.

Examples:

db2undgp

-

Revoke

Execute

Privilege

268

Common

Criteria

Certification:

Administration

and

User

Documentation

The

following

example

deletes

the

database

referenced

by

the

database

alias

SAMPLE:

db2

drop

database

sample

Usage

notes:

DROP

DATABASE

deletes

all

user

data

and

log

files,

as

well

as

any

back/restore

history

for

the

database.

If

the

log

files

are

needed

for

a

roll-forward

recovery

after

a

restore

operation,

or

the

backup

history

required

to

restore

the

database,

these

files

should

be

saved

prior

to

issuing

this

command.

The

database

must

not

be

in

use;

all

users

must

be

disconnected

from

the

database

before

the

database

can

be

dropped.

To

be

dropped,

a

database

must

be

cataloged

in

the

system

database

directory.

Only

the

specified

database

alias

is

removed

from

the

system

database

directory.

If

other

aliases

with

the

same

database

name

exist,

their

entries

remain.

If

the

database

being

dropped

is

the

last

entry

in

the

local

database

directory,

the

local

database

directory

is

deleted

automatically.

If

DROP

DATABASE

is

issued

from

a

remote

client

(or

from

a

different

instance

on

the

same

machine),

the

specified

alias

is

removed

from

the

client’s

system

database

directory.

The

corresponding

database

name

is

removed

from

the

server’s

system

database

directory.

This

command

unlinks

all

files

that

are

linked

through

any

DATALINK

columns.

Since

the

unlink

operation

is

performed

asynchronously

on

the

DB2

Data

Links

Manager,

its

effects

might

not

be

seen

immediately

on

the

DB2

Data

Links

Manager,

and

the

unlinked

files

might

not

be

immediately

available

for

other

operations.

When

the

command

is

issued,

all

the

DB2

Data

Links

Managers

configured

to

that

database

must

be

available;

otherwise,

the

drop

database

operation

will

fail.

Compatibilities:

For

compatibility

with

versions

earlier

than

Version

8:

v

The

keyword

NODE

can

be

substituted

for

DBPARTITIONNUM.

Related

reference:

v

“CATALOG

DATABASE”

on

page

249

v

“CREATE

DATABASE”

on

page

252

v

“UNCATALOG

DATABASE

Command”

in

the

Command

Reference

EXPORT

Exports

data

from

a

database

to

one

of

several

external

file

formats.

The

user

specifies

the

data

to

be

exported

by

supplying

an

SQL

SELECT

statement,

or

by

providing

hierarchical

information

for

typed

tables.

Authorization:

One

of

the

following:

v

sysadm

v

dbadm

DROP

DATABASE

Chapter

13.

DB2

UDB

Commands

for

Administrators

269

or

CONTROL

or

SELECT

privilege

on

each

participating

table

or

view.

Required

connection:

Database.

If

implicit

connect

is

enabled,

a

connection

to

the

default

database

is

established.

Command

syntax:

��

EXPORT

TO

filename

OF

filetype

�

,

LOBS

TO

lob-path

�

�

�

,

LOBFILE

filename

�

MODIFIED

BY

filetype-mod

�

�

�

,

METHOD

N

(

column-name

)

MESSAGES

message-file

�

�

select-statement

HIERARCHY

STARTING

sub-table-name

traversal-order-list

where-clause

��

traversal-order-list:

�

,

(

sub-table-name

)

Command

parameters:

HIERARCHY

traversal-order-list

Export

a

sub-hierarchy

using

the

specified

traverse

order.

All

sub-tables

must

be

listed

in

PRE-ORDER

fashion.

The

first

sub-table

name

is

used

as

the

target

table

name

for

the

SELECT

statement.

HIERARCHY

STARTING

sub-table-name

Using

the

default

traverse

order

(OUTER

order

for

ASC,

DEL,

or

WSF

files,

or

the

order

stored

in

PC/IXF

data

files),

export

a

sub-hierarchy

starting

from

sub-table-name.

LOBFILE

filename

Specifies

one

or

more

base

file

names

for

the

LOB

files.

When

name

space

is

exhausted

for

the

first

name,

the

second

name

is

used,

and

so

on.

When

creating

LOB

files

during

an

export

operation,

file

names

are

constructed

by

appending

the

current

base

name

from

this

list

to

the

current

path

(from

lob-path),

and

then

appending

a

3-digit

sequence

number.

For

example,

if

the

current

LOB

path

is

the

directory

/u/foo/lob/path/,

and

the

current

LOB

file

name

is

bar,

the

LOB

files

created

will

be

/u/foo/lob/path/bar.001,

/u/foo/lob/path/bar.002,

and

so

on.

EXPORT

270

Common

Criteria

Certification:

Administration

and

User

Documentation

LOBS

TO

lob-path

Specifies

one

or

more

paths

to

directories

in

which

the

LOB

files

are

to

be

stored.

There

will

be

at

least

one

file

per

LOB

path,

and

each

file

will

contain

at

least

one

LOB.

MESSAGES

message-file

Specifies

the

destination

for

warning

and

error

messages

that

occur

during

an

export

operation.

If

the

file

already

exists,

the

export

utility

appends

the

information.

If

message-file

is

omitted,

the

messages

are

written

to

standard

output.

METHOD

N

column-name

Specifies

one

or

more

column

names

to

be

used

in

the

output

file.

If

this

parameter

is

not

specified,

the

column

names

in

the

table

are

used.

This

parameter

is

valid

only

for

WSF

and

IXF

files,

but

is

not

valid

when

exporting

hierarchical

data.

MODIFIED

BY

filetype-mod

Specifies

file

type

modifier

options.

See

File

type

modifiers

for

export.

OF

filetype

Specifies

the

format

of

the

data

in

the

output

file:

v

DEL

(delimited

ASCII

format),

which

is

used

by

a

variety

of

database

manager

and

file

manager

programs.

v

WSF

(work

sheet

format),

which

is

used

by

programs

such

as:

–

Lotus

1-2-3

–

Lotus

Symphony

Note:

When

exporting

BIGINT

or

DECIMAL

data,

only

values

that

fall

within

the

range

of

type

DOUBLE

can

be

exported

accurately.

Although

values

that

do

not

fall

within

this

range

are

also

exported,

importing

or

loading

these

values

back

might

result

in

incorrect

data,

depending

on

the

operating

system.

v

IXF

(integrated

exchange

format,

PC

version),

in

which

most

of

the

table

attributes,

as

well

as

any

existing

indexes,

are

saved

in

the

IXF

file,

except

when

columns

are

specified

in

the

SELECT

statement.

With

this

format,

the

table

can

be

recreated,

while

with

the

other

file

formats,

the

table

must

already

exist

before

data

can

be

imported

into

it.

select-statement

Specifies

the

SELECT

statement

that

will

return

the

data

to

be

exported.

If

the

SELECT

statement

causes

an

error,

a

message

is

written

to

the

message

file

(or

to

standard

output).

If

the

error

code

is

one

of

SQL0012W,

SQL0347W,

SQL0360W,

SQL0437W,

or

SQL1824W,

the

export

operation

continues;

otherwise,

it

stops.

TO

filename

Specifies

the

name

of

the

file

to

which

data

is

to

be

exported.

If

the

complete

path

to

the

file

is

not

specified,

the

export

utility

uses

the

current

directory

and

the

default

drive

as

the

destination.

If

the

name

of

a

file

that

already

exists

is

specified,

the

export

utility

overwrites

the

contents

of

the

file;

it

does

not

append

the

information.

Examples:

The

following

example

shows

how

to

export

information

from

the

STAFF

table

in

the

SAMPLE

database

to

the

file

myfile.ixf.

The

output

will

be

in

IXF

format.

EXPORT

Chapter

13.

DB2

UDB

Commands

for

Administrators

271

Note

that

you

must

be

connected

to

the

SAMPLE

database

before

issuing

the

command.

The

index

definitions

(if

any)

will

be

stored

in

the

output

file

except

when

the

database

connection

is

made

through

DB2

Connect.

db2

export

to

myfile.ixf

of

ixf

messages

msgs.txt

select

*

from

staff

The

following

example

shows

how

to

export

the

information

about

employees

in

Department

20

from

the

STAFF

table

in

the

SAMPLE

database.

The

output

will

be

in

IXF

format

and

will

go

into

the

awards.ixf

file.

Note

that

you

must

first

connect

to

the

SAMPLE

database

before

issuing

the

command.

Also

note

that

the

actual

column

name

in

the

table

is

’dept’

instead

of

’department’.

db2

export

to

awards.ixf

of

ixf

messages

msgs.txt

select

*

from

staff

where

dept

=

20

The

following

example

shows

how

to

export

LOBs

to

a

DEL

file:

db2

export

to

myfile.del

of

del

lobs

to

mylobs/

lobfile

lobs1,

lobs2

modified

by

lobsinfile

select

*

from

emp_photo

The

following

example

shows

how

to

export

LOBs

to

a

DEL

file,

specifying

a

second

directory

for

files

that

might

not

fit

into

the

first

directory:

db2

export

to

myfile.del

of

del

lobs

to

/db2exp1/,

/db2exp2/

modified

by

lobsinfile

select

*

from

emp_photo

The

following

example

shows

how

to

export

data

to

a

DEL

file,

using

a

single

quotation

mark

as

the

string

delimiter,

a

semicolon

as

the

column

delimiter,

and

a

comma

as

the

decimal

point.

The

same

convention

should

be

used

when

importing

data

back

into

the

database:

db2

export

to

myfile.del

of

del

modified

by

chardel’’

coldel;

decpt,

select

*

from

staff

Usage

notes:

Be

sure

to

complete

all

table

operations

and

release

all

locks

before

starting

an

export

operation.

This

can

be

done

by

issuing

a

COMMIT

after

closing

all

cursors

opened

WITH

HOLD,

or

by

issuing

a

ROLLBACK.

Table

aliases

can

be

used

in

the

SELECT

statement.

The

messages

placed

in

the

message

file

include

the

information

returned

from

the

message

retrieval

service.

Each

message

begins

on

a

new

line.

The

export

utility

produces

a

warning

message

whenever

a

character

column

with

a

length

greater

than

254

is

selected

for

export

to

DEL

format

files.

PC/IXF

import

should

be

used

to

move

data

between

databases.

If

character

data

containing

row

separators

is

exported

to

a

delimited

ASCII

(DEL)

file

and

processed

by

a

text

transfer

program,

fields

containing

the

row

separators

will

shrink

or

expand.

The

file

copying

step

is

not

necessary

if

the

source

and

the

target

databases

are

both

accessible

from

the

same

client.

EXPORT

272

Common

Criteria

Certification:

Administration

and

User

Documentation

DB2

Connect

can

be

used

to

export

tables

from

DRDA

servers

such

as

DB2

for

OS/390,

DB2

for

VM

and

VSE,

and

DB2

for

OS/400.

Only

PC/IXF

export

is

supported.

The

export

utility

will

not

create

multiple-part

PC/IXF

files

when

invoked

from

an

AIX

system.

The

export

utility

will

store

the

NOT

NULL

WITH

DEFAULT

attribute

of

the

table

in

an

IXF

file

if

the

SELECT

statement

provided

is

in

the

form

SELECT

*

FROM

tablename.

When

exporting

typed

tables,

subselect

statements

can

only

be

expressed

by

specifying

the

target

table

name

and

the

WHERE

clause.

Fullselect

and

select-statement

cannot

be

specified

when

exporting

a

hierarchy.

For

file

formats

other

than

IXF,

it

is

recommended

that

the

traversal

order

list

be

specified,

because

it

tells

DB2

how

to

traverse

the

hierarchy,

and

what

sub-tables

to

export.

If

this

list

is

not

specified,

all

tables

in

the

hierarchy

are

exported,

and

the

default

order

is

the

OUTER

order.

The

alternative

is

to

use

the

default

order,

which

is

the

order

given

by

the

OUTER

function.

Note:

Use

the

same

traverse

order

during

an

import

operation.

The

load

utility

does

not

support

loading

hierarchies

or

sub-hierarchies.

DB2

Data

Links

Manager

considerations:

To

ensure

that

a

consistent

copy

of

the

table

and

the

corresponding

files

referenced

by

the

DATALINK

columns

are

copied

for

export,

do

the

following:

1.

Issue

the

command:

QUIESCE

TABLESPACES

FOR

TABLE

tablename

SHARE.

This

ensures

that

no

update

transactions

are

in

progress

when

EXPORT

is

run.

2.

Issue

the

EXPORT

command.

3.

Run

the

dlfm_export

utility

at

each

Data

Links

server.

Input

to

the

dlfm_export

utility

is

the

control

file

name,

which

is

generated

by

the

export

utility.

This

produces

a

tar

(or

equivalent)

archive

of

the

files

listed

within

the

control

file.

4.

Issue

the

command:

QUIESCE

TABLESPACES

FOR

TABLE

tablename

RESET.

This

makes

the

table

available

for

updates.

EXPORT

is

executed

as

an

SQL

application.

The

rows

and

columns

satisfying

the

SELECT

statement

conditions

are

extracted

from

the

database.

For

the

DATALINK

columns,

the

SELECT

statement

should

not

specify

any

scalar

function.

Successful

execution

of

EXPORT

results

in

generation

of

the

following

files:

v

An

export

data

file

as

specified

in

the

EXPORT

command.

A

DATALINK

column

value

in

this

file

has

the

same

format

as

that

used

by

the

IMPORT

and

LOAD

utilities.

When

the

DATALINK

column

value

is

the

SQL

NULL

value,

handling

is

the

same

as

that

for

other

data

types.

v

Control

files

server_name,

which

are

generated

for

each

Data

Links

server.

On

Windows

operating

systems,

a

single

control

file,

ctrlfile.lst,

is

used

by

all

Data

Links

servers.

These

control

files

are

placed

in

the

directory

<data-file

path>/dlfm/YYYYMMDD/HHMMSS

(on

the

Windows

NT

operating

system,

ctrlfile.lst

is

placed

in

the

directory

<data-file

path>\dlfm\YYYYMMDD\HHMMSS).

YYYYMMDD

represents

the

date

(year

month

day),

and

HHMMSS

represents

the

time

(hour

minute

second).

EXPORT

Chapter

13.

DB2

UDB

Commands

for

Administrators

273

The

dlfm_export

utility

is

provided

to

export

files

from

a

Data

Links

server.

This

utility

generates

an

archive

file,

which

can

be

used

to

restore

files

in

the

target

Data

Links

server.

Related

concepts:

v

“Export

Overview”

in

the

Data

Movement

Utilities

Guide

and

Reference

v

“Privileges,

authorities

and

authorization

required

to

use

export”

on

page

837

Related

tasks:

v

“Using

Export”

in

the

Data

Movement

Utilities

Guide

and

Reference

Related

reference:

v

“db2Export

-

Export”

on

page

405

v

“Export

Sessions

-

CLP

Examples”

in

the

Data

Movement

Utilities

Guide

and

Reference

v

“File

type

modifiers

for

export”

in

the

Command

Reference

v

“Delimiter

restrictions

for

moving

data”

in

the

Command

Reference

GET

AUTHORIZATIONS

Reports

the

authorities

of

the

current

user

from

values

found

in

the

database

configuration

file

and

the

authorization

system

catalog

view

(SYSCAT.DBAUTH).

Authorization:

None

Required

connection:

Database.

If

implicit

connect

is

enabled,

a

connection

to

the

default

database

is

established.

Command

syntax:

��

GET

AUTHORIZATIONS

��

Command

parameters:

None

Examples:

The

following

is

sample

output

from

GET

AUTHORIZATIONS:

EXPORT

274

Common

Criteria

Certification:

Administration

and

User

Documentation

Usage

notes:

Direct

authorities

are

acquired

by

explicit

commands

that

grant

the

authorities

to

a

user

ID.

Indirect

authorities

are

based

on

authorities

acquired

by

the

groups

to

which

a

user

belongs.

Note:

PUBLIC

is

a

special

group

to

which

all

users

belong.

GET

DATABASE

CONFIGURATION

Returns

the

values

of

individual

entries

in

a

specific

database

configuration

file.

Scope:

This

command

returns

information

only

for

the

partition

on

which

it

is

executed.

Authorization:

None

Required

connection:

Instance.

An

explicit

attachment

is

not

required,

but

a

connection

to

the

database

is

required

when

using

the

SHOW

DETAIL

clause.

If

the

database

is

listed

as

remote,

an

instance

attachment

to

the

remote

node

is

established

for

the

duration

of

the

command.

Command

syntax:

��

GET

DATABASE

DB

CONFIGURATION

CONFIG

CFG

FOR

database-alias

�

Administrative

Authorizations

for

Current

User

Direct

SYSADM

authority

=

NO

Direct

SYSCTRL

authority

=

NO

Direct

SYSMAINT

authority

=

NO

Direct

DBADM

authority

=

YES

Direct

CREATETAB

authority

=

YES

Direct

BINDADD

authority

=

YES

Direct

CONNECT

authority

=

YES

Direct

CREATE_NOT_FENC

authority

=

YES

Direct

IMPLICIT_SCHEMA

authority

=

YES

Direct

LOAD

authority

=

YES

Direct

QUIESCE_CONNECT

authority

=

YES

Direct

CREATE_EXTERNAL_ROUTINE

authority

=

YES

Indirect

SYSADM

authority

=

YES

Indirect

SYSCTRL

authority

=

NO

Indirect

SYSMAINT

authority

=

NO

Indirect

DBADM

authority

=

NO

Indirect

CREATETAB

authority

=

YES

Indirect

BINDADD

authority

=

YES

Indirect

CONNECT

authority

=

YES

Indirect

CREATE_NOT_FENC

authority

=

NO

Indirect

IMPLICIT_SCHEMA

authority

=

YES

Indirect

LOAD

authority

=

NO

Indirect

QUIESCE_CONNECT

authority

=

NO

Indirect

CREATE_EXTERNAL_ROUTINE

authority

=

NO

GET

AUTHORIZATIONS

Chapter

13.

DB2

UDB

Commands

for

Administrators

275

�

SHOW

DETAIL

��

Command

parameters:

FOR

database-alias

Specifies

the

alias

of

the

database

whose

configuration

is

to

be

displayed.

You

do

not

need

to

specify

the

alias

if

a

connection

to

the

database

already

exists.

SHOW

DETAIL

Displays

detailed

information

showing

the

current

value

of

database

configuration

parameters

as

well

as

the

value

of

the

parameters

the

next

time

you

activate

the

database.

This

option

lets

you

see

the

result

of

dynamic

changes

to

configuration

parameters.

Examples:

Notes:

1.

Output

on

different

platforms

might

show

small

variations

reflecting

platform-specific

parameters.

2.

Parameters

with

keywords

enclosed

by

parentheses

can

be

changed

by

the

UPDATE

DATABASE

CONFIGURATION

command.

3.

Fields

that

do

not

contain

keywords

are

maintained

by

the

database

manager

and

cannot

be

updated.

The

following

is

sample

output

from

GET

DATABASE

CONFIGURATION

(issued

on

AIX):

Database

Configuration

for

Database

mick

Database

configuration

release

level

=

0x0a00

Database

release

level

=

0x0a00

Database

territory

=

en_US

Database

code

page

=

819

Database

code

set

=

ISO8859-1

Database

country/region

code

=

1

Database

collating

sequence

=

UNIQUE

Alternate

collating

sequence

(ALT_COLLATE)

=

Dynamic

SQL

Query

management

(DYN_QUERY_MGMT)

=

DISABLE

Discovery

support

for

this

database

(DISCOVER_DB)

=

ENABLE

Default

query

optimization

class

(DFT_QUERYOPT)

=

5

Degree

of

parallelism

(DFT_DEGREE)

=

1

Continue

upon

arithmetic

exceptions

(DFT_SQLMATHWARN)

=

NO

Default

refresh

age

(DFT_REFRESH_AGE)

=

0

Default

maintained

table

types

for

opt

(DFT_MTTB_TYPES)

=

SYSTEM

Number

of

frequent

values

retained

(NUM_FREQVALUES)

=

10

Number

of

quantiles

retained

(NUM_QUANTILES)

=

20

Backup

pending

=

NO

Database

is

consistent

=

YES

Rollforward

pending

=

NO

Restore

pending

=

NO

Multi-page

file

allocation

enabled

=

YES

Log

retain

for

recovery

status

=

NO

User

exit

for

logging

status

=

NO

GET

DATABASE

CONFIGURATION

276

Common

Criteria

Certification:

Administration

and

User

Documentation

Data

Links

Token

Expiry

Interval

(sec)

(DL_EXPINT)

=

60

Data

Links

Write

Token

Init

Expiry

Intvl(DL_WT_IEXPINT)

=

60

Data

Links

Number

of

Copies

(DL_NUM_COPIES)

=

1

Data

Links

Time

after

Drop

(days)

(DL_TIME_DROP)

=

1

Data

Links

Token

in

Uppercase

(DL_UPPER)

=

NO

Data

Links

Token

Algorithm

(DL_TOKEN)

=

MAC0

Database

heap

(4KB)

(DBHEAP)

=

1200

Size

of

database

shared

memory

(4KB)

(DATABASE_MEMORY)

=

AUTOMATIC

Catalog

cache

size

(4KB)

(CATALOGCACHE_SZ)

=

64

Log

buffer

size

(4KB)

(LOGBUFSZ)

=

8

Utilities

heap

size

(4KB)

(UTIL_HEAP_SZ)

=

5000

Buffer

pool

size

(pages)

(BUFFPAGE)

=

1000

Extended

storage

segments

size

(4KB)

(ESTORE_SEG_SZ)

=

16000

Number

of

extended

storage

segments

(NUM_ESTORE_SEGS)

=

0

Max

storage

for

lock

list

(4KB)

(LOCKLIST)

=

128

Max

size

of

appl.

group

mem

set

(4KB)

(APPGROUP_MEM_SZ)

=

30000

Percent

of

mem

for

appl.

group

heap

(GROUPHEAP_RATIO)

=

70

Max

appl.

control

heap

size

(4KB)

(APP_CTL_HEAP_SZ)

=

128

Sort

heap

thres

for

shared

sorts

(4KB)

(SHEAPTHRES_SHR)

=

(SHEAPTHRES)

Sort

list

heap

(4KB)

(SORTHEAP)

=

256

SQL

statement

heap

(4KB)

(STMTHEAP)

=

2048

Default

application

heap

(4KB)

(APPLHEAPSZ)

=

128

Package

cache

size

(4KB)

(PCKCACHESZ)

=

(MAXAPPLS*8)

Statistics

heap

size

(4KB)

(STAT_HEAP_SZ)

=

4384

Interval

for

checking

deadlock

(ms)

(DLCHKTIME)

=

10000

Percent.

of

lock

lists

per

application

(MAXLOCKS)

=

10

Lock

timeout

(sec)

(LOCKTIMEOUT)

=

-1

Changed

pages

threshold

(CHNGPGS_THRESH)

=

60

Number

of

asynchronous

page

cleaners

(NUM_IOCLEANERS)

=

1

Number

of

I/O

servers

(NUM_IOSERVERS)

=

3

Index

sort

flag

(INDEXSORT)

=

YES

Sequential

detect

flag

(SEQDETECT)

=

YES

Default

prefetch

size

(pages)

(DFT_PREFETCH_SZ)

=

AUTOMATIC

Track

modified

pages

(TRACKMOD)

=

OFF

Default

number

of

containers

=

1

Default

tablespace

extentsize

(pages)

(DFT_EXTENT_SZ)

=

32

Max

number

of

active

applications

(MAXAPPLS)

=

AUTOMATIC

Average

number

of

active

applications

(AVG_APPLS)

=

1

Max

DB

files

open

per

application

(MAXFILOP)

=

64

Log

file

size

(4KB)

(LOGFILSIZ)

=

1000

Number

of

primary

log

files

(LOGPRIMARY)

=

3

Number

of

secondary

log

files

(LOGSECOND)

=

2

Changed

path

to

log

files

(NEWLOGPATH)

=

Path

to

log

files

=

/home/db2inst/db2inst

/NODE0000/SQL00001

/SQLOGDIR/

Overflow

log

path

(OVERFLOWLOGPATH)

=

Mirror

log

path

(MIRRORLOGPATH)

=

First

active

log

file

=

Block

log

on

disk

full

(BLK_LOG_DSK_FUL)

=

NO

Percent

of

max

active

log

space

by

transaction(MAX_LOG)

=

0

Num.

of

active

log

files

for

1

active

UOW(NUM_LOG_SPAN)

=

0

Group

commit

count

(MINCOMMIT)

=

1

Percent

log

file

reclaimed

before

soft

chckpt

(SOFTMAX)

=

100

Log

retain

for

recovery

enabled

(LOGRETAIN)

=

OFF

User

exit

for

logging

enabled

(USEREXIT)

=

OFF

GET

DATABASE

CONFIGURATION

Chapter

13.

DB2

UDB

Commands

for

Administrators

277

HADR

database

role

=

STANDARD

HADR

local

host

name

(HADR_LOCAL_HOST)

=

HADR

local

service

name

(HADR_LOCAL_SVC)

=

HADR

remote

host

name

(HADR_REMOTE_HOST)

=

HADR

remote

service

name

(HADR_REMOTE_SVC)

=

HADR

instance

name

of

remote

server

(HADR_REMOTE_INST)

=

HADR

timeout

value

(HADR_TIMEOUT)

=

120

HADR

log

write

synchronization

mode

(HADR_SYNCMODE)

=

NEARSYNC

First

log

archive

method

(LOGARCHMETH1)

=

OFF

Options

for

logarchmeth1

(LOGARCHOPT1)

=

Second

log

archive

method

(LOGARCHMETH2)

=

OFF

Options

for

logarchmeth2

(LOGARCHOPT2)

=

Failover

log

archive

path

(FAILARCHPATH)

=

Number

of

log

archive

retries

on

error

(NUMARCHRETRY)

=

5

Log

archive

retry

Delay

(secs)

(ARCHRETRYDELAY)

=

20

Vendor

options

(VENDOROPT)

=

Auto

restart

enabled

(AUTORESTART)

=

ON

Index

re-creation

time

and

redo

index

build

(INDEXREC)

=

SYSTEM

(RESTART)

Log

pages

during

index

build

(LOGINDEXBUILD)

=

OFF

Default

number

of

loadrec

sessions

(DFT_LOADREC_SES)

=

1

Number

of

database

backups

to

retain

(NUM_DB_BACKUPS)

=

12

Recovery

history

retention

(days)

(REC_HIS_RETENTN)

=

366

TSM

management

class

(TSM_MGMTCLASS)

=

TSM

node

name

(TSM_NODENAME)

=

TSM

owner

(TSM_OWNER)

=

TSM

password

(TSM_PASSWORD)

=

Automatic

maintenance

(AUTO_MAINT)

=

OFF

Automatic

database

backup

(AUTO_DB_BACKUP)

=

OFF

Automatic

table

maintenance

(AUTO_TBL_MAINT)

=

OFF

Automatic

runstats

(AUTO_RUNSTATS)

=

OFF

Automatic

statistics

profiling

(AUTO_STATS_PROF)

=

OFF

Automatic

profile

updates

(AUTO_PROF_UPD)

=

OFF

Automatic

reorganization

(AUTO_REORG)

=

OFF

The

following

example

shows

a

portion

of

the

output

of

the

command

when

you

specify

the

SHOW

DETAIL

option.

The

value

in

the

Delayed

Value

column

is

the

value

that

will

be

applied

the

next

time

you

start

the

instance.

Database

Configuration

for

Database

mick

Description

Parameter

Current

Value

Delayed

Value

Database

configuration

release

level

=

0x0a00

Database

release

level

=

0x0a00

Database

territory

=

en_US

Database

code

page

=

819

Database

code

set

=

ISO8859-1

Database

country/region

code

=

1

Database

collating

sequence

=

UNIQUE

UNIQUE

Alternate

collating

sequence

(ALT_COLLATE)

=

Dynamic

SQL

Query

management

(DYN_QUERY_MGMT)

=

DISABLE

DISABLE

Discovery

support

for

this

database

(DISCOVER_DB)

=

ENABLE

ENABLE

Default

query

optimization

class

(DFT_QUERYOPT)

=

5

5

Degree

of

parallelism

(DFT_DEGREE)

=

1

1

Continue

upon

arithmetic

exceptions

(DFT_SQLMATHWARN)

=

NO

NO

Default

refresh

age

(DFT_REFRESH_AGE)

=

0

0

Default

maintained

table

types

for

opt

(DFT_MTTB_TYPES)

=

SYSTEM

SYSTEM

Number

of

frequent

values

retained

(NUM_FREQVALUES)

=

10

10

Number

of

quantiles

retained

(NUM_QUANTILES)

=

20

20

Backup

pending

=

NO

GET

DATABASE

CONFIGURATION

278

Common

Criteria

Certification:

Administration

and

User

Documentation

Database

is

consistent

=

YES

Rollforward

pending

=

NO

Restore

pending

=

NO

Multi-page

file

allocation

enabled

=

YES

Log

retain

for

recovery

status

=

NO

User

exit

for

logging

status

=

NO

Data

Links

Token

Expiry

Interval

(sec)

(DL_EXPINT)

=

60

60

Data

Links

Write

Token

Init

Expiry

Intvl(DL_WT_IEXPINT)

=

60

60

Data

Links

Number

of

Copies

(DL_NUM_COPIES)

=

1

1

Data

Links

Time

after

Drop

(days)

(DL_TIME_DROP)

=

1

1

Data

Links

Token

in

Uppercase

(DL_UPPER)

=

NO

NO

Data

Links

Token

Algorithm

(DL_TOKEN)

=

MAC0

MAC0

Database

heap

(4KB)

(DBHEAP)

=

1200

1200

Size

of

database

shared

memory

(4KB)

(DATABASE_MEMORY)

=

AUTOMATIC

AUTOMATIC

(11516)

(11516)

Catalog

cache

size

(4KB)

(CATALOGCACHE_SZ)

=

64

64

Log

buffer

size

(4KB)

(LOGBUFSZ)

=

8

8

Utilities

heap

size

(4KB)

(UTIL_HEAP_SZ)

=

5000

5000

Buffer

pool

size

(pages)

(BUFFPAGE)

=

1000

1000

Extended

storage

segments

size

(4KB)

(ESTORE_SEG_SZ)

=

16000

16000

Number

of

extended

storage

segments

(NUM_ESTORE_SEGS)

=

0

0

Max

storage

for

lock

list

(4KB)

(LOCKLIST)

=

128

128

Max

size

of

appl.

group

mem

set

(4KB)

(APPGROUP_MEM_SZ)

=

30000

30000

Percent

of

mem

for

appl.

group

heap

(GROUPHEAP_RATIO)

=

70

70

Max

appl.

control

heap

size

(4KB)

(APP_CTL_HEAP_SZ)

=

128

128

Sort

heap

thres

for

shared

sorts

(4KB)

(SHEAPTHRES_SHR)

=

(SHEAPTHRES)

(SHEAPTHRES)

Sort

list

heap

(4KB)

(SORTHEAP)

=

256

256

SQL

statement

heap

(4KB)

(STMTHEAP)

=

2048

2048

Default

application

heap

(4KB)

(APPLHEAPSZ)

=

128

128

Package

cache

size

(4KB)

(PCKCACHESZ)

=

(MAXAPPLS*8)

(MAXAPPLS*8)

Statistics

heap

size

(4KB)

(STAT_HEAP_SZ)

=

4384

4384

Interval

for

checking

deadlock

(ms)

(DLCHKTIME)

=

10000

10000

Percent.

of

lock

lists

per

application

(MAXLOCKS)

=

10

10

Lock

timeout

(sec)

(LOCKTIMEOUT)

=

-1

-1

Changed

pages

threshold

(CHNGPGS_THRESH)

=

60

60

Number

of

asynchronous

page

cleaners

(NUM_IOCLEANERS)

=

1

1

Number

of

I/O

servers

(NUM_IOSERVERS)

=

3

3

Index

sort

flag

(INDEXSORT)

=

YES

YES

Sequential

detect

flag

(SEQDETECT)

=

YES

YES

Default

prefetch

size

(pages)

(DFT_PREFETCH_SZ)

=

AUTOMATIC

AUTOMATIC

Track

modified

pages

(TRACKMOD)

=

NO

NO

Default

number

of

containers

=

1

1

Default

tablespace

extentsize

(pages)

(DFT_EXTENT_SZ)

=

32

32

Max

number

of

active

applications

(MAXAPPLS)

=

AUTOMATIC

AUTOMATIC

(40)

(40)

Average

number

of

active

applications

(AVG_APPLS)

=

1

1

Max

DB

files

open

per

application

(MAXFILOP)

=

64

64

Log

file

size

(4KB)

(LOGFILSIZ)

=

1000

1000

Number

of

primary

log

files

(LOGPRIMARY)

=

3

3

Number

of

secondary

log

files

(LOGSECOND)

=

2

2

Changed

path

to

log

files

(NEWLOGPATH)

=

Path

to

log

files

=

home/db2inst

/home

/db2inst

/db2inst

/NODE0000

/db2inst

/SQL00001

/NODE0000

GET

DATABASE

CONFIGURATION

Chapter

13.

DB2

UDB

Commands

for

Administrators

279

/SQLOGDIR/

/SQL00001

/SQLOGDIR/

Overflow

log

path

(OVERFLOWLOGPATH)

=

Mirror

log

path

(MIRRORLOGPATH)

=

First

active

log

file

=

Block

log

on

disk

full

(BLK_LOG_DSK_FUL)

=

NO

NO

Percent

of

max

active

log

space

by

transaction(MAX_LOG)

=

0

0

Num.

of

active

log

files

for

1

active

UOW(NUM_LOG_SPAN)

=

0

0

Group

commit

count

(MINCOMMIT)

=

1

1

Percent

log

file

reclaimed

before

soft

chckpt

(SOFTMAX)

=

100

100

Log

retain

for

recovery

enabled

(LOGRETAIN)

=

OFF

OFF

User

exit

for

logging

enabled

(USEREXIT)

=

OFF

OFF

HADR

database

role

=

STANDARD

STANDARD

HADR

local

host

name

(HADR_LOCAL_HOST)

=

HADR

local

service

name

(HADR_LOCAL_SVC)

=

HADR

remote

host

name

(HADR_REMOTE_HOST)

=

HADR

remote

service

name

(HADR_REMOTE_SVC)

=

HADR

instance

name

of

remote

server

(HADR_REMOTE_INST)

=

HADR

timeout

value

(HADR_TIMEOUT)

=

120

120

HADR

log

write

synchronization

mode

(HADR_SYNCMODE)

=

NEARSYNC

NEARSYNC

First

log

archive

method

(LOGARCHMETH1)

=

OFF

OFF

Options

for

logarchmeth1

(LOGARCHOPT1)

=

Second

log

archive

method

(LOGARCHMETH2)

=

OFF

OFF

Options

for

logarchmeth2

(LOGARCHOPT2)

=

Failover

log

archive

path

(FAILARCHPATH)

=

Number

of

log

archive

retries

on

error

(NUMARCHRETRY)

=

5

5

Log

archive

retry

Delay

(secs)

(ARCHRETRYDELAY)

=

20

20

Vendor

options

(VENDOROPT)

=

Auto

restart

enabled

(AUTORESTART)

=

ON

ON

Index

re-creation

time

and

redo

index

build

(INDEXREC)

=

SYSTEM

SYSTEM

(RESTART)

(RESTART)

Log

pages

during

index

build

(LOGINDEXBUILD)

=

OFF

OFF

Default

number

of

loadrec

sessions

(DFT_LOADREC_SES)

=

1

1

Number

of

database

backups

to

retain

(NUM_DB_BACKUPS)

=

12

12

Recovery

history

retention

(days)

(REC_HIS_RETENTN)

=

366

366

TSM

management

class

(TSM_MGMTCLASS)

=

TSM

node

name

(TSM_NODENAME)

=

TSM

owner

(TSM_OWNER)

=

TSM

password

(TSM_PASSWORD)

=

Automatic

maintenance

(AUTO_MAINT)

=

OFF

OFF

Automatic

database

backup

(AUTO_DB_BACKUP)

=

OFF

OFF

Automatic

table

maintenance

(AUTO_TBL_MAINT)

=

OFF

OFF

Automatic

runstats

(AUTO_RUNSTATS)

=

OFF

OFF

Automatic

statistics

profiling

(AUTO_STATS_PROF)

=

OFF

OFF

Automatic

profile

updates

(AUTO_PROF_UPD)

=

OFF

OFF

Automatic

reorganization

(AUTO_REORG)

=

OFF

OFF

Usage

notes:

If

an

error

occurs,

the

information

returned

is

not

valid.

If

the

configuration

file

is

invalid,

an

error

message

is

returned.

The

database

must

be

restored

from

a

backup

version.

To

set

the

database

configuration

parameters

to

the

database

manager

defaults,

use

the

RESET

DATABASE

CONFIGURATION

command.

Related

tasks:

v

“Changing

node

and

database

configuration

files”

in

the

Administration

Guide:

Implementation

v

“Configuring

DB2

with

configuration

parameters”

on

page

779

GET

DATABASE

CONFIGURATION

280

Common

Criteria

Certification:

Administration

and

User

Documentation

Related

reference:

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION”

on

page

381

v

“Configuration

parameters

summary”

in

the

Administration

Guide:

Performance

GET

DATABASE

MANAGER

CONFIGURATION

Returns

the

values

of

individual

entries

in

the

database

manager

configuration

file.

Authorization:

None

Required

connection:

None

or

instance.

An

instance

attachment

is

not

required

to

perform

local

DBM

configuration

operations,

but

is

required

to

perform

remote

DBM

configuration

operations.

To

display

the

database

manager

configuration

for

a

remote

instance,

it

is

necessary

to

first

attach

to

that

instance.

The

SHOW

DETAIL

clause

requires

an

instance

attachment.

Command

syntax:

��

GET

DATABASE

MANAGER

CONFIGURATION

DB

MANAGER

CONFIG

SHOW

DETAIL

DBM

CFG

��

Command

parameters:

SHOW

DETAIL

Displays

detailed

information

showing

the

current

value

of

database

manager

configuration

parameters

as

well

as

the

value

of

the

parameters

the

next

time

you

start

the

database

manager.

This

option

lets

you

see

the

result

of

dynamic

changes

to

configuration

parameters.

Examples:

Note:

Both

node

type

and

platform

determine

which

configuration

parameters

are

listed.

The

following

is

sample

output

from

GET

DATABASE

MANAGER

CONFIGURATION

(issued

on

AIX):

Database

Manager

Configuration

Node

type

=

Database

Server

with

local

clients

Database

manager

configuration

release

level

=

0x0a00

CPU

speed

(millisec/instruction)

(CPUSPEED)

=

4.000000e-05

Max

number

of

concurrently

active

databases

(NUMDB)

=

8

Data

Links

support

(DATALINKS)

=

NO

Federated

Database

System

Support

(FEDERATED)

=

NO

Transaction

processor

monitor

name

(TP_MON_NAME)

=

Default

charge-back

account

(DFT_ACCOUNT_STR)

=

GET

DATABASE

CONFIGURATION

Chapter

13.

DB2

UDB

Commands

for

Administrators

281

Java

Development

Kit

installation

path

(JDK_PATH)

=

/usr/java131

Diagnostic

error

capture

level

(DIAGLEVEL)

=

3

Notify

Level

(NOTIFYLEVEL)

=

3

Diagnostic

data

directory

path

(DIAGPATH)

=

Default

database

monitor

switches

Buffer

pool

(DFT_MON_BUFPOOL)

=

OFF

Lock

(DFT_MON_LOCK)

=

OFF

Sort

(DFT_MON_SORT)

=

OFF

Statement

(DFT_MON_STMT)

=

OFF

Table

(DFT_MON_TABLE)

=

OFF

Timestamp

(DFT_MON_TIMESTAMP)

=

ON

Unit

of

work

(DFT_MON_UOW)

=

OFF

Monitor

health

of

instance

and

databases

(HEALTH_MON)

=

ON

SYSADM

group

name

(SYSADM_GROUP)

=

SYSCTRL

group

name

(SYSCTRL_GROUP)

=

SYSMAINT

group

name

(SYSMAINT_GROUP)

=

SYSMON

group

name

(SYSMON_GROUP)

=

Client

Userid-Password

Plugin

(CLNT_PW_PLUGIN)

=

Client

Kerberos

Plugin

(CLNT_KRB_PLUGIN)

=

Group

Plugin

(GROUP_PLUGIN)

=

GSS

Plugin

for

Local

Authorization

(LOCAL_GSSPLUGIN)

=

Server

Plugin

Mode

(SRV_PLUGIN_MODE)

=

UNFENCED

Server

List

of

GSS

Plugins

(SRVCON_GSSPLUGIN_LIST)

=

Server

Userid-Password

Plugin

(SRVCON_PW_PLUGIN)

=

Server

Connection

Authentication

(SRVCON_AUTH)

=

NOT_SPECIFIED

Database

manager

authentication

(AUTHENTICATION)

=

SERVER

Cataloging

allowed

without

authority

(CATALOG_NOAUTH)

=

YES

Trust

all

clients

(TRUST_ALLCLNTS)

=

YES

Trusted

client

authentication

(TRUST_CLNTAUTH)

=

CLIENT

Bypass

federated

authentication

(FED_NOAUTH)

=

NO

Default

database

path

(DFTDBPATH)

=

/home/db2inst

Database

monitor

heap

size

(4KB)

(MON_HEAP_SZ)

=

90

Java

Virtual

Machine

heap

size

(4KB)

(JAVA_HEAP_SZ)

=

512

Audit

buffer

size

(4KB)

(AUDIT_BUF_SZ)

=

0

Size

of

instance

shared

memory

(4KB)

(INSTANCE_MEMORY)

=

AUTOMATIC

Backup

buffer

default

size

(4KB)

(BACKBUFSZ)

=

1024

Restore

buffer

default

size

(4KB)

(RESTBUFSZ)

=

1024

Sort

heap

threshold

(4KB)

(SHEAPTHRES)

=

20000

Directory

cache

support

(DIR_CACHE)

=

YES

Application

support

layer

heap

size

(4KB)

(ASLHEAPSZ)

=

15

Max

requester

I/O

block

size

(bytes)

(RQRIOBLK)

=

32767

Query

heap

size

(4KB)

(QUERY_HEAP_SZ)

=

1000

Workload

impact

by

throttled

utilities(UTIL_IMPACT_LIM)

=

10

Priority

of

agents

(AGENTPRI)

=

SYSTEM

Max

number

of

existing

agents

(MAXAGENTS)

=

200

Agent

pool

size

(NUM_POOLAGENTS)

=

100(calculated)

Initial

number

of

agents

in

pool

(NUM_INITAGENTS)

=

0

Max

number

of

coordinating

agents

(MAX_COORDAGENTS)

=

MAXAGENTS

Max

no.

of

concurrent

coordinating

agents

(MAXCAGENTS)

=

MAX_COORDAGENTS

Max

number

of

client

connections

(MAX_CONNECTIONS)

=

MAX_COORDAGENTS

Keep

fenced

process

(KEEPFENCED)

=

YES

Number

of

pooled

fenced

processes

(FENCED_POOL)

=

MAX_COORDAGENTS

Initial

number

of

fenced

processes

(NUM_INITFENCED)

=

0

Index

re-creation

time

and

redo

index

build

(INDEXREC)

=

RESTART

GET

DATABASE

MANAGER

CONFIGURATION

282

Common

Criteria

Certification:

Administration

and

User

Documentation

Transaction

manager

database

name

(TM_DATABASE)

=

1ST_CONN

Transaction

resync

interval

(sec)

(RESYNC_INTERVAL)

=

180

SPM

name

(SPM_NAME)

=

SPM

log

size

(SPM_LOG_FILE_SZ)

=

256

SPM

resync

agent

limit

(SPM_MAX_RESYNC)

=

20

SPM

log

path

(SPM_LOG_PATH)

=

TCP/IP

Service

name

(SVCENAME)

=

Discovery

mode

(DISCOVER)

=

SEARCH

Discover

server

instance

(DISCOVER_INST)

=

ENABLE

Maximum

query

degree

of

parallelism

(MAX_QUERYDEGREE)

=

ANY

Enable

intra-partition

parallelism

(INTRA_PARALLEL)

=

NO

No.

of

int.

communication

buffers(4KB)(FCM_NUM_BUFFERS)

=

512

Number

of

FCM

request

blocks

(FCM_NUM_RQB)

=

AUTOMATIC

Number

of

FCM

connection

entries

(FCM_NUM_CONNECT)

=

AUTOMATIC

Number

of

FCM

message

anchors

(FCM_NUM_ANCHORS)

=

AUTOMATIC

The

following

output

sample

shows

the

information

displayed

when

you

specify

the

WITH

DETAIL

option.

The

value

that

appears

in

the

Delayed

Value

is

the

value

that

will

be

in

effect

the

next

time

you

start

the

database

manager

instance.

Database

Manager

Configuration

Node

type

=

Database

Server

with

local

clients

Description

Parameter

Current

Value

Delayed

Value

Database

manager

configuration

release

level

=

0x0a00

CPU

speed

(millisec/instruction)

(CPUSPEED)

=

4.000000e

4.000000e

-05

-05

Max

number

of

concurrently

active

databases

(NUMDB)

=

8

8

Data

Links

support

(DATALINKS)

=

NO

NO

Federated

Database

System

Support

(FEDERATED)

=

NO

NO

Transaction

processor

monitor

name

(TP_MON_NAME)

=

Default

charge-back

account

(DFT_ACCOUNT_STR)

=

Java

Development

Kit

installation

path

(JDK_PATH)

=

/wsdb/v81

/usr

/bldsupp

/java131

/AIX/jdk1.3.1

Diagnostic

error

capture

level

(DIAGLEVEL)

=

3

3

Notify

Level

(NOTIFYLEVEL)

=

3

3

Diagnostic

data

directory

path

(DIAGPATH)

=

Default

database

monitor

switches

Buffer

pool

(DFT_MON_BUFPOOL)

=

OFF

OFF

Lock

(DFT_MON_LOCK)

=

OFF

OFF

Sort

(DFT_MON_SORT)

=

OFF

OFF

Statement

(DFT_MON_STMT)

=

OFF

OFF

Table

(DFT_MON_TABLE)

=

OFF

OFF

Timestamp

(DFT_MON_TIMESTAMP)

=

ON

ON

Unit

of

work

(DFT_MON_UOW)

=

OFF

OFF

Monitor

health

of

instance

and

databases

(HEALTH_MON)

=

ON

ON

SYSADM

group

name

(SYSADM_GROUP)

=

BUILD

SYSCTRL

group

name

(SYSCTRL_GROUP)

=

SYSMAINT

group

name

(SYSMAINT_GROUP)

=

SYSMON

group

name

(SYSMON_GROUP)

=

Client

Userid-Password

Plugin

(CLNT_PW_PLUGIN)

=

Client

Kerberos

Plugin

(CLNT_KRB_PLUGIN)

=

GET

DATABASE

MANAGER

CONFIGURATION

Chapter

13.

DB2

UDB

Commands

for

Administrators

283

Group

Plugin

(GROUP_PLUGIN)

=

GSS

Plugin

for

Local

Authorization

(LOCAL_GSSPLUGIN)

=

Server

Plugin

Mode

(SRV_PLUGIN_MODE)

=

UNFENCED

UNFENCED

Server

List

of

GSS

Plugins

(SRVCON_GSSPLUGIN_LIST)

=

Server

Userid-Password

Plugin

(SRVCON_PW_PLUGIN)

=

Server

Connection

Authentication

(SRVCON_AUTH)

=

NOT_

NOT_

SPECIFIED

SPECIFIED

Database

manager

authentication

(AUTHENTICATION)

=

SERVER

SERVER

Cataloging

allowed

without

authority

(CATALOG_NOAUTH)

=

YES

YES

Trust

all

clients

(TRUST_ALLCLNTS)

=

YES

YES

Trusted

client

authentication

(TRUST_CLNTAUTH)

=

CLIENT

CLIENT

Bypass

federated

authentication

(FED_NOAUTH)

=

NO

NO

Default

database

path

(DFTDBPATH)

=

/home

/home

/db2inst

/db2inst

Database

monitor

heap

size

(4KB)

(MON_HEAP_SZ)

=

90

90

Java

Virtual

Machine

heap

size

(4KB)

(JAVA_HEAP_SZ)

=

512

512

Audit

buffer

size

(4KB)

(AUDIT_BUF_SZ)

=

0

0

Size

of

instance

shared

memory

(4KB)

(INSTANCE_MEMORY)

=

AUTOMATIC

AUTOMATIC

(5386)

(20)

Backup

buffer

default

size

(4KB)

(BACKBUFSZ)

=

1024

1024

Restore

buffer

default

size

(4KB)

(RESTBUFSZ)

=

1024

1024

Sort

heap

threshold

(4KB)

(SHEAPTHRES)

=

20000

20000

Directory

cache

support

(DIR_CACHE)

=

YES

YES

Application

support

layer

heap

size

(4KB)

(ASLHEAPSZ)

=

15

15

Max

requester

I/O

block

size

(bytes)

(RQRIOBLK)

=

32767

32767

Query

heap

size

(4KB)

(QUERY_HEAP_SZ)

=

1000

1000

Workload

impact

by

throttled

utilities(UTIL_IMPACT_LIM)

=

10

10

Priority

of

agents

(AGENTPRI)

=

SYSTEM

SYSTEM

Max

number

of

existing

agents

(MAXAGENTS)

=

200

200

Agent

pool

size

(NUM_POOLAGENTS)

=

100

100

(calculated)

Initial

number

of

agents

in

pool

(NUM_INITAGENTS)

=

0

0

Max

number

of

coordinating

agents

(MAX_COORDAGENTS)

=

200

MAXAGENTS

Max

no.

of

concurrent

coordinating

agents

(MAXCAGENTS)

=

200

MAX_COORDAGENTS

Max

number

of

client

connections

(MAX_CONNECTIONS)

=

200

MAX_COORDAGENTS

Keep

fenced

process

(KEEPFENCED)

=

YES

YES

Number

of

pooled

fenced

processes

(FENCED_POOL)

=

MAX_

MAX_

COORDAGENTS

COORDAGENTS

Initial

number

of

fenced

processes

(NUM_INITFENCED)

=

0

0

Index

re-creation

time

and

redo

index

build

(INDEXREC)

=

RESTART

RESTART

Transaction

manager

database

name

(TM_DATABASE)

=

1ST_CONN

1ST_CONN

Transaction

resync

interval

(sec)

(RESYNC_INTERVAL)

=

180

180

SPM

name

(SPM_NAME)

=

SPM

log

size

(SPM_LOG_FILE_SZ)

=

256

256

SPM

resync

agent

limit

(SPM_MAX_RESYNC)

=

20

20

SPM

log

path

(SPM_LOG_PATH)

=

TCP/IP

Service

name

(SVCENAME)

=

Discovery

mode

(DISCOVER)

=

SEARCH

SEARCH

Discover

server

instance

(DISCOVER_INST)

=

ENABLE

ENABLE

GET

DATABASE

MANAGER

CONFIGURATION

284

Common

Criteria

Certification:

Administration

and

User

Documentation

Maximum

query

degree

of

parallelism

(MAX_QUERYDEGREE)

=

ANY

ANY

Enable

intra-partition

parallelism

(INTRA_PARALLEL)

=

NO

NO

No.

of

int.

communication

buffers(4KB)(FCM_NUM_BUFFERS)

=

0

512

Number

of

FCM

request

blocks

(FCM_NUM_RQB)

=

AUTOMATIC

AUTOMATIC

(0)

(256)

Number

of

FCM

connection

entries

(FCM_NUM_CONNECT)

=

AUTOMATIC

AUTOMATIC

(-1)

(-1)

Number

of

FCM

message

anchors

(FCM_NUM_ANCHORS)

=

AUTOMATIC

AUTOMATIC

(-1)

(-1)

Usage

notes:

If

an

attachment

to

a

remote

instance

or

a

different

local

instance

exists,

the

database

manager

configuration

parameters

for

the

attached

server

are

returned;

otherwise,

the

local

database

manager

configuration

parameters

are

returned.

If

an

error

occurs,

the

information

returned

is

invalid.

If

the

configuration

file

is

invalid,

an

error

message

is

returned.

The

user

must

install

the

database

manager

again

to

recover.

To

set

the

configuration

parameters

to

the

default

values

shipped

with

the

database

manager,

use

the

RESET

DATABASE

MANAGER

CONFIGURATION

command.

Related

tasks:

v

“Changing

node

and

database

configuration

files”

in

the

Administration

Guide:

Implementation

v

“Configuring

DB2

with

configuration

parameters”

on

page

779

Related

reference:

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION”

on

page

384

v

“Configuration

parameters

summary”

in

the

Administration

Guide:

Performance

IMPORT

Inserts

data

from

an

external

file

with

a

supported

file

format

into

a

table,

hierarchy,

or

view.

LOAD

is

a

faster

alternative,

but

the

load

utility

does

not

support

loading

data

at

the

hierarchy

level.

Authorization:

v

IMPORT

using

the

INSERT

option

requires

one

of

the

following:

–

sysadm

–

dbadm

–

CONTROL

privilege

on

each

participating

table

or

view

–

INSERT

and

SELECT

privilege

on

each

participating

table

or

view
v

IMPORT

to

an

existing

table

using

the

INSERT_UPDATE

option,

requires

one

of

the

following:

–

sysadm

–

dbadm

–

CONTROL

privilege

on

the

table

or

view

GET

DATABASE

MANAGER

CONFIGURATION

Chapter

13.

DB2

UDB

Commands

for

Administrators

285

–

INSERT,

SELECT,

UPDATE

and

DELETE

privilege

on

each

participating

table

or

view
v

IMPORT

to

an

existing

table

using

the

REPLACE

or

REPLACE_CREATE

option,

requires

one

of

the

following:

–

sysadm

–

dbadm

–

CONTROL

privilege

on

the

table

or

view

–

INSERT,

SELECT,

and

DELETE

privilege

on

the

table

or

view
v

IMPORT

to

a

new

table

using

the

CREATE

or

REPLACE_CREATE

option,

requires

one

of

the

following:

–

sysadm

–

dbadm

–

CREATETAB

authority

on

the

database

and

USE

privilege

on

the

table

space,

as

well

as

one

of:

-

IMPLICIT_SCHEMA

authority

on

the

database,

if

the

implicit

or

explicit

schema

name

of

the

table

does

not

exist

-

CREATIN

privilege

on

the

schema,

if

the

schema

name

of

the

table

refers

to

an

existing

schema
v

IMPORT

to

a

hierarchy

that

does

not

exist

using

the

CREATE,

or

the

REPLACE_CREATE

option,

requires

one

of

the

following:

–

sysadm

–

dbadm

–

CREATETAB

authority

on

the

database

and

USE

privilege

on

the

table

space

and

one

of:

-

IMPLICIT_SCHEMA

authority

on

the

database,

if

the

schema

name

of

the

table

does

not

exist

-

CREATEIN

privilege

on

the

schema,

if

the

schema

of

the

table

exists

-

CONTROL

privilege

on

every

sub-table

in

the

hierarchy,

if

the

REPLACE_CREATE

option

on

the

entire

hierarchy

is

used
v

IMPORT

to

an

existing

hierarchy

using

the

REPLACE

option

requires

one

of

the

following:

–

sysadm

–

dbadm

–

CONTROL

privilege

on

every

sub-table

in

the

hierarchy

Required

connection:

Database.

If

implicit

connect

is

enabled,

a

connection

to

the

default

database

is

established.

Command

syntax:

��

IMPORT

FROM

filename

OF

filetype

�

,

LOBS

FROM

lob-path

�

MODIFIED

BY

filetype-mod

�

IMPORT

286

Common

Criteria

Certification:

Administration

and

User

Documentation

�

�

�

�

�

,

METHOD

L

(

column-start

column-end

)

,

NULL

INDICATORS

(

null-indicator-list

)

,

N

(

column-name

)

,

P

(

column-position

)

�

�

ALLOW

NO

ACCESS

ALLOW

WRITE

ACCESS

COMMITCOUNT

n

AUTOMATIC

RESTARTCOUNT

n

SKIPCOUNT

ROWCOUNT

n

�

�

WARNINGCOUNT

n

NOTIMEOUT

MESSAGES

message-file

�

�

�

�

INSERT

INTO

table-name

INSERT_UPDATE

,

REPLACE

REPLACE_CREATE

(

insert-column

)

hierarchy

description

CREATE

INTO

table-name

tblspace-specs

,

(

insert-column

)

hierarchy

description

AS

ROOT

TABLE

UNDER

sub-table-name

�

�

DATALINK

SPECIFICATION

datalink-spec

��

hierarchy

description:

ALL

TABLES

sub-table-list

IN

HIERARCHY

STARTING

sub-table-name

traversal-order-list

sub-table-list:

�

�

,

(

sub-table-name

)

,

(

insert-column

)

traversal-order-list:

�

,

(

sub-table-name

)

tblspace-specs:

IN

tablespace-name

INDEX

IN

tablespace-name

LONG

IN

tablespace-name

IMPORT

Chapter

13.

DB2

UDB

Commands

for

Administrators

287

datalink-spec:

�

,

(

)

DL_LINKTYPE

URL

DL_URL_REPLACE_PREFIX

″prefix″

DL_URL_SUFFIX

″suffix″

DL_URL_DEFAULT_PREFIX

″prefix″

Command

parameters:

ALL

TABLES

An

implicit

keyword

for

hierarchy

only.

When

importing

a

hierarchy,

the

default

is

to

import

all

tables

specified

in

the

traversal

order.

ALLOW

NO

ACCESS

Runs

import

in

the

offline

mode.

An

exclusive

(X)

lock

on

the

target

table

is

acquired

before

any

rows

are

inserted.

This

prevents

concurrent

applications

from

accessing

table

data.

This

is

the

default

import

behavior.

ALLOW

WRITE

ACCESS

Runs

import

in

the

online

mode.

An

intent

exclusive

(IX)

lock

on

the

target

table

is

acquired

when

the

first

row

is

inserted.

This

allows

concurrent

readers

and

writers

to

access

table

data.

Online

mode

is

not

compatible

with

the

REPLACE,

CREATE,

or

REPLACE_CREATE

import

options.

Online

mode

is

not

supported

in

conjunction

with

buffered

inserts.

The

import

operation

will

periodically

commit

inserted

data

to

prevent

lock

escalation

to

a

table

lock

and

to

avoid

running

out

of

active

log

space.

These

commits

will

be

performed

even

if

the

COMMITCOUNT

option

was

not

used.

During

each

commit,

import

will

lose

its

IX

table

lock,

and

will

attempt

to

reacquire

it

after

the

commit.

AS

ROOT

TABLE

Creates

one

or

more

sub-tables

as

a

stand-alone

table

hierarchy.

COMMITCOUNT

n/AUTOMATIC

Performs

a

COMMIT

after

every

n

records

are

imported.

When

a

number

n

is

specified,

import

performs

a

COMMIT

after

every

n

records

are

imported.

When

compound

inserts

are

used,

a

user-specified

commit

frequency

of

n

is

rounded

up

to

the

first

integer

multiple

of

the

compound

count

value.

When

AUTOMATIC

is

specified,

import

internally

determines

when

a

commit

needs

to

be

performed.

The

utility

will

commit

for

either

one

of

two

reasons:

v

to

avoid

running

out

of

active

log

space

v

to

avoid

lock

escalation

from

row

level

to

table

level

If

the

ALLOW

WRITE

ACCESS

option

is

specified,

and

the

COMMITCOUNT

option

is

not

specified,

the

import

utility

will

perform

commits

as

if

COMMITCOUNT

AUTOMATIC

had

been

specified.

CREATE

Creates

the

table

definition

and

row

contents

in

the

code

page

of

the

database.

If

the

data

was

exported

from

a

DB2

table,

sub-table,

or

hierarchy,

indexes

are

created.

If

this

option

operates

on

a

hierarchy,

and

data

was

exported

from

DB2,

a

type

hierarchy

will

also

be

created.

This

option

can

only

be

used

with

IXF

files.

Note:

If

the

data

was

exported

from

an

MVS

host

database,

and

it

contains

LONGVAR

fields

whose

lengths,

calculated

on

the

page

size,

are

less

than

254,

CREATE

might

fail

because

the

rows

are

too

long.

See

Using

import

to

recreate

an

exported

table

for

a

list

of

restrictions.

IMPORT

288

Common

Criteria

Certification:

Administration

and

User

Documentation

In

this

case,

the

table

should

be

created

manually,

and

IMPORT

with

INSERT

should

be

invoked,

or,

alternatively,

the

LOAD

command

should

be

used.

DATALINK

SPECIFICATION

For

each

DATALINK

column,

there

can

be

one

column

specification

enclosed

by

parentheses.

Each

column

specification

consists

of

one

or

more

DL_LINKTYPE,

prefix,

and

a

DL_URL_SUFFIX

specification.

The

prefix

specification

can

be

either

DL_URL_REPLACE_PREFIX

or

DL_URL_DEFAULT_PREFIX.

There

can

be

as

many

DATALINK

column

specifications

as

the

number

of

DATALINK

columns

defined

in

the

table.

The

order

of

specifications

follows

the

order

of

DATALINK

columns

found

within

the

insert-column

list,

or

within

the

table

definition

(if

an

insert-column

list

is

not

specified).

DL_LINKTYPE

If

specified,

it

should

match

the

LINKTYPE

of

the

column

definition.

Thus,

DL_LINKTYPE

URL

is

acceptable

if

the

column

definition

specifies

LINKTYPE

URL.

DL_URL_DEFAULT_PREFIX

″prefix″

If

specified,

it

should

act

as

the

default

prefix

for

all

DATALINK

values

within

the

same

column.

In

this

context,

prefix

refers

to

the

″scheme

host

port″

part

of

the

URL

specification.

Examples

of

prefix

are:

"http://server"

"file://server"

"file:"

"http://server:80"

If

no

prefix

is

found

in

a

column’s

data,

and

a

default

prefix

is

specified

with

DL_URL_DEFAULT_PREFIX,

the

default

prefix

is

prefixed

to

the

column

value

(if

not

NULL).

For

example,

if

DL_URL_DEFAULT_PREFIX

specifies

the

default

prefix

"http://toronto":

v

The

column

input

value

″/x/y/z″

is

stored

as

″http://toronto/x/y/z″.

v

The

column

input

value

″http://coyote/a/b/c″

is

stored

as

″http://coyote/a/b/c″.

v

The

column

input

value

NULL

is

stored

as

NULL.

DL_URL_REPLACE_PREFIX

″prefix″

This

clause

is

useful

for

loading

or

importing

data

previously

generated

by

the

export

utility,

when

the

user

wants

to

globally

replace

the

host

name

in

the

data

with

another

host

name.

If

specified,

it

becomes

the

prefix

for

all

non-NULL

column

values.

If

a

column

value

has

a

prefix,

this

will

replace

it.

If

a

column

value

has

no

prefix,

the

prefix

specified

by

DL_URL_REPLACE_PREFIX

is

prefixed

to

the

column

value.

For

example,

if

DL_URL_REPLACE_PREFIX

specifies

the

prefix

"http://toronto":

v

The

column

input

value

″/x/y/z″

is

stored

as

″http://toronto/x/y/z″.

v

The

column

input

value

″http://coyote/a/b/c″

is

stored

as

″http://toronto/a/b/c″.

Note

that

″toronto″

replaces

″coyote″.

v

The

column

input

value

NULL

is

stored

as

NULL.

IMPORT

Chapter

13.

DB2

UDB

Commands

for

Administrators

289

DL_URL_SUFFIX

″suffix″

If

specified,

it

is

appended

to

every

non-NULL

column

value

for

the

column.

It

is,

in

fact,

appended

to

the

″path″

component

of

the

URL

part

of

the

DATALINK

value.

FROM

filename

Specifies

the

file

that

contains

the

data

to

be

imported.

If

the

path

is

omitted,

the

current

working

directory

is

used.

HIERARCHY

Specifies

that

hierarchical

data

is

to

be

imported.

IN

tablespace-name

Identifies

the

table

space

in

which

the

table

will

be

created.

The

table

space

must

exist,

and

must

be

a

REGULAR

table

space.

If

no

other

table

space

is

specified,

all

table

parts

are

stored

in

this

table

space.

If

this

clause

is

not

specified,

the

table

is

created

in

a

table

space

created

by

the

authorization

ID.

If

none

is

found,

the

table

is

placed

into

the

default

table

space

USERSPACE1.

If

USERSPACE1

has

been

dropped,

table

creation

fails.

INDEX

IN

tablespace-name

Identifies

the

table

space

in

which

any

indexes

on

the

table

will

be

created.

This

option

is

allowed

only

when

the

primary

table

space

specified

in

the

IN

clause

is

a

DMS

table

space.

The

specified

table

space

must

exist,

and

must

be

a

REGULAR

or

LARGE

DMS

table

space.

Note:

Specifying

which

table

space

will

contain

an

index

can

only

be

done

when

the

table

is

created.

insert-column

Specifies

the

name

of

a

column

in

the

table

or

the

view

into

which

data

is

to

be

inserted.

INSERT

Adds

the

imported

data

to

the

table

without

changing

the

existing

table

data.

INSERT_UPDATE

Adds

rows

of

imported

data

to

the

target

table,

or

updates

existing

rows

(of

the

target

table)

with

matching

primary

keys.

INTO

table-name

Specifies

the

database

table

into

which

the

data

is

to

be

imported.

This

table

cannot

be

a

system

table,

a

declared

temporary

table

or

a

summary

table.

One

can

use

an

alias

for

INSERT,

INSERT_UPDATE,

or

REPLACE,

except

in

the

case

of

a

down-level

server,

when

the

fully

qualified

or

the

unqualified

table

name

should

be

used.

A

qualified

table

name

is

in

the

form:

schema.tablename.

The

schema

is

the

user

name

under

which

the

table

was

created.

LOBS

FROM

lob-path

Specifies

one

or

more

paths

that

store

LOB

files.

The

names

of

the

LOB

data

files

are

stored

in

the

main

data

file

(ASC,

DEL,

or

IXF),

in

the

column

that

will

be

loaded

into

the

LOB

column.

This

option

is

ignored

if

the

lobsinfile

modifier

is

not

specified.

LONG

IN

tablespace-name

Identifies

the

table

space

in

which

the

values

of

any

long

columns

(LONG

VARCHAR,

LONG

VARGRAPHIC,

LOB

data

types,

or

distinct

types

with

IMPORT

290

Common

Criteria

Certification:

Administration

and

User

Documentation

any

of

these

as

source

types)

will

be

stored.

This

option

is

allowed

only

if

the

primary

table

space

specified

in

the

IN

clause

is

a

DMS

table

space.

The

table

space

must

exist,

and

must

be

a

LARGE

DMS

table

space.

MESSAGES

message-file

Specifies

the

destination

for

warning

and

error

messages

that

occur

during

an

import

operation.

If

the

file

already

exists,

the

import

utility

appends

the

information.

If

the

complete

path

to

the

file

is

not

specified,

the

utility

uses

the

current

directory

and

the

default

drive

as

the

destination.

If

message-file

is

omitted,

the

messages

are

written

to

standard

output.

METHOD

L

Specifies

the

start

and

end

column

numbers

from

which

to

import

data.

A

column

number

is

a

byte

offset

from

the

beginning

of

a

row

of

data.

It

is

numbered

starting

from

1.

Note:

This

method

can

only

be

used

with

ASC

files,

and

is

the

only

valid

option

for

that

file

type.

N

Specifies

the

names

of

the

columns

to

be

imported.

Note:

This

method

can

only

be

used

with

IXF

files.

P

Specifies

the

field

numbers

of

the

input

data

fields

to

be

imported.

Note:

This

method

can

only

be

used

with

IXF

or

DEL

files,

and

is

the

only

valid

option

for

the

DEL

file

type.

MODIFIED

BY

filetype-mod

Specifies

file

type

modifier

options.

See

File

type

modifiers

for

import.

NOTIMEOUT

Specifies

that

the

import

utility

will

not

time

out

while

waiting

for

locks.

This

option

supersedes

the

locktimeout

database

configuration

parameter.

Other

applications

are

not

affected.

NULL

INDICATORS

null-indicator-list

This

option

can

only

be

used

when

the

METHOD

L

parameter

is

specified.

That

is,

the

input

file

is

an

ASC

file.

The

null

indicator

list

is

a

comma-separated

list

of

positive

integers

specifying

the

column

number

of

each

null

indicator

field.

The

column

number

is

the

byte

offset

of

the

null

indicator

field

from

the

beginning

of

a

row

of

data.

There

must

be

one

entry

in

the

null

indicator

list

for

each

data

field

defined

in

the

METHOD

L

parameter.

A

column

number

of

zero

indicates

that

the

corresponding

data

field

always

contains

data.

A

value

of

Y

in

the

NULL

indicator

column

specifies

that

the

column

data

is

NULL.

Any

character

other

than

Y

in

the

NULL

indicator

column

specifies

that

the

column

data

is

not

NULL,

and

that

column

data

specified

by

the

METHOD

L

option

will

be

imported.

The

NULL

indicator

character

can

be

changed

using

the

MODIFIED

BY

option,

with

the

nullindchar

file

type

modifier.

OF

filetype

Specifies

the

format

of

the

data

in

the

input

file:

v

ASC

(non-delimited

ASCII

format)

v

DEL

(delimited

ASCII

format),

which

is

used

by

a

variety

of

database

manager

and

file

manager

programs

v

WSF

(work

sheet

format),

which

is

used

by

programs

such

as:

IMPORT

Chapter

13.

DB2

UDB

Commands

for

Administrators

291

–

Lotus

1-2-3

–

Lotus

Symphony
v

IXF

(integrated

exchange

format,

PC

version),

which

means

it

was

exported

from

the

same

or

another

DB2

table.

An

IXF

file

also

contains

the

table

definition

and

definitions

of

any

existing

indexes,

except

when

columns

are

specified

in

the

SELECT

statement.

REPLACE

Deletes

all

existing

data

from

the

table

by

truncating

the

data

object,

and

inserts

the

imported

data.

The

table

definition

and

the

index

definitions

are

not

changed.

This

option

can

only

be

used

if

the

table

exists.

It

is

not

valid

for

tables

with

DATALINK

columns.

If

this

option

is

used

when

moving

data

between

hierarchies,

only

the

data

for

an

entire

hierarchy,

not

individual

subtables,

can

be

replaced.

REPLACE_CREATE

If

the

table

exists,

deletes

all

existing

data

from

the

table

by

truncating

the

data

object,

and

inserts

the

imported

data

without

changing

the

table

definition

or

the

index

definitions.

If

the

table

does

not

exist,

creates

the

table

and

index

definitions,

as

well

as

the

row

contents,

in

the

code

page

of

the

database.

See

Using

import

to

recreate

an

exported

table

for

a

list

of

restrictions.

This

option

can

only

be

used

with

IXF

files.

It

is

not

valid

for

tables

with

DATALINK

columns.

If

this

option

is

used

when

moving

data

between

hierarchies,

only

the

data

for

an

entire

hierarchy,

not

individual

subtables,

can

be

replaced.

RESTARTCOUNT

n

Specifies

that

an

import

operation

is

to

be

started

at

record

n

+

1.

The

first

n

records

are

skipped.

This

option

is

functionally

equivalent

to

SKIPCOUNT.

RESTARTCOUNT

and

SKIPCOUNT

are

mutually

exclusive.

ROWCOUNT

n

Specifies

the

number

n

of

physical

records

in

the

file

to

be

imported

(inserted

or

updated).

Allows

a

user

to

import

only

n

rows

from

a

file,

starting

from

the

record

determined

by

the

SKIPCOUNT

or

RESTARTCOUNT

options.

If

the

SKIPCOUNT

or

RESTARTCOUNT

options

are

not

specified,

the

first

n

rows

are

imported.

If

SKIPCOUNT

m

or

RESTARTCOUNT

m

is

specified,

rows

m+1

to

m+n

are

imported.

When

compound

inserts

are

used,

user

specified

rowcount

n

is

rounded

up

to

the

first

integer

multiple

of

the

compound

count

value.

SKIPCOUNT

n

Specifies

that

an

import

operation

is

to

be

started

at

record

n

+

1.

The

first

n

records

are

skipped.

This

option

is

functionally

equivalent

to

RESTARTCOUNT.

SKIPCOUNT

and

RESTARTCOUNT

are

mutually

exclusive.

STARTING

sub-table-name

A

keyword

for

hierarchy

only,

requesting

the

default

order,

starting

from

sub-table-name.

For

PC/IXF

files,

the

default

order

is

the

order

stored

in

the

input

file.

The

default

order

is

the

only

valid

order

for

the

PC/IXF

file

format.

sub-table-list

For

typed

tables

with

the

INSERT

or

the

INSERT_UPDATE

option,

a

list

of

sub-table

names

is

used

to

indicate

the

sub-tables

into

which

data

is

to

be

imported.

IMPORT

292

Common

Criteria

Certification:

Administration

and

User

Documentation

traversal-order-list

For

typed

tables

with

the

INSERT,

INSERT_UPDATE,

or

the

REPLACE

option,

a

list

of

sub-table

names

is

used

to

indicate

the

traversal

order

of

the

importing

sub-tables

in

the

hierarchy.

UNDER

sub-table-name

Specifies

a

parent

table

for

creating

one

or

more

sub-tables.

WARNINGCOUNT

n

Stops

the

import

operation

after

n

warnings.

Set

this

parameter

if

no

warnings

are

expected,

but

verification

that

the

correct

file

and

table

are

being

used

is

desired.

If

the

import

file

or

the

target

table

is

specified

incorrectly,

the

import

utility

will

generate

a

warning

for

each

row

that

it

attempts

to

import,

which

will

cause

the

import

to

fail.

If

n

is

zero,

or

this

option

is

not

specified,

the

import

operation

will

continue

regardless

of

the

number

of

warnings

issued.

Examples:

Example

1

The

following

example

shows

how

to

import

information

from

myfile.ixf

to

the

STAFF

table:

db2

import

from

myfile.ixf

of

ixf

messages

msg.txt

insert

into

staff

SQL3150N

The

H

record

in

the

PC/IXF

file

has

product

"DB2

01.00",

date

"19970220",

and

time

"140848".

SQL3153N

The

T

record

in

the

PC/IXF

file

has

name

"myfile",

qualifier

"

",

and

source

"

".

SQL3109N

The

utility

is

beginning

to

load

data

from

file

"myfile".

SQL3110N

The

utility

has

completed

processing.

"58"

rows

were

read

from

the

input

file.

SQL3221W

...Begin

COMMIT

WORK.

Input

Record

Count

=

"58".

SQL3222W

...COMMIT

of

any

database

changes

was

successful.

SQL3149N

"58"

rows

were

processed

from

the

input

file.

"58"

rows

were

successfully

inserted

into

the

table.

"0"

rows

were

rejected.

Example

2

The

following

example

shows

how

to

import

the

table

MOVIETABLE

from

the

input

file

delfile1,

which

has

data

in

the

DEL

format:

db2

import

from

delfile1

of

del

modified

by

dldel|

insert

into

movietable

(actorname,

description,

url_making_of,

url_movie)

datalink

specification

(dl_url_default_prefix

"http://narang"),

(dl_url_replace_prefix

"http://bomdel"

dl_url_suffix

".mpeg")

Notes:

1.

The

table

has

four

columns:

actorname

VARCHAR(n)

description

VARCHAR(m)

url_making_of

DATALINK

(with

LINKTYPE

URL)

url_movie

DATALINK

(with

LINKTYPE

URL)

IMPORT

Chapter

13.

DB2

UDB

Commands

for

Administrators

293

2.

The

DATALINK

data

in

the

input

file

has

the

vertical

bar

(|)

character

as

the

sub-field

delimiter.

3.

If

any

column

value

for

url_making_of

does

not

have

the

prefix

character

sequence,

″http://narang″

is

used.

4.

Each

non-NULL

column

value

for

url_movie

will

get

″http://bomdel″

as

its

prefix.

Existing

values

are

replaced.

5.

Each

non-NULL

column

value

for

url_movie

will

get

″.mpeg″

appended

to

the

path.

For

example,

if

a

column

value

of

url_movie

is

″http://server1/x/y/z″,

it

will

be

stored

as

″http://bomdel/x/y/z.mpeg″;

if

the

value

is

″/x/y/z″,

it

will

be

stored

as

″http://bomdel/x/y/z.mpeg″.

Example

3

(Importing

into

a

Table

with

an

Identity

Column)

TABLE1

has

4

columns:

v

C1

VARCHAR(30)

v

C2

INT

GENERATED

BY

DEFAULT

AS

IDENTITY

v

C3

DECIMAL(7,2)

v

C4

CHAR(1)

TABLE2

is

the

same

as

TABLE1,

except

that

C2

is

a

GENERATED

ALWAYS

identity

column.

Data

records

in

DATAFILE1

(DEL

format):

"Liszt"

"Hummel",,187.43,

H

"Grieg",100,

66.34,

G

"Satie",101,

818.23,

I

Data

records

in

DATAFILE2

(DEL

format):

"Liszt",

74.49,

A

"Hummel",

0.01,

H

"Grieg",

66.34,

G

"Satie",

818.23,

I

The

following

command

generates

identity

values

for

rows

1

and

2,

since

no

identity

values

are

supplied

in

DATAFILE1

for

those

rows.

Rows

3

and

4,

however,

are

assigned

the

user-supplied

identity

values

of

100

and

101,

respectively.

db2

import

from

datafile1.del

of

del

replace

into

table1

To

import

DATAFILE1

into

TABLE1

so

that

identity

values

are

generated

for

all

rows,

issue

one

of

the

following

commands:

db2

import

from

datafile1.del

of

del

method

P(1,

3,

4)

replace

into

table1

(c1,

c3,

c4)

db2

import

from

datafile1.del

of

del

modified

by

identityignore

replace

into

table1

To

import

DATAFILE2

into

TABLE1

so

that

identity

values

are

generated

for

each

row,

issue

one

of

the

following

commands:

db2

import

from

datafile2.del

of

del

replace

into

table1

(c1,

c3,

c4)

db2

import

from

datafile2.del

of

del

modified

by

identitymissing

replace

into

table1

IMPORT

294

Common

Criteria

Certification:

Administration

and

User

Documentation

If

DATAFILE1

is

imported

into

TABLE2

without

using

any

of

the

identity-related

file

type

modifiers,

rows

1

and

2

will

be

inserted,

but

rows

3

and

4

will

be

rejected,

because

they

supply

their

own

non-NULL

values,

and

the

identity

column

is

GENERATED

ALWAYS.

Usage

notes:

Be

sure

to

complete

all

table

operations

and

release

all

locks

before

starting

an

import

operation.

This

can

be

done

by

issuing

a

COMMIT

after

closing

all

cursors

opened

WITH

HOLD,

or

by

issuing

a

ROLLBACK.

The

import

utility

adds

rows

to

the

target

table

using

the

SQL

INSERT

statement.

The

utility

issues

one

INSERT

statement

for

each

row

of

data

in

the

input

file.

If

an

INSERT

statement

fails,

one

of

two

actions

result:

v

If

it

is

likely

that

subsequent

INSERT

statements

can

be

successful,

a

warning

message

is

written

to

the

message

file,

and

processing

continues.

v

If

it

is

likely

that

subsequent

INSERT

statements

will

fail,

and

there

is

potential

for

database

damage,

an

error

message

is

written

to

the

message

file,

and

processing

halts.

The

utility

performs

an

automatic

COMMIT

after

the

old

rows

are

deleted

during

a

REPLACE

or

a

REPLACE_CREATE

operation.

Therefore,

if

the

system

fails,

or

the

application

interrupts

the

database

manager

after

the

table

object

is

truncated,

all

of

the

old

data

is

lost.

Ensure

that

the

old

data

is

no

longer

needed

before

using

these

options.

If

the

log

becomes

full

during

a

CREATE,

REPLACE,

or

REPLACE_CREATE

operation,

the

utility

performs

an

automatic

COMMIT

on

inserted

records.

If

the

system

fails,

or

the

application

interrupts

the

database

manager

after

an

automatic

COMMIT,

a

table

with

partial

data

remains

in

the

database.

Use

the

REPLACE

or

the

REPLACE_CREATE

option

to

rerun

the

whole

import

operation,

or

use

INSERT

with

the

RESTARTCOUNT

parameter

set

to

the

number

of

rows

successfully

imported.

By

default,

automatic

COMMITs

are

not

performed

for

the

INSERT

or

the

INSERT_UPDATE

option.

They

are,

however,

performed

if

the

COMMITCOUNT

parameter

is

not

zero.

If

automatic

COMMITs

are

not

performed,

a

full

log

results

in

a

ROLLBACK.

Offline

import

does

not

perform

automatic

COMMITs

if

any

of

the

following

conditions

is

true:

v

the

target

is

a

view,

not

a

table

v

compound

inserts

are

used

v

buffered

inserts

are

used

By

default,

online

import

performs

automatic

COMMITs

to

free

both

the

active

log

space

and

the

lock

list.

Automatic

COMMITs

are

not

performed

only

if

a

COMMITCOUNT

value

of

zero

is

specified.

Whenever

the

import

utility

performs

a

COMMIT,

two

messages

are

written

to

the

message

file:

one

indicates

the

number

of

records

to

be

committed,

and

the

other

is

written

after

a

successful

COMMIT.

When

restarting

the

import

operation

after

a

failure,

specify

the

number

of

records

to

skip,

as

determined

from

the

last

successful

COMMIT.

IMPORT

Chapter

13.

DB2

UDB

Commands

for

Administrators

295

The

import

utility

accepts

input

data

with

minor

incompatibility

problems

(for

example,

character

data

can

be

imported

using

padding

or

truncation,

and

numeric

data

can

be

imported

with

a

different

numeric

data

type),

but

data

with

major

incompatibility

problems

is

not

accepted.

One

cannot

REPLACE

or

REPLACE_CREATE

an

object

table

if

it

has

any

dependents

other

than

itself,

or

an

object

view

if

its

base

table

has

any

dependents

(including

itself).

To

replace

such

a

table

or

a

view,

do

the

following:

1.

Drop

all

foreign

keys

in

which

the

table

is

a

parent.

2.

Run

the

import

utility.

3.

Alter

the

table

to

recreate

the

foreign

keys.

If

an

error

occurs

while

recreating

the

foreign

keys,

modify

the

data

to

maintain

referential

integrity.

Referential

constraints

and

foreign

key

definitions

are

not

preserved

when

creating

tables

from

PC/IXF

files.

(Primary

key

definitions

are

preserved

if

the

data

was

previously

exported

using

SELECT

*.)

Importing

to

a

remote

database

requires

enough

disk

space

on

the

server

for

a

copy

of

the

input

data

file,

the

output

message

file,

and

potential

growth

in

the

size

of

the

database.

If

an

import

operation

is

run

against

a

remote

database,

and

the

output

message

file

is

very

long

(more

than

60KB),

the

message

file

returned

to

the

user

on

the

client

might

be

missing

messages

from

the

middle

of

the

import

operation.

The

first

30KB

of

message

information

and

the

last

30KB

of

message

information

are

always

retained.

Importing

PC/IXF

files

to

a

remote

database

is

much

faster

if

the

PC/IXF

file

is

on

a

hard

drive

rather

than

on

diskettes.

The

database

table

or

hierarchy

must

exist

before

data

in

the

ASC,

DEL,

or

WSF

file

formats

can

be

imported;

however,

if

the

table

does

not

already

exist,

IMPORT

CREATE

or

IMPORT

REPLACE_CREATE

creates

the

table

when

it

imports

data

from

a

PC/IXF

file.

For

typed

tables,

IMPORT

CREATE

can

create

the

type

hierarchy

and

the

table

hierarchy

as

well.

PC/IXF

import

should

be

used

to

move

data

(including

hierarchical

data)

between

databases.

If

character

data

containing

row

separators

is

exported

to

a

delimited

ASCII

(DEL)

file

and

processed

by

a

text

transfer

program,

fields

containing

the

row

separators

will

shrink

or

expand.

The

file

copying

step

is

not

necessary

if

the

source

and

the

target

databases

are

both

accessible

from

the

same

client.

The

data

in

ASC

and

DEL

files

is

assumed

to

be

in

the

code

page

of

the

client

application

performing

the

import.

PC/IXF

files,

which

allow

for

different

code

pages,

are

recommended

when

importing

data

in

different

code

pages.

If

the

PC/IXF

file

and

the

import

utility

are

in

the

same

code

page,

processing

occurs

as

for

a

regular

application.

If

the

two

differ,

and

the

FORCEIN

option

is

specified,

the

import

utility

assumes

that

data

in

the

PC/IXF

file

has

the

same

code

page

as

the

application

performing

the

import.

This

occurs

even

if

there

is

a

conversion

table

for

the

two

code

pages.

If

the

two

differ,

the

FORCEIN

option

is

not

specified,

and

there

is

a

conversion

table,

all

data

in

the

PC/IXF

file

will

be

converted

from

the

file

code

page

to

the

application

code

page.

If

the

two

differ,

IMPORT

296

Common

Criteria

Certification:

Administration

and

User

Documentation

the

FORCEIN

option

is

not

specified,

and

there

is

no

conversion

table,

the

import

operation

will

fail.

This

applies

only

to

PC/IXF

files

on

DB2

UDB

clients

on

the

AIX

operating

system.

For

table

objects

on

an

8

KB

page

that

are

close

to

the

limit

of

1012

columns,

import

of

PC/IXF

data

files

might

cause

DB2

to

return

an

error,

because

the

maximum

size

of

an

SQL

statement

was

exceeded.

This

situation

can

occur

only

if

the

columns

are

of

type

CHAR,

VARCHAR,

or

CLOB.

The

restriction

does

not

apply

to

import

of

DEL

or

ASC

files.

If

PC/IXF

files

are

being

used

to

create

a

new

table,

an

alternative

is

use

db2look

to

dump

the

DDL

statement

that

created

the

table,

and

then

to

issue

that

statement

through

the

CLP.

DB2

Connect

can

be

used

to

import

data

to

DRDA

servers

such

as

DB2

for

OS/390,

DB2

for

VM

and

VSE,

and

DB2

for

OS/400.

Only

PC/IXF

import

(INSERT

option)

is

supported.

The

RESTARTCOUNT

parameter,

but

not

the

COMMITCOUNT

parameter,

is

also

supported.

When

using

the

CREATE

option

with

typed

tables,

create

every

sub-table

defined

in

the

PC/IXF

file;

sub-table

definitions

cannot

be

altered.

When

using

options

other

than

CREATE

with

typed

tables,

the

traversal

order

list

enables

one

to

specify

the

traverse

order;

therefore,

the

traversal

order

list

must

match

the

one

used

during

the

export

operation.

For

the

PC/IXF

file

format,

one

need

only

specify

the

target

sub-table

name,

and

use

the

traverse

order

stored

in

the

file.

The

import

utility

can

be

used

to

recover

a

table

previously

exported

to

a

PC/IXF

file.

The

table

returns

to

the

state

it

was

in

when

exported.

Data

cannot

be

imported

to

a

system

table,

a

declared

temporary

table,

or

a

summary

table.

Views

cannot

be

created

through

the

import

utility.

On

the

Windows

operating

system:

v

Importing

logically

split

PC/IXF

files

is

not

supported.

v

Importing

bad

format

PC/IXF

or

WSF

files

is

not

supported.

DB2

Data

Links

Manager

considerations:

Before

running

the

DB2

import

utility,

do

the

following:

1.

Copy

the

files

that

will

be

referenced

to

the

appropriate

Data

Links

servers.

The

dlfm_import

utility

can

be

used

to

extract

files

from

an

archive

that

is

generated

by

the

dlfm_export

utility.

2.

Register

the

required

prefix

names

to

the

DB2

Data

Links

Managers.

There

might

be

other

administrative

tasks,

such

as

registering

the

database,

if

required.

3.

Update

the

Data

Links

server

information

in

the

URLs

(of

the

DATALINK

columns)

from

the

exported

data

for

the

SQL

table,

if

required.

(If

the

original

configuration’s

Data

Links

servers

are

the

same

at

the

target

location,

the

Data

Links

server

names

need

not

be

updated.)

4.

Define

the

Data

Links

servers

at

the

target

configuration

in

the

DB2

Data

Links

Manager

configuration

file.

When

the

import

utility

runs

against

the

target

database,

files

referred

to

by

DATALINK

column

data

are

linked

on

the

appropriate

Data

Links

servers.

IMPORT

Chapter

13.

DB2

UDB

Commands

for

Administrators

297

During

the

insert

operation,

DATALINK

column

processing

links

the

files

in

the

appropriate

Data

Links

servers

according

to

the

column

specifications

at

the

target

database.

Related

concepts:

v

“Import

Overview”

in

the

Data

Movement

Utilities

Guide

and

Reference

v

“Privileges,

authorities,

and

authorization

required

to

use

import”

in

the

Data

Movement

Utilities

Guide

and

Reference

Related

tasks:

v

“Using

import”

in

the

Data

Movement

Utilities

Guide

and

Reference

Related

reference:

v

“db2Import

-

Import”

on

page

412

v

“db2look

-

DB2

Statistics

and

DDL

Extraction

Tool

Command”

in

the

Command

Reference

v

“Import

Sessions

-

CLP

Examples”

in

the

Data

Movement

Utilities

Guide

and

Reference

v

“LOAD”

on

page

304

v

“File

type

modifiers

for

import”

in

the

Command

Reference

v

“Delimiter

restrictions

for

moving

data”

in

the

Command

Reference

INSPECT

Inspect

database

for

architectural

integrity,

checking

the

pages

of

the

database

for

page

consistency.

The

inspection

checks

the

structures

of

table

objects

and

structures

of

table

spaces

are

valid.

Scope:

In

a

single-partition

system,

the

scope

is

that

single

partition

only.

In

a

partitioned

database

system,

it

is

the

collection

of

all

logical

partitions

defined

in

db2nodes.cfg.

Authorization:

For

INSPECT

CHECK,

one

of

the

following:

v

sysadm

v

dbadm

v

sysctrl

v

sysmaint

v

CONTROL

privilege

if

single

table.

Required

Connection:

Database

Command

Syntax:

��

INSPECT

CHECK

�

IMPORT

298

Common

Criteria

Certification:

Administration

and

User

Documentation

�

DATABASE

BEGIN

TBSPACEID

n

OBJECTID

n

TABLESPACE

NAME

tablespace-name

TBSPACEID

n

BEGIN

OBJECTID

n

TABLE

NAME

table-name

SCHEMA

schema-name

TBSPACEID

n

OBJECTID

n

�

�

FOR

ERROR

STATE

ALL

LIMIT

ERROR

TO

DEFAULT

LIMIT

ERROR

TO

n

ALL

Level

Clause

�

�

RESULTS

KEEP

filename

On

Database

Partition

Clause

��

Level

Clause:

EXTENTMAP

NORMAL

EXTENTMAP

NONE

LOW

DATA

NORMAL

DATA

NONE

LOW

BLOCKMAP

NORMAL

BLOCKMAP

NONE

LOW

�

�

INDEX

NORMAL

INDEX

NONE

LOW

LONG

NORMAL

LONG

NONE

LOW

LOB

NORMAL

LOB

NONE

LOW

On

Database

Partition

Clause:

ON

Database

Partition

List

Clause

ALL

DBPARTITIONNUMS

EXCEPT

Database

Partition

List

Clause

Database

Partition

List

Clause:

DBPARTITIONNUM

DBPARTITIONNUMS

�

�

�

,

(

db-partition-number1

)

TO

db-partition-number2

Command

Parameters:

CHECK

Specifies

check

processing.

DATABASE

Specifies

whole

database.

INSPECT

Chapter

13.

DB2

UDB

Commands

for

Administrators

299

BEGIN

TBSPACEID

n

Specifies

processing

to

begin

from

table

space

with

given

table

space

ID

number.

BEGIN

TBSPACEID

n

OBJECTID

n

Specifies

processing

to

begin

from

table

with

given

table

space

ID

number

and

object

ID

number.

TABLESPACE

NAME

tablespace-name

Specifies

single

table

space

with

given

table

space

name.

TBSPACEID

n

Specifies

single

table

space

with

given

table

space

ID

number.

BEGIN

OBJECTID

n

Specifies

processing

to

begin

from

table

with

given

object

ID

number.

TABLE

NAME

table-name

Specifies

table

with

given

table

name.

SCHEMA

schema-name

Specifies

schema

name

for

specified

table

name

for

single

table

operation.

TBSPACEID

n

OBJECTID

n

Specifies

table

with

given

table

space

ID

number

and

object

ID

number.

FOR

ERROR

STATE

ALL

For

table

object

with

internal

state

already

indicating

error

state,

the

check

will

just

report

this

status

and

not

scan

through

the

object.

Specifying

this

option

will

have

the

processing

scan

through

the

object

even

if

internal

state

already

lists

error

state.

LIMIT

ERROR

TO

n

Number

of

pages

in

error

for

an

object

to

limit

reporting

for.

When

this

limit

of

the

number

of

pages

in

error

for

an

object

is

reached,

the

processing

will

discontinue

the

check

on

the

rest

of

the

object.

LIMIT

ERROR

TO

DEFAULT

Default

number

of

pages

in

error

for

an

object

to

limit

reporting

for.

This

value

is

the

extent

size

of

the

object.

This

parameter

is

the

default.

LIMIT

ERROR

TO

ALL

No

limit

on

number

of

pages

in

error

reported.

EXTENTMAP

NORMAL

Specifies

processing

level

is

normal

for

extent

map.

Default.

NONE

Specifies

processing

level

is

none

for

extent

map.

LOW

Specifies

processing

level

is

low

for

extent

map.

DATA

NORMAL

Specifies

processing

level

is

normal

for

data

object.

Default.

INSPECT

300

Common

Criteria

Certification:

Administration

and

User

Documentation

NONE

Specifies

processing

level

is

none

for

data

object.

LOW

Specifies

processing

level

is

low

for

data

object.

BLOCKMAP

NORMAL

Specifies

processing

level

is

normal

for

block

map

object.

Default.

NONE

Specifies

processing

level

is

none

for

block

map

object.

LOW

Specifies

processing

level

is

low

for

block

map

object.

INDEX

NORMAL

Specifies

processing

level

is

normal

for

index

object.

Default.

NONE

Specifies

processing

level

is

none

for

index

object.

LOW

Specifies

processing

level

is

low

for

index

object.

LONG

NORMAL

Specifies

processing

level

is

normal

for

long

object.

Default.

NONE

Specifies

processing

level

is

none

for

long

object.

LOW

Specifies

processing

level

is

low

for

long

object.

LOB

NORMAL

Specifies

processing

level

is

normal

for

LOB

object.

Default.

NONE

Specifies

processing

level

is

none

for

LOB

object.

LOW

Specifies

processing

level

is

low

for

LOB

object.

RESULTS

Specifies

the

result

output

file.

The

file

will

be

written

out

to

the

diagnostic

data

directory

path.

If

there

is

no

error

found

by

the

check

processing,

this

result

output

file

will

be

erased

at

the

end

of

the

INSPECT

operation.

If

there

are

errors

found

by

the

check

processing,

this

result

output

file

will

not

be

erased

at

the

end

of

the

INSPECT

operation.

KEEP

Specifies

to

always

keep

the

result

output

file.

file-name

Specifies

the

name

for

the

result

output

file.

ALL

DBPARTITIONNUMS

Specifies

that

operation

is

to

be

done

on

all

database

partitions

specified

in

the

db2nodes.cfg

file.

This

is

the

default

if

a

node

clause

is

not

specified.

EXCEPT

Specifies

that

operation

is

to

be

done

on

all

database

partitions

specified

in

the

db2nodes.cfg

file,

except

those

specified

in

the

node

list.

ON

DBPARTITIONNUM

/

ON

DBPARTITIONNUMS

Perform

operation

on

a

set

of

database

partitions.

INSPECT

Chapter

13.

DB2

UDB

Commands

for

Administrators

301

db-partition-number1

Specifies

a

database

partition

number

in

the

database

partition

list.

db-partition-number2

Specifies

the

second

database

partition

number,

so

that

all

database

partitions

from

db-partition-number1

up

to

and

including

db-partition-number2

are

included

in

the

database

partition

list.

Usage

Notes:

1.

For

check

operations

on

table

objects,

the

level

of

processing

can

be

specified

for

the

objects.

The

default

is

NORMAL

level,

specifying

NONE

for

an

object

excludes

it.

Specifying

LOW

will

do

subset

of

checks

that

are

done

for

NORMAL.

2.

The

check

database

can

be

specified

to

start

from

a

specific

table

space

or

from

a

specific

table

by

specifying

the

ID

value

to

identify

the

table

space

or

the

table.

3.

The

check

table

space

can

be

specified

to

start

from

a

specific

table

by

specifying

the

ID

value

to

identify

the

table.

4.

The

processing

of

table

spaces

will

affect

only

the

objects

that

reside

in

the

table

space.

5.

The

online

inspect

processing

will

access

database

objects

using

isolation

level

uncommitted

read.

COMMIT

processing

will

be

done

during

INSPECT

processing.

It

is

advisable

to

end

the

unit

of

work

by

issuing

a

COMMIT

or

ROLLBACK

before

invoking

INSPECT.

6.

The

online

inspect

check

processing

will

write

out

unformatted

inspection

data

results

to

the

results

file

specified.

The

file

will

be

written

out

to

the

diagnostic

data

directory

path.

If

there

is

no

error

found

by

the

check

processing,

this

result

output

file

will

be

erased

at

the

end

of

INSPECT

operation.

If

there

are

errors

found

by

the

check

processing,

this

result

output

file

will

not

be

erased

at

the

end

of

INSPECT

operation.

After

check

processing

completes,

to

see

inspection

details,

the

inspection

result

data

will

require

to

be

formatted

out

with

the

utility

db2inspf.

The

results

file

will

have

file

extension

of

the

database

partition

number.

In

a

partitioned

database

environment,

each

database

partition

will

generate

its

own

results

output

file

with

extension

corresponding

to

its

database

partition

number

The

output

location

for

the

results

output

file

will

be

the

database

manager

diagnostic

data

directory

path.

If

the

name

of

a

file

that

already

exists

is

specified,

the

operation

will

not

be

processed,

the

file

will

have

to

be

removed

before

that

file

name

can

be

specified.

LIST

APPLICATIONS

Displays

to

standard

output

the

application

program

name,

authorization

ID

(user

name),

application

handle,

application

ID,

and

database

name

of

all

active

database

applications.

This

command

can

also

optionally

display

an

application’s

sequence

number,

status,

status

change

time,

and

database

path.

Scope:

This

command

only

returns

information

for

the

database

partition

on

which

it

is

issued.

Authorization:

One

of

the

following:

INSPECT

302

Common

Criteria

Certification:

Administration

and

User

Documentation

v

sysadm

v

sysctrl

v

sysmaint

v

sysmon

Required

connection:

Instance.

To

list

applications

for

a

remote

instance,

it

is

necessary

to

first

attach

to

that

instance.

Command

syntax:

��

LIST

APPLICATIONS

FOR

DATABASE

database-alias

DB

�

�

AT

DBPARTITIONNUM

db-partition-number

GLOBAL

SHOW

DETAIL

��

Command

parameters:

FOR

DATABASE

database-alias

Information

for

each

application

that

is

connected

to

the

specified

database

is

to

be

displayed.

Database

name

information

is

not

displayed.

If

this

option

is

not

specified,

the

command

displays

the

information

for

each

application

that

is

currently

connected

to

any

database

at

the

database

partition

to

which

the

user

is

currently

attached.

The

default

application

information

is

comprised

of

the

following:

v

Authorization

ID

v

Application

program

name

v

Application

handle

v

Application

ID

v

Database

name.

AT

DBPARTITIONNUM

db-partition-number

Specifies

the

database

partition

for

which

the

status

of

the

monitor

switches

is

to

be

displayed.

GLOBAL

Returns

an

aggregate

result

for

all

database

partitions

in

a

partitioned

database

system.

SHOW

DETAIL

Output

will

include

the

following

additional

information:

v

Sequence

#

v

Application

status

v

Status

change

time

v

Database

path.

Note:

If

this

option

is

specified,

it

is

recommended

that

the

output

be

redirected

to

a

file,

and

that

the

report

be

viewed

with

the

help

of

an

editor.

The

output

lines

might

wrap

around

when

displayed

on

the

screen.

Examples:

LIST

APPLICATIONS

Chapter

13.

DB2

UDB

Commands

for

Administrators

303

The

following

is

sample

output

from

LIST

APPLICATIONS:

Usage

notes:

The

database

administrator

can

use

the

output

from

this

command

as

an

aid

to

problem

determination.

In

addition,

this

information

is

required

if

the

database

administrator

wants

to

use

the

GET

SNAPSHOT

command

or

the

FORCE

APPLICATION

command

in

an

application.

To

list

applications

at

a

remote

instance

(or

a

different

local

instance),

it

is

necessary

to

first

attach

to

that

instance.

If

FOR

DATABASE

is

specified

when

an

attachment

exists,

and

the

database

resides

at

an

instance

which

differs

from

the

current

attachment,

the

command

will

fail.

Compatibilities:

For

compatibility

with

versions

earlier

than

Version

8:

v

The

keyword

NODE

can

be

substituted

for

DBPARTITIONNUM.

Related

reference:

v

“GET

SNAPSHOT

Command”

in

the

Command

Reference

v

“FORCE

APPLICATION

Command”

in

the

Command

Reference

LOAD

Loads

data

into

a

DB2

table.

Data

residing

on

the

server

can

be

in

the

form

of

a

file,

tape,

or

named

pipe.

Data

residing

on

a

remotely

connected

client

can

be

in

the

form

of

a

fully

qualified

file

or

named

pipe.

Data

can

also

be

loaded

from

a

user-defined

cursor.

Restrictions:

The

load

utility

does

not

support

loading

data

at

the

hierarchy

level.

The

load

utility

is

not

compatible

with

range-clustered

tables.

Scope:

This

command

can

be

issued

against

multiple

database

partitions

in

a

single

request.

Authorization:

One

of

the

following:

v

sysadm

v

dbadm

v

load

authority

on

the

database

and

Auth

Id

Application

Appl.

Application

Id

DB

#

of

Name

Handle

Name

Agents

smith

db2bp_32

12

*LOCAL.smith.970220191502

TEST

1

smith

db2bp_32

11

*LOCAL.smith.970220191453

SAMPLE

1

LIST

APPLICATIONS

304

Common

Criteria

Certification:

Administration

and

User

Documentation

–

INSERT

privilege

on

the

table

when

the

load

utility

is

invoked

in

INSERT

mode,

TERMINATE

mode

(to

terminate

a

previous

load

insert

operation),

or

RESTART

mode

(to

restart

a

previous

load

insert

operation)

–

INSERT

and

DELETE

privilege

on

the

table

when

the

load

utility

is

invoked

in

REPLACE

mode,

TERMINATE

mode

(to

terminate

a

previous

load

replace

operation),

or

RESTART

mode

(to

restart

a

previous

load

replace

operation)

–

INSERT

privilege

on

the

exception

table,

if

such

a

table

is

used

as

part

of

the

load

operation.

Since

all

load

processes

(and

all

DB2

server

processes,

in

general)

are

owned

by

the

instance

owner,

and

all

of

these

processes

use

the

identification

of

the

instance

owner

to

access

needed

files,

the

instance

owner

must

have

read

access

to

input

data

files.

These

input

data

files

must

be

readable

by

the

instance

owner,

regardless

of

who

invokes

the

command.

Required

connection:

Database.

If

implicit

connect

is

enabled,

a

connection

to

the

default

database

is

established.

Instance.

An

explicit

attachment

is

not

required.

If

a

connection

to

the

database

has

been

established,

an

implicit

attachment

to

the

local

instance

is

attempted.

Command

syntax:

��

LOAD

CLIENT

FROM

�

,

filename

pipename

device

cursorname

OF

filetype

�

,

LOBS

FROM

lob-path

�

�

�

MODIFIED

BY

filetype-mod

�

�

�

�

�

�

,

METHOD

L

(

column-start

column-end

)

,

NULL

INDICATORS

(

null-indicator-list

)

,

N

(

column-name

)

,

P

(

column-position

)

�

�

SAVECOUNT

n

ROWCOUNT

n

WARNINGCOUNT

n

MESSAGES

message-file

�

�

TEMPFILES

PATH

temp-pathname

INSERT

REPLACE

RESTART

TERMINATE

�

INTO

table-name

,

(

insert-column

)

�

�

DATALINK

SPECIFICATION

datalink-spec

FOR

EXCEPTION

table-name

STATISTICS

USE

PROFILE

NO

�

LOAD

Chapter

13.

DB2

UDB

Commands

for

Administrators

305

�

�

NO

COPY

YES

USE

TSM

OPEN

num-sess

SESSIONS

,

TO

device/directory

LOAD

lib-name

OPEN

num-sess

SESSIONS

NONRECOVERABLE

WITHOUT

PROMPTING

�

�

DATA

BUFFER

buffer-size

SORT

BUFFER

buffer-size

CPU_PARALLELISM

n

DISK_PARALLELISM

n

�

�

INDEXING

MODE

AUTOSELECT

REBUILD

INCREMENTAL

DEFERRED

ALLOW

NO

ACCESS

ALLOW

READ

ACCESS

USE

tablespace-name

�

�

CHECK

PENDING

CASCADE

IMMEDIATE

DEFERRED

LOCK

WITH

FORCE

�

�

�

PARTITIONED

DB

CONFIG

partitioned-db-option

��

datalink-spec:

�

,

(

)

DL_LINKTYPE

URL

DL_URL_REPLACE_PREFIX

″prefix″

DL_URL_SUFFIX

″suffix″

DL_URL_DEFAULT_PREFIX

″prefix″

Command

parameters:

ALLOW

NO

ACCESS

Load

will

lock

the

target

table

for

exclusive

access

during

the

load.

The

table

state

will

be

set

to

LOAD

IN

PROGRESS

during

the

load.

ALLOW

NO

ACCESS

is

the

default

behavior.

It

is

the

only

valid

option

for

LOAD

REPLACE.

When

there

are

constraints

on

the

table,

the

table

state

will

be

set

to

CHECK

PENDING

as

well

as

LOAD

IN

PROGRESS.

The

SET

INTEGRITY

statement

must

be

used

to

take

the

table

out

of

CHECK

PENDING.

ALLOW

READ

ACCESS

Load

will

lock

the

target

table

in

a

share

mode.

The

table

state

will

be

set

to

both

LOAD

IN

PROGRESS

and

READ

ACCESS.

Readers

can

access

the

non-delta

portion

of

the

data

while

the

table

is

being

load.

In

other

words,

data

that

existed

before

the

start

of

the

load

will

be

accessible

by

readers

to

the

table,

data

that

is

being

loaded

is

not

available

until

the

load

is

complete.

LOAD

TERMINATE

or

LOAD

RESTART

of

an

ALLOW

READ

ACCESS

load

can

use

this

option;

LOAD

TERMINATE

or

LOAD

RESTART

of

an

ALLOW

NO

ACCESS

load

cannot

use

this

option.

Furthermore,

this

option

is

not

valid

if

the

indexes

on

the

target

table

are

marked

as

requiring

a

rebuild.

When

there

are

constraints

on

the

table,

the

table

state

will

be

set

to

CHECK

PENDING

as

well

as

LOAD

IN

PROGRESS,

and

READ

ACCESS.

At

the

end

of

the

load

the

table

state

LOAD

IN

PROGRESS

state

will

be

LOAD

306

Common

Criteria

Certification:

Administration

and

User

Documentation

removed

but

the

table

states

CHECK

PENDING

and

READ

ACCESS

will

remain.

The

SET

INTEGRITY

statement

must

be

used

to

take

the

table

out

of

CHECK

PENDING.

While

the

table

is

in

CHECK

PENDING

and

READ

ACCESS,

the

non-delta

portion

of

the

data

is

still

accessible

to

readers,

the

new

(delta)

portion

of

the

data

will

remain

inaccessible

until

the

SET

INTEGRITY

statement

has

completed.

A

user

can

perform

multiple

loads

on

the

same

table

without

issuing

a

SET

INTEGRITY

statement.

Only

the

original

(checked)

data

will

remain

visible,

however,

until

the

SET

INTEGRITY

statement

is

issued.

ALLOW

READ

ACCESS

also

supports

the

following

modifiers:

USE

tablespace-name

If

the

indexes

are

being

rebuilt,

a

shadow

copy

of

the

index

is

built

in

table

space

tablespace-name

and

copied

over

to

the

original

table

space

at

the

end

of

the

load

during

an

INDEX

COPY

PHASE.

Only

system

temporary

table

spaces

can

be

used

with

this

option.

If

not

specified

then

the

shadow

index

will

be

created

in

the

same

table

space

as

the

index

object.

If

the

shadow

copy

is

created

in

the

same

table

space

as

the

index

object,

the

copy

of

the

shadow

index

object

over

the

old

index

object

is

instantaneous.

If

the

shadow

copy

is

in

a

different

table

space

from

the

index

object

a

physical

copy

is

performed.

This

could

involve

considerable

I/O

and

time.

The

copy

happens

while

the

table

is

offline

at

the

end

of

a

load

during

the

INDEX

COPY

PHASE.

Without

this

option

the

shadow

index

is

built

in

the

same

table

space

as

the

original.

Since

both

the

original

index

and

shadow

index

by

default

reside

in

the

same

table

space

simultaneously,

there

might

be

insufficient

space

to

hold

both

indexes

within

one

table

space.

Using

this

option

ensures

that

you

retain

enough

table

space

for

the

indexes.

This

option

is

ignored

if

the

user

does

not

specify

INDEXING

MODE

REBUILD

or

INDEXING

MODE

AUTOSELECT.

This

option

will

also

be

ignored

if

INDEXING

MODE

AUTOSELECT

is

chosen

and

load

chooses

to

incrementally

update

the

index.

CHECK

PENDING

CASCADE

If

LOAD

puts

the

table

into

a

check

pending

state,

the

CHECK

PENDING

CASCADE

option

allows

the

user

to

specify

whether

or

not

the

check

pending

state

of

the

loaded

table

is

immediately

cascaded

to

all

descendents

(including

descendent

foreign

key

tables,

descendent

immediate

materialized

query

tables

and

descendent

immediate

staging

tables).

IMMEDIATE

Indicates

that

the

check

pending

state

(read

or

no

access

mode)

for

foreign

key

constraints

is

immediately

extended

to

all

descendent

foreign

key

tables.

If

the

table

has

descendent

immediate

materialized

query

tables

or

descendent

immediate

staging

tables,

the

check

pending

state

is

extended

immediately

to

the

materialized

query

tables

and

the

staging

tables.

Note

that

for

a

LOAD

INSERT

operation,

the

check

pending

state

is

not

extended

to

descendent

foreign

key

tables

even

if

the

IMMEDIATE

option

is

specified.

When

the

loaded

table

is

later

checked

for

constraint

violations

(using

the

IMMEDIATE

CHECKED

option

of

the

SET

INTEGRITY

LOAD

Chapter

13.

DB2

UDB

Commands

for

Administrators

307

statement),

descendent

foreign

key

tables

that

were

placed

in

check

pending

read

state

will

be

put

into

check

pending

no

access

state.

DEFERRED

Indicates

that

only

the

loaded

table

will

be

placed

in

the

check

pending

state

(read

or

no

access

mode).

The

states

of

the

descendent

foreign

key

tables,

descendent

immediate

materialized

query

tables

and

descendent

immediate

staging

tables

will

remain

unchanged.

Descendent

foreign

key

tables

might

later

be

implicitly

placed

in

the

check

pending

no

access

state

when

their

parent

tables

are

checked

for

constraint

violations

(using

the

IMMEDIATE

CHECKED

option

of

the

SET

INTEGRITY

statement).

Descendent

immediate

materialized

query

tables

and

descendent

immediate

staging

tables

will

be

implicitly

placed

in

the

check

pending

no

access

state

when

one

of

its

underlying

tables

is

checked

for

integrity

violations.

A

warning

(SQLSTATE

01586)

will

be

issued

to

indicate

that

dependent

tables

have

been

placed

in

the

check

pending

state.

See

the

Notes

section

of

the

SET

INTEGRITY

statement

in

the

SQL

Reference

for

when

these

descendent

tables

will

be

put

into

the

check

pending

state.

If

the

CHECK

PENDING

CASCADE

option

is

not

specified:

v

Only

the

loaded

table

will

be

placed

in

the

check

pending

state.

The

state

of

descendent

foreign

key

tables,

descendent

immediate

materialized

query

tables

and

descendent

immediate

staging

tables

will

remain

unchanged,

and

can

later

be

implicitly

put

into

the

check

pending

state

when

the

loaded

table

is

checked

for

constraint

violations.

If

LOAD

does

not

put

the

target

table

into

check

pending

state,

the

CHECK

PENDING

CASCADE

option

is

ignored.

CLIENT

Specifies

that

the

data

to

be

loaded

resides

on

a

remotely

connected

client.

This

option

is

ignored

if

the

load

operation

is

not

being

invoked

from

a

remote

client.

This

option

is

not

supported

in

conjunction

with

the

CURSOR

filetype.

Notes:

1.

The

dumpfile

and

lobsinfile

modifiers

refer

to

files

on

the

server

even

when

the

CLIENT

keyword

is

specified.

2.

Code

page

conversion

is

not

performed

during

a

remote

load

operation.

If

the

code

page

of

the

data

is

different

from

that

of

the

server,

the

data

code

page

should

be

specified

using

the

codepage

modifier.

In

the

following

example,

a

data

file

(/u/user/data.del)

residing

on

a

remotely

connected

client

is

to

be

loaded

into

MYTABLE

on

the

server

database:

db2

load

client

from

/u/user/data.del

of

del

modified

by

codepage=850

insert

into

mytable

COPY

NO

Specifies

that

the

table

space

in

which

the

table

resides

will

be

placed

in

backup

pending

state

if

forward

recovery

is

enabled

(that

is,

logretain

or

userexit

is

on).

The

COPY

NO

option

will

also

put

the

table

space

state

into

the

Load

in

Progress

table

space

state.

This

is

a

transient

state

that

will

disappear

when

the

load

completes

or

aborts.

The

data

in

any

table

in

the

LOAD

308

Common

Criteria

Certification:

Administration

and

User

Documentation

table

space

cannot

be

updated

or

deleted

until

a

table

space

backup

or

a

full

database

backup

is

made.

However,

it

is

possible

to

access

the

data

in

any

table

by

using

the

SELECT

statement.

LOAD

with

COPY

NO

on

a

recoverable

database

leaves

the

table

spaces

in

a

backup

pending

state.

For

example,

performing

a

LOAD

with

COPY

NO

and

INDEXING

MODE

DEFERRED

will

leave

indexes

needing

a

refresh.

Certain

queries

on

the

table

might

require

an

index

scan

and

will

not

succeed

until

the

indexes

are

refreshed.

The

index

cannot

be

refreshed

if

it

resides

in

a

table

space

which

is

in

the

backup

pending

state.

In

that

case,

access

to

the

table

will

not

be

allowed

until

a

backup

is

taken.

Note:

Index

refresh

is

done

automatically

by

the

database

when

the

index

is

accessed

by

a

query.

COPY

YES

Specifies

that

a

copy

of

the

loaded

data

will

be

saved.

This

option

is

invalid

if

forward

recovery

is

disabled

(both

logretain

and

userexit

are

off).

The

option

is

not

supported

for

tables

with

DATALINK

columns.

USE

TSM

Specifies

that

the

copy

will

be

stored

using

Tivoli

Storage

Manager

(TSM).

OPEN

num-sess

SESSIONS

The

number

of

I/O

sessions

to

be

used

with

TSM

or

the

vendor

product.

The

default

value

is

1.

TO

device/directory

Specifies

the

device

or

directory

on

which

the

copy

image

will

be

created.

LOAD

lib-name

The

name

of

the

shared

library

(DLL

on

Windows

operating

systems)

containing

the

vendor

backup

and

restore

I/O

functions

to

be

used.

It

can

contain

the

full

path.

If

the

full

path

is

not

given,

it

will

default

to

the

path

where

the

user

exit

programs

reside.

CPU_PARALLELISM

n

Specifies

the

number

of

processes

or

threads

that

the

load

utility

will

spawn

for

parsing,

converting,

and

formatting

records

when

building

table

objects.

This

parameter

is

designed

to

exploit

intra-partition

parallelism.

It

is

particularly

useful

when

loading

presorted

data,

because

record

order

in

the

source

data

is

preserved.

If

the

value

of

this

parameter

is

zero,

or

has

not

been

specified,

the

load

utility

uses

an

intelligent

default

value

(usually

based

on

the

number

of

CPUs

available)

at

run

time.

Notes:

1.

If

this

parameter

is

used

with

tables

containing

either

LOB

or

LONG

VARCHAR

fields,

its

value

becomes

one,

regardless

of

the

number

of

system

CPUs

or

the

value

specified

by

the

user.

2.

Specifying

a

small

value

for

the

SAVECOUNT

parameter

causes

the

loader

to

perform

many

more

I/O

operations

to

flush

both

data

and

table

metadata.

When

CPU_PARALLELISM

is

greater

than

one,

the

flushing

operations

are

asynchronous,

permitting

the

loader

to

exploit

the

CPU.

When

CPU_PARALLELISM

is

set

to

one,

the

loader

waits

on

I/O

during

consistency

points.

A

load

operation

with

CPU_PARALLELISM

set

to

two,

and

SAVECOUNT

set

to

10

000,

LOAD

Chapter

13.

DB2

UDB

Commands

for

Administrators

309

completes

faster

than

the

same

operation

with

CPU_PARALLELISM

set

to

one,

even

though

there

is

only

one

CPU.

DATA

BUFFER

buffer-size

Specifies

the

number

of

4KB

pages

(regardless

of

the

degree

of

parallelism)

to

use

as

buffered

space

for

transferring

data

within

the

utility.

If

the

value

specified

is

less

than

the

algorithmic

minimum,

the

minimum

required

resource

is

used,

and

no

warning

is

returned.

This

memory

is

allocated

directly

from

the

utility

heap,

whose

size

can

be

modified

through

the

util_heap_sz

database

configuration

parameter.

If

a

value

is

not

specified,

an

intelligent

default

is

calculated

by

the

utility

at

run

time.

The

default

is

based

on

a

percentage

of

the

free

space

available

in

the

utility

heap

at

the

instantiation

time

of

the

loader,

as

well

as

some

characteristics

of

the

table.

DATALINK

SPECIFICATION

For

each

DATALINK

column,

there

can

be

one

column

specification

enclosed

by

parentheses.

Each

column

specification

consists

of

one

or

more

DL_LINKTYPE,

prefix,

and

a

DL_URL_SUFFIX

specification.

The

prefix

specification

can

be

either

DL_URL_REPLACE_PREFIX

or

DL_URL_DEFAULT_PREFIX.

There

can

be

as

many

DATALINK

column

specifications

as

the

number

of

DATALINK

columns

defined

in

the

table.

The

order

of

specifications

follows

the

order

of

DATALINK

columns

found

within

the

insert-column

list,

or

within

the

table

definition

(if

an

insert-column

list

is

not

specified).

DISK_PARALLELISM

n

Specifies

the

number

of

processes

or

threads

that

the

load

utility

will

spawn

for

writing

data

to

the

table

space

containers.

If

a

value

is

not

specified,

the

utility

selects

an

intelligent

default

based

on

the

number

of

table

space

containers

and

the

characteristics

of

the

table.

DL_LINKTYPE

If

specified,

it

should

match

the

LINKTYPE

of

the

column

definition.

Thus,

DL_LINKTYPE

URL

is

acceptable

if

the

column

definition

specifies

LINKTYPE

URL.

DL_URL_DEFAULT_PREFIX

″prefix″

If

specified,

it

should

act

as

the

default

prefix

for

all

DATALINK

values

within

the

same

column.

In

this

context,

prefix

refers

to

the

″scheme

host

port″

part

of

the

URL

specification.

Examples

of

prefix

are:

"http://server"

"file://server"

"file:"

"http://server:80"

If

no

prefix

is

found

in

the

column

data,

and

a

default

prefix

is

specified

with

DL_URL_DEFAULT_PREFIX,

the

default

prefix

is

prefixed

to

the

column

value

(if

not

NULL).

For

example,

if

DL_URL_DEFAULT_PREFIX

specifies

the

default

prefix

"http://toronto":

v

The

column

input

value

″/x/y/z″

is

stored

as

″http://toronto/x/y/z″.

v

The

column

input

value

″http://coyote/a/b/c″

is

stored

as

″http://coyote/a/b/c″.

LOAD

310

Common

Criteria

Certification:

Administration

and

User

Documentation

v

The

column

input

value

NULL

is

stored

as

NULL.

DL_URL_REPLACE_PREFIX

″prefix″

This

clause

is

useful

when

loading

or

importing

data

previously

generated

by

the

export

utility,

if

the

user

wants

to

globally

replace

the

host

name

in

the

data

with

another

host

name.

If

specified,

it

becomes

the

prefix

for

all

non-NULL

column

values.

If

a

column

value

has

a

prefix,

this

will

replace

it.

If

a

column

value

has

no

prefix,

the

prefix

specified

by

DL_URL_REPLACE_PREFIX

is

prefixed

to

the

column

value.

For

example,

if

DL_URL_REPLACE_PREFIX

specifies

the

prefix

"http://toronto":

v

The

column

input

value

″/x/y/z″

is

stored

as

″http://toronto/x/y/z″.

v

The

column

input

value

″http://coyote/a/b/c″

is

stored

as

″http://toronto/a/b/c″.

Note

that

″toronto″

replaces

″coyote″.

v

The

column

input

value

NULL

is

stored

as

NULL.

DL_URL_SUFFIX

″suffix″

If

specified,

it

is

appended

to

every

non-NULL

column

value

for

the

column.

It

is,

in

fact,

appended

to

the

″path″

component

of

the

data

location

part

of

the

DATALINK

value.

FOR

EXCEPTION

table-name

Specifies

the

exception

table

into

which

rows

in

error

will

be

copied.

Any

row

that

is

in

violation

of

a

unique

index

or

a

primary

key

index

is

copied.

DATALINK

exceptions

are

also

captured

in

the

exception

table.

If

an

unqualified

table

name

is

specified,

the

table

will

be

qualified

with

the

CURRENT

SCHEMA.

Information

that

is

written

to

the

exception

table

is

not

written

to

the

dump

file.

In

a

partitioned

database

environment,

an

exception

table

must

be

defined

for

those

partitions

on

which

the

loading

table

is

defined.

The

dump

file,

on

the

other

hand,

contains

rows

that

cannot

be

loaded

because

they

are

invalid

or

have

syntax

errors.

FROM

filename/pipename/device/cursorname

Specifies

the

file,

pipe,

device,

or

cursor

referring

to

an

SQL

statement

that

contains

the

data

being

loaded.

If

the

input

source

is

a

file,

pipe,

or

device,

it

must

reside

on

the

database

partition

where

the

database

resides,

unless

the

CLIENT

option

is

specified.

If

several

names

are

specified,

they

will

be

processed

in

sequence.

If

the

last

item

specified

is

a

tape

device,

the

user

is

prompted

for

another

tape.

Valid

response

options

are:

c

Continue.

Continue

using

the

device

that

generated

the

warning

message

(for

example,

when

a

new

tape

has

been

mounted).

d

Device

terminate.

Stop

using

the

device

that

generated

the

warning

message

(for

example,

when

there

are

no

more

tapes).

t

Terminate.

Terminate

all

devices.

Notes:

1.

It

is

recommended

that

the

fully

qualified

file

name

be

used.

If

the

server

is

remote,

the

fully

qualified

file

name

must

be

used.

If

the

database

resides

on

the

same

database

partition

as

the

caller,

relative

paths

can

be

used.

2.

Loading

data

from

multiple

IXF

files

is

supported

if

the

files

are

physically

separate,

but

logically

one

file.

It

is

not

supported

if

the

files

are

both

logically

and

physically

separate.

(Multiple

physical

files

LOAD

Chapter

13.

DB2

UDB

Commands

for

Administrators

311

would

be

considered

logically

one

if

they

were

all

created

with

one

invocation

of

the

EXPORT

command.)

3.

If

loading

data

that

resides

on

a

client

machine,

the

data

must

be

in

the

form

of

either

a

fully

qualified

file

or

a

named

pipe.

INDEXING

MODE

Specifies

whether

the

load

utility

is

to

rebuild

indexes

or

to

extend

them

incrementally.

Valid

values

are:

AUTOSELECT

The

load

utility

will

automatically

decide

between

REBUILD

or

INCREMENTAL

mode.

REBUILD

All

indexes

will

be

rebuilt.

The

utility

must

have

sufficient

resources

to

sort

all

index

key

parts

for

both

old

and

appended

table

data.

INCREMENTAL

Indexes

will

be

extended

with

new

data.

This

approach

consumes

index

free

space.

It

only

requires

enough

sort

space

to

append

index

keys

for

the

inserted

records.

This

method

is

only

supported

in

cases

where

the

index

object

is

valid

and

accessible

at

the

start

of

a

load

operation

(it

is,

for

example,

not

valid

immediately

following

a

load

operation

in

which

the

DEFERRED

mode

was

specified).

If

this

mode

is

specified,

but

not

supported

due

to

the

state

of

the

index,

a

warning

is

returned,

and

the

load

operation

continues

in

REBUILD

mode.

Similarly,

if

a

load

restart

operation

is

begun

in

the

load

build

phase,

INCREMENTAL

mode

is

not

supported.

Incremental

indexing

is

not

supported

when

all

of

the

following

conditions

are

true:

v

The

LOAD

COPY

option

is

specified

(logretain

or

userexit

is

enabled).

v

The

table

resides

in

a

DMS

table

space.

v

The

index

object

resides

in

a

table

space

that

is

shared

by

other

table

objects

belonging

to

the

table

being

loaded.

To

bypass

this

restriction,

it

is

recommended

that

indexes

be

placed

in

a

separate

table

space.

DEFERRED

The

load

utility

will

not

attempt

index

creation

if

this

mode

is

specified.

Indexes

will

be

marked

as

needing

a

refresh.

The

first

access

to

such

indexes

that

is

unrelated

to

a

load

operation

might

force

a

rebuild,

or

indexes

might

be

rebuilt

when

the

database

is

restarted.

This

approach

requires

enough

sort

space

for

all

key

parts

for

the

largest

index.

The

total

time

subsequently

taken

for

index

construction

is

longer

than

that

required

in

REBUILD

mode.

Therefore,

when

performing

multiple

load

operations

with

deferred

indexing,

it

is

advisable

(from

a

performance

viewpoint)

to

let

the

last

load

operation

in

the

sequence

perform

an

index

rebuild,

rather

than

allow

indexes

to

be

rebuilt

at

first

non-load

access.

Deferred

indexing

is

only

supported

for

tables

with

non-unique

indexes,

so

that

duplicate

keys

inserted

during

the

load

phase

are

not

persistent

after

the

load

operation.

LOAD

312

Common

Criteria

Certification:

Administration

and

User

Documentation

Note:

Deferred

indexing

is

not

supported

for

tables

that

have

DATALINK

columns.

INSERT

One

of

four

modes

under

which

the

load

utility

can

execute.

Adds

the

loaded

data

to

the

table

without

changing

the

existing

table

data.

insert-column

Specifies

the

table

column

into

which

the

data

is

to

be

inserted.

The

load

utility

cannot

parse

columns

whose

names

contain

one

or

more

spaces.

For

example,

db2

load

from

delfile1

of

del

modified

by

noeofchar

noheader

method

P

(1,

2,

3,

4,

5,

6,

7,

8,

9)

insert

into

table1

(BLOB1,

S2,

I3,

Int

4,

I5,

I6,

DT7,

I8,

TM9)

will

fail

because

of

the

Int

4

column.

The

solution

is

to

enclose

such

column

names

with

double

quotation

marks:

db2

load

from

delfile1

of

del

modified

by

noeofchar

noheader

method

P

(1,

2,

3,

4,

5,

6,

7,

8,

9)

insert

into

table1

(BLOB1,

S2,

I3,

"Int

4",

I5,

I6,

DT7,

I8,

TM9)

INTO

table-name

Specifies

the

database

table

into

which

the

data

is

to

be

loaded.

This

table

cannot

be

a

system

table

or

a

declared

temporary

table.

An

alias,

or

the

fully

qualified

or

unqualified

table

name

can

be

specified.

A

qualified

table

name

is

in

the

form

schema.tablename.

If

an

unqualified

table

name

is

specified,

the

table

will

be

qualified

with

the

CURRENT

SCHEMA.

LOBS

FROM

lob-path

The

path

to

the

data

files

containing

LOB

values

to

be

loaded.

The

path

must

end

with

a

slash

(/).

If

the

CLIENT

option

is

specified,

the

path

must

be

fully

qualified.

The

names

of

the

LOB

data

files

are

stored

in

the

main

data

file

(ASC,

DEL,

or

IXF),

in

the

column

that

will

be

loaded

into

the

LOB

column.

This

option

is

ignored

if

lobsinfile

is

not

specified

within

the

filetype-mod

string.

This

option

is

not

supported

in

conjunction

with

the

CURSOR

filetype.

LOCK

WITH

FORCE

The

utility

acquires

various

locks

including

table

locks

in

the

process

of

loading.

Rather

than

wait,

and

possibly

timeout,

when

acquiring

a

lock,

this

option

allows

load

to

force

off

other

applications

that

hold

conflicting

locks

on

the

target

table.

Applications

holding

conflicting

locks

on

the

system

catalog

tables

will

not

be

forced

off

by

the

load

utility.

Forced

applications

will

roll

back

and

release

the

locks

the

load

utility

needs.

The

load

utility

can

then

proceed.

This

option

requires

the

same

authority

as

the

FORCE

APPLICATIONS

command

(SYSADM

or

SYSCTRL).

ALLOW

NO

ACCESS

loads

might

force

applications

holding

conflicting

locks

at

the

start

of

the

load

operation.

At

the

start

of

the

load

the

utility

can

force

applications

that

are

attempting

to

either

query

or

modify

the

table.

ALLOW

READ

ACCESS

loads

can

force

applications

holding

conflicting

locks

at

the

start

or

end

of

the

load

operation.

At

the

start

of

the

load

the

load

utility

can

force

applications

that

are

attempting

to

modify

the

table.

At

the

end

of

the

load

operation,

the

load

utility

can

force

applications

that

are

attempting

to

either

query

or

modify

the

table.

LOAD

Chapter

13.

DB2

UDB

Commands

for

Administrators

313

MESSAGES

message-file

Specifies

the

destination

for

warning

and

error

messages

that

occur

during

the

load

operation.

If

a

message

file

is

not

specified,

messages

are

written

to

standard

output.

If

the

complete

path

to

the

file

is

not

specified,

the

load

utility

uses

the

current

directory

and

the

default

drive

as

the

destination.

If

the

name

of

a

file

that

already

exists

is

specified,

the

utility

appends

the

information.

The

message

file

is

usually

populated

with

messages

at

the

end

of

the

load

operation

and,

as

such,

is

not

suitable

for

monitoring

the

progress

of

the

operation.

METHOD

L

Specifies

the

start

and

end

column

numbers

from

which

to

load

data.

A

column

number

is

a

byte

offset

from

the

beginning

of

a

row

of

data.

It

is

numbered

starting

from

1.

Note:

This

method

can

only

be

used

with

ASC

files,

and

is

the

only

valid

method

for

that

file

type.

N

Specifies

the

names

of

the

columns

in

the

data

file

to

be

loaded.

The

case

of

these

column

names

must

match

the

case

of

the

corresponding

names

in

the

system

catalogs.

Each

table

column

that

is

not

nullable

should

have

a

corresponding

entry

in

the

METHOD

N

list.

For

example,

given

data

fields

F1,

F2,

F3,

F4,

F5,

and

F6,

and

table

columns

C1

INT,

C2

INT

NOT

NULL,

C3

INT

NOT

NULL,

and

C4

INT,

method

N

(F2,

F1,

F4,

F3)

is

a

valid

request,

while

method

N

(F2,

F1)

is

not

valid.

Note:

This

method

can

only

be

used

with

file

types

IXF

or

CURSOR.

P

Specifies

the

field

numbers

(numbered

from

1)

of

the

input

data

fields

to

be

loaded.

Each

table

column

that

is

not

nullable

should

have

a

corresponding

entry

in

the

METHOD

P

list.

For

example,

given

data

fields

F1,

F2,

F3,

F4,

F5,

and

F6,

and

table

columns

C1

INT,

C2

INT

NOT

NULL,

C3

INT

NOT

NULL,

and

C4

INT,

method

P

(2,

1,

4,

3)

is

a

valid

request,

while

method

P

(2,

1)

is

not

valid.

Note:

This

method

can

only

be

used

with

file

types

IXF,

DEL,

or

CURSOR,

and

is

the

only

valid

method

for

the

DEL

file

type.

MODIFIED

BY

filetype-mod

Specifies

file

type

modifier

options.

See

File

type

modifiers

for

load.

NONRECOVERABLE

Specifies

that

the

load

transaction

is

to

be

marked

as

non-recoverable

and

that

it

will

not

be

possible

to

recover

it

by

a

subsequent

roll

forward

action.

The

roll

forward

utility

will

skip

the

transaction

and

will

mark

the

table

into

which

data

was

being

loaded

as

"invalid".

The

utility

will

also

ignore

any

subsequent

transactions

against

that

table.

After

the

roll

forward

operation

is

completed,

such

a

table

can

only

be

dropped

or

restored

from

a

backup

(full

or

table

space)

taken

after

a

commit

point

following

the

completion

of

the

non-recoverable

load

operation.

LOAD

314

Common

Criteria

Certification:

Administration

and

User

Documentation

With

this

option,

table

spaces

are

not

put

in

backup

pending

state

following

the

load

operation,

and

a

copy

of

the

loaded

data

does

not

have

to

be

made

during

the

load

operation.

This

option

should

not

be

used

when

DATALINK

columns

with

the

FILE

LINK

CONTROL

attribute

are

present

in,

or

being

added

to,

the

table.

NULL

INDICATORS

null-indicator-list

This

option

can

only

be

used

when

the

METHOD

L

parameter

is

specified;

that

is,

the

input

file

is

an

ASC

file).

The

null

indicator

list

is

a

comma-separated

list

of

positive

integers

specifying

the

column

number

of

each

null

indicator

field.

The

column

number

is

the

byte

offset

of

the

null

indicator

field

from

the

beginning

of

a

row

of

data.

There

must

be

one

entry

in

the

null

indicator

list

for

each

data

field

defined

in

the

METHOD

L

parameter.

A

column

number

of

zero

indicates

that

the

corresponding

data

field

always

contains

data.

A

value

of

Y

in

the

NULL

indicator

column

specifies

that

the

column

data

is

NULL.

Any

character

other

than

Y

in

the

NULL

indicator

column

specifies

that

the

column

data

is

not

NULL,

and

that

column

data

specified

by

the

METHOD

L

option

will

be

loaded.

The

NULL

indicator

character

can

be

changed

using

the

MODIFIED

BY

option.

OF

filetype

Specifies

the

format

of

the

data:

v

ASC

(non-delimited

ASCII

format)

v

DEL

(delimited

ASCII

format)

v

IXF

(integrated

exchange

format,

PC

version),

exported

from

the

same

or

from

another

DB2

table

v

CURSOR

(a

cursor

declared

against

a

SELECT

or

VALUES

statement).

PARTITIONED

DB

CONFIG

Allows

you

to

execute

a

load

into

a

partitioned

table.

The

PARTITIONED

DB

CONFIG

parameter

allows

you

to

specify

partitioned

database-specific

configuration

options.

The

partitioned-db-option

values

can

be

any

of

the

following:

HOSTNAME

x

FILE_TRANSFER_CMD

x

PART_FILE_LOCATION

x

OUTPUT_DBPARTNUMS

x

PARTITIONING_DBPARTNUMS

x

MODE

x

MAX_NUM_PART_AGENTS

x

ISOLATE_PART_ERRS

x

STATUS_INTERVAL

x

PORT_RANGE

x

CHECK_TRUNCATION

MAP_FILE_INPUT

x

MAP_FILE_OUTPUT

x

TRACE

x

NEWLINE

DISTFILE

x

OMIT_HEADER

RUN_STAT_DBPARTNUM

x

Detailed

descriptions

of

these

options

are

provided

in

Partitioned

database

load

configuration

options.

LOAD

Chapter

13.

DB2

UDB

Commands

for

Administrators

315

REPLACE

One

of

four

modes

under

which

the

load

utility

can

execute.

Deletes

all

existing

data

from

the

table,

and

inserts

the

loaded

data.

The

table

definition

and

index

definitions

are

not

changed.

If

this

option

is

used

when

moving

data

between

hierarchies,

only

the

data

for

an

entire

hierarchy,

not

individual

subtables,

can

be

replaced.

This

option

is

not

supported

for

tables

with

DATALINK

columns.

RESTART

One

of

four

modes

under

which

the

load

utility

can

execute.

Restarts

a

previously

interrupted

load

operation.

The

load

operation

will

automatically

continue

from

the

last

consistency

point

in

the

load,

build,

or

delete

phase.

RESTARTCOUNT

Reserved.

ROWCOUNT

n

Specifies

the

number

of

n

physical

records

in

the

file

to

be

loaded.

Allows

a

user

to

load

only

the

first

n

rows

in

a

file.

SAVECOUNT

n

Specifies

that

the

load

utility

is

to

establish

consistency

points

after

every

n

rows.

This

value

is

converted

to

a

page

count,

and

rounded

up

to

intervals

of

the

extent

size.

Since

a

message

is

issued

at

each

consistency

point,

this

option

should

be

selected

if

the

load

operation

will

be

monitored

using

LOAD

QUERY.

If

the

value

of

n

is

not

sufficiently

high,

the

synchronization

of

activities

performed

at

each

consistency

point

will

impact

performance.

The

default

value

is

zero,

meaning

that

no

consistency

points

will

be

established,

unless

necessary.

This

option

is

not

supported

in

conjunction

with

the

CURSOR

filetype.

SORT

BUFFER

buffer-size

This

option

specifies

a

value

that

overrides

the

SORTHEAP

database

configuration

parameter

during

a

load

operation.

It

is

relevant

only

when

loading

tables

with

indexes

and

only

when

the

INDEXING

MODE

parameter

is

not

specified

as

DEFERRED.

The

value

that

is

specified

cannot

exceed

the

value

of

SORTHEAP.

This

parameter

is

useful

for

throttling

the

sort

memory

that

is

used

when

loading

tables

with

many

indexes

without

changing

the

value

of

SORTHEAP,

which

would

also

affect

general

query

processing.

STATISTICS

USE

PROFILE

Instructs

load

to

collect

statistics

during

the

load

according

to

the

profile

defined

for

this

table.

This

profile

must

be

created

before

load

is

executed.

The

profile

is

created

by

the

RUNSTATS

command.

If

the

profile

does

not

exist

and

load

is

instructed

to

collect

statistics

according

to

the

profile,

a

warning

is

returned

and

no

statistics

are

collected.

STATISTICS

NO

Specifies

that

no

statistics

are

to

be

collected,

and

that

the

statistics

in

the

catalogs

are

not

to

be

altered.

This

is

the

default.

TEMPFILES

PATH

temp-pathname

Specifies

the

name

of

the

path

to

be

used

when

creating

temporary

files

during

a

load

operation,

and

should

be

fully

qualified

according

to

the

server

database

partition.

LOAD

316

Common

Criteria

Certification:

Administration

and

User

Documentation

Temporary

files

take

up

file

system

space.

Sometimes,

this

space

requirement

is

quite

substantial.

Following

is

an

estimate

of

how

much

file

system

space

should

be

allocated

for

all

temporary

files:

v

4

bytes

for

each

duplicate

or

rejected

row

containing

DATALINK

values

v

136

bytes

for

each

message

that

the

load

utility

generates

v

15KB

overhead

if

the

data

file

contains

long

field

data

or

LOBs.

This

quantity

can

grow

significantly

if

the

INSERT

option

is

specified,

and

there

is

a

large

amount

of

long

field

or

LOB

data

already

in

the

table.

TERMINATE

One

of

four

modes

under

which

the

load

utility

can

execute.

Terminates

a

previously

interrupted

load

operation,

and

rolls

back

the

operation

to

the

point

in

time

at

which

it

started,

even

if

consistency

points

were

passed.

The

states

of

any

table

spaces

involved

in

the

operation

return

to

normal,

and

all

table

objects

are

made

consistent

(index

objects

might

be

marked

as

invalid,

in

which

case

index

rebuild

will

automatically

take

place

at

next

access).

If

the

load

operation

being

terminated

is

a

load

REPLACE,

the

table

will

be

truncated

to

an

empty

table

after

the

load

TERMINATE

operation.

If

the

load

operation

being

terminated

is

a

load

INSERT,

the

table

will

retain

all

of

its

original

records

after

the

load

TERMINATE

operation.

The

load

terminate

option

will

not

remove

a

backup

pending

state

from

table

spaces.

Note:

This

option

is

not

supported

for

tables

with

DATALINK

columns.

USING

directory

Reserved.

WARNINGCOUNT

n

Stops

the

load

operation

after

n

warnings.

Set

this

parameter

if

no

warnings

are

expected,

but

verification

that

the

correct

file

and

table

are

being

used

is

desired.

If

the

load

file

or

the

target

table

is

specified

incorrectly,

the

load

utility

will

generate

a

warning

for

each

row

that

it

attempts

to

load,

which

will

cause

the

load

to

fail.

If

n

is

zero,

or

this

option

is

not

specified,

the

load

operation

will

continue

regardless

of

the

number

of

warnings

issued.

If

the

load

operation

is

stopped

because

the

threshold

of

warnings

was

encountered,

another

load

operation

can

be

started

in

RESTART

mode.

The

load

operation

will

automatically

continue

from

the

last

consistency

point.

Alternatively,

another

load

operation

can

be

initiated

in

REPLACE

mode,

starting

at

the

beginning

of

the

input

file.

WITHOUT

PROMPTING

Specifies

that

the

list

of

data

files

contains

all

the

files

that

are

to

be

loaded,

and

that

the

devices

or

directories

listed

are

sufficient

for

the

entire

load

operation.

If

a

continuation

input

file

is

not

found,

or

the

copy

targets

are

filled

before

the

load

operation

finishes,

the

load

operation

will

fail,

and

the

table

will

remain

in

load

pending

state.

If

this

option

is

not

specified,

and

the

tape

device

encounters

an

end

of

tape

for

the

copy

image,

or

the

last

item

listed

is

a

tape

device,

the

user

is

prompted

for

a

new

tape

on

that

device.

Examples:

Example

1

LOAD

Chapter

13.

DB2

UDB

Commands

for

Administrators

317

TABLE1

has

5

columns:

v

COL1

VARCHAR

20

NOT

NULL

WITH

DEFAULT

v

COL2

SMALLINT

v

COL3

CHAR

4

v

COL4

CHAR

2

NOT

NULL

WITH

DEFAULT

v

COL5

CHAR

2

NOT

NULL

ASCFILE1

has

6

elements:

v

ELE1

positions

01

to

20

v

ELE2

positions

21

to

22

v

ELE5

positions

23

to

23

v

ELE3

positions

24

to

27

v

ELE4

positions

28

to

31

v

ELE6

positions

32

to

32

v

ELE6

positions

33

to

40

Data

Records:

1...5....10...15...20...25...30...35...40

Test

data

1

XXN

123abcdN

Test

data

2

and

3

QQY

wxyzN

Test

data

4,5

and

6

WWN6789

Y

The

following

command

loads

the

table

from

the

file:

db2

load

from

ascfile1

of

asc

modified

by

striptblanks

reclen=40

method

L

(1

20,

21

22,

24

27,

28

31)

null

indicators

(0,0,23,32)

insert

into

table1

(col1,

col5,

col2,

col3)

Notes:

1.

The

specification

of

striptblanks

in

the

MODIFIED

BY

parameter

forces

the

truncation

of

blanks

in

VARCHAR

columns

(COL1,

for

example,

which

is

11,

17

and

19

bytes

long,

in

rows

1,

2

and

3,

respectively).

2.

The

specification

of

reclen=40

in

the

MODIFIED

BY

parameter

indicates

that

there

is

no

new-line

character

at

the

end

of

each

input

record,

and

that

each

record

is

40

bytes

long.

The

last

8

bytes

are

not

used

to

load

the

table.

3.

Since

COL4

is

not

provided

in

the

input

file,

it

will

be

inserted

into

TABLE1

with

its

default

value

(it

is

defined

NOT

NULL

WITH

DEFAULT).

4.

Positions

23

and

32

are

used

to

indicate

whether

COL2

and

COL3

of

TABLE1

will

be

loaded

NULL

for

a

given

row.

If

there

is

a

Y

in

the

column’s

null

indicator

position

for

a

given

record,

the

column

will

be

NULL.

If

there

is

an

N,

the

data

values

in

the

column’s

data

positions

of

the

input

record

(as

defined

in

L(........))

are

used

as

the

source

of

column

data

for

the

row.

In

this

example,

neither

column

in

row

1

is

NULL;

COL2

in

row

2

is

NULL;

and

COL3

in

row

3

is

NULL.

5.

In

this

example,

the

NULL

INDICATORS

for

COL1

and

COL5

are

specified

as

0

(zero),

indicating

that

the

data

is

not

nullable.

6.

The

NULL

INDICATOR

for

a

given

column

can

be

anywhere

in

the

input

record,

but

the

position

must

be

specified,

and

the

Y

or

N

values

must

be

supplied.

Example

2

(Loading

LOBs

from

Files)

TABLE1

has

3

columns:

LOAD

318

Common

Criteria

Certification:

Administration

and

User

Documentation

v

COL1

CHAR

4

NOT

NULL

WITH

DEFAULT

v

LOB1

LOB

v

LOB2

LOB

ASCFILE1

has

3

elements:

v

ELE1

positions

01

to

04

v

ELE2

positions

06

to

13

v

ELE3

positions

15

to

22

The

following

files

reside

in

either

/u/user1

or

/u/user1/bin:

v

ASCFILE2

has

LOB

data

v

ASCFILE3

has

LOB

data

v

ASCFILE4

has

LOB

data

v

ASCFILE5

has

LOB

data

v

ASCFILE6

has

LOB

data

v

ASCFILE7

has

LOB

data

Data

Records

in

ASCFILE1:

1...5....10...15...20...25...30.

REC1

ASCFILE2

ASCFILE3

REC2

ASCFILE4

ASCFILE5

REC3

ASCFILE6

ASCFILE7

The

following

command

loads

the

table

from

the

file:

db2

load

from

ascfile1

of

asc

lobs

from

/u/user1,

/u/user1/bin

modified

by

lobsinfile

reclen=22

method

L

(1

4,

6

13,

15

22)

insert

into

table1

Notes:

1.

The

specification

of

lobsinfile

in

the

MODIFIED

BY

parameter

tells

the

loader

that

all

LOB

data

is

to

be

loaded

from

files.

2.

The

specification

of

reclen=22

in

the

MODIFIED

BY

parameter

indicates

that

there

is

no

new-line

character

at

the

end

of

each

input

record,

and

that

each

record

is

22

bytes

long.

3.

LOB

data

is

contained

in

6

files,

ASCFILE2

through

ASCFILE7.

Each

file

contains

the

data

that

will

be

used

to

load

a

LOB

column

for

a

specific

row.

The

relationship

between

LOBs

and

other

data

is

specified

in

ASCFILE1.

The

first

record

of

this

file

tells

the

loader

to

place

REC1

in

COL1

of

row

1.

The

contents

of

ASCFILE2

will

be

used

to

load

LOB1

of

row

1,

and

the

contents

of

ASCFILE3

will

be

used

to

load

LOB2

of

row

1.

Similarly,

ASCFILE4

and

ASCFILE5

will

be

used

to

load

LOB1

and

LOB2

of

row

2,

and

ASCFILE6

and

ASCFILE7

will

be

used

to

load

the

LOBs

of

row

3.

4.

The

LOBS

FROM

parameter

contains

2

paths

that

will

be

searched

for

the

named

LOB

files

when

those

files

are

required

by

the

loader.

5.

To

load

LOBs

directly

from

ASCFILE1

(a

non-delimited

ASCII

file),

without

the

lobsinfile

modifier,

the

following

rules

must

be

observed:

v

The

total

length

of

any

record,

including

LOBs,

cannot

exceed

32KB.

v

LOB

fields

in

the

input

records

must

be

of

fixed

length,

and

LOB

data

padded

with

blanks

as

necessary.

v

The

striptblanks

modifier

must

be

specified,

so

that

the

trailing

blanks

used

to

pad

LOBs

can

be

removed

as

the

LOBs

are

inserted

into

the

database.

LOAD

Chapter

13.

DB2

UDB

Commands

for

Administrators

319

Example

3

(Using

Dump

Files)

Table

FRIENDS

is

defined

as:

table

friends

"(

c1

INT

NOT

NULL,

c2

INT,

c3

CHAR(8)

)"

If

an

attempt

is

made

to

load

the

following

data

records

into

this

table,

23,

24,

bobby

,

45,

john

4,,

mary

the

second

row

is

rejected

because

the

first

INT

is

NULL,

and

the

column

definition

specifies

NOT

NULL.

Columns

which

contain

initial

characters

that

are

not

consistent

with

the

DEL

format

will

generate

an

error,

and

the

record

will

be

rejected.

Such

records

can

be

written

to

a

dump

file.

DEL

data

appearing

in

a

column

outside

of

character

delimiters

is

ignored,

but

does

generate

a

warning.

For

example:

22,34,"bob"

24,55,"sam"

sdf

The

utility

will

load

″sam″

in

the

third

column

of

the

table,

and

the

characters

″sdf″

will

be

flagged

in

a

warning.

The

record

is

not

rejected.

Another

example:

22

3,

34,"bob"

The

utility

will

load

22,34,"bob",

and

generate

a

warning

that

some

data

in

column

one

following

the

22

was

ignored.

The

record

is

not

rejected.

Example

4

(Loading

DATALINK

Data)

The

following

command

loads

the

table

MOVIETABLE

from

the

input

file

delfile1,

which

has

data

in

the

DEL

format:

db2

load

from

delfile1

of

del

modified

by

dldel|

insert

into

movietable

(actorname,

description,

url_making_of,

url_movie)

datalink

specification

(dl_url_default_prefix

"http://narang"),

(dl_url_replace_prefix

"http://bomdel"

dl_url_suffix

".mpeg")

for

exception

excptab

Notes:

1.

The

table

has

four

columns:

actorname

VARCHAR(n)

description

VARCHAR(m)

url_making_of

DATALINK

(with

LINKTYPE

URL)

url_movie

DATALINK

(with

LINKTYPE

URL)

2.

The

DATALINK

data

in

the

input

file

has

the

vertical

bar

(|)

character

as

the

sub-field

delimiter.

3.

If

any

column

value

for

url_making_of

does

not

have

the

prefix

character

sequence,

″http://narang″

is

used.

4.

Each

non-NULL

column

value

for

url_movie

will

get

″http://bomdel″

as

its

prefix.

Existing

values

are

replaced.

5.

Each

non-NULL

column

value

for

url_movie

will

get

″.mpeg″

appended

to

the

path.

For

example,

if

a

column

value

of

url_movie

is

″http://server1/x/y/z″,

it

will

be

stored

as

″http://bomdel/x/y/z.mpeg″;

if

the

value

is

″/x/y/z″,

it

will

be

stored

as

″http://bomdel/x/y/z.mpeg″.

LOAD

320

Common

Criteria

Certification:

Administration

and

User

Documentation

6.

If

any

unique

index

or

DATALINK

exception

occurs

while

loading

the

table,

the

affected

records

are

deleted

from

the

table

and

put

into

the

exception

table

excptab.

Example

5

(Loading

a

Table

with

an

Identity

Column)

TABLE1

has

4

columns:

v

C1

VARCHAR(30)

v

C2

INT

GENERATED

BY

DEFAULT

AS

IDENTITY

v

C3

DECIMAL(7,2)

v

C4

CHAR(1)

TABLE2

is

the

same

as

TABLE1,

except

that

C2

is

a

GENERATED

ALWAYS

identity

column.

Data

records

in

DATAFILE1

(DEL

format):

"Liszt"

"Hummel",,187.43,

H

"Grieg",100,

66.34,

G

"Satie",101,

818.23,

I

Data

records

in

DATAFILE2

(DEL

format):

"Liszt",

74.49,

A

"Hummel",

0.01,

H

"Grieg",

66.34,

G

"Satie",

818.23,

I

Notes:

1.

The

following

command

generates

identity

values

for

rows

1

and

2,

since

no

identity

values

are

supplied

in

DATAFILE1

for

those

rows.

Rows

3

and

4,

however,

are

assigned

the

user-supplied

identity

values

of

100

and

101,

respectively.

db2

load

from

datafile1.del

of

del

replace

into

table1

2.

To

load

DATAFILE1

into

TABLE1

so

that

identity

values

are

generated

for

all

rows,

issue

one

of

the

following

commands:

db2

load

from

datafile1.del

of

del

method

P(1,

3,

4)

replace

into

table1

(c1,

c3,

c4)

db2load

from

datafile1.del

of

del

modified

by

identityignore

replace

into

table1

3.

To

load

DATAFILE2

into

TABLE1

so

that

identity

values

are

generated

for

each

row,

issue

one

of

the

following

commands:

db2

load

from

datafile2.del

of

del

replace

into

table1

(c1,

c3,

c4)

db2

load

from

datafile2.del

of

del

modified

by

identitymissing

replace

into

table1

4.

To

load

DATAFILE1

into

TABLE2

so

that

the

identity

values

of

100

and

101

are

assigned

to

rows

3

and

4,

issue

the

following

command:

db2

load

from

datafile1.del

of

del

modified

by

identityoverride

replace

into

table2

In

this

case,

rows

1

and

2

will

be

rejected,

because

the

utility

has

been

instructed

to

override

system-generated

identity

values

in

favor

of

user-supplied

values.

If

user-supplied

values

are

not

present,

however,

the

row

must

be

rejected,

because

identity

columns

are

implicitly

not

NULL.

LOAD

Chapter

13.

DB2

UDB

Commands

for

Administrators

321

5.

If

DATAFILE1

is

loaded

into

TABLE2

without

using

any

of

the

identity-related

file

type

modifiers,

rows

1

and

2

will

be

loaded,

but

rows

3

and

4

will

be

rejected,

because

they

supply

their

own

non-NULL

values,

and

the

identity

column

is

GENERATED

ALWAYS.

Example

6

(Loading

using

the

CURSOR

filetype)

Table

ABC.TABLE1

has

3

columns:

ONE

INT

TWO

CHAR(10)

THREE

DATE

Table

ABC.TABLE2

has

3

columns:

ONE

VARCHAR

TWO

INT

THREE

DATE

Executing

the

following

commands

will

load

all

the

data

from

ABC.TABLE1

into

ABC.TABLE2:

db2

declare

mycurs

cursor

for

select

two,one,three

from

abc.table1

db2

load

from

mycurs

of

cursor

insert

into

abc.table2

Usage

notes:

Data

is

loaded

in

the

sequence

that

appears

in

the

input

file.

If

a

particular

sequence

is

desired,

the

data

should

be

sorted

before

a

load

is

attempted.

The

load

utility

builds

indexes

based

on

existing

definitions.

The

exception

tables

are

used

to

handle

duplicates

on

unique

keys.

The

utility

does

not

enforce

referential

integrity,

perform

constraints

checking,

or

update

summary

tables

that

are

dependent

on

the

tables

being

loaded.

Tables

that

include

referential

or

check

constraints

are

placed

in

check

pending

state.

Summary

tables

that

are

defined

with

REFRESH

IMMEDIATE,

and

that

are

dependent

on

tables

being

loaded,

are

also

placed

in

check

pending

state.

Issue

the

SET

INTEGRITY

statement

to

take

the

tables

out

of

check

pending

state.

Load

operations

cannot

be

carried

out

on

replicated

summary

tables.

If

a

clustering

index

exists

on

the

table,

the

data

should

be

sorted

on

the

clustering

index

prior

to

loading.

Data

does

not

need

to

be

sorted

prior

to

loading

into

a

multidimensional

clustering

(MDC)

table,

however.

DB2

Data

Links

Manager

considerations:

For

each

DATALINK

column,

there

can

be

one

column

specification

within

parentheses.

Each

column

specification

consists

of

one

or

more

of

DL_LINKTYPE,

prefix

and

a

DL_URL_SUFFIX

specification.

The

prefix

information

can

be

either

DL_URL_REPLACE_PREFIX,

or

the

DL_URL_DEFAULT_PREFIX

specification.

There

can

be

as

many

DATALINK

column

specifications

as

the

number

of

DATALINK

columns

defined

in

the

table.

The

order

of

specifications

follows

the

order

of

DATALINK

columns

as

found

within

the

insert-column

list

(if

specified

by

INSERT

INTO

(insert-column,

...)),

or

within

the

table

definition

(if

insert-column

is

not

specified).

For

example,

if

a

table

has

columns

C1,

C2,

C3,

C4,

and

C5,

and

among

them

only

columns

C2

and

C5

are

of

type

DATALINK,

and

the

insert-column

list

is

(C1,

C5,

LOAD

322

Common

Criteria

Certification:

Administration

and

User

Documentation

C3,

C2),

there

should

be

two

DATALINK

column

specifications.

The

first

column

specification

will

be

for

C5,

and

the

second

column

specification

will

be

for

C2.

If

an

insert-column

list

is

not

specified,

the

first

column

specification

will

be

for

C2,

and

the

second

column

specification

will

be

for

C5.

If

there

are

multiple

DATALINK

columns,

and

some

columns

do

not

need

any

particular

specification,

the

column

specification

should

have

at

least

the

parentheses

to

unambiguously

identify

the

order

of

specifications.

If

there

are

no

specifications

for

any

of

the

columns,

the

entire

list

of

empty

parentheses

can

be

dropped.

Thus,

in

cases

where

the

defaults

are

satisfactory,

there

need

not

be

any

DATALINK

specification.

If

data

is

being

loaded

into

a

table

with

a

DATALINK

column

that

is

defined

with

FILE

LINK

CONTROL,

perform

the

following

steps

before

invoking

the

load

utility.

(If

all

the

DATALINK

columns

are

defined

with

NO

LINK

CONTROL,

these

steps

are

not

necessary).

1.

Ensure

that

the

DB2

Data

Links

Manager

is

installed

on

the

Data

Links

servers

that

will

be

referred

to

by

the

DATALINK

column

values.

2.

Ensure

that

the

database

is

registered

with

the

DB2

Data

Links

Manager.

3.

Copy

to

the

appropriate

Data

Links

servers,

all

files

that

will

be

inserted

as

DATALINK

values.

4.

Define

the

prefix

name

(or

names)

to

the

DB2

Data

Links

Managers

on

the

Data

Links

servers.

5.

Register

the

Data

Links

servers

referred

to

by

DATALINK

data

(to

be

loaded)

in

the

DB2

Data

Links

Manager

configuration

file.

The

connection

between

DB2

and

the

Data

Links

server

might

fail

while

running

the

load

utility,

causing

the

load

operation

to

fail.

If

this

occurs:

1.

Start

the

Data

Links

server

and

the

DB2

Data

Links

Manager.

2.

Invoke

a

load

restart

operation.

Links

that

fail

during

the

load

operation

are

considered

to

be

data

integrity

violations,

and

are

handled

in

much

the

same

way

as

unique

index

violations.

Consequently,

a

special

exception

has

been

defined

for

loading

tables

that

have

one

or

more

DATALINK

columns.

Representation

of

DATALINK

information

in

an

input

file

The

LINKTYPE

(currently

only

URL

is

supported)

is

not

specified

as

part

of

DATALINK

information.

The

LINKTYPE

is

specified

in

the

LOAD

or

the

IMPORT

command,

and

for

input

files

of

type

PC/IXF,

in

the

appropriate

column

descriptor

records.

The

syntax

of

DATALINK

information

for

a

URL

LINKTYPE

is

as

follows:

��

urlname

dl_delimiter

comment

��

Note

that

both

urlname

and

comment

are

optional.

If

neither

is

provided,

the

NULL

value

is

assigned.

urlname

The

URL

name

must

conform

to

valid

URL

syntax.

LOAD

Chapter

13.

DB2

UDB

Commands

for

Administrators

323

Notes:

1.

Currently

″http″,

″file″,

and

″unc″

are

permitted

as

a

schema

name.

2.

The

prefix

(schema,

host,

and

port)

of

the

URL

name

is

optional.

If

a

prefix

is

not

present,

it

is

taken

from

the

DL_URL_DEFAULT_PREFIX

or

the

DL_URL_REPLACE_PREFIX

specification

of

the

load

or

the

import

utility.

If

none

of

these

is

specified,

the

prefix

defaults

to

″file://localhost″.

Thus,

in

the

case

of

local

files,

the

file

name

with

full

path

name

can

be

entered

as

the

URL

name,

without

the

need

for

a

DATALINK

column

specification

within

the

LOAD

or

the

IMPORT

command.

3.

Prefixes,

even

if

present

in

URL

names,

are

overridden

by

a

different

prefix

name

on

the

DL_URL_REPLACE_PREFIX

specification

during

a

load

or

import

operation.

4.

The

″path″

(after

appending

DL_URL_SUFFIX,

if

specified)

is

the

full

path

name

of

the

remote

file

in

the

remote

server.

Relative

path

names

are

not

allowed.

The

http

server

default

path-prefix

is

not

taken

into

account.

dl_delimiter

For

the

delimited

ASCII

(DEL)

file

format,

a

character

specified

via

the

dldel

modifier,

or

defaulted

to

on

the

LOAD

or

the

IMPORT

command.

For

the

non-delimited

ASCII

(ASC)

file

format,

this

should

correspond

to

the

character

sequence

\;

(a

backslash

followed

by

a

semicolon).

Whitespace

characters

(blanks,

tabs,

and

so

on)

are

permitted

before

and

after

the

value

specified

for

this

parameter.

comment

The

comment

portion

of

a

DATALINK

value.

If

specified

for

the

delimited

ASCII

(DEL)

file

format,

the

comment

text

must

be

enclosed

by

the

character

string

delimiter,

which

is

double

quotation

marks

(″)

by

default.

This

character

string

delimiter

can

be

overridden

by

the

MODIFIED

BY

filetype-mod

specification

of

the

LOAD

or

the

IMPORT

command.

If

no

comment

is

specified,

the

comment

defaults

to

a

string

of

length

zero.

Following

are

DATALINK

data

examples

for

the

delimited

ASCII

(DEL)

file

format:

v

http://www.almaden.ibm.com:80/mrep/intro.mpeg;

"Intro

Movie"

This

is

stored

with

the

following

parts:

–

scheme

=

http

–

server

=

www.almaden.ibm.com

–

path

=

/mrep/intro.mpeg

–

comment

=

″Intro

Movie″

v

file://narang/u/narang;

"InderPal’s

Home

Page"

This

is

stored

with

the

following

parts:

–

scheme

=

file

–

server

=

narang

–

path

=

/u/narang

–

comment

=

″InderPal’s

Home

Page″

Following

are

DATALINK

data

examples

for

the

non-delimited

ASCII

(ASC)

file

format:

v

http://www.almaden.ibm.com:80/mrep/intro.mpeg\;Intro

Movie

This

is

stored

with

the

following

parts:

LOAD

324

Common

Criteria

Certification:

Administration

and

User

Documentation

–

scheme

=

http

–

server

=

www.almaden.ibm.com

–

path

=

/mrep/intro.mpeg

–

comment

=

″Intro

Movie″

v

file://narang/u/narang\;

InderPal’s

Home

Page

This

is

stored

with

the

following

parts:

–

scheme

=

file

–

server

=

narang

–

path

=

/u/narang

–

comment

=

″InderPal’s

Home

Page″

Following

are

DATALINK

data

examples

in

which

the

load

or

import

specification

for

the

column

is

assumed

to

be

DL_URL_REPLACE_PREFIX

(″http://qso″):

v

http://www.almaden.ibm.com/mrep/intro.mpeg

This

is

stored

with

the

following

parts:

–

schema

=

http

–

server

=

qso

–

path

=

/mrep/intro.mpeg

–

comment

=

NULL

string
v

/u/me/myfile.ps

This

is

stored

with

the

following

parts:

–

schema

=

http

–

server

=

qso

–

path

=

/u/me/myfile.ps

–

comment

=

NULL

string

Related

concepts:

v

“Load

Overview”

in

the

Data

Movement

Utilities

Guide

and

Reference

v

“Privileges,

authorities,

and

authorizations

required

to

use

Load”

on

page

838

Related

tasks:

v

“Using

Load”

in

the

Data

Movement

Utilities

Guide

and

Reference

Related

reference:

v

“QUIESCE

TABLESPACES

FOR

TABLE”

on

page

340

v

“db2atld

-

Autoloader

Command”

in

the

Command

Reference

v

“Load

-

CLP

Examples”

in

the

Data

Movement

Utilities

Guide

and

Reference

v

“Partitioned

database

load

configuration

options”

in

the

Data

Movement

Utilities

Guide

and

Reference

v

“db2Load

-

Load”

on

page

437

v

“File

type

modifiers

for

load”

on

page

326

LOAD

Chapter

13.

DB2

UDB

Commands

for

Administrators

325

File

type

modifiers

for

load

Table

51.

Valid

file

type

modifiers

for

load:

All

file

formats

Modifier

Description

anyorder

This

modifier

is

used

in

conjunction

with

the

cpu_parallelism

parameter.

Specifies

that

the

preservation

of

source

data

order

is

not

required,

yielding

significant

additional

performance

benefit

on

SMP

systems.

If

the

value

of

cpu_parallelism

is

1,

this

option

is

ignored.

This

option

is

not

supported

if

SAVECOUNT

>

0,

since

crash

recovery

after

a

consistency

point

requires

that

data

be

loaded

in

sequence.

generatedignore

This

modifier

informs

the

load

utility

that

data

for

all

generated

columns

is

present

in

the

data

file

but

should

be

ignored.

This

results

in

all

generated

column

values

being

generated

by

the

utility.

This

modifier

cannot

be

used

with

either

the

generatedmissing

or

the

generatedoverride

modifier.

generatedmissing

If

this

modifier

is

specified,

the

utility

assumes

that

the

input

data

file

contains

no

data

for

the

generated

column

(not

even

NULLs).

This

results

in

all

generated

column

values

being

generated

by

the

utility.

This

modifier

cannot

be

used

with

either

the

generatedignore

or

the

generatedoverride

modifier.

generatedoverride

This

modifier

instructs

the

load

utility

to

accept

user-supplied

data

for

all

generated

columns

in

the

table

(contrary

to

the

normal

rules

for

these

types

of

columns).

This

is

useful

when

migrating

data

from

another

database

system,

or

when

loading

a

table

from

data

that

was

recovered

using

the

RECOVER

DROPPED

TABLE

option

on

the

ROLLFORWARD

DATABASE

command.

When

this

modifier

is

used,

any

rows

with

no

data

or

NULL

data

for

a

non-nullable

generated

column

will

be

rejected

(SQL3116W).

Note:

When

this

modifier

is

used,

the

table

will

be

placed

in

CHECK

PENDING

state.

To

take

the

table

out

of

CHECK

PENDING

state

without

verifying

the

user-supplied

values,

issue

the

following

command

after

the

load

operation:

SET

INTEGRITY

FOR

<

table-name

>

GENERATED

COLUMN

IMMEDIATED

UNCHECKED

To

take

the

table

out

of

CHECK

PENDING

state

and

force

verification

of

the

user-supplied

values,

issue

the

following

command

after

the

load

operation:

SET

INTEGRITY

FOR

<

table-name

>

IMMEDIATE

CHECKED.

This

modifier

cannot

be

used

with

either

the

generatedmissing

or

the

generatedignore

modifier.

identityignore

This

modifier

informs

the

load

utility

that

data

for

the

identity

column

is

present

in

the

data

file

but

should

be

ignored.

This

results

in

all

identity

values

being

generated

by

the

utility.

The

behavior

will

be

the

same

for

both

GENERATED

ALWAYS

and

GENERATED

BY

DEFAULT

identity

columns.

This

means

that

for

GENERATED

ALWAYS

columns,

no

rows

will

be

rejected.

This

modifier

cannot

be

used

with

either

the

identitymissing

or

the

identityoverride

modifier.

identitymissing

If

this

modifier

is

specified,

the

utility

assumes

that

the

input

data

file

contains

no

data

for

the

identity

column

(not

even

NULLs),

and

will

therefore

generate

a

value

for

each

row.

The

behavior

will

be

the

same

for

both

GENERATED

ALWAYS

and

GENERATED

BY

DEFAULT

identity

columns.

This

modifier

cannot

be

used

with

either

the

identityignore

or

the

identityoverride

modifier.

LOAD

326

Common

Criteria

Certification:

Administration

and

User

Documentation

Table

51.

Valid

file

type

modifiers

for

load:

All

file

formats

(continued)

Modifier

Description

identityoverride

This

modifier

should

be

used

only

when

an

identity

column

defined

as

GENERATED

ALWAYS

is

present

in

the

table

to

be

loaded.

It

instructs

the

utility

to

accept

explicit,

non-NULL

data

for

such

a

column

(contrary

to

the

normal

rules

for

these

types

of

identity

columns).

This

is

useful

when

migrating

data

from

another

database

system

when

the

table

must

be

defined

as

GENERATED

ALWAYS,

or

when

loading

a

table

from

data

that

was

recovered

using

the

DROPPED

TABLE

RECOVERY

option

on

the

ROLLFORWARD

DATABASE

command.

When

this

modifier

is

used,

any

rows

with

no

data

or

NULL

data

for

the

identity

column

will

be

rejected

(SQL3116W).

This

modifier

cannot

be

used

with

either

the

identitymissing

or

the

identityignore

modifier.

Note:

The

load

utility

will

not

attempt

to

maintain

or

verify

the

uniqueness

of

values

in

the

table’s

identity

column

when

this

option

is

used.

indexfreespace=x

x

is

an

integer

between

0

and

99

inclusive.

The

value

is

interpreted

as

the

percentage

of

each

index

page

that

is

to

be

left

as

free

space

when

load

rebuilds

the

index.

Load

with

INDEXING

MODE

INCREMENTAL

ignores

this

option.

The

first

entry

in

a

page

is

added

without

restriction;

subsequent

entries

are

added

the

percent

free

space

threshold

can

be

maintained.

The

default

value

is

the

one

used

at

CREATE

INDEX

time.

This

value

takes

precedence

over

the

PCTFREE

value

specified

in

the

CREATE

INDEX

statement;

the

registry

variable

DB2

INDEX

FREE

takes

precedence

over

indexfreespace.

The

indexfreespace

option

affects

index

leaf

pages

only.

lobsinfile

lob-path

specifies

the

path

to

the

files

containing

LOB

data.

The

ASC,

DEL,

or

IXF

load

input

files

contain

the

names

of

the

files

having

LOB

data

in

the

LOB

column.

This

option

is

not

supported

in

conjunction

with

the

CURSOR

filetype.

The

LOBS

FROM

clause

specifies

where

the

LOB

files

are

located

when

the

“lobsinfile”

modifier

is

used.

The

LOBS

FROM

clause

means

nothing

outside

the

context

of

the

“lobsinfile”

modifier.

The

LOBS

FROM

clause

conveys

to

the

LOAD

utility

the

list

of

paths

to

search

for

the

LOB

files

while

loading

the

data.

Each

path

contains

at

least

one

file

that

contains

at

least

one

LOB

pointed

to

by

a

Lob

Location

Specifier

(LLS)

in

the

data

file.

The

LLS

is

a

string

representation

of

the

location

of

a

LOB

in

a

file

stored

in

the

LOB

file

path.

The

format

of

an

LLS

is

filename.ext.nnn.mmm/,

where

filename.ext

is

the

name

of

the

file

that

contains

the

LOB,

nnn

is

the

offset

in

bytes

of

the

LOB

within

the

file,

and

mmm

is

the

length

of

the

LOB

in

bytes.

For

example,

if

the

string

db2exp.001.123.456/

is

stored

in

the

data

file,

the

LOB

is

located

at

offset

123

in

the

file

db2exp.001,

and

is

456

bytes

long.

To

indicate

a

null

LOB

,

enter

the

size

as

-1.

If

the

size

is

specified

as

0,

it

is

treated

as

a

0

length

LOB.

For

null

LOBS

with

length

of

-1,

the

offset

and

the

file

name

are

ignored.

For

example,

the

LLS

of

a

null

LOB

might

be

db2exp.001.7.-1/.

noheader

Skips

the

header

verification

code

(applicable

only

to

load

operations

into

tables

that

reside

in

a

single-partition

database

partition

group).

The

AutoLoader

utility

writes

a

header

to

each

file

contributing

data

to

a

table

in

a

multiple-partition

database

partition

group.

If

the

default

MPP

load

(mode

PARTITION_AND_LOAD)

is

used

against

a

table

residing

in

a

single-partition

database

partition

group,

the

file

is

not

expected

to

have

a

header.

Thus

the

noheader

modifier

is

not

needed.

If

the

LOAD_ONLY

mode

is

used,

the

file

is

expected

to

have

a

header.

The

only

circumstance

in

which

you

should

need

to

use

the

noheader

modifier

is

if

you

wanted

to

perform

LOAD_ONLY

operation

using

a

file

that

does

not

have

a

header.

norowwarnings

Suppresses

all

warnings

about

rejected

rows.

LOAD

Chapter

13.

DB2

UDB

Commands

for

Administrators

327

Table

51.

Valid

file

type

modifiers

for

load:

All

file

formats

(continued)

Modifier

Description

pagefreespace=x

x

is

an

integer

between

0

and

100

inclusive.

The

value

is

interpreted

as

the

percentage

of

each

data

page

that

is

to

be

left

as

free

space.

If

the

specified

value

is

invalid

because

of

the

minimum

row

size,

(for

example,

a

row

that

is

at

least

3

000

bytes

long,

and

an

x

value

of

50),

the

row

will

be

placed

on

a

new

page.

If

a

value

of

100

is

specified,

each

row

will

reside

on

a

new

page.

Note:

The

PCTFREE

value

of

a

table

determines

the

amount

of

free

space

designated

per

page.

If

a

pagefreespace

value

on

the

load

operation

or

a

PCTFREE

value

on

a

table

have

not

been

set,

the

utility

will

fill

up

as

much

space

as

possible

on

each

page.

The

value

set

by

pagefreespace

overrides

the

PCTFREE

value

specified

for

the

table.

subtableconvert

Valid

only

when

loading

into

a

single

sub-table.

Typical

usage

is

to

export

data

from

a

regular

table,

and

then

to

invoke

a

load

operation

(using

this

modifier)

to

convert

the

data

into

a

single

sub-table.

totalfreespace=x

x

is

an

integer

greater

than

or

equal

to

0

.

The

value

is

interpreted

as

the

percentage

of

the

total

pages

in

the

table

that

is

to

be

appended

to

the

end

of

the

table

as

free

space.

For

example,

if

x

is

20,

and

the

table

has

100

data

pages

after

the

data

has

been

loaded,

20

additional

empty

pages

will

be

appended.

The

total

number

of

data

pages

for

the

table

will

be

120.

The

data

pages

total

does

not

factor

in

the

number

of

index

pages

in

the

table.

This

option

does

not

affect

the

index

object.

Note:

If

two

loads

are

done

with

this

option

specified,

the

second

load

will

not

reuse

the

extra

space

appended

to

the

end

by

the

first

load.

usedefaults

If

a

source

column

for

a

target

table

column

has

been

specified,

but

it

contains

no

data

for

one

or

more

row

instances,

default

values

are

loaded.

Examples

of

missing

data

are:

v

For

DEL

files:

",,"

is

specified

for

the

column

v

For

DEL/ASC/WSF

files:

A

row

that

does

not

have

enough

columns,

or

is

not

long

enough

for

the

original

specification.

Without

this

option,

if

a

source

column

contains

no

data

for

a

row

instance,

one

of

the

following

occurs:

v

If

the

column

is

nullable,

a

NULL

is

loaded

v

If

the

column

is

not

nullable,

the

utility

rejects

the

row.

Table

52.

Valid

file

type

modifiers

for

load:

ASCII

file

formats

(ASC/DEL)

Modifier

Description

codepage=x

x

is

an

ASCII

character

string.

The

value

is

interpreted

as

the

code

page

of

the

data

in

the

input

data

set.

Converts

character

data

(and

numeric

data

specified

in

characters)

from

this

code

page

to

the

database

code

page

during

the

load

operation.

The

following

rules

apply:

v

For

pure

DBCS

(graphic),

mixed

DBCS,

and

EUC,

delimiters

are

restricted

to

the

range

of

x00

to

x3F,

inclusive.

v

For

DEL

data

specified

in

an

EBCDIC

code

page,

the

delimiters

might

not

coincide

with

the

shift-in

and

shift-out

DBCS

characters.

v

nullindchar

must

specify

symbols

included

in

the

standard

ASCII

set

between

code

points

x20

and

x7F,

inclusive.

This

refers

to

ASCII

symbols

and

code

points.

EBCDIC

data

can

use

the

corresponding

symbols,

even

though

the

code

points

will

be

different.

This

option

is

not

supported

in

conjunction

with

the

CURSOR

filetype.

LOAD

328

Common

Criteria

Certification:

Administration

and

User

Documentation

Table

52.

Valid

file

type

modifiers

for

load:

ASCII

file

formats

(ASC/DEL)

(continued)

Modifier

Description

dateformat=″x″

x

is

the

format

of

the

date

in

the

source

file.1

Valid

date

elements

are:

YYYY

-

Year

(four

digits

ranging

from

0000

-

9999)

M

-

Month

(one

or

two

digits

ranging

from

1

-

12)

MM

-

Month

(two

digits

ranging

from

1

-

12;

mutually

exclusive

with

M)

D

-

Day

(one

or

two

digits

ranging

from

1

-

31)

DD

-

Day

(two

digits

ranging

from

1

-

31;

mutually

exclusive

with

D)

DDD

-

Day

of

the

year

(three

digits

ranging

from

001

-

366;

mutually

exclusive

with

other

day

or

month

elements)

A

default

value

of

1

is

assigned

for

each

element

that

is

not

specified.

Some

examples

of

date

formats

are:

"D-M-YYYY"

"MM.DD.YYYY"

"YYYYDDD"

dumpfile

=

x

x

is

the

fully

qualified

(according

to

the

server

database

partition)

name

of

an

exception

file

to

which

rejected

rows

are

written.

A

maximum

of

32

KB

of

data

is

written

per

record.

Following

is

an

example

that

shows

how

to

specify

a

dump

file:

db2

load

from

data

of

del

modified

by

dumpfile

=

/u/user/filename

insert

into

table_name

The

file

will

be

created

and

owned

by

the

instance

owner.

To

override

the

default

file

permissions,

use

the

dumpfileaccessall

file

type

modifier.

Notes:

1.

In

a

partitioned

database

environment,

the

path

should

be

local

to

the

loading

database

partition,

so

that

concurrently

running

load

operations

do

not

attempt

to

write

to

the

same

file.

2.

The

contents

of

the

file

are

written

to

disk

in

an

asynchronous

buffered

mode.

In

the

event

of

a

failed

or

an

interrupted

load

operation,

the

number

of

records

committed

to

disk

cannot

be

known

with

certainty,

and

consistency

cannot

be

guaranteed

after

a

LOAD

RESTART.

The

file

can

only

be

assumed

to

be

complete

for

a

load

operation

that

starts

and

completes

in

a

single

pass.

3.

This

modifier

does

not

support

file

names

with

multiple

file

extensions.

For

example,

dumpfile

=

/home/svtdbm6/DUMP.FILE

is

acceptable

to

the

load

utility,

but

dumpfile

=

/home/svtdbm6/DUMP.LOAD.FILE

is

not.

dumpfileaccessall

=

x

Grants

read

access

to

’OTHERS’

when

a

dump

file

is

created.

This

file

type

modifier

is

only

valid

when:

1.

it

is

used

in

conjunction

with

dumpfile

file

type

modifier

2.

the

user

has

SELECT

privilege

on

the

load

target

table

3.

it

is

issued

on

a

DB2

server

database

partition

that

resides

on

a

UNIX-based

operating

system

LOAD

Chapter

13.

DB2

UDB

Commands

for

Administrators

329

Table

52.

Valid

file

type

modifiers

for

load:

ASCII

file

formats

(ASC/DEL)

(continued)

Modifier

Description

fastparse

Reduced

syntax

checking

is

done

on

user-supplied

column

values,

and

performance

is

enhanced.

Tables

loaded

under

this

option

are

guaranteed

to

be

architecturally

correct,

and

the

utility

is

guaranteed

to

perform

sufficient

data

checking

to

prevent

a

segmentation

violation

or

trap.

Data

that

is

in

correct

form

will

be

loaded

correctly.

For

example,

if

a

value

of

123qwr4

were

to

be

encountered

as

a

field

entry

for

an

integer

column

in

an

ASC

file,

the

load

utility

would

ordinarily

flag

a

syntax

error,

since

the

value

does

not

represent

a

valid

number.

With

fastparse,

a

syntax

error

is

not

detected,

and

an

arbitrary

number

is

loaded

into

the

integer

field.

Care

must

be

taken

to

use

this

modifier

with

clean

data

only.

Performance

improvements

using

this

option

with

ASCII

data

can

be

quite

substantial.

This

option

is

not

supported

in

conjunction

with

the

CURSOR

or

IXF

file

types.

implieddecimal

The

location

of

an

implied

decimal

point

is

determined

by

the

column

definition;

it

is

no

longer

assumed

to

be

at

the

end

of

the

value.

For

example,

the

value

12345

is

loaded

into

a

DECIMAL(8,2)

column

as

123.45,

not

12345.00.

This

modifier

cannot

be

used

with

the

packeddecimal

modifier.

timeformat=″x″

x

is

the

format

of

the

time

in

the

source

file.1

Valid

time

elements

are:

H

-

Hour

(one

or

two

digits

ranging

from

0

-

12

for

a

12

hour

system,

and

0

-

24

for

a

24

hour

system)

HH

-

Hour

(two

digits

ranging

from

0

-

12

for

a

12

hour

system,

and

0

-

24

for

a

24

hour

system;

mutually

exclusive

with

H)

M

-

Minute

(one

or

two

digits

ranging

from

0

-

59)

MM

-

Minute

(two

digits

ranging

from

0

-

59;

mutually

exclusive

with

M)

S

-

Second

(one

or

two

digits

ranging

from

0

-

59)

SS

-

Second

(two

digits

ranging

from

0

-

59;

mutually

exclusive

with

S)

SSSSS

-

Second

of

the

day

after

midnight

(5

digits

ranging

from

00000

-

86399;

mutually

exclusive

with

other

time

elements)

TT

-

Meridian

indicator

(AM

or

PM)

A

default

value

of

0

is

assigned

for

each

element

that

is

not

specified.

Some

examples

of

time

formats

are:

"HH:MM:SS"

"HH.MM

TT"

"SSSSS"

LOAD

330

Common

Criteria

Certification:

Administration

and

User

Documentation

Table

52.

Valid

file

type

modifiers

for

load:

ASCII

file

formats

(ASC/DEL)

(continued)

Modifier

Description

timestampformat=″x″

x

is

the

format

of

the

time

stamp

in

the

source

file.1

Valid

time

stamp

elements

are:

YYYY

-

Year

(four

digits

ranging

from

0000

-

9999)

M

-

Month

(one

or

two

digits

ranging

from

1

-

12)

MM

-

Month

(two

digits

ranging

from

01

-

12;

mutually

exclusive

with

M

and

MMM)

MMM

-

Month

(three-letter

case-insensitive

abbreviation

for

the

month

name;

mutually

exclusive

with

M

and

MM)

D

-

Day

(one

or

two

digits

ranging

from

1

-

31)

DD

-

Day

(two

digits

ranging

from

1

-

31;

mutually

exclusive

with

D)

DDD

-

Day

of

the

year

(three

digits

ranging

from

001

-

366;

mutually

exclusive

with

other

day

or

month

elements)

H

-

Hour

(one

or

two

digits

ranging

from

0

-

12

for

a

12

hour

system,

and

0

-

24

for

a

24

hour

system)

HH

-

Hour

(two

digits

ranging

from

0

-

12

for

a

12

hour

system,

and

0

-

24

for

a

24

hour

system;

mutually

exclusive

with

H)

M

-

Minute

(one

or

two

digits

ranging

from

0

-

59)

MM

-

Minute

(two

digits

ranging

from

0

-

59;

mutually

exclusive

with

M,

minute)

S

-

Second

(one

or

two

digits

ranging

from

0

-

59)

SS

-

Second

(two

digits

ranging

from

0

-

59;

mutually

exclusive

with

S)

SSSSS

-

Second

of

the

day

after

midnight

(5

digits

ranging

from

00000

-

86399;

mutually

exclusive

with

other

time

elements)

UUUUUU

-

Microsecond

(6

digits

ranging

from

000000

-

999999;

mutually

exclusive

with

all

other

microsecond

elements)

UUUUU

-

Microsecond

(5

digits

ranging

from

00000

-

99999,

maps

to

range

from

000000

-

999990;

mutually

exclusive

with

all

other

microseond

elements)

UUUU

-

Microsecond

(4

digits

ranging

from

0000

-

9999,

maps

to

range

from

000000

-

999900;

mutually

exclusive

with

all

other

microseond

elements)

UUU

-

Microsecond

(3

digits

ranging

from

000

-

999,

maps

to

range

from

000000

-

999000;

mutually

exclusive

with

all

other

microseond

elements)

UU

-

Microsecond

(2

digits

ranging

from

00

-

99,

maps

to

range

from

000000

-

990000;

mutually

exclusive

with

all

other

microseond

elements)

U

-

Microsecond

(1

digit

ranging

from

0

-

9,

maps

to

range

from

000000

-

900000;

mutually

exclusive

with

all

other

microseond

elements)

TT

-

Meridian

indicator

(AM

or

PM)

A

default

value

of

1

is

assigned

for

unspecified

YYYY,

M,

MM,

D,

DD,

or

DDD

elements.

A

default

value

of

’Jan’

is

assigned

to

an

unspecified

MMM

element.

A

default

value

of

0

is

assigned

for

all

other

unspecified

elements.

Following

is

an

example

of

a

time

stamp

format:

"YYYY/MM/DD

HH:MM:SS.UUUUUU"

The

valid

values

for

the

MMM

element

include:

’jan’,

’feb’,

’mar’,

’apr’,

’may’,

’jun’,

’jul’,

’aug’,

’sep’,

’oct’,

’nov’

and

’dec’.

These

values

are

case

insensitive.

The

following

example

illustrates

how

to

import

data

containing

user

defined

date

and

time

formats

into

a

table

called

schedule:

db2

import

from

delfile2

of

del

modified

by

timestampformat="yyyy.mm.dd

hh:mm

tt"

insert

into

schedule

noeofchar

The

optional

end-of-file

character

x’1A’

is

not

recognized

as

the

end

of

file.

Processing

continues

as

if

it

were

a

normal

character.

LOAD

Chapter

13.

DB2

UDB

Commands

for

Administrators

331

Table

52.

Valid

file

type

modifiers

for

load:

ASCII

file

formats

(ASC/DEL)

(continued)

Modifier

Description

usegraphiccodepage

If

usegraphiccodepage

is

given,

the

assumption

is

made

that

data

being

loaded

into

graphic

or

double-byte

character

large

object

(DBCLOB)

data

field(s)

is

in

the

graphic

code

page.

The

rest

of

the

data

is

assumed

to

be

in

the

character

code

page.

The

graphic

codepage

is

associated

with

the

character

code

page.

LOAD

determines

the

character

code

page

through

either

the

codepage

modifier,

if

it

is

specified,

or

through

the

code

page

of

the

database

if

the

codepage

modifier

is

not

specified.

This

modifier

should

be

used

in

conjunction

with

the

delimited

data

file

generated

by

drop

table

recovery

only

if

the

table

being

recovered

has

graphic

data.

Restrictions

The

usegraphiccodepage

modifier

MUST

NOT

be

specified

with

DEL

or

ASC

files

created

by

the

EXPORT

utility,

as

these

files

contain

data

encoded

in

only

one

code

page.

The

usegraphiccodepage

modifier

is

also

ignored

by

the

double-byte

character

large

objects

(DBCLOBs)

in

files.

Table

53.

Valid

file

type

modifiers

for

load:

ASC

file

formats

(Non-delimited

ASCII)

Modifier

Description

binarynumerics

Numeric

(but

not

DECIMAL)

data

must

be

in

binary

form,

not

the

character

representation.

This

avoids

costly

conversions.

This

option

is

supported

only

with

positional

ASC,

using

fixed

length

records

specified

by

the

reclen

option.

The

noeofchar

option

is

assumed.

The

following

rules

apply:

v

No

conversion

between

data

types

is

performed,

with

the

exception

of

BIGINT,

INTEGER,

and

SMALLINT.

v

Data

lengths

must

match

their

target

column

definitions.

v

FLOATs

must

be

in

IEEE

Floating

Point

format.

v

Binary

data

in

the

load

source

file

is

assumed

to

be

big-endian,

regardless

of

the

platform

on

which

the

load

operation

is

running.

Note:

NULLs

cannot

be

present

in

the

data

for

columns

affected

by

this

modifier.

Blanks

(normally

interpreted

as

NULL)

are

interpreted

as

a

binary

value

when

this

modifier

is

used.

nochecklengths

If

nochecklengths

is

specified,

an

attempt

is

made

to

load

each

row,

even

if

the

source

data

has

a

column

definition

that

exceeds

the

size

of

the

target

table

column.

Such

rows

can

be

successfully

loaded

if

code

page

conversion

causes

the

source

data

to

shrink;

for

example,

4-byte

EUC

data

in

the

source

could

shrink

to

2-byte

DBCS

data

in

the

target,

and

require

half

the

space.

This

option

is

particularly

useful

if

it

is

known

that

the

source

data

will

fit

in

all

cases

despite

mismatched

column

definitions.

nullindchar=x

x

is

a

single

character.

Changes

the

character

denoting

a

NULL

value

to

x.

The

default

value

of

x

is

Y.2

This

modifier

is

case

sensitive

for

EBCDIC

data

files,

except

when

the

character

is

an

English

letter.

For

example,

if

the

NULL

indicator

character

is

specified

to

be

the

letter

N,

then

n

is

also

recognized

as

a

NULL

indicator.

LOAD

332

Common

Criteria

Certification:

Administration

and

User

Documentation

Table

53.

Valid

file

type

modifiers

for

load:

ASC

file

formats

(Non-delimited

ASCII)

(continued)

Modifier

Description

packeddecimal

Loads

packed-decimal

data

directly,

since

the

binarynumerics

modifier

does

not

include

the

DECIMAL

field

type.

This

option

is

supported

only

with

positional

ASC,

using

fixed

length

records

specified

by

the

reclen

option.

The

noeofchar

option

is

assumed.

Supported

values

for

the

sign

nibble

are:

+

=

0xC

0xA

0xE

0xF

-

=

0xD

0xB

NULLs

cannot

be

present

in

the

data

for

columns

affected

by

this

modifier.

Blanks

(normally

interpreted

as

NULL)

are

interpreted

as

a

binary

value

when

this

modifier

is

used.

Regardless

of

the

server

platform,

the

byte

order

of

binary

data

in

the

load

source

file

is

assumed

to

be

big-endian;

that

is,

when

using

this

modifier

on

Windows

operating

systems,

the

byte

order

must

not

be

reversed.

This

modifier

cannot

be

used

with

the

implieddecimal

modifier.

reclen=x

x

is

an

integer

with

a

maximum

value

of

32

767.

x

characters

are

read

for

each

row,

and

a

new-line

character

is

not

used

to

indicate

the

end

of

the

row.

striptblanks

Truncates

any

trailing

blank

spaces

when

loading

data

into

a

variable-length

field.

If

this

option

is

not

specified,

blank

spaces

are

kept.

This

option

cannot

be

specified

together

with

striptnulls.

These

are

mutually

exclusive

options.

Note:

This

option

replaces

the

obsolete

t

option,

which

is

supported

for

back-level

compatibility

only.

striptnulls

Truncates

any

trailing

NULLs

(0x00

characters)

when

loading

data

into

a

variable-length

field.

If

this

option

is

not

specified,

NULLs

are

kept.

This

option

cannot

be

specified

together

with

striptblanks.

These

are

mutually

exclusive

options.

Note:

This

option

replaces

the

obsolete

padwithzero

option,

which

is

supported

for

back-level

compatibility

only.

zoneddecimal

Loads

zoned

decimal

data,

since

the

BINARYNUMERICS

modifier

does

not

include

the

DECIMAL

field

type.

This

option

is

supported

only

with

positional

ASC,

using

fixed

length

records

specified

by

the

RECLEN

option.

The

NOEOFCHAR

option

is

assumed.

Half-byte

sign

values

can

be

one

of

the

following:

+

=

0xC

0xA

0xE

0xF

-

=

0xD

0xB

Supported

values

for

digits

are

0x0

to

0x9.

Supported

values

for

zones

are

0x3

and

0xF.

LOAD

Chapter

13.

DB2

UDB

Commands

for

Administrators

333

Table

54.

Valid

file

type

modifiers

for

load:

DEL

file

formats

(Delimited

ASCII)

Modifier

Description

chardelx

x

is

a

single

character

string

delimiter.

The

default

value

is

a

double

quotation

mark

(").

The

specified

character

is

used

in

place

of

double

quotation

marks

to

enclose

a

character

string.23

If

you

wish

to

explicitly

specify

the

double

quotation

mark(″)

as

the

character

string

delimiter,

you

should

specify

it

as

follows:

modified

by

chardel""

The

single

quotation

mark

(')

can

also

be

specified

as

a

character

string

delimiter

as

follows:

modified

by

chardel''

coldelx

x

is

a

single

character

column

delimiter.

The

default

value

is

a

comma

(,).

The

specified

character

is

used

in

place

of

a

comma

to

signal

the

end

of

a

column.23

datesiso

Date

format.

Causes

all

date

data

values

to

be

loaded

in

ISO

format.

decplusblank

Plus

sign

character.

Causes

positive

decimal

values

to

be

prefixed

with

a

blank

space

instead

of

a

plus

sign

(+).

The

default

action

is

to

prefix

positive

decimal

values

with

a

plus

sign.

decptx

x

is

a

single

character

substitute

for

the

period

as

a

decimal

point

character.

The

default

value

is

a

period

(.).

The

specified

character

is

used

in

place

of

a

period

as

a

decimal

point

character.23

delprioritychar

The

current

default

priority

for

delimiters

is:

record

delimiter,

character

delimiter,

column

delimiter.

This

modifier

protects

existing

applications

that

depend

on

the

older

priority

by

reverting

the

delimiter

priorities

to:

character

delimiter,

record

delimiter,

column

delimiter.

Syntax:

db2

load

...

modified

by

delprioritychar

...

For

example,

given

the

following

DEL

data

file:

"Smith,

Joshua",4000,34.98<row

delimiter>

"Vincent,<row

delimiter>,

is

a

manager",

...

...

4005,44.37<row

delimiter>

With

the

delprioritychar

modifier

specified,

there

will

be

only

two

rows

in

this

data

file.

The

second

<row

delimiter>

will

be

interpreted

as

part

of

the

first

data

column

of

the

second

row,

while

the

first

and

the

third

<row

delimiter>

are

interpreted

as

actual

record

delimiters.

If

this

modifier

is

not

specified,

there

will

be

three

rows

in

this

data

file,

each

delimited

by

a

<row

delimiter>.

dldelx

x

is

a

single

character

DATALINK

delimiter.

The

default

value

is

a

semicolon

(;).

The

specified

character

is

used

in

place

of

a

semicolon

as

the

inter-field

separator

for

a

DATALINK

value.

It

is

needed

because

a

DATALINK

value

can

have

more

than

one

sub-value.

234

Note:

x

must

not

be

the

same

character

specified

as

the

row,

column,

or

character

string

delimiter.

keepblanks

Preserves

the

leading

and

trailing

blanks

in

each

field

of

type

CHAR,

VARCHAR,

LONG

VARCHAR,

or

CLOB.

Without

this

option,

all

leading

and

tailing

blanks

that

are

not

inside

character

delimiters

are

removed,

and

a

NULL

is

inserted

into

the

table

for

all

blank

fields.

The

following

example

illustrates

how

to

load

data

into

a

table

called

TABLE1,

while

preserving

all

leading

and

trailing

spaces

in

the

data

file:

db2

load

from

delfile3

of

del

modified

by

keepblanks

insert

into

table1

LOAD

334

Common

Criteria

Certification:

Administration

and

User

Documentation

Table

54.

Valid

file

type

modifiers

for

load:

DEL

file

formats

(Delimited

ASCII)

(continued)

Modifier

Description

nochardel

The

load

utility

will

assume

all

bytes

found

between

the

column

delimiters

to

be

part

of

the

column’s

data.

Character

delimiters

will

be

parsed

as

part

of

column

data.

This

option

should

not

be

specified

if

the

data

was

exported

using

DB2

(unless

nochardel

was

specified

at

export

time).

It

is

provided

to

support

vendor

data

files

that

do

not

have

character

delimiters.

Improper

usage

might

result

in

data

loss

or

corruption.

This

option

cannot

be

specified

with

chardelx,

delprioritychar

or

nodoubledel.

These

are

mutually

exclusive

options.

nodoubledel

Suppresses

recognition

of

double

character

delimiters.

Table

55.

Valid

file

type

modifiers

for

load:

IXF

file

format

Modifier

Description

forcein

Directs

the

utility

to

accept

data

despite

code

page

mismatches,

and

to

suppress

translation

between

code

pages.

Fixed

length

target

fields

are

checked

to

verify

that

they

are

large

enough

for

the

data.

If

nochecklengths

is

specified,

no

checking

is

done,

and

an

attempt

is

made

to

load

each

row.

nochecklengths

If

nochecklengths

is

specified,

an

attempt

is

made

to

load

each

row,

even

if

the

source

data

has

a

column

definition

that

exceeds

the

size

of

the

target

table

column.

Such

rows

can

be

successfully

loaded

if

code

page

conversion

causes

the

source

data

to

shrink;

for

example,

4-byte

EUC

data

in

the

source

could

shrink

to

2-byte

DBCS

data

in

the

target,

and

require

half

the

space.

This

option

is

particularly

useful

if

it

is

known

that

the

source

data

will

fit

in

all

cases

despite

mismatched

column

definitions.

Notes:

1.

Double

quotation

marks

around

the

date

format

string

are

mandatory.

Field

separators

cannot

contain

any

of

the

following:

a-z,

A-Z,

and

0-9.

The

field

separator

should

not

be

the

same

as

the

character

delimiter

or

field

delimiter

in

the

DEL

file

format.

A

field

separator

is

optional

if

the

start

and

end

positions

of

an

element

are

unambiguous.

Ambiguity

can

exist

if

(depending

on

the

modifier)

elements

such

as

D,

H,

M,

or

S

are

used,

because

of

the

variable

length

of

the

entries.

For

time

stamp

formats,

care

must

be

taken

to

avoid

ambiguity

between

the

month

and

the

minute

descriptors,

since

they

both

use

the

letter

M.

A

month

field

must

be

adjacent

to

other

date

fields.

A

minute

field

must

be

adjacent

to

other

time

fields.

Following

are

some

ambiguous

time

stamp

formats:

"M"

(could

be

a

month,

or

a

minute)

"M:M"

(Which

is

which?)

"M:YYYY:M"

(Both

are

interpreted

as

month.)

"S:M:YYYY"

(adjacent

to

both

a

time

value

and

a

date

value)

In

ambiguous

cases,

the

utility

will

report

an

error

message,

and

the

operation

will

fail.

Following

are

some

unambiguous

time

stamp

formats:

"M:YYYY"

(Month)

"S:M"

(Minute)

"M:YYYY:S:M"

(Month....Minute)

"M:H:YYYY:M:D"

(Minute....Month)

Some

characters,

such

as

double

quotation

marks

and

back

slashes,

must

be

preceded

by

an

escape

character

(for

example,

\).

LOAD

Chapter

13.

DB2

UDB

Commands

for

Administrators

335

2.

The

character

must

be

specified

in

the

code

page

of

the

source

data.

The

character

code

point

(instead

of

the

character

symbol),

can

be

specified

using

the

syntax

xJJ

or

0xJJ,

where

JJ

is

the

hexadecimal

representation

of

the

code

point.

For

example,

to

specify

the

#

character

as

a

column

delimiter,

use

one

of

the

following:

...

modified

by

coldel#

...

...

modified

by

coldel0x23

...

...

modified

by

coldelX23

...

3.

Delimiter

restrictions

for

moving

data

lists

restrictions

that

apply

to

the

characters

that

can

be

used

as

delimiter

overrides.

4.

Even

if

the

DATALINK

delimiter

character

is

a

valid

character

within

the

URL

syntax,

it

will

lose

its

special

meaning

within

the

scope

of

the

load

operation.

5.

The

load

utility

does

not

issue

a

warning

if

an

attempt

is

made

to

use

unsupported

file

types

with

the

MODIFIED

BY

option.

If

this

is

attempted,

the

load

operation

fails,

and

an

error

code

is

returned.

Table

56.

LOAD

behavior

when

using

codepage

and

usegraphiccodepage

codepage=N

usegraphiccodepage

LOAD

behavior

Absent

Absent

All

data

in

the

file

is

assumed

to

be

in

the

database

code

page,

not

the

application

code

page,

even

if

the

CLIENT

option

is

specified.

Present

Absent

All

data

in

the

file

is

assumed

to

be

in

code

page

N.

Warning:

Graphic

data

will

be

corrupted

when

loaded

into

the

database

if

N

is

a

single-byte

code

page.

Absent

Present

Character

data

in

the

file

is

assumed

to

be

in

the

database

code

page,

even

if

the

CLIENT

option

is

specified.

Graphic

data

is

assumed

to

be

in

the

code

page

of

the

database

graphic

data,

even

if

the

CLIENT

option

is

specified.

If

the

database

code

page

is

single-byte,

then

all

data

is

assumed

to

be

in

the

database

code

page.

Warning:

Graphic

data

will

be

corrupted

when

loaded

into

a

single-byte

database.

Present

Present

Character

data

is

assumed

to

be

in

code

page

N.

Graphic

data

is

assumed

to

be

in

the

graphic

code

page

of

N.

If

N

is

a

single-byte

or

double-byte

code

page,

then

all

data

is

assumed

to

be

in

code

page

N.

Warning:

Graphic

data

will

be

corrupted

when

loaded

into

the

database

if

N

is

a

single-byte

code

page.

Related

reference:

v

“LOAD”

on

page

304

v

“db2Load

-

Load”

on

page

437

v

“Delimiter

restrictions

for

moving

data”

in

the

Command

Reference

MIGRATE

DATABASE

Converts

previous

versions

of

DB2

databases

to

current

formats.

LOAD

336

Common

Criteria

Certification:

Administration

and

User

Documentation

Attention:

The

database

pre-migration

tool

must

be

run

prior

to

DB2

Version

8

installation

(on

Windows

operating

systems),

or

before

instance

migration

(on

UNIX

based

systems),

because

it

cannot

be

executed

on

DB2

Version

8.

On

Windows

the

pre-migration

tool

is

db2ckmig.

On

UNIX

systems,

db2imigr

performs

similar

tasks.

Backup

all

databases

prior

to

migration,

and

prior

to

DB2

Version

8

installation

on

Windows

operating

systems.

Authorization:

sysadm

Required

connection:

This

command

establishes

a

database

connection.

Command

syntax:

��

MIGRATE

DATABASE

DB

database-alias

�

�

USER

username

USING

password

��

Command

parameters:

DATABASE

database-alias

Specifies

the

alias

of

the

database

to

be

migrated

to

the

currently

installed

version

of

the

database

manager.

USER

username

Identifies

the

user

name

under

which

the

database

is

to

be

migrated.

USING

password

The

password

used

to

authenticate

the

user

name.

If

the

password

is

omitted,

but

a

user

name

was

specified,

the

user

is

prompted

to

enter

it.

Examples:

The

following

example

migrates

the

database

cataloged

under

the

database

alias

sales:

db2

migrate

database

sales

Usage

notes:

This

command

will

only

migrate

a

database

to

a

newer

version,

and

cannot

be

used

to

convert

a

migrated

database

to

its

previous

version.

The

database

must

be

cataloged

before

migration.

If

an

error

occurs

during

migration,

it

might

be

necessary

to

issue

the

TERMINATE

command

before

attempting

the

suggested

user

response.

For

example,

if

a

log

full

error

occurs

during

migration

(SQL1704:

Database

migration

failed.

Reason

code

″3″.),

it

will

be

necessary

to

issue

the

TERMINATE

command

before

increasing

the

values

of

the

database

configuration

parameters

LOGPRIMARY

and

LOGFILSIZ.

The

CLP

must

refresh

its

database

directory

cache

if

the

migration

failure

occurs

after

the

database

has

already

been

relocated

(which

is

likely

to

be

the

case

when

a

″log

full″

error

returns).

MIGRATE

DATABASE

Chapter

13.

DB2

UDB

Commands

for

Administrators

337

When

a

database

is

migrated

to

Version

8,

a

detailed

deadlocks

event

monitor

is

created.

As

with

any

monitor,

there

is

some

overhead

associated

with

this

event

monitor.

You

can

drop

the

deadlocks

event

monitor

by

issuing

the

DROP

EVENT

MONITOR

command.

Related

reference:

v

“TERMINATE

Command”

in

the

Command

Reference

QUIESCE

Forces

all

users

off

the

specified

instance

and

database

and

puts

it

into

a

quiesced

mode.

In

quiesced

mode,

users

cannot

connect

from

outside

of

the

database

engine.

While

the

database

instance

or

database

is

in

quiesced

mode,

you

can

perform

administrative

tasks

on

it.

After

administrative

tasks

are

complete,

use

the

UNQUIESCE

command

to

activate

the

instance

and

database

and

allow

other

users

to

connect

to

the

database

but

avoid

having

to

shut

down

and

perform

another

database

start.

In

this

mode

only

users

with

authority

in

this

restricted

mode

are

allowed

to

attach

or

connect

to

the

instance/database.

Users

with

sysadm,

sysmaint,

and

sysctrl

authority

always

have

access

to

an

instance

while

it

is

quiesced,

and

users

with

sysadm

and

dbadmauthority

always

have

access

to

a

database

while

it

is

quiesced.

Scope:

QUIESCE

DATABASE

results

in

all

objects

in

the

database

being

in

the

quiesced

mode.

Only

the

allowed

user/group

and

sysadm,

sysmaint,

dbadm,

or

sysctrl

will

be

able

to

access

the

database

or

its

objects.

QUIESCE

INSTANCE

instance-name

means

the

instance

and

the

databases

in

the

instance

instance-name

will

be

in

quiesced

mode.

The

instance

will

be

accessible

just

for

sysadm,

sysmaint,

and

sysctrl

and

allowed

user/group.

If

an

instance

is

in

quiesced

mode,

a

database

in

the

instance

cannot

be

put

in

quiesced

mode.

Authorization:

One

of

the

following:

For

database

level

quiesce:

v

sysadm

v

dbadm

For

instance

level

quiesce:

v

sysadm

v

sysctrl

Command

syntax:

��

QUIESCE

DATABASE

DB

IMMEDIATE

DEFER

WITH

TIMEOUT

minutes

�

MIGRATE

DATABASE

338

Common

Criteria

Certification:

Administration

and

User

Documentation

�

FORCE

CONNECTIONS

��

��

QUIESCE

INSTANCE

instance-name

USER

user-name

GROUP

group-name

�

�

IMMEDIATE

DEFER

WITH

TIMEOUT

minutes

FORCE

CONNECTIONS

��

Required

connection:

Database

(Database

connection

is

not

required

for

an

instance

quiesce.)

Command

parameters:

DEFER

Wait

for

applications

until

they

commit

the

current

unit

of

work.

WITH

TIMEOUT

Specifies

a

time,

in

minutes,

to

wait

for

applications

to

commit

the

current

unit

of

work.

If

no

value

is

specified,

in

a

single-partition

database

environment,

the

default

value

is

10

minutes.

In

a

partitioned

database

environment

the

value

specified

by

the

start_stop_timeout

database

manager

configuration

parameter

will

be

used.

IMMEDIATE

Do

not

wait

for

the

transactions

to

be

committed,

immediately

rollback

the

transactions.

FORCE

CONNECTIONS

Force

the

connections

off.

DATABASE

Quiesce

the

database.

All

objects

in

the

database

will

be

placed

in

quiesced

mode.

Only

specified

users

in

specified

groups

and

users

with

sysadm,

sysmaint,

and

sysctrl

authority

will

be

able

to

access

to

the

database

or

its

objects.

INSTANCE

instance-name

The

instance

instance-name

and

the

databases

in

the

instance

will

be

placed

in

quiesced

mode.

The

instance

will

be

accessible

only

to

users

with

sysadm,

sysmaint,

and

sysctrl

authority

and

specified

users

in

specified

groups.

USER

user-name

Specifies

the

name

of

a

user

who

will

be

allowed

access

to

the

instance

while

it

is

quiesced.

GROUP

group-name

Specifies

the

name

of

a

group

that

will

be

allowed

access

to

the

instance

while

the

instance

is

quiesced.

Examples:

QUIESCE

Chapter

13.

DB2

UDB

Commands

for

Administrators

339

In

the

following

example,

the

default

behavior

is

to

force

connections,

so

it

does

not

need

to

be

explicitly

stated

and

can

be

removed

from

this

example.

db2

quiesce

instance

crankarm

user

frank

immediate

force

connections

The

following

example

forces

off

all

users

with

connections

to

the

database.

db2

quiesce

db

immediate

v

The

first

example

will

quiesce

the

instance

crankarm,

while

allowing

user

frank

to

continue

using

the

database.

The

second

example

will

quiesce

the

database

you

are

attached

to,

preventing

access

by

all

users

except

those

with

one

of

the

following

authorities:

sysadm,

sysmaint,

sysctrl,

or

dbadm.

v

This

command

will

force

all

users

off

the

database

or

instance

if

FORCE

CONNECTION

option

is

supplied.

FORCE

CONNECTION

is

the

default

behavior;

the

parameter

is

allowed

in

the

command

for

compatibility

reasons.

v

The

command

will

be

synchronized

with

the

FORCE

and

will

only

complete

once

the

FORCE

has

completed.

Usage

notes:

v

After

QUIESCE

INSTANCE,

only

users

with

sysadm,

sysmaint,

or

sysctrl

authority

or

a

user

name

and

group

name

provided

as

parameters

to

the

command

can

connect

to

the

instance.

v

After

QUIESCE

DATABASE,

users

with

sysadm,

sysmaint,

sysctrl,

or

dbadm

authority,

and

GRANT/REVOKE

privileges

can

designate

who

will

be

able

to

connect.

This

information

will

be

stored

permanently

in

the

database

catalog

tables.

For

example,

grant

quiesce_connect

on

database

to

<username/groupname>

revoke

quiesce_connect

on

database

from

<username/groupname>

QUIESCE

TABLESPACES

FOR

TABLE

Quiesces

table

spaces

for

a

table.

There

are

three

valid

quiesce

modes:

share,

intent

to

update,

and

exclusive.

There

are

three

possible

states

resulting

from

the

quiesce

function:

QUIESCED

SHARE,

QUIESCED

UPDATE,

and

QUIESCED

EXCLUSIVE.

Scope:

In

a

single-partition

environment,

this

command

quiesces

all

table

spaces

involved

in

a

load

operation

in

exclusive

mode

for

the

duration

of

the

load

operation.

In

a

partitioned

database

environment,

this

command

acts

locally

on

a

node.

It

quiesces

only

that

portion

of

table

spaces

belonging

to

the

node

on

which

the

load

operation

is

performed.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

v

sysmaint

v

dbadm

v

load

QUIESCE

340

Common

Criteria

Certification:

Administration

and

User

Documentation

Required

connection:

Database

Command

syntax:

��

QUIESCE

TABLESPACES

FOR

TABLE

tablename

schema.tablename

SHARE

INTENT

TO

UPDATE

EXCLUSIVE

RESET

��

Command

parameters:

TABLE

tablename

Specifies

the

unqualified

table

name.

The

table

cannot

be

a

system

catalog

table.

schema.tablename

Specifies

the

qualified

table

name.

If

schema

is

not

provided,

the

CURRENT

SCHEMA

will

be

used.

The

table

cannot

be

a

system

catalog

table.

SHARE

Specifies

that

the

quiesce

is

to

be

in

share

mode.

When

a

″quiesce

share″

request

is

made,

the

transaction

requests

intent

share

locks

for

the

table

spaces

and

a

share

lock

for

the

table.

When

the

transaction

obtains

the

locks,

the

state

of

the

table

spaces

is

changed

to

QUIESCED

SHARE.

The

state

is

granted

to

the

quiescer

only

if

there

is

no

conflicting

state

held

by

other

users.

The

state

of

the

table

spaces,

along

with

the

authorization

ID

and

the

database

agent

ID

of

the

quiescer,

are

recorded

in

the

table

space

table,

so

that

the

state

is

persistent.

The

table

cannot

be

changed

while

the

table

spaces

for

the

table

are

in

QUIESCED

SHARE

state.

Other

share

mode

requests

to

the

table

and

table

spaces

are

allowed.

When

the

transaction

commits

or

rolls

back,

the

locks

are

released,

but

the

table

spaces

for

the

table

remain

in

QUIESCED

SHARE

state

until

the

state

is

explicitly

reset.

INTENT

TO

UPDATE

Specifies

that

the

quiesce

is

to

be

in

intent

to

update

mode.

When

a

″quiesce

intent

to

update″

request

is

made,

the

table

spaces

are

locked

in

intent

exclusive

(IX)

mode,

and

the

table

is

locked

in

update

(U)

mode.

The

state

of

the

table

spaces

is

recorded

in

the

table

space

table.

EXCLUSIVE

Specifies

that

the

quiesce

is

to

be

in

exclusive

mode.

When

a

″quiesce

exclusive″

request

is

made,

the

transaction

requests

super

exclusive

locks

on

the

table

spaces,

and

a

super

exclusive

lock

on

the

table.

When

the

transaction

obtains

the

locks,

the

state

of

the

table

spaces

changes

to

QUIESCED

EXCLUSIVE.

The

state

of

the

table

spaces,

along

with

the

authorization

ID

and

the

database

agent

ID

of

the

quiescer,

are

recorded

in

the

table

space

table.

Since

the

table

spaces

are

held

in

super

exclusive

mode,

no

other

access

to

the

table

spaces

is

allowed.

The

user

who

invokes

the

quiesce

function

(the

quiescer)

has

exclusive

access

to

the

table

and

the

table

spaces.

QUIESCE

TABLESPACES

FOR

TABLE

Chapter

13.

DB2

UDB

Commands

for

Administrators

341

RESET

Specifies

that

the

state

of

the

table

spaces

is

to

be

reset

to

normal.

Examples:

db2

quiesce

tablespaces

for

table

staff

share

db2

quiesce

tablespaces

for

table

boss.org

intent

to

update

Usage

notes:

This

command

is

not

supported

for

declared

temporary

tables.

A

quiesce

is

a

persistent

lock.

Its

benefit

is

that

it

persists

across

transaction

failures,

connection

failures,

and

even

across

system

failures

(such

as

power

failure,

or

reboot).

A

quiesce

is

owned

by

a

connection.

If

the

connection

is

lost,

the

quiesce

remains,

but

it

has

no

owner,

and

is

called

a

phantom

quiesce.

For

example,

if

a

power

outage

caused

a

load

operation

to

be

interrupted

during

the

delete

phase,

the

table

spaces

for

the

loaded

table

would

be

left

in

delete

pending,

quiesce

exclusive

state.

Upon

database

restart,

this

quiesce

would

be

an

unowned

(or

phantom)

quiesce.

The

removal

of

a

phantom

quiesce

requires

a

connection

with

the

same

user

ID

used

when

the

quiesce

mode

was

set.

To

remove

a

phantom

quiesce:

1.

Connect

to

the

database

with

the

same

user

ID

used

when

the

quiesce

mode

was

set.

2.

Use

the

LIST

TABLESPACES

command

to

determine

which

table

space

is

quiesced.

3.

Re-quiesce

the

table

space

using

the

current

quiesce

state.

For

example:

db2

quiesce

tablespaces

for

table

mytable

exclusive

Once

completed,

the

new

connection

owns

the

quiesce,

and

the

load

operation

can

be

restarted.

There

is

a

limit

of

five

quiescers

on

a

table

space

at

any

given

time.

A

quiescer

can

upgrade

the

state

of

a

table

space

from

a

less

restrictive

state

to

a

more

restrictive

one

(for

example,

S

to

U,

or

U

to

X).

If

a

user

requests

a

state

lower

than

one

that

is

already

held,

the

original

state

is

returned.

States

are

not

downgraded.

Related

reference:

v

“LOAD”

on

page

304

RECONCILE

Validates

the

references

to

files

for

the

DATALINK

data

of

a

table.

The

rows

for

which

the

references

to

files

cannot

be

established

are

copied

to

the

exception

table

(if

specified),

and

modified

in

the

input

table.

QUIESCE

TABLESPACES

FOR

TABLE

342

Common

Criteria

Certification:

Administration

and

User

Documentation

Reconcile

produces

a

message

file

(reconcil.msg)

in

the

instance

path

on

UNIX

based

systems,

and

in

the

install

path

on

Windows

platforms.

This

file

will

contain

warning

and

error

messages

that

are

generated

during

validation

of

the

exception

table.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

v

sysmaint

v

dbadm

v

CONTROL

privilege

on

the

table.

Required

connection:

Database

Command

syntax:

��

RECONCILE

table-name

DLREPORT

filename

FOR

EXCEPTION

table-name

��

Command

parameters:

RECONCILE

table-name

Specifies

the

table

on

which

reconciliation

is

to

be

performed.

An

alias,

or

the

fully

qualified

or

unqualified

table

name

can

be

specified.

A

qualified

table

name

is

in

the

form

schema.tablename.

If

an

unqualified

table

name

is

specified,

the

table

will

be

qualified

with

the

current

authorization

ID.

DLREPORT

filename

Specifies

the

file

that

will

contain

information

about

the

files

that

are

unlinked

during

reconciliation.

The

name

must

be

fully

qualified

(for

example,

/u/johnh/report).

The

reconcile

utility

appends

a

.ulk

extension

to

the

specified

file

name

(for

example,

report.ulk).

When

no

table

is

provided

with

the

FOR

EXCEPTION

clause,

a

.exp

file

extension

is

appended

to

the

exception

report

file.

FOR

EXCEPTION

table-name

Specifies

the

exception

table

into

which

rows

that

encounter

link

failures

for

DATALINK

values

are

to

be

copied.

If

no

table

is

specified,

an

exception

report

file

is

generated

in

the

directory

specified

in

the

″DLREPORT″

option.

Examples:

The

following

command

reconciles

the

table

DEPT,

and

writes

exceptions

to

the

exception

table

EXCPTAB,

which

was

created

by

the

user.

Information

about

files

that

were

unlinked

during

reconciliation

is

written

into

the

file

report.ulk,

which

is

created

in

the

directory

/u/johnh.

If

FOR

EXCEPTION

excptab

had

not

been

specified,

the

exception

information

would

have

been

written

to

the

file

report.exp,

created

in

the

/u/johnh

directory.

db2

reconcile

dept

dlreport

/u/johnh/report

for

exception

excptab

Usage

notes:

RECONCILE

Chapter

13.

DB2

UDB

Commands

for

Administrators

343

During

reconciliation,

attempts

are

made

to

link

files

which

exist

according

to

table

data,

but

which

do

not

exist

according

to

Data

Links

File

Manager

metadata,

if

no

other

conflict

exists.

A

required

DB2

Data

Links

Manager

is

one

which

has

a

referenced

DATALINK

value

in

the

table.

Reconcile

tolerates

the

unavailability

of

a

required

DB2

Data

Links

Manager

as

well

as

other

DB2

Data

Links

Managers

that

are

configured

to

the

database

but

are

not

part

of

the

table

data.

Reconciliation

is

performed

with

respect

to

all

DATALINK

data

in

the

table.

If

file

references

cannot

be

reestablished,

the

violating

rows

are

inserted

into

the

exception

table

(if

specified).

These

rows

are

not

deleted

from

the

input

table.

To

ensure

file

reference

integrity,

the

offending

DATALINK

values

are

nulled.

If

the

column

is

defined

as

not

nullable,

the

DATALINK

values

are

replaced

by

a

zero

length

URL.

If

a

file

is

linked

under

a

DATALINK

column

defined

with

WRITE

PERMISSION

ADMIN

and

modified

but

not

yet

committed

(that

is,

the

file

is

still

in

the

update-in-progress

state),

the

reconciliation

process

renames

the

modified

file

to

a

filename

with

.mod

as

the

suffix.

It

also

removes

the

file

from

the

update-in-progress

state.

If

the

DATALINK

column

is

defined

with

RECOVERY

YES,

the

previous

archive

version

is

restored.

If

an

exception

table

is

not

specified,

the

host

name,

file

name,

column

ID,

and

reason

code

for

each

of

the

DATALINK

column

values

for

which

file

references

could

not

be

reestablished

are

copied

to

an

exception

report

file

(<filename>.exp).

If

the

file

reference

could

not

be

reestablished

because

the

DB2

Data

Links

Manager

is

unavailable

or

was

dropped

from

the

database

using

the

DROP

DATALINKS

MANAGER

command,

the

file

name

reported

in

the

exception

report

file

is

not

the

full

file

name.

The

prefix

will

be

missing.

For

example,

if

the

original

DATALINK

value

was

http://host.com/dlfs/x/y/a.b,

the

value

reported

in

the

exception

table

will

be

http://host.com/x/y/a.b.

The

prefix

name

’dlfs’

will

not

be

included.

If

the

DATALINK

column

is

defined

with

RECOVERY

YES,

the

previous

archive

version

is

restored.

At

the

end

of

the

reconciliation

process,

the

table

is

taken

out

of

datalink

reconcile

pending

(DRP)

state

only

if

reconcile

processing

is

complete

on

all

the

required

DB2

Data

Links

Managers.

If

reconcile

processing

is

pending

on

any

of

the

required

DB2

Data

Links

Managers

(because

they

were

unavailable),

the

table

will

remain,

or

be

placed,

in

DRP

state.

If

for

some

reason,

an

exception

occurred

on

one

of

the

affected

Data

Links

Managers

such

that

the

reconciliation

could

not

be

completed

successfully,

the

table

might

also

be

placed

in

a

DRNP

state,

for

which

further

manual

intervention

will

be

required

before

full

referential

integrity

for

that

table

can

be

restored.

The

exception

table,

if

specified,

should

be

created

before

the

reconcile

utility

is

run.

The

exception

table

used

with

the

reconcile

utility

is

identical

to

the

exception

table

used

by

the

load

utility.

The

exception

table

mimics

the

definition

of

the

table

being

reconciled.

It

can

have

one

or

two

optional

columns

following

the

data

columns.

The

first

optional

column

is

the

TIMESTAMP

column.

It

will

contain

the

time

stamp

for

when

the

reconcile

operation

was

started.

The

second

optional

column

should

be

of

type

CLOB

(32KB

or

larger).

It

will

contain

the

IDs

of

columns

with

link

failures,

and

the

reasons

for

those

failures.

The

DATALINK

columns

in

the

exception

table

should

specify

NO

LINK

CONTROL.

This

ensures

that

a

file

is

not

linked

when

a

row

(with

a

RECONCILE

344

Common

Criteria

Certification:

Administration

and

User

Documentation

DATALINK

column)

is

inserted,

and

that

an

access

token

is

not

generated

when

rows

are

selected

from

the

exception

table.

Information

in

the

MESSAGE

column

is

organized

according

to

the

following

structure:

Field

number

Content

Size

Comments

1

Number

of

violations

5

characters

Right

justified

padded

with

’0’

2

Type

of

violation

1

character

’L’

-

DATALINK

violation

3

Length

of

violation

5

characters

Right

justified

padded

with

’0’

4

Number

of

violating

4

characters

Right

justified

DATALINK

columns

padded

with

’0’

5

DATALINK

column

number

4

characters

Right

justified

of

the

first

violating

padded

with

’0’

column

6

Reason

for

violation

5

characters

Right

justified

padded

with

’0’

Repeat

Fields

5

and

6

for

each

violating

column

The

following

is

a

list

of

possible

violations:

00001-File

could

not

be

found

by

DB2

Data

Links

Manager.

00002-File

already

linked.

00003-File

in

modified

state.

00004-Prefix

name

not

registered.

00005-File

could

not

be

retrieved.

00006-File

entry

missing.

This

will

happen

for

RECOVERY

NO,

READ

PERMISSION

FS,

WRITE

PERMISSION

FS

DATALINK

columns.

Use

update

to

relink

the

file.

00007-File

is

in

unlink

state.

00008-File

restored

but

modified

file

has

been

copied

to

<filename>.MOD

00009-File

is

already

linked

to

another

table.

00010-DB2

Data

Links

Manager

referenced

by

the

DATALINK

value

has

been

dropped

from

the

database

using

the

DROP

DATALINKS

MANAGER

command.

00999-File

could

not

be

linked.

Example:

00001L000220002000400002000500001

00001

-

Specifies

that

the

number

of

violations

is

1.

L

-

Specifies

that

the

type

of

violation

is

’DATALINK

violation’.

00022

-

Specifies

that

the

length

of

the

violation

is

12

bytes.

0002

-

Specifies

that

there

are

2

columns

in

the

row

which

encountered

link

failures.

0004,00002

0005,00001

-

Specifies

the

column

ID

and

the

reason

for

the

violation.

If

the

message

column

is

present,

the

time

stamp

column

must

also

be

present.

RECONCILE

Chapter

13.

DB2

UDB

Commands

for

Administrators

345

Related

concepts:

v

“Failure

and

recovery

overview”

in

the

DB2

Data

Links

Manager

Administration

Guide

and

Reference

REORG

INDEXES/TABLE

Reorganizes

an

index

or

a

table.

The

index

option

reorganizes

all

indexes

defined

on

a

table

by

rebuilding

the

index

data

into

unfragmented,

physically

contiguous

pages.

If

you

specify

the

CLEANUP

ONLY

option

of

the

index

option,

cleanup

is

performed

without

rebuilding

the

indexes.

This

command

cannot

be

used

against

indexes

on

declared

temporary

tables

(SQLSTATE

42995).

The

table

option

reorganizes

a

table

by

reconstructing

the

rows

to

eliminate

fragmented

data,

and

by

compacting

information.

Scope:

This

command

affects

all

database

partitions

in

the

database

partition

group.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

v

sysmaint

v

dbadm

v

CONTROL

privilege

on

the

table.

Required

connection:

Database

Command

syntax:

��

REORG

TABLE

table-name

Table

Clause

INDEXES

ALL

FOR

TABLE

table-name

Index

Clause

�

�

Database

Partition

Clause

��

Table

Clause:

INDEX

index-name

�

RECONCILE

346

Common

Criteria

Certification:

Administration

and

User

Documentation

�

ALLOW

READ

ACCESS

ALLOW

NO

ACCESS

USE

tbspace

INDEXSCAN

LONGLOBDATA

ALLOW

WRITE

ACCESS

START

INPLACE

ALLOW

READ

ACCESS

NOTRUNCATE

TABLE

RESUME

STOP

PAUSE

Index

Clause:

ALLOW

READ

ACCESS

ALLOW

NO

ACCESS

ALLOW

WRITE

ACCESS

ALL

CLEANUP

ONLY

PAGES

CONVERT

Database

Partition

Clause:

ON

�

�

,

DBPARTITIONNUM

(

db-partition-number1

)

DBPARTITIONNUMS

TO

db-partition-number2

ALL

DBPARTITIONNUMS

,

EXCEPT

DBPARTITIONNUM

(

db-partition-number1

)

DBPARTITIONNUMS

TO

db-partition-number2

Command

parameters:

INDEXES

ALL

FOR

TABLE

table-name

Specifies

the

table

whose

indexes

are

to

be

reorganized.

The

table

can

be

in

a

local

or

a

remote

database.

ALLOW

NO

ACCESS

Specifies

that

no

other

users

can

access

the

table

while

the

indexes

are

being

reorganized.

ALLOW

READ

ACCESS

Specifies

that

other

users

can

have

read-only

access

to

the

table

while

the

indexes

are

being

reorganized.

This

is

the

default.

ALLOW

WRITE

ACCESS

Specifies

that

other

users

can

read

from

and

write

to

the

table

while

the

indexes

are

being

reorganized.

CLEANUP

ONLY

When

CLEANUP

ONLY

is

requested,

a

cleanup

rather

than

a

full

reorganization

will

be

done.

The

indexes

will

not

be

rebuilt

and

any

pages

freed

up

will

be

available

for

reuse

by

indexes

defined

on

this

table

only.

The

CLEANUP

ONLY

PAGES

option

will

search

for

and

free

committed

pseudo

empty

pages.

A

committed

pseudo

empty

page

is

one

where

all

the

keys

on

the

page

are

marked

as

deleted

and

all

these

deletions

are

known

to

be

committed.

The

number

of

pseudo

empty

pages

in

an

indexes

can

be

determined

by

running

runstats

and

looking

at

the

NUM

EMPTY

LEAFS

column

in

SYSCAT.INDEXES.

The

PAGES

option

will

clean

the

NUM

EMPTY

LEAFS

if

they

are

determined

to

be

committed.

REORG

INDEXES/TABLE

Chapter

13.

DB2

UDB

Commands

for

Administrators

347

The

CLEANUP

ONLY

ALL

option

will

free

committed

pseudo

empty

pages,

as

well

as

remove

committed

pseudo

deleted

keys

from

pages

that

are

not

pseudo

empty.

This

option

will

also

try

to

merge

adjacent

leaf

pages

if

doing

so

will

result

in

a

merged

leaf

page

that

has

at

least

PCTFREE

free

space

on

the

merged

leaf

page,

where

PCTFREE

is

the

percent

free

space

defined

for

the

index

at

index

creation

time.

The

default

PCTFREE

is

ten

percent.

If

two

pages

can

be

merged,

one

of

the

pages

will

be

freed.

The

number

of

pseudo

deleted

keys

in

an

index

,

excluding

those

on

pseudo

empty

pages,

can

be

determined

by

running

runstats

and

then

selecting

the

NUMRIDS

DELETED

from

SYSCAT.INDEXES.

The

ALL

option

will

clean

the

NUMRIDS

DELETED

and

the

NUM

EMPTY

LEAFS

if

they

are

determined

to

be

committed.

ALL

Specifies

that

indexes

should

be

cleaned

up

by

removing

committed

pseudo

deleted

keys

and

committed

pseudo

empty

pages.

PAGES

Specifies

that

committed

pseudo

empty

pages

should

be

removed

from

the

index

tree.

This

will

not

clean

up

pseudo

deleted

keys

on

pages

that

are

not

pseudo

empty.

Since

it

is

only

checking

the

pseudo

empty

leaf

pages,

it

is

considerably

faster

than

using

the

ALL

option

in

most

cases.

CONVERT

If

you

are

not

sure

whether

the

table

you

are

operating

on

has

a

type-1

or

type-2

index,

but

want

type-2

indexes,

you

can

use

the

CONVERT

option.

If

the

index

is

type

1,

this

option

will

convert

it

into

type

2.

If

the

index

is

already

type

2,

this

option

has

no

effect.

All

indexes

created

by

DB2

prior

to

Version

8

are

type-1

indexes.

All

indexes

created

by

Version

8

are

Type

2

indexes,

except

when

you

create

an

index

on

a

table

that

already

has

a

type

1

index.

In

this

case

the

new

index

will

also

be

of

type

1.

Using

the

INSPECT

command

to

determine

the

index

type

can

be

slow.

CONVERT

allows

you

to

ensure

that

the

new

index

will

be

Type

2

without

your

needing

to

determine

its

original

type.

Use

the

ALLOW

READ

ACCESS

or

ALLOW

WRITE

ACCESS

option

to

allow

other

transactions

either

read-only

or

read-write

access

to

the

table

while

the

indexes

are

being

reorganized.

Note

that,

while

ALLOW

READ

ACCESS

and

ALLOW

WRITE

ACCESS

allow

access

to

the

table,

during

the

period

in

which

the

reorganized

copies

of

the

indexes

are

made

available,

no

access

to

the

table

is

allowed.

TABLE

table-name

Specifies

the

table

to

reorganize.

The

table

can

be

in

a

local

or

a

remote

database.

The

name

or

alias

in

the

form:

schema.table-name

can

be

used.

The

schema

is

the

user

name

under

which

the

table

was

created.

If

you

omit

the

schema

name,

the

default

schema

is

assumed.

Note:

For

typed

tables,

the

specified

table

name

must

be

the

name

of

the

hierarchy’s

root

table.

You

cannot

specify

an

index

for

the

reorganization

of

a

multidimensional

clustering

(MDC)

table.

Also

note

that

in

place

reorganization

of

tables

cannot

be

used

for

MDC

tables.

REORG

INDEXES/TABLE

348

Common

Criteria

Certification:

Administration

and

User

Documentation

INDEX

index-name

Specifies

the

index

to

use

when

reorganizing

the

table.

If

you

do

not

specify

the

fully

qualified

name

in

the

form:

schema.index-name,

the

default

schema

is

assumed.

The

schema

is

the

user

name

under

which

the

index

was

created.

The

database

manager

uses

the

index

to

physically

reorder

the

records

in

the

table

it

is

reorganizing.

For

an

in

place

table

reorganization,

if

a

clustering

index

is

defined

on

the

table

and

an

index

is

specified,

it

must

be

clustering

index.

If

the

in

place

option

is

not

specified,

any

index

specified

will

be

used.

If

you

do

not

specify

the

name

of

an

index,

the

records

are

reorganized

without

regard

to

order.

If

the

table

has

a

clustering

index

defined,

however,

and

no

index

is

specified,

then

the

clustering

index

is

used

to

cluster

the

table.

You

cannot

specify

an

index

if

you

are

reorganizing

an

MDC

table.

INPLACE

Reorganizes

the

table

while

permitting

user

access.

In

place

table

reorganization

is

allowed

only

on

tables

with

type-2

indexes

and

without

extended

indexes.

In

place

table

reorganization

takes

place

asynchronously,

and

might

not

be

effective

immediately.

ALLOW

READ

ACCESS

Allow

only

read

access

to

the

table

during

reorganization.

ALLOW

WRITE

ACCESS

Allow

write

access

to

the

table

during

reorganization.

This

is

the

default

behavior.

NOTRUNCATE

TABLE

Do

not

truncate

the

table

after

in

place

reorganization.

During

truncation,

the

table

is

S-locked.

START

Start

the

in

place

REORG

processing.

Because

this

is

the

default,

this

keyword

is

optional.

STOP

Stop

the

in

place

REORG

processing

at

its

current

point.

PAUSE

Suspend

or

pause

in

place

REORG

for

the

time

being.

RESUME

Continue

or

resume

a

previously

paused

in

place

table

reorganization.

USE

tablespace-name

Specifies

the

name

of

a

system

temporary

table

space

in

which

to

store

a

temporary

copy

of

the

table

being

reorganized.

If

you

do

not

provide

a

table

space

name,

the

database

manager

stores

a

working

copy

of

the

table

in

the

table

spaces

that

contain

the

table

being

reorganized.

For

an

8KB,

16KB,

or

32KB

table

object,

the

page

size

of

any

system

temporary

table

space

that

you

specify

must

match

the

page

size

of

the

table

spaces

in

which

the

table

data

resides,

including

any

LONG

or

LOB

column

data.

INDEXSCAN

For

a

clustering

REORG

an

index

scan

will

be

used

to

re-order

REORG

INDEXES/TABLE

Chapter

13.

DB2

UDB

Commands

for

Administrators

349

table

records.

Reorganize

table

rows

by

accessing

the

table

through

an

index.

The

default

method

is

to

scan

the

table

and

sort

the

result

to

reorganize

the

table,

using

temporary

table

spaces

as

necessary.

Even

though

the

index

keys

are

in

sort

order,

scanning

and

sorting

is

typically

faster

than

fetching

rows

by

first

reading

the

row

identifier

from

an

index.

LONGLOBDATA

Long

field

and

LOB

data

are

to

be

reorganized.

This

is

not

required

even

if

the

table

contains

long

or

LOB

columns.

The

default

is

to

avoid

reorganizing

these

objects

because

it

is

time

consuming

and

does

not

improve

clustering.

Examples:

For

a

classing

REORG

TABLE

like

the

default

in

DB2,

Version

7,

enter

the

following

command:

db2

reorg

table

employee

index

empid

allow

no

access

indexscan

longlobdata

Note

that

the

defaults

are

different

in

DB2,

Version

8.

To

reorganize

a

table

to

reclaim

space

and

use

the

temporary

table

space

mytemp1,

enter

the

following

command:

db2

reorg

table

homer.employee

use

mytemp1

To

reorganize

tables

in

a

partitiongroup

consisting

of

nodes

1,

2,

3,

and

4

of

a

four-node

system,

you

can

enter

either

of

the

following

commands:

db2

reorg

table

employee

index

empid

on

dbpartitionnum

(1,3,4)

db2

reorg

table

homer.employee

index

homer.empid

on

all

dbpartitionnums

except

dbpartitionnum

(2)

To

clean

up

the

pseudo

deleted

keys

and

pseudo

empty

pages

in

all

the

indexes

on

the

EMPLOYEE

table

while

allowing

other

transactions

to

read

and

update

the

table,

enter:

db2

reorg

indexes

all

for

table

homer.employee

allow

write

access

cleanup

only

To

clean

up

the

pseudo

empty

pages

in

all

the

indexes

on

the

EMPLOYEE

table

while

allowing

other

transactions

to

read

and

update

the

table,

enter:

db2

reorg

indexes

all

for

table

homer.employee

allow

write

access

cleanup

only

pages

To

reorganize

the

EMPLOYEE

table

using

the

system

temporary

table

space

TEMPSPACE1

as

a

work

area,

enter:

db2

reorg

table

homer.employee

use

tempspace1

To

start,

pause,

and

resume

an

in

place

reorg

of

the

EMPLOYEE

table

with

the

default

schema

HOMER,

which

is

specified

explicitly

in

previous

examples,

enter

the

following

commands:

db2

reorg

table

employee

index

empid

inplace

start

db2

reorg

table

employee

inplace

pause

db2

reorg

table

homer.employee

inplace

allow

read

access

notruncate

table

resume

REORG

INDEXES/TABLE

350

Common

Criteria

Certification:

Administration

and

User

Documentation

Note

that

the

command

to

resume

the

reorg

contains

additional

keywords

to

specify

read

access

only

and

to

skip

the

truncation

step,

which

share-locks

the

table.

Usage

notes:

Restrictions:

v

The

REORG

utility

does

not

support

the

use

of

nicknames.

v

The

REORG

TABLE

command

is

not

supported

for

declared

temporary

tables.

v

The

REORG

TABLE

command

cannot

be

used

on

views.

v

Reorganization

of

a

table

is

not

compatible

with

range-clustered

tables,

because

the

range

area

of

the

table

always

remains

clustered.

v

REORG

TABLE

cannot

be

used

on

a

DMS

table

while

an

online

backup

of

a

table

space

in

which

the

table

resides

is

being

performed.

v

REORG

TABLE

cannot

use

an

index

that

is

based

on

an

index

extension.

Information

about

the

current

progress

of

table

reorganization

is

written

to

the

history

file

for

database

activity.

The

history

file

contains

a

record

for

each

reorganization

event.

To

view

this

file,

execute

the

LIST

HISTORY

command

for

the

database

that

contains

the

table

you

are

reorganizing.

You

can

also

use

table

snapshots

to

monitor

the

progress

of

table

reorganization.

Table

reorganization

monitoring

data

is

recorded

regardless

of

the

Database

Monitor

Table

Switch

setting.

If

an

error

occurs,

an

SQLCA

dump

is

written

to

the

history

file.

For

an

in-place

table

reorganization,

the

status

is

recorded

as

PAUSED.

When

an

indexed

table

has

been

modified

many

times,

the

data

in

the

indexes

might

become

fragmented.

If

the

table

is

clustered

with

respect

to

an

index,

the

table

and

index

can

get

out

of

cluster

order.

Both

of

these

factors

can

adversely

affect

the

performance

of

scans

using

the

index,

and

can

impact

the

effectiveness

of

index

page

prefetching.

REORG

INDEXES

can

be

used

to

reorganize

all

of

the

indexes

on

a

table,

to

remove

any

fragmentation

and

restore

physical

clustering

to

the

leaf

pages.

Use

REORGCHK

to

help

determine

if

an

index

needs

reorganizing.

Be

sure

to

complete

all

database

operations

and

release

all

locks

before

invoking

REORG

INDEXES.

This

can

be

done

by

issuing

a

COMMIT

after

closing

all

cursors

opened

WITH

HOLD,

or

by

issuing

a

ROLLBACK.

Indexes

might

not

be

optimal

following

an

in-place

REORG

TABLE

operation,

since

only

the

data

object

and

not

the

indexes

are

reorganized.

It

is

recommended

that

you

perform

a

REORG

INDEXES

after

an

in

place

REORG

TABLE

operation.

Indexes

are

completely

rebuilt

during

the

last

phase

of

a

classic

REORG

TABLE,

however,

so

reorganizing

indexes

is

not

necessary.

Tables

that

have

been

modified

so

many

times

that

data

is

fragmented

and

access

performance

is

noticeably

slow

are

candidates

for

the

REORG

TABLE

command.

You

should

also

invoke

this

utility

after

altering

the

inline

length

of

a

structured

type

column

in

order

to

benefit

from

the

altered

inline

length.

Use

REORGCHK

to

determine

whether

a

table

needs

reorganizing.

Be

sure

to

complete

all

database

operations

and

release

all

locks

before

invoking

REORG

TABLE.

This

can

be

done

by

issuing

a

COMMIT

after

closing

all

cursors

opened

WITH

HOLD,

or

by

issuing

REORG

INDEXES/TABLE

Chapter

13.

DB2

UDB

Commands

for

Administrators

351

a

ROLLBACK.

After

reorganizing

a

table,

use

RUNSTATS

to

update

the

table

statistics,

and

REBIND

to

rebind

the

packages

that

use

this

table.

The

reorganize

utility

will

implicitly

close

all

the

cursors.

If

the

table

contains

mixed

row

format

because

the

table

value

compression

has

been

activated

or

deactivated,

an

offline

table

reorganization

can

convert

all

the

existing

rows

into

the

target

row

format.

If

the

table

is

partitioned

onto

several

database

partitions,

and

the

table

reorganization

fails

on

any

of

the

affected

database

partitions,

only

the

failing

database

partitions

will

have

the

table

reorganization

rolled

back.

Note:

If

the

reorganization

is

not

successful,

temporary

files

should

not

be

deleted.

The

database

manager

uses

these

files

to

recover

the

database.

If

the

name

of

an

index

is

specified,

the

database

manager

reorganizes

the

data

according

to

the

order

in

the

index.

To

maximize

performance,

specify

an

index

that

is

often

used

in

SQL

queries.

If

the

name

of

an

index

is

not

specified,

and

if

a

clustering

index

exists,

the

data

will

be

ordered

according

to

the

clustering

index.

The

PCTFREE

value

of

a

table

determines

the

amount

of

free

space

designated

per

page.

If

the

value

has

not

been

set,

the

utility

will

fill

up

as

much

space

as

possible

on

each

page.

To

complete

a

table

space

roll-forward

recovery

following

a

table

reorganization,

both

regular

and

large

table

spaces

must

be

enabled

for

roll-forward

recovery.

If

the

table

contains

LOB

columns

that

do

not

use

the

COMPACT

option,

the

LOB

DATA

storage

object

can

be

significantly

larger

following

table

reorganization.

This

can

be

a

result

of

the

order

in

which

the

rows

were

reorganized,

and

the

types

of

table

spaces

used

(SMS

or

DMS).

Related

reference:

v

“GET

SNAPSHOT

Command”

in

the

Command

Reference

v

“REORGCHK

Command”

in

the

Command

Reference

v

“RUNSTATS

Command”

in

the

Command

Reference

v

“REBIND”

on

page

866

v

“SNAPSHOT_TBREORG

table

function”

in

the

SQL

Administrative

Routines

RESTART

DATABASE

Restarts

a

database

that

has

been

abnormally

terminated

and

left

in

an

inconsistent

state.

At

the

successful

completion

of

RESTART

DATABASE,

the

application

remains

connected

to

the

database

if

the

user

has

CONNECT

privilege.

Scope:

This

command

affects

only

the

node

on

which

it

is

executed.

Authorization:

None

Required

connection:

REORG

INDEXES/TABLE

352

Common

Criteria

Certification:

Administration

and

User

Documentation

This

command

establishes

a

database

connection.

Command

syntax:

��

RESTART

DATABASE

DB

database-alias

�

�

USER

username

USING

password

�

�

�

DROP

PENDING

TABLESPACES

(

tablespace-name

)

WRITE

RESUME

��

Command

parameters:

DATABASE

database-alias

Identifies

the

database

to

restart.

USER

username

Identifies

the

user

name

under

which

the

database

is

to

be

restarted.

USING

password

The

password

used

to

authenticate

username.

If

the

password

is

omitted,

the

user

is

prompted

to

enter

it.

DROP

PENDING

TABLESPACES

tablespace-name

Specifies

that

the

database

restart

operation

is

to

be

successfully

completed

even

if

table

space

container

problems

are

encountered.

If

a

problem

occurs

with

a

container

for

a

specified

table

space

during

the

restart

process,

the

corresponding

table

space

will

not

be

available

(it

will

be

in

drop-pending

state)

after

the

restart

operation.

If

a

table

space

is

in

the

drop-pending

state,

the

only

possible

action

is

to

drop

the

table

space.

In

the

case

of

circular

logging,

a

troubled

table

space

will

cause

a

restart

failure.

A

list

of

troubled

table

space

names

can

found

in

the

administration

notification

log

if

a

restart

database

operation

fails

because

of

container

problems.

If

there

is

only

one

system

temporary

table

space

in

the

database,

and

it

is

in

drop

pending

state,

a

new

system

temporary

table

space

must

be

created

immediately

following

a

successful

database

restart

operation.

WRITE

RESUME

Allows

you

to

force

a

database

restart

on

databases

that

failed

while

I/O

writes

were

suspended.

Before

performing

crash

recovery,

this

option

will

resume

I/O

writes

by

removing

the

SUSPEND_WRITE

state

from

every

table

space

in

the

database.

The

WRITE

RESUME

option

can

also

be

used

in

the

case

where

the

connection

used

to

suspend

I/O

writes

is

currently

hung

and

all

subsequent

connection

attempts

are

also

hanging.

When

used

in

this

circumstance,

RESTART

DATABASE

will

resume

I/O

writes

to

the

database

without

performing

crash

recovery.

RESTART

DATABASE

with

the

WRITE

RESUME

option

will

only

perform

crash

recovery

when

you

use

it

after

a

database

crash.

Note:

The

WRITE

RESUME

parameter

can

only

be

applied

to

the

primary

database,

not

to

mirrored

databases.

RESTART

DATABASE

Chapter

13.

DB2

UDB

Commands

for

Administrators

353

Usage

notes:

Execute

this

command

if

an

attempt

to

connect

to

a

database

returns

an

error

message,

indicating

that

the

database

must

be

restarted.

This

action

occurs

only

if

the

previous

session

with

this

database

terminated

abnormally

(due

to

power

failure,

for

example).

At

the

completion

of

RESTART

DATABASE,

a

shared

connection

to

the

database

is

maintained

if

the

user

has

CONNECT

privilege,

and

an

SQL

warning

is

issued

if

any

indoubt

transactions

exist.

In

this

case,

the

database

is

still

usable,

but

if

the

indoubt

transactions

are

not

resolved

before

the

last

connection

to

the

database

is

dropped,

another

RESTART

DATABASE

must

be

issued

before

the

database

can

be

used

again.

Use

the

LIST

INDOUBT

TRANSACTIONS

command

to

generate

a

list

of

indoubt

transactions.

If

the

database

is

only

restarted

on

a

single

node

within

an

MPP

system,

a

message

might

be

returned

on

a

subsequent

database

query

indicating

that

the

database

needs

to

be

restarted.

This

occurs

because

the

database

partition

on

a

node

on

which

the

query

depends

must

also

be

restarted.

Restarting

the

database

on

all

nodes

solves

the

problem.

Related

tasks:

v

“Manually

resolving

indoubt

transactions”

in

the

Administration

Guide:

Planning

Related

reference:

v

“LIST

INDOUBT

TRANSACTIONS

Command”

in

the

Command

Reference

RESTORE

DATABASE

Rebuilds

a

damaged

or

corrupted

database

that

has

been

backed

up

using

the

DB2

backup

utility.

The

restored

database

is

in

the

same

state

it

was

in

when

the

backup

copy

was

made.

This

utility

can

also

overwrite

a

database

with

a

different

image,

or

restore

to

a

new

database.

You

can

restore

databases

created

on

a

DB2

Version

8

32-bit

Windows

platform

to

a

DB2

Version

8

64-bit

Windows

platform,

or

the

reverse.

You

can

restore

databases

created

on

a

DB2

Version

8

32-bit

Linux

(Intel)

platform

to

a

DB2

Version

8

64-bit

Linux

(Intel)

platform,

or

the

reverse.

You

can

restore

databases

created

on

DB2

Version

8

AIX,

HP-UX,

or

the

Solaris

Operating

Environment

platforms,

in

32-bit

or

64-bit,

to

DB2

Version

8

AIX,

HP-UX,

or

Solaris

Operating

Environment

platforms

(32-bit

or

64-bit).

The

restore

utility

can

also

be

used

to

restore

backup

images

that

were

produced

on

a

previous

version

of

DB2

(up

to

two

versions

earlier)

as

long

as

the

word

size

(32-bit

or

64-bit)

is

the

same.

Cross-platform

restore

operations

from

a

backup

image

created

with

a

previous

version

of

DB2

are

not

supported.

If

a

migration

is

required,

it

will

be

invoked

automatically

at

the

end

of

the

restore

operation.

If,

at

the

time

of

the

backup

operation,

the

database

was

enabled

for

rollforward

recovery,

the

database

can

be

brought

to

the

state

it

was

in

prior

to

the

occurrence

of

the

damage

or

corruption

by

invoking

the

rollforward

utility

after

successful

completion

of

a

restore

operation.

This

utility

can

also

restore

a

table

space

level

backup.

RESTART

DATABASE

354

Common

Criteria

Certification:

Administration

and

User

Documentation

Incremental

and

delta

images

cannot

be

restored

when

there

is

a

difference

in

operating

systems

or

word

size

(32-bit

or

64-bit).

Following

a

successful

restore

from

one

environment

to

a

different

environment,

no

incremental

or

delta

backups

are

allowed

until

a

non-incremental

backup

is

taken.

(This

is

not

a

limitation

following

a

restore

to

the

same

environment.)

Even

with

a

successful

restore

from

one

environment

to

a

different

environment,

there

are

some

considerations:

packages

must

be

rebound

before

use

(using

the

BIND

command,

the

REBIND

command,

or

the

db2rbind

utility);

SQL

procedures

must

be

dropped

and

recreated;

and

all

external

libraries

must

be

rebuilt

on

the

new

platform.

(These

are

not

considerations

when

restoring

to

the

same

environment.)

Scope:

This

command

only

affects

the

node

on

which

it

is

executed.

Authorization:

To

restore

to

an

existing

database,

one

of

the

following:

v

sysadm

v

sysctrl

v

sysmaint

To

restore

to

a

new

database,

one

of

the

following:

v

sysadm

v

sysctrl

Required

connection:

The

required

connection

will

vary

based

on

the

type

of

restore

action

you

wish

to

do:

v

Database,

to

restore

to

an

existing

database.

This

command

automatically

establishes

an

exclusive

connection

to

the

specified

database.

v

Instance

and

database,

to

restore

to

a

new

database.

The

instance

attachment

is

required

to

create

the

database.

To

restore

to

a

new

database

at

an

instance

different

from

the

current

instance,

it

is

necessary

to

first

attach

to

the

instance

where

the

new

database

will

reside.

The

new

instance

can

be

local

or

remote.

The

current

instance

is

defined

by

the

value

of

the

DB2INSTANCE

environment

variable.

Command

syntax:

��

RESTORE

DATABASE

DB

source-database-alias

restore-options

CONTINUE

ABORT

��

restore-options:

USER

username

USING

password

�

RESTORE

DATABASE

Chapter

13.

DB2

UDB

Commands

for

Administrators

355

�

�

TABLESPACE

,

ONLINE

(

tablespace-name

)

HISTORY

FILE

COMPRESSION

LIBRARY

LOGS

INCREMENTAL

AUTO

AUTOMATIC

ABORT

�

�

�

USE

TSM

XBSA

OPTIONS

″options-string″

OPEN

num-sessions

SESSIONS

@

file-name

,

FROM

directory

device

LOAD

shared-library

OPTIONS

″options-string″

OPEN

num-sessions

SESSIONS

@

file-name

�

�

TAKEN

AT

date-time

TO

target-directory

INTO

target-database-alias

�

�

LOGTARGET

directory

NEWLOGPATH

directory

WITH

num-buffers

BUFFERS

�

�

BUFFER

buffer-size

DLREPORT

filename

REPLACE

HISTORY

FILE

REPLACE

EXISTING

�

�

REDIRECT

PARALLELISM

n

COMPRLIB

name

COMPROPTS

string

�

�

WITHOUT

ROLLING

FORWARD

WITHOUT

DATALINK

WITHOUT

PROMPTING

Command

parameters:

DATABASE

source-database-alias

Alias

of

the

source

database

from

which

the

backup

was

taken.

CONTINUE

Specifies

that

the

containers

have

been

redefined,

and

that

the

final

step

in

a

redirected

restore

operation

should

be

performed.

ABORT

This

parameter:

v

Stops

a

redirected

restore

operation.

This

is

useful

when

an

error

has

occurred

that

requires

one

or

more

steps

to

be

repeated.

After

RESTORE

DATABASE

with

the

ABORT

option

has

been

issued,

each

step

of

a

redirected

restore

operation

must

be

repeated,

including

RESTORE

DATABASE

with

the

REDIRECT

option.

v

Terminates

an

incremental

restore

operation

before

completion.

USER

username

Identifies

the

user

name

under

which

the

database

is

to

be

restored.

USING

password

The

password

used

to

authenticate

the

user

name.

If

the

password

is

omitted,

the

user

is

prompted

to

enter

it.

TABLESPACE

tablespace-name

A

list

of

names

used

to

specify

the

table

spaces

that

are

to

be

restored.

ONLINE

This

keyword,

applicable

only

when

performing

a

table

space-level

restore

operation,

is

specified

to

allow

a

backup

image

to

be

restored

online.

This

means

that

other

agents

can

connect

to

the

database

while

the

backup

image

is

being

restored,

and

that

the

data

in

other

table

spaces

will

be

available

while

the

specified

table

spaces

are

being

restored.

RESTORE

DATABASE

356

Common

Criteria

Certification:

Administration

and

User

Documentation

HISTORY

FILE

This

keyword

is

specified

to

restore

only

the

history

file

from

the

backup

image.

COMPRESSION

LIBRARY

This

keyword

is

specified

to

restore

only

the

compression

library

from

the

backup

image.

If

the

object

exists

in

the

backup

image,

it

will

be

restored

into

the

database

directory.

If

the

object

does

not

exist

in

the

backup

image,

the

restore

operation

will

fail.

LOGS

This

keyword

is

specified

to

restore

only

the

set

of

log

files

contained

in

the

backup

image.

If

the

backup

image

does

not

contain

any

log

files,

the

restore

operation

will

fail.

If

this

option

is

specified,

the

LOGTARGET

option

must

also

be

specified.

INCREMENTAL

Without

additional

parameters,

INCREMENTAL

specifies

a

manual

cumulative

restore

operation.

During

manual

restore

the

user

must

issue

each

restore

command

manually

for

each

image

involved

in

the

restore.

Do

so

according

to

the

following

order:

last,

first,

second,

third

and

so

on

up

to

and

including

the

last

image.

INCREMENTAL

AUTOMATIC/AUTO

Specifies

an

automatic

cumulative

restore

operation.

INCREMENTAL

ABORT

Specifies

abortion

of

an

in-progress

manual

cumulative

restore

operation.

USE

TSM

Specifies

that

the

database

is

to

be

restored

from

TSM-managed

output.

OPTIONS

″options-string″

Specifies

options

to

be

used

for

the

restore

operation.The

string

will

be

passed

to

the

vendor

support

library,

for

example

TSM,

exactly

as

it

was

entered,

without

the

quotes.

Note:

Specifying

this

option

overrides

the

value

specified

by

the

VENDOROPT

database

configuration

parameter.

@file-name

Specifies

that

the

options

to

be

used

for

the

restore

operation

are

contained

in

a

file

located

on

the

DB2

server.

The

string

will

be

passed

to

the

vendor

support

library,

for

example

TSM.

The

file

must

be

a

fully

qualified

file

name.

OPEN

num-sessions

SESSIONS

Specifies

the

number

of

I/O

sessions

that

are

to

be

used

with

TSM

or

the

vendor

product.

USE

XBSA

Specifies

that

the

XBSA

interface

is

to

be

used.

Backup

Services

APIs

(XBSA)

are

an

open

application

programming

interface

for

applications

or

facilities

needing

data

storage

management

for

backup

or

archiving

purposes.

FROM

directory/device

The

fully

qualified

path

name

of

the

directory

or

device

on

which

the

backup

image

resides.

If

USE

TSM,

FROM,

and

LOAD

are

omitted,

the

default

value

is

the

current

working

directory

of

the

client

machine.

This

target

directory

or

device

must

exist

on

the

database

server.

RESTORE

DATABASE

Chapter

13.

DB2

UDB

Commands

for

Administrators

357

On

Windows

operating

systems,

the

specified

directory

must

not

be

a

DB2-generated

directory.

For

example,

given

the

following

commands:

db2

backup

database

sample

to

c:\backup

db2

restore

database

sample

from

c:\backup

Using

these

commands,

DB2

generates

subdirectories

under

the

c:\backup

directory

to

allow

more

than

one

backup

to

be

placed

in

the

specified

top

level

directory.

The

DB2-generated

subdirectories

should

be

ignored.

To

specify

precisely

which

backup

image

to

restore,

use

the

TAKEN

AT

parameter.

There

can

be

several

backup

images

stored

on

the

same

path.

If

several

items

are

specified,

and

the

last

item

is

a

tape

device,

the

user

is

prompted

for

another

tape.

Valid

response

options

are:

c

Continue.

Continue

using

the

device

that

generated

the

warning

message

(for

example,

continue

when

a

new

tape

has

been

mounted).

d

Device

terminate.

Stop

using

only

the

device

that

generated

the

warning

message

(for

example,

terminate

when

there

are

no

more

tapes).

t

Terminate.

Abort

the

restore

operation

after

the

user

has

failed

to

perform

some

action

requested

by

the

utility.

LOAD

shared-library

The

name

of

the

shared

library

(DLL

on

Windows

operating

systems)

containing

the

vendor

backup

and

restore

I/O

functions

to

be

used.

The

name

can

contain

a

full

path.

If

the

full

path

is

not

given,

the

value

defaults

to

the

path

on

which

the

user

exit

program

resides.

TAKEN

AT

date-time

The

time

stamp

of

the

database

backup

image.

The

time

stamp

is

displayed

after

successful

completion

of

a

backup

operation,

and

is

part

of

the

path

name

for

the

backup

image.

It

is

specified

in

the

form

yyyymmddhhmmss.

A

partial

time

stamp

can

also

be

specified.

For

example,

if

two

different

backup

images

with

time

stamps

20021001010101

and

20021002010101

exist,

specifying

20021002

causes

the

image

with

time

stamp

20021002010101

to

be

used.

If

a

value

for

this

parameter

is

not

specified,

there

must

be

only

one

backup

image

on

the

source

media.

TO

target-directory

The

target

database

directory.

This

parameter

is

ignored

if

the

utility

is

restoring

to

an

existing

database.

The

drive

and

directory

that

you

specify

must

be

local.

Note:

On

Windows

operating

systems,

when

using

this

parameter,

specify

only

the

drive

letter.

If

you

specify

a

path,

an

error

is

returned.

INTO

target-database-alias

The

target

database

alias.

If

the

target

database

does

not

exist,

it

is

created.

When

you

restore

a

database

backup

to

an

existing

database,

the

restored

database

inherits

the

alias

and

database

name

of

the

existing

database.

When

you

restore

a

database

backup

to

a

nonexistent

database,

the

new

database

is

created

with

the

alias

and

database

name

that

you

specify.

This

new

database

name

must

be

unique

on

the

system

where

you

restore

it.

LOGTARGET

directory

The

absolute

path

name

of

an

existing

directory

on

the

database

server,

to

RESTORE

DATABASE

358

Common

Criteria

Certification:

Administration

and

User

Documentation

be

used

as

the

target

directory

for

extracting

log

files

from

a

backup

image.

If

this

option

is

specified,

any

log

files

contained

within

the

backup

image

will

be

extracted

into

the

target

directory.

If

this

option

is

not

specified,

log

files

contained

within

a

backup

image

will

not

be

extracted.

To

extract

only

the

log

files

from

the

backup

image,

specify

the

LOGS

option.

NEWLOGPATH

directory

The

absolute

pathname

of

a

directory

that

will

be

used

for

active

log

files

after

the

restore

operation.

This

parameter

has

the

same

function

as

the

newlogpath

database

configuration

parameter,

except

that

its

effect

is

limited

to

the

restore

operation

in

which

it

is

specified.

The

parameter

can

be

used

when

the

log

path

in

the

backup

image

is

not

suitable

for

use

after

the

restore

operation;

for

example,

when

the

path

is

no

longer

valid,

or

is

being

used

by

a

different

database.

WITH

num-buffers

BUFFERS

The

number

of

buffers

to

be

used.

DB2

will

automatically

choose

an

optimal

value

for

this

parameter

unless

you

explicitly

enter

a

value.

A

larger

number

of

buffers

can

be

used

to

improve

performance

when

multiple

sources

are

being

read

from,

or

if

the

value

of

PARALLELISM

has

been

increased.

BUFFER

buffer-size

The

size,

in

pages,

of

the

buffer

used

for

the

restore

operation.

DB2

will

automatically

choose

an

optimal

value

for

this

parameter

unless

you

explicitly

enter

a

value.

The

minimum

value

for

this

parameter

is

8

pages.

The

restore

buffer

size

must

be

a

positive

integer

multiple

of

the

backup

buffer

size

specified

during

the

backup

operation.

If

an

incorrect

buffer

size

is

specified,

the

buffers

are

allocated

to

be

of

the

smallest

acceptable

size.

DLREPORT

filename

The

file

name,

if

specified,

must

be

specified

as

an

absolute

path.

Reports

the

files

that

become

unlinked,

as

a

result

of

a

fast

reconcile,

during

a

restore

operation.

This

option

is

only

to

be

used

if

the

table

being

restored

has

a

DATALINK

column

type

and

linked

files.

REPLACE

HISTORY

FILE

Specifies

that

the

restore

operation

should

replace

the

history

file

on

disk

with

the

history

file

from

the

backup

image.

REPLACE

EXISTING

If

a

database

with

the

same

alias

as

the

target

database

alias

already

exists,

this

parameter

specifies

that

the

restore

utility

is

to

replace

the

existing

database

with

the

restored

database.

This

is

useful

for

scripts

that

invoke

the

restore

utility,

because

the

command

line

processor

will

not

prompt

the

user

to

verify

deletion

of

an

existing

database.

If

the

WITHOUT

PROMPTING

parameter

is

specified,

it

is

not

necessary

to

specify

REPLACE

EXISTING,

but

in

this

case,

the

operation

will

fail

if

events

occur

that

normally

require

user

intervention.

REDIRECT

Specifies

a

redirected

restore

operation.

To

complete

a

redirected

restore

operation,

this

command

should

be

followed

by

one

or

more

SET

TABLESPACE

CONTAINERS

commands,

and

then

by

a

RESTORE

DATABASE

command

with

the

CONTINUE

option.

Note:

All

commands

associated

with

a

single

redirected

restore

operation

must

be

invoked

from

the

same

window

or

CLP

session.

RESTORE

DATABASE

Chapter

13.

DB2

UDB

Commands

for

Administrators

359

WITHOUT

ROLLING

FORWARD

Specifies

that

the

database

is

not

to

be

put

in

rollforward

pending

state

after

it

has

been

successfully

restored.

If,

following

a

successful

restore

operation,

the

database

is

in

rollforward

pending

state,

the

ROLLFORWARD

command

must

be

invoked

before

the

database

can

be

used

again.

If

this

option

is

specified

when

restoring

from

an

online

backup

image,

error

SQL2537N

will

be

returned.

WITHOUT

DATALINK

Specifies

that

any

tables

with

DATALINK

columns

are

to

be

put

in

DataLink_Reconcile_Pending

(DRP)

state,

and

that

no

reconciliation

of

linked

files

is

to

be

performed.

PARALLELISM

n

Specifies

the

number

of

buffer

manipulators

that

are

to

be

spawned

during

the

restore

operation.

DB2

will

automatically

choose

an

optimal

value

for

this

parameter

unless

you

explicitly

enter

a

value.

COMPRLIB

name

Indicates

the

name

of

the

library

to

be

used

to

perform

the

decompression.

The

name

must

be

a

fully

qualified

path

referring

to

a

file

on

the

server.

If

this

parameter

is

not

specified,

DB2

will

attempt

to

use

the

library

stored

in

the

image.

If

the

backup

was

not

compressed,

the

value

of

this

parameter

will

be

ignored.

If

the

specified

library

cannot

be

loaded,

the

restore

will

fail.

COMPROPTS

string

Describes

a

block

of

binary

data

that

will

be

passed

to

the

initialization

routine

in

the

decompression

library.

DB2

will

pass

this

string

directly

from

the

client

to

the

server,

so

any

issues

of

byte

reversal

or

code

page

conversion

will

have

to

be

handled

by

the

decompression

library.

If

the

first

character

of

the

data

block

is

’@’,

the

remainder

of

the

data

will

be

interpreted

by

DB2

as

the

name

of

a

file

residing

on

the

server.

DB2

will

then

replace

the

contents

of

string

with

the

contents

of

this

file

and

will

pass

this

new

value

to

the

initialization

routine

instead.

The

maximum

length

for

string

is

1024

bytes.

WITHOUT

PROMPTING

Specifies

that

the

restore

operation

is

to

run

unattended.

Actions

that

normally

require

user

intervention

will

return

an

error

message.

When

using

a

removable

media

device,

such

as

tape

or

diskette,

the

user

is

prompted

when

the

device

ends,

even

if

this

option

is

specified.

Examples:

1.

In

the

following

example,

the

database

WSDB

is

defined

on

all

4

partitions,

numbered

0

through

3.

The

path

/dev3/backup

is

accessible

from

all

partitions.

The

following

offline

backup

images

are

available

from

/dev3/backup:

wsdb.0.db2inst1.NODE0000.CATN0000.20020331234149.001

wsdb.0.db2inst1.NODE0001.CATN0000.20020331234427.001

wsdb.0.db2inst1.NODE0002.CATN0000.20020331234828.001

wsdb.0.db2inst1.NODE0003.CATN0000.20020331235235.001

To

restore

the

catalog

partition

first,

then

all

other

database

partitions

of

the

WSDB

database

from

the

/dev3/backup

directory,

issue

the

following

commands

from

one

of

the

database

partitions:

RESTORE

DATABASE

360

Common

Criteria

Certification:

Administration

and

User

Documentation

db2_all

’<<+0<

db2

RESTORE

DATABASE

wsdb

FROM

/dev3/backup

TAKEN

AT

20020331234149

INTO

wsdb

REPLACE

EXISTING’

db2_all

’<<+1<

db2

RESTORE

DATABASE

wsdb

FROM

/dev3/backup

TAKEN

AT

20020331234427

INTO

wsdb

REPLACE

EXISTING’

db2_all

’<<+2<

db2

RESTORE

DATABASE

wsdb

FROM

/dev3/backup

TAKEN

AT

20020331234828

INTO

wsdb

REPLACE

EXISTING’

db2_all

’<<+3<

db2

RESTORE

DATABASE

wsdb

FROM

/dev3/backup

TAKEN

AT

20020331235235

INTO

wsdb

REPLACE

EXISTING’

The

db2_all

utility

issues

the

restore

command

to

each

specified

database

partition.

2.

Following

is

a

typical

redirected

restore

scenario

for

a

database

whose

alias

is

MYDB:

a.

Issue

a

RESTORE

DATABASE

command

with

the

REDIRECT

option.

db2

restore

db

mydb

replace

existing

redirect

After

successful

completion

of

step

1,

and

before

completing

step

3,

the

restore

operation

can

be

aborted

by

issuing:

db2

restore

db

mydb

abort

b.

Issue

a

SET

TABLESPACE

CONTAINERS

command

for

each

table

space

whose

containers

must

be

redefined.

For

example:

db2

set

tablespace

containers

for

5

using

(file

’f:\ts3con1’

20000,

file

’f:\ts3con2’

20000)

To

verify

that

the

containers

of

the

restored

database

are

the

ones

specified

in

this

step,

issue

the

LIST

TABLESPACE

CONTAINERS

command.

c.

After

successful

completion

of

steps

1

and

2,

issue:

db2

restore

db

mydb

continue

This

is

the

final

step

of

the

redirected

restore

operation.

d.

If

step

3

fails,

or

if

the

restore

operation

has

been

aborted,

the

redirected

restore

can

be

restarted,

beginning

at

step

1.
3.

Following

is

a

sample

weekly

incremental

backup

strategy

for

a

recoverable

database.

It

includes

a

weekly

full

database

backup

operation,

a

daily

non-cumulative

(delta)

backup

operation,

and

a

mid-week

cumulative

(incremental)

backup

operation:

(Sun)

backup

db

mydb

use

tsm

(Mon)

backup

db

mydb

online

incremental

delta

use

tsm

(Tue)

backup

db

mydb

online

incremental

delta

use

tsm

(Wed)

backup

db

mydb

online

incremental

use

tsm

(Thu)

backup

db

mydb

online

incremental

delta

use

tsm

(Fri)

backup

db

mydb

online

incremental

delta

use

tsm

(Sat)

backup

db

mydb

online

incremental

use

tsm

For

an

automatic

database

restore

of

the

images

created

on

Friday

morning,

issue:

restore

db

mydb

incremental

automatic

taken

at

(Fri)

For

a

manual

database

restore

of

the

images

created

on

Friday

morning,

issue:

RESTORE

DATABASE

Chapter

13.

DB2

UDB

Commands

for

Administrators

361

restore

db

mydb

incremental

taken

at

(Fri)

restore

db

mydb

incremental

taken

at

(Sun)

restore

db

mydb

incremental

taken

at

(Wed)

restore

db

mydb

incremental

taken

at

(Thu)

restore

db

mydb

incremental

taken

at

(Fri)

4.

To

produce

a

backup

image,

which

includes

logs,

for

transportation

to

a

remote

site:

backup

db

sample

online

to

/dev3/backup

include

logs

To

restore

that

backup

image,

supply

a

LOGTARGET

path

and

specify

this

path

during

ROLLFORWARD:

restore

db

sample

from

/dev3/backup

logtarget

/dev3/logs

rollforward

db

sample

to

end

of

logs

and

stop

overflow

log

path

/dev3/logs

5.

To

retreive

only

the

log

files

from

a

backup

image

that

includes

logs:

restore

db

sample

logs

from

/dev3/backup

logtarget

/dev3/logs

6.

The

USE

TSM

OPTIONS

keywords

can

be

used

to

specify

the

TSM

information

to

use

for

the

restore

operation.

On

Windows

platforms,

omit

the

-fromowner

option.

v

Specfying

a

delimited

string:

db2

restore

db

sample

use

TSM

options

"-fromnode

bar

-fromowner

dmcinnis"

v

Specifying

a

fully

qualified

file:

db2

restore

db

sample

use

TSM

options

@/u/dmcinnis/myoptions.txt

The

file

myoptions.txt

contains

the

following

information:

-fromnode=bar

-fromowner=dmcinnis

Usage

notes:

v

A

RESTORE

DATABASE

command

of

the

form

db2

restore

db

<name>

will

perform

a

full

database

restore

with

a

database

image

and

will

perform

a

table

space

restore

of

the

table

spaces

found

in

a

table

space

image.

Any

RESTORE

DATABASE

command

of

the

form

db2

restore

db

<name>

tablespace

will

perform

a

table

space

restore

of

the

table

spaces

found

in

the

image.

Any

RESTORE

DATABASE

command

in

which

a

list

of

table

spaces

is

provided

will

perform

a

restore

of

whatever

table

spaces

are

explicitly

listed.

v

Following

the

restore

of

an

online

backup,

you

must

perform

a

roll

forward

recovery.

v

If

a

backup

image

is

compressed,

DB2

will

detect

this

and

automatically

decompress

the

data

before

restoring

it.

If

a

library

is

specified

on

the

db2Restore

API,

it

will

be

used

for

decompressing

the

data.

Otherwise,

if

a

library

that

is

stored

in

the

backup

image

will

be

used.

Otherwise,

the

data

cannot

be

decompressed,

so

the

restore

will

fail.

v

If

the

compression

library

is

to

be

restored

from

a

backup

image

(either

explicitly

by

specifying

the

DB2RESTORE_COMPR_LIB

restore

type

or

implicitly

by

performing

a

normal

restore

of

a

compressed

backup),

the

restore

operation

must

be

done

on

the

same

platform

and

operating

system

that

the

backup

was

taken

on.

If

the

platform

the

backup

was

taken

on

is

not

the

same

as

the

platform

that

the

restore

is

being

done

on,

the

restore

operation

will

fail,

even

if

DB2

normally

supports

cross-platform

restores

involving

the

two

systems.

v

v

To

restore

log

files

from

a

backup

image

which

contains

them,

the

LOGTARGET

option

must

be

specified,

providing

a

fully

qualified

and

valid

path

which

exists

on

the

DB2

server.

If

those

conditions

are

satisfied,

the

restore

utility

will

write

the

log

files

from

the

image

to

the

target

path.

If

a

LOGTARGET

is

specified

RESTORE

DATABASE

362

Common

Criteria

Certification:

Administration

and

User

Documentation

during

a

restore

of

a

backup

image

which

does

not

include

logs,

the

restore

will

return

an

error

before

attempting

to

restore

any

table

space

data.

A

restore

will

also

fail

with

an

error

if

an

invalid,

or

read-only,

LOGTARGET

path

is

specified.

v

If

any

log

files

exist

in

the

LOGTARGET

path

at

the

time

the

RESTORE

DATABASE

command

is

issued,

a

warning

prompt

will

be

returned

to

user.

This

warning

will

not

be

returned

if

WITHOUT

PROMPTING

is

specified.

v

During

a

restore

operation

where

a

LOGTARGET

is

specified,

if

any

log

file

can

not

be

extracted,

for

any

reason,

the

restore

will

fail

and

return

an

error.

If

any

of

the

log

files

being

extracted

from

the

backup

image

have

the

same

name

as

an

existing

file

already

in

the

LOGTARGET

path,

the

restore

operation

will

fail

and

an

error

will

be

returned.

The

restore

database

utility

will

not

overwrite

existing

log

files

in

the

LOGTARGET

directory.

v

It

is

also

possible

to

restore

only

the

saved

log

set

from

a

backup

image.

To

indicate

that

only

the

log

files

are

to

be

restored,

specify

the

LOGS

option

in

addition

to

the

LOGTARGET

path.

Specifying

the

LOGS

option

without

a

LOGTARGET

path

will

result

in

an

error.

If

any

problem

occurs

while

restoring

log

files

in

this

mode

of

operation,

the

restore

operation

will

terminate

immediately

and

an

error

will

be

returned.

v

During

an

automatic

incremental

restore

operation,

only

the

logs

included

in

the

target

image

of

the

restore

operation

will

be

retrived

from

the

backup

image.

Any

logs

included

in

intermediate

images

referenced

during

the

incremental

restore

process

will

not

be

extracted

from

those

intermediate

backup

images.

During

a

manual

incremental

restore

operation,

the

LOGTARGET

path

should

only

be

specified

with

the

final

restore

command

to

be

issued.

Related

reference:

v

“BACKUP

DATABASE”

on

page

227

v

“ROLLFORWARD

DATABASE”

on

page

363

v

“db2move

-

Database

Movement

Tool

Command”

in

the

Command

Reference

ROLLFORWARD

DATABASE

Recovers

a

database

by

applying

transactions

recorded

in

the

database

log

files.

Invoked

after

a

database

or

a

table

space

backup

image

has

been

restored,

or

if

any

table

spaces

have

been

taken

offline

by

the

database

due

to

a

media

error.

The

database

must

be

recoverable

(that

is,

the

logarchmeth1

or

logarchmeth2

database

configuration

parameters

must

be

set

to

a

value

other

than

OFF)

before

the

database

can

be

recovered

with

rollforward

recovery.

Scope:

In

a

partitioned

database

environment,

this

command

can

only

be

invoked

from

the

catalog

partition.

A

database

or

table

space

rollforward

operation

to

a

specified

point

in

time

affects

all

partitions

that

are

listed

in

the

db2nodes.cfg

file.

A

database

or

table

space

rollforward

operation

to

the

end

of

logs

affects

the

partitions

that

are

specified.

If

no

partitions

are

specified,

it

affects

all

partitions

that

are

listed

in

the

db2nodes.cfg

file;

if

rollforward

recovery

is

not

needed

on

a

particular

partition,

that

partition

is

ignored.

Authorization:

One

of

the

following:

v

sysadm

RESTORE

DATABASE

Chapter

13.

DB2

UDB

Commands

for

Administrators

363

v

sysctrl

v

sysmaint

Required

connection:

None.

This

command

establishes

a

database

connection.

Command

syntax:

��

ROLLFORWARD

DATABASE

database-alias

DB

USER

username

USING

password

�

�

TO

isotime

USING

LOCAL

TIME

ON

ALL

DBPARTITIONNUMS

AND

COMPLETE

END

OF

LOGS

AND

STOP

On

Database

Partition

clause

COMPLETE

STOP

On

Database

Partition

clause

CANCEL

QUERY

STATUS

USING

LOCAL

TIME

�

�

�

TABLESPACE

ONLINE

,

(

tablespace-name

)

ONLINE

�

�

OVERFLOW

LOG

PATH

(

log-directory

)

,

Log

Overflow

clause

NORETRIEVE

�

�

RECOVER

DROPPED

TABLE

drop-table-id

TO

export-directory

��

On

Database

Partition

clause:

ON

Database

Partition

List

clause

ALL

DBPARTITIONNUMS

EXCEPT

Database

Partition

List

clause

Database

Partition

List

clause:

DBPARTITIONNUM

DBPARTITIONNUMS

(

�

�

�

,

db-partition-number1

TO

db-partition-number2

)

Log

Overflow

clause:

�

,

log-directory

ON

DBPARTITIONNUM

db-partition-number1

Command

parameters:

ROLLFORWARD

DATABASE

364

Common

Criteria

Certification:

Administration

and

User

Documentation

DATABASE

database-alias

The

alias

of

the

database

that

is

to

be

rollforward

recovered.

USER

username

The

user

name

under

which

the

database

is

to

be

rollforward

recovered.

USING

password

The

password

used

to

authenticate

the

user

name.

If

the

password

is

omitted,

the

user

is

prompted

to

enter

it.

TO

isotime

The

point

in

time

to

which

all

committed

transactions

are

to

be

rolled

forward

(including

the

transaction

committed

precisely

at

that

time,

as

well

as

all

transactions

committed

previously).

This

value

is

specified

as

a

time

stamp,

a

7-part

character

string

that

identifies

a

combined

date

and

time.

The

format

is

yyyy-mm-dd-hh.mm.ss.nnnnnn

(year,

month,

day,

hour,

minutes,

seconds,

microseconds),

expressed

in

Coordinated

Universal

Time

(UTC).

UTC

helps

to

avoid

having

the

same

time

stamp

associated

with

different

logs

(because

of

a

change

in

time

associated

with

daylight

savings

time,

for

example).

The

time

stamp

in

a

backup

image

is

based

on

the

local

time

at

which

the

backup

operation

started.

The

CURRENT

TIMEZONE

special

register

specifies

the

difference

between

UTC

and

local

time

at

the

application

server.

The

difference

is

represented

by

a

time

duration

(a

decimal

number

in

which

the

first

two

digits

represent

the

number

of

hours,

the

next

two

digits

represent

the

number

of

minutes,

and

the

last

two

digits

represent

the

number

of

seconds).

Subtracting

CURRENT

TIMEZONE

from

a

local

time

converts

that

local

time

to

UTC.

USING

LOCAL

TIME

Allows

the

user

to

rollforward

to

a

point

in

time

that

is

the

user’s

local

time

rather

than

GMT

time.

This

makes

it

easier

for

users

to

rollforward

to

a

specific

point

in

time

on

their

local

machines,

and

eliminates

potential

user

errors

due

to

the

translation

of

local

to

GMT

time.

Notes:

1.

If

the

user

specifies

a

local

time

for

rollforward,

all

messages

returned

to

the

user

will

also

be

in

local

time.

Note

that

all

times

are

converted

on

the

server,

and

in

partitioned

database

environments,

on

the

catalog

database

partition.

2.

The

timestamp

string

is

converted

to

GMT

on

the

server,

so

the

time

is

local

to

the

server’s

time

zone,

not

the

client’s.

If

the

client

is

in

one

time

zone

and

the

server

in

another,

the

server’s

local

time

should

be

used.

This

is

different

from

the

local

time

option

from

the

Control

Center,

which

is

local

to

the

client.

3.

If

the

timestamp

string

is

close

to

the

time

change

of

the

clock

due

to

daylight

savings,

it

is

important

to

know

if

the

stop

time

is

before

or

after

the

clock

change,

and

specify

it

correctly.

END

OF

LOGS

Specifies

that

all

committed

transactions

from

all

online

archive

log

files

listed

in

the

database

configuration

parameter

logpath

are

to

be

applied.

ROLLFORWARD

DATABASE

Chapter

13.

DB2

UDB

Commands

for

Administrators

365

ALL

DBPARTITIONNUMS

Specifies

that

transactions

are

to

be

rolled

forward

on

all

partitions

specified

in

the

db2nodes.cfg

file.

This

is

the

default

if

a

database

partition

clause

is

not

specified.

EXCEPT

Specifies

that

transactions

are

to

be

rolled

forward

on

all

partitions

specified

in

the

db2nodes.cfg

file,

except

those

specified

in

the

database

partition

list.

ON

DBPARTITIONNUM

/

ON

DBPARTITIONNUMS

Roll

the

database

forward

on

a

set

of

database

partitions.

db-partition-number1

Specifies

a

database

partition

number

in

the

database

partition

list.

db-partition-number2

Specifies

the

second

database

partition

number,

so

that

all

partitions

from

db-partition-number1

up

to

and

including

db-partition-number2

are

included

in

the

database

partition

list.

COMPLETE

/

STOP

Stops

the

rolling

forward

of

log

records,

and

completes

the

rollforward

recovery

process

by

rolling

back

any

incomplete

transactions

and

turning

off

the

rollforward

pending

state

of

the

database.

This

allows

access

to

the

database

or

table

spaces

that

are

being

rolled

forward.

These

keywords

are

equivalent;

specify

one

or

the

other,

but

not

both.

The

keyword

AND

permits

specification

of

multiple

operations

at

once;

for

example,

db2

rollforward

db

sample

to

end

of

logs

and

complete.

Note:

When

rolling

table

spaces

forward

to

a

point

in

time,

the

table

spaces

are

placed

in

backup

pending

state.

CANCEL

Cancels

the

rollforward

recovery

operation.

This

puts

the

database

or

one

or

more

table

spaces

on

all

partitions

on

which

forward

recovery

has

been

started

in

restore

pending

state:

v

If

a

database

rollforward

operation

is

not

in

progress

(that

is,

the

database

is

in

rollforward

pending

state),

this

option

puts

the

database

in

restore

pending

state.

v

If

a

table

space

rollforward

operation

is

not

in

progress

(that

is,

the

table

spaces

are

in

rollforward

pending

state),

a

table

space

list

must

be

specified.

All

table

spaces

in

the

list

are

put

in

restore

pending

state.

v

If

a

table

space

rollforward

operation

is

in

progress

(that

is,

at

least

one

table

space

is

in

rollforward

in

progress

state),

all

table

spaces

that

are

in

rollforward

in

progress

state

are

put

in

restore

pending

state.

If

a

table

space

list

is

specified,

it

must

include

all

table

spaces

that

are

in

rollforward

in

progress

state.

All

table

spaces

on

the

list

are

put

in

restore

pending

state.

v

If

rolling

forward

to

a

point

in

time,

any

table

space

name

that

is

passed

in

is

ignored,

and

all

table

spaces

that

are

in

rollforward

in

progress

state

are

put

in

restore

pending

state.

v

If

rolling

forward

to

the

end

of

the

logs

with

a

table

space

list,

only

the

table

spaces

listed

are

put

in

restore

pending

state.

ROLLFORWARD

DATABASE

366

Common

Criteria

Certification:

Administration

and

User

Documentation

This

option

cannot

be

used

to

cancel

a

rollforward

operation

that

is

actually

running.

It

can

only

be

used

to

cancel

a

rollforward

operation

that

is

in

progress

but

not

actually

running

at

the

time.

A

rollforward

operation

can

be

in

progress

but

not

running

if:

v

It

terminated

abnormally.

v

The

STOP

option

was

not

specified.

v

An

error

caused

it

to

fail.

Some

errors,

such

as

rolling

forward

through

a

non-recoverable

load

operation,

can

put

a

table

space

into

restore

pending

state.

Note:

Use

this

option

with

caution,

and

only

if

the

rollforward

operation

that

is

in

progress

cannot

be

completed

because

some

of

the

table

spaces

have

been

put

in

rollforward

pending

state

or

in

restore

pending

state.

When

in

doubt,

use

the

LIST

TABLESPACES

command

to

identify

the

table

spaces

that

are

in

rollforward

in

progress

state,

or

in

rollforward

pending

state.

QUERY

STATUS

Lists

the

log

files

that

the

database

manager

has

rolled

forward,

the

next

archive

file

required,

and

the

time

stamp

(in

CUT)

of

the

last

committed

transaction

since

rollforward

processing

began.

In

a

partitioned

database

environment,

this

status

information

is

returned

for

each

partition.

The

information

returned

contains

the

following

fields:

Database

partition

number

Rollforward

status

Status

can

be:

database

or

table

space

rollforward

pending,

database

or

table

space

rollforward

in

progress,

database

or

table

space

rollforward

processing

STOP,

or

not

pending.

Next

log

file

to

be

read

A

string

containing

the

name

of

the

next

required

log

file.

In

a

partitioned

database

environment,

use

this

information

if

the

rollforward

utility

fails

with

a

return

code

indicating

that

a

log

file

is

missing

or

that

a

log

information

mismatch

has

occurred.

Log

files

processed

A

string

containing

the

names

of

processed

log

files

that

are

no

longer

needed

for

recovery,

and

that

can

be

removed

from

the

directory.

If,

for

example,

the

oldest

uncommitted

transaction

starts

in

log

file

x,

the

range

of

obsolete

log

files

will

not

include

x;

the

range

ends

at

x

-

1.

Last

committed

transaction

A

string

containing

a

time

stamp

in

ISO

format

(yyyy-mm-dd-hh.mm.ss).

This

time

stamp

marks

the

last

transaction

committed

after

the

completion

of

rollforward

recovery.

The

time

stamp

applies

to

the

database.

For

table

space

rollforward

recovery,

it

is

the

time

stamp

of

the

last

transaction

committed

to

the

database.

Note:

QUERY

STATUS

is

the

default

value

if

the

TO,

STOP,

COMPLETE,

or

CANCEL

clauses

are

omitted.

If

TO,

STOP,

or

COMPLETE

was

specified,

status

information

is

displayed

if

the

command

has

completed

successfully.

If

individual

table

spaces

are

specified,

they

are

ignored;

the

status

request

does

not

apply

only

to

specified

table

spaces.

ROLLFORWARD

DATABASE

Chapter

13.

DB2

UDB

Commands

for

Administrators

367

TABLESPACE

This

keyword

is

specified

for

table

space-level

rollforward

recovery.

tablespace-name

Mandatory

for

table

space-level

rollforward

recovery

to

a

point

in

time.

Allows

a

subset

of

table

spaces

to

be

specified

for

rollforward

recovery

to

the

end

of

the

logs.

In

a

partitioned

database

environment,

each

table

space

in

the

list

does

not

have

to

exist

at

each

partition

that

is

rolling

forward.

If

it

does

exist,

it

must

be

in

the

correct

state.

ONLINE

This

keyword

is

specified

to

allow

table

space-level

rollforward

recovery

to

be

done

online.

This

means

that

other

agents

are

allowed

to

connect

while

rollforward

recovery

is

in

progress.

OVERFLOW

LOG

PATH

log-directory

Specifies

an

alternate

log

path

to

be

searched

for

archived

logs

during

recovery.

Use

this

parameter

if

log

files

were

moved

to

a

location

other

than

that

specified

by

the

logpath

database

configuration

parameter.

In

a

partitioned

database

environment,

this

is

the

(fully

qualified)

default

overflow

log

path

for

all

partitions.

A

relative

overflow

log

path

can

be

specified

for

single-partition

databases.

Note:

The

OVERFLOW

LOG

PATH

command

parameter

will

overwrite

the

value

(if

any)

of

the

database

configuration

parameter

OVERFLOWLOGPATH.

log-directory

ON

DBPARTITIONNUM

In

a

partitioned

database

environment,

allows

a

different

log

path

to

override

the

default

overflow

log

path

for

a

specific

partition.

NORETRIEVE

Allows

the

user

to

control

which

log

files

to

be

rolled

forward

on

the

standby

machine

by

allowing

the

user

to

disable

the

retrieval

of

archived

logs.

The

benefits

of

this

are:

v

By

controlling

the

logfiles

to

be

rolled

forward,

one

can

ensure

that

the

standby

machine

is

X

hours

behind

the

production

machine,

to

prevent

the

user

affecting

both

systems.

v

If

the

standby

system

does

not

have

access

to

archive

(eg.

if

TSM

is

the

archive,

it

only

allows

the

original

machine

to

retrieve

the

files)

v

It

might

also

be

possible

that

while

the

production

system

is

archiving

a

file,

the

standby

system

is

retrieving

the

same

file,

and

it

might

then

get

an

incomplete

log

file.

Noretrieve

would

solve

this

problem.

RECOVER

DROPPED

TABLE

drop-table-id

Recovers

a

dropped

table

during

the

rollforward

operation.

The

table

ID

can

be

obtained

using

the

LIST

HISTORY

command.

TO

export-directory

Specifies

a

directory

to

which

files

containing

the

table

data

are

to

be

written.

The

directory

must

be

accessible

to

all

database

partitions.

Examples:

Example

1

The

ROLLFORWARD

DATABASE

command

permits

specification

of

multiple

operations

at

once,

each

being

separated

with

the

keyword

AND.

For

example,

to

roll

forward

to

the

end

of

logs,

and

complete,

the

separate

commands:

ROLLFORWARD

DATABASE

368

Common

Criteria

Certification:

Administration

and

User

Documentation

db2

rollforward

db

sample

to

end

of

logs

db2

rollforward

db

sample

complete

can

be

combined

as

follows:

db2

rollforward

db

sample

to

end

of

logs

and

complete

Although

the

two

are

equivalent,

it

is

recommended

that

such

operations

be

done

in

two

steps.

It

is

important

to

verify

that

the

rollforward

operation

has

progressed

as

expected,

before

stopping

it

and

possibly

missing

logs.

This

is

especially

important

if

a

bad

log

is

found

during

rollforward

recovery,

and

the

bad

log

is

interpreted

to

mean

the

“end

of

logs”.

In

such

cases,

an

undamaged

backup

copy

of

that

log

could

be

used

to

continue

the

rollforward

operation

through

more

logs.

Example

2

Roll

forward

to

the

end

of

the

logs

(two

table

spaces

have

been

restored):

db2

rollforward

db

sample

to

end

of

logs

db2

rollforward

db

sample

to

end

of

logs

and

stop

These

two

statements

are

equivalent.

Neither

AND

STOP

or

AND

COMPLETE

is

needed

for

table

space

rollforward

recovery

to

the

end

of

the

logs.

Table

space

names

are

not

required.

If

not

specified,

all

table

spaces

requiring

rollforward

recovery

will

be

included.

If

only

a

subset

of

these

table

spaces

is

to

be

rolled

forward,

their

names

must

be

specified.

Example

3

After

three

table

spaces

have

been

restored,

roll

one

forward

to

the

end

of

the

logs,

and

the

other

two

to

a

point

in

time,

both

to

be

done

online:

db2

rollforward

db

sample

to

end

of

logs

tablespace(TBS1)

online

db2

rollforward

db

sample

to

1998-04-03-14.21.56.245378

and

stop

tablespace(TBS2,

TBS3)

online

Note

that

two

rollforward

operations

cannot

be

run

concurrently.

The

second

command

can

only

be

invoked

after

the

first

rollforward

operation

completes

successfully.

Example

4

After

restoring

the

database,

roll

forward

to

a

point

in

time,

using

OVERFLOW

LOG

PATH

to

specify

the

directory

where

the

user

exit

saves

archived

logs:

db2

rollforward

db

sample

to

1998-04-03-14.21.56.245378

and

stop

overflow

log

path

(/logs)

Example

5

(partitioned

database

environments)

There

are

three

database

partitions:

0,

1,

and

2.

Table

space

TBS1

is

defined

on

all

partitions,

and

table

space

TBS2

is

defined

on

partitions

0

and

2.

After

restoring

the

database

on

database

partition

1,

and

TBS1

on

database

partitions

0

and

2,

roll

the

database

forward

on

database

partition

1:

db2

rollforward

db

sample

to

end

of

logs

and

stop

This

returns

warning

SQL1271

(“Database

is

recovered

but

one

or

more

table

spaces

are

off-line

on

database

partition(s)

0

and

2.”).

db2

rollforward

db

sample

to

end

of

logs

ROLLFORWARD

DATABASE

Chapter

13.

DB2

UDB

Commands

for

Administrators

369

This

rolls

TBS1

forward

on

database

partitions

0

and

2.

The

clause

TABLESPACE(TBS1)

is

optional

in

this

case.

Example

6

(partitioned

database

environments)

After

restoring

table

space

TBS1

on

database

partitions

0

and

2

only,

roll

TBS1

forward

on

database

partitions

0

and

2:

db2

rollforward

db

sample

to

end

of

logs

Database

partition

1

is

ignored.

db2

rollforward

db

sample

to

end

of

logs

tablespace(TBS1)

This

fails,

because

TBS1

is

not

ready

for

rollforward

recovery

on

database

partition

1.

Reports

SQL4906N.

db2

rollforward

db

sample

to

end

of

logs

on

dbpartitionnums

(0,

2)

tablespace(TBS1)

This

completes

successfully.

db2

rollforward

db

sample

to

1998-04-03-14.21.56.245378

and

stop

tablespace(TBS1)

This

fails,

because

TBS1

is

not

ready

for

rollforward

recovery

on

database

partition

1;

all

pieces

must

be

rolled

forward

together.

Note:

With

table

space

rollforward

to

a

point

in

time,

the

database

partition

clause

is

not

accepted.

The

rollforward

operation

must

take

place

on

all

the

database

partitions

on

which

the

table

space

resides.

After

restoring

TBS1

on

database

partition

1:

db2

rollforward

db

sample

to

1998-04-03-14.21.56.245378

and

stop

tablespace(TBS1)

This

completes

successfully.

Example

7

(partitioned

database

environment)

After

restoring

a

table

space

on

all

database

partitions,

roll

forward

to

PIT2,

but

do

not

specify

AND

STOP.

The

rollforward

operation

is

still

in

progress.

Cancel

and

roll

forward

to

PIT1:

db2

rollforward

db

sample

to

pit2

tablespace(TBS1)

db2

rollforward

db

sample

cancel

tablespace(TBS1)

**

restore

TBS1

on

all

database

partitions

**

db2

rollforward

db

sample

to

pit1

tablespace(TBS1)

db2

rollforward

db

sample

stop

tablespace(TBS1)

Example

8

(partitioned

database

environments)

Rollforward

recover

a

table

space

that

resides

on

eight

database

partitions

(3

to

10)

listed

in

the

db2nodes.cfg

file:

db2

rollforward

database

dwtest

to

end

of

logs

tablespace

(tssprodt)

This

operation

to

the

end

of

logs

(not

point

in

time)

completes

successfully.

The

database

partitions

on

which

the

table

space

resides

do

not

have

to

be

specified.

The

utility

defaults

to

the

db2nodes.cfg

file.

ROLLFORWARD

DATABASE

370

Common

Criteria

Certification:

Administration

and

User

Documentation

Example

9

(partitioned

database

environment)

Rollforward

recover

six

small

table

spaces

that

reside

on

a

single-partition

database

partition

group

(on

database

partition

6):

db2

rollforward

database

dwtest

to

end

of

logs

on

dbpartitionnum

(6)

tablespace(tsstore,

tssbuyer,

tsstime,

tsswhse,

tsslscat,

tssvendor)

This

operation

to

the

end

of

logs

(not

point

in

time)

completes

successfully.

Usage

notes:

If

restoring

from

an

image

that

was

created

during

an

online

backup

operation,

the

specified

point

in

time

for

the

rollforward

operation

must

be

later

than

the

time

at

which

the

online

backup

operation

completed.

If

the

rollforward

operation

is

stopped

before

it

passes

this

point,

the

database

is

left

in

rollforward

pending

state.

If

a

table

space

is

in

the

process

of

being

rolled

forward,

it

is

left

in

rollforward

in

progress

state.

If

one

or

more

table

spaces

is

being

rolled

forward

to

a

point

in

time,

the

rollforward

operation

must

continue

at

least

to

the

minimum

recovery

time,

which

is

the

last

update

to

the

system

catalogs

for

this

table

space

or

its

tables.

The

minimum

recovery

time

(in

Coordinated

Universal

Time,

or

UTC)

for

a

table

space

can

be

retrieved

using

the

LIST

TABLESPACES

SHOW

DETAIL

command.

Rolling

databases

forward

might

require

a

load

recovery

using

tape

devices.

If

prompted

for

another

tape,

the

user

can

respond

with

one

of

the

following:

c

Continue.

Continue

using

the

device

that

generated

the

warning

message

(for

example,

when

a

new

tape

has

been

mounted)

d

Device

terminate.

Stop

using

the

device

that

generated

the

warning

message

(for

example,

when

there

are

no

more

tapes)

t

Terminate.

Terminate

all

devices.

If

the

rollforward

utility

cannot

find

the

next

log

that

it

needs,

the

log

name

is

returned

in

the

SQLCA,

and

rollforward

recovery

stops.

If

no

more

logs

are

available,

use

the

STOP

option

to

terminate

rollforward

recovery.

Incomplete

transactions

are

rolled

back

to

ensure

that

the

database

or

table

space

is

left

in

a

consistent

state.

Compatibilities:

For

compatibility

with

versions

earlier

than

Version

8:

v

The

keyword

NODE

can

be

substituted

for

DBPARTITIONNUM.

v

The

keyword

NODES

can

be

substituted

for

DBPARTITIONNUMS.

Related

reference:

v

“BACKUP

DATABASE”

on

page

227

v

“RESTORE

DATABASE”

on

page

354

SET

WRITE

The

SET

WRITE

command

allows

a

user

to

suspend

I/O

writes

or

to

resume

I/O

writes

for

a

database.

Typical

use

of

this

command

is

for

splitting

a

mirrored

database.

This

type

of

mirroring

is

achieved

through

a

disk

storage

system.

ROLLFORWARD

DATABASE

Chapter

13.

DB2

UDB

Commands

for

Administrators

371

This

new

state,

SUSPEND_WRITE,

is

visible

from

the

Snapshot

Monitor.

All

table

spaces

must

be

in

a

NORMAL

state

for

the

command

to

execute

successfully.

If

any

one

table

space

is

in

a

state

other

than

NORMAL,

the

command

will

fail.

Authorization:

This

command

only

affect

the

node

on

which

it

is

executed.

The

authorization

of

this

command

requires

the

issuer

to

have

one

of

the

following

privileges:

v

sysadm

v

sysctrl

v

sysmaint

Required

Connection:

Database

Command

Syntax:

��

SET

WRITE

SUSPEND

RESUME

FOR

DATABASE

DB

��

Command

Parameters:

SUSPEND

Suspending

I/O

writes

will

put

all

table

spaces

into

a

new

state

SUSPEND_WRITE

state.

Writes

to

the

logs

are

also

suspended

by

this

command.

All

database

operations,

apart

from

online

backup

and

restore,

should

function

normally

while

database

writes

are

suspended.

However,

some

operations

can

wait

while

attempting

to

flush

dirty

pages

from

the

buffer

pool

or

log

buffers

to

the

logs.

These

operations

will

resume

normally

once

the

database

writes

are

resumed.

RESUME

Resuming

I/O

writes

will

remove

the

SUSPEND_WRITE

state

from

all

of

the

table

spaces

and

make

the

table

spaces

available

for

update.

Usage

Notes:

It

is

suggested

that

I/O

writes

be

resumed

from

the

same

connection

from

which

they

were

suspended.

Ensuring

that

this

connection

is

available

to

resume

I/O

writes

involves

not

performing

any

operations

from

this

connection

until

database

writes

are

resumed.

Otherwise,

some

operations

can

wait

for

I/O

writes

to

be

resumed

if

dirty

pages

must

be

flushed

from

the

buffer

pool

or

from

log

buffers

to

the

logs.

Furthermore,

subsequent

connection

attempts

might

hang

if

they

require

flushing

dirty

pages

from

the

buffer

pool

to

disk.

Subsequent

connections

will

complete

successfully

once

database

I/O

resumes.

If

your

connection

attempts

are

hanging,

and

it

has

become

impossible

to

resume

I/O

from

the

connection

that

you

used

to

suspend

I/O,

then

you

will

have

to

run

the

RESTART

DATABASE

command

with

the

WRITE

RESUME

option.

When

used

in

this

circumstance,

the

RESTART

DATABASE

command

will

resume

I/O

writes

without

performing

crash

recovery.

The

RESTART

DATABASE

command

with

the

WRITE

RESUME

option

will

only

perform

crash

recovery

when

you

use

it

after

a

database

crash.

Related

concepts:

v

“High

availability

through

online

split

mirror

and

suspended

I/O

support”

in

the

Data

Recovery

and

High

Availability

Guide

and

Reference

SET

WRITE

372

Common

Criteria

Certification:

Administration

and

User

Documentation

START

DATABASE

MANAGER

Starts

the

current

database

manager

instance

background

processes

on

a

single

database

partition

or

on

all

the

database

partitions

defined

in

a

multi-partitioned

database

environment.

Scope:

In

a

multi-partitioned

database

environment,

this

command

affects

all

database

partitions

that

are

listed

in

the

$HOME/sqllib/db2nodes.cfg

file,

unless

the

dbpartitionnum

parameter

is

used.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

v

sysmaint

Note:

The

ADD

DBPARTITIONNUM

start

option

requires

either

sysadm

or

sysctrl

authority.

Required

connection:

None

Command

syntax:

��

START

DATABASE

MANAGER

DB

MANAGER

DBM

db2start

�

�

REMOTE

instancename

remote

options

INSTANCE

�

�

ADMIN

MODE

USER

username

GROUP

groupname

PROFILE

profile

�

�

DBPARTITIONNUM

db-partition-number

start

options

��

remote

options:

ADMINNODE

nodename

USER

username

USING

password

HOSTNAME

hostname

start

options:

START

DATABASE

MANAGER

Chapter

13.

DB2

UDB

Commands

for

Administrators

373

ADD

DBPARTITIONNUM

add

dbpartitionnum

options

STANDALONE

RESTART

restart

options

add

dbpartitionnum

options:

HOSTNAME

hostname

PORT

logical-port

COMPUTER

computer-name

�

�

USER

username

PASSWORD

password

NETNAME

netname

�

�

LIKE

DBPARTITIONNUM

db-partition-number

WITHOUT

TABLESPACES

restart

options:

HOSTNAME

hostname

PORT

logical-port

COMPUTER

computername

�

�

USER

username

PASSWORD

password

NETNAME

netname

Command

parameters:

REMOTE

[INSTANCE]

instancename

Specifies

the

name

of

the

remote

instance

you

wish

to

start.

ADMINNODE

nodename

With

REMOTE,

or

REMOTE

INSTANCE,

specifies

the

name

of

the

administration

node.

HOSTNAME

hostname

With

REMOTE,

or

REMOTE

INSTANCE,

specifies

the

name

of

the

host

node.

USER

username

With

REMOTE,

or

REMOTE

INSTANCE,

specifies

the

name

of

the

user.

USING

password

With

REMOTE,

or

REMOTE

INSTANCE,

and

the

USER,

specifies

the

password

of

the

user.

ADMIN

MODE

Starts

the

instance

in

quiesced

mode

for

administration

purposes.

This

is

equivalent

to

the

QUIESCE

INSTANCE

command

except

in

this

case

the

instance

is

not

already

“up”,

and

therefore

there

is

no

need

to

force

the

connections

off.

USER

username

With

ADMIN

MODE,

specifies

the

name

of

the

user.

GROUP

groupname

With

ADMIN

MODE,

specifies

the

name

of

the

group.

Note:

All

of

the

following

parameters

are

valid

in

an

Enterprise

Server

Edition

(ESE)

environment

only.

START

DATABASE

MANAGER

374

Common

Criteria

Certification:

Administration

and

User

Documentation

PROFILE

profile

Specifies

the

name

of

the

profile

file

to

be

executed

at

each

database

partition

to

define

the

DB2

environment.

This

file

is

executed

before

the

database

partitions

are

started.

The

profile

file

must

reside

in

the

sqllib

directory

of

the

instance

owner.

Note:

The

environment

variables

in

the

profile

file

are

not

necessarily

all

defined

in

the

user

session.

DBPARTITIONNUM

db-partition-number

Specifies

the

database

partition

to

be

started.

If

no

other

options

are

specified,

a

normal

startup

is

done

at

this

database

partition.

Valid

values

are

from

0

to

999

inclusive.

If

ADD

DBPARTITIONNUM

is

not

specified,

the

value

must

already

exist

in

the

db2nodes.cfg

file

of

the

instance

owner.

If

no

database

partition

number

is

specified,

all

database

partitions

defined

in

the

configuration

file

are

started.

ADD

DBPARTITIONNUM

Specifies

that

the

new

database

partition

is

added

to

the

db2nodes.cfg

file

of

the

instance

owner

with

the

hostname

and

logical-port

values.

Ensure

that

the

combination

of

hostname

and

logical-port

is

unique.

The

add

database

partition

utility

is

executed

internally

to

create

all

existing

databases

on

the

database

partition

being

added.

After

a

database

partition

is

added,

the

db2nodes.cfg

file

is

not

updated

with

the

new

database

partition

until

a

db2stop

is

issued.

The

database

partition

is

not

part

of

the

MPP

system

until

the

next

db2start

following

the

db2stop.

Note:

When

the

database

partitions

are

created

on

the

new

node,

their

configuration

parameters

are

set

to

the

default.

HOSTNAME

hostname

With

ADD

DBPARTITIONNUM,

specifies

the

host

name

to

be

added

to

the

db2nodes.cfg

file.

PORT

logical-port

With

ADD

DBPARTITIONNUM,

specifies

the

logical

port

to

be

added

to

the

db2nodes.cfg

file.

Valid

values

are

from

0

to

999.

COMPUTER

computername

The

computer

name

for

the

machine

on

which

the

new

database

partition

is

created.

This

parameter

is

mandatory

on

Windows

NT,

but

is

ignored

on

other

operating

systems.

USER

username

The

user

name

for

the

account

on

the

new

database

partition.

This

parameter

is

mandatory

on

Windows

NT,

but

is

ignored

on

other

operating

systems.

PASSWORD

password

The

password

for

the

account

on

the

new

database

partition.

This

parameter

is

mandatory

on

Windows

NT,

but

is

ignored

on

other

operating

systems.

NETNAME

netname

Specifies

the

netname

to

be

added

to

the

db2nodes.cfg

file.

If

not

specified,

this

parameter

defaults

to

the

value

specified

for

hostname.

START

DATABASE

MANAGER

Chapter

13.

DB2

UDB

Commands

for

Administrators

375

LIKE

DBPARTITIONNUM

db-partition-number

Specifies

that

the

containers

for

the

system

temporary

table

spaces

will

be

the

same

as

the

containers

on

the

specified

db-partition-number

for

each

database

in

the

instance.

The

database

partition

specified

must

be

a

database

partition

that

is

already

in

the

db2nodes.cfg

file.

WITHOUT

TABLESPACES

Specifies

that

containers

for

the

system

temporary

table

spaces

are

not

created

for

any

of

the

databases.

The

ALTER

TABLESPACE

statement

must

be

used

to

add

system

temporary

table

space

containers

to

each

database

before

the

database

can

be

used.

STANDALONE

Specifies

that

the

database

partition

is

to

be

started

in

stand-alone

mode.

FCM

does

not

attempt

to

establish

a

connection

to

any

other

database

partition.

This

option

is

used

when

adding

a

database

partition.

RESTART

Starts

the

database

manager

after

a

failure.

Other

database

partitions

are

still

operating,

and

this

database

partition

attempts

to

connect

to

the

others.

If

neither

the

hostname

nor

the

logical-port

parameter

is

specified,

the

database

manager

is

restarted

using

the

hostname

and

logical-port

values

specified

in

db2nodes.cfg.

If

either

parameter

is

specified,

the

new

values

are

sent

to

the

other

database

partitions

when

a

connection

is

established.

The

db2nodes.cfg

file

is

updated

with

this

information.

HOSTNAME

hostname

With

RESTART,

specifies

the

host

name

to

be

used

to

override

that

in

the

database

partition

configuration

file.

PORT

logical-port

With

RESTART,

specifies

the

logical

port

number

to

be

used

to

override

that

in

the

database

partition

configuration

file.

If

not

specified,

this

parameter

defaults

to

the

logical-port

value

that

corresponds

to

the

num

value

in

the

db2nodes.cfg

file.

Valid

values

are

from

0

to

999.

COMPUTER

computername

The

computer

name

for

the

machine

on

which

the

new

database

partition

is

created.

This

parameter

is

mandatory

on

Windows

NT,

but

is

ignored

on

other

operating

systems.

USER

username

The

user

name

for

the

account

on

the

new

database

partition.

This

parameter

is

mandatory

on

Windows

NT,

but

is

ignored

on

other

operating

systems.

PASSWORD

password

The

password

for

the

account

on

the

new

database

partition.

This

parameter

is

mandatory

on

Windows

NT,

but

is

ignored

on

other

operating

systems.

NETNAME

netname

Specifies

the

netname

to

override

that

specified

in

the

db2nodes.cfg

file.

If

not

specified,

this

parameter

defaults

to

the

netname

value

that

corresponds

to

the

db-partition-number

value

in

the

db2nodes.cfg

file.

Examples:

START

DATABASE

MANAGER

376

Common

Criteria

Certification:

Administration

and

User

Documentation

The

following

is

sample

output

from

db2start

issued

on

a

three-database

partition

system

with

database

partitions

10,

20,

and

30:

04-07-1997

10:33:05

10

0

SQL1063N

DB2START

processing

was

successful.

04-07-1997

10:33:07

20

0

SQL1063N

DB2START

processing

was

successful.

04-07-1997

10:33:07

30

0

SQL1063N

DB2START

processing

was

successful.

SQL1063N

DB2START

processing

was

successful.

Usage

notes:

It

is

not

necessary

to

issue

this

command

on

a

client

node.

It

is

provided

for

compatibility

with

older

clients,

but

it

has

no

effect

on

the

database

manager.

Once

started,

the

database

manager

instance

runs

until

the

user

stops

it,

even

if

all

application

programs

that

were

using

it

have

ended.

If

the

database

manager

starts

successfully,

a

successful

completion

message

is

sent

to

the

standard

output

device.

If

an

error

occurs,

processing

stops,

and

an

error

message

is

sent

to

the

standard

output

device.

In

a

partitioned

database

environment,

messages

are

returned

on

the

database

partition

that

issued

the

START

DATABASE

MANAGER

command.

If

no

parameters

are

specified

in

a

partitioned

database

environment,

the

database

manager

is

started

on

all

parallel

nodes

using

the

parameters

specified

in

the

database

partition

configuration

file.

If

a

START

DATABASE

MANAGER

command

is

in

progress,

ensure

that

the

applicable

database

partitions

have

started

before

issuing

a

request

to

the

database.

The

db2cshrc

file

is

not

supported

and

cannot

be

used

to

define

the

environment.

You

can

start

an

instance

in

a

quiesced

state.

You

can

do

this

by

using

one

of

the

following

choices:

db2start

admin

mode

or

db2start

admin

mode

user

username

or

db2start

admin

mode

group

groupname

On

UNIX

platforms,

the

START

DATABASE

MANAGER

command

supports

the

SIGINT

and

SIGALRM

signals.

The

SIGINT

signal

is

issued

if

CTRL+C

is

pressed.

The

SIGALRM

signal

is

issued

if

the

value

specified

for

the

start_stop_time

database

manager

configuration

parameter

is

reached.

If

either

signal

occurs,

all

in-progress

startups

are

interrupted

and

a

message

(SQL1044N

for

SIGINT

and

SQL6037N

for

SIGALRM)

is

returned

from

each

interrupted

database

partition

to

the

$HOME/sqllib/log/db2start.

timestamp.log

error

log

file.

Database

partitions

that

are

already

started

are

not

affected.

If

CTRL+C

is

pressed

on

a

database

partition

that

is

starting,

db2stop

must

be

issued

on

that

database

partition

before

an

attempt

is

made

to

start

it

again.

On

the

Windows

NT

operating

system,

neither

the

db2start

command

nor

the

NET

START

command

returns

warnings

if

any

communication

subsystem

failed

to

start.

The

database

manager

in

a

Windows

NT

environment

is

implemented

as

an

NT

START

DATABASE

MANAGER

Chapter

13.

DB2

UDB

Commands

for

Administrators

377

service,

and

does

not

return

an

error

if

the

service

is

started

successfully.

Be

sure

to

examine

the

NT

Event

Log

or

the

DB2DIAG.LOG

file

for

any

errors

that

might

have

occurred

during

the

running

of

db2start.

Compatibilities:

For

compatibility

with

versions

earlier

than

Version

8:

v

The

keywords

LIKE

NODE

can

be

substituted

for

LIKE

DBPARTITIONNUM.

v

The

keyword

ADDNODE

can

be

substituted

for

ADD

DBPARTITIONNUM.

v

The

keyword

NODENUM

can

be

substituted

for

DBPARTITIONNUM.

Related

reference:

v

“STOP

DATABASE

MANAGER”

on

page

378

v

“ADD

DBPARTITIONNUM

Command”

in

the

Command

Reference

STOP

DATABASE

MANAGER

Stops

the

current

database

manager

instance.

Unless

explicitly

stopped,

the

database

manager

continues

to

be

active.

This

command

does

not

stop

the

database

manager

instance

if

any

applications

are

connected

to

databases.

If

there

are

no

database

connections,

but

there

are

instance

attachments,

it

forces

the

instance

attachments

and

stops

the

database

manager.

This

command

also

deactivates

any

outstanding

database

activations

before

stopping

the

database

manager.

On

partitioned

database

system,

this

command

stops

the

current

database

manager

instance

on

a

database

partition

or

on

all

database

partitions.

When

it

stops

the

database

manager

on

all

database

partitions,

it

uses

the

db2nodes.cfg

configuration

file

to

obtain

information

about

each

database

partition.

This

command

can

also

be

used

to

drop

a

database

partition

from

the

db2nodes.cfg

file

(partitioned

database

systems

only).

This

command

is

not

valid

on

a

client.

Scope:

By

default,

and

in

a

partitioned

database

environment,

this

command

affects

all

database

partitions

that

are

listed

in

the

db2nodes.cfg

file.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

v

sysmaint

Required

connection:

None

Command

syntax:

START

DATABASE

MANAGER

378

Common

Criteria

Certification:

Administration

and

User

Documentation

��

STOP

DATABASE

MANAGER

DB

MANAGER

DBM

db2stop

PROFILE

profile

�

�

DBPARTITIONNUM

db-partition-number

DROP

DBPARTITIONNUM

db-partition-number

FORCE

DBPARTITIONNUM

db-partition-number

��

Command

parameters:

PROFILE

profile

partitioned

database

systems

only.

Specifies

the

name

of

the

profile

file

that

was

executed

at

startup

to

define

the

DB2

environment

for

those

database

partitions

that

were

started.

If

a

profile

for

the

START

DATABASE

MANAGER

command

was

specified,

the

same

profile

must

be

specified

here.

The

profile

file

must

reside

in

the

sqllib

directory

of

the

instance

owner.

DBPARTITIONNUM

db-partition-number

partitioned

database

systems

only.

Specifies

the

database

partition

to

be

stopped.

Valid

values

are

from

0

to

999

inclusive,

and

must

be

in

the

db2nodes.cfg

file.

If

no

database

partition

number

is

specified,

all

database

partitions

defined

in

the

configuration

file

are

stopped.

DROP

DBPARTITIONNUM

db-partition-number

partitioned

database

systems

only.

Specifies

the

database

partition

to

be

dropped

from

the

db2nodes.cfg

file.

Before

using

this

parameter,

run

the

DROP

DBPARTITIONNUM

VERIFY

command

to

ensure

that

there

is

no

user

data

on

this

database

partition.

When

this

option

is

specified,

all

database

partitions

in

the

db2nodes.cfg

file

are

stopped.

FORCE

Specifies

to

use

FORCE

APPLICATION

ALL

when

stopping

the

database

manager

at

each

database

partition.

DBPARTITIONNUM

db-partition-number

partitioned

database

systems

only.

Specifies

the

database

partition

to

be

stopped

after

all

applications

on

that

database

partition

have

been

forced

to

stop.

If

the

FORCE

option

is

used

without

this

parameter,

all

applications

on

all

database

partitions

are

forced

before

all

the

database

partitions

are

stopped.

Examples:

The

following

is

sample

output

from

db2stop

issued

on

a

three-partition

system

with

database

partitions

10,

20,

and

30:

Usage

notes:

04-07-1997

10:32:53

10

0

SQL1064N

DB2STOP

processing

was

successful.

04-07-1997

10:32:54

20

0

SQL1064N

DB2STOP

processing

was

successful.

04-07-1997

10:32:55

30

0

SQL1064N

DB2STOP

processing

was

successful.

SQL1064N

DB2STOP

processing

was

successful.

STOP

DATABASE

MANAGER

Chapter

13.

DB2

UDB

Commands

for

Administrators

379

It

is

not

necessary

to

issue

this

command

on

a

client

node.

It

is

provided

for

compatibility

with

older

clients,

but

it

has

no

effect

on

the

database

manager.

Once

started,

the

database

manager

instance

runs

until

the

user

stops

it,

even

if

all

application

programs

that

were

using

it

have

ended.

If

the

database

manager

is

stopped,

a

successful

completion

message

is

sent

to

the

standard

output

device.

If

an

error

occurs,

processing

stops,

and

an

error

message

is

sent

to

the

standard

output

device.

If

the

database

manager

cannot

be

stopped

because

application

programs

are

still

connected

to

databases,

use

the

FORCE

APPLICATION

command

to

disconnect

all

users

first,

or

reissue

the

STOP

DATABASE

MANAGER

command

with

the

FORCE

option.

The

following

information

applies

to

partitioned

database

environments

only:

v

If

no

parameters

are

specified,

the

database

manager

is

stopped

on

each

database

partition

listed

in

the

configuration

file.

The

administration

notification

log

might

contain

messages

to

indicate

that

other

database

partitions

are

shutting

down.

v

Any

database

partitions

added

to

the

partitioned

database

system

since

the

previous

STOP

DATABASE

MANAGER

command

was

issued

will

be

updated

in

the

db2nodes.cfg

file.

v

On

UNIX

platforms,

this

command

supports

the

SIGALRM

signal,

which

is

issued

if

the

value

specified

for

the

start_stop_time

database

manager

configuration

parameter

is

reached.

If

this

signal

occurs,

all

in-progress

stops

are

interrupted,

and

message

SQL6037N

is

returned

from

each

interrupted

database

partition

to

the

$HOME/sqllib/log/db2stop.

timestamp.log

error

log

file.

Database

partitions

that

are

already

stopped

are

not

affected.

v

The

db2cshrc

file

is

not

supported

and

cannot

be

specified

as

the

value

for

the

PROFILE

parameter.

Attention:

The

UNIX

kill

command

should

not

be

used

to

terminate

the

database

manager

because

it

will

abruptly

end

database

manager

processes

without

controlled

termination

and

cleanup

processing.

Related

reference:

v

“FORCE

APPLICATION

Command”

in

the

Command

Reference

v

“START

DATABASE

MANAGER”

on

page

373

v

“DEACTIVATE

DATABASE

Command”

in

the

Command

Reference

v

“DROP

DBPARTITIONNUM

VERIFY

Command”

in

the

Command

Reference

UNQUIESCE

Restores

user

access

to

instances

or

databases

which

have

been

quiesced

for

maintenance

or

other

reasons.

UNQUIESCE

restores

user

access

without

necessitating

a

shutdown

and

database

restart.

Unless

specifically

designated,

no

user

except

those

with

sysadm,

sysmaint,

or

sysctrl

has

access

to

a

database

while

it

is

quiesced.

Therefore

an

UNQUIESCE

is

required

to

restore

general

access

to

a

quiesced

database.

Scope:

STOP

DATABASE

MANAGER

380

Common

Criteria

Certification:

Administration

and

User

Documentation

UNQUIESCE

DB

restores

user

access

to

all

objects

in

the

quiesced

database.

UNQUIESCE

INSTANCE

instance-name

restores

user

access

to

the

instance

and

the

databases

in

the

instance

instance-name.

To

stop

the

instance

and

unquiesce

it

and

all

its

databases,

issue

the

db2stop

command.

Stopping

and

restarting

DB2

will

unquiesce

all

instances

and

databases.

Authorization:

One

of

the

following:

For

database

level

unquiesce:

v

sysadm

v

dbadm

For

instance

level

unquiesce:

v

sysadm

v

sysctrl

Command

syntax:

��

UNQUIESCE

DB

INSTANCE

instance-name

��

Required

connection:

Database

(Database

connection

is

not

required

for

an

instance

unquiesce.)

Command

parameters:

DB

Unquiesce

the

database.

User

access

will

be

restored

to

all

objects

in

the

database.

INSTANCE

instance-name

Access

is

restored

to

the

instance

instance-name

and

the

databases

in

the

instance.

Examples:

Unquiescing

a

Database

db2

unquiesce

db

This

command

will

unquiesce

the

database

that

had

previously

been

quiesced.

UPDATE

DATABASE

CONFIGURATION

Modifies

individual

entries

in

a

specific

database

configuration

file.

A

database

configuration

file

resides

on

every

node

on

which

the

database

has

been

created.

Scope:

UNQUIESCE

Chapter

13.

DB2

UDB

Commands

for

Administrators

381

This

command

only

affects

the

node

on

which

it

is

executed.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

v

sysmaint

Required

connection:

Instance.

An

explicit

attachment

is

not

required,

but

a

database

connection

is

recommended

when

the

database

is

active.

If

the

database

is

listed

as

remote,

an

instance

attachment

to

the

remote

node

is

established

for

the

duration

of

the

command.

To

change

a

parameter

online,

you

must

be

connected

to

the

database.

Command

syntax:

��

UPDATE

DATABASE

DB

CONFIGURATION

CONFIG

CFG

FOR

database-alias

�

�

�

USING

config-keyword

value

IMMEDIATE

DEFERRED

��

Command

parameters:

DEFERRED

Make

the

changes

only

in

the

configuration

file,

so

that

the

changes

take

effect

the

next

time

you

reactivate

the

database.

FOR

database-alias

Specifies

the

alias

of

the

database

whose

configuration

is

to

be

updated.

Specifying

the

database

alias

is

not

required

when

a

database

connection

has

already

been

established.

IMMEDIATE

Make

the

changes

immediately,

while

the

database

is

running.

IMMEDIATE

is

the

default

action,

but

it

requires

a

database

connection

to

be

effective.

USING

config-keyword

value

config-keyword

specifies

the

database

configuration

parameter

to

be

updated.

value

specifies

the

value

to

be

assigned

to

the

parameter.

Usage

notes:

To

view

or

print

a

list

of

the

database

configuration

parameters,

use

the

GET

DATABASE

CONFIGURATION

command.

To

reset

all

the

database

configuration

parameters

to

the

recommended

defaults,

use

the

RESET

DATABASE

CONFIGURATION

command.

UPDATE

DATABASE

CONFIGURATION

382

Common

Criteria

Certification:

Administration

and

User

Documentation

To

change

a

database

configuration

parameter,

use

the

UPDATE

DATABASE

CONFIGURATION

command.

For

example,

to

change

the

logging

mode

to

“archival

logging”

on

a

single-partition

database

environment

containing

a

database

called

ZELLMART,

use:

db2

update

db

cfg

for

zellmart

using

logretain

recovery

To

check

that

the

logretain

configuration

parameter

has

changed,

use:

db2

get

db

cfg

for

zellmart

When

changing

configuration

parameters

in

a

multiple-partitioned

database

environment,

the

db2_all

command

should

be

used.

Using

the

db2_all

command

results

in

the

update

being

issued

against

all

partitions.

For

example,

to

change

the

logging

mode

to

“archival

logging”

in

a

multiple-partitioned

database

environment

containing

a

database

called

“zellmart”,

use:

db2_all

";db2

update

db

cfg

for

zellmart

using

logretain

recovery"

To

check

that

the

logretain

configuration

parameter

has

changed

on

all

database

partitions,

use:

db2_all

";db2

get

db

cfg

for

zellmart"

If

you

are

working

on

a

UNIX

operating

system,

and

you

have

the

“grep”

command,

you

can

use

the

following

command

to

view

only

the

logretain

values:

db2_all

";db2

get

db

cfg

for

zellmart

|

grep

-i

logretain"

For

more

information

about

DB2

configuration

parameters

and

the

values

available

for

each

type

of

database

node,

see

the

individual

configuration

parameter

descriptions.

The

values

of

these

parameters

differ

for

each

type

of

database

node

configured

(server,

client,

or

server

with

remote

clients).

Not

all

parameters

can

be

updated.

Some

changes

to

the

database

configuration

file

become

effective

only

after

they

are

loaded

into

memory.

All

applications

must

disconnect

from

the

database

before

this

can

occur.

For

more

information

on

which

parameters

are

configurable

on-line

and

which

ones

are

not,

see

summary

list

of

configuration

parameters.

For

example,

to

change

the

sortheap

database

configuration

parameter

online

for

the

SALES

database,

enter

the

following

commands:

db2

connect

to

sales

db2

update

db

cfg

using

sortheap

1000

db2

connect

reset

If

an

error

occurs,

the

database

configuration

file

does

not

change.

The

database

configuration

file

cannot

be

updated

if

the

checksum

is

invalid.

This

might

occur

if

the

database

configuration

file

is

changed

without

using

the

appropriate

command.

If

this

happens,

the

database

must

be

restored

to

reset

the

database

configuration

file.

Related

concepts:

v

“rah

and

db2_all

commands

overview”

in

the

Administration

Guide:

Implementation

Related

tasks:

UPDATE

DATABASE

CONFIGURATION

Chapter

13.

DB2

UDB

Commands

for

Administrators

383

v

“Configuring

DB2

with

configuration

parameters”

on

page

779

Related

reference:

v

“GET

DATABASE

CONFIGURATION”

on

page

275

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“Configuration

parameters

summary”

in

the

Administration

Guide:

Performance

UPDATE

DATABASE

MANAGER

CONFIGURATION

Modifies

individual

entries

in

the

database

manager

configuration

file.

Authorization:

sysadm

Required

connection:

None

or

instance.

An

instance

attachment

is

not

required

to

perform

local

DBM

configuration

operations,

but

is

required

to

perform

remote

DBM

configuration

operations.

To

update

the

database

manager

configuration

for

a

remote

instance,

it

is

necessary

to

first

attach

to

that

instance.

To

update

a

configuration

parameter

on-line,

it

is

also

necessary

to

first

attach

to

the

instance.

Command

syntax:

��

UPDATE

DATABASE

MANAGER

DB

MANAGER

DBM

CONFIGURATION

CONFIG

CFG

�

�

�

USING

config-keyword

value

IMMEDIATE

DEFERRED

��

Command

parameters:

DEFERRED

Make

the

changes

only

in

the

configuration

file,

so

that

the

changes

take

effect

when

the

instance

is

restarted.

IMMEDIATE

Make

the

changes

right

now,

dynamically,

while

the

instance

is

running.

IMMEDIATE

is

the

default,

but

it

requires

an

instance

attachment

to

be

effective.

USING

config-keyword

value

Specifies

the

database

manager

configuration

parameter

to

be

updated.

For

a

list

of

configuration

parameters,

refer

to

the

configuration

parameters

summary.

Usage

notes:

To

view

or

print

a

list

of

the

database

manager

configuration

parameters,

use

the

GET

DATABASE

MANAGER

CONFIGURATION

command.

To

reset

the

database

manager

configuration

parameters

to

the

recommended

database

manager

defaults,

UPDATE

DATABASE

CONFIGURATION

384

Common

Criteria

Certification:

Administration

and

User

Documentation

use

the

RESET

DATABASE

MANAGER

CONFIGURATION

command.

For

more

information

about

database

manager

configuration

parameters

and

the

values

of

these

parameters

appropriate

for

each

type

of

database

node

configured

(server,

client,

or

server

with

remote

clients),

see

individual

configuration

parameter

descriptions.

Not

all

parameters

can

be

updated.

Some

changes

to

the

database

manager

configuration

file

become

effective

only

after

they

are

loaded

into

memory.

For

more

information

on

which

parameters

are

configurable

on-line

and

which

ones

are

not,

see

the

configuration

parameter

summary.

Server

configuration

parameters

that

are

not

reset

immediately

are

reset

during

execution

of

db2start.

For

a

client

configuration

parameter,

parameters

are

reset

the

next

time

you

restart

the

application.

If

the

client

is

the

command

line

processor,

it

is

necessary

to

invoke

TERMINATE.

For

example,

to

change

the

DIAGLEVEL

database

manager

configuration

parameter

on-line

for

the

eastern

instance

of

the

database

manager,

enter

the

following

command:

db2

attach

to

eastern

db2

update

dbm

cfg

using

DIAGLEVEL

1

db2

detach

If

an

error

occurs,

the

database

manager

configuration

file

does

not

change.

The

database

manager

configuration

file

cannot

be

updated

if

the

checksum

is

invalid.

This

can

occur

if

you

edit

database

manager

configuration

file

and

do

not

use

the

appropriate

command.

If

the

checksum

is

invalid,

you

must

reinstall

the

database

manager

to

reset

the

database

manager

configuration

file.

When

you

update

the

SVCENAME,

NNAME,

or

TPNAME

database

manager

configuration

parameters

for

the

current

instance,

if

LDAP

support

is

enabled

and

there

is

an

LDAP

server

registered

for

this

instance,

the

LDAP

server

is

updated

with

the

new

value

or

values.

Related

tasks:

v

“Configuring

DB2

with

configuration

parameters”

on

page

779

Related

reference:

v

“GET

DATABASE

MANAGER

CONFIGURATION”

on

page

281

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“TERMINATE

Command”

in

the

Command

Reference

v

“Configuration

parameters

summary”

in

the

Administration

Guide:

Performance

UPDATE

DATABASE

MANAGER

CONFIGURATION

Chapter

13.

DB2

UDB

Commands

for

Administrators

385

UPDATE

DATABASE

MANAGER

CONFIGURATION

386

Common

Criteria

Certification:

Administration

and

User

Documentation

Chapter

14.

DB2

UDB

APIs

for

Administrators

db2Backup

-

Backup

database

.

.

.

.

.

.

.

. 387

db2CfgGet

-

Get

Configuration

Parameters

.

.

. 394

db2CfgSet

-

Set

Configuration

Parameters

.

.

.

. 397

db2DatabaseRestart

-

Restart

Database

.

.

.

.

. 400

db2DatabaseQuiesce

-

Database

Quiesce

.

.

.

. 402

db2DatabaseUnquiesce

-

Database

Unquiesce

.

.

. 404

db2Export

-

Export

.

.

.

.

.

.

.

.

.

.

. 405

db2Import

-

Import

.

.

.

.

.

.

.

.

.

.

. 412

db2Inspect

-

Inspect

database

.

.

.

.

.

.

.

. 423

db2InstanceStart

-

Instance

Start

.

.

.

.

.

.

. 428

db2InstanceStop

-

Instance

Stop

.

.

.

.

.

.

. 433

db2Load

-

Load

.

.

.

.

.

.

.

.

.

.

.

. 437

db2Reorg

-

Reorganize

.

.

.

.

.

.

.

.

.

. 458

db2Restore

-

Restore

database

.

.

.

.

.

.

.

. 463

db2Rollforward

-

Rollforward

Database

.

.

.

. 474

db2SetWriteForDB

-

Set

or

Resume

I/O

.

.

.

. 483

sqlabndx

-

Bind

.

.

.

.

.

.

.

.

.

.

.

. 484

sqlbftpq

-

Fetch

Table

Space

Query

.

.

.

.

.

. 487

sqlbmtsq

-

Table

Space

Query

.

.

.

.

.

.

.

. 489

sqlbotcq

-

Open

Table

Space

Container

Query

.

. 491

sqlbstpq

-

Single

Table

Space

Query

.

.

.

.

.

. 493

sqlecadb

-

Catalog

Database

.

.

.

.

.

.

.

. 494

sqlecrea

-

Create

Database

.

.

.

.

.

.

.

.

. 500

sqledrpd

-

Drop

Database

.

.

.

.

.

.

.

.

. 506

sqlemgdb

-

Migrate

Database

.

.

.

.

.

.

.

. 508

sqluadau

-

Get

Authorizations

.

.

.

.

.

.

.

. 510

sqlurcon

-

Reconcile

.

.

.

.

.

.

.

.

.

.

. 512

sqluvqdp

-

Quiesce

Table

Spaces

for

Table

.

.

.

. 514

Following

are

the

application

programming

interfaces

(APIs)

that

correspond

to

the

DB2

UDB

commands

that

are

used

for

the

Common

Criteria

evaluation.

Note

that:

v

APIs

are

not

used

for

the

Common

Criteria

certification.

The

APIs

are

included

in

this

document

for

reasons

of

completeness

only.

v

Not

every

API

has

a

corresponding

command,

and

vice

versa.

db2Backup

-

Backup

database

Creates

a

backup

copy

of

a

database

or

a

table

space.

Scope:

This

API

only

affects

the

database

partition

on

which

it

is

executed.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

v

sysmaint

Required

connection:

Database.

This

API

automatically

establishes

a

connection

to

the

specified

database.

The

connection

will

be

terminated

upon

the

completion

of

the

backup.

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2Backup

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

©

Copyright

IBM

Corp.

1993-2004

387

db2Backup

(

db2Uint32

versionNumber,

void

*pDB2BackupStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2BackupStruct

{

char

*piDBAlias;

char

oApplicationId[SQLU_APPLID_LEN+1];

char

oTimestamp[SQLU_TIME_STAMP_LEN+1];

struct

db2TablespaceStruct

*piTablespaceList;

struct

db2MediaListStruct

*piMediaList;

char

*piUsername;

char

*piPassword;

void

*piVendorOptions;

db2Uint32

iVendorOptionsSize;

db2Uint32

oBackupSize;

db2Uint32

iCallerAction;

db2Uint32

iBufferSize;

db2Uint32

iNumBuffers;

db2Uint32

iParallelism;

db2Uint32

iOptions;

db2Uint32

iUtilImpactPriority;

char

*piComprLibrary;

void

*piComprOptions;

db2Uint32

iComprOptionsSize;

}

db2BackupStruct;

typedef

SQL_STRUCTURE

db2TablespaceStruct

{

char

**tablespaces;

db2Uint32

numTablespaces;

}

db2TablespaceStruct;

typedef

SQL_STRUCTURE

db2MediaListStruct

{

char

**locations;

db2Uint32

numLocations;

char

locationType;

}

db2MediaListStruct;

/*

...

*/

Generic

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2Backup

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2gBackup

(

db2Uint32

versionNumber,

void

*pDB2gBackupStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2gBackupStruct

{

char

*piDBAlias;

db2Uint32

iDBAliasLen;

char

*poApplicationId;

db2Uint32

iApplicationIdLen;

char

*poTimestamp;

db2Uint32

iTimestampLen;

struct

db2gTablespaceStruct

*piTablespaceList;

struct

db2gMediaListStruct

*piMediaList;

char

*piUsername;

db2Uint32

iUsernameLen;

char

*piPassword;

db2Uint32

iPasswordLen;

db2Backup

-

Backup

database

388

Common

Criteria

Certification:

Administration

and

User

Documentation

void

*piVendorOptions;

db2Uint32

iVendorOptionsSize;

db2Uint32

oBackupSize;

db2Uint32

iCallerAction;

db2Uint32

iBufferSize;

db2Uint32

iNumBuffers;

db2Uint32

iParallelism;

db2Uint32

iOptions;

db2Uint32

iUtilImpactPriority;

char

*piComprLibrary;

db2Uint32

iComprLibraryLen;

void

*piComprOptions;

db2Uint32

iComprOptionsSize;

}

db2gBackupStruct;

typedef

SQL_STRUCTURE

db2gTablespaceStruct

{

struct

db2Char

*tablespaces;

db2Uint32

numTablespaces;

}

db2gTablespaceStruct;

typedef

SQL_STRUCTURE

db2gMediaListStruct

{

struct

db2Char

*locations;

db2Uint32

numLocations;

char

locationType;

}

db2gMediaListStruct;

typedef

SQL_STRUCTURE

db2Char

{

char

*pioData;

db2Uint32

iLength;

db2Uint32

oLength;

}

db2Char;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

pDB2BackupStruct.

pDB2BackupStruct

Input.

A

pointer

to

the

db2BackupStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

piDBAlias

Input.

A

string

containing

the

database

alias

(as

cataloged

in

the

system

database

directory)

of

the

database

to

back

up.

iDBAliasLen

Input.

A

4-byte

unsigned

integer

representing

the

length

in

bytes

of

the

database

alias.

oApplicationId

Output.

The

API

will

return

a

string

identifying

the

agent

servicing

the

application.

Can

be

used

to

obtain

information

about

the

progress

of

the

backup

operation

using

the

database

monitor.

poApplicationId

Output.

Supply

a

buffer

of

length

SQLU_APPLID_LEN+1

(defined

in

sqlutil.h).

The

API

will

return

a

string

identifying

the

agent

servicing

the

db2Backup

-

Backup

database

Chapter

14.

DB2

UDB

APIs

for

Administrators

389

application.

Can

be

used

to

obtain

information

about

the

progress

of

the

backup

operation

using

the

database

monitor.

iApplicationIdLen

Input.

A

4-byte

unsigned

integer

representing

the

length

in

bytes

of

the

poApplicationId

buffer.

Should

be

equal

to

SQLU_APPLID_LEN+1

(defined

in

sqlutil.h).

oTimestamp

Output.

The

API

will

return

the

time

stamp

of

the

backup

image

poTimestamp

Output.

Supply

a

buffer

of

length

SQLU_TIME_STAMP_LEN+1

(defined

in

sqlutil.h).

The

API

will

return

the

time

stamp

of

the

backup

image.

iTimestampLen

Input.

A

4-byte

unsigned

integer

representing

the

length

in

bytes

of

the

poTimestamp

buffer.

Should

be

equal

to

SQLU_TIME_STAMP_LEN+1

(defined

in

sqlutil.h).

piTablespaceList

Input.

List

of

table

spaces

to

be

backed

up.

Required

for

table

space

level

backup

only.

Must

be

NULL

for

a

database

level

backup.

See

structure

DB2TablespaceStruct.

piMediaList

Input.

This

structure

allows

the

caller

to

specify

the

destination

for

the

backup

operation.

The

information

provided

depends

on

the

value

of

the

locationType

parameter.

The

valid

values

for

locationType

(defined

in

sqlutil.h

)

are:

SQLU_LOCAL_MEDIA

Local

devices

(a

combination

of

tapes,

disks,

or

diskettes).

SQLU_TSM_MEDIA

TSM.

If

the

locations

pointer

is

set

to

NULL,

the

TSM

shared

library

provided

with

DB2

is

used.

If

a

different

version

of

the

TSM

shared

library

is

desired,

use

SQLU_OTHER_MEDIA

and

provide

the

shared

library

name.

SQLU_OTHER_MEDIA

Vendor

product.

Provide

the

shared

library

name

in

the

locations

field.

SQLU_USER_EXIT

User

exit.

No

additional

input

is

required

(only

available

when

server

is

on

OS/2).

For

more

information,

see

the

db2MediaListStruct

structure

.

piUsername

Input.

A

string

containing

the

user

name

to

be

used

when

attempting

a

connection.

Can

be

NULL.

iUsernameLen

Input.

A

4-byte

unsigned

integer

representing

the

length

in

bytes

of

the

user

name.

Set

to

zero

if

no

user

name

is

provided.

piPassword

Input.

A

string

containing

the

password

to

be

used

with

the

user

name.

Can

be

NULL.

db2Backup

-

Backup

database

390

Common

Criteria

Certification:

Administration

and

User

Documentation

iPasswordLen

Input.

A

4-byte

unsigned

integer

representing

the

length

in

bytes

of

the

password.

Set

to

zero

if

no

password

is

provided.

piVendorOptions

Input.

Used

to

pass

information

from

the

application

to

the

vendor

functions.

This

data

structure

must

be

flat;

that

is,

no

level

of

indirection

is

supported.

Note

that

byte-reversal

is

not

done,

and

code

page

is

not

checked

for

this

data.

iVendorOptionsSize

Input.

The

length

of

the

piVendorOptions

field,

which

cannot

exceed

65535

bytes.

oBackupSize

Output.

Size

of

the

backup

image

(in

MB).

iCallerAction

Input.

Specifies

action

to

be

taken.

Valid

values

(defined

in

db2ApiDf.h)

are:

DB2BACKUP_BACKUP

Start

the

backup.

DB2BACKUP_NOINTERRUPT

Start

the

backup.

Specifies

that

the

backup

will

run

unattended,

and

that

scenarios

which

normally

require

user

intervention

will

either

be

attempted

without

first

returning

to

the

caller,

or

will

generate

an

error.

Use

this

caller

action,

for

example,

if

it

is

known

that

all

of

the

media

required

for

the

backup

have

been

mounted,

and

utility

prompts

are

not

desired.

DB2BACKUP_CONTINUE

Continue

the

backup

after

the

user

has

performed

some

action

requested

by

the

utility

(mount

a

new

tape,

for

example).

DB2BACKUP_TERMINATE

Terminate

the

backup

after

the

user

has

failed

to

perform

some

action

requested

by

the

utility.

DB2BACKUP_DEVICE_TERMINATE

Remove

a

particular

device

from

the

list

of

devices

used

by

backup.

When

a

particular

medium

is

full,

backup

will

return

a

warning

to

the

caller

(while

continuing

to

process

using

the

remaining

devices).

Call

backup

again

with

this

caller

action

to

remove

the

device

which

generated

the

warning

from

the

list

of

devices

being

used.

DB2BACKUP_PARM_CHK

Used

to

validate

parameters

without

performing

a

backup.

This

option

does

not

terminate

the

database

connection

after

the

call

returns.

After

successful

return

of

this

call,

it

is

expected

that

the

user

will

issue

a

call

with

SQLUB_CONTINUE

to

proceed

with

the

action.

DB2BACKUP_PARM_CHK_ONLY

Used

to

validate

parameters

without

performing

a

backup.

Before

this

call

returns,

the

database

connection

established

by

this

call

is

terminated,

and

no

subsequent

call

is

required.

db2Backup

-

Backup

database

Chapter

14.

DB2

UDB

APIs

for

Administrators

391

iBufferSize

Input.

Backup

buffer

size

in

4

KB

allocation

units

(pages).

Minimum

is

8

units.

iNumBuffers

Input.

Specifies

number

of

backup

buffers

to

be

used.

Minimum

is

2.

Maximum

is

limited

by

memory.

iParallelism

Input.

Degree

of

parallelism

(number

of

buffer

manipulators).

Minimum

is

1.

Maximum

is

1024.

iOptions

Input.

A

bitmap

of

backup

properties.

The

options

are

to

be

combined

using

the

bitwise

OR

operator

to

produce

a

value

for

iOptions.

Valid

values

(defined

in

db2ApiDf.h)

are:

DB2BACKUP_OFFLINE

Offline

gives

an

exclusive

connection

to

the

database.

DB2BACKUP_ONLINE

Online

allows

database

access

by

other

applications

while

the

backup

operation

occurs.

Note:

An

online

backup

operation

may

appear

to

hang

if

users

are

holding

locks

on

SMS

LOB

data.

DB2BACKUP_DB

Full

database

backup.

DB2BACKUP_TABLESPACE

Table

space

level

backup.

For

a

table

space

level

backup,

provide

a

list

of

table

spaces

in

the

piTablespaceList

parameter.

DB2BACKUP_INCREMENTAL

Specifies

a

cumulative

(incremental)

backup

image.

An

incremental

backup

image

is

a

copy

of

all

database

data

that

has

changed

since

the

most

recent

successful,

full

backup

operation.

DB2BACKUP_DELTA

Specifies

a

noncumulative

(delta)

backup

image.

A

delta

backup

image

is

a

copy

of

all

database

data

that

has

changed

since

the

most

recent

successful

backup

operation

of

any

type.

DB2BACKUP_COMPRESS

Specifies

that

the

backup

should

be

compressed.

DB2BACKUP_INCLUDE_COMPR_LIB

Specifies

that

the

library

used

for

compressing

the

backup

should

be

included

in

the

backup

image.

DB2BACKUP_EXCLUDE_COMPR_LIB

Specifies

that

the

library

used

for

compressing

the

backup

should

be

not

included

in

the

backup

image.

DB2BACKUP_INCLUDE_LOGS

Specifies

that

the

backup

image

should

also

include

the

range

of

log

files

required

to

restore

and

roll

forward

this

image

to

some

consistent

point

in

time.

This

option

is

not

valid

for

an

offline

backup

or

a

multi-partition

backup.

DB2BACKUP_EXCLUDE_LOGS

Specifies

that

the

backup

image

should

not

include

any

log

files.

db2Backup

-

Backup

database

392

Common

Criteria

Certification:

Administration

and

User

Documentation

Note:

When

performing

an

offline

backup

operation,

logs

are

excluded

whether

or

not

this

option

is

specified.

iUtilImpactPriority

Specifies

the

priority

value

that

will

be

used

during

a

backup.

The

priority

value

can

be

any

number

between

0

and

100,

with

0

representing

unthrottled

and

100

representing

the

highest

priority.

piComprLibrary

Input.

Indicates

the

name

of

the

external

library

to

be

used

to

perform

compression

of

the

backup

image.

The

name

must

be

a

fully-qualified

path

referring

to

a

file

on

the

server.

If

the

value

is

a

null

pointer

or

a

pointer

to

an

empty

string,

DB2

will

use

the

default

library

for

compression.

If

the

specified

library

is

not

found,

the

backup

will

fail.

piComprLibraryLen

Input.

A

four-byte

unsigned

integer

representing

the

length

in

bytes

of

the

name

of

the

library

specified

in

piComprLibrary.

Set

to

zero

if

no

library

name

is

given.

piComprOptions

Input.

Describes

a

block

of

binary

data

that

will

be

passed

to

the

initialization

routine

in

the

compression

library.

DB2

will

pass

this

string

directly

from

the

client

to

the

server,

so

any

issues

of

byte-reversal

or

code-page

conversion

will

have

to

be

handled

by

the

compression

library.

If

the

first

character

of

the

data

block

is

’@’,

the

remainder

of

the

data

will

be

interpreted

by

DB2

as

the

name

of

a

file

residing

on

the

server.

DB2

will

then

replace

the

contents

of

piComprOptions

and

iComprOptionsSize

with

the

contents

and

size

of

this

file

respectively

and

will

pass

these

new

values

to

the

initialization

routine

instead.

iComprOptionsSize

Input.

A

four-byte

unsigned

integer

representing

the

size

of

the

block

of

data

passed

as

piComprOptions.

iComprOptionsSize

shall

be

zero

if

and

only

if

piComprOptions

is

a

null

pointer.

tablespaces

A

pointer

to

the

list

of

table

spaces

to

be

backed

up.

For

C,

the

list

is

null-terminated

strings.

In

the

generic

case,

it

is

a

list

of

db2Char

structures.

numTablespaces

Number

of

entries

in

the

tablespaces

parameter.

locations

A

pointer

to

the

list

of

media

locations.

For

C,

the

list

is

null-terminated

strings.

In

the

generic

case,

it

is

a

list

of

db2Char

structures.

numLocations

The

number

of

entries

in

the

locations

parameter.

locationType

A

character

indicated

the

media

type.

Valid

values

(defined

in

sqlutil.h.)

are:

SQLU_LOCAL_MEDIA

Local

devices

(tapes,

disks,

diskettes,

or

named

pipes).

SQLU_TSM_MEDIA

Tivoli

Storage

Manager.

SQLU_OTHER_MEDIA

Vendor

library.

db2Backup

-

Backup

database

Chapter

14.

DB2

UDB

APIs

for

Administrators

393

SQLU_USER_EXIT

User

exit

(only

available

when

the

server

is

on

OS/2).

pioData

A

pointer

to

the

character

data

buffer.

iLength

Input.

The

size

of

the

pioData

buffer.

oLength

Output.

Reserved

for

future

use.

Related

reference:

v

“sqlemgdb

-

Migrate

Database”

on

page

508

v

“db2Rollforward

-

Rollforward

Database”

on

page

474

v

“SQLCA”

in

the

Administrative

API

Reference

v

“db2Restore

-

Restore

database”

on

page

463

Related

samples:

v

“dbrecov.sqc

--

How

to

recover

a

database

(C)”

v

“dbrecov.sqC

--

How

to

recover

a

database

(C++)”

db2CfgGet

-

Get

Configuration

Parameters

Returns

the

values

of

individual

entries

in

a

specific

database

configuration

file

or

a

database

manager

configuration

file.

Scope:

Information

about

a

specific

database

configuration

file

is

returned

only

for

the

database

partition

on

which

it

is

executed.

Authorization:

None

Required

connection:

To

obtain

the

current

online

value

of

a

configuration

parameter

for

a

specific

database

configuration

file,

a

connection

to

the

database

is

required.

To

obtain

the

current

online

value

of

a

configuration

parameter

for

the

database

manager,

an

instance

attachment

is

required.

Otherwise,

a

connection

to

a

database

or

an

attachment

to

an

instance

is

not

required.

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2CfgGet

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2CfgGet

(

db2Uint32

versionNumber,

void

*pParmStruct,

db2Backup

-

Backup

database

394

Common

Criteria

Certification:

Administration

and

User

Documentation

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2Cfg

{

db2Uint32

numItems;

struct

db2CfgParam

*paramArray;

db2Uint32

flags;

char

*dbname;

}

db2Cfg;

typedef

SQL_STRUCTURE

db2CfgParam

{

db2Uint32

token;

char

*ptrvalue;

db2Uint32

flags;

}

db2CfgParam;

/*

...

*/

Generic

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API

db2gCfgGet

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2gCfgGet

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2gCfg

{

db2Uint32

numItems;

struct

db2gCfgParam

*paramArray;

db2Uint32

flags;

db2Uint32

dbname_len;

char

*dbname;

}

db2gCfg;

typedef

SQL_STRUCTURE

db2gCfgParam

{

db2Uint32

token;

db2Uint32

ptrvalue_len;

char

*ptrvalue;

db2Uint32

flags;

}

db2gCfgParam;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

pParmStruct.

pParmStruct

Input.

A

pointer

to

the

db2Cfg

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

numItems

Input.

The

number

of

configuration

parameters

in

the

paramArray

array.

Set

this

value

to

db2CfgMaxParam

to

specify

the

largest

number

of

elements

in

the

paramArray.

paramArray

Input.

A

pointer

to

the

db2CfgParam

structure.

db2CfgGet

-

Get

Configuration

Parameters

Chapter

14.

DB2

UDB

APIs

for

Administrators

395

flags

(db2Cfg

structure)

Input.

Specifies

the

type

of

action

to

be

taken.

Valid

values

(defined

in

db2ApiDf.h)

are:

db2CfgDatabase

Specifies

to

return

the

values

in

the

database

configuration

file.

db2CfgDatabaseManager

Specifies

to

return

the

values

in

the

database

manager

configuration

file.

db2CfgImmediate

Returns

the

current

values

of

the

configuration

parameters

stored

in

memory.

db2CfgDelayed

Gets

the

values

of

the

configuration

parameters

on

disk.

These

do

not

become

the

current

values

in

memory

until

the

next

database

connection

or

instance

attachment.

db2CfgGetDefaults

Returns

the

default

values

for

the

configuration

parameter.

dbname_len

Input.

The

length

in

bytes

of

dbname.

dbname

Input.

The

database

name.

token

Input.

The

configuration

parameter

identifier.

Valid

entries

and

data

types

for

the

db2CfgParam

token

element

are

listed

in

Configuration

parameters

summary.

ptrvalue_len

Input.

The

length

in

bytes

of

ptrvalue.

ptrvalue

Output.

The

configuration

parameter

value.

flags

(db2CfgParam

structure)

Input.

Provides

specific

information

for

each

parameter

in

a

request.

Valid

values

(defined

in

db2ApiDf.h)

are:

db2CfgParamAutomatic

Indicates

whether

the

retrieved

parameter

has

a

value

of

automatic.

To

determine

whether

a

given

configuration

parameter

has

been

set

to

automatic,

perform

a

boolean

AND

operation

against

the

value

returned

by

the

flag

and

the

db2CfgParamAutomatic

keyword

defined

in

db2ApiDf.h.

Related

concepts:

v

“Configuration

parameter

tuning”

in

the

Administration

Guide:

Performance

Related

tasks:

v

“Configuring

DB2

with

configuration

parameters”

on

page

779

Related

reference:

v

“SQLCA”

in

the

Administrative

API

Reference

v

“Configuration

parameters

summary”

in

the

Administration

Guide:

Performance

v

“db2CfgSet

-

Set

Configuration

Parameters”

on

page

397

db2CfgGet

-

Get

Configuration

Parameters

396

Common

Criteria

Certification:

Administration

and

User

Documentation

Related

samples:

v

“dbinfo.c

--

Set

and

get

information

at

the

database

level

(C)”

v

“dbrecov.sqc

--

How

to

recover

a

database

(C)”

v

“inauth.sqc

--

How

to

display

authorities

at

instance

level

(C)”

v

“ininfo.c

--

Set

and

get

information

at

the

instance

level

(C)”

v

“tscreate.sqc

--

How

to

create

and

drop

buffer

pools

and

table

spaces

(C)”

v

“dbinfo.C

--

Set

and

get

information

at

the

database

level

(C++)”

v

“dbrecov.sqC

--

How

to

recover

a

database

(C++)”

v

“inauth.sqC

--

How

to

display

authorities

at

instance

level

(C++)”

v

“ininfo.C

--

Set

and

get

information

at

the

instance

level

(C++)”

v

“tscreate.sqC

--

How

to

create

and

drop

buffer

pools

and

table

spaces

(C++)”

db2CfgSet

-

Set

Configuration

Parameters

Modifies

individual

entries

in

a

specific

database

configuration

file

or

a

database

manager

configuration

file.

A

database

configuration

file

resides

on

every

node

on

which

the

database

has

been

created.

Scope:

Modifications

to

the

database

configuration

file

affect

the

node

on

which

it

is

executed.

Authorization:

For

modifications

to

the

database

configuration

file,

one

of

the

following:

v

sysadm

v

sysctrl

v

sysmaint

For

modifications

to

the

database

manager

configuration

file:

v

sysadm

Required

connection:

To

make

an

online

modification

of

a

configuration

parameter

for

a

specific

database,

a

connection

to

the

database

is

required.

To

make

an

online

modification

of

a

configuration

parameter

for

the

database

manager,

an

instance

attachment

is

required.

Otherwise

a

connection

to

a

database

or

an

attachment

to

an

instance

is

not

required.

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2CfgSet

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2CfgSet

(

db2Uint32

versionNumber,

void

*pParmStruct,

db2CfgGet

-

Get

Configuration

Parameters

Chapter

14.

DB2

UDB

APIs

for

Administrators

397

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2Cfg

{

db2Uint32

numItems;

struct

db2CfgParam

*paramArray;

db2Uint32

flags;

char

*dbname;

}

db2Cfg;

typedef

SQL_STRUCTURE

db2CfgParam

{

db2Uint32

token;

char

*ptrvalue;

db2Uint32

flags;

}

db2CfgParam;

/*

...

*/

Generic

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API

db2gCfgGet

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2gCfgSet

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2gCfg

{

db2Uint32

numItems;

struct

db2gCfgParam

*paramArray;

db2Uint32

flags;

db2Uint32

dbname_len;

char

*dbname;

}

db2gCfg;

typedef

SQL_STRUCTURE

db2gCfgParam

{

db2Uint32

token;

db2Uint32

ptrvalue_len;

char

*ptrvalue;

db2Uint32

flags;

}

db2gCfgParam;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

pParmStruct.

pParmStruct

Input.

A

pointer

to

the

db2Cfg

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

numItems

Input.

The

number

of

configuration

parameters

in

the

paramArray

array.

paramArray

Input.

A

pointer

to

the

db2CfgParam

structure.

db2CfgSet

-

Set

Configuration

Parameters

398

Common

Criteria

Certification:

Administration

and

User

Documentation

flags

(db2Cfg

structure)

Input.

Specifies

the

type

of

action

to

be

taken.

Valid

values

(defined

in

db2ApiDf.h)

are:

db2CfgDatabase

Specifies

to

return

the

values

in

the

database

configuration

file.

db2CfgDatabaseManager

Specifies

to

return

the

values

in

the

database

manager

configuration

file.

db2CfgImmediate

Sets

the

current

values

of

the

configuration

parameters

in

memory.

db2CfgDelayed

Sets

the

values

of

the

configuration

parameters

on

disk.

These

do

not

become

the

current

values

in

memory

until

the

next

database

connection

or

instance

attachment.

db2CfgReset

Resets

the

configuration

parameters

to

the

default

values.

dbname_len

Input.

The

length

in

bytes

of

dbname.

dbname

Input.

The

database

name.

token

Input.

The

configuration

parameter

identifier.

Valid

entries

and

data

types

for

the

db2CfgParam

token

element

are

listed

in

Configuration

parameters

summary.

ptrvalue_len

Input.

The

length

in

bytes

of

ptrvalue.

ptrvalue

Input.

The

configuration

parameter

value.

flags

(db2CfgParam

structure)

Input.

Specifies

the

type

of

action

to

be

taken

for

each

parameter

in

a

request.

By

default,

this

field

should

be

set

to

zero.

Valid

values

(defined

in

db2ApiDf.h)

are:

db2CfgParamAutomatic

Sets

the

configuration

parameter

value

to

automatic.

DB2

will

automatically

adjust

this

parameter

to

reflect

the

current

resource

requirements.

Only

parameters

that

support

the

automatic

behavior

can

be

set

to

automatic.

Related

concepts:

v

“Configuration

parameters”

on

page

769

Related

tasks:

v

“Configuring

DB2

with

configuration

parameters”

on

page

779

Related

reference:

v

“SQLCA”

in

the

Administrative

API

Reference

v

“Configuration

parameters

summary”

in

the

Administration

Guide:

Performance

v

“db2CfgGet

-

Get

Configuration

Parameters”

on

page

394

db2CfgSet

-

Set

Configuration

Parameters

Chapter

14.

DB2

UDB

APIs

for

Administrators

399

Related

samples:

v

“dbinfo.c

--

Set

and

get

information

at

the

database

level

(C)”

v

“dbrecov.sqc

--

How

to

recover

a

database

(C)”

v

“ininfo.c

--

Set

and

get

information

at

the

instance

level

(C)”

v

“dbinfo.C

--

Set

and

get

information

at

the

database

level

(C++)”

v

“dbrecov.sqC

--

How

to

recover

a

database

(C++)”

v

“ininfo.C

--

Set

and

get

information

at

the

instance

level

(C++)”

db2DatabaseRestart

-

Restart

Database

Restarts

a

database

that

has

been

abnormally

terminated

and

left

in

an

inconsistent

state.

At

the

successful

completion

of

this

API,

the

application

remains

connected

to

the

database

if

the

user

has

CONNECT

privilege.

Scope:

This

API

affects

only

the

database

partition

server

on

which

it

is

executed.

Authorization:

None

Required

connection:

This

API

establishes

a

database

connection.

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2DatabaseRestart

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2DatabaseRestart

(

db2Uint32

versionNumber;

void

*pParamStruct;

struct

sqlca

*pSqlca);

typedef

struct

{

char

*piDatabaseName;

char

*piUserId;

char

*piPassword;

char

*piTablespaceNames;

int

*iOption;

}

db2RestartDbStruct;

/*

...

*/

Generic

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2DatabaseRestart

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2DatabaseRestart

(

db2CfgSet

-

Set

Configuration

Parameters

400

Common

Criteria

Certification:

Administration

and

User

Documentation

db2Uint32

versionNumber;

void

*pParamStruct;

struct

sqlca

*pSqlca);

typedef

struct

{

char

*piDatabaseName;

char

*piUserId;

char

*piPassword;

char

*piTablespaceNames;

int

*iOption;

}

db2RestartDbStruct;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

in

as

the

second

parameter,

pParamStruct.

pParamStruct

Input.

A

pointer

to

the

db2RestartDbStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

piDatabaseName

Input.

A

pointer

to

a

string

containing

the

alias

of

the

database

that

is

to

be

restarted.

piUserId

Input.

A

pointer

to

a

string

containing

the

user

name

of

the

application.

May

be

NULL.

piPassword

Input.

A

pointer

to

a

string

containing

a

password

for

the

specified

user

name

(if

any).

May

be

NULL.

piTablespaceNames

Input.

A

pointer

to

a

string

containing

a

list

of

table

space

names

to

be

dropped

during

the

restart

operation.

May

be

NULL.

iOption

Input.

Valid

values

are:

DB2_DB_SUSPEND_NONE

Performs

normal

crash

recovery.

DB2_DB_RESUME_WRITE

Required

to

perform

crash

recovery

on

a

database

that

has

I/O

writes

suspended.

REXX

API

syntax:

RESTART

DATABASE

database_alias

[USER

username

USING

password]

REXX

API

parameters:

database_alias

Alias

of

the

database

to

be

restarted.

username

User

name

under

which

the

database

is

to

be

restarted.

db2DatabaseRestart

-

Restart

Database

Chapter

14.

DB2

UDB

APIs

for

Administrators

401

password

Password

used

to

authenticate

the

user

name.

Usage

notes:

Call

this

API

if

an

attempt

to

connect

to

a

database

returns

an

error

message,

indicating

that

the

database

must

be

restarted.

This

action

occurs

only

if

the

previous

session

with

this

database

terminated

abnormally

(due

to

power

failure,

for

example).

At

the

completion

of

this

API,

a

shared

connection

to

the

database

is

maintained

if

the

user

has

CONNECT

privilege,

and

an

SQL

warning

is

issued

if

any

indoubt

transactions

exist.

In

this

case,

the

database

is

still

usable,

but

if

the

indoubt

transactions

are

not

resolved

before

the

last

connection

to

the

database

is

dropped,

another

call

to

the

API

must

be

completed

before

the

database

can

be

used

again.

In

the

case

of

circular

logging,

a

database

restart

operation

will

fail

if

there

is

any

problem

with

the

table

spaces,

such

as

an

I/O

error,

an

unmounted

file

system,

and

so

on.

If

losing

such

table

spaces

is

not

an

issue,

their

names

can

be

explicitly

specified;

this

will

put

them

into

drop

pending

state,

and

the

restart

operation

can

complete

successfully.

Related

reference:

v

“SQLCA”

in

the

Administrative

API

Reference

Related

samples:

v

“dbconn.sqc

--

How

to

connect

to

and

disconnect

from

a

database

(C)”

v

“dbconn.sqC

--

How

to

connect

to

and

disconnect

from

a

database

(C++)”

db2DatabaseQuiesce

-

Database

Quiesce

Forces

all

users

off

the

database,

immediately

rolls

back

all

active

transactions,

and

puts

the

database

into

quiesce

mode.

This

API

provides

exclusive

access

to

the

database.

During

this

quiesced

period,

system

administration

can

be

performed

on

the

database.

After

administration

is

complete,

you

can

unquiesce

the

database,

using

the

db2DatabaseUnquiesce

API.

The

db2DatabaseUnquiesce

API

allows

other

users

to

connect

to

the

database,

without

having

to

shut

down

and

perform

another

database

start.

In

this

mode

only

groups

or

users

with

QUIESCE

CONNECT

authority

and

sysadm,

sysmaint,

or

sysctrl

will

have

access

to

the

database

and

its

objects.

Authorization:

One

of

the

following:

v

sysadm

v

dbadm

Required

connection:

Database

API

include

file:

db2DatabaseRestart

-

Restart

Database

402

Common

Criteria

Certification:

Administration

and

User

Documentation

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2DatabaseQuiesce

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2DatabaseQuiesce

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2DbQuiesceStruct

{

char

*piDatabaseName;

db2Uint32

iImmediate;

db2Uint32

iForce;

db2Uint32

iTimeout;

}

db2DbQuiesceStruct;

/*

...

*/

Generic

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2gDatabaseQuiesce

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2gDatabaseQuiesce

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2gDbQuiesceStruct

{

db2Uint32

iDatabaseNameLen;

char

*piDatabaseName;

db2Uint32

iImmediate;

db2Uint32

iForce;

db2Uint32

iTimeout;

}

db2gDbQuiesceStruct;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

pParmStruct.

pParmStruct

Input.

A

pointer

to

the

db2DbQuiesceStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

iDatabaseNameLen

Input.

Specifies

the

length

in

bytes

of

piDatabaseName.

piDatabaseName

Input.

The

database

name.

iImmediate

Input.

Reserved

for

future

use.

iForce

Input.

Reserved

for

future

use.

db2DatabaseQuiesce

-

Database

Quiesce

Chapter

14.

DB2

UDB

APIs

for

Administrators

403

iTimeout

Input.

Specifies

the

time,

in

minutes,

to

wait

for

applications

to

commit

the

current

unit

of

work.

If

iTimeout

is

not

specified,

in

a

single-partition

database

environment,

the

default

value

is

10

minutes.

In

a

partitioned

database

environment

the

value

specified

by

the

start_stop_timeout

database

manager

configuration

parameter

will

be

used.

Related

reference:

v

“SQLCA”

in

the

Administrative

API

Reference

v

“db2DatabaseUnquiesce

-

Database

Unquiesce”

on

page

404

db2DatabaseUnquiesce

-

Database

Unquiesce

Restores

user

access

to

databases

which

have

been

quiesced

for

maintenance

or

other

reasons.

User

access

is

restored

without

necessitating

a

shutdown

and

database

restart.

Authorization:

One

of

the

following:

v

sysadm

v

dbadm

Required

connection:

Database

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2DatabaseUnquiesce

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2DatabaseUnquiesce

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2DbUnquiesceStruct

{

char

*piDatabaseName;

}

db2DbUnquiesceStruct;

/*

...

*/

Generic

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2gDatabaseunquiesce

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2gDatabaseUnquiesce

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2gDbUnquiesceStruct

db2DatabaseQuiesce

-

Database

Quiesce

404

Common

Criteria

Certification:

Administration

and

User

Documentation

{

db2Uint32

iDatabaseNameLen;

char

*piDatabaseName;

}

db2gDbUnquiesceStruct;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

pParmStruct.

pParmStruct

Input.

A

pointer

to

the

db2DbUnquiesceStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

iDatabaseNameLen

Input.

Specifies

the

length

in

bytes

of

piDatabaseName.

piDatabaseName

Input.

The

database

name.

Related

reference:

v

“SQLCA”

in

the

Administrative

API

Reference

v

“db2DatabaseQuiesce

-

Database

Quiesce”

on

page

402

db2Export

-

Export

Exports

data

from

a

database

to

one

of

several

external

file

formats.

The

user

specifies

the

data

to

be

exported

by

supplying

an

SQL

SELECT

statement,

or

by

providing

hierarchical

information

for

typed

tables.

Authorization:

One

of

the

following:

v

sysadm

v

dbadm

or

CONTROL

or

SELECT

privilege

on

each

participating

table

or

view.

Required

connection:

Database.

If

implicit

connect

is

enabled,

a

connection

to

the

default

database

is

established.

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2Export

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2Export

(

db2DatabaseUnquiesce

-

Database

Unquiesce

Chapter

14.

DB2

UDB

APIs

for

Administrators

405

db2Uint32

versionNumber,

void

*

pParmStruct,

struct

sqlca

*

pSqlca);

typedef

SQL_STRUCTURE

db2ExportStruct

{

char

*piDataFileName;

struct

sqlu_media_list

*piLobPathList;

struct

sqlu_media_list

*piLobFileList;

struct

sqldcol

*piDataDescriptor;

struct

sqllob

*piActionString;

char

*piFileType;

struct

sqlchar

*piFileTypeMod;

char

*piMsgFileName;

db2int16

iCallerAction;

struct

db2ExportOut

*poExportInfoOut;

}

db2ExportStruct;

typedef

SQL_STRUCTURE

db2ExportOut

{

db2Uint64

oRowsExported;

}

db2ExportOut;

/*

...

*/

Generic

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2gExport

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2gExport

(

db2Uint32

versionNumber,

void

*

pParmStruct,

struct

sqlca

*

pSqlca);

typedef

SQL_STRUCTURE

db2gExportStruct

{

char

*piDataFileName;

struct

sqlu_media_list

*piLobPathList;

struct

sqlu_media_list

*piLobFileList;

struct

sqldcol

*piDataDescriptor;

struct

sqllob

*piActionString;

char

*piFileType;

struct

sqlchar

*piFileTypeMod;

char

*piMsgFileName;

db2int16

iCallerAction;

struct

db2ExportOut

*poExportInfoOut;

db2Uint16

iDataFileNameLen;

db2Uint16

iFileTypeLen;

db2Uint16

iMsgFileNameLen;

}

db2gExportStruct;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

pParmStruct.

pParmStruct

Input.

A

pointer

to

the

db2ExportStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

db2Export

-

Export

406

Common

Criteria

Certification:

Administration

and

User

Documentation

iDataFileNameLen

Input.

A

2-byte

unsigned

integer

representing

the

length

in

bytes

of

the

data

file

name.

iFileTypeLen

Input.

A

2-byte

unsigned

integer

representing

the

length

in

bytes

of

the

file

type.

iMsgFileNameLen

Input.

A

2-byte

unsigned

integer

representing

the

length

in

bytes

of

the

message

file

name.

piDataFileName

Input.

A

string

containing

the

path

and

the

name

of

the

external

file

into

which

the

data

is

to

be

exported.

piLobPathList

Input.

An

sqlu_media_list

using

media_type

SQLU_LOCAL_MEDIA,

and

the

sqlu_media_entry

structure

listing

paths

on

the

client

where

the

LOB

files

are

to

be

stored.

When

file

space

is

exhausted

on

the

first

path

in

this

list,

the

API

will

use

the

second

path,

and

so

on.

piLobFileList

Input.

An

sqlu_media_list

using

media_type

SQLU_CLIENT_LOCATION,

and

the

sqlu_location_entry

structure

containing

base

file

names.

When

the

name

space

is

exhausted

using

the

first

name

in

this

list,

the

API

will

use

the

second

name,

and

so

on.

When

creating

LOB

files

during

an

export

operation,

file

names

are

constructed

by

appending

the

current

base

name

from

this

list

to

the

current

path

(from

pLobFilePath),

and

then

appending

a

3-digit

sequence

number.

For

example,

if

the

current

LOB

path

is

the

directory

/u/foo/lob/path,

and

the

current

LOB

file

name

is

bar,

the

created

LOB

files

will

be

/u/foo/lob/path/bar.001,

/u/foo/lob/pah/bar.002,

and

so

on.

piDataDescriptor

Input.

Pointer

to

an

sqldcol

structure

specifying

the

column

names

for

the

output

file.

The

value

of

the

dcolmeth

field

determines

how

the

remainder

of

the

information

provided

in

this

parameter

is

interpreted

by

the

export

utility.

Valid

values

for

this

parameter

(defined

in

sqlutil)

are:

SQL_METH_N

Names.

Specify

column

names

to

be

used

in

the

output

file.

SQL_METH_D

Default.

Existing

column

names

from

the

table

are

to

be

used

in

the

output

file.

In

this

case,

the

number

of

columns

and

the

column

specification

array

are

both

ignored.

The

column

names

are

derived

from

the

output

of

the

SELECT

statement

specified

in

pActionString.

piActionString

Input.

Pointer

to

an

sqllob

structure

containing

a

valid

dynamic

SQL

SELECT

statement.

The

structure

contains

a

4-byte

long

field,

followed

by

the

characters

that

make

up

the

SELECT

statement.

The

SELECT

statement

specifies

the

data

to

be

extracted

from

the

database

and

written

to

the

external

file.

db2Export

-

Export

Chapter

14.

DB2

UDB

APIs

for

Administrators

407

The

columns

for

the

external

file

(from

piDataDescriptor),

and

the

database

columns

from

the

SELECT

statement,

are

matched

according

to

their

respective

list/structure

positions.

The

first

column

of

data

selected

from

the

database

is

placed

in

the

first

column

of

the

external

file,

and

its

column

name

is

taken

from

the

first

element

of

the

external

column

array.

piFileType

Input.

A

string

that

indicates

the

format

of

the

data

within

the

external

file.

Supported

external

file

formats

(defined

in

sqlutil)

are:

SQL_DEL

Delimited

ASCII,

for

exchange

with

dBase,

BASIC,

and

the

IBM

Personal

Decision

Series

programs,

and

many

other

database

managers

and

file

managers.

SQL_WSF

Worksheet

formats

for

exchange

with

Lotus

Symphony

and

1-2-3

programs.

SQL_IXF

PC

version

of

the

Integrated

Exchange

Format,

the

preferred

method

for

exporting

data

from

a

table.

Data

exported

to

this

file

format

can

later

be

imported

or

loaded

into

the

same

table

or

into

another

database

manager

table.

piFileTypeMod

Input.

A

pointer

to

an

sqldcol

structure

containing

a

2-byte

long

field,

followed

by

an

array

of

characters

that

specify

one

or

more

processing

options.

If

this

pointer

is

NULL,

or

the

structure

pointed

to

has

zero

characters,

this

action

is

interpreted

as

selection

of

a

default

specification.

Not

all

options

can

be

used

with

all

of

the

supported

file

types.

See

File

type

modifiers

for

export.

piMsgFileName

Input.

A

string

containing

the

destination

for

error,

warning,

and

informational

messages

returned

by

the

utility.

It

can

be

the

path

and

the

name

of

an

operating

system

file

or

a

standard

device.

If

the

file

already

exists,

it

is

overwritten.

If

it

does

not

exist,

a

file

is

created.

iCallerAction

Input.

An

action

requested

by

the

caller.

Valid

values

(defined

in

sqlutil)

are:

SQLU_INITIAL

Initial

call.

This

value

must

be

used

on

the

first

call

to

the

API.

If

the

initial

call

or

any

subsequent

call

returns

and

requires

the

calling

application

to

perform

some

action

prior

to

completing

the

requested

export

operation,

the

caller

action

must

be

set

to

one

of

the

following:

SQLU_CONTINUE

Continue

processing.

This

value

can

only

be

used

on

subsequent

calls

to

the

API,

after

the

initial

call

has

returned

with

the

utility

requesting

user

input

(for

example,

to

respond

to

an

end

of

tape

condition).

It

specifies

that

the

user

action

requested

by

the

utility

has

completed,

and

the

utility

can

continue

processing

the

initial

request.

SQLU_TERMINATE

Terminate

processing.

This

value

can

only

be

used

on

subsequent

calls

to

the

API,

after

the

initial

call

has

returned

with

the

utility

db2Export

-

Export

408

Common

Criteria

Certification:

Administration

and

User

Documentation

requesting

user

input

(for

example,

to

respond

to

an

end

of

tape

condition).

It

specifies

that

the

user

action

requested

by

the

utility

was

not

performed,

and

the

utility

is

to

terminate

processing

the

initial

request.

poExportInfoOut

A

pointer

to

the

db2ExportOut

structure.

oRowsExported

Output.

Returns

the

number

of

records

exported

to

the

target

file.

REXX

API

syntax:

EXPORT

:stmt

TO

datafile

OF

filetype

[MODIFIED

BY

:filetmod]

[USING

:dcoldata]

MESSAGES

msgfile

[ROWS

EXPORTED

:number]

CONTINUE

EXPORT

STOP

EXPORT

REXX

API

parameters:

stmt

A

REXX

host

variable

containing

a

valid

dynamic

SQL

SELECT

statement.

The

statement

specifies

the

data

to

be

extracted

from

the

database.

datafile

Name

of

the

file

into

which

the

data

is

to

be

exported.

filetype

The

format

of

the

data

in

the

export

file.

The

supported

file

formats

are:

DEL

Delimited

ASCII

WSF

Worksheet

format

IXF

PC

version

of

Integrated

Exchange

Format.

filetmod

A

host

variable

containing

additional

processing

options.

dcoldata

A

compound

REXX

host

variable

containing

the

column

names

to

be

used

in

the

export

file.

In

the

following,

XXX

represents

the

name

of

the

host

variable:

XXX.0

Number

of

columns

(number

of

elements

in

the

remainder

of

the

variable).

XXX.1

First

column

name.

XXX.2

Second

column

name.

XXX.3

and

so

on.

If

this

parameter

is

NULL,

or

a

value

for

dcoldata

has

not

been

specified,

the

utility

uses

the

column

names

from

the

database

table.

msgfile

File,

path,

or

device

name

where

error

and

warning

messages

are

to

be

sent.

number

A

host

variable

that

will

contain

the

number

of

exported

rows.

Usage

notes:

db2Export

-

Export

Chapter

14.

DB2

UDB

APIs

for

Administrators

409

Be

sure

to

complete

all

table

operations

and

release

all

locks

before

starting

an

export

operation.

This

can

be

done

by

issuing

a

COMMIT

after

closing

all

cursors

opened

WITH

HOLD,

or

by

issuing

a

ROLLBACK.

Table

aliases

can

be

used

in

the

SELECT

statement.

The

messages

placed

in

the

message

file

include

the

information

returned

from

the

message

retrieval

service.

Each

message

begins

on

a

new

line.

The

export

utility

produces

a

warning

message

whenever

a

character

column

with

a

length

greater

than

254

is

selected

for

export

to

DEL

format

files.

A

warning

message

is

issued

if

the

number

of

columns

(dcolnum)

in

the

external

column

name

array,

piDataDescriptor,

is

not

equal

to

the

number

of

columns

generated

by

the

SELECT

statement.

In

this

case,

the

number

of

columns

written

to

the

external

file

is

the

lesser

of

the

two

numbers.

Excess

database

columns

or

external

column

names

are

not

used

to

generate

the

output

file.

If

the

db2uexpm.bnd

module

or

any

other

shipped

.bnd

files

are

bound

manually,

the

format

option

on

the

binder

must

not

be

used.

PC/IXF

import

should

be

used

to

move

data

between

databases.

If

character

data

containing

row

separators

is

exported

to

a

delimited

ASCII

(DEL)

file

and

processed

by

a

text

transfer

program,

fields

containing

the

row

separators

will

shrink

or

expand.

DB2

Connect

can

be

used

to

export

tables

from

DRDA

servers

such

as

DB2

for

z/OS

and

OS/390,

DB2

for

VM

and

VSE,

and

DB2

for

iSeries.

Only

PC/IXF

export

is

supported.

The

export

utility

will

not

create

multiple-part

PC/IXF

files

when

invoked

from

an

AIX

system.

Index

definitions

for

a

table

are

included

in

the

PC/IXF

file

when

the

contents

of

a

single

database

table

are

exported

to

a

PC/IXF

file

with

a

pActionString

beginning

with

SELECT

*

FROM

tablename,

and

the

piDataDescriptor

parameter

specifying

default

names.

Indexes

are

not

saved

for

views,

or

if

the

SELECT

clause

of

the

piActionString

includes

a

join.

A

WHERE

clause,

a

GROUP

BY

clause,

or

a

HAVING

clause

in

the

piActionString

will

not

prevent

the

saving

of

indexes.

In

all

of

these

cases,

when

exporting

from

typed

tables,

the

entire

hierarchy

must

be

exported.

The

export

utility

will

store

the

NOT

NULL

WITH

DEFAULT

attribute

of

the

table

in

an

IXF

file

if

the

SELECT

statement

provided

is

in

the

form

SELECT

*

FROM

tablename.

When

exporting

typed

tables,

subselect

statements

can

only

be

expressed

by

specifying

the

target

table

name

and

the

WHERE

clause.

Fullselect

and

select-statement

cannot

be

specified

when

exporting

a

hierarchy.

For

file

formats

other

than

IXF,

it

is

recommended

that

the

traversal

order

list

be

specified,

because

it

tells

DB2

how

to

traverse

the

hierarchy,

and

what

sub-tables

to

export.

If

this

list

is

not

specified,

all

tables

in

the

hierarchy

are

exported,

and

the

default

order

is

the

OUTER

order.

The

alternative

is

to

use

the

default

order,

which

is

the

order

given

by

the

OUTER

function.

db2Export

-

Export

410

Common

Criteria

Certification:

Administration

and

User

Documentation

Note:

Use

the

same

traverse

order

during

an

import

operation.

The

load

utility

does

not

support

loading

hierarchies

or

sub-hierarchies.

DB2

Data

Links

Manager

considerations:

To

ensure

that

a

consistent

copy

of

the

table

and

the

corresponding

files

referenced

by

the

DATALINK

columns

are

copied

for

export,

do

the

following:

1.

Issue

the

command:

QUIESCE

TABLESPACES

FOR

TABLE

tablename

SHARE.

This

ensures

that

no

update

transactions

are

in

progress

when

EXPORT

is

run.

2.

Issue

the

EXPORT

command.

3.

Run

the

dlfm_export

utility

at

each

Data

Links

server.

Input

to

the

dlfm_export

utility

is

the

control

file

name,

which

is

generated

by

the

export

utility.

This

produces

a

tar

(or

equivalent)

archive

of

the

files

listed

within

the

control

file.

dlfm_export

does

not

capture

the

ACLs

information

of

the

files

that

are

archived.

4.

Issue

the

command:

QUIESCE

TABLESPACES

FOR

TABLE

tablename

RESET.

This

makes

the

table

available

for

updates.

EXPORT

is

executed

as

an

SQL

application.

The

rows

and

columns

satisfying

the

SELECT

statement

conditions

are

extracted

from

the

database.

For

the

DATALINK

columns,

the

SELECT

statement

should

not

specify

any

scalar

function.

Successful

execution

of

EXPORT

results

in

generation

of

the

following

files:

v

An

export

data

file

as

specified

in

the

EXPORT

command.

A

DATALINK

column

value

in

this

file

has

the

same

format

as

that

used

by

the

IMPORT

and

LOAD

utilities.

When

the

DATALINK

column

value

is

the

SQL

NULL

value,

handling

is

the

same

as

that

for

other

data

types.

v

Control

files

server_name,

which

are

generated

for

each

Data

Links

server.

On

the

Windows

NT

operating

system,

a

single

control

file,

ctrlfile.lst,

is

used

by

all

Data

Links

servers.

These

control

files

are

placed

in

the

directory

<data-file

path>/dlfm/YYYYMMDD/HHMMSS

(on

the

Windows

NT

operating

system,

ctrlfile.lst

is

placed

in

the

directory

<data-file

path>\dlfm\YYYYMMDD\HHMMSS).

YYYYMMDD

represents

the

date

(year

month

day),

and

HHMMSS

represents

the

time

(hour

minute

second).

The

dlfm_export

utility

is

provided

to

export

files

from

a

Data

Links

server.

This

utility

generates

an

archive

file,

which

can

be

used

to

restore

files

in

the

target

Data

Links

server.

Related

concepts:

v

“Moving

DB2

Data

Links

Manager

Data

Using

Export

-

Concepts”

in

the

Data

Movement

Utilities

Guide

and

Reference

Related

reference:

v

“SQLCA”

in

the

Administrative

API

Reference

v

“SQLCHAR”

in

the

Administrative

API

Reference

v

“SQLDCOL”

in

the

Administrative

API

Reference

v

“SQLU-MEDIA-LIST”

in

the

Administrative

API

Reference

v

“File

type

modifiers

for

export”

in

the

Command

Reference

v

“Delimiter

restrictions

for

moving

data”

in

the

Command

Reference

Related

samples:

db2Export

-

Export

Chapter

14.

DB2

UDB

APIs

for

Administrators

411

v

“expsamp.sqb

--

Export

and

import

tables

with

table

data

to

a

DRDA

database

(IBM

COBOL)”

v

“impexp.sqb

--

Export

and

import

tables

with

table

data

(IBM

COBOL)”

v

“tload.sqb

--

How

to

export

and

load

table

data

(IBM

COBOL)”

v

“tbmove.sqc

--

How

to

move

table

data

(C)”

v

“tbmove.sqC

--

How

to

move

table

data

(C++)”

db2Import

-

Import

Inserts

data

from

an

external

file

with

a

supported

file

format

into

a

table,

hierarchy,

or

view.

A

faster

alternative

is

Load

however,

the

load

utility

does

not

support

loading

data

at

the

hierarchy

level.

Authorization:

v

IMPORT

using

the

INSERT

option

requires

one

of

the

following:

–

sysadm

–

dbadm

–

CONTROL

privilege

on

each

participating

table

or

view

–

INSERT

and

SELECT

privilege

on

each

participating

table

or

view
v

IMPORT

to

an

existing

table

using

the

INSERT_UPDATE

option,

requires

one

of

the

following:

–

sysadm

–

dbadm

–

CONTROL

privilege

on

the

table

or

view

–

INSERT,

SELECT,

UPDATE

and

DELETE

privilege

on

each

participating

table

or

view
v

IMPORT

to

an

existing

table

using

the

REPLACE

or

REPLACE_CREATE

option,

requires

one

of

the

following:

–

sysadm

–

dbadm

–

CONTROL

privilege

on

the

table

or

view

–

INSERT,

SELECT,

and

DELETE

privilege

on

the

table

or

view
v

IMPORT

to

a

new

table

using

the

CREATE

or

REPLACE_CREATE

option,

requires

one

of

the

following:

–

sysadm

–

dbadm

–

CREATETAB

authority

on

the

database

and

USE

privilege

on

the

table

space,

as

well

as

one

of:

-

IMPLICIT_SCHEMA

authority

on

the

database,

if

the

implicit

or

explicit

schema

name

of

the

table

does

not

exist

-

CREATIN

privilege

on

the

schema,

if

the

schema

name

of

the

table

refers

to

an

existing

schema
v

IMPORT

to

a

table

or

a

hierarchy

that

does

not

exist

using

the

CREATE,

or

the

REPLACE_CREATE

option,

requires

one

of

the

following:

–

sysadm

–

dbadm

–

CREATETAB

authority

on

the

database,

and

one

of:

db2Export

-

Export

412

Common

Criteria

Certification:

Administration

and

User

Documentation

-

IMPLICIT_SCHEMA

authority

on

the

database,

if

the

schema

name

of

the

table

does

not

exist

-

CREATEIN

privilege

on

the

schema,

if

the

schema

of

the

table

exists

-

CONTROL

privilege

on

every

sub-table

in

the

hierarchy,

if

the

REPLACE_CREATE

option

on

the

entire

hierarchy

is

used
v

IMPORT

to

an

existing

hierarchy

using

the

REPLACE

option

requires

one

of

the

following:

–

sysadm

–

dbadm

–

CONTROL

privilege

on

every

sub-table

in

the

hierarchy

Required

connection:

Database.

If

implicit

connect

is

enabled,

a

connection

to

the

default

database

is

established.

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

db2Import

-

API

*/

SQL_API_RC

SQL_API_FN

db2Import

(

db2Uint32

versionNumber,

void

*

pParmStruct,

struct

sqlca

*

pSqlca);

/*

db2Import

parameter

structure

*/

typedef

SQL_STRUCTURE

db2ImportStruct

{

char

*piDataFileName;

struct

sqlu_media_list

*piLobPathList;

struct

sqldcol

*piDataDescriptor;

struct

sqlchar

*piActionString;

char

*piFileType;

struct

sqlchar

*piFileTypeMod;

char

*piMsgFileName;

db2int16

iCallerAction;

struct

db2ImportIn

*piImportInfoIn;

struct

db2ImportOut

*poImportInfoOut;

db2int32

*piNullIndicators;

}

db2ImportStruct;

/*

Import

input

structure

*/

typedef

SQL_STRUCTURE

db2ImportIn

{

db2Uint64

iRowcount;

db2Uint64

iRestartcount;

db2Uint64

iSkipcount;

db2int32

*piCommitcount;

db2Uint32

iWarningcount;

db2Uint16

iNoTimeout;

db2Uint16

iAccessLevel;

}

db2ImportIn;

/*

Import

output

structure

*/

typedef

SQL_STRUCTURE

db2ImportOut

{

db2Uint64

oRowsRead;

db2Uint64

oRowsSkipped;

db2Import

-

Import

Chapter

14.

DB2

UDB

APIs

for

Administrators

413

db2Uint64

oRowsInserted;

db2Uint64

oRowsUpdated;

db2Uint64

oRowsRejected;

db2Uint64

oRowsCommitted;

}

db2ImportOut;

Generic

API

syntax:

/*

db2gImport

-

Generic

API

*/

SQL_API_RC

SQL_API_FN

db2gImport

(

db2Uint32

versionNumber,

void

*

pParmStruct,

struct

sqlca

*

pSqlca);

/*

db2gImport

parameter

structure

*/

typedef

SQL_STRUCTURE

db2gImportStruct

{

char

*piDataFileName;

struct

sqlu_media_list

*piLobPathList;

struct

sqldcol

*piDataDescriptor;

struct

sqlchar

*piActionString;

char

*piFileType;

struct

sqlchar

*piFileTypeMod;

char

*piMsgFileName;

db2int16

iCallerAction;

struct

db2gImportIn

*piImportInfoIn;

struct

dbg2ImportOut

*poImportInfoOut;

db2int32

*piNullIndicators;

db2Uint16

iDataFileNameLen;

db2Uint16

iFileTypeLen;

db2Uint16

iMsgFileNameLen;

}

db2gImportStruct;

/*

Generic

Import

input

structure

*/

typedef

SQL_STRUCTURE

db2gImportIn

{

db2Uint64

iRowcount;

db2Uint64

iRestartcount;

db2Uint64

iSkipcount;

db2int32

*piCommitcount;

db2Uint32

iWarningcount;

db2Uint16

iNoTimeout;

db2Uint16

iAccessLevel;

}

db2gImportIn;

/*

Generic

Import

output

structure

*/

typedef

SQL_STRUCTURE

db2gImportOut

{

db2Uint64

oRowsRead;

db2Uint64

oRowsSkipped;

db2Uint64

oRowsInserted;

db2Uint64

oRowsUpdated;

db2Uint64

oRowsRejected;

db2Uint64

oRowsCommitted;

}

db2gImportOut;

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

in

as

the

second

parameter

pParmStruct.

pParmStruct

Input/Output.

A

pointer

to

the

db2ImportStruct

structure.

db2Import

-

Import

414

Common

Criteria

Certification:

Administration

and

User

Documentation

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

piDataFileName

Input.

A

string

containing

the

path

and

the

name

of

the

external

input

file

from

which

the

data

is

to

be

imported.

piLobPathList

Input.

An

sqlu_media_list

using

media_type

SQLU_LOCAL_MEDIA,

and

the

sqlu_media_entry

structure

listing

paths

on

the

client

where

the

LOB

files

can

be

found.

piDataDescriptor

Input.

Pointer

to

an

sqldcol

structure

containing

information

about

the

columns

being

selected

for

import

from

the

external

file.

The

value

of

the

dcolmeth

field

determines

how

the

remainder

of

the

information

provided

in

this

parameter

is

interpreted

by

the

import

utility.

Valid

values

for

this

parameter

are:

SQL_METH_N

Names.

Selection

of

columns

from

the

external

input

file

is

by

column

name.

SQL_METH_P

Positions.

Selection

of

columns

from

the

external

input

file

is

by

column

position.

SQL_METH_L

Locations.

Selection

of

columns

from

the

external

input

file

is

by

column

location.

The

database

manager

rejects

an

import

call

with

a

location

pair

that

is

invalid

because

of

any

one

of

the

following

conditions:

v

Either

the

beginning

or

the

ending

location

is

not

in

the

range

from

1

to

the

largest

signed

2-byte

integer.

v

The

ending

location

is

smaller

than

the

beginning

location.

v

The

input

column

width

defined

by

the

location

pair

is

not

compatible

with

the

type

and

the

length

of

the

target

column.

A

location

pair

with

both

locations

equal

to

zero

indicates

that

a

nullable

column

is

to

be

filled

with

NULLs.

SQL_METH_D

Default.

If

piDataDescriptor

is

NULL,

or

is

set

to

SQL_METH_D,

default

selection

of

columns

from

the

external

input

file

is

done.

In

this

case,

the

number

of

columns

and

the

column

specification

array

are

both

ignored.

For

DEL,

IXF,

or

WSF

files,

the

first

n

columns

of

data

in

the

external

input

file

are

taken

in

their

natural

order,

where

n

is

the

number

of

database

columns

into

which

the

data

is

to

be

imported.

piActionString

Input.

Pointer

to

an

sqlchar

structure

containing

a

2-byte

long

field,

followed

by

an

array

of

characters

identifying

the

columns

into

which

data

is

to

be

imported.

The

character

array

is

of

the

form:

{INSERT

|

INSERT_UPDATE

|

REPLACE

|

CREATE

|

REPLACE_CREATE}

INTO

{tname[(tcolumn-list)]

|

[{ALL

TABLES

|

(tname[(tcolumn-list)][,

tname[(tcolumn-list)]])}]

db2Import

-

Import

Chapter

14.

DB2

UDB

APIs

for

Administrators

415

[IN]

HIERARCHY

{STARTING

tname

|

(tname[,

tname])}

[UNDER

sub-table-name

|

AS

ROOT

TABLE]}

[DATALINK

SPECIFICATION

datalink-spec]

INSERT

Adds

the

imported

data

to

the

table

without

changing

the

existing

table

data.

INSERT_UPDATE

Adds

the

imported

rows

if

their

primary

key

values

are

not

in

the

table,

and

uses

them

for

update

if

their

primary

key

values

are

found.

This

option

is

only

valid

if

the

target

table

has

a

primary

key,

and

the

specified

(or

implied)

list

of

target

columns

being

imported

includes

all

columns

for

the

primary

key.

This

option

cannot

be

applied

to

views.

REPLACE

Deletes

all

existing

data

from

the

table

by

truncating

the

table

object,

and

inserts

the

imported

data.

The

table

definition

and

the

index

definitions

are

not

changed.

(Indexes

are

deleted

and

replaced

if

indexixf

is

in

FileTypeMod,

and

FileType

is

SQL_IXF.)

If

the

table

is

not

already

defined,

an

error

is

returned.

Attention:

If

an

error

occurs

after

the

existing

data

is

deleted,

that

data

is

lost.

CREATE

Creates

the

table

definition

and

the

row

contents

using

the

information

in

the

specified

PC/IXF

file,

if

the

specified

table

is

not

defined.

If

the

file

was

previously

exported

by

DB2,

indexes

are

also

created.

If

the

specified

table

is

already

defined,

an

error

is

returned.

This

option

is

valid

for

the

PC/IXF

file

format

only.

REPLACE_CREATE

Replaces

the

table

contents

using

the

PC/IXF

row

information

in

the

PC/IXF

file,

if

the

specified

table

is

defined.

If

the

table

is

not

already

defined,

the

table

definition

and

row

contents

are

created

using

the

information

in

the

specified

PC/IXF

file.

If

the

PC/IXF

file

was

previously

exported

by

DB2,

indexes

are

also

created.

This

option

is

valid

for

the

PC/IXF

file

format

only.

Attention:

If

an

error

occurs

after

the

existing

data

is

deleted,

that

data

is

lost.

tname

The

name

of

the

table,

typed

table,

view,

or

object

view

into

which

the

data

is

to

be

inserted.

An

alias

for

REPLACE,

INSERT_UPDATE,

or

INSERT

can

be

specified,

except

in

the

case

of

a

down-level

server,

when

a

qualified

or

unqualified

name

should

be

specified.

If

it

is

a

view,

it

cannot

be

a

read-only

view.

tcolumn-list

A

list

of

table

or

view

column

names

into

which

the

data

is

to

be

inserted.

The

column

names

must

be

separated

by

commas.

If

column

names

are

not

specified,

column

names

as

defined

in

the

CREATE

TABLE

or

the

ALTER

TABLE

statement

are

used.

If

no

column

list

is

specified

for

typed

tables,

data

is

inserted

into

all

columns

within

each

sub-table.

db2Import

-

Import

416

Common

Criteria

Certification:

Administration

and

User

Documentation

sub-table-name

Specifies

a

parent

table

when

creating

one

or

more

sub-tables

under

the

CREATE

option.

ALL

TABLES

An

implicit

keyword

for

hierarchy

only.

When

importing

a

hierarchy,

the

default

is

to

import

all

tables

specified

in

the

traversal-order-list.

HIERARCHY

Specifies

that

hierarchical

data

is

to

be

imported.

STARTING

Keyword

for

hierarchy

only.

Specifies

that

the

default

order,

starting

from

a

given

sub-table

name,

is

to

be

used.

UNDER

Keyword

for

hierarchy

and

CREATE

only.

Specifies

that

the

new

hierarchy,

sub-hierarchy,

or

sub-table

is

to

be

created

under

a

given

sub-table.

AS

ROOT

TABLE

Keyword

for

hierarchy

and

CREATE

only.

Specifies

that

the

new

hierarchy,

sub-hierarchy,

or

sub-table

is

to

be

created

as

a

stand-alone

hierarchy.

DATALINK

SPECIFICATION

datalink-spec

Specifies

parameters

pertaining

to

DB2

Data

Links

Manager.

These

parameters

can

be

specified

using

the

same

syntax

as

in

the

IMPORT

command.

The

tname

and

the

tcolumn-list

parameters

correspond

to

the

tablename

and

the

colname

lists

of

SQL

INSERT

statements,

and

have

the

same

restrictions.

The

columns

in

tcolumn-list

and

the

external

columns

(either

specified

or

implied)

are

matched

according

to

their

position

in

the

list

or

the

structure

(data

from

the

first

column

specified

in

the

sqldcol

structure

is

inserted

into

the

table

or

view

field

corresponding

to

the

first

element

of

the

tcolumn-list).

If

unequal

numbers

of

columns

are

specified,

the

number

of

columns

actually

processed

is

the

lesser

of

the

two

numbers.

This

could

result

in

an

error

(because

there

are

no

values

to

place

in

some

non-nullable

table

fields)

or

an

informational

message

(because

some

external

file

columns

are

ignored).

piFileType

Input.

A

string

that

indicates

the

format

of

the

data

within

the

external

file.

Supported

external

file

formats

are:

SQL_ASC

Non-delimited

ASCII.

SQL_DEL

Delimited

ASCII,

for

exchange

with

dBase,

BASIC,

and

the

IBM

Personal

Decision

Series

programs,

and

many

other

database

managers

and

file

managers.

SQL_IXF

PC

version

of

the

Integrated

Exchange

Format,

the

preferred

method

for

exporting

data

from

a

table

so

that

it

can

be

imported

later

into

the

same

table

or

into

another

database

manager

table.

db2Import

-

Import

Chapter

14.

DB2

UDB

APIs

for

Administrators

417

SQL_WSF

Worksheet

formats

for

exchange

with

Lotus

Symphony

and

1-2-3

programs.

piFileTypeMod

Input.

A

pointer

to

a

structure

containing

a

2-byte

long

field,

followed

by

an

array

of

characters

that

specify

one

or

more

processing

options.

If

this

pointer

is

NULL,

or

the

structure

pointed

to

has

zero

characters,

this

action

is

interpreted

as

selection

of

a

default

specification.

Not

all

options

can

be

used

with

all

of

the

supported

file

types.

See

File

type

modifiers

for

import.

piMsgFileName

Input.

A

string

containing

the

destination

for

error,

warning,

and

informational

messages

returned

by

the

utility.

It

can

be

the

path

and

the

name

of

an

operating

system

file

or

a

standard

device.

If

the

file

already

exists,

it

is

appended

to.

If

it

does

not

exist,

a

file

is

created.

iCallerAction

Input.

An

action

requested

by

the

caller.

Valid

values

are:

SQLU_INITIAL

Initial

call.

This

value

must

be

used

on

the

first

call

to

the

API.

If

the

initial

call

or

any

subsequent

call

returns

and

requires

the

calling

application

to

perform

some

action

prior

to

completing

the

requested

import

operation,

the

caller

action

must

be

set

to

one

of

the

following:

SQLU_CONTINUE

Continue

processing.

This

value

can

only

be

used

on

subsequent

calls

to

the

API,

after

the

initial

call

has

returned

with

the

utility

requesting

user

input

(for

example,

to

respond

to

an

end

of

tape

condition).

It

specifies

that

the

user

action

requested

by

the

utility

has

completed,

and

the

utility

can

continue

processing

the

initial

request.

SQLU_TERMINATE

Terminate

processing.

This

value

can

only

be

used

on

subsequent

calls

to

the

API,

after

the

initial

call

has

returned

with

the

utility

requesting

user

input

(for

example,

to

respond

to

an

end

of

tape

condition).

It

specifies

that

the

user

action

requested

by

the

utility

was

not

performed,

and

the

utility

is

to

terminate

processing

the

initial

request.

piImportInfoIn

Input.

Pointer

to

the

db2ImportIn

structure.

poImportInfoOut

Output.

Pointer

to

the

db2ImportOut

structure.

piNullIndicators

Input.

For

ASC

files

only.

An

array

of

integers

that

indicate

whether

or

not

the

column

data

is

nullable.

The

number

of

elements

in

this

array

must

match

the

number

of

columns

in

the

input

file;

there

is

a

one-to-one

ordered

correspondence

between

the

elements

of

this

array

and

the

columns

being

imported

from

the

data

file.

Therefore,

the

number

of

elements

must

equal

the

dcolnum

field

of

the

piDataDescriptor

parameter.

Each

element

of

the

array

contains

a

number

identifying

a

column

in

the

data

file

that

is

to

be

used

as

a

null

indicator

field,

or

a

zero

indicating

that

the

table

column

is

not

nullable.

If

the

element

is

not

zero,

the

identified

db2Import

-

Import

418

Common

Criteria

Certification:

Administration

and

User

Documentation

column

in

the

data

file

must

contain

a

Y

or

an

N.

A

Y

indicates

that

the

table

column

data

is

NULL,

and

N

indicates

that

the

table

column

data

is

not

NULL.

iRowcount

Input.

The

number

of

physical

records

to

be

loaded.

Allows

a

user

to

load

only

the

first

iRowcount

rows

in

a

file.

If

iRowcount

is

0,

import

will

attempt

to

process

all

the

rows

from

the

file.

iSkipcount

Input.

The

number

of

records

to

skip

before

starting

to

insert

or

update

records.

Functionally

equivalent

to

iRestartcount.

piCommitcount

Input.

The

number

of

records

to

import

before

committing

them

to

the

database.

A

commit

is

performed

whenever

piCommitcount

records

are

imported.

A

NULL

value

specifies

the

default

commit

count

value,

which

is

zero

for

offline

import

and

AUTOMATIC

for

online

import.

Commitcount

AUTOMATIC

is

specified

by

passing

in

the

value

DB2IMPORT_COMMIT_AUTO.

iWarningcount

Input.

Stops

the

import

operation

after

iWarningcount

warnings.

Set

this

parameter

if

no

warnings

are

expected,

but

verification

that

the

correct

file

and

table

are

being

used

is

desired.

If

the

import

file

or

the

target

table

is

specified

incorrectly,

the

import

utility

will

generate

a

warning

for

each

row

that

it

attempts

to

import,

which

will

cause

the

import

to

fail.

If

iWarningcount

is

0,

or

this

option

is

not

specified,

the

import

operation

will

continue

regardless

of

the

number

of

warnings

issued.

iNoTimeout

Input.

Specifies

that

the

import

utility

will

not

time

out

while

waiting

for

locks.

This

option

supersedes

the

locktimeout

database

configuration

parameter.

Other

applications

are

not

affected.

Valid

values

are:

DB2IMPORT_LOCKTIMEOUT

Indicates

that

the

value

of

the

locktimeout

configuration

parameter

is

respected.

DB2IMPORT_NO_LOCKTIMEOUT

Indicates

there

is

no

timeout.

iAccessLevel

Input.

Specifies

the

access

level.

Valid

values

are:

SQLU_ALLOW_NO_ACCESS

Specifies

that

the

import

utility

locks

the

table

exclusively.

SQLU_ALLOW_WRITE_ACCESS

Specifies

that

the

data

in

the

table

should

still

be

accessible

to

readers

and

writers

while

the

import

is

in

progress.

oRowsRead

Output.

Number

of

records

read

from

the

file

during

import.

oRowsSkipped

Output.

Number

of

records

skipped

before

inserting

or

updating

begins.

oRowsInserted

Output.

Number

of

rows

inserted

into

the

target

table.

db2Import

-

Import

Chapter

14.

DB2

UDB

APIs

for

Administrators

419

oRowsUpdated

Output.

Number

of

rows

in

the

target

table

updated

with

information

from

the

imported

records

(records

whose

primary

key

value

already

exists

in

the

table).

oRowsRejected

Output.

Number

of

records

that

could

not

be

imported.

oRowsCommitted

Output.

Number

of

records

imported

successfully

and

committed

to

the

database.

Usage

notes:

Be

sure

to

complete

all

table

operations

and

release

all

locks

before

starting

an

import

operation.

This

can

be

done

by

issuing

a

COMMIT

after

closing

all

cursors

opened

WITH

HOLD,

or

by

issuing

a

ROLLBACK.

The

import

utility

adds

rows

to

the

target

table

using

the

SQL

INSERT

statement.

The

utility

issues

one

INSERT

statement

for

each

row

of

data

in

the

input

file.

If

an

INSERT

statement

fails,

one

of

two

actions

result:

v

If

it

is

likely

that

subsequent

INSERT

statements

can

be

successful,

a

warning

message

is

written

to

the

message

file,

and

processing

continues.

v

If

it

is

likely

that

subsequent

INSERT

statements

will

fail,

and

there

is

potential

for

database

damage,

an

error

message

is

written

to

the

message

file,

and

processing

halts.

The

utility

performs

an

automatic

COMMIT

after

the

old

rows

are

deleted

during

a

REPLACE

or

a

REPLACE_CREATE

operation.

Therefore,

if

the

system

fails,

or

the

application

interrupts

the

database

manager

after

the

table

object

is

truncated,

all

of

the

old

data

is

lost.

Ensure

that

the

old

data

is

no

longer

needed

before

using

these

options.

If

the

log

becomes

full

during

a

CREATE,

REPLACE,

or

REPLACE_CREATE

operation,

the

utility

performs

an

automatic

COMMIT

on

inserted

records.

If

the

system

fails,

or

the

application

interrupts

the

database

manager

after

an

automatic

COMMIT,

a

table

with

partial

data

remains

in

the

database.

Use

the

REPLACE

or

the

REPLACE_CREATE

option

to

rerun

the

whole

import

operation,

or

use

INSERT

with

the

iRestartcount

parameter

set

to

the

number

of

rows

successfully

imported.

By

default,

automatic

COMMITs

are

not

performed

for

the

INSERT

or

the

INSERT_UPDATE

option.

They

are,

however,

performed

if

the

*piCommitcount

parameter

is

not

zero.

A

full

log

results

in

a

ROLLBACK.

Whenever

the

import

utility

performs

a

COMMIT,

two

messages

are

written

to

the

message

file:

one

indicates

the

number

of

records

to

be

committed,

and

the

other

is

written

after

a

successful

COMMIT.

When

restarting

the

import

operation

after

a

failure,

specify

the

number

of

records

to

skip,

as

determined

from

the

last

successful

COMMIT.

The

import

utility

accepts

input

data

with

minor

incompatibility

problems

(for

example,

character

data

can

be

imported

using

padding

or

truncation,

and

numeric

data

can

be

imported

with

a

different

numeric

data

type),

but

data

with

major

incompatibility

problems

is

not

accepted.

db2Import

-

Import

420

Common

Criteria

Certification:

Administration

and

User

Documentation

One

cannot

REPLACE

or

REPLACE_CREATE

an

object

table

if

it

has

any

dependents

other

than

itself,

or

an

object

view

if

its

base

table

has

any

dependents

(including

itself).

To

replace

such

a

table

or

a

view,

do

the

following:

1.

Drop

all

foreign

keys

in

which

the

table

is

a

parent.

2.

Run

the

import

utility.

3.

Alter

the

table

to

recreate

the

foreign

keys.

If

an

error

occurs

while

recreating

the

foreign

keys,

modify

the

data

to

maintain

referential

integrity.

Referential

constraints

and

foreign

key

definitions

are

not

preserved

when

creating

tables

from

PC/IXF

files.

(Primary

key

definitions

are

preserved

if

the

data

was

previously

exported

using

SELECT

*.)

Importing

to

a

remote

database

requires

enough

disk

space

on

the

server

for

a

copy

of

the

input

data

file,

the

output

message

file,

and

potential

growth

in

the

size

of

the

database.

If

an

import

operation

is

run

against

a

remote

database,

and

the

output

message

file

is

very

long

(more

than

60

KB),

the

message

file

returned

to

the

user

on

the

client

may

be

missing

messages

from

the

middle

of

the

import

operation.

The

first

30

KB

of

message

information

and

the

last

30

KB

of

message

information

are

always

retained.

Importing

PC/IXF

files

to

a

remote

database

is

much

faster

if

the

PC/IXF

file

is

on

a

hard

drive

rather

than

on

diskettes.

Non-default

values

for

piDataDescriptor,

or

specifying

an

explicit

list

of

table

columns

in

piActionString,

makes

importing

to

a

remote

database

slower.

The

database

table

or

hierarchy

must

exist

before

data

in

the

ASC,

DEL,

or

WSF

file

formats

can

be

imported;

however,

if

the

table

does

not

already

exist,

IMPORT

CREATE

or

IMPORT

REPLACE_CREATE

creates

the

table

when

it

imports

data

from

a

PC/IXF

file.

For

typed

tables,

IMPORT

CREATE

can

create

the

type

hierarchy

and

the

table

hierarchy

as

well.

PC/IXF

import

should

be

used

to

move

data

(including

hierarchical

data)

between

databases.

If

character

data

containing

row

separators

is

exported

to

a

delimited

ASCII

(DEL)

file

and

processed

by

a

text

transfer

program,

fields

containing

the

row

separators

will

shrink

or

expand.

The

data

in

ASC

and

DEL

files

is

assumed

to

be

in

the

code

page

of

the

client

application

performing

the

import.

PC/IXF

files,

which

allow

for

different

code

pages,

are

recommended

when

importing

data

in

different

code

pages.

If

the

PC/IXF

file

and

the

import

utility

are

in

the

same

code

page,

processing

occurs

as

for

a

regular

application.

If

the

two

differ,

and

the

FORCEIN

option

is

specified,

the

import

utility

assumes

that

data

in

the

PC/IXF

file

has

the

same

code

page

as

the

application

performing

the

import.

This

occurs

even

if

there

is

a

conversion

table

for

the

two

code

pages.

If

the

two

differ,

the

FORCEIN

option

is

not

specified,

and

there

is

a

conversion

table,

all

data

in

the

PC/IXF

file

will

be

converted

from

the

file

code

page

to

the

application

code

page.

If

the

two

differ,

the

FORCEIN

option

is

not

specified,

and

there

is

no

conversion

table,

the

import

operation

will

fail.

This

applies

only

to

PC/IXF

files

on

DB2

for

AIX

clients.

For

table

objects

on

an

8KB

page

that

are

close

to

the

limit

of

1012

columns,

import

of

PC/IXF

data

files

may

cause

DB2

to

return

an

error,

because

the

maximum

size

db2Import

-

Import

Chapter

14.

DB2

UDB

APIs

for

Administrators

421

of

an

SQL

statement

was

exceeded.

This

situation

can

occur

only

if

the

columns

are

of

type

CHAR,

VARCHAR,

or

CLOB.

The

restriction

does

not

apply

to

import

of

DEL

or

ASC

files.

DB2

Connect

can

be

used

to

import

data

to

DRDA

servers

such

as

DB2

for

OS/390,

DB2

for

VM

and

VSE,

and

DB2

for

OS/400.

Only

PC/IXF

import

(INSERT

option)

is

supported.

The

restartcnt

parameter,

but

not

the

commitcnt

parameter,

is

also

supported.

When

using

the

CREATE

option

with

typed

tables,

create

every

sub-table

defined

in

the

PC/IXF

file;

sub-table

definitions

cannot

be

altered.

When

using

options

other

than

CREATE

with

typed

tables,

the

traversal

order

list

enables

one

to

specify

the

traverse

order;

therefore,

the

traversal

order

list

must

match

the

one

used

during

the

export

operation.

For

the

PC/IXF

file

format,

one

need

only

specify

the

target

sub-table

name,

and

use

the

traverse

order

stored

in

the

file.

The

import

utility

can

be

used

to

recover

a

table

previously

exported

to

a

PC/IXF

file.

The

table

returns

to

the

state

it

was

in

when

exported.

Data

cannot

be

imported

to

a

system

table,

a

declared

temporary

table,

or

a

summary

table.

Views

cannot

be

created

through

the

import

utility.

On

the

Windows

NT

operating

system:

v

Importing

logically

split

PC/IXF

files

is

not

supported.

v

Importing

bad

format

PC/IXF

or

WSF

files

is

not

supported.

DB2

Data

Links

Manager

Considerations

Before

running

the

DB2

import

utility,

do

the

following:

1.

Copy

the

files

that

will

be

referenced

to

the

appropriate

Data

Links

servers.

The

dlfm_import

utility

can

be

used

to

extract

files

from

an

archive

that

is

generated

by

the

dlfm_export

utility.

2.

Register

the

required

prefix

names

to

the

DB2

Data

Links

Managers.

There

may

be

other

administrative

tasks,

such

as

registering

the

database,

if

required.

3.

Update

the

Data

Links

server

information

in

the

URLs

(of

the

DATALINK

columns)

from

the

exported

data

for

the

SQL

table,

if

required.

(If

the

original

configuration’s

Data

Links

servers

are

the

same

at

the

target

location,

the

Data

Links

server

names

need

not

be

updated.)

4.

Define

the

Data

Links

servers

at

the

target

configuration

in

the

DB2

Data

Links

Manager

configuration

file.

When

the

import

utility

runs

against

the

target

database,

files

referred

to

by

DATALINK

column

data

are

linked

on

the

appropriate

Data

Links

servers.

During

the

insert

operation,

DATALINK

column

processing

links

the

files

in

the

appropriate

Data

Links

servers

according

to

the

column

specifications

at

the

target

database.

Related

reference:

v

“SQLCA”

in

the

Administrative

API

Reference

v

“SQLDCOL”

in

the

Administrative

API

Reference

v

“SQLU-MEDIA-LIST”

in

the

Administrative

API

Reference

db2Import

-

Import

422

Common

Criteria

Certification:

Administration

and

User

Documentation

v

“File

type

modifiers

for

import”

in

the

Command

Reference

v

“Delimiter

restrictions

for

moving

data”

in

the

Command

Reference

Related

samples:

v

“dtformat.sqc

--

Load

and

import

data

format

extensions

(C)”

v

“tbmove.sqc

--

How

to

move

table

data

(C)”

v

“expsamp.sqb

--

Export

and

import

tables

with

table

data

to

a

DRDA

database

(IBM

COBOL)”

v

“impexp.sqb

--

Export

and

import

tables

with

table

data

(IBM

COBOL)”

v

“tbmove.sqC

--

How

to

move

table

data

(C++)”

db2Inspect

-

Inspect

database

Inspects

the

database

for

architectural

integrity

and

checks

the

pages

of

the

database

for

page

consistency.

Scope:

In

a

single

partition

database,

the

scope

is

the

single

partition

only.

In

a

partitioned

database

environment,

it

is

the

collection

of

all

logical

partitions

defined

in

db2nodes.cfg.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

v

sysmaint

v

dbadm

v

CONTROL

privilege

on

the

table

Required

connection:

Database

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2Inspect

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2Inspect

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2InspectStruct

{

char

*piTablespaceName;

char

*piTableName;

char

*piSchemaName;

char

*piResultsName;

db2Import

-

Import

Chapter

14.

DB2

UDB

APIs

for

Administrators

423

char

*piDataFileName;

SQL_PDB_NODE_TYPE

*piNodeList;

db2Uint32

iAction;

db2int32

iTablespaceID;

db2int32

iObjectID;

db2Uint32

iBeginCheckOption;

db2int32

iLimitErrorReported;

db2Uint16

iObjectErrorState;

db2Uint16

iKeepResultfile;

db2Uint16

iAllNodeFlag;

db2Uint16

iNumNodes;

db2Uint16

iLevelObjectData;

db2Uint16

iLevelObjectIndex;

db2Uint16

iLevelObjectLong;

db2Uint16

iLevelObjectLOB;

db2Uint16

iLevelObjectBlkMap;

db2Uint16

iLevelExtentMap;

}

db2InspectStruct;

/*

...

*/

Generic

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2gInspect

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2gInspect

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2gInspectStruct

{

char

*piTablespaceName;

char

*piTableName;

char

*piSchemaName;

char

*piResultsName;

char

*piDataFileName;

SQL_PDB_NODE_TYPE

*piNodeList;

db2Uint32

iResultsNameLength;

db2Uint32

iDataFileNameLength;

db2Uint32

iTablespaceNameLength;

db2Uint32

iTableNameLength;

db2Uint32

iSchemaNameLength;

db2Uint32

iAction;

db2int32

iTablespaceID;

db2int32

iObjectID;

db2Uint32

iBeginCheckOption;

db2int32

iLimitErrorReported;

db2Uint16

iObjectErrorState;

db2Uint16

iKeepResultfile;

db2Uint16

iAllNodeFlag;

db2Uint16

iNumNodes;

db2Uint16

iLevelObjectData;

db2Uint16

iLevelObjectIndex;

db2Uint16

iLevelObjectLong;

db2Uint16

iLevelObjectLOB;

db2Uint16

iLevelObjectBlkMap;

db2Uint16

iLevelExtentMap;

}

db2gInspectStruct;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

pParmStruct.

db2Inspect

-

Inspect

database

424

Common

Criteria

Certification:

Administration

and

User

Documentation

pParmStruct

Input.

A

pointer

to

the

db2InspectStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

piTablespaceName

Input.

A

string

containing

the

table

space

name.

The

table

space

must

be

identified

for

operations

on

a

table

space.

If

the

pointer

is

NULL,

the

table

space

ID

value

is

used

as

input.

piTableName

Input.

A

string

containing

the

table

name.

The

table

must

be

identified

for

operations

on

a

table

or

a

table

object.

If

the

pointer

is

NULL,

the

table

space

ID

and

table

object

ID

values

are

used

as

input.

piSchemaName

Input.

A

string

containing

the

schema

name.

piResultsName

Input.

A

string

containing

the

name

for

results

output

file.

This

input

must

be

provided.

The

file

will

be

written

out

to

the

diagnostic

data

directory

path.

piDataFileName

Input.

Reserved

for

future

use.

Must

be

set

to

NULL.

piNodeList

Input.

A

pointer

to

an

array

of

partition

numbers

on

which

to

perform

the

operation.

iResultsNameLength

Input.

The

string

length

of

the

results

file

name.

iDataFileNameLength

Input.

The

string

length

of

the

data

output

file

name.

iTablespaceNameLength

Input.

The

string

length

of

the

table

space

name.

iTableNameLength

Input.

The

string

length

of

the

table

name.

iSchemaNameLength

Input.

The

string

length

of

the

schema

name.

iAction

Input.

Specifies

the

inspect

action.

Valid

values

are:

DB2INSPECT_ACT_CHECK_DB

Inspect

the

entire

database.

DB2INSPECT_ACT_CHECK_TABSPACE

Inspect

a

table

space.

DB2INSPECT_ACT_CHECK_TABLE

Inspect

a

table.

iTablespaceID

Input.

Specifies

the

table

space

ID.

If

the

table

space

must

be

identified,

the

table

space

ID

value

is

used

as

input

if

the

pointer

to

table

space

name

is

NULL.

db2Inspect

-

Inspect

database

Chapter

14.

DB2

UDB

APIs

for

Administrators

425

iObjectID

Input.

Specifies

the

object

ID.

If

the

table

must

be

identified,

the

object

ID

value

is

used

as

input

if

the

pointer

to

table

name

is

NULL.

iBeginCheckOption

Input.

Option

for

check

database

or

check

table

space

operation

to

indicate

where

operation

should

begin.

It

must

be

set

to

zero

to

begin

from

the

normal

start.

Values

are:

DB2INSPECT_BEGIN_TSPID

Use

this

value

for

check

database

to

begin

with

the

table

space

specified

by

the

table

space

ID

field,

the

table

space

ID

must

be

set.

DB2INSPECT_BEGIN_TSPID_OBJID

Use

this

value

for

check

database

to

begin

with

the

table

specified

by

the

table

space

ID

and

object

ID

field.

To

use

this

option,

the

table

space

ID

and

object

ID

must

be

set.

DB2INSPECT_BEGIN_OBJID

Use

this

value

for

check

table

space

to

begin

with

the

table

specified

by

the

object

ID

field,

the

object

ID

must

be

set.

iLimitErrorReported

Input.

Specifies

the

reporting

limit

of

the

number

of

pages

in

error

for

an

object.

Specify

the

number

you

want

to

use

as

the

limit

value

or

specify

one

the

following

values:

DB2INSPECT_LIMIT_ERROR_DEFAULT

Use

this

value

to

specify

that

the

maximum

number

of

pages

in

error

to

be

reported

is

the

extent

size

of

the

object.

DB2INSPECT_LIMIT_ERROR_ALL

Use

this

value

to

report

all

pages

in

error.

iObjectErrorState

Input.

Specifies

whether

to

scan

objects

in

error

state.

Valid

values

are:

DB2INSPECT_ERROR_STATE_NORMAL

Process

object

only

in

normal

state.

DB2INSPECT_ERROR_STATE_ALL

Process

all

objects,

including

objects

in

error

state.

iKeepResultfile

Input.

Specifies

result

file

retention.

Valid

values

are:

DB2INSPECT_RESFILE_CLEANUP

If

errors

are

reported,

the

result

output

file

will

be

retained.

Otherwise,

the

result

file

will

be

removed

at

the

end

of

the

operation.

DB2INSPECT_RESFILE_KEEP_ALWAYS

The

result

output

file

will

be

retained.

iAllNodeFlag

Input.

Indicates

whether

the

operation

is

to

be

applied

to

all

nodes

defined

in

db2nodes.cfg.

Valid

values

are:

DB2_NODE_LIST

Apply

to

all

nodes

in

a

node

list

that

is

passed

in

pNodeList.

DB2_ALL_NODES

Apply

to

all

nodes.

pNodeList

should

be

NULL.

This

is

the

default

value.

db2Inspect

-

Inspect

database

426

Common

Criteria

Certification:

Administration

and

User

Documentation

DB2_ALL_EXCEPT

Apply

to

all

nodes

except

those

in

a

node

list

that

is

passed

in

pNodeList.

iNumNodes

Input.

Specifies

the

number

of

nodes

in

the

pNodeList

array.

iLevelObjectData

Input.

Specifies

processing

level

for

data

object.

Valid

values

are:

DB2INSPECT_LEVEL_NORMAL

Level

is

normal.

DB2INSPECT_LEVEL_LOW

Level

is

low.

DB2INSPECT_LEVEL_NONE

Level

is

none.

iLevelObjectIndex

Input.

Specifies

processing

level

for

index

object.

Valid

values

are:

DB2INSPECT_LEVEL_NORMAL

Level

is

normal.

DB2INSPECT_LEVEL_LOW

Level

is

low.

DB2INSPECT_LEVEL_NONE

Level

is

none.

iLevelObjectLong

Input.

Specifies

processing

level

for

long

object.

Valid

values

are:

DB2INSPECT_LEVEL_NORMAL

Level

is

normal.

DB2INSPECT_LEVEL_LOW

Level

is

low.

DB2INSPECT_LEVEL_NONE

Level

is

none.

iLevelObjectLOB

Input.

Specifies

processing

level

for

LOB

object.

Valid

values

are:

DB2INSPECT_LEVEL_NORMAL

Level

is

normal.

DB2INSPECT_LEVEL_LOW

Level

is

low.

DB2INSPECT_LEVEL_NONE

Level

is

none.

iLevelObjectBlkMap

Input.

Specifies

processing

level

for

block

map

object.

Valid

values

are:

DB2INSPECT_LEVEL_NORMAL

Level

is

normal.

DB2INSPECT_LEVEL_LOW

Level

is

low.

DB2INSPECT_LEVEL_NONE

Level

is

none.

db2Inspect

-

Inspect

database

Chapter

14.

DB2

UDB

APIs

for

Administrators

427

iLevelExtentMap

Input.

Specifies

processing

level

for

extent

map.

Valid

values

are:

DB2INSPECT_LEVEL_NORMAL

Level

is

normal.

DB2INSPECT_LEVEL_LOW

Level

is

low.

DB2INSPECT_LEVEL_NONE

Level

is

none.

Usage

notes:

The

online

inspect

processing

will

access

database

objects

using

isolation

level

uncommitted

read.

Commit

processing

will

be

done

during

the

inspect

processing.

It

is

advisable

to

end

the

unit

of

work

by

issuing

a

COMMIT

or

ROLLBACK

before

starting

the

inspect

operation.

The

inspect

check

processing

will

write

out

unformatted

inspection

data

results

to

the

result

file.

The

file

will

be

written

out

to

the

diagnostic

data

directory

path.

If

there

are

no

errors

found

by

the

check

processing,

the

result

output

file

will

be

erased

at

the

end

of

the

inspect

operation.

If

there

are

errors

found

by

the

check

processing,

the

result

output

file

will

not

be

erased

at

the

end

of

the

inspect

operation.

To

see

the

inspection

details,

format

the

inspection

result

output

file

with

the

db2inspf

utility.

In

a

partitioned

database

environment,

the

extension

of

the

result

output

file

will

correspond

to

the

database

partition

number.

The

file

is

located

in

the

database

manager

diagnostic

data

directory

path.

A

unique

results

output

file

name

must

be

specified.

If

the

result

output

file

already

exists,

the

operation

will

not

be

processed.

The

processing

of

table

spaces

will

process

only

the

objects

that

reside

in

that

table

space.

Related

reference:

v

“SQLCA”

in

the

Administrative

API

Reference

db2InstanceStart

-

Instance

Start

Starts

a

local

or

remote

instance.

Scope:

In

a

single-partition

database

environment,

the

scope

is

that

single

database

partition

only.

In

a

partitioned

database

environment,

it

is

the

collection

of

all

logical

database

partition

servers

defined

in

the

node

configuration

file,

db2nodes.cfg.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

db2Inspect

-

Inspect

database

428

Common

Criteria

Certification:

Administration

and

User

Documentation

v

sysmaint

Required

connection:

None

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2InstanceStart

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2InstanceStart

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2InstanceStartStruct

{

db2int8

iIsRemote;

char

*piRemoteInstName;

db2DasCommData

*piCommData;

db2StartOptionsStruct

*piStartOpts;

}

db2InstanceStartStruct;

typedef

SQL_STRUCTURE

db2DasCommData

{

db2int8

iCommParam;

char

*piNodeOrHostName;

char

*piUserId;

char

*piUserPw;

}

db2DasCommData;

typedef

SQL_STRUCTURE

db2StartOptionsStruct

{

db2Uint32

iIsProfile;

char

*piProfile;

db2Uint32

iIsNodeNum;

db2NodeType

iNodeNum;

db2Uint32

iOption;

db2Uint32

iIsHostName;

char

*piHostName;

db2Uint32

iIsPort;

db2PortType

iPort;

db2Uint32

iIsNetName;

char

*piNetName;

db2Uint32

iTblspaceType;

db2NodeType

iTblspaceNode;

db2Uint32

iIsComputer;

char

*piComputer;

char

*piUserName;

char

*piPassword;

db2QuiesceStartStruct

iQuiesceOpts;

}

db2StartOptionsStruct;

typedef

SQL_STRUCTURE

db2QuiesceStartStruct

{

db2int8

iIsQRequested;

char

*piQUsrName;

db2InstanceStart

-

Instance

Start

Chapter

14.

DB2

UDB

APIs

for

Administrators

429

char

*piQGrpName;

db2int8

iIsQUsrGrpDef;

}

db2QuiesceStartStruct;

/*

...

*/

Generic

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2gInstanceStart

*/

SQL_API_RC

SQL_API_FN

db2gInstanceStart

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2gInstanceStStruct

{

db2int8

iIsRemote;

db2Uint32

iRemoteInstLen;

char

*piRemoteInstName;

db2gDasCommData

*piCommData;

db2gStartOptionsStruct

*piStartOpts;

}

db2gInstanceStStruct;

typedef

SQL&STRUCTURE

db2gDasCommData

{

db2int8

iCommParam;

db2Uint32

iNodeOrHostNameLen;

char

*piNodeOrHostName;

db2Uint32

iUserIdLen;

char

*piUserId;

db2Uint32

iUserPwLen;

char

*piUserPw;

}

db2gDasCommData;

typedef

SQL_STRUCTURE

db2gStartOptionsStruct

{

db2Uint32

iIsProfile;

char

*piProfile;

db2Uint32

iIsNodeNum;

db2NodeType

iNodeNum;

db2Uint32

iOption;

db2Uint32

iIsHostName;

char

*piHostName;

db2Uint32

iIsPort;

db2PortType

iPort;

db2Uint32

iIsNetName;

char

*piNetName;

db2Uint32

iTblspaceType;

db2NodeType

iTblspaceNode;

db2Uint32

iIsComputer;

char

*piComputer;

char

*piUserName;

char

*piPassword;

db2gQuiesceStartStruct

iQuiesceOpts;

}

db2gStartOptionsStruct;

typedef

SQL_STRUCTURE

db2gQuiesceStartStruct

{

db2int8

iIsQRequested;

db2Uint32

iQUsrNameLen;

char

*piQUsrName;

db2Uint32

iQGrpNameLen;

char

*piQGrpName;

db2int8

iIsQUsrGrpDef;

}

db2gQuiesceStartStruct;

/*

...

*/

db2InstanceStart

-

Instance

Start

430

Common

Criteria

Certification:

Administration

and

User

Documentation

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

pParmStruct

.

pParmStruct

Input.

A

pointer

to

the

db2InstanceStartStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

iIsRemote

Input.

An

indicator

set

to

TRUE

or

FALSE.

This

parameter

should

be

set

to

TRUE

if

this

is

a

remote

start.

iRemoteInstLen

Input.

Specifies

the

length

in

bytes

of

piRemoteInstName.

piRemoteInstName

Input.

The

name

of

the

remote

instance.

piCommData

Input.

A

pointer

to

the

db2DasCommData

structure.

piStartOpts

Input.

A

pointer

to

the

db2StartOptionsStruct

structure.

iCommParam

Input.

An

indicator

set

to

TRUE

or

FALSE.

This

parameter

should

be

set

to

TRUE

if

this

is

a

remote

start.

iNodeOrHostNameLen

Input.

Specifies

the

length

in

bytes

of

piNodeOrHostName.

piNodeOrHostName

Input.

The

database

partition

or

hostname.

iUserIdLen

Input.

Specifies

the

length

in

bytes

of

piUserId.

piUserId

Input.

The

user

name.

iUserPwLen

Input.

Specifies

the

length

in

bytes

of

piUserPw.

piUserPw

Input.

The

user

password.

iIsProfile

Input.

Indicates

whether

a

profile

is

specified.

If

this

field

indicates

that

a

profile

is

not

specified,

the

file

db2profile

is

used.

piProfile

Input.

The

name

of

the

profile

file

to

be

executed

at

each

node

to

define

the

DB2

environment

(MPP

only).

This

file

is

executed

before

the

nodes

are

started.

The

default

value

is

db2profile.

iIsNodeNum

Input.

Indicates

whether

a

node

number

is

specified.

If

specified,

the

start

command

only

affects

the

specified

node.

iNodeNum

Input.

The

database

partition

number.

db2InstanceStart

-

Instance

Start

Chapter

14.

DB2

UDB

APIs

for

Administrators

431

iOption

Input.

Specifies

an

action.

Valid

values

for

OPTION

(defined

in

sqlenv.h)

are:

SQLE_NONE

Issue

the

normal

db2start

operation.

SQLE_ADDNODE

Issue

the

ADD

NODE

command.

SQLE_RESTART

Issue

the

RESTART

DATABASE

command.

SQLE_STANDALONE

Start

the

node

in

STANDALONE

mode.

iIsHostName

Input.

Indicates

whether

a

host

name

is

specified.

piHostName

Input.

The

system

name.

iIsPort

Input.

Indicates

whether

a

port

number

is

specified.

iPort

Input.

The

port

number.

iIsNetName

Input.

Indicates

whether

a

net

name

is

specified.

piNetName

Input.

The

network

name.

iTblspaceType

Input.

Specifies

the

type

of

system

temporary

table

space

definitions

to

be

used

for

the

node

being

added.

Valid

values

are:

SQLE_TABLESPACES_NONE

Do

not

create

any

system

temporary

table

spaces.

SQLE_TABLESPACES_LIKE_NODE

The

containers

for

the

system

temporary

table

spaces

should

be

the

same

as

those

for

the

specified

node.

SQLE_TABLESPACES_LIKE_CATALOG

The

containers

for

the

system

temporary

table

spaces

should

be

the

same

as

those

for

the

catalog

node

of

each

database.

iTblspaceNode

Input.

Specifies

the

node

number

from

which

the

system

temporary

table

space

definitions

should

be

obtained.

The

node

number

must

exist

in

the

db2nodes.cfg

file,

and

is

only

used

if

the

tblspace_type

field

is

set

to

SQLE_TABLESPACES_LIKE_NODE.

iIsComputer

Input.

Indicates

whether

a

computer

name

is

specified.

Valid

on

the

Windows

operating

system

only.

piComputer

Input.

Computer

name.

Valid

on

the

Windows

operating

system

only.

piUserName

Input.

Logon

account

user

name.

Valid

on

the

Windows

operating

system

only.

db2InstanceStart

-

Instance

Start

432

Common

Criteria

Certification:

Administration

and

User

Documentation

piPassword

Input.

The

password

corresponding

to

the

logon

account

user

name.

iQuiesceOpts

Input.

A

pointer

to

the

db2QuiesceStartStruct

structure.

iIsQRequested

Input.

An

indicator

set

to

TRUE

or

FALSE.

This

parameter

should

be

set

to

TRUE

if

quiesce

is

requested.

iQUsrNameLen

Input.

Specifies

the

length

in

bytes

of

piQusrName.

piQUsrName

Input.

The

quiesced

username.

iQGrpNameLen

Input.

Specifies

the

length

in

bytes

of

piQGrpName.

piQGrpName

Input.

The

quiesced

group

name.

iIsQUsrGrpDef

Input.

An

indicator

set

to

TRUE

or

FALSE.

This

parameter

should

be

set

to

TRUE

if

a

quiesced

user

or

quiesced

group

is

defined.

Related

reference:

v

“SQLCA”

in

the

Administrative

API

Reference

v

“db2InstanceStop

-

Instance

Stop”

on

page

433

Related

samples:

v

“instart.c

--

Stop

and

start

the

current

local

instance

(C)”

v

“instart.C

--

Stop

and

start

the

current

local

instance

(C++)”

db2InstanceStop

-

Instance

Stop

Stops

the

local

or

remote

DB2

instance.

Scope:

In

a

single-partition

database

environment,

the

scope

is

that

single

database

partition

only.

In

a

partitioned

database

environment,

it

is

the

collection

of

all

logical

database

partition

servers

defined

in

the

node

configuration

file,

db2nodes.cfg.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

v

sysmaint

Required

connection:

None

API

include

file:

db2InstanceStart

-

Instance

Start

Chapter

14.

DB2

UDB

APIs

for

Administrators

433

db2ApiDf.h

sqlenv.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2InstanceStop

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2InstanceStop

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2InstanceStopStruct

{

db2int8

iIsRemote;

char

*piRemoteInstName;

db2DasCommData

*piCommData;

db2StopOptionsStruct

*piStopOpts;

}

db2InstanceStopStruct;

typedef

SQL_STRUCTURE

db2DasCommData

{

db2int8

iCommParam;

char

*piNodeOrHostName;

char

*piUserId;

char

*piUserPw;

}

db2DasCommData;

typedef

SQL_STRUCTURE

db2StopOptionsStruct

{

db2Uint32

iIsProfile;

char

*piProfile;

db2Uint32

iIsNodeNum;

db2NodeType

iNodeNum;

db2Uint32

iStopOption;

db2Uint32

iCallerac;

}

db2StopOptionsStruct;

/*

...

*/

Generic

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2gInstanceStop

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2gInstanceStop

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2gInstanceStopStruct

{

db2int8

iIsRemote;

db2Uint32

iRemoteInstLen;

char

*piRemoteInstName;

db2gDasCommData

*piCommData;

db2StopOptionsStruct

*piStopOpts;

}

db2gInstanceStopStruct;

typedef

SQL_STRUCTURE

db2gDasCommData

{

db2int8

iCommParam;

db2Uint32

iNodeOrHostNameLen;

char

*piNodeOrHostName;

db2InstanceStop

-

Instance

Stop

434

Common

Criteria

Certification:

Administration

and

User

Documentation

db2Uint32

iUserIdLen;

char

*piUserId;

db2Uint32

iUserPwLen;

char

*piUserPw;

}

db2gDasCommData;

typedef

SQL_STRUCTURE

db2StopOptionsStruct

{

db2Uint32

iIsProfile;

char

*piProfile;

db2Uint32

iIsNodeNum;

db2NodeType

iNodeNum;

db2Uint32

iStopOption;

db2Uint32

iCallerac;

}

db2StopOptionsStruct;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

pParmStruct

.

pParmStruct

Input.

A

pointer

to

the

db2InstanceStopStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

iIsRemote

Input.

An

indicator

set

to

TRUE

or

FALSE.

This

parameter

should

be

set

to

TRUE

if

this

is

a

remote

start.

iRemoteInstLen

Input.

Specifies

the

length

in

bytes

of

piRemoteInstName.

piRemoteInstName

Input.

The

name

of

the

remote

instance.

piCommData

Input.

A

pointer

to

the

db2DasCommData

structure.

piStopOpts

Input.

A

pointer

to

the

db2StopOptionsStruct

structure.

iCommParam

Input.

An

indicator

set

to

TRUE

or

FALSE.

This

parameter

should

be

set

to

TRUE

if

this

is

a

remote

stop.

iNodeOrHostNameLen

Input.

Specifies

the

length

in

bytes

of

piNodeOrHostName.

piNodeOrHostName

Input.

The

database

partition

or

hostname.

iUserIdLen

Input.

Specifies

the

length

in

bytes

of

piUserId.

piUserId

Input.

The

user

name.

iUserPwLen

Input.

Specifies

the

length

in

bytes

of

piUserPw.

piUserPw

Input.

The

user

password.

db2InstanceStop

-

Instance

Stop

Chapter

14.

DB2

UDB

APIs

for

Administrators

435

iIsRemote

Input.

An

indicator

set

to

TRUE

or

FALSE.

This

parameter

should

be

set

to

TRUE

if

this

is

a

remote

stop.

iRemoteInstLen

Input.

Specifies

the

length

in

bytes

of

piRemoteInstName.

piRemoteInstName

Input.

The

remote

instance

name.

iIsProfile

Input.

Indicates

whether

a

profile

is

specified.

Possible

values

are

TRUE

and

FALSE.

If

this

field

indicates

that

a

profile

is

not

specified,

the

file

db2profile

is

used.

piProfile

Input.

The

name

of

the

profile

file

that

was

executed

at

startup

to

define

the

DB2

environment

for

those

nodes

that

were

started

(MPP

only).

If

a

profile

for

the

db2InstanceStart

API

was

specified,

the

same

profile

must

be

specified

here.

iIsNodeNum

Input.

Indicates

whether

a

node

number

is

specified.

Possible

values

are

TRUE

and

FALSE.

If

specified,

the

stop

command

only

affects

the

specified

node.

iNodeNum

Input.

The

database

partition

number.

iStopOption

Input.

Option.

Valid

values

are:

SQLE_NONE

Issue

the

normal

db2stop

operation.

SQLE_FORCE

Issue

the

FORCE

APPLICATION

(ALL)

command.

SQLE_DROP

Drop

the

node

from

the

db2nodes.cfg

file.

iCallerac

Input.

This

field

is

valid

only

for

the

SQLE_DROP

value

of

the

OPTION

field.

Valid

values

are:

SQLE_DROP

Initial

call.

This

is

the

default

value.

SQLE_CONTINUE

Subsequent

call.

Continue

processing

after

a

prompt.

SQLE_TERMINATE

Subsequent

call.

Terminate

processing

after

a

prompt.

Related

reference:

v

“SQLCA”

in

the

Administrative

API

Reference

v

“db2InstanceStart

-

Instance

Start”

on

page

428

Related

samples:

v

“instart.c

--

Stop

and

start

the

current

local

instance

(C)”

v

“instart.C

--

Stop

and

start

the

current

local

instance

(C++)”

db2InstanceStop

-

Instance

Stop

436

Common

Criteria

Certification:

Administration

and

User

Documentation

db2Load

-

Load

Loads

data

into

a

DB2

table.

Data

residing

on

the

server

may

be

in

the

form

of

a

file,

cursor,

tape,

or

named

pipe.

Data

residing

on

a

remotely

connected

client

may

be

in

the

form

of

a

fully

qualified

file,

a

cursor,

or

named

pipe.

The

load

utility

does

not

support

loading

data

at

the

hierarchy

level.

Authorization:

One

of

the

following:

v

sysadm

v

dbadm

v

load

authority

on

the

database

and

–

INSERT

privilege

on

the

table

when

the

load

utility

is

invoked

in

INSERT

mode,

TERMINATE

mode

(to

terminate

a

previous

load

insert

operation),

or

RESTART

mode

(to

restart

a

previous

load

insert

operation)

–

INSERT

and

DELETE

privilege

on

the

table

when

the

load

utility

is

invoked

in

REPLACE

mode,

TERMINATE

mode

(to

terminate

a

previous

load

replace

operation),

or

RESTART

mode

(to

restart

a

previous

load

replace

operation)

–

INSERT

privilege

on

the

exception

table,

if

such

a

table

is

used

as

part

of

the

load

operation.

Note:

In

general,

all

load

processes

and

all

DB2

server

processes

are

owned

by

the

instance

owner.

All

of

these

processes

use

the

identification

of

the

instance

owner

to

access

needed

files.

Therefore,

the

instance

owner

must

have

read

access

to

the

input

files,

regardless

of

who

invokes

the

command.

Required

connection:

Database.

If

implicit

connect

is

enabled,

a

connection

to

the

default

database

is

established.

Instance.

An

explicit

attachment

is

not

required.

If

a

connection

to

the

database

has

been

established,

an

implicit

attachment

to

the

local

instance

is

attempted.

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

Load

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2Load

(

db2Uint32

versionNumber,

void

*

pParmStruct,

struct

sqlca

*

pSqlca);

typedef

SQL_STRUCTURE

db2LoadStruct

{

struct

sqlu_media_list

*piSourceList;

struct

sqlu_media_list

*piLobPathList;

struct

sqldcol

*piDataDescriptor;

struct

sqlchar

*piActionString;

char

*piFileType;

db2Load

-

Load

Chapter

14.

DB2

UDB

APIs

for

Administrators

437

struct

sqlchar

*piFileTypeMod;

char

*piLocalMsgFileName;

char

*piTempFilesPath;

struct

sqlu_media_list

*piVendorSortWorkPaths;

struct

sqlu_media_list

*piCopyTargetList;

db2int32

*piNullIndicators;

struct

db2LoadIn

*piLoadInfoIn;

struct

db2LoadOut

*poLoadInfoOut;

struct

db2PartLoadIn

*piPartLoadInfoIn;

struct

db2PartLoadOut

*poPartLoadInfoOut;

db2int16

iCallerAction;

}

db2LoadStruct;

typedef

SQL_STRUCTURE

db2LoadIn

{

db2Uint64

iRowcount;

db2Uint64

iRestartcount;

char

*piUseTablespace;

db2Uint32

iSavecount;

db2Uint32

iDataBufferSize;

db2Uint32

iSortBufferSize;

db2Uint32

iWarningcount;

db2Uint16

iHoldQuiesce;

db2Uint16

iCpuParallelism;

db2Uint16

iDiskParallelism;

db2Uint16

iNonrecoverable;

db2Uint16

iIndexingMode;

db2Uint16

iAccessLevel;

db2Uint16

iLockWithForce;

db2Uint16

iCheckPending;

char

iRestartphase;

char

iStatsOpt;

}

db2LoadIn;

typedef

SQL_STRUCTURE

db2LoadOut

{

db2Uint64

oRowsRead;

db2Uint64

oRowsSkipped;

db2Uint64

oRowsLoaded;

db2Uint64

oRowsRejected;

db2Uint64

oRowsDeleted;

db2Uint64

oRowsCommitted;

}

db2LoadOut;

typedef

SQL_STRUCTURE

db2PartLoadIn

{

char

*piHostname;

char

*piFileTransferCmd;

char

*piPartFileLocation;

struct

db2LoadNodeList

*piOutputNodes;

struct

db2LoadNodeList

*piPartitioningNodes;

db2Uint16

*piMode;

db2Uint16

*piMaxNumPartAgents;

db2Uint16

*piIsolatePartErrs;

db2Uint16

*piStatusInterval;

struct

db2LoadPortRange

*piPortRange;

db2Uint16

*piCheckTruncation;

char

*piMapFileInput;

char

*piMapFileOutput;

db2Uint16

*piTrace;

db2Uint16

*piNewline;

char

*piDistfile;

db2Uint16

*piOmitHeader;

SQL_PDB_NODE_TYPE

*piRunStatDBPartNum;

}

db2PartLoadIn;

typedef

SQL_STRUCTURE

db2LoadNodeList

db2Load

-

Load

438

Common

Criteria

Certification:

Administration

and

User

Documentation

{

SQL_PDB_NODE_TYPE

*piNodeList;

db2Uint16

iNumNodes;

}

db2LoadNodeList;

typedef

SQL_STRUCTURE

db2LoadPortRange

{

db2Uint16

iPortMin;

db2Uint16

iPortMax;

}

db2LoadPortRange;

typedef

SQL_STRUCTURE

db2PartLoadOut

{

db2Uint64

oRowsRdPartAgents;

db2Uint64

oRowsRejPartAgents;

db2Uint64

oRowsPartitioned;

struct

db2LoadAgentInfo

*poAgentInfoList;

db2Uint32

iMaxAgentInfoEntries;

db2Uint32

oNumAgentInfoEntries;

}

db2PartLoadOut;

typedef

SQL_STRUCTURE

db2LoadAgentInfo

{

db2int32

oSqlcode;

db2Uint32

oTableState;

SQL_PDB_NODE_TYPE

oNodeNum;

db2Uint16

oAgentType;

}

db2LoadAgentInfo;

/*

...

*/

Generic

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

Load

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2gLoad

(

db2Uint32

versionNumber,

void

*

pParmStruct,

struct

sqlca

*

pSqlca);

typedef

SQL_STRUCTURE

db2gLoadStruct

{

struct

sqlu_media_list

*piSourceList;

struct

sqlu_media_list

*piLobPathList;

struct

sqldcol

*piDataDescriptor;

struct

sqlchar

*piActionString;

char

*piFileType;

struct

sqlchar

*piFileTypeMod;

char

*piLocalMsgFileName;

char

*piTempFilesPath;

struct

sqlu_media_list

*piVendorSortWorkPaths;

struct

sqlu_media_list

*piCopyTargetList;

db2int32

*piNullIndicators;

struct

db2gLoadIn

*piLoadInfoIn;

struct

db2LoadOut

*poLoadInfoOut;

struct

db2gPartLoadIn

*piPartLoadInfoIn;

struct

db2PartLoadOut

*poPartLoadInfoOut;

db2int16

iCallerAction;

db2Uint16

iFileTypeLen;

db2Uint16

iLocalMsgFileLen;

db2Uint16

iTempFilesPathLen;

}

db2gLoadStruct;

typedef

SQL_STRUCTURE

db2gLoadIn

{

db2Uint64

iRowcount;

db2Load

-

Load

Chapter

14.

DB2

UDB

APIs

for

Administrators

439

db2Uint64

iRestartcount;

char

*piUseTablespace;

db2Uint32

iSavecount;

db2Uint32

iDataBufferSize;

db2Uint32

iSortBufferSize;

db2Uint32

iWarningcount;

db2Uint16

iHoldQuiesce;

db2Uint16

iCpuParallelism;

db2Uint16

iDiskParallelism;

db2Uint16

iNonrecoverable;

db2Uint16

iIndexingMode;

db2Uint16

iAccessLevel;

db2Uint16

iLockWithForce;

db2Uint16

iCheckPending;

char

iRestartphase;

char

iStatsOpt;

db2Uint16

iUseTablespaceLen;

}

db2gLoadIn;

typedef

SQL_STRUCTURE

db2LoadOut

{

db2Uint64

oRowsRead;

db2Uint64

oRowsSkipped;

db2Uint64

oRowsLoaded;

db2Uint64

oRowsRejected;

db2Uint64

oRowsDeleted;

db2Uint64

oRowsCommitted;

}

db2LoadOut;

typedef

SQL_STRUCTURE

db2gPartLoadIn

{

char

*piHostname;

char

*piFileTransferCmd;

char

*piPartFileLocation;

struct

db2LoadNodeList

*piOutputNodes;

struct

db2LoadNodeList

*piPartitioningNodes;

db2Uint16

*piMode;

db2Uint16

*piMaxNumPartAgents;

db2Uint16

*piIsolatePartErrs;

db2Uint16

*piStatusInterval;

struct

db2LoadPortRange

*piPortRange;

db2Uint16

*piCheckTruncation;

char

*piMapFileInput;

char

*piMapFileOutput;

db2Uint16

*piTrace;

db2Uint16

*piNewline;

char

*piDistfile;

db2Uint16

*piOmitHeader;

SQL_PDB_NODE_TYPE

*piRunStatDBPartNum;

db2Uint16

iHostnameLen;

db2Uint16

iFileTransferLen;

db2Uint16

iPartFileLocLen;

db2Uint16

iMapFileInputLen;

db2Uint16

iMapFileOutputLen;

db2Uint16

iDistfileLen;

}

db2gPartLoadIn;

typedef

SQL_STRUCTURE

db2LoadNodeList

{

SQL_PDB_NODE_TYPE

*piNodeList;

db2Uint16

iNumNodes;

}

db2LoadNodeList;

typedef

SQL_STRUCTURE

db2LoadPortRange

{

db2Uint16

iPortMin;

db2Uint16

iPortMax;

db2Load

-

Load

440

Common

Criteria

Certification:

Administration

and

User

Documentation

}

db2LoadPortRange;

typedef

SQL_STRUCTURE

db2PartLoadOut

{

db2Uint64

oRowsRdPartAgents;

db2Uint64

oRowsRejPartAgents;

db2Uint64

oRowsPartitioned;

struct

db2LoadAgentInfo

*poAgentInfoList;

db2Uint32

iMaxAgentInfoEntries;

db2Uint32

oNumAgentInfoEntries;

}

db2PartLoadOut;

typedef

SQL_STRUCTURE

db2LoadAgentInfo

{

db2int32

oSqlcode;

db2Uint32

oTableState;

SQL_PDB_NODE_TYPE

oNodeNum;

db2Uint16

oAgentType;

}

db2LoadAgentInfo;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

pParmStruct.

pParmStruct

Input.

A

pointer

to

the

db2LoadStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

piSourceList

Input.

A

pointer

to

an

sqlu_media_list

structure

used

to

provide

a

list

of

source

files,

devices,

vendors,

pipes,

or

SQL

statements.

The

information

provided

in

this

structure

depends

on

the

value

of

the

media_type

field.

Valid

values

(defined

in

sqlutil)

are:

SQLU_SQL_STMT

If

the

media_type

field

is

set

to

this

value,

the

caller

provides

an

SQL

query

through

the

pStatement

field

of

the

target

field.

The

pStatement

field

is

of

type

sqlu_statement_entry.

The

sessions

field

must

be

set

to

the

value

of

1,

since

the

load

utility

only

accepts

a

single

SQL

query

per

load.

SQLU_SERVER_LOCATION

If

the

media_type

field

is

set

to

this

value,

the

caller

provides

information

through

sqlu_location_entry

structures.

The

sessions

field

indicates

the

number

of

sqlu_location_entry

structures

provided.

This

is

used

for

files,

devices,

and

named

pipes.

SQLU_CLIENT_LOCATION

If

the

media_type

field

is

set

to

this

value,

the

caller

provides

information

through

sqlu_location_entry

structures.

The

sessions

field

indicates

the

number

of

sqlu_location_entry

structures

provided.

This

is

used

for

fully

qualified

files

and

named

pipes.

Note

that

this

media_type

is

only

valid

if

the

API

is

being

called

via

a

remotely

connected

client.

SQLU_TSM_MEDIA

If

the

media_type

field

is

set

to

this

value,

the

sqlu_vendor

structure

is

used,

where

filename

is

the

unique

identifier

for

the

data

to

be

db2Load

-

Load

Chapter

14.

DB2

UDB

APIs

for

Administrators

441

loaded.

There

should

only

be

one

sqlu_vendor

entry,

regardless

of

the

value

of

sessions.

The

sessions

field

indicates

the

number

of

TSM

sessions

to

initiate.

The

load

utility

will

start

the

sessions

with

different

sequence

numbers,

but

with

the

same

data

in

the

one

sqlu_vendor

entry.

SQLU_OTHER_MEDIA

If

the

media_type

field

is

set

to

this

value,

the

sqlu_vendor

structure

is

used,

where

shr_lib

is

the

shared

library

name,

and

filename

is

the

unique

identifier

for

the

data

to

be

loaded.

There

should

only

be

one

sqlu_vendor

entry,

regardless

of

the

value

of

sessions.

The

sessions

field

indicates

the

number

of

other

vendor

sessions

to

initiate.

The

load

utility

will

start

the

sessions

with

different

sequence

numbers,

but

with

the

same

data

in

the

one

sqlu_vendor

entry.

piLobPathList

Input.

A

pointer

to

an

sqlu_media_list

structure.

For

IXF,

ASC,

and

DEL

file

types,

a

list

of

fully

qualified

paths

or

devices

to

identify

the

location

of

the

individual

LOB

files

to

be

loaded.

The

file

names

are

found

in

the

IXF,

ASC,

or

DEL

files,

and

are

appended

to

the

paths

provided.

The

information

provided

in

this

structure

depends

on

the

value

of

the

media_type

field.

Valid

values

(defined

in

sqlutil)

are:

SQLU_LOCAL_MEDIA

If

set

to

this

value,

the

caller

provides

information

through

sqlu_media_entry

structures.

The

sessions

field

indicates

the

number

of

sqlu_media_entry

structures

provided.

SQLU_TSM_MEDIA

If

set

to

this

value,

the

sqlu_vendor

structure

is

used,

where

filename

is

the

unique

identifier

for

the

data

to

be

loaded.

There

should

only

be

one

sqlu_vendor

entry,

regardless

of

the

value

of

sessions.

The

sessions

field

indicates

the

number

of

TSM

sessions

to

initiate.

The

load

utility

will

start

the

sessions

with

different

sequence

numbers,

but

with

the

same

data

in

the

one

sqlu_vendor

entry.

SQLU_OTHER_MEDIA

If

set

to

this

value,

the

sqlu_vendor

structure

is

used,

where

shr_lib

is

the

shared

library

name,

and

filename

is

the

unique

identifier

for

the

data

to

be

loaded.

There

should

only

be

one

sqlu_vendor

entry,

regardless

of

the

value

of

sessions.

The

sessions

field

indicates

the

number

of

other

vendor

sessions

to

initiate.

The

load

utility

will

start

the

sessions

with

different

sequence

numbers,

but

with

the

same

data

in

the

one

sqlu_vendor

entry.

piDataDescriptor

Input.

Pointer

to

an

sqldcol

structure

containing

information

about

the

columns

being

selected

for

loading

from

the

external

file.

If

the

pFileType

parameter

is

set

to

SQL_ASC,

the

dcolmeth

field

of

this

structure

must

either

be

set

to

SQL_METH_L

or

be

set

to

SQL_METH_D

and

specifies

a

file

name

with

POSITIONSFILE

pFileTypeMod

modifier

which

contains

starting

and

ending

pairs

and

null

indicator

positions.

The

user

specifies

the

start

and

end

locations

for

each

column

to

be

loaded.

db2Load

-

Load

442

Common

Criteria

Certification:

Administration

and

User

Documentation

If

the

file

type

is

SQL_DEL,

dcolmeth

can

be

either

SQL_METH_P

or

SQL_METH_D.

If

it

is

SQL_METH_P,

the

user

must

provide

the

source

column

position.

If

it

is

SQL_METH_D,

the

first

column

in

the

file

is

loaded

into

the

first

column

of

the

table,

and

so

on.

If

the

file

type

is

SQL_IXF,

dcolmeth

can

be

one

of

SQL_METH_P,

SQL_METH_D,

or

SQL_METH_N.

The

rules

for

DEL

files

apply

here,

except

that

SQL_METH_N

indicates

that

file

column

names

are

to

be

provided

in

the

sqldcol

structure.

piActionString

Input.

Pointer

to

an

sqlchar

structure,

followed

by

an

array

of

characters

specifying

an

action

that

affects

the

table.

The

character

array

is

of

the

form:

"INSERT|REPLACE|RESTART|TERMINATE

INTO

tbname

[(column_list)]

[DATALINK

SPECIFICATION

datalink-spec]

[FOR

EXCEPTION

e_tbname]"

INSERT

Adds

the

loaded

data

to

the

table

without

changing

the

existing

table

data.

REPLACE

Deletes

all

existing

data

from

the

table,

and

inserts

the

loaded

data.

The

table

definition

and

the

index

definitions

are

not

changed.

RESTART

Restarts

a

previously

interrupted

load

operation.

The

load

operation

will

automatically

continue

from

the

last

consistency

point

in

the

load,

build,

or

delete

phase.

TERMINATE

Terminates

a

previously

interrupted

load

operation,

and

rolls

back

the

operation

to

the

point

in

time

at

which

it

started,

even

if

consistency

points

were

passed.

The

states

of

any

table

spaces

involved

in

the

operation

return

to

normal,

and

all

table

objects

are

made

consistent

(index

objects

may

be

marked

as

invalid,

in

which

case

index

rebuild

will

automatically

take

place

at

next

access).

If

the

table

spaces

in

which

the

table

resides

are

not

in

load

pending

state,

this

option

does

not

affect

the

state

of

the

table

spaces.

The

load

terminate

option

will

not

remove

a

backup

pending

state

from

table

spaces.

tbname

The

name

of

the

table

into

which

the

data

is

to

be

loaded.

The

table

cannot

be

a

system

table

or

a

declared

temporary

table.

An

alias,

or

the

fully

qualified

or

unqualified

table

name

can

be

specified.

A

qualified

table

name

is

in

the

form

schema.tablename.

If

an

unqualified

table

name

is

specified,

the

table

will

be

qualified

with

the

CURRENT

SCHEMA.

(column_list)

A

list

of

table

column

names

into

which

the

data

is

to

be

inserted.

The

column

names

must

be

separated

by

commas.

If

a

name

contains

spaces

or

lowercase

characters,

it

must

be

enclosed

by

quotation

marks.

DATALINK

SPECIFICATION

datalink-spec

Specifies

parameters

pertaining

to

DB2

Data

Links.

These

parameters

can

be

specified

using

the

same

syntax

as

in

the

LOAD

command.

db2Load

-

Load

Chapter

14.

DB2

UDB

APIs

for

Administrators

443

FOR

EXCEPTION

e_tbname

Specifies

the

exception

table

into

which

rows

in

error

will

be

copied.

Any

row

that

is

in

violation

of

a

unique

index

or

a

primary

key

index

is

copied.

DATALINK

exceptions

are

also

captured

in

the

exception

table.

piFileType

Input.

A

string

that

indicates

the

format

of

the

input

data

source.

Supported

external

formats

(defined

in

sqlutil)

are:

SQL_ASC

Non-delimited

ASCII.

SQL_DEL

Delimited

ASCII,

for

exchange

with

dBase,

BASIC,

and

the

IBM

Personal

Decision

Series

programs,

and

many

other

database

managers

and

file

managers.

SQL_IXF

PC

version

of

the

Integrated

Exchange

Format,

the

preferred

method

for

exporting

data

from

a

table

so

that

it

can

be

loaded

later

into

the

same

table

or

into

another

database

manager

table.

SQL_CURSOR

An

SQL

query.

The

sqlu_media_list

structure

passed

in

through

the

piSourceList

parameter

is

of

type

SQLU_SQL_STMT,

and

refers

to

an

actual

SQL

query

and

not

a

cursor

declared

against

one.

piFileTypeMod

Input.

A

pointer

to

the

sqlchar

structure,

followed

by

an

array

of

characters

that

specify

one

or

more

processing

options.

If

this

pointer

is

NULL,

or

the

structure

pointed

to

has

zero

characters,

this

action

is

interpreted

as

selection

of

a

default

specification.

Not

all

options

can

be

used

with

all

of

the

supported

file

types.

See

File

type

modifiers

for

load.

piLocalMsgFileName

Input.

A

string

containing

the

name

of

a

local

file

to

which

output

messages

are

to

be

written.

piTempFilesPath

Input.

A

string

containing

the

path

name

to

be

used

on

the

server

for

temporary

files.

Temporary

files

are

created

to

store

messages,

consistency

points,

and

delete

phase

information.

piVendorSortWorkPaths

Input.

A

pointer

to

the

sqlu_media_list

structure

which

specifies

the

Vendor

Sort

work

directories.

piCopyTargetList

Input.

A

pointer

to

an

sqlu_media_list

structure

used

(if

a

copy

image

is

to

be

created)

to

provide

a

list

of

target

paths,

devices,

or

a

shared

library

to

which

the

copy

image

is

to

be

written.

The

values

provided

in

this

structure

depend

on

the

value

of

the

media_type

field.

Valid

values

for

this

field

(defined

in

sqlutil)

are:

SQLU_LOCAL_MEDIA

If

the

copy

is

to

be

written

to

local

media,

set

the

media_type

to

this

value

and

provide

information

about

the

targets

in

sqlu_media_entry

db2Load

-

Load

444

Common

Criteria

Certification:

Administration

and

User

Documentation

structures.

The

sessions

field

specifies

the

number

of

sqlu_media_entry

structures

provided.

SQLU_TSM_MEDIA

If

the

copy

is

to

be

written

to

TSM,

use

this

value.

No

further

information

is

required.

SQLU_OTHER_MEDIA

If

a

vendor

product

is

to

be

used,

use

this

value

and

provide

further

information

via

an

sqlu_vendor

structure.

Set

the

shr_lib

field

of

this

structure

to

the

shared

library

name

of

the

vendor

product.

Provide

only

one

sqlu_vendor

entry,

regardless

of

the

value

of

sessions.

The

sessions

field

specifies

the

number

of

sqlu_media_entry

structures

provided.

The

load

utility

will

start

the

sessions

with

different

sequence

numbers,

but

with

the

same

data

provided

in

the

one

sqlu_vendor

entry.

piNullIndicators

Input.

For

ASC

files

only.

An

array

of

integers

that

indicate

whether

or

not

the

column

data

is

nullable.

There

is

a

one-to-one

ordered

correspondence

between

the

elements

of

this

array

and

the

columns

being

loaded

from

the

data

file.

That

is,

the

number

of

elements

must

equal

the

dcolnum

field

of

the

pDataDescriptor

parameter.

Each

element

of

the

array

contains

a

number

identifying

a

location

in

the

data

file

that

is

to

be

used

as

a

NULL

indicator

field,

or

a

zero

indicating

that

the

table

column

is

not

nullable.

If

the

element

is

not

zero,

the

identified

location

in

the

data

file

must

contain

a

Y

or

an

N.

A

Y

indicates

that

the

table

column

data

is

NULL,

and

N

indicates

that

the

table

column

data

is

not

NULL.

piLoadInfoIn

Input.

A

pointer

to

the

db2LoadIn

structure.

poLoadInfoOut

Input.

A

pointer

to

the

db2LoadOut

structure.

piPartLoadInfoIn

Input.

A

pointer

to

the

db2PartLoadIn

structure.

poPartLoadInfoOut

Output.

A

pointer

to

the

db2PartLoadOut

structure.

iCallerAction

Input.

An

action

requested

by

the

caller.

Valid

values

(defined

in

sqlutil)

are:

SQLU_INITIAL

Initial

call.

This

value

(or

SQLU_NOINTERRUPT)

must

be

used

on

the

first

call

to

the

API.

SQLU_NOINTERRUPT

Initial

call.

Do

not

suspend

processing.

This

value

(or

SQLU_INITIAL)

must

be

used

on

the

first

call

to

the

API.

If

the

initial

call

or

any

subsequent

call

returns

and

requires

the

calling

application

to

perform

some

action

prior

to

completing

the

requested

load

operation,

the

caller

action

must

be

set

to

one

of

the

following:

SQLU_CONTINUE

Continue

processing.

This

value

can

only

be

used

on

subsequent

calls

to

the

API,

after

the

initial

call

has

returned

with

the

utility

requesting

user

input

(for

example,

to

respond

to

an

end

of

tape

db2Load

-

Load

Chapter

14.

DB2

UDB

APIs

for

Administrators

445

condition).

It

specifies

that

the

user

action

requested

by

the

utility

has

completed,

and

the

utility

can

continue

processing

the

initial

request.

SQLU_TERMINATE

Terminate

processing.

Causes

the

load

utility

to

exit

prematurely,

leaving

the

table

spaces

being

loaded

in

LOAD_PENDING

state.

This

option

should

be

specified

if

further

processing

of

the

data

is

not

to

be

done.

SQLU_ABORT

Terminate

processing.

Causes

the

load

utility

to

exit

prematurely,

leaving

the

table

spaces

being

loaded

in

LOAD_PENDING

state.

This

option

should

be

specified

if

further

processing

of

the

data

is

not

to

be

done.

SQLU_RESTART

Restart

processing.

SQLU_DEVICE_TERMINATE

Terminate

a

single

device.

This

option

should

be

specified

if

the

utility

is

to

stop

reading

data

from

the

device,

but

further

processing

of

the

data

is

to

be

done.

iFileTypeLen

Input.

Specifies

the

length

in

bytes

of

iFileType.

iLocalMsgFileLen

Input.

Specifies

the

length

in

bytes

of

iLocalMsgFileName.

iTempFilesPathLen

Input.

Specifies

the

length

in

bytes

of

iTempFilesPath.

iRowcount

Input.

The

number

of

physical

records

to

be

loaded.

Allows

a

user

to

load

only

the

first

rowcnt

rows

in

a

file.

iRestartcount

Input.

Reserved

for

future

use.

piUseTablespace

Input.

If

the

indexes

are

being

rebuilt,

a

shadow

copy

of

the

index

is

built

in

tablespace

iUseTablespaceName

and

copied

over

to

the

original

tablespace

at

the

end

of

the

load.

Only

system

temporary

table

spaces

can

be

used

with

this

option.

If

not

specified

then

the

shadow

index

will

be

created

in

the

same

tablespace

as

the

index

object.

If

the

shadow

copy

is

created

in

the

same

tablespace

as

the

index

object,

the

copy

of

the

shadow

index

object

over

the

old

index

object

is

instantaneous.

If

the

shadow

copy

is

in

a

different

tablespace

from

the

index

object

a

physical

copy

is

performed.

This

could

involve

considerable

I/O

and

time.

The

copy

happens

while

the

table

is

offline

at

the

end

of

a

load.

This

field

is

ignored

if

iAccessLevel

is

SQLU_ALLOW_NO_ACCESS.

This

option

is

ignored

if

the

user

does

not

specify

INDEXING

MODE

REBUILD

or

INDEXING

MODE

AUTOSELECT.

This

option

will

also

be

ignored

if

INDEXING

MODE

AUTOSELECT

is

chosen

and

load

chooses

to

incrementally

update

the

index.

iSavecount

The

number

of

records

to

load

before

establishing

a

consistency

point.

This

db2Load

-

Load

446

Common

Criteria

Certification:

Administration

and

User

Documentation

value

is

converted

to

a

page

count,

and

rounded

up

to

intervals

of

the

extent

size.

Since

a

message

is

issued

at

each

consistency

point,

this

option

should

be

selected

if

the

load

operation

will

be

monitored

using

db2LoadQuery

-

Load

Query.

If

the

value

of

savecnt

is

not

sufficiently

high,

the

synchronization

of

activities

performed

at

each

consistency

point

will

impact

performance.

The

default

value

is

0,

meaning

that

no

consistency

points

will

be

established,

unless

necessary.

iDataBufferSize

The

number

of

4KB

pages

(regardless

of

the

degree

of

parallelism)

to

use

as

buffered

space

for

transferring

data

within

the

utility.

If

the

value

specified

is

less

than

the

algorithmic

minimum,

the

required

minimum

is

used,

and

no

warning

is

returned.

This

memory

is

allocated

directly

from

the

utility

heap,

whose

size

can

be

modified

through

the

util_heap_sz

database

configuration

parameter.

If

a

value

is

not

specified,

an

intelligent

default

is

calculated

by

the

utility

at

run

time.

The

default

is

based

on

a

percentage

of

the

free

space

available

in

the

utility

heap

at

the

instantiation

time

of

the

loader,

as

well

as

some

characteristics

of

the

table.

iSortBufferSize

Input.

This

option

specifies

a

value

that

overrides

the

SORTHEAP

database

configuration

parameter

during

a

load

operation.

It

is

relevant

only

when

loading

tables

with

indexes

and

only

when

the

iIndexingMode

parameter

is

not

specified

as

SQLU_INX_DEFERRED.

The

value

that

is

specified

cannot

exceed

the

value

of

SORTHEAP.

This

parameter

is

useful

for

throttling

the

sort

memory

used

by

LOAD

without

changing

the

value

of

SORTHEAP,

which

would

also

affect

general

query

processing.

iWarningcount

Input.

Stops

the

load

operation

after

warningcnt

warnings.

Set

this

parameter

if

no

warnings

are

expected,

but

verification

that

the

correct

file

and

table

are

being

used

is

desired.

If

the

load

file

or

the

target

table

is

specified

incorrectly,

the

load

utility

will

generate

a

warning

for

each

row

that

it

attempts

to

load,

which

will

cause

the

load

to

fail.

If

warningcnt

is

0,

or

this

option

is

not

specified,

the

load

operation

will

continue

regardless

of

the

number

of

warnings

issued.

If

the

load

operation

is

stopped

because

the

threshold

of

warnings

was

exceeded,

another

load

operation

can

be

started

in

RESTART

mode.

The

load

operation

will

automatically

continue

from

the

last

consistency

point.

Alternatively,

another

load

operation

can

be

initiated

in

REPLACE

mode,

starting

at

the

beginning

of

the

input

file.

iHoldQuiesce

Input.

A

flag

whose

value

is

set

to

TRUE

if

the

utility

is

to

leave

the

table

in

quiesced

exclusive

state

after

the

load,

and

to

FALSE

if

it

is

not.

iCpuParallelism

Input.

The

number

of

processes

or

threads

that

the

load

utility

will

spawn

for

parsing,

converting

and

formatting

records

when

building

table

objects.

This

parameter

is

designed

to

exploit

intra-partition

parallelism.

It

is

particularly

useful

when

loading

presorted

data,

because

record

order

in

the

source

data

is

preserved.

If

the

value

of

this

parameter

is

zero,

the

load

utility

uses

an

intelligent

default

value

at

run

time.

Note:

If

this

parameter

db2Load

-

Load

Chapter

14.

DB2

UDB

APIs

for

Administrators

447

is

used

with

tables

containing

either

LOB

or

LONG

VARCHAR

fields,

its

value

becomes

one,

regardless

of

the

number

of

system

CPUs,

or

the

value

specified

by

the

user.

iDiskParallelism

Input.

The

number

of

processes

or

threads

that

the

load

utility

will

spawn

for

writing

data

to

the

table

space

containers.

If

a

value

is

not

specified,

the

utility

selects

an

intelligent

default

based

on

the

number

of

table

space

containers

and

the

characteristics

of

the

table.

iNonrecoverable

Input.

Set

to

SQLU_NON_RECOVERABLE_LOAD

if

the

load

transaction

is

to

be

marked

as

non-recoverable,

and

it

will

not

be

possible

to

recover

it

by

a

subsequent

roll

forward

action.

The

rollforward

utility

will

skip

the

transaction,

and

will

mark

the

table

into

which

data

was

being

loaded

as

″invalid″.

The

utility

will

also

ignore

any

subsequent

transactions

against

that

table.

After

the

roll

forward

is

completed,

such

a

table

can

only

be

dropped.

With

this

option,

table

spaces

are

not

put

in

backup

pending

state

following

the

load

operation,

and

a

copy

of

the

loaded

data

does

not

have

to

be

made

during

the

load

operation.

Set

to

SQLU_RECOVERABLE_LOAD

if

the

load

transaction

is

to

be

marked

as

recoverable.

iIndexingMode

Input.

Specifies

the

indexing

mode.

Valid

values

(defined

in

sqlutil)

are:

SQLU_INX_AUTOSELECT

LOAD

chooses

between

REBUILD

and

INCREMENTAL

indexing

modes.

SQLU_INX_REBUILD

Rebuild

table

indexes.

SQLU_INX_INCREMENTAL

Extend

existing

indexes.

SQLU_INX_DEFERRED

Do

not

update

table

indexes.

iAccessLevel

Input.

Specifies

the

access

level.

Valid

values

are:

SQLU_ALLOW_NO_ACCESS

Specifies

that

the

load

locks

the

table

exclusively.

SQLU_ALLOW_READ_ACCESS

Specifies

that

the

original

data

in

the

table

(the

non-delta

portion)

should

still

be

visible

to

readers

while

the

load

is

in

progress.

This

option

is

only

valid

for

load

appends,

such

as

a

load

insert,

and

will

be

ignored

for

load

replace.

iLockWithForce

Input.

A

boolean

flag.

If

set

to

TRUE

load

will

force

other

applications

as

necessary

to

ensure

that

it

obtains

table

locks

immediately.

This

option

requires

the

same

authority

as

the

FORCE

APPLICATIONS

command

(SYSADM

or

SYSCTRL).

SQLU_ALLOW_NO_ACCESS

loads

may

force

conflicting

applications

at

the

start

of

the

load

operation.

At

the

start

of

the

load

the

utility

may

force

applications

that

are

attempting

to

either

query

or

modify

the

table.

db2Load

-

Load

448

Common

Criteria

Certification:

Administration

and

User

Documentation

SQLU_ALLOW_READ_ACCESS

loads

may

force

conflicting

applications

at

the

start

or

end

of

the

load

operation.

At

the

start

of

the

load

the

load

utility

may

force

applications

that

are

attempting

to

modify

the

table.

At

the

end

of

the

load

the

load

utility

may

force

applications

that

are

attempting

to

either

query

or

modify

the

table.

iCheckPending

Input.

Specifies

to

put

the

table

into

check

pending

state.

If

SQLU_CHECK_PENDING_CASCADE_IMMEDIATE

is

specified,

check

pending

state

will

be

immediately

cascaded

to

all

dependent

and

descendent

tables.

If

SQLU_CHECK_PENDING_CASCADE_DEFERRED

is

specified,

the

cascade

of

check

pending

state

to

dependent

tables

will

be

deferred

until

the

target

table

is

checked

for

integrity

violations.

SQLU_CHECK_PENDING_CASCADE_DEFERRED

is

the

default

if

the

option

is

not

specified.

iRestartphase

Input.

Reserved.

Valid

value

is

a

single

space

character

’

’.

iStatsOpt

Input.

Granularity

of

statistics

to

collect.

Valid

values

are:

SQLU_STATS_NONE

No

statistics

to

be

gathered.

SQLU_STATS_USE_PROFILE

Statistics

are

collected

based

on

the

profile

defined

for

the

current

table.

This

profile

must

be

created

using

the

RUNSTATS

command.

If

no

profile

exists

for

the

current

table,

a

warning

is

returned

and

no

statistics

are

collected.

iUseTablespaceLen

Input.

The

length

in

bytes

of

piUseTablespace.

oRowsRead

Output.

Number

of

records

read

during

the

load

operation.

oRowsSkipped

Output.

Number

of

records

skipped

before

the

load

operation

begins.

oRowsLoaded

Output.

Number

of

rows

loaded

into

the

target

table.

oRowsRejected

Output.

Number

of

records

that

could

not

be

loaded.

oRowsDeleted

Output.

Number

of

duplicate

rows

deleted.

oRowsCommitted

Output.

The

total

number

of

processed

records:

the

number

of

records

loaded

successfully

and

committed

to

the

database,

plus

the

number

of

skipped

and

rejected

records.

piHostname

Input.

The

hostname

for

the

iFileTransferCmd

parameter.

If

NULL,

the

hostname

will

default

to

″nohost″.

piFileTransferCmd

Input.

File

transfer

command

parameter.

If

not

required,

it

must

be

set

to

NULL.

See

the

Data

Movement

Guide

for

a

full

description

of

this

parameter.

db2Load

-

Load

Chapter

14.

DB2

UDB

APIs

for

Administrators

449

piPartFileLocation

Input.

In

PARTITION_ONLY,

LOAD_ONLY,

and

LOAD_ONLY_VERIFY_PART

modes,

this

parameter

can

be

used

to

specify

the

location

of

the

partitioned

files.

This

location

must

exist

on

each

partition

specified

by

the

piOutputNodes

option.

For

the

SQL_CURSOR

file

type,

this

parameter

cannot

be

NULL

and

the

location

does

not

refer

to

a

path,

but

to

a

fully

qualified

file

name.

This

will

be

the

fully

qualified

base

file

name

of

the

partitioned

files

that

are

created

on

each

output

partition

for

PARTITION_ONLY

mode,

or

the

location

of

the

files

to

be

read

from

each

partition

for

LOAD_ONLY

mode.

For

PARTITION_ONLY

mode,

multiple

files

may

be

created

with

the

specified

base

name

if

there

are

LOB

columns

in

the

target

table.

For

file

types

other

than

SQL_CURSOR,

if

the

value

of

this

parameter

is

NULL,

it

will

default

to

the

current

directory.

piOutputNodes

Input.

The

list

of

Load

output

partitions.

A

NULL

indicates

that

all

nodes

on

which

the

target

table

is

defined.

piPartitioningNodes

Input.

The

list

of

partitioning

nodes.

A

NULL

indicates

the

default.

Refer

to

the

Load

command

in

the

Data

Movement

Guide

and

Reference

for

a

description

of

how

the

default

is

determined.

piMode

Input.

Specifies

the

load

mode

for

partitioned

databases.

Valid

values

(defined

in

db2ApiDf)

are:

DB2LOAD_PARTITION_AND_LOAD

Data

is

partitioned

(perhaps

in

parallel)

and

loaded

simultaneously

on

the

corresponding

database

partitions.

DB2LOAD_PARTITION_ONLY

Data

is

partitioned

(perhaps

in

parallel)

and

the

output

is

written

to

files

in

a

specified

location

on

each

loading

partition.

For

file

types

other

than

SQL_CURSOR,

the

name

of

the

output

file

on

each

partition

will

have

the

form

filename.xxx,

where

filename

is

the

name

of

the

first

input

file

specified

by

piSourceList

and

xxx

is

the

partition

number.For

the

SQL_CURSOR

file

type,

the

name

of

the

output

file

on

each

partition

will

be

determined

by

the

piPartFileLocation

parameter.

Refer

to

the

piPartFileLocation

parameter

for

information

about

how

to

specify

the

location

of

the

partition

file

on

each

partition.

Note:

This

mode

cannot

be

used

for

a

CLI

LOAD.

DB2LOAD_LOAD_ONLY

Data

is

assumed

to

be

already

partitioned;

the

partition

process

is

skipped,

and

the

data

is

loaded

simultaneously

on

the

corresponding

database

partitions.

For

file

types

other

than

SQL_CURSOR,

the

input

file

name

on

each

partition

is

expected

to

be

of

the

form

filename.xxx,

where

filename

is

the

name

of

the

first

file

specified

by

piSourceList

and

xxx

is

the

3-digit

partition

number.

For

the

SQL_CURSOR

file

type,

the

name

of

the

input

file

on

each

partition

will

be

determined

by

the

piPartFileLocation

parameter.

Refer

to

the

piPartFileLocation

parameter

for

information

about

how

to

specify

the

location

of

the

partition

file

on

each

partition.

db2Load

-

Load

450

Common

Criteria

Certification:

Administration

and

User

Documentation

Note:

This

mode

cannot

be

used

when

loading

a

data

file

located

on

a

remote

client,

nor

can

it

be

used

for

a

CLI

LOAD.

DB2LOAD_LOAD_ONLY_VERIFY_PART

Data

is

assumed

to

be

already

partitioned,

but

the

data

file

does

not

contain

a

partition

header.

The

partitioning

process

is

skipped,

and

the

data

is

loaded

simultaneously

on

the

corresponding

database

partitions.

During

the

load

operation,

each

row

is

checked

to

verify

that

it

is

on

the

correct

partition.

Rows

containing

partition

violations

are

placed

in

a

dumpfile

if

the

dumpfile

file

type

modifier

is

specified.

Otherwise,

the

rows

are

discarded.

If

partition

violations

exist

on

a

particular

loading

partition,

a

single

warning

will

be

written

to

the

load

message

file

for

that

partition.

The

input

file

name

on

each

partition

is

expected

to

be

of

the

form

filename.xxx,

where

filename

is

the

name

of

the

first

file

specified

by

piSourceList

and

xxx

is

the

3-digit

partition

number.

Note:

This

mode

cannot

be

used

when

loading

a

data

file

located

on

a

remote

client,

nor

can

it

be

used

for

a

CLI

LOAD.

DB2LOAD_ANALYZE

An

optimal

partitioning

map

with

even

distribution

across

all

database

partitions

is

generated.

piMaxNumPartAgents

Input.

The

maximum

number

of

partitioning

agents.

A

NULL

value

indicates

the

default,

which

is

25.

piIsolatePartErrs

Input.

Indicates

how

the

load

operation

will

react

to

errors

that

occur

on

individual

partitions.

Valid

values

(defined

in

db2ApiDf)

are:

DB2LOAD_SETUP_ERRS_ONLY

In

this

mode,

errors

that

occur

on

a

partition

during

setup,

such

as

problems

accessing

a

partition

or

problems

accessing

a

table

space

or

table

on

a

partition,

will

cause

the

load

operation

to

stop

on

the

failing

partitions

but

to

continue

on

the

remaining

partitions.

Errors

that

occur

on

a

partition

while

data

is

being

loaded

will

cause

the

entire

operation

to

fail

and

rollback

to

the

last

point

of

consistency

on

each

partition.

DB2LOAD_LOAD_ERRS_ONLY

In

this

mode,

errors

that

occur

on

a

partition

during

setup

will

cause

the

entire

load

operation

to

fail.

When

an

error

occurs

while

data

is

being

loaded,

the

partitions

with

errors

will

be

rolled

back

to

their

last

point

of

consistency.

The

load

operation

will

continue

on

the

remaining

partitions

until

a

failure

occurs

or

until

all

the

data

is

loaded.

On

the

partitions

where

all

of

the

data

was

loaded,

the

data

will

not

be

visible

following

the

load

operation.

Because

of

the

errors

in

the

other

partitions

the

transaction

will

be

aborted.

Data

on

all

of

the

partitions

will

remain

invisible

until

a

load

restart

operation

is

performed.

This

will

make

the

newly

loaded

data

visible

on

the

partitions

where

the

load

operation

completed

and

resume

the

load

operation

on

partitions

that

experienced

an

error.

Note:

This

mode

cannot

be

used

when

iAccessLevel

is

set

to

SQLU_ALLOW_READ_ACCESS

and

a

copy

target

is

also

specified.

db2Load

-

Load

Chapter

14.

DB2

UDB

APIs

for

Administrators

451

DB2LOAD_SETUP_AND_LOAD_ERRS

In

this

mode,

partition-level

errors

during

setup

or

loading

data

cause

processing

to

stop

only

on

the

affected

partitions.

As

with

the

DB2LOAD_LOAD_ERRS_ONLY

mode,

when

partition

errors

do

occur

while

data

is

being

loaded,

the

data

on

all

partitions

will

remain

invisible

until

a

load

restart

operation

is

performed.

Note:

This

mode

cannot

be

used

when

iAccessLevel

is

set

to

SQLU_ALLOW_READ_ACCESS

and

a

copy

target

is

also

specified.

DB2LOAD_NO_ISOLATION

Any

error

during

the

Load

operation

causes

the

transaction

to

be

aborted.

If

this

parameter

is

NULL,

it

will

default

to

DB2LOAD_LOAD_ERRS_ONLY,

unless

iAccessLevel

is

set

to

SQLU_ALLOW_READ_ACCESS

and

a

copy

target

is

also

specified,

in

which

case

the

default

is

DB2LOAD_NO_ISOLATION.

piStatusInterval

Input.

Specifies

the

number

of

megabytes

(MB)

of

data

to

load

before

generating

a

progress

message.

Valid

values

are

whole

numbers

in

the

range

of

1

to

4000.

If

NULL

is

specified,

a

default

value

of

100

will

be

used.

piPortRange

Input.

The

TCP

port

range

for

internal

communication.

If

NULL,

the

port

range

used

will

be

6000-6063.

piCheckTruncation

Input.

Causes

Load

to

check

for

record

truncation

at

Input/Output.

Valid

values

are

TRUE

and

FALSE.

If

NULL,

the

default

is

FALSE.

piMapFileInput

Input.

Partition

map

input

filename.

If

the

mode

is

not

ANALYZE,

this

parameter

should

be

set

to

NULL.

If

the

mode

is

ANALYZE,

this

parameter

must

be

specified.

piMapFileOutput

Input.

Partition

map

output

filename.

The

rules

for

piMapFileInput

apply

here

as

well.

piTrace

Input.

Specifies

the

number

of

records

to

trace

when

you

need

to

review

a

dump

of

all

the

data

conversion

process

and

the

output

of

hashing

values.

If

NULL,

the

number

of

records

defaults

to

0.

piNewline

Input.

Forces

Load

to

check

for

newline

characters

at

end

of

ASC

data

records

if

RECLEN

file

type

modifier

is

also

specified.

Possible

values

are

TRUE

and

FALSE.

If

NULL,

the

value

defaults

to

FALSE.

piDistfile

Input.

Name

of

the

partition

distribution

file.

If

a

NULL

is

specified,

the

value

defaults

to

″DISTFILE″.

piOmitHeader

Input.

Indicates

that

a

partition

map

header

should

not

be

included

in

the

partition

file

when

using

DB2LOAD_PARTITION_ONLY

mode.

Possible

values

are

TRUE

and

FALSE.

If

NULL,

the

default

is

FALSE.

db2Load

-

Load

452

Common

Criteria

Certification:

Administration

and

User

Documentation

piRunStatDBPartNum

Specifies

the

database

partition

on

which

to

collect

statistics.

The

default

value

is

the

first

database

partition

in

the

output

partition

list.

iHostnameLen

Input.

The

length

in

bytes

of

piHostname.

iFileTransferLen

Input.

The

length

in

bytes

of

piFileTransferCmd.

iPartFileLocLen

Input.

The

length

in

bytes

of

piPartFileLocation.

iMapFileInputLen

Input.

The

length

in

bytes

of

piMapFileInput.

iMapFileOutputLen

Input.

The

length

in

bytes

of

piMapFileOutput.

iDistfileLen

Input.

The

length

in

bytes

of

piDistfile.

piNodeList

Input.

An

array

of

node

numbers.

iNumNodes

Input.

The

number

of

nodes

in

the

piNodeList

array.

A

0

indicates

the

default,

which

is

all

nodes

on

which

the

target

table

is

defined.

iPortMin

Input.

Lower

port

number.

iPortMax

Input.

Higher

port

number.

oRowsRdPartAgents

Output.

Total

number

of

rows

read

by

all

partitioning

agents.

oRowsRejPartAgents

Output.

Total

number

of

rows

rejected

by

all

partitioning

agents.

oRowsPartitioned

Output.

Total

number

of

rows

partitioned

by

all

partitioning

agents.

poAgentInfoList

Output.

During

a

load

operation

into

a

partitioned

database,

the

following

load

processing

entities

may

be

involved:

load

agents,

partitioning

agents,

pre-partitioing

agents,

file

transfer

command

agents

and

load-to-file

agents

(these

are

described

in

the

Data

Movement

Guide).

The

purpose

of

the

poAgentInfoList

output

parameter

is

to

return

to

the

caller

information

about

each

load

agent

that

participated

in

a

load

operation.

Each

entry

in

the

list

contains

the

following

information:

v

oAgentType.

A

tag

indicating

what

kind

of

load

agent

the

entry

describes.

v

oNodeNum.

The

number

of

the

partition

on

which

the

agent

executed.

v

oSqlcode.

The

final

sqlcode

resulting

from

the

agent’s

processing.

v

oTableState.

The

final

status

of

the

table

on

the

partition

on

which

the

agent

executed

(relevant

only

for

load

agents).

It

is

up

to

the

caller

of

the

API

to

allocate

memory

for

this

list

prior

to

calling

the

API.

The

caller

should

also

indicate

the

number

of

entries

for

which

they

allocated

memory

in

the

iMaxAgentInfoEntries

parameter.

If

the

db2Load

-

Load

Chapter

14.

DB2

UDB

APIs

for

Administrators

453

caller

sets

poAgentInfoList

to

NULL

or

sets

iMaxAgentInfoEntries

to

0,

then

no

information

will

be

returned

about

the

load

agents.

iMaxAgentInfoEntries

Input.

The

maximum

number

of

agent

information

entries

allocated

by

the

user

for

poAgentInfoList.

In

general,

setting

this

parameter

to

3

times

the

number

of

partitions

involved

in

the

load

operation

should

be

sufficient.

oNumAgentInfoEntries

Output.

The

actual

number

of

agent

information

entries

produced

by

the

load

operation.

This

number

of

entries

will

be

returned

to

the

user

in

the

poAgentInfoList

parameter

as

long

as

iMaxAgentInfoEntries

is

greater

than

or

equal

to

oNumAgentInfoEntries.

If

iMaxAgentInfoEntries

is

less

than

oNumAgentInfoEntries,

then

the

number

of

entries

returned

in

poAgentInfoList

is

equal

to

iMaxAgentInfoEntries.

oSqlcode

Output.

The

final

sqlcode

resulting

from

the

agent’s

processing.

oTableState

Output.

The

purpose

of

this

output

parameter

is

not

to

report

every

possible

state

of

the

table

after

the

load

operation.

Rather,

its

purpose

is

to

report

only

a

small

subset

of

possible

tablestates

in

order

to

give

the

caller

a

general

idea

of

what

happened

to

the

table

during

load

processing.

This

value

is

relevant

for

load

agents

only.

The

possible

values

are:

DB2LOADQUERY_NORMAL

Indicates

that

the

load

completed

successfully

on

the

partition

and

the

table

was

taken

out

of

the

LOAD

IN

PROGRESS

(or

LOAD

PENDING)

state.

In

this

case,

the

table

still

could

be

in

CHECK

PENDING

state

due

to

the

need

for

further

constraints

processing,

but

this

will

not

reported

as

this

is

normal.

DB2LOADQUERY_UNCHANGED

Indicates

that

the

load

job

aborted

processing

due

to

an

error

but

did

not

yet

change

the

state

of

the

table

on

the

partition

from

whatever

state

it

was

in

prior

to

calling

db2Load.

It

is

not

necessary

to

perform

a

load

restart

or

terminate

operation

on

such

partitions.

DB2LOADQUERY_LOADPENDING

Indicates

that

the

load

job

aborted

during

processing

but

left

the

table

on

the

partition

in

the

LOAD

PENDING

state,

indicating

that

the

load

job

on

that

partition

must

be

either

terminated

or

restarted.

oNodeNum

Output.

The

number

of

the

partition

on

which

the

agent

executed.

oAgentType

Output.

The

agent

type.

Valid

values

(defined

in

db2ApiDf)

are

:

DB2LOAD_LOAD_AGENT

DB2LOAD_PARTITIONING_AGENT

DB2LOAD_PRE_PARTITIONING_AGENT

DB2LOAD_FILE_TRANSFER_AGENT

DB2LOAD_LOAD_TO_FILE_AGENT

Usage

notes:

db2Load

-

Load

454

Common

Criteria

Certification:

Administration

and

User

Documentation

Data

is

loaded

in

the

sequence

that

appears

in

the

input

file.

If

a

particular

sequence

is

desired,

the

data

should

be

sorted

before

a

load

is

attempted.

The

load

utility

builds

indexes

based

on

existing

definitions.

The

exception

tables

are

used

to

handle

duplicates

on

unique

keys.

The

utility

does

not

enforce

referential

integrity,

perform

constraints

checking,

or

update

summary

tables

that

are

dependent

on

the

tables

being

loaded.

Tables

that

include

referential

or

check

constraints

are

placed

in

check

pending

state.

Summary

tables

that

are

defined

with

REFRESH

IMMEDIATE,

and

that

are

dependent

on

tables

being

loaded,

are

also

placed

in

check

pending

state.

Issue

the

SET

INTEGRITY

statement

to

take

the

tables

out

of

check

pending

state.

Load

operations

cannot

be

carried

out

on

replicated

summary

tables.

For

clustering

indexes,

the

data

should

be

sorted

on

the

clustering

index

prior

to

loading.

The

data

need

not

be

sorted

when

loading

into

an

multi-dimensionally

clustered

(MDC)

table.

DB2

Data

Links

Manager

Considerations

For

each

DATALINK

column,

there

can

be

one

column

specification

within

parentheses.

Each

column

specification

consists

of

one

or

more

of

DL_LINKTYPE,

prefix

and

a

DL_URL_SUFFIX

specification.

The

prefix

information

can

be

either

DL_URL_REPLACE_PREFIX,

or

the

DL_URL_DEFAULT_PREFIX

specification.

There

can

be

as

many

DATALINK

column

specifications

as

the

number

of

DATALINK

columns

defined

in

the

table.

The

order

of

specifications

follows

the

order

of

DATALINK

columns

as

found

within

the

insert-column

list

(if

specified

by

INSERT

INTO

(insert-column,

...)),

or

within

the

table

definition

(if

insert-column

is

not

specified).

For

example,

if

a

table

has

columns

C1,

C2,

C3,

C4,

and

C5,

and

among

them

only

columns

C2

and

C5

are

of

type

DATALINK,

and

the

insert-column

list

is

(C1,

C5,

C3,

C2),

there

should

be

two

DATALINK

column

specifications.

The

first

column

specification

will

be

for

C5,

and

the

second

column

specification

will

be

for

C2.

If

an

insert-column

list

is

not

specified,

the

first

column

specification

will

be

for

C2,

and

the

second

column

specification

will

be

for

C5.

If

there

are

multiple

DATALINK

columns,

and

some

columns

do

not

need

any

particular

specification,

the

column

specification

should

have

at

least

the

parentheses

to

unambiguously

identify

the

order

of

specifications.

If

there

are

no

specifications

for

any

of

the

columns,

the

entire

list

of

empty

parentheses

can

be

dropped.

Thus,

in

cases

where

the

defaults

are

satisfactory,

there

need

not

be

any

DATALINK

specification.

If

data

is

being

loaded

into

a

table

with

a

DATALINK

column

that

is

defined

with

FILE

LINK

CONTROL,

perform

the

following

steps

before

invoking

the

load

utility.

(If

all

the

DATALINK

columns

are

defined

with

NO

LINK

CONTROL,

these

steps

are

not

necessary).

1.

Ensure

that

the

DB2

Data

Links

Manager

is

installed

on

the

Data

Links

servers

that

will

be

referred

to

by

the

DATALINK

column

values.

2.

Ensure

that

the

database

is

registered

with

the

DB2

Data

Links

Manager.

3.

Copy

to

the

appropriate

Data

Links

servers,

all

files

that

will

be

inserted

as

DATALINK

values.

4.

Define

the

prefix

name

(or

names)

to

the

DB2

Data

Links

Managers

on

the

Data

Links

servers.

db2Load

-

Load

Chapter

14.

DB2

UDB

APIs

for

Administrators

455

5.

Register

the

Data

Links

servers

referred

to

by

DATALINK

data

(to

be

loaded)

in

the

DB2

Data

Links

Manager

configuration

file.

The

connection

between

DB2

and

the

Data

Links

server

may

fail

while

running

the

load

utility,

causing

the

load

operation

to

fail.

If

this

occurs:

1.

Start

the

Data

Links

server

and

the

DB2

Data

Links

Manager.

2.

Invoke

a

load

restart

operation.

Links

that

fail

during

the

load

operation

are

considered

to

be

data

integrity

violations,

and

are

handled

in

much

the

same

way

as

unique

index

violations.

Consequently,

a

special

exception

has

been

defined

for

loading

tables

that

have

one

or

more

DATALINK

columns.

Representation

of

DATALINK

Information

in

an

Input

File

The

LINKTYPE

(currently

only

URL

is

supported)

is

not

specified

as

part

of

DATALINK

information.

The

LINKTYPE

is

specified

in

the

LOAD

or

the

IMPORT

command,

and

for

input

files

of

type

PC/IXF,

in

the

appropriate

column

descriptor

records.

The

syntax

of

DATALINK

information

for

a

URL

LINKTYPE

is

as

follows:

��

urlname

dl_delimiter

comment

��

Note

that

both

urlname

and

comment

are

optional.

If

neither

is

provided,

the

NULL

value

is

assigned.

urlname

The

URL

name

must

conform

to

valid

URL

syntax.

Notes:

1.

Currently

″http″,

″file″,

and

″unc″

are

permitted

as

a

schema

name.

2.

The

prefix

(schema,

host,

and

port)

of

the

URL

name

is

optional.

If

a

prefix

is

not

present,

it

is

taken

from

the

DL_URL_DEFAULT_PREFIX

or

the

DL_URL_REPLACE_PREFIX

specification

of

the

load

or

the

import

utility.

If

none

of

these

is

specified,

the

prefix

defaults

to

″file://localhost″.

Thus,

in

the

case

of

local

files,

the

file

name

with

full

path

name

can

be

entered

as

the

URL

name,

without

the

need

for

a

DATALINK

column

specification

within

the

LOAD

or

the

IMPORT

command.

3.

Prefixes,

even

if

present

in

URL

names,

are

overridden

by

a

different

prefix

name

on

the

DL_URL_REPLACE_PREFIX

specification

during

a

load

or

import

operation.

4.

The

″path″

(after

appending

DL_URL_SUFFIX,

if

specified)

is

the

full

path

name

of

the

remote

file

in

the

remote

server.

Relative

path

names

are

not

allowed.

The

http

server

default

path-prefix

is

not

taken

into

account.

dl_delimiter

For

the

delimited

ASCII

(DEL)

file

format,

a

character

specified

via

the

dldel

modifier,

or

defaulted

to

on

the

LOAD

or

the

IMPORT

command.

For

the

non-delimited

ASCII

(ASC)

file

format,

this

should

correspond

to

the

character

sequence

\;

(a

backslash

followed

by

a

semicolon).

db2Load

-

Load

456

Common

Criteria

Certification:

Administration

and

User

Documentation

Whitespace

characters

(blanks,

tabs,

and

so

on)

are

permitted

before

and

after

the

value

specified

for

this

parameter.

comment

The

comment

portion

of

a

DATALINK

value.

If

specified

for

the

delimited

ASCII

(DEL)

file

format,

the

comment

text

must

be

enclosed

by

the

character

string

delimiter,

which

is

double

quotation

marks

(″)

by

default.

This

character

string

delimiter

can

be

overridden

by

the

MODIFIED

BY

filetype-mod

specification

of

the

LOAD

or

the

IMPORT

command.

If

no

comment

is

specified,

the

comment

defaults

to

a

string

of

length

zero.

Following

are

DATALINK

data

examples

for

the

delimited

ASCII

(DEL)

file

format:

v

http://www.almaden.ibm.com:80/mrep/intro.mpeg;

"Intro

Movie"

This

is

stored

with

the

following

parts:

–

scheme

=

http

–

server

=

www.almaden.ibm.com

–

path

=

/mrep/intro.mpeg

–

comment

=

″Intro

Movie″

v

file://narang/u/narang;

"InderPal’s

Home

Page"

This

is

stored

with

the

following

parts:

–

scheme

=

file

–

server

=

narang

–

path

=

/u/narang

–

comment

=

″InderPal’s

Home

Page″

Following

are

DATALINK

data

examples

for

the

non-delimited

ASCII

(ASC)

file

format:

v

http://www.almaden.ibm.com:80/mrep/intro.mpeg\;Intro

Movie

This

is

stored

with

the

following

parts:

–

scheme

=

http

–

server

=

www.almaden.ibm.com

–

path

=

/mrep/intro.mpeg

–

comment

=

″Intro

Movie″

v

file://narang/u/narang\;

InderPal’s

Home

Page

This

is

stored

with

the

following

parts:

–

scheme

=

file

–

server

=

narang

–

path

=

/u/narang

–

comment

=

″InderPal’s

Home

Page″

Following

are

DATALINK

data

examples

in

which

the

load

or

import

specification

for

the

column

is

assumed

to

be

DL_URL_REPLACE_PREFIX

(″http://qso″):

v

http://www.almaden.ibm.com/mrep/intro.mpeg

This

is

stored

with

the

following

parts:

–

schema

=

http

–

server

=

qso

–

path

=

/mrep/intro.mpeg

–

comment

=

NULL

string

db2Load

-

Load

Chapter

14.

DB2

UDB

APIs

for

Administrators

457

v

/u/me/myfile.ps

This

is

stored

with

the

following

parts:

–

schema

=

http

–

server

=

qso

–

path

=

/u/me/myfile.ps

–

comment

=

NULL

string

Related

reference:

v

“sqluvqdp

-

Quiesce

Table

Spaces

for

Table”

on

page

514

v

“db2LoadQuery

-

Load

Query”

in

the

Administrative

API

Reference

v

“SQLDCOL”

in

the

Administrative

API

Reference

v

“SQLU-MEDIA-LIST”

in

the

Administrative

API

Reference

v

“db2Export

-

Export”

on

page

405

v

“db2Import

-

Import”

on

page

412

v

“db2DatabaseQuiesce

-

Database

Quiesce”

on

page

402

v

“db2InstanceQuiesce

-

Instance

Quiesce”

in

the

Administrative

API

Reference

v

“File

type

modifiers

for

load”

on

page

326

v

“Delimiter

restrictions

for

moving

data”

in

the

Command

Reference

Related

samples:

v

“dtformat.sqc

--

Load

and

import

data

format

extensions

(C)”

v

“tbload.sqc

--

How

to

load

into

a

partitioned

database

(C)”

v

“tbmove.sqc

--

How

to

move

table

data

(C)”

v

“tbmove.sqC

--

How

to

move

table

data

(C++)”

db2Reorg

-

Reorganize

Reorganize

a

table

or

all

indexes

defined

on

a

table

by

compacting

the

information

and

reconstructing

the

rows

or

index

data

to

eliminate

fragmented

data.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

v

sysmaint

v

dbadm

v

CONTROL

privilege

on

the

table

Required

connection:

Database

API

include

file:

db2ApiDf.h

C

API

syntax:

db2Load

-

Load

458

Common

Criteria

Certification:

Administration

and

User

Documentation

/*

File:

db2ApiDf.h

*/

/*

API:

db2Reorg

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2Reorg

(

db2Uint32

versionNumber,

void

*pReorgStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2ReorgStruct

{

db2Uint32

reorgType;

db2Uint32

reorgFlags;

db2int32

nodeListFlag;

db2Uint32

numNodes;

SQL_PDB_NODE_TYPE

*pNodeList;

union

db2ReorgObject

reorgObject;

}

db2ReorgStruct;

union

db2ReorgObject

{

struct

db2ReorgTable

tableStruct;

struct

db2ReorgIndexesAll

indexesAllStruct;

};

typedef

SQL_STRUCTURE

db2ReorgTable

{

char

*pTableName;

char

*pOrderByIndex;

char

*pSysTempSpace;

}

db2ReorgTable;

typedef

SQL_STRUCTURE

db2ReorgIndexesAll

{

char

*pTableName;

}

db2ReorgIndexesAll;

/*

...

*/

Generic

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2gReorg

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2gReorg

(

db2Uint32

versionNumber,

void

*pReorgStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2gReorgStruct

{

db2Uint32

reorgType;

db2Uint32

reorgFlags;

db2int32

nodeListFlag;

db2Uint32

numNodes;

SQL_PDB_NODE_TYPE

*pNodeList;

union

db2gReorgObject

reorgObject;

}

db2gReorgStruct;

typedef

SQL_STRUCTURE

db2gReorgNodes

{

SQL_PDB_NODE_TYPE

nodeNum[SQL_PDB_MAX_NUM_NODE];

}

db2gReorgNodes;

union

db2gReorgObject

{

struct

db2gReorgTable

tableStruct;

db2Reorg

-

Reorganize

Chapter

14.

DB2

UDB

APIs

for

Administrators

459

struct

db2gReorgIndexesAll

indexesAllStruct;

};

typedef

SQL_STRUCTURE

db2gReorgTable

{

db2Uint32

tableNameLen;

char

*pTableName;

db2Uint32

orderByIndexLen;

char

*pOrderByIndex;

db2Uint32

sysTempSpaceLen;

char

*pSysTempSpace;

}

db2gReorgTable;

typedef

SQL_STRUCTURE

db2gReorgIndexesAll

{

db2Uint32

tableNameLen;

char

*pTableName;

}

db2gReorgIndexesAll;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter,

pReorgStruct.

pReorgStruct

Input.

A

pointer

to

the

db2ReorgStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

reorgType

Input.

Specifies

the

type

of

reorganization.

Valid

values

(defined

in

db2ApiDf.h)

are:

DB2REORG_OBJ_TABLE_OFFLINE

Reorganize

the

table

offline.

DB2REORG_OBJ_TABLE_INPLACE

Reorganize

the

table

inplace.

DB2REORG_OBJ_INDEXESALL

Reorganize

all

indexes.

reorgFlags

Input.

Reorganization

options.

Valid

values

(defined

in

db2ApiDf.h)

are:

DB2REORG_OPTION_NONE

Default

action.

DB2REORG_LONGLOB

Reorganize

long

fields

and

lobs,

used

when

DB2REORG_OBJ_TABLE_OFFLINE

is

specified

as

the

reorgType.

DB2REORG_INDEXSCAN

Recluster

utilizing

index

scan,

used

when

DB2REORG_OBJ_TABLE_OFFLINE

is

specified

as

the

reorgType.

DB2REORG_START_ONLINE

Start

online

reorganization,

used

when

DB2REORG_OBJ_TABLE_INPLACE

is

specified

as

the

reorgType.

DB2REORG_PAUSE_ONLINE

Pause

an

existing

online

reorganization,

used

when

DB2REORG_OBJ_TABLE_INPLACE

is

specified

as

the

reorgType.

db2Reorg

-

Reorganize

460

Common

Criteria

Certification:

Administration

and

User

Documentation

DB2REORG_STOP_ONLINE

Stop

an

existing

online

reorganization,

used

when

DB2REORG_OBJ_TABLE_INPLACE

is

specified

as

the

reorgType.

DB2REORG_RESUME_ONLINE

Resume

a

paused

online

reorganization,

used

when

DB2REORG_OBJ_TABLE_INPLACE

is

specified

as

the

reorgType.

DB2REORG_NOTRUNCATE_ONLINE

Do

not

perform

table

truncation,

used

when

DB2REORG_OBJ_TABLE_INPLACE

is

specified

as

the

reorgType.

DB2REORG_ALLOW_NONE

No

read

or

write

access

to

the

table.

This

parameter

is

not

supported

when

DB2REORG_OBJ_TABLE_INPLACE

is

specified

as

the

reorgType.

DB2REORG_ALLOW_WRITE

Allow

read

and

write

access

to

the

table.

This

parameter

is

not

supported

when

DB2REORG_OBJ_TABLE_OFFLINE

is

specified

as

the

reorgType.

DB2REORG_ALLOW_READ

Allow

only

read

access

to

the

table.

DB2REORG_CLEANUP_NONE

No

clean

up

is

required,

used

when

DB2REORG_OBJ_INDEXESALL

is

specified

as

the

reorgType.

DB2REORG_CLEANUP_ALL

Clean

up

the

indexes

on

a

table

by

removing

the

committed

pseudo

deleted

keys

and

committed

pseudo

empty

pages,

used

when

DB2REORG_OBJ_INDEXESALL

is

specified

as

the

reorgType.

DB2REORG_CLEANUP_PAGES

Clean

up

committed

pseudo

empty

pages

only,

but

do

not

clean

up

pseudo

deleted

keys

on

pages

that

are

not

pseudo

empty,

used

when

DB2REORG_OBJ_INDEXESALL

is

specified

as

the

reorgType.

DB2REORG_CONVERT_NONE

No

conversion

is

required,

used

when

DB2REORG_OBJ_INDEXESALL

is

specified

as

the

reorgType.

DB2REORG_CONVERT

Convert

to

type

2

index,

used

when

DB2REORG_OBJ_INDEXESALL

is

specified

as

the

reorgType.

nodeListFlag

Input.

Specifies

which

nodes

to

reorganize.

Valid

values

(defined

in

db2ApiDf.h)

are:

DB2REORG_NODE_LIST

Submit

to

all

nodes

in

the

nodelist

array.

DB2REORG_ALL_NODES

Submit

to

all

nodes

in

the

database

partition

group.

DB2REORG_ALL_EXCEPT

Submit

to

all

nodes

except

the

ones

specified

by

the

nodelist

parameter.

numNodes

Input.

Number

of

nodes

in

the

nodelist

array.

db2Reorg

-

Reorganize

Chapter

14.

DB2

UDB

APIs

for

Administrators

461

pNodeList

A

pointer

to

the

array

of

node

numbers.

reorgObject

Input.

Specifies

the

type

of

object

to

be

reorganized.

tableStruct

Specifies

the

options

for

a

table

reorganization.

indexesAllStruct

Specifies

the

options

for

an

index

reorganization.

tableNameLen

Input.

Specifies

the

length

in

bytes

of

pTableName.

pTableName

Input.

Specifies

the

name

of

the

object

to

reorganize.

orderByIndexLen

Input.

Specifies

the

length

in

byte

of

pOrderByIndex.

pOrderByIndex

Input.

Specifies

the

index

to

order

the

table

by.

sysTempSpaceLen

Input.

Specifies

the

length

in

bytes

of

pSysTempSpace.

pSysTempSpace

Input.

Specifies

the

system

temporary

table

space

to

create

temporary

object

in.

Usage

notes:

Performance

of

table

access,

index

scans,

and

the

effectiveness

of

index

page

prefetching

can

be

adversely

affected

when

the

table

data

has

been

modified

many

times,

becoming

fragmented

and

unclustered.

Use

REORGCHK

to

determine

whether

a

table

or

its

indexes

are

candidates

for

reorganizing.

All

work

will

be

committed

and

all

open

cursors

will

be

closed.

After

reorganizing

a

table

or

its

indexes,

use

db2Runstats

to

update

the

statistics

and

sqlarbnd

to

rebind

the

packages

that

use

this

table.

If

the

table

is

partitioned

onto

several

nodes

and

the

reorganization

fails

on

any

of

the

affected

nodes,

then

only

the

failing

nodes

will

have

the

table

reorganization

rolled

back.

Note:

If

table

reorganization

is

not

successful,

temporary

files

should

not

be

deleted.

The

database

manager

uses

these

files

to

recover

the

database.

If

the

name

of

an

index

is

specified,

the

database

manager

reorganizes

the

data

according

to

the

order

in

the

index.

To

maximize

performance,

specify

an

index

that

is

often

used

in

SQL

queries.

If

the

name

of

an

index

is

not

specified,

and

if

a

clustering

index

exists,

the

data

will

be

ordered

according

to

the

clustering

index.

The

PCTFREE

value

of

a

table

determines

the

amount

of

free

space

designated

per

page.

If

the

value

has

not

been

set,

the

utility

will

fill

up

as

much

space

as

possible

on

each

page.

To

complete

a

table

space

roll-forward

recovery

following

a

table

reorganization,

both

data

and

LONG

table

spaces

must

be

roll-forward

enabled.

db2Reorg

-

Reorganize

462

Common

Criteria

Certification:

Administration

and

User

Documentation

If

the

table

contains

LOB

columns

that

do

not

use

the

COMPACT

option,

the

LOB

DATA

storage

object

can

be

significantly

larger

following

table

reorganization.

This

can

be

a

result

of

the

order

in

which

the

rows

were

reorganized,

and

the

types

of

table

spaces

used

(SMS/DMS).

When

reorganizing

indexes,

use

the

access

option

to

allow

other

transactions

either

read

only

or

read-write

access

to

the

table.

There

is

a

brief

lock-out

period

when

the

reorganized

indexes

are

being

made

available

during

which

no

access

to

the

table

is

allowed.

If

an

index

reorganization

with

allow

read

or

allow

write

access

fails

because

the

indexes

need

to

be

rebuilt,

the

reorganization

will

be

switched

to

allow

no

access

and

carry

on.

A

message

will

be

written

to

both

the

administration

notification

log

and

the

diagnostics

log

to

warn

the

user

about

the

change

in

access

mode.

If

an

index

reorganization

with

no

access

fails,

the

indexes

are

not

available

and

have

to

be

rebuilt

on

the

next

table

access.

This

API

cannot

be

used

with:

v

views

or

an

index

that

is

based

on

an

index

extension

v

a

DMS

table

while

an

online

backup

of

a

table

space

in

which

the

table

resides

is

being

performed

v

declared

temporary

tables

Related

reference:

v

“sqlarbnd

-

Rebind”

on

page

873

v

“SQLCA”

in

the

Administrative

API

Reference

v

“db2Runstats

-

Runstats”

in

the

Administrative

API

Reference

Related

samples:

v

“dbstat.sqb

--

Reorganize

table

and

run

statistics

(MF

COBOL)”

v

“tbreorg.sqc

--

How

to

reorganize

a

table

and

update

its

statistics

(C)”

v

“tbreorg.sqC

--

How

to

reorganize

a

table

and

update

its

statistics

(C++)”

db2Restore

-

Restore

database

Rebuilds

a

damaged

or

corrupted

database

that

has

been

backed

up

using

db2Backup

-

Backup

Database.

The

restored

database

is

in

the

same

state

it

was

in

when

the

backup

copy

was

made.

This

utility

can

also

restore

to

a

database

with

a

name

different

from

the

database

name

in

the

backup

image

(in

addition

to

being

able

to

restore

to

a

new

database).

This

utility

can

also

be

used

to

restore

DB2

databases

created

in

the

two

previous

releases.

This

utility

can

also

restore

from

a

table

space

level

backup,

or

restore

table

spaces

from

within

a

database

backup

image.

Scope:

This

API

only

affects

the

database

partition

from

which

it

is

called.

Authorization:

db2Reorg

-

Reorganize

Chapter

14.

DB2

UDB

APIs

for

Administrators

463

To

restore

to

an

existing

database,

one

of

the

following:

v

sysadm

v

sysctrl

v

sysmaint

To

restore

to

a

new

database,

one

of

the

following:

v

sysadm

v

sysctrl

Required

connection:

Database,

to

restore

to

an

existing

database.

This

API

automatically

establishes

a

connection

to

the

specified

database

and

will

release

the

connection

when

the

restore

operation

finishes.

Instance

and

database,

to

restore

to

a

new

database.

The

instance

attachment

is

required

to

create

the

database.

To

restore

to

a

new

database

at

an

instance

different

from

the

current

instance

(as

defined

by

the

value

of

the

DB2INSTANCE

environment

variable),

it

is

necessary

to

first

attach

to

the

instance

where

the

new

database

will

reside.

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2Restore

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2Restore

(

db2Uint32

versionNumber,

void

*pDB2RestoreStruct,

struct

sqlca

*pSqlca);

/*

...

*/

typedef

SQL_STRUCTURE

db2RestoreStruct

{

char

*piSourceDBAlias;

char

*piTargetDBAlias;

char

oApplicationId[SQLU_APPLID_LEN+1];

char

*piTimestamp;

char

*piTargetDBPath;

char

*piReportFile;

struct

db2TablespaceStruct

*piTablespaceList;

struct

db2MediaListStruct

*piMediaList;

char

*piUsername;

char

*piPassword;

char

*piNewLogPath;

void

*piVendorOptions;

db2Uint32

iVendorOptionsSize;

db2Uint32

iParallelism;

db2Uint32

iBufferSize;

db2Uint32

iNumBuffers;

db2Uint32

iCallerAction;

db2Uint32

iOptions;

char

*piComprLibrary;

void

*piComprOptions;

db2Uint32

iComprOptionsSize;

db2Restore

-

Restore

database

464

Common

Criteria

Certification:

Administration

and

User

Documentation

char

*piLogTarget;

}

db2RestoreStruct;

typedef

SQL_STRUCTURE

db2TablespaceStruct

{

char

**tablespaces;

db2Uint32

numTablespaces;

}

db2TablespaceStruct;

typedef

SQL_STRUCTURE

db2MediaListStruct

{

char

**locations;

db2Uint32

numLocations;

char

locationType;

}

db2MediaListStruct;

/*

...

*/

Generic

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2gRestore

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2gRestore

(

db2Uint32

versionNumber,

void

*pDB2gRestoreStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2gRestoreStruct

{

char

*piSourceDBAlias;

db2Uint32

iSourceDBAliasLen;

char

*piTargetDBAlias;

db2Uint32

iTargetDBAliasLen;

char

*poApplicationId;

db2Uint32

iApplicationIdLen;

char

*piTimestamp;

db2Uint32

iTimestampLen;

char

*piTargetDBPath;

db2Uint32

iTargetDBPathLen;

char

*piReportFile;

db2Uint32

iReportFileLen;

struct

db2gTablespaceStruct

*piTablespaceList;

struct

db2gMediaListStruct

*piMediaList;

char

*piUsername;

db2Uint32

iUsernameLen;

char

*piPassword;

db2Uint32

iPasswordLen;

char

*piNewLogPath;

db2Uint32

iNewLogPathLen;

void

*piVendorOptions;

db2Uint32

iVendorOptionsSize;

db2Uint32

iParallelism;

db2Uint32

iBufferSize;

db2Uint32

iNumBuffers;

db2Uint32

iCallerAction;

db2Uint32

iOptions;

char

*piComprLibrary;

db2Uint32

iComprLibraryLen;

void

*piComprOptions;

db2Uint32

iComprOptionsSize;

char

*piLogTarget;

db2Uint32

iLogTargetLen;

}

db2gRestoreStruct;

typedef

SQL_STRUCTURE

db2gTablespaceStruct

{

db2Restore

-

Restore

database

Chapter

14.

DB2

UDB

APIs

for

Administrators

465

struct

db2Char

*tablespaces;

db2Uint32

numTablespaces;

}

db2gTablespaceStruct;

typedef

SQL_STRUCTURE

db2gMediaListStruct

{

struct

db2Char

*locations;

db2Uint32

numLocations;

char

locationType;

}

db2gMediaListStruct;

typedef

SQL_STRUCTURE

db2Char

{

char

*pioData;

db2Uint32

iLength;

db2Uint32

oLength;

}

db2Char;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

pDB2RestoreStruct.

pDB2RestoreStruct

Input.

A

pointer

to

the

db2RestoreStruct

structure

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

piSourceDBAlias

Input.

A

string

containing

the

database

alias

of

the

source

database

backup

image.

iSourceDBAliasLen

Input.

A

4-byte

unsigned

integer

representing

the

length

in

bytes

of

the

source

database

alias.

piTargetDBAlias

Input.

A

string

containing

the

target

database

alias.

If

this

parameter

is

null,

the

piSourceDBAlias

will

be

used.

iTargetDBAliasLen

Input.

A

4-byte

unsigned

integer

representing

the

length

in

bytes

of

the

target

database

alias.

oApplicationId

Output.

The

API

will

return

a

string

identifying

the

agent

servicing

the

application.

Can

be

used

to

obtain

information

about

the

progress

of

the

backup

operation

using

the

database

monitor.

poApplicationId

Output.

Supply

a

buffer

of

length

SQLU_APPLID_LEN+1

(defined

in

sqlutil).

The

API

will

return

a

string

identifying

the

agent

servicing

the

application.

Can

be

used

to

obtain

information

about

the

progress

of

the

backup

operation

using

the

database

monitor.

iApplicationIdLen

Input.

A

4-byte

unsigned

integer

representing

the

length

in

bytes

of

the

poApplicationId

buffer.

Should

be

equal

to

SQLU_APPLID_LEN+1

(defined

in

sqlutil).

db2Restore

-

Restore

database

466

Common

Criteria

Certification:

Administration

and

User

Documentation

piTimestamp

Input.

A

string

representing

the

timestamp

of

the

backup

image.

This

field

is

optional

if

there

is

only

one

backup

image

in

the

source

specified.

iTimestampLen

Input.

A

4-byte

unsigned

integer

representing

the

length

in

bytes

of

the

piTimestamp

buffer.

piTargetDBPath

Input.

A

string

containing

the

relative

or

fully

qualified

name

of

the

target

database

directory

on

the

server.

Used

if

a

new

database

is

to

be

created

for

the

restored

backup;

otherwise

not

used.

piReportFile

Input.

The

file

name,

if

specified,

must

be

fully

qualified.

The

datalinks

files

that

become

unlinked

during

restore

(as

a

result

of

a

fast

reconcile)

will

be

reported.

iReportFileLen

Input.

A

4-byte

unsigned

integer

representing

the

length

in

bytes

of

the

piReportFile

buffer.

piTablespaceList

Input.

List

of

table

spaces

to

be

restored.

Used

when

restoring

a

subset

of

table

spaces

from

a

database

or

table

space

backup

image.

See

the

DB2TablespaceStruct

structure.

The

following

restrictions

apply:

v

The

database

must

be

recoverable;

that

is,

log

retain

or

user

exits

must

be

enabled.

v

The

database

being

restored

to

must

be

the

same

database

that

was

used

to

create

the

backup

image.

That

is,

table

spaces

can

not

be

added

to

a

database

through

the

table

space

restore

function.

v

The

rollforward

utility

will

ensure

that

table

spaces

restored

in

a

partitioned

database

environment

are

synchronized

with

any

other

database

partition

containing

the

same

table

spaces.

If

a

table

space

restore

operation

is

requested

and

the

piTablespaceList

is

NULL,

the

restore

utility

will

attempt

to

restore

all

of

the

table

spaces

in

the

backup

image.

When

restoring

a

table

space

that

has

been

renamed

since

it

was

backed

up,

the

new

table

space

name

must

be

used

in

the

restore

command.

If

the

old

table

space

name

is

used,

it

will

not

be

found.

piMediaList

Input.

Source

media

for

the

backup

image.

The

information

provided

depends

on

the

value

of

the

locationType

field.

The

valid

values

for

locationType

(defined

in

sqlutil)

are:

SQLU_LOCAL_MEDIA

Local

devices

(a

combination

of

tapes,

disks,

or

diskettes).

SQLU_XBSA_MEDIA

XBSA

interface.

Backup

Services

APIs

(XBSA)

are

an

open

application

programming

interface

for

applications

or

facilities

needing

data

storage

management

for

backup

or

archiving

purposes.

SQLU_TSM_MEDIA

TSM.

If

the

locations

pointer

is

set

to

NULL,

the

TSM

shared

db2Restore

-

Restore

database

Chapter

14.

DB2

UDB

APIs

for

Administrators

467

library

provided

with

DB2

is

used.

If

a

different

version

of

the

TSM

shared

library

is

desired,

use

SQLU_OTHER_MEDIA

and

provide

the

shared

library

name.

SQLU_OTHER_MEDIA

Vendor

product.

Provide

the

shared

library

name

in

the

locations

field.

SQLU_USER_EXIT

User

exit.

No

additional

input

is

required

(only

available

when

server

is

on

OS/2).

piUsername

Input.

A

string

containing

the

user

name

to

be

used

when

attempting

a

connection.

Can

be

NULL.

iUsernameLen

Input.

A

4-byte

unsigned

integer

representing

the

length

in

bytes

of

piUsername.

Set

to

zero

if

no

user

name

is

provided.

piPassword

Input.

A

string

containing

the

password

to

be

used

with

the

user

name.

Can

be

NULL.

iPasswordLen

Input.

A

4-byte

unsigned

integer

representing

the

length

in

bytes

of

piPassword.

Set

to

zero

if

no

password

is

provided.

piNewLogPath

Input.

A

string

representing

the

path

to

be

used

for

logging

after

the

restore

has

completed.

If

this

field

is

null

the

default

log

path

will

be

used.

iNewLogPathLen

Input.

A

4-byte

unsigned

integer

representing

the

length

in

bytes

of

piNewLogPath.

piVendorOptions

Input.

Used

to

pass

information

from

the

application

to

the

vendor

functions.

This

data

structure

must

be

flat;

that

is,

no

level

of

indirection

is

supported.

Note

that

byte-reversal

is

not

done,

and

the

code

page

is

not

checked

for

this

data.

iVendorOptionsSize

Input.

The

length

of

the

piVendorOptions,

which

cannot

exceed

65535

bytes.

iParallelism

Input.

Degree

of

parallelism

(number

of

buffer

manipulators).

Minimum

is

1.

Maximum

is

1024.

iBufferSize

Input.

Backup

buffer

size

in

4

KB

allocation

units

(pages).

Minimum

is

8

units.

The

size

entered

for

a

restore

must

be

equal

to

or

an

integer

multiple

of

the

buffer

size

used

to

produce

the

backup

image.

iNumBuffers

Input.

Specifies

number

of

restore

buffers

to

be

used.

iCallerAction

Input.

Specifies

action

to

be

taken.

Valid

values

(defined

in

db2ApiDf)

are:

DB2RESTORE_RESTORE

Start

the

restore

operation.

db2Restore

-

Restore

database

468

Common

Criteria

Certification:

Administration

and

User

Documentation

DB2RESTORE_NOINTERRUPT

Start

the

restore.

Specifies

that

the

restore

will

run

unattended,

and

that

scenarios

which

normally

require

user

intervention

will

either

be

attempted

without

first

returning

to

the

caller,

or

will

generate

an

error.

Use

this

caller

action,

for

example,

if

it

is

known

that

all

of

the

media

required

for

the

restore

have

been

mounted,

and

utility

prompts

are

not

desired.

DB2RESTORE_CONTINUE

Continue

the

restore

after

the

user

has

performed

some

action

requested

by

the

utility

(mount

a

new

tape,

for

example).

DB2RESTORE_TERMINATE

Terminate

the

restore

after

the

user

has

failed

to

perform

some

action

requested

by

the

utility.

DB2RESTORE_DEVICE_TERMINATE

Remove

a

particular

device

from

the

list

of

devices

used

by

restore.

When

a

particular

device

has

exhausted

its

input,

restore

will

return

a

warning

to

the

caller.

Call

restore

again

with

this

caller

action

to

remove

the

device

which

generated

the

warning

from

the

list

of

devices

being

used.

DB2RESTORE_PARM_CHK

Used

to

validate

parameters

without

performing

a

restore.

This

option

does

not

terminate

the

database

connection

after

the

call

returns.

After

successful

return

of

this

call,

it

is

expected

that

the

user

will

issue

a

call

with

DB2RESTORE_CONTINUE

to

proceed

with

the

action.

DB2RESTORE_PARM_CHK_ONLY

Used

to

validate

parameters

without

performing

a

restore.

Before

this

call

returns,

the

database

connection

established

by

this

call

is

terminated,

and

no

subsequent

call

is

required.

DB2RESTORE_TERMINATE_INCRE

Terminate

an

incremental

restore

operation

before

completion.

DB2RESTORE_RESTORE_STORDEF

Initial

call.

Table

space

container

redefinition

requested.

DB2RESTORE_STORDEF_NOINTERRUPT

Initial

call.

The

restore

will

run

uninterrupted.

Table

space

container

redefinition

requested.

iOptions

Input.

A

bitmap

of

restore

properties.

The

options

are

to

be

combined

using

the

bitwise

OR

operator

to

produce

a

value

for

iOptions.

Valid

values

(defined

in

db2ApiDf)

are:

DB2RESTORE_OFFLINE

Perform

an

offline

restore

operation.

DB2RESTORE_ONLINE

Perform

an

online

restore

operation.

DB2RESTORE_DB

Restore

all

table

spaces

in

the

database.

This

must

be

run

offline

DB2RESTORE_TABLESPACE

Restore

only

the

table

spaces

listed

in

the

piTablespaceList

parameter

from

the

backup

image.

This

can

be

online

or

offline.

db2Restore

-

Restore

database

Chapter

14.

DB2

UDB

APIs

for

Administrators

469

DB2RESTORE_HISTORY

Restore

only

the

history

file.

DB2RESTORE_COMPR_LIB

Indicates

that

the

compression

library

is

to

be

restored.

This

option

cannot

be

used

simultaneously

with

any

other

restore

type.

If

the

object

exists

in

the

backup

image,

it

will

be

restored

into

the

database

directory.

If

the

object

does

not

exist

in

the

backup

image,

the

restore

operation

will

fail.

DB2RESTORE_LOGS

Specify

to

restore

only

the

set

of

log

files

contained

in

the

backup

image.

If

the

backup

image

did

not

include

log

files,

the

restore

operation

will

fail.

If

this

option

is

specified,

the

piLogTarget

parameter

must

also

be

supplied.

DB2RESTORE_INCREMENTAL

Perform

a

manual

cumulative

restore

operation.

DB2RESTORE_AUTOMATIC

Perform

an

automatic

cumulative

(incremental)

restore

operation.

Must

be

specified

with

DB2RESTORE_INCREMENTAL.

DB2RESTORE_DATALINK

Perform

reconciliation

operations.

Tables

with

a

defined

DATALINK

column

must

have

RECOVERY

YES

option

specified.

DB2RESTORE_NODATALINK

Do

not

perform

reconciliation

operations.

Tables

with

DATALINK

columns

are

placed

into

DataLink_Roconcile_pending

(DRP)

state.

Tables

with

a

defined

DATALINK

column

must

have

the

RECOVERY

YES

option

specified.

DB2RESTORE_ROLLFWD

Place

the

database

in

rollforward

pending

state

after

it

has

been

successfully

restored.

DB2RESTORE_NOROLLFWD

Do

not

place

the

database

in

rollforward

pending

state

after

it

has

been

successfully

restored.

This

cannot

be

specified

for

backups

taken

online

or

for

table

space

level

restores.

If,

following

a

successful

restore,

the

database

is

in

roll-forward

pending

state,

db2Rollforward

-

Rollforward

Database

must

be

executed

before

the

database

can

be

used.

piComprLibrary

Input.

Indicates

the

name

of

the

external

library

to

be

used

to

perform

decompression

of

the

backup

image

if

the

image

is

compressed.

The

name

must

be

a

fully-qualified

path

referring

to

a

file

on

the

server.

If

the

value

is

a

null

pointer

or

a

pointer

to

an

empty

string,

DB2

will

attempt

to

use

the

library

stored

in

the

image.

If

the

backup

was

not

compressed,

the

value

of

this

parameter

will

be

ignored.

If

the

specified

library

is

not

found,

the

restore

will

fail.

piComprLibraryLen

Input.

A

four-byte

unsigned

integer

representing

the

length

in

bytes

of

the

name

of

the

library

specified

in

piComprLibrary.

Set

to

zero

if

no

library

name

is

given.

piComprOptions

Input.

Describes

a

block

of

binary

data

that

will

be

passed

to

the

db2Restore

-

Restore

database

470

Common

Criteria

Certification:

Administration

and

User

Documentation

initialization

routine

in

the

decompression

library.

DB2

will

pass

this

string

directly

from

the

client

to

the

server,

so

any

issues

of

byte-reversal

or

code-page

conversion

will

have

to

be

handled

by

the

compression

library.

If

the

first

character

of

the

data

block

is

’@’,

the

remainder

of

the

data

will

be

interpreted

by

DB2

as

the

name

of

a

file

residing

on

the

server.

DB2

will

then

replace

the

contents

of

piComprOptions

and

iComprOptionsSize

with

the

contents

and

size

of

this

file

respectively

and

will

pass

these

new

values

to

the

initialization

routine

instead.

iComprOptionsSize

Input.

A

four-byte

unsigned

integer

representing

the

size

of

the

block

of

data

passed

as

piComprOptions.

iComprOptionsSize

shall

be

zero

if

and

only

if

piComprOptions

is

a

null

pointer.

piLogTarget

Input.

The

absolute

path

of

an

existing

directory

on

the

database

server

to

be

used

as

the

target

directory

for

extracting

log

files

from

a

backup

image.

If

this

parameter

is

specified,

any

log

files

included

in

the

backup

image

will

be

extracted

into

the

target

directory.

If

this

parameter

is

not

specified,

log

files

included

in

the

backup

image

will

not

be

extracted.

To

extract

only

the

log

files

from

the

backup

image,

use

the

DB2RESTORE_LOGS

parameter.

iLogTargetLen

Input.

A

four-byte

unsigned

integer

representing

the

length,

in

bytes,

of

the

path

in

piLogTarget.

tablespaces

A

pointer

to

the

list

of

table

spaces

to

be

backed

up.

For

C,

the

list

is

null-terminated

strings.

In

the

generic

case,

it

is

a

list

of

db2Char

structures.

numTablespaces

Number

of

entries

in

the

tablespaces

parameter.

locations

A

pointer

to

the

list

of

media

locations.

For

C,

the

list

is

null-terminated

strings.

In

the

generic

case,

it

is

a

list

of

db2Char

structures.

numLocations

The

number

of

entries

in

the

locations

parameter.

locationType

A

character

indicated

the

media

type.

Valid

values

(defined

in

sqlutil)

are:

SQLU_LOCAL_MEDIA

Local

devices(tapes,

disks,

diskettes,

or

named

pipes).

SQLU_XBSA_MEDIA

XBSA

interface.

SQLU_TSM_MEDIA

Tivoli

Storage

Manager.

SQLU_OTHER_MEDIA

Vendor

library.

SQLU_USER_EXIT

User

exit

(only

available

when

the

server

is

on

OS/2).

pioData

A

pointer

to

the

character

data

buffer.

db2Restore

-

Restore

database

Chapter

14.

DB2

UDB

APIs

for

Administrators

471

iLength

Input.

The

size

of

the

pioData

buffer

oLength

Output.

Reserved

for

future

use.

Usage

notes:

For

offline

restore,

this

utility

connects

to

the

database

in

exclusive

mode.

The

utility

fails

if

any

application,

including

the

calling

application,

is

already

connected

to

the

database

that

is

being

restored.

In

addition,

the

request

will

fail

if

the

restore

utility

is

being

used

to

perform

the

restore,

and

any

application,

including

the

calling

application,

is

already

connected

to

any

database

on

the

same

workstation.

If

the

connect

is

successful,

the

API

locks

out

other

applications

until

the

restore

is

completed.

The

current

database

configuration

file

will

not

be

replaced

by

the

backup

copy

unless

it

is

unusable.

If

the

file

is

replaced,

a

warning

message

is

returned.

The

database

or

table

space

must

have

been

backed

up

using

db2Backup

-

Backup

Database.

If

the

caller

action

is

DB2RESTORE_NOINTERRUPT,

the

restore

continues

without

prompting

the

application.

If

the

caller

action

is

DB2RESTORE_RESTORE,

and

the

utility

is

restoring

to

an

existing

database,

the

utility

returns

control

to

the

application

with

a

message

requesting

some

user

interaction.

After

handling

the

user

interaction,

the

application

calls

RESTORE

DATABASE

again,

with

the

caller

action

set

to

indicate

whether

processing

is

to

continue

(DB2RESTORE_CONTINUE)

or

terminate

(DB2RESTORE_TERMINATE)

on

the

subsequent

call.

The

utility

finishes

processing,

and

returns

an

SQLCODE

in

the

sqlca.

To

close

a

device

when

finished,

set

the

caller

action

to

DB2RESTORE_DEVICE_TERMINATE.

If,

for

example,

a

user

is

restoring

from

3

tape

volumes

using

2

tape

devices,

and

one

of

the

tapes

has

been

restored,

the

application

obtains

control

from

the

API

with

an

SQLCODE

indicating

end

of

tape.

The

application

can

prompt

the

user

to

mount

another

tape,

and

if

the

user

indicates

″no

more″,

return

to

the

API

with

caller

action

SQLUD_DEVICE_TERMINATE

to

signal

end

of

the

media

device.

The

device

driver

will

be

terminated,

but

the

rest

of

the

devices

involved

in

the

restore

will

continue

to

have

their

input

processed

until

all

segments

of

the

restore

set

have

been

restored

(the

number

of

segments

in

the

restore

set

is

placed

on

the

last

media

device

during

the

backup

process).

This

caller

action

can

be

used

with

devices

other

than

tape

(vendor

supported

devices).

To

perform

a

parameter

check

before

returning

to

the

application,

set

caller

action

to

DB2RESTORE_PARM_CHK.

Set

caller

action

to

DB2RESTORE_RESTORE_STORDEF

when

performing

a

redirected

restore;

used

in

conjunction

with

sqlbstsc

-

Set

Tablespace

Containers.

If

a

system

failure

occurs

during

a

critical

stage

of

restoring

a

database,

the

user

will

not

be

able

to

successfully

connect

to

the

database

until

a

successful

restore

is

performed.

This

condition

will

be

detected

when

the

connection

is

attempted,

and

an

error

message

is

returned.

If

the

backed-up

database

is

not

configured

for

roll-forward

recovery,

and

there

is

a

usable

current

configuration

file

with

either

of

db2Restore

-

Restore

database

472

Common

Criteria

Certification:

Administration

and

User

Documentation

these

parameters

enabled,

following

the

restore,

the

user

will

be

required

to

either

take

a

new

backup

of

the

database,

or

disable

the

log

retain

and

user

exit

parameters

before

connecting

to

the

database.

Although

the

restored

database

will

not

be

dropped

(unless

restoring

to

a

nonexistent

database),

if

the

restore

fails,

it

will

not

be

usable.

If

the

restore

type

specifies

that

the

history

file

on

the

backup

is

to

be

restored,

it

will

be

restored

over

the

existing

history

file

for

the

database,

effectively

erasing

any

changes

made

to

the

history

file

after

the

backup

that

is

being

restored.

If

this

is

undesirable,

restore

the

history

file

to

a

new

or

test

database

so

that

its

contents

can

be

viewed

without

destroying

any

updates

that

have

taken

place.

If,

at

the

time

of

the

backup

operation,

the

database

was

enabled

for

roll

forward

recovery,

the

database

can

be

brought

to

the

state

it

was

in

prior

to

the

occurrence

of

the

damage

or

corruption

by

issuing

db2Rollforward

after

successful

execution

of

db2Restore.

If

the

database

is

recoverable,

it

will

default

to

roll

forward

pending

state

after

the

completion

of

the

restore.

If

the

database

backup

image

is

taken

offline,

and

the

caller

does

not

want

to

roll

forward

the

database

after

the

restore,

the

DB2RESTORE_NOROLLFWD

option

can

be

used

for

the

restore.

This

results

in

the

database

being

useable

immediately

after

the

restore.

If

the

backup

image

is

taken

online,

the

caller

must

roll

forward

through

the

corresponding

log

records

at

the

completion

of

the

restore.

To

restore

log

files

from

a

backup

image

which

contains

them,

the

LOGTARGET

option

must

be

specified,

providing

a

fully

qualified

and

valid

path

which

exists

on

the

DB2

server.

If

those

conditions

are

satisfied,

the

restore

utility

will

write

the

log

files

from

the

image

to

the

target

path.

If

a

LOGTARGET

is

specified

during

a

restore

of

a

backup

image

which

does

not

include

logs,

the

restore

will

return

an

error

before

attempting

to

restore

any

table

space

data.

A

restore

will

also

fail

with

an

error

if

an

invalid,

or

read-only,

LOGTARGET

path

is

specified.

If

any

log

files

exist

in

the

LOGTARGET

path

at

the

time

the

Restore

command

is

issued,

a

warning

prompt

will

be

returned

to

user.

This

warning

will

not

be

returned

if

WITHOUT

PROMPTING

is

specified.

During

a

restore

where

a

LOGTARGET

is

specified,

if

any

log

file

can

not

be

extracted,

for

any

reason,

the

restore

will

fail

and

return

an

error.

If

any

of

the

log

files

being

extracted

from

the

backup

image

have

the

same

name

as

an

existing

file

already

in

the

LOGTARGET

path,

the

restore

operation

will

fail

and

an

error

will

be

returned.

The

restore

utility

will

not

overwrite

existing

log

files

in

the

LOGTARGET

directory.

It

is

also

possible

to

restore

only

the

saved

log

set

from

a

backup

image.

To

indicate

that

only

the

log

files

are

to

be

restored,

specify

the

LOGS

option

in

addition

to

the

LOGTARGET

path.

Specifying

the

LOGS

option

without

a

LOGTARGET

path

will

result

in

an

error.

If

any

problem

occurs

while

restoring

log

files

in

this

mode

of

operation,

the

restore

will

terminate

immediately

and

an

error

will

be

returned.

During

an

automatic

incremental

restore,

only

the

logs

included

in

the

target

image

of

the

restore

operation

will

be

retrived

from

the

backup

image.

Any

logs

included

in

intermediate

images

referenced

during

the

incremental

restore

process

db2Restore

-

Restore

database

Chapter

14.

DB2

UDB

APIs

for

Administrators

473

will

not

be

extracted

from

those

intermediate

backup

images.

During

a

manual

incremental

restore,

the

LOGTARGET

path

should

only

be

specified

with

the

final

restore

command

to

be

issued.

If

a

backup

is

compressed,

DB2

will

detect

this

and

automatically

decompress

the

data

before

restoring

it.

If

a

library

is

specified

on

the

db2Restore

API,

it

will

be

used

for

decompressing

the

data.

Otherwise,

if

a

library

that

is

stored

in

the

backup

image

will

be

used.

Otherwise,

the

data

cannot

be

decompressed,

so

the

restore

will

fail.

If

the

compression

library

is

to

be

restored

from

a

backup

image

(either

explicitly

by

specifying

the

DB2RESTORE_COMPR_LIB

restore

type

or

implicitly

by

performing

a

normal

restore

of

a

compressed

backup),

the

restore

operation

must

be

done

on

the

same

platform

and

operating

system

that

the

backup

was

taken

on.

If

the

platform

the

backup

was

taken

on

is

not

the

same

as

the

platform

that

the

restore

is

being

done

on,

the

restore

operation

will

fail,

even

if

DB2

normally

supports

cross-platform

restores

involving

the

two

systems.

Related

reference:

v

“sqlemgdb

-

Migrate

Database”

on

page

508

v

“db2Rollforward

-

Rollforward

Database”

on

page

474

v

“SQLCA”

in

the

Administrative

API

Reference

v

“db2Backup

-

Backup

database”

on

page

387

v

“db2CfgGet

-

Get

Configuration

Parameters”

on

page

394

Related

samples:

v

“dbrecov.sqc

--

How

to

recover

a

database

(C)”

v

“dbrecov.sqC

--

How

to

recover

a

database

(C++)”

db2Rollforward

-

Rollforward

Database

Recovers

a

database

by

applying

transactions

recorded

in

the

database

log

files.

Called

after

a

database

or

a

table

space

backup

has

been

restored,

or

if

any

table

spaces

have

been

taken

offline

by

the

database

due

to

a

media

error.

The

database

must

be

recoverable

(that

is,

the

logarchmeth1

database

configuration

parameter

must

be

set

to

on)

before

the

database

can

be

recovered

with

rollforward

recovery.

Scope:

In

a

partitioned

database

environment,

this

API

can

only

be

called

from

the

catalog

partition.

A

database

or

table

space

rollforward

call

specifying

a

point-in-time

affects

all

database

partition

servers

that

are

listed

in

the

db2nodes.cfg

file.

A

database

or

table

space

rollforward

call

specifying

end

of

logs

affects

the

database

partition

servers

that

are

specified.

If

no

database

partition

servers

are

specified,

it

affects

all

database

partition

servers

that

are

listed

in

the

db2nodes.cfg

file;

if

no

roll

forward

is

needed

on

a

particular

database

partition

server,

that

database

partition

server

is

ignored.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

db2Restore

-

Restore

database

474

Common

Criteria

Certification:

Administration

and

User

Documentation

v

sysmaint

Required

connection:

None.

This

API

establishes

a

database

connection.

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2Rollforward

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2Rollforward

(

db2Uint32

versionNumber,

void

*pDB2RollforwardStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2RollforwardStruct

{

struct

db2RfwdInputStruct

*piRfwdInput;

struct

db2RfwdOutputStruct

*poRfwdOutput;

}

db2RollforwardStruct;

typedef

SQL_STRUCTURE

db2RfwdInputStruct

{

sqluint32

iVersion;

char

*piDbAlias;

db2Uint32

iCallerAction;

char

*piStopTime;

char

*piUserName;

char

*piPassword;

char

*piOverflowLogPath;

db2Uint32

iNumChngLgOvrflw;

struct

sqlurf_newlogpath

*piChngLogOvrflw;

db2Uint32

iConnectMode;

struct

sqlu_tablespace_bkrst_list

*piTablespaceList;

db2int32

iAllNodeFlag;

db2int32

iNumNodes;

SQL_PDB_NODE_TYPE

*piNodeList;

db2int32

iNumNodeInfo;

char

*piDroppedTblID;

char

*piExportDir;

db2Uint32

iRollforwardFlags;

}

db2RfwdInputStruct;

typedef

SQL_STRUCTURE

db2RfwdOutputStruct

{

char

*poApplicationId;

sqlint32

*poNumReplies;

struct

sqlurf_info

*poNodeInfo;

}

db2RfwdOutputStruct;

typedef

SQL_STRUCTURE

sqlurf_newlogpath

{

SQL_PDB_NODE_TYPE

nodenum;

unsigned

short

pathlen;

char

logpath[SQL_LOGPATH_SZ+SQL_LOGFILE_NAME_SZ+1];

}

sqlurf_newlogpath;

typedef

SQL_STRUCTURE

sqlu_tablespace_bkrst_list

{

long

num_entry;

db2Rollforward

-

Rollforward

Database

Chapter

14.

DB2

UDB

APIs

for

Administrators

475

struct

sqlu_tablespace_entry

*tablespace;

}

sqlu_tablespace_bkrst_list;

typedef

SQL_STRUCTURE

sqlu_tablespace_entry

{

sqluint32

reserve_len;

char

tablespace_entry[SQLU_MAX_TBS_NAME_LEN+1];

char

filler[1];

}

sqlu_tablespace_entry;

typedef

SQL_STRUCTURE

sqlurf_info

{

SQL_PDB_NODE_TYPE

nodenum;

sqlint32

state;

unsigned

char

nextarclog[SQLUM_ARCHIVE_FILE_LEN+1];

unsigned

char

firstarcdel[SQLUM_ARCHIVE_FILE_LEN+1];

unsigned

char

lastarcdel[SQLUM_ARCHIVE_FILE_LEN+1];

unsigned

char

lastcommit[SQLUM_TIMESTAMP_LEN+1];

}

sqlurf_info;

/*

...

*/

Generic

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2Rollforward

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2gRollforward

(

db2Uint32

versionNumber,

void

*pDB2gRollforwardStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2gRollforwardStruct

{

struct

db2gRfwdInputStruct

*piRfwdInput;

struct

db2RfwdOutputStruct

*poRfwdOutput;

}

db2gRollforwardStruct;

SQL_STRUCTURE

db2gRfwdInputStruct

{

db2Uint32

iDbAliasLen;

db2Uint32

iStopTimeLen;

db2Uint32

iUserNameLen;

db2Uint32

iPasswordLen;

db2Uint32

iOvrflwLogPathLen;

db2Uint32

iDroppedTblIDLen;

db2Uint32

iExportDirLen;

sqluint32

iVersion;

char

*piDbAlias;

db2Uint32

iCallerAction;

char

*piStopTime;

char

*piUserName;

char

*piPassword;

char

*piOverflowLogPath;

db2Uint32

iNumChngLgOvrflw;

struct

sqlurf_newlogpath

*piChngLogOvrflw;

db2Uint32

iConnectMode;

struct

sqlu_tablespace_bkrst_list

*piTablespaceList;

db2int32

iAllNodeFlag;

db2int32

iNumNodes;

SQL_PDB_NODE_TYPE

*piNodeList;

db2int32

iNumNodeInfo;

char

*piDroppedTblID;

char

*piExportDir;

db2Uint32

iRollforwardFlags;

}

db2gRfwdInputStruct;

db2Rollforward

-

Rollforward

Database

476

Common

Criteria

Certification:

Administration

and

User

Documentation

typedef

SQL_STRUCTURE

db2RfwdOutputStruct

{

char

*poApplicationId;

sqlint32

*poNumReplies;

struct

sqlurf_info

*poNodeInfo;

}

db2RfwdOutputStruct;

typedef

SQL_STRUCTURE

sqlurf_newlogpath

{

SQL_PDB_NODE_TYPE

nodenum;

unsigned

short

pathlen;

char

logpath[SQL_LOGPATH_SZ+SQL_LOGFILE_NAME_SZ+1];

}

sqlurf_newlogpath;

typedef

SQL_STRUCTURE

sqlu_tablespace_bkrst_list

{

long

num_entry;

struct

sqlu_tablespace_entry

*tablespace;

}

sqlu_tablespace_bkrst_list;

typedef

SQL_STRUCTURE

sqlu_tablespace_entry

{

sqluint32

reserve_len;

char

tablespace_entry[SQLU_MAX_TBS_NAME_LEN+1];

char

filler[1];

}

sqlu_tablespace_entry;

typedef

SQL_STRUCTURE

sqlurf_info

{

SQL_PDB_NODE_TYPE

nodenum;

sqlint32

state;

unsigned

char

nextarclog[SQLUM_ARCHIVE_FILE_LEN+1];

unsigned

char

firstarcdel[SQLUM_ARCHIVE_FILE_LEN+1];

unsigned

char

lastarcdel[SQLUM_ARCHIVE_FILE_LEN+1];

unsigned

char

lastcommit[SQLUM_TIMESTAMP_LEN+1];

}

sqlurf_info;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter.

pDB2RollforwardStruct

Input.

A

pointer

to

the

db2RollforwardStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

piRfwdInput

Input.

A

pointer

to

the

db2RfwdInputStruct

structure.

poRfwdOutput

Output.

A

pointer

to

the

db2RfwdOutputStruct

structure.

iDbAliasLen

Input.

Specifies

the

length

in

bytes

of

the

database

alias.

iStopTimeLen

Input.

Specifies

the

length

in

bytes

of

the

stop

time

parameter.

Set

to

zero

if

no

stop

time

is

provided.

iUserNameLen

Input.

Specifies

the

length

in

bytes

of

the

user

name.

Set

to

zero

if

no

user

name

is

provided.

db2Rollforward

-

Rollforward

Database

Chapter

14.

DB2

UDB

APIs

for

Administrators

477

iPasswordLen

Input.

Specifies

the

length

in

bytes

of

the

password.

Set

to

zero

if

no

password

is

provided.

iOverflowLogPathLen

Input.

Specifies

the

length

in

bytes

of

the

overflow

log

path.

Set

to

zero

if

no

overflow

log

path

is

provided.

iVersion

Input.

The

version

ID

of

the

rollforward

parameters.

It

is

defined

as

SQLUM_RFWD_VERSION.

piDbAlias

Input.

A

string

containing

the

database

alias.

This

is

the

alias

that

is

cataloged

in

the

system

database

directory.

iCallerAction

Input.

Specifies

action

to

be

taken.

Valid

values

(defined

in

db2ApiDf.h)

are:

DB2ROLLFORWARD_ROLLFWD

Rollforward

to

the

point

in

time

specified

by

piStopTime.

For

database

rollforward,

the

database

is

left

in

rollforward-pending

state.

For

table

space

rollforward

to

a

point

in

time,

the

table

spaces

are

left

in

rollforward-in-progress

state.

DB2ROLLFORWARD_STOP

End

roll-forward

recovery.

No

new

log

records

are

processed

and

uncommitted

transactions

are

backed

out.

The

rollforward-pending

state

of

the

database

or

table

spaces

is

turned

off.

Synonym

is

DB2ROLLFORWARD_RFWD_COMPLETE.

DB2ROLLFORWARD_RFWD_STOP

Rollforward

to

the

point

in

time

specified

by

piStopTime,

and

end

roll-forward

recovery.

The

rollforward-pending

state

of

the

database

or

table

spaces

is

turned

off.

Synonym

is

DB2ROLLFORWARD_RFWD_COMPLETE.

DB2ROLLFORWARD_QUERY

Query

values

for

nextarclog,

firstarcdel,

lastarcdel,

and

lastcommit.

Return

database

status

and

a

node

number.

DB2ROLLFORWARD_PARM_CHECK

Validate

parameters

without

performing

the

roll

forward.

DB2ROLLFORWARD_CANCEL

Cancel

the

rollforward

operation

that

is

currently

running.

The

database

or

table

space

are

put

in

recovery

pending

state.

Note:

This

option

cannot

be

used

while

the

rollforward

is

actually

running.

It

can

be

used

if

the

rollforward

is

paused

(that

is,

waiting

for

a

STOP),

or

if

a

system

failure

occurred

during

the

rollforward.

It

should

be

used

with

caution.

Rolling

databases

forward

may

require

a

load

recovery

using

tape

devices.

The

rollforward

API

will

return

with

a

warning

message

if

user

intervention

on

a

device

is

required.

The

API

can

be

called

again

with

one

of

the

following

three

caller

actions:

DB2ROLLFORWARD_LOADREC_CONT

Continue

using

the

device

that

generated

the

warning

message

(for

example,

when

a

new

tape

has

been

mounted).

db2Rollforward

-

Rollforward

Database

478

Common

Criteria

Certification:

Administration

and

User

Documentation

DB2ROLLFORWARD_DEVICE_TERM

Stop

using

the

device

that

generated

the

warning

message

(for

example,

when

there

are

no

more

tapes).

DB2ROLLFORWARD_LOAD_REC_TERM

Terminate

all

devices

being

used

by

load

recovery.

piStopTime

Input.

A

character

string

containing

a

time

stamp

in

ISO

format.

Database

recovery

will

stop

when

this

time

stamp

is

exceeded.

Specify

SQLUM_INFINITY_TIMESTAMP

to

roll

forward

as

far

as

possible.

May

be

NULL

for

DB2ROLLFORWARD_QUERY,

DB2ROLLFORWARD_PARM_CHECK,

and

any

of

the

load

recovery

(DB2ROLLFORWARD_LOADREC_xxx)

caller

actions.

piUserName

Input.

A

string

containing

the

user

name

of

the

application.

May

be

NULL.

piPassword

Input.

A

string

containing

the

password

of

the

supplied

user

name

(if

any).

May

be

NULL.

piOverflowLogPath

Input.

This

parameter

is

used

to

specify

an

alternate

log

path

to

be

used.

In

addition

to

the

active

log

files,

archived

log

files

need

to

be

moved

(by

the

user)

into

the

logpath

before

they

can

be

used

by

this

utility.

This

can

be

a

problem

if

the

user

does

not

have

sufficient

space

in

the

logpath.

The

overflow

log

path

is

provided

for

this

reason.

During

roll-forward

recovery,

the

required

log

files

are

searched,

first

in

the

logpath,

and

then

in

the

overflow

log

path.

The

log

files

needed

for

table

space

roll-forward

recovery

can

be

brought

into

either

the

logpath

or

the

overflow

log

path.

If

the

caller

does

not

specify

an

overflow

log

path,

the

default

value

is

the

logpath.

In

a

partitioned

database

environment,

the

overflow

log

path

must

be

a

valid,

fully

qualified

path;

the

default

path

is

the

default

overflow

log

path

for

each

node.

In

a

single-partition

database

environment,

the

overflow

log

path

can

be

relative

if

the

server

is

local.

iNumChngLgOvrflw

Input.

Partitioned

database

environments

only.

The

number

of

changed

overflow

log

paths.

These

new

log

paths

override

the

default

overflow

log

path

for

the

specified

database

partition

server

only.

piChngLogOvrflw

Input.

Partitioned

database

environments

only.

A

pointer

to

a

structure

containing

the

fully

qualified

names

of

changed

overflow

log

paths.

These

new

log

paths

override

the

default

overflow

log

path

for

the

specified

database

partition

server

only.

iConnectMode

Input.

Valid

values

(defined

in

db2ApiDf.h)

are:

DB2ROLLFORWARD_OFFLINE

Offline

roll

forward.

This

value

must

be

specified

for

database

roll-forward

recovery.

DB2ROLLFORWARD_ONLINE

Online

roll

forward.

piTablespaceList

Input.

A

pointer

to

a

structure

containing

the

names

of

the

table

spaces

to

be

rolled

forward

to

the

end-of-logs

or

to

a

specific

point

in

time.

If

not

specified,

the

table

spaces

needing

rollforward

will

be

selected.

db2Rollforward

-

Rollforward

Database

Chapter

14.

DB2

UDB

APIs

for

Administrators

479

iAllNodeFlag

Input.

Partitioned

database

environments

only.

Indicates

whether

the

rollforward

operation

is

to

be

applied

to

all

database

partition

servers

defined

in

db2nodes.cfg.

Valid

values

are:

DB2_NODE_LIST

Apply

to

database

partition

servers

in

a

list

that

is

passed

in

piNodeList.

DB2_ALL_NODES

Apply

to

all

database

partition

servers.

piNodeList

should

be

NULL.

This

is

the

default

value.

DB2_ALL_EXCEPT

Apply

to

all

database

partition

servers

except

those

in

a

list

that

is

passed

in

piNodeList.

DB2_CAT_NODE_ONLY

Apply

to

the

catalog

partition

only.

piNodeList

should

be

NULL.

iNumNodes

Input.

Specifies

the

number

of

database

partition

servers

in

the

piNodeList

array.

piNodeList

Input.

A

pointer

to

an

array

of

database

partition

server

numbers

on

which

to

perform

the

roll-forward

recovery.

iNumNodeInfo

Input.

Defines

the

size

of

the

output

parameter

poNodeInfo,

which

must

be

large

enough

to

hold

status

information

from

each

database

partition

that

is

being

rolled

forward.

In

a

single-partition

database

environment,

this

parameter

should

be

set

to

1.

The

value

of

this

parameter

should

be

same

as

the

number

of

database

partition

servers

for

which

this

API

is

being

called.

piDroppedTblID

Input.

A

string

containing

the

ID

of

the

dropped

table

whose

recovery

is

being

attempted.

piExportDir

Input.

The

directory

into

which

the

dropped

table

data

will

be

exported.

RollforwardFlags

Input.

Specifies

the

rollforward

flags.

Valid

values

(defined

in

db2ApiDf.h):

DB2ROLLFORWARD_EMPTY_FLAG

No

flags

specified.

DB2ROLLFORWARD_LOCAL_TIME

Allows

the

user

to

rollforward

to

a

point

in

time

that

is

the

user’s

local

time

rather

than

GMT

time.

This

makes

it

easier

for

users

to

rollforward

to

a

specific

point

in

time

on

their

local

machines,

and

eliminates

potential

user

errors

due

to

the

translation

of

local

to

GMT

time.

DB2ROLLFORWARD_NO_RETRIEVE

Controls

which

log

files

to

be

rolled

forward

on

the

standby

machine

by

allowing

the

user

to

disable

the

retrieval

of

archived

logs.

By

controlling

the

log

files

to

be

rolled

forward,

one

can

ensure

that

the

standby

machine

is

X

hours

behind

the

production

machine,

to

prevent

the

user

affecting

both

systems.

This

option

is

db2Rollforward

-

Rollforward

Database

480

Common

Criteria

Certification:

Administration

and

User

Documentation

useful

if

the

standby

system

does

not

have

access

to

archive,

for

example,

if

TSM

is

the

archive,

it

only

allows

the

original

machine

to

retrieve

the

files.

It

will

also

remove

the

possibility

that

the

standby

system

would

retrieve

an

incomplete

log

file

while

the

production

system

is

archiving

a

file

and

the

standby

system

is

retrieving

the

same

file.

poApplicationId

Output.

The

application

ID.

poNumReplies

Output.

The

number

of

replies

received.

poNodeInfo

Output.

Database

partition

reply

information.

nodenum

Node

number.

pathlen

The

length

of

the

new

logpath.

logpath

The

new

overflow

log

path.

num_entry

Number

of

entries

in

the

list

pointed

to

by

the

tablespace

field.

tablespace

A

pointer

to

the

sqlu_tablepsace_entry

structure.

reserve_len

Length

of

the

character

string

provided

in

the

tablespace_entry

field.

For

languages

other

than

C.

tablespace_entry

Table

space

name.

state

State

information.

nextarclog

A

buffer

to

hold

the

returned

name

of

the

next

archived

log

file

required.

If

a

caller

action

other

than

DB2ROLLFORWARD_QUERY

is

supplied,

the

value

returned

in

this

field

indicates

that

an

error

occurred

when

accessing

the

file.

Possible

causes

are:

v

The

file

was

not

found

in

the

database

log

directory,

nor

on

the

path

specified

by

the

overflow

log

path

parameter

v

The

log

archiving

method

failed

to

return

the

archived

file.

firstarcdel

A

buffer

to

hold

the

returned

name

of

the

first

archived

log

file

no

longer

needed

for

recovery.

This

file,

and

all

files

up

to

and

including

lastarcdel,

can

be

moved

to

make

room

on

the

disk.

For

example,

if

the

values

returned

in

firstarcdel

and

lastarcdel

are

S0000001.LOG

and

S0000005.LOG,

the

following

log

files

can

be

moved:

v

S0000001.LOG

v

S0000002.LOG

v

S0000003.LOG

v

S0000004.LOG

v

S0000005.LOG

db2Rollforward

-

Rollforward

Database

Chapter

14.

DB2

UDB

APIs

for

Administrators

481

lastarcdel

A

buffer

to

hold

the

returned

name

of

the

last

archived

log

file

that

can

be

removed

from

the

database

log

directory.

lastcommit

A

string

containing

a

time

stamp

in

ISO

format.

This

value

represents

the

time

stamp

of

the

last

committed

transaction

after

the

rollforward

operation

terminates.

Usage

notes:

The

database

manager

uses

the

information

stored

in

the

archived

and

the

active

log

files

to

reconstruct

the

transactions

performed

on

the

database

since

its

last

backup.

The

action

performed

when

this

API

is

called

depends

on

the

rollforward_pending

flag

of

the

database

prior

to

the

call.

This

can

be

queried

using

db2CfgGet

-

Get

Configuration

Parameters

The

rollforward_pending

flag

is

set

to

DATABASE

if

the

database

is

in

roll-forward

pending

state.

It

is

set

to

TABLESPACE

if

one

or

more

table

spaces

are

in

SQLB_ROLLFORWARD_PENDING

or

SQLB_ROLLFORWARD_IN_PROGRESS

state.

The

rollforward_pending

flag

is

set

to

NO

if

neither

the

database

nor

any

of

the

table

spaces

needs

to

be

rolled

forward.

If

the

database

is

in

roll-forward

pending

state

when

this

API

is

called,

the

database

will

be

rolled

forward.

Table

spaces

are

returned

to

normal

state

after

a

successful

database

roll-forward,

unless

an

abnormal

state

causes

one

or

more

table

spaces

to

go

offline.

If

the

rollforward_pending

flag

is

set

to

TABLESPACE,

only

those

table

spaces

that

are

in

roll-forward

pending

state,

or

those

table

spaces

requested

by

name,

will

be

rolled

forward.

Note:

If

table

space

rollforward

terminates

abnormally,

table

spaces

that

were

being

rolled

forward

will

be

put

in

SQLB_ROLLFORWARD_IN_PROGRESS

state.

In

the

next

invocation

of

ROLLFORWARD

DATABASE,

only

those

table

spaces

in

SQLB_ROLLFORWARD_IN_PROGRESS

state

will

be

processed.

If

the

set

of

selected

table

space

names

does

not

include

all

table

spaces

that

are

in

SQLB_ROLLFORWARD_IN_PROGRESS

state,

the

table

spaces

that

are

not

required

will

be

put

into

SQLB_RESTORE_PENDING

state.

If

the

database

is

not

in

roll-forward

pending

state

and

no

point

in

time

is

specified,

any

table

spaces

that

are

in

rollforward-in-progress

state

will

be

rolled

forward

to

the

end

of

logs.

If

no

table

spaces

are

in

rollforward-in-progress

state,

any

table

spaces

that

are

in

rollforward

pending

state

will

be

rolled

forward

to

the

end

of

logs.

This

API

reads

the

log

files,

beginning

with

the

log

file

that

is

matched

with

the

backup

image.

The

name

of

this

log

file

can

be

determined

by

calling

this

API

with

a

caller

action

of

DB2ROLLFORWARD_QUERY

before

rolling

forward

any

log

files.

The

transactions

contained

in

the

log

files

are

reapplied

to

the

database.

The

log

is

processed

as

far

forward

in

time

as

information

is

available,

or

until

the

time

specified

by

the

stop

time

parameter.

Recovery

stops

when

any

one

of

the

following

events

occurs:

v

No

more

log

files

are

found

v

A

time

stamp

in

the

log

file

exceeds

the

completion

time

stamp

specified

by

the

stop

time

parameter

db2Rollforward

-

Rollforward

Database

482

Common

Criteria

Certification:

Administration

and

User

Documentation

v

An

error

occurs

while

reading

the

log

file.

Some

transactions

might

not

be

recovered.

The

value

returned

in

lascommit

indicates

the

time

stamp

of

the

last

committed

transaction

that

was

applied

to

the

database.

If

the

need

for

database

recovery

was

caused

by

application

or

human

error,

the

user

may

want

to

provide

a

time

stamp

value

in

piStopTime,

indicating

that

recovery

should

be

stopped

before

the

time

of

the

error.

This

applies

only

to

full

database

roll-forward

recovery,

and

to

table

space

rollforward

to

a

point

in

time.

It

also

permits

recovery

to

be

stopped

before

a

log

read

error

occurs,

determined

during

an

earlier

failed

attempt

to

recover.

When

the

rollforward_recovery

flag

is

set

to

DATABASE,

the

database

is

not

available

for

use

until

roll-forward

recovery

is

terminated.

Termination

is

accomplished

by

calling

the

API

with

a

caller

action

of

DB2ROLLFORWARD_STOP

or

DB2ROLLFORWARD_RFWRD_STOP

to

bring

the

database

out

of

roll-forward

pending

state.

If

the

rollforward_recovery

flag

is

TABLESPACE,

the

database

is

available

for

use.

However,

the

table

spaces

in

SQLB_ROLLFORWARD_PENDING

and

SQLB_ROLLFORWARD_IN_PROGRESS

states

will

not

be

available

until

the

API

is

called

to

perform

table

space

roll-forward

recovery.

If

rolling

forward

table

spaces

to

a

point

in

time,

the

table

spaces

are

placed

in

backup

pending

state

after

a

successful

rollforward.

When

the

RollforwardFlags

option

is

set

to

DB2ROLLFORWARD_LOCAL_TIME,

all

messages

returned

to

the

user

will

also

be

in

local

time.

All

times

are

converted

on

the

server,

and

on

the

catalog

partition,

if

it

is

a

partitioned

database

environment.

The

timestamp

string

is

converted

to

GMT

on

the

server,

so

the

time

is

local

to

the

server’s

time

zone,

not

the

client’s.

If

the

client

is

in

one

time

zone

and

the

server

in

another,

the

server’s

local

time

should

be

used.

This

is

different

from

the

local

time

option

from

the

Control

Center,

which

is

local

to

the

client.

If

the

timestamp

string

is

close

to

the

time

change

of

the

clock

due

to

daylight

savings,

it

is

important

to

know

if

the

stop

time

is

before

or

after

the

clock

change,

and

specify

it

correctly.

Related

reference:

v

“SQLCA”

in

the

Administrative

API

Reference

v

“db2Restore

-

Restore

database”

on

page

463

Related

samples:

v

“dbrecov.sqc

--

How

to

recover

a

database

(C)”

v

“dbrecov.sqC

--

How

to

recover

a

database

(C++)”

db2SetWriteForDB

-

Set

or

Resume

I/O

Sets

the

database

to

be

I/O

write

suspended,

or

resumes

I/O

writes

to

disk.

I/O

writes

must

be

suspended

for

a

database

before

a

split

mirror

can

be

taken.

To

avoid

potential

problems,

keep

the

same

connection

to

do

the

write

suspension

and

resumption.

Authorization:

One

of

the

following:

v

sysadm

db2Rollforward

-

Rollforward

Database

Chapter

14.

DB2

UDB

APIs

for

Administrators

483

v

sysctrl

v

sysmaint

Required

connection:

Database

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2SetWriteForDB

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2SetWriteForDB

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

struct

db2SetWriteDbStruct

{

db2int32

iOption;

char

*piTablespaceNames;

}

db2SetWriteDbStruct;

/*

...

*/

API

parameters:

version

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

pParmStruct.

pParmStruct

Input.

A

pointer

to

the

db2SetWriteDbStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

iOption

Input.

Specifies

the

action.

Valid

values

are:

DB2_DB_SUSPEND_WRITE

Suspends

I/O

write

to

disk.

DB2_DB_RESUME_WRITE

Resumes

I/O

write

to

disk.

piTablespaceNames

Input.

Reserved

for

future

use.

sqlabndx

-

Bind

Invokes

the

bind

utility,

which

prepares

SQL

statements

stored

in

the

bind

file

generated

by

the

precompiler,

and

creates

a

package

that

is

stored

in

the

database.

Scope:

db2SetWriteForDB

-

Set

or

Resume

I/O

484

Common

Criteria

Certification:

Administration

and

User

Documentation

This

API

can

be

called

from

any

database

partition

server

in

db2nodes.cfg.

It

updates

the

database

catalogs

on

the

catalog

partition.

Its

effects

are

visible

to

all

database

partition

servers.

Authorization:

One

of

the

following:

v

sysadm

or

dbadm

authority

v

BINDADD

privilege

if

a

package

does

not

exist

and

one

of:

–

IMPLICIT_SCHEMA

authority

on

the

database

if

the

schema

name

of

the

package

does

not

exist

–

CREATEIN

privilege

on

the

schema

if

the

schema

name

of

the

package

exists
v

ALTERIN

privilege

on

the

schema

if

the

package

exists

v

BIND

privilege

on

the

package

if

it

exists.

The

user

also

needs

all

privileges

required

to

compile

any

static

SQL

statements

in

the

application.

Privileges

granted

to

groups

are

not

used

for

authorization

checking

of

static

statements.

If

the

user

has

sysadm

authority,

but

not

explicit

privileges

to

complete

the

bind,

the

database

manager

grants

explicit

dbadm

authority

automatically.

Required

connection:

Database

API

include

file:

sql.h

C

API

syntax:

/*

File:

sql.h

*/

/*

API:

sqlabndx

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlabndx

(

_SQLOLDCHAR

*pBindFileName,

_SQLOLDCHAR

*pMsgFileName,

struct

sqlopt

*pBindOptions,

struct

sqlca

*pSqlca);

/*

...

*/

Generic

API

syntax:

/*

File:

sql.h

*/

/*

API:

sqlgbndx

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgbndx

(

unsigned

short

MsgFileNameLen,

unsigned

short

BindFileNameLen,

struct

sqlca

*pSqlca,

struct

sqlopt

*pBindOptions,

_SQLOLDCHAR

*pMsgFileName,

_SQLOLDCHAR

*pBindFileName);

/*

...

*/

API

parameters:

sqlabndx

-

Bind

Chapter

14.

DB2

UDB

APIs

for

Administrators

485

MsgFileNameLen

Input.

A

2-byte

unsigned

integer

representing

the

length

of

the

message

file

name

in

bytes.

BindFileNameLen

Input.

A

2-byte

unsigned

integer

representing

the

length

of

the

bind

file

name

in

bytes.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

pBindOptions

Input.

A

structure

used

to

pass

bind

options

to

the

API.

For

more

information

about

this

structure,

see

SQLOPT.

pMsgFileName

Input.

A

string

containing

the

destination

for

error,

warning,

and

informational

messages.

Can

be

the

path

and

the

name

of

an

operating

system

file,

or

a

standard

device.

If

a

file

already

exists,

it

is

overwritten.

If

it

does

not

exist,

a

file

is

created.

pBindFileName

Input.

A

string

containing

the

name

of

the

bind

file,

or

the

name

of

a

file

containing

a

list

of

bind

file

names.

The

bind

file

names

must

contain

the

extension

.bnd.

A

path

for

these

files

can

be

specified.

Precede

the

name

of

a

bind

list

file

with

the

at

sign

(@).

For

example,

a

fully

qualified

bind

list

file

name

might

be:

/u/user1/bnd/@all.lst

The

bind

list

file

should

contain

one

or

more

bind

file

names,

and

must

have

the

extension

.lst.

Precede

all

but

the

first

bind

file

name

with

a

plus

symbol

(+).

The

bind

file

names

may

be

on

one

or

more

lines.

For

example,

the

bind

list

file

all.lst

might

contain:

mybind1.bnd+mybind2.bnd+

mybind3.bnd+

mybind4.bnd

Path

specifications

on

bind

file

names

in

the

list

file

can

be

used.

If

no

path

is

specified,

the

database

manager

takes

path

information

from

the

bind

list

file.

REXX

API

syntax:

This

API

can

be

called

from

REXX

through

the

SQLDB2

interface.

Usage

notes:

Binding

can

be

done

as

part

of

the

precompile

process

for

an

application

program

source

file,

or

as

a

separate

step

at

a

later

time.

Use

BIND

when

binding

is

performed

as

a

separate

process.

The

name

used

to

create

the

package

is

stored

in

the

bind

file,

and

is

based

on

the

source

file

name

from

which

it

was

generated

(existing

paths

or

extensions

are

discarded).

For

example,

a

precompiled

source

file

called

myapp.sqc

generates

a

default

bind

file

called

myapp.bnd

and

a

default

package

name

of

MYAPP.

(However,

sqlabndx

-

Bind

486

Common

Criteria

Certification:

Administration

and

User

Documentation

the

bind

file

name

and

the

package

name

can

be

overridden

at

precompile

time

by

using

the

SQL_BIND_OPT

and

the

SQL_PKG_OPT

options

of

sqlaprep.)

BIND

executes

under

the

transaction

that

the

user

has

started.

After

performing

the

bind,

BIND

issues

a

COMMIT

(if

bind

is

successful)

or

a

ROLLBACK

(if

bind

is

unsuccessful)

operation

to

terminate

the

current

transaction

and

start

another

one.

Binding

halts

if

a

fatal

error

or

more

than

100

errors

occur.

If

a

fatal

error

occurs

during

binding,

BIND

stops

binding,

attempts

to

close

all

files,

and

discards

the

package.

Binding

application

programs

have

prerequisite

requirements

and

restrictions

beyond

the

scope

of

this

manual.

For

example,

an

application

cannot

be

bound

from

a

V8

client

to

a

V8

server,

and

then

executed

against

a

V7

server.

The

Bind

option

types

and

values

are

defined

in

sql.

Related

reference:

v

“sqlaprep

-

Precompile

Program”

on

page

871

v

“SQLCA”

in

the

Administrative

API

Reference

v

“SQLCHAR”

in

the

Administrative

API

Reference

v

“SQLOPT”

in

the

Administrative

API

Reference

Related

samples:

v

“dbpkg.sqc

--

How

to

work

with

packages

(C)”

v

“dbsample.sqc

--

Creates

a

sample

database

(C)”

v

“dbpkg.sqC

--

How

to

work

with

packages

(C++)”

sqlbftpq

-

Fetch

Table

Space

Query

Fetches

a

specified

number

of

rows

of

table

space

query

data,

each

row

consisting

of

data

for

a

table

space.

Scope:

In

a

partitioned

database

environment,

only

the

table

spaces

on

the

current

database

partition

are

listed.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

v

sysmaint

v

dbadm

v

load

Required

connection:

Database

sqlabndx

-

Bind

Chapter

14.

DB2

UDB

APIs

for

Administrators

487

API

include

file:

sqlutil.h

C

API

syntax:

/*

File:

sqlutil.h

*/

/*

API:

sqlbftpq

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlbftpq

(

struct

sqlca

*pSqlca,

sqluint32

MaxTablespaces,

struct

SQLB_TBSPQRY_DATA

*pTablespaceData,

sqluint32

*pNumTablespaces);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlutil.h

*/

/*

API:

sqlgftpq

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgftpq

(

struct

sqlca

*pSqlca,

sqluint32

MaxTablespaces,

struct

SQLB_TBSPQRY_DATA

*pTablespaceData,

sqluint32

*pNumTablespaces);

/*

...

*/

API

parameters:

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

MaxTablespaces

Input.

The

maximum

number

of

rows

of

data

that

the

user

allocated

output

area

(pointed

to

by

pTablespaceData)

can

hold.

pTablespaceData

Input

and

output.

Pointer

to

the

output

area,

a

structure

for

query

data.

For

more

information

about

this

structure,

see

SQLB-TBSPQRY-DATA.

The

caller

of

this

API

must:

v

Allocate

space

for

MaxTablespaces

of

these

structures

v

Initialize

the

structures

v

Set

TBSPQVER

in

the

first

structure

to

SQLB_TBSPQRY_DATA_ID

v

Set

pTablespaceData

to

point

to

this

space.

The

API

will

use

this

space

to

return

the

table

space

data.

pNumTablespaces

Output.

Number

of

rows

of

output

returned.

Usage

notes:

The

user

is

responsible

for

allocating

and

freeing

the

memory

pointed

to

by

the

pTablespaceData

parameter.

This

API

can

only

be

used

after

a

successful

sqlbotsq

call.

It

can

be

invoked

repeatedly

to

fetch

the

list

generated

by

sqlbotsq.

Related

reference:

v

“sqlbotsq

-

Open

Table

Space

Query”

in

the

Administrative

API

Reference

v

“sqlbctsq

-

Close

Table

Space

Query”

in

the

Administrative

API

Reference

sqlbftpq

-

Fetch

Table

Space

Query

488

Common

Criteria

Certification:

Administration

and

User

Documentation

v

“sqlbmtsq

-

Table

Space

Query”

on

page

489

v

“sqlbgtss

-

Get

Table

Space

Statistics”

in

the

Administrative

API

Reference

v

“sqlbstpq

-

Single

Table

Space

Query”

on

page

493

v

“SQLCA”

in

the

Administrative

API

Reference

v

“SQLB-TBSPQRY-DATA”

in

the

Administrative

API

Reference

Related

samples:

v

“tabspace.sqb

--

How

to

get

tablespace

information

(IBM

COBOL)”

v

“tspace.sqb

--

How

to

copy

and

free

memory

in

a

tablespace

(IBM

COBOL)”

v

“tsinfo.sqc

--

How

to

get

information

at

the

table

space

level

(C)”

v

“tsinfo.sqC

--

How

to

get

information

at

the

table

space

level

(C++)”

sqlbmtsq

-

Table

Space

Query

Provides

a

one-call

interface

to

the

table

space

query

data.

The

query

data

for

all

table

spaces

in

the

database

is

returned

in

an

array.

Scope:

In

a

partitioned

database

environment,

only

the

table

spaces

on

the

current

database

partition

are

listed.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

v

sysmaint

v

dbadm

v

load

Required

connection:

Database

API

include

file:

sqlutil.h

C

API

syntax:

/*

File:

sqlutil.h

*/

/*

API:

sqlbmtsq

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlbmtsq

(

struct

sqlca

*pSqlca,

sqluint32

*pNumTablespaces,

struct

SQLB_TBSPQRY_DATA

***pppTablespaceData,

sqluint32

reserved1,

sqluint32

reserved2);

/*

...

*/

Generic

API

syntax:

sqlbftpq

-

Fetch

Table

Space

Query

Chapter

14.

DB2

UDB

APIs

for

Administrators

489

/*

File:

sqlutil.h

*/

/*

API:

sqlgmtsq

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgmtsq

(

struct

sqlca

*pSqlca,

sqluint32

*pNumTablespaces,

struct

SQLB_TBSPQRY_DATA

***pppTablespaceData,

sqluint32

reserved1,

sqluint32

reserved2);

/*

...

*/

API

parameters:

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

pNumTablespaces

Output.

The

total

number

of

table

spaces

in

the

connected

database.

pppTablespaceData

Output.

The

caller

supplies

the

API

with

the

address

of

a

pointer.

The

space

for

the

table

space

query

data

is

allocated

by

the

API,

and

a

pointer

to

that

space

is

returned

to

the

caller.

On

return

from

the

call,

the

pointer

points

to

an

array

of

SQLB_TBSPQRY_DATA

pointers

to

the

complete

set

of

table

space

query

data.

reserved1

Input.

Always

SQLB_RESERVED1.

reserved2

Input.

Always

SQLB_RESERVED2.

Usage

notes:

This

API

uses

the

lower

level

services,

namely:

v

sqlbotsq

v

sqlbftpq

v

sqlbctsq

to

get

all

of

the

table

space

query

data

at

once.

If

sufficient

memory

is

available,

this

function

returns

the

number

of

table

spaces,

and

a

pointer

to

the

memory

location

of

the

table

space

query

data.

It

is

the

user’s

responsibility

to

free

this

memory

with

a

call

to

sqlefmem.

If

sufficient

memory

is

not

available,

this

function

simply

returns

the

number

of

table

spaces,

and

no

memory

is

allocated.

If

this

should

happen,

use

sqlbotsq,

sqlbftpq,

and

sqlbctsq,

to

fetch

less

than

the

whole

list

at

once.

Related

reference:

v

“sqlbotsq

-

Open

Table

Space

Query”

in

the

Administrative

API

Reference

v

“sqlbftpq

-

Fetch

Table

Space

Query”

on

page

487

v

“sqlbctsq

-

Close

Table

Space

Query”

in

the

Administrative

API

Reference

v

“sqlbgtss

-

Get

Table

Space

Statistics”

in

the

Administrative

API

Reference

v

“sqlbstpq

-

Single

Table

Space

Query”

on

page

493

v

“sqlefmem

-

Free

Memory”

in

the

Administrative

API

Reference

v

“SQLCA”

in

the

Administrative

API

Reference

sqlbmtsq

-

Table

Space

Query

490

Common

Criteria

Certification:

Administration

and

User

Documentation

Related

samples:

v

“dbrecov.sqc

--

How

to

recover

a

database

(C)”

v

“tsinfo.sqc

--

How

to

get

information

at

the

table

space

level

(C)”

v

“dbrecov.sqC

--

How

to

recover

a

database

(C++)”

v

“tsinfo.sqC

--

How

to

get

information

at

the

table

space

level

(C++)”

v

“tspace.sqb

--

How

to

copy

and

free

memory

in

a

tablespace

(IBM

COBOL)”

sqlbotcq

-

Open

Table

Space

Container

Query

Prepares

for

a

table

space

container

query

operation,

and

returns

the

number

of

containers

currently

in

the

table

space.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

v

sysmaint

v

dbadm

Required

connection:

Database

API

include

file:

sqlutil.h

C

API

syntax:

/*

File:

sqlutil.h

*/

/*

API:

sqlbotcq

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlbotcq

(

struct

sqlca

*pSqlca,

sqluint32

TablespaceId,

sqluint32

*pNumContainers);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlutil.h

*/

/*

API:

sqlgotcq

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgotcq

(

struct

sqlca

*pSqlca,

sqluint32

TablespaceId,

sqluint32

*pNumContainers);

/*

...

*/

API

parameters:

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

sqlbmtsq

-

Table

Space

Query

Chapter

14.

DB2

UDB

APIs

for

Administrators

491

TablespaceId

Input.

ID

of

the

table

space

for

which

container

data

is

desired.

If

the

special

identifier

SQLB_ALL_TABLESPACES

(in

sqlutil.h)

is

specified,

a

complete

list

of

containers

for

the

entire

database

is

produced.

pNumContainers

Output.

The

number

of

containers

in

the

specified

table

space.

Usage

notes:

This

API

is

normally

followed

by

one

or

more

calls

to

sqlbftcq,

and

then

by

one

call

to

sqlbctcq.

An

application

can

use

the

following

APIs

to

fetch

information

about

containers

in

use

by

table

spaces:

v

sqlbtcq

Fetches

a

complete

list

of

container

information.

The

API

allocates

the

space

required

to

hold

the

information

for

all

the

containers,

and

returns

a

pointer

to

this

information.

Use

this

API

to

scan

the

list

of

containers

for

specific

information.

Using

this

API

is

identical

to

calling

the

three

APIs

below

(sqlbotcq,

sqlbftcq,

sqlbctcq),

except

that

this

API

automatically

allocates

the

memory

for

the

output

information.

A

call

to

this

API

must

be

followed

by

a

call

to

sqlefmem

to

free

the

memory.

v

sqlbotcq

v

sqlbftcq

v

sqlbctcq

These

three

APIs

function

like

an

SQL

cursor,

in

that

they

use

the

OPEN/FETCH/CLOSE

paradigm.

The

caller

must

provide

the

output

area

for

the

fetch.

Unlike

an

SQL

cursor,

only

one

table

space

container

query

can

be

active

at

a

time.

Use

this

set

of

APIs

to

scan

the

list

of

table

space

containers

for

specific

information.

These

APIs

allows

the

user

to

control

the

memory

requirements

of

an

application

(compared

with

sqlbtcq).

When

sqlbotcq

is

called,

a

snapshot

of

the

current

container

information

is

formed

in

the

agent

servicing

the

application.

If

the

application

issues

a

second

table

space

container

query

call

(sqlbtcq

or

sqlbotcq),

this

snapshot

is

replaced

with

refreshed

information.

No

locking

is

performed,

so

the

information

in

the

buffer

may

not

reflect

changes

made

by

another

application

after

the

snapshot

was

generated.

The

information

is

not

part

of

a

transaction.

There

is

one

snapshot

buffer

for

table

space

queries

and

another

for

table

space

container

queries.

These

buffers

are

independent

of

one

another.

Related

reference:

v

“sqlbftcq

-

Fetch

Table

Space

Container

Query”

in

the

Administrative

API

Reference

v

“sqlbctcq

-

Close

Table

Space

Container

Query”

in

the

Administrative

API

Reference

v

“sqlbtcq

-

Table

Space

Container

Query”

in

the

Administrative

API

Reference

v

“sqlbstsc

-

Set

Table

Space

Containers”

in

the

Administrative

API

Reference

v

“sqlefmem

-

Free

Memory”

in

the

Administrative

API

Reference

sqlbotcq

-

Open

Table

Space

Container

Query

492

Common

Criteria

Certification:

Administration

and

User

Documentation

v

“SQLCA”

in

the

Administrative

API

Reference

Related

samples:

v

“tabscont.sqb

--

How

to

get

tablespace

container

information

(IBM

COBOL)”

v

“tspace.sqb

--

How

to

copy

and

free

memory

in

a

tablespace

(IBM

COBOL)”

v

“tsinfo.sqc

--

How

to

get

information

at

the

table

space

level

(C)”

v

“tsinfo.sqC

--

How

to

get

information

at

the

table

space

level

(C++)”

sqlbstpq

-

Single

Table

Space

Query

Retrieves

information

about

a

single

currently

defined

table

space.

Scope:

In

a

partitioned

database

environment,

only

the

table

spaces

on

the

current

database

partition

are

listed.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

v

sysmaint

v

dbadm

v

load

Required

connection:

Database

API

include

file:

sqlutil.h

C

API

syntax:

/*

File:

sqlutil.h

*/

/*

API:

sqlbstpq

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlbstpq

(

struct

sqlca

*pSqlca,

sqluint32

TablespaceId,

struct

SQLB_TBSPQRY_DATA

*pTablespaceData,

sqluint32

reserved);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlutil.h

*/

/*

API:

sqlgstpq

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgstpq

(

struct

sqlca

*pSqlca,

sqlbotcq

-

Open

Table

Space

Container

Query

Chapter

14.

DB2

UDB

APIs

for

Administrators

493

sqluint32

TablespaceId,

struct

SQLB_TBSPQRY_DATA

*pTablespaceData,

sqluint32reserved);

/*

...

*/

API

parameters:

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

TablespaceId

Input.

Identifier

for

the

table

space

which

is

to

be

queried.

pTablespaceData

Input

and

output.

Pointer

to

a

user-supplied

SQLB_TBSPQRY_DATA

structure

where

the

table

space

information

will

be

placed

upon

return.

The

caller

of

this

API

must

initialize

the

structure

and

set

TBSPQVER

to

SQLB_TBSPQRY_DATA_ID

(in

sqlutil).

reserved

Input.

Always

SQLB_RESERVED1.

Usage

notes:

This

API

retrieves

information

about

a

single

table

space

if

the

table

space

identifier

to

be

queried

is

known.

This

API

provides

an

alternative

to

the

more

expensive

OPEN

TABLESPACE

QUERY,

FETCH,

and

CLOSE

combination

of

APIs,

which

must

be

used

to

scan

for

the

desired

table

space

when

the

table

space

identifier

is

not

known

in

advance.

The

table

space

IDs

can

be

found

in

the

system

catalogs.

No

agent

snapshot

is

taken;

since

there

is

only

one

entry

to

return,

it

is

returned

directly.

For

more

information,

see

sqlbotsq.

Related

reference:

v

“sqlbotsq

-

Open

Table

Space

Query”

in

the

Administrative

API

Reference

v

“sqlbftpq

-

Fetch

Table

Space

Query”

on

page

487

v

“sqlbctsq

-

Close

Table

Space

Query”

in

the

Administrative

API

Reference

v

“sqlbmtsq

-

Table

Space

Query”

on

page

489

v

“sqlbgtss

-

Get

Table

Space

Statistics”

in

the

Administrative

API

Reference

v

“SQLCA”

in

the

Administrative

API

Reference

Related

samples:

v

“tabspace.sqb

--

How

to

get

tablespace

information

(IBM

COBOL)”

v

“tspace.sqb

--

How

to

copy

and

free

memory

in

a

tablespace

(IBM

COBOL)”

v

“tsinfo.sqc

--

How

to

get

information

at

the

table

space

level

(C)”

v

“tsinfo.sqC

--

How

to

get

information

at

the

table

space

level

(C++)”

sqlecadb

-

Catalog

Database

Stores

database

location

information

in

the

system

database

directory.

The

database

can

be

located

either

on

the

local

workstation

or

on

a

remote

node.

Scope:

sqlbstpq

-

Single

Table

Space

Query

494

Common

Criteria

Certification:

Administration

and

User

Documentation

This

API

affects

the

system

database

directory.

In

a

partitioned

database

environment,

when

cataloging

a

local

database

into

the

system

database

directory,

this

API

must

be

called

from

a

database

partition

server

where

the

database

resides.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

Required

connection:

None

API

include

file:

sqlenv.h

C

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlecadb

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlecadb

(

_SQLOLDCHAR

*pDbName,

_SQLOLDCHAR

*pDbAlias,

unsigned

char

Type,

_SQLOLDCHAR

*pNodeName,

_SQLOLDCHAR

*pPath,

_SQLOLDCHAR

*pComment,

unsigned

short

Authentication,

_SQLOLDCHAR

*pPrincipal,

struct

sqlca

*pSqlca);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlgcadb

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgcadb

(

unsigned

short

PrinLen,

unsigned

short

CommentLen,

unsigned

short

PathLen,

unsigned

short

NodeNameLen,

unsigned

short

DbAliasLen,

unsigned

short

DbNameLen,

struct

sqlca

*pSqlca,

_SQLOLDCHAR

*pPrinName,

unsigned

short

Authentication,

_SQLOLDCHAR

*pComment,

_SQLOLDCHAR

*pPath,

_SQLOLDCHAR

*pNodeName,

unsigned

char

Type,

_SQLOLDCHAR

*pDbAlias,

_SQLOLDCHAR

*pDbName);

/*

...

*/

API

parameters:

sqlecadb

-

Catalog

Database

Chapter

14.

DB2

UDB

APIs

for

Administrators

495

PrinLen

Input.

A

2-byte

unsigned

integer

representing

the

length

in

bytes

of

the

principal

name.

Set

to

zero

if

no

principal

is

provided.

This

value

should

be

nonzero

only

when

authentication

is

specified

as

SQL_AUTHENTICATION_KERBEROS.

CommentLen

Input.

A

2-byte

unsigned

integer

representing

the

length

in

bytes

of

the

comment.

Set

to

zero

if

no

comment

is

provided.

PathLen

Input.

A

2-byte

unsigned

integer

representing

the

length

in

bytes

of

the

path

of

the

local

database

directory.

Set

to

zero

if

no

path

is

provided.

NodeNameLen

Input.

A

2-byte

unsigned

integer

representing

the

length

in

bytes

of

the

node

name.

Set

to

zero

if

no

node

name

is

provided.

DbAliasLen

Input.

A

2-byte

unsigned

integer

representing

the

length

in

bytes

of

the

database

alias.

DbNameLen

Input.

A

2-byte

unsigned

integer

representing

the

length

in

bytes

of

the

database

name.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

pPrinName

Input.

A

string

containing

the

principal

name

of

the

DB2

server

on

which

the

database

resides.

This

value

should

only

be

specified

when

authentication

is

SQL_AUTHENTICATION_KERBEROS.

Authentication

Input.

Contains

the

authentication

type

specified

for

the

database.

Authentication

is

a

process

that

verifies

that

the

user

is

who

he/she

claims

to

be.

Access

to

database

objects

depends

on

the

user’s

authentication.

Valid

values

(from

sqlenv)

are:

SQL_AUTHENTICATION_SERVER

Specifies

that

authentication

takes

place

on

the

node

containing

the

target

database.

SQL_AUTHENTICATION_CLIENT

Specifies

that

authentication

takes

place

on

the

node

where

the

application

is

invoked.

SQL_AUTHENTICATION_KERBEROS

Specifies

that

authentication

takes

place

using

Kerberos

Security

Mechanism.

SQL_AUTHENTICATION_NOT_SPECIFIED

Authentication

not

specified.

SQL_AUTHENTICATION_SVR_ENCRYPT

Specifies

that

authentication

takes

place

on

the

node

containing

the

target

database,

and

that

the

authentication

password

is

to

be

encrypted.

SQL_AUTHENTICATION_DATAENC

Specifies

that

authentication

takes

place

on

the

node

containing

the

target

database,

and

that

connections

must

use

data

encryption.

sqlecadb

-

Catalog

Database

496

Common

Criteria

Certification:

Administration

and

User

Documentation

SQL_AUTHENTICATION_GSSPLUGIN

Specifies

that

authentication

takes

place

using

an

external

GSS

API-based

plug-in

security

mechanism.

This

parameter

can

be

set

to

SQL_AUTHENTICATION_NOT_SPECIFIED,

except

when

cataloging

a

database

that

resides

on

a

DB2

Version

1

server.

Specifying

the

authentication

type

in

the

database

catalog

results

in

a

performance

improvement

during

a

connect.

pComment

Input.

A

string

containing

an

optional

description

of

the

database.

A

null

string

indicates

no

comment.

The

maximum

length

of

a

comment

string

is

30

characters.

pPath

Input.

A

string

which,

on

UNIX

based

systems,

specifies

the

name

of

the

path

on

which

the

database

being

cataloged

resides.

Maximum

length

is

215

characters.

On

the

Windows

operating

system,

this

string

specifies

the

letter

of

the

drive

on

which

the

database

being

cataloged

resides.

If

a

NULL

pointer

is

provided,

the

default

database

path

is

assumed

to

be

that

specified

by

the

database

manager

configuration

parameter

dftdbpath.

pNodeName

Input.

A

string

containing

the

name

of

the

node

where

the

database

is

located.

May

be

NULL.

Note:

If

neither

pPath

nor

pNodeName

is

specified,

the

database

is

assumed

to

be

local,

and

the

location

of

the

database

is

assumed

to

be

that

specified

in

the

database

manager

configuration

parameter

dftdbpath.

Type

Input.

A

single

character

that

designates

whether

the

database

is

indirect,

remote,

or

is

cataloged

via

DCE.

Valid

values

(defined

in

sqlenv)

are:

SQL_INDIRECT

Specifies

that

the

database

resides

at

this

instance.

SQL_REMOTE

Specifies

that

the

database

resides

at

another

instance.

SQL_DCE

Specifies

that

the

database

is

cataloged

via

DCE.

pDbAlias

Input.

A

string

containing

an

alias

for

the

database.

pDbName

Input.

A

string

containing

the

database

name.

REXX

API

syntax:

CATALOG

DATABASE

dbname

[AS

alias]

[ON

path|AT

NODE

nodename]

[AUTHENTICATION

authentication]

[WITH

"comment"]

CATALOG

GLOBAL

DATABASE

db_global_name

AS

alias

USING

DIRECTORY

{DCE}

[WITH

"comment"]

REXX

API

parameters:

dbname

Name

of

the

database

to

be

cataloged.

sqlecadb

-

Catalog

Database

Chapter

14.

DB2

UDB

APIs

for

Administrators

497

alias

Alternate

name

for

the

database.

If

an

alias

is

not

specified,

the

database

name

is

used

as

the

alias.

path

Path

on

which

the

database

being

cataloged

resides.

nodename

Name

of

the

remote

workstation

where

the

database

being

cataloged

resides.

Note:

If

neither

path

nor

nodename

is

specified,

the

database

is

assumed

to

be

local,

and

the

location

of

the

database

is

assumed

to

be

that

specified

in

the

database

manager

configuration

parameter

dftdbpath.

authentication

Place

where

authentication

is

to

be

done.

Valid

values

are:

SERVER

Authentication

occurs

at

the

node

containing

the

target

database.

This

is

the

default.

CLIENT

Authentication

occurs

at

the

node

where

the

application

is

invoked.

KERBEROS

Specifies

that

authentication

takes

place

using

Kerberos

Security

Mechanism.

NOT_SPECIFIED

Authentication

not

specified.

SVR_ENCRYPT

Specifies

that

authentication

takes

place

on

the

node

containing

the

target

database,

and

that

the

authentication

password

is

to

be

encrypted.

DATAENC

Specifies

that

authentication

takes

place

on

the

node

containing

the

target

database,

and

that

connections

must

use

data

encryption.

GSSPLUGIN

Specifies

that

authentication

takes

place

using

an

external

GSS

API-based

plug-in

security

mechanism.

comment

Describes

the

database

or

the

database

entry

in

the

system

database

directory.

The

maximum

length

of

a

comment

string

is

30

characters.

A

carriage

return

or

a

line

feed

character

is

not

permitted.

The

comment

text

must

be

enclosed

by

double

quotation

marks.

db_global_name

The

fully

qualified

name

that

uniquely

identifies

the

database

in

the

DCE

name

space.

DCE

The

global

directory

service

being

used.

REXX

examples:

call

SQLDBS

’CATALOG

GLOBAL

DATABASE

/.../cell1/subsys/database/DB3

AS

dbtest

USING

DIRECTORY

DCE

WITH

"Sample

Database"’

Usage

notes:

sqlecadb

-

Catalog

Database

498

Common

Criteria

Certification:

Administration

and

User

Documentation

Use

CATALOG

DATABASE

to

catalog

databases

located

on

local

or

remote

nodes,

recatalog

databases

that

were

uncataloged

previously,

or

maintain

multiple

aliases

for

one

database

(regardless

of

database

location).

DB2

automatically

catalogs

databases

when

they

are

created.

It

catalogs

an

entry

for

the

database

in

the

local

database

directory,

and

another

entry

in

the

system

database

directory.

If

the

database

is

created

from

a

remote

client

(or

a

client

which

is

executing

from

a

different

instance

on

the

same

machine),

an

entry

is

also

made

in

the

system

database

directory

at

the

client

instance.

Databases

created

at

the

current

instance

(as

defined

by

the

value

of

the

DB2INSTANCE

environment

variable)

are

cataloged

as

indirect.

Databases

created

at

other

instances

are

cataloged

as

remote

(even

if

they

physically

reside

on

the

same

machine).

CATALOG

DATABASE

automatically

creates

a

system

database

directory

if

one

does

not

exist.

The

system

database

directory

is

stored

on

the

path

that

contains

the

database

manager

instance

that

is

being

used.

The

system

database

directory

is

maintained

outside

of

the

database.

Each

entry

in

the

directory

contains:

v

Alias

v

Authentication

type

v

Comment

v

Database

v

Entry

type

v

Local

database

directory

(when

cataloging

a

local

database)

v

Node

name

(when

cataloging

a

remote

database)

v

Release

information.

If

a

database

is

cataloged

with

the

type

parameter

set

to

SQL_INDIRECT,

the

value

of

the

authentication

parameter

provided

will

be

ignored,

and

the

authentication

in

the

directory

will

be

set

to

SQL_AUTHENTICATION_NOT_SPECIFIED.

If

directory

caching

is

enabled,

database,

node,

and

DCS

directory

files

are

cached

in

memory.

An

application’s

directory

cache

is

created

during

its

first

directory

lookup.

Since

the

cache

is

only

refreshed

when

the

application

modifies

any

of

the

directory

files,

directory

changes

made

by

other

applications

may

not

be

effective

until

the

application

has

restarted.

To

refresh

DB2’s

shared

cache

(server

only),

stop

(db2stop)

and

then

restart

(db2start)

the

database

manager.

To

refresh

the

directory

cache

for

another

application,

stop

and

then

restart

that

application.

Related

reference:

v

“db2DbDirCloseScan

-

Close

Database

Directory

Scan”

in

the

Administrative

API

Reference

v

“db2DbDirGetNextEntry

-

Get

Next

Database

Directory

Entry”

in

the

Administrative

API

Reference

v

“db2DbDirOpenScan

-

Open

Database

Directory

Scan”

in

the

Administrative

API

Reference

v

“sqleuncd

-

Uncatalog

Database”

in

the

Administrative

API

Reference

v

“SQLCA”

in

the

Administrative

API

Reference

Related

samples:

v

“dbcat.cbl

--

Catalog

to

and

uncatalog

from

a

database

(IBM

COBOL)”

sqlecadb

-

Catalog

Database

Chapter

14.

DB2

UDB

APIs

for

Administrators

499

v

“ininfo.c

--

Set

and

get

information

at

the

instance

level

(C)”

v

“ininfo.C

--

Set

and

get

information

at

the

instance

level

(C++)”

sqlecrea

-

Create

Database

Initializes

a

new

database

with

an

optional

user-defined

collating

sequence,

creates

the

three

initial

table

spaces,

creates

the

system

tables,

and

allocates

the

recovery

log.

Scope:

In

a

partitioned

database

environment,

this

API

affects

all

database

partition

servers

that

are

listed

in

the

db2nodes.cfg

file.

The

database

partition

server

from

which

this

API

is

called

becomes

the

catalog

partition

for

the

new

database.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

Required

connection:

Instance.

To

create

a

database

at

another

(remote)

node,

it

is

necessary

to

first

attach

to

that

node.

A

database

connection

is

temporarily

established

by

this

API

during

processing.

API

include

file:

sqlenv.h

C

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlecrea

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlecrea

(

char

*pDbName,

char

*pLocalDbAlias,

char

*pPath,

struct

sqledbdesc

*pDbDescriptor,

struct

sqledbterritoryinfo

*pTerritoryInfo,

char

Reserved2,

void

*pReserved1,

struct

sqlca

*pSqlca);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlgcrea

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgcrea

(

unsigned

short

PathLen,

unsigned

short

LocalDbAliasLen,

unsigned

short

DbNameLen,

sqlecadb

-

Catalog

Database

500

Common

Criteria

Certification:

Administration

and

User

Documentation

struct

sqlca

*pSqlca,

void

*pReserved1,

unsigned

short

Reserved2,

struct

sqledbterritoryinfo

*pTerritoryInfo,

struct

sqledbdesc

*pDbDescriptor,

char

*pPath,

char

*pLocalDbAlias,

char

*pDbName);

/*

...

*/

API

parameters:

PathLen

Input.

A

2-byte

unsigned

integer

representing

the

length

of

the

path

in

bytes.

Set

to

zero

if

no

path

is

provided.

LocalDbALiasLen

Input.

A

2-byte

unsigned

integer

representing

the

length

of

the

local

database

alias

in

bytes.

Set

to

zero

if

no

local

alias

is

provided.

DbNameLen

Input.

A

2-byte

unsigned

integer

representing

the

length

of

the

database

name

in

bytes.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

pReserved1

Input.

A

spare

pointer

that

is

set

to

null

or

points

to

zero.

Reserved2

Input.

Reserved

for

future

use.

pTerritoryInfo

Input.

A

pointer

to

the

sqledbterritoryinfo

structure,

containing

the

locale

and

the

code

set

for

the

database.

May

be

NULL.

pDbDescriptor

Input.

A

pointer

to

the

database

description

block

used

when

creating

the

database.

The

database

description

block

may

be

used

to

supply

values

that

are

permanently

stored

in

the

configuration

file

of

the

database,

such

as

collating

sequence.

May

be

NULL.

For

information

about

the

supported

collating

sequences

for

Unicode

databases,

see

the

topic

about

the

database

description

block

(SQLEDBDESC).

pPath

Input.

On

UNIX

based

systems,

specifies

the

path

on

which

to

create

the

database.

If

a

path

is

not

specified,

the

database

is

created

on

the

default

database

path

specified

in

the

database

manager

configuration

file

(dftdbpath

parameter).

On

the

Windows

operating

system,

specifies

the

letter

of

the

drive

on

which

to

create

the

database.

May

be

NULL.

Note:

For

partitioned

database

environments,

a

database

should

not

be

created

in

an

NFS-mounted

directory.

If

a

path

is

not

specified,

ensure

that

the

dftdbpath

database

manager

configuration

parameter

is

not

set

to

an

NFS-mounted

path

(for

example,

on

UNIX

based

systems,

it

should

not

specify

the

$HOME

directory

of

the

instance

owner).

The

path

specified

for

this

API

in

a

partitioned

database

environment

cannot

be

a

relative

path.

sqlecrea

-

Create

Database

Chapter

14.

DB2

UDB

APIs

for

Administrators

501

pLocalDbAlias

Input.

A

string

containing

the

alias

to

be

placed

in

the

client’s

system

database

directory.

May

be

NULL.

If

no

local

alias

is

specified,

the

database

name

is

the

default.

pDbName

Input.

A

string

containing

the

database

name.

This

is

the

database

name

that

will

be

cataloged

in

the

system

database

directory.

Once

the

database

has

been

successfully

created

in

the

server’s

system

database

directory,

it

is

automatically

cataloged

in

the

system

database

directory

with

a

database

alias

identical

to

the

database

name.

Must

not

be

NULL.

REXX

API

syntax:

CREATE

DATABASE

dbname

[ON

path]

[ALIAS

dbalias]

[USING

CODESET

codeset

TERRITORY

territory]

[COLLATE

USING

{SYSTEM

|

IDENTITY

|

USER

:udcs}]

[NUMSEGS

numsegs]

[DFT_EXTENT_SZ

dft_extentsize]

[CATALOG

TABLESPACE

<tablespace_definition>]

[USER

TABLESPACE

<tablespace_definition>]

[TEMPORARY

TABLESPACE

<tablespace_definition>]

[WITH

comment]

Where

<tablespace_definition>

stands

for:

MANAGED

BY

{

SYSTEM

USING

:SMS_string

|

DATABASE

USING

:DMS_string

}

[

EXTENTSIZE

number_of_pages

]

[

PREFETCHSIZE

number_of_pages

]

[

OVERHEAD

number_of_milliseconds

]

[

TRANSFERRATE

number_of_milliseconds

]

REXX

API

parameters:

dbname

Name

of

the

database.

dbalias

Alias

of

the

database.

path

Path

on

which

to

create

the

database.

If

a

path

is

not

specified,

the

database

is

created

on

the

default

database

path

specified

in

the

database

manager

configuration

file

(dftdbpath

configuration

parameter).

Note:

For

partitioned

database

environments,

a

database

should

not

be

created

in

an

NFS-mounted

directory.

If

a

path

is

not

specified,

ensure

that

the

dftdbpath

database

manager

configuration

parameter

is

not

set

to

an

NFS-mounted

path

(for

example,

on

UNIX

based

systems,

it

should

not

specify

the

$HOME

directory

of

the

instance

owner).

The

path

specified

for

this

API

in

a

partitioned

database

environment

cannot

be

a

relative

path.

codeset

Code

set

to

be

used

for

data

entered

into

the

database.

territory

Territory

code

(locale)

to

be

used

for

data

entered

into

the

database.

SYSTEM

Collating

sequence

based

on

the

database

territory.

sqlecrea

-

Create

Database

502

Common

Criteria

Certification:

Administration

and

User

Documentation

IDENTITY

The

collation

sequence

as

determined

by

the

binary

order

of

each

byte

of

the

string,

where

strings

are

compared

byte

for

byte,

starting

with

the

leftmost

byte.

USER

udcs

The

collating

sequence

is

specified

by

the

calling

application

in

a

host

variable

containing

a

256-byte

string

defining

the

collating

sequence.

numsegs

Number

of

segment

directories

that

will

be

created

and

used

to

store

the

DAT,

IDX,

and

LF

files.

dft_extentsize

Specifies

the

default

extent

size

for

table

spaces

in

the

database.

SMS_string

A

compound

REXX

host

variable

identifying

one

or

more

containers

that

will

belong

to

the

table

space,

and

where

the

table

space

data

will

be

stored.

In

the

following,

XXX

represents

the

host

variable

name.

Note

that

each

of

the

directory

names

cannot

exceed

254

bytes

in

length.

XXX.0

Number

of

directories

specified

XXX.1

First

directory

name

for

SMS

table

space

XXX.2

Second

directory

name

for

SMS

table

space

XXX.3

and

so

on.

DMS_string

A

compound

REXX

host

variable

identifying

one

or

more

containers

that

will

belong

to

the

table

space,

where

the

table

space

data

will

be

stored,

container

sizes

(specified

in

a

number

of

4KB

pages)

and

types

(file

or

device).

The

specified

devices

(not

files)

must

already

exist.

In

the

following,

XXX

represents

the

host

variable

name.

Note

that

each

of

the

container

names

cannot

exceed

254

bytes

in

length.

XXX.0

Number

of

strings

in

the

REXX

host

variable

(number

of

first

level

elements)

XXX.1.1

Type

of

the

first

container

(file

or

device)

XXX.1.2

First

file

name

or

device

name

XXX.1.3

Size

(in

pages)

of

the

first

container

XXX.2.1

Type

of

the

second

container

(file

or

device)

XXX.2.2

Second

file

name

or

device

name

XXX.2.3

Size

(in

pages)

of

the

second

container

XXX.3.1

and

so

on.

EXTENTSIZE

number_of_pages

Number

of

4KB

pages

that

will

be

written

to

a

container

before

skipping

to

the

next

container.

sqlecrea

-

Create

Database

Chapter

14.

DB2

UDB

APIs

for

Administrators

503

PREFETCHSIZE

number_of_pages

Number

of

4KB

pages

that

will

be

read

from

the

table

space

when

data

prefetching

is

being

performed.

OVERHEAD

number_of_milliseconds

Number

that

specifies

the

I/O

controller

overhead,

disk

seek,

and

latency

time

in

milliseconds.

TRANSFERRATE

number_of_milliseconds

Number

that

specifies

the

time

in

milliseconds

to

read

one

4KB

page

into

memory.

comment

Description

of

the

database

or

the

database

entry

in

the

system

directory.

Do

not

use

a

carriage

return

or

line

feed

character

in

the

comment.

Be

sure

to

enclose

the

comment

text

in

double

quotation

marks.

Maximum

size

is

30

characters.

Usage

notes:

CREATE

DATABASE:

v

Creates

a

database

in

the

specified

subdirectory.

In

a

partitioned

database

environment,

creates

the

database

on

all

database

partition

servers

listed

in

db2nodes.cfg,

and

creates

a

$DB2INSTANCE/NODExxxx

directory

under

the

specified

subdirectory

at

each

database

partition

server,

where

xxxx

represents

the

local

database

partition

server

number.

In

a

single-partition

environment,

creates

a

$DB2INSTANCE/NODE0000

directory

under

the

specified

subdirectory.

v

Creates

the

system

catalog

tables

and

recovery

log.

v

Catalogs

the

database

in

the

following

database

directories:

–

server’s

local

database

directory

on

the

path

indicated

by

pPath

or,

if

the

path

is

not

specified,

the

default

database

path

defined

in

the

database

manager

system

configuration

file.

A

local

database

directory

resides

on

each

file

system

that

contains

a

database.

–

server’s

system

database

directory

for

the

attached

instance.

The

resulting

directory

entry

will

contain

the

database

name

and

a

database

alias.

If

the

API

was

called

from

a

remote

client,

the

client’s

system

database

directory

is

also

updated

with

the

database

name

and

an

alias.

Creates

a

system

or

a

local

database

directory

if

neither

exists.

If

specified,

the

comment

and

code

set

values

are

placed

in

both

directories.

v

Stores

the

specified

code

set,

territory,

and

collating

sequence.

A

flag

is

set

in

the

database

configuration

file

if

the

collating

sequence

consists

of

unique

weights,

or

if

it

is

the

identity

sequence.

v

Creates

the

schemata

called

SYSCAT,

SYSFUN,

SYSIBM,

and

SYSSTAT

with

SYSIBM

as

the

owner.

The

database

partition

server

on

which

this

API

is

called

becomes

the

catalog

partition

for

the

new

database.

Two

database

partition

groups

are

created

automatically:

IBMDEFAULTGROUP

and

IBMCATGROUP.

v

Binds

the

previously

defined

database

manager

bind

files

to

the

database

(these

are

listed

in

db2ubind.lst).

If

one

or

more

of

these

files

do

not

bind

successfully,

sqlecrea

returns

a

warning

in

the

SQLCA,

and

provides

information

about

the

binds

that

failed.

If

a

bind

fails,

the

user

can

take

corrective

action

and

manually

bind

the

failing

file.

The

database

is

created

in

any

case.

A

schema

called

NULLID

is

implicitly

created

when

performing

the

binds

with

CREATEIN

privilege

granted

to

PUBLIC.

sqlecrea

-

Create

Database

504

Common

Criteria

Certification:

Administration

and

User

Documentation

v

Creates

SYSCATSPACE,

TEMPSPACE1,

and

USERSPACE1

table

spaces.

The

SYSCATSPACE

table

space

is

only

created

on

the

catalog

partition.

All

database

partitions

have

the

same

table

space

definitions.

v

Grants

the

following:

–

DBADM

authority,

and

CONNECT,

CREATETAB,

BINDADD,

CREATE_NOT_FENCED,

IMPLICIT_SCHEMA,

and

LOAD

privileges

to

the

database

creator

–

CONNECT,

CREATETAB,

BINDADD,

and

IMPLICIT_SCHEMA

privileges

to

PUBLIC

–

USE

privilege

on

the

USERSPACE1

table

space

to

PUBLIC

–

SELECT

privilege

on

each

system

catalog

to

PUBLIC

–

BIND

and

EXECUTE

privilege

to

PUBLIC

for

each

successfully

bound

utility

–

EXECUTE

WITH

GRANT

privilege

to

PUBLIC

on

all

functions

in

the

SYSFUN

schema.

–

EXECUTE

privilege

to

PUBLIC

on

all

procedures

in

SYSIBM

schema.

With

dbadm

authority,

one

can

grant

these

privileges

to

(and

revoke

them

from)

other

users

or

PUBLIC.

If

another

administrator

with

sysadm

or

dbadm

authority

over

the

database

revokes

these

privileges,

the

database

creator

nevertheless

retains

them.

In

a

partitioned

database

environment,

the

database

manager

creates

a

subdirectory,

$DB2INSTANCE/NODExxxx,

under

the

specified

or

default

path

on

all

database

partition

servers.

The

xxxx

is

the

node

number

as

defined

in

the

db2nodes.cfg

file

(that

is,

node

0

becomes

NODE0000).

Subdirectories

SQL00001

through

SQLnnnnn

will

reside

on

this

path.

This

ensures

that

the

database

objects

associated

with

different

database

partition

servers

are

stored

in

different

directories

(even

if

the

subdirectory

$DB2INSTANCE

under

the

specified

or

default

path

is

shared

by

all

database

partition

servers).

On

Windows

and

AIX,

the

length

of

the

code

set

name

is

limited

to

a

maximum

of

9

characters.

For

example,

specify

a

code

set

name

such

as

ISO885915

instead

of

ISO8859-15.

CREATE

DATABASE

will

fail

if

the

application

is

already

connected

to

a

database.

If

the

database

description

block

structure

is

not

set

correctly,

an

error

message

is

returned.

The

″eye-catcher″

of

the

database

description

block

must

be

set

to

the

symbolic

value

SQLE_DBDESC_2

(defined

in

sqlenv).

The

following

sample

user-defined

collating

sequences

are

available

in

the

host

language

include

files:

sqle819a

If

the

code

page

of

the

database

is

819

(ISO

Latin/1),

this

sequence

will

cause

sorting

to

be

performed

according

to

the

host

CCSID

500

(EBCDIC

International).

sqle819b

If

the

code

page

of

the

database

is

819

(ISO

Latin/1),

this

sequence

will

cause

sorting

to

be

performed

according

to

the

host

CCSID

037

(EBCDIC

US

English).

sqle850a

If

the

code

page

of

the

database

is

850

(ASCII

Latin/1),

this

sequence

will

cause

sorting

to

be

performed

according

to

the

host

CCSID

500

(EBCDIC

International).

sqlecrea

-

Create

Database

Chapter

14.

DB2

UDB

APIs

for

Administrators

505

sqle850b

If

the

code

page

of

the

database

is

850

(ASCII

Latin/1),

this

sequence

will

cause

sorting

to

be

performed

according

to

the

host

CCSID

037

(EBCDIC

US

English).

sqle932a

If

the

code

page

of

the

database

is

932

(ASCII

Japanese),

this

sequence

will

cause

sorting

to

be

performed

according

to

the

host

CCSID

5035

(EBCDIC

Japanese).

sqle932b

If

the

code

page

of

the

database

is

932

(ASCII

Japanese),

this

sequence

will

cause

sorting

to

be

performed

according

to

the

host

CCSID

5026

(EBCDIC

Japanese).

The

collating

sequence

specified

during

CREATE

DATABASE

cannot

be

changed

later,

and

all

character

comparisons

in

the

database

use

the

specified

collating

sequence.

This

affects

the

structure

of

indexes

as

well

as

the

results

of

queries.

Use

sqlecadb

to

define

different

alias

names

for

the

new

database.

Related

reference:

v

“sqlabndx

-

Bind”

on

page

484

v

“sqlecadb

-

Catalog

Database”

on

page

494

v

“sqledrpd

-

Drop

Database”

on

page

506

v

“sqlecran

-

Create

Database

at

Node”

in

the

Administrative

API

Reference

v

“sqledpan

-

Drop

Database

at

Node”

in

the

Administrative

API

Reference

v

“SQLEDBTERRITORYINFO”

in

the

Administrative

API

Reference

v

“SQLCA”

in

the

Administrative

API

Reference

v

“SQLEDBDESC”

in

the

Administrative

API

Reference

v

“CREATE

DATABASE”

on

page

252

Related

samples:

v

“db_udcs.cbl

--

How

to

use

user-defined

collating

sequence

(IBM

COBOL)”

v

“dbconf.cbl

--

Update

database

configuration

(IBM

COBOL)”

v

“ebcdicdb.cbl

--

Create

a

database

with

EBCDIC

037

standard

collating

sequence

(IBM

COBOL)”

v

“dbcreate.c

--

Create

and

drop

databases

(C)”

v

“dbrecov.sqc

--

How

to

recover

a

database

(C)”

v

“dbsample.sqc

--

Creates

a

sample

database

(C)”

v

“dbcreate.C

--

Create

and

drop

databases

(C++)”

v

“dbrecov.sqC

--

How

to

recover

a

database

(C++)”

sqledrpd

-

Drop

Database

Deletes

the

database

contents

and

all

log

files

for

the

database,

uncatalogs

the

database,

and

deletes

the

database

subdirectory.

Scope:

By

default,

this

API

affects

all

database

partition

servers

that

are

listed

in

the

db2nodes.cfg

file.

Authorization:

sqlecrea

-

Create

Database

506

Common

Criteria

Certification:

Administration

and

User

Documentation

One

of

the

following:

v

sysadm

v

sysctrl

Required

connection:

Instance.

It

is

not

necessary

to

call

ATTACH

before

dropping

a

remote

database.

If

the

database

is

cataloged

as

remote,

an

instance

attachment

to

the

remote

node

is

established

for

the

duration

of

the

call.

API

include

file:

sqlenv.h

C

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqledrpd

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqledrpd

(

_SQLOLDCHAR

*pDbAlias,

struct

sqlca

*pSqlca);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlgdrpd

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgdrpd

(

unsigned

short

Reserved1,

unsigned

short

DbAliasLen,

struct

sqlca

*pSqlca,

_SQLOLDCHAR

*pReserved2,

_SQLOLDCHAR

*pDbAlias);

/*

...

*/

API

parameters:

Reserved1

Reserved

for

future

use.

DbAliasLen

Input.

A

2-byte

unsigned

integer

representing

the

length

in

bytes

of

the

database

alias.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

pReserved2

A

spare

pointer

that

is

set

to

null

or

points

to

zero.

Reserved

for

future

use.

pDbAlias

Input.

A

string

containing

the

alias

of

the

database

to

be

dropped.

This

name

is

used

to

reference

the

actual

database

name

in

the

system

database

directory.

REXX

API

syntax:

DROP

DATABASE

dbalias

sqledrpd

-

Drop

Database

Chapter

14.

DB2

UDB

APIs

for

Administrators

507

REXX

API

parameters:

dbalias

The

alias

of

the

database

to

be

dropped.

Usage

notes:

sqledrpd

deletes

all

user

data

and

log

files.

If

the

log

files

are

needed

for

a

roll-forward

recovery

after

a

restore

operation,

the

files

should

be

saved

prior

to

calling

this

API.

The

database

must

not

be

in

use;

all

users

must

be

disconnected

from

the

database

before

the

database

can

be

dropped.

To

be

dropped,

a

database

must

be

cataloged

in

the

system

database

directory.

Only

the

specified

database

alias

is

removed

from

the

system

database

directory.

If

other

aliases

with

the

same

database

name

exist,

their

entries

remain.

If

the

database

being

dropped

is

the

last

entry

in

the

local

database

directory,

the

local

database

directory

is

deleted

automatically.

If

this

API

is

called

from

a

remote

client

(or

from

a

different

instance

on

the

same

machine),

the

specified

alias

is

removed

from

the

client’s

system

database

directory.

The

corresponding

database

name

is

removed

from

the

server’s

system

database

directory.

This

API

unlinks

all

files

that

are

linked

through

any

DATALINK

columns.

Since

the

unlink

operation

is

performed

asynchronously

on

the

DB2

Data

Links

Manager,

its

effects

may

not

be

seen

immediately

on

the

DB2

Data

Links

Manager,

and

the

unlinked

files

may

not

be

immediately

available

for

other

operations.

When

the

API

is

called,

all

the

DB2

Data

Links

Managers

configured

to

that

database

must

be

available;

otherwise,

the

drop

database

operation

will

fail.

Related

reference:

v

“sqlecadb

-

Catalog

Database”

on

page

494

v

“sqlecrea

-

Create

Database”

on

page

500

v

“sqleuncd

-

Uncatalog

Database”

in

the

Administrative

API

Reference

v

“sqlecran

-

Create

Database

at

Node”

in

the

Administrative

API

Reference

v

“sqledpan

-

Drop

Database

at

Node”

in

the

Administrative

API

Reference

v

“SQLCA”

in

the

Administrative

API

Reference

Related

samples:

v

“dbconf.cbl

--

Update

database

configuration

(IBM

COBOL)”

v

“dbcreate.c

--

Create

and

drop

databases

(C)”

v

“dbcreate.C

--

Create

and

drop

databases

(C++)”

sqlemgdb

-

Migrate

Database

Converts

previous

(Version

2.x

or

higher)

versions

of

DB2

databases

to

current

formats.

Authorization:

sysadm

sqledrpd

-

Drop

Database

508

Common

Criteria

Certification:

Administration

and

User

Documentation

Required

connection:

This

API

establishes

a

database

connection.

API

include

file:

sqlenv.h

C

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlemgdb

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlemgdb

(

_SQLOLDCHAR

*pDbAlias,

_SQLOLDCHAR

*pUserName,

_SQLOLDCHAR

*pPassword,

struct

sqlca

*pSqlca);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlgmgdb

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgmgdb

(

unsigned

short

PasswordLen,

unsigned

short

UserNameLen,

unsigned

short

DbAliasLen,

struct

sqlca

*pSqlca,

_SQLOLDCHAR

*pPassword,

_SQLOLDCHAR

*pUserName,

_SQLOLDCHAR

*pDbAlias);

/*

...

*/

API

parameters:

PasswordLen

Input.

A

2-byte

unsigned

integer

representing

the

length

in

bytes

of

the

password.

Set

to

zero

when

no

password

is

supplied.

UserNameLen

Input.

A

2-byte

unsigned

integer

representing

the

length

in

bytes

of

the

user

name.

Set

to

zero

when

no

user

name

is

supplied.

DbAliasLen

Input.

A

2-byte

unsigned

integer

representing

the

length

in

bytes

of

the

database

alias.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

pPassword

Input.

A

string

containing

the

password

of

the

supplied

user

name

(if

any).

May

be

NULL.

pUserName

Input.

A

string

containing

the

user

name

of

the

application.

May

be

NULL.

pDbAlias

Input.

A

string

containing

the

alias

of

the

database

that

is

cataloged

in

the

system

database

directory.

sqlemgdb

-

Migrate

Database

Chapter

14.

DB2

UDB

APIs

for

Administrators

509

REXX

API

syntax:

MIGRATE

DATABASE

dbalias

[USER

username

USING

password]

REXX

API

parameters:

dbalias

Alias

of

the

database

to

be

migrated.

username

User

name

under

which

the

database

is

to

be

restarted.

password

Password

used

to

authenticate

the

user

name.

Usage

notes:

This

API

will

only

migrate

a

database

to

a

newer

version,

and

cannot

be

used

to

convert

a

migrated

database

to

its

previous

version.

The

database

must

be

cataloged

before

migration.

Related

reference:

v

“SQLCA”

in

the

Administrative

API

Reference

Related

samples:

v

“dbmigrat.c

--

Migrate

a

database

(C)”

v

“dbmigrat.C

--

Migrate

a

database

(C++)”

v

“migrate.cbl

--

Demonstrates

how

to

migrate

to

a

database

(IBM

COBOL)”

sqluadau

-

Get

Authorizations

Reports

the

authorities

of

the

current

user

from

values

found

in

the

database

manager

configuration

file

and

the

authorization

system

catalog

view

(SYSCAT.DBAUTH).

Authorization:

None

Required

connection:

Database

API

include

file:

sqlutil.h

C

API

syntax:

/*

File:

sqlutil.h

*/

/*

API:

sqluadau

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqluadau

(

struct

sql_authorizations

*pAuthorizations,

struct

sqlca

*pSqlca);

/*

...

*/

sqlemgdb

-

Migrate

Database

510

Common

Criteria

Certification:

Administration

and

User

Documentation

Generic

API

syntax:

/*

File:

sqlutil.h

*/

/*

API:

sqlgadau

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgadau

(

struct

sql_authorizations

*pAuthorizations,

struct

sqlca

*pSqlca);

/*

...

*/

API

parameters:

pAuthorizations

Input/Output.

Pointer

to

the

sql_authorizations

structure.

This

array

of

short

integers

indicates

which

authorizations

the

current

user

holds.

The

first

element

in

the

structure,

sql_authorizations_len,

must

be

initialized

to

the

size

of

the

buffer

being

passed,

prior

to

calling

this

API.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

REXX

API

syntax:

GET

AUTHORIZATIONS

:value

REXX

API

parameters:

value

A

compound

REXX

host

variable

to

which

the

authorization

level

is

returned.

In

the

following,

XXX

represents

the

host

variable

name.

Values

are

0

for

no,

and

1

for

yes.

XXX.0

Number

of

elements

in

the

variable

(always

18)

XXX.1

Direct

SYSADM

authority

XXX.2

Direct

DBADM

authority

XXX.3

Direct

CREATETAB

authority

XXX.4

Direct

BINDADD

authority

XXX.5

Direct

CONNECT

authority

XXX.6

Indirect

SYSADM

authority

XXX.7

Indirect

DBADM

authority

XXX.8

Indirect

CREATETAB

authority

XXX.9

Indirect

BINDADD

authority

XXX.10

Indirect

CONNECT

authority

XXX.11

Direct

SYSCTRL

authority

XXX.12

Indirect

SYSCTRL

authority

XXX.13

Direct

SYSMAINT

authority

XXX.14

Indirect

SYSMAINT

authority

XXX.15

Direct

CREATE_NOT_FENC

authority

XXX.16

Indirect

CREATE_NOT_FENC

authority

XXX.17

Direct

IMPLICIT_SCHEMA

authority

XXX.18

Indirect

IMPLICIT_SCHEMA

authority.

sqluadau

-

Get

Authorizations

Chapter

14.

DB2

UDB

APIs

for

Administrators

511

XXX.19

Direct

LOAD

authority.

XXX.20

Indirect

LOAD

authority.

Usage

notes:

Direct

authorities

are

acquired

by

explicit

commands

that

grant

the

authorities

to

a

user

ID.

Indirect

authorities

are

based

on

authorities

acquired

by

the

groups

to

which

a

user

belongs.

Note:

PUBLIC

is

a

special

group

to

which

all

users

belong.

If

there

are

no

errors,

each

element

of

the

sql_authorizations

structure

contains

a

0

or

a

1.

A

value

of

1

indicates

that

the

user

holds

that

authorization;

0

indicates

that

the

user

does

not.

Related

reference:

v

“SQL-AUTHORIZATIONS”

on

page

1016

v

“SQLCA”

in

the

Administrative

API

Reference

Related

samples:

v

“dbauth.sqb

--

How

to

grant

and

display

authorities

on

a

database

(IBM

COBOL)”

v

“dbauth.sqc

--

How

to

grant,

display,

and

revoke

authorities

at

database

level

(C)”

v

“inauth.sqc

--

How

to

display

authorities

at

instance

level

(C)”

v

“dbauth.sqC

--

How

to

grant,

display,

and

revoke

authorities

at

database

level

(C++)”

v

“inauth.sqC

--

How

to

display

authorities

at

instance

level

(C++)”

sqlurcon

-

Reconcile

Validates

the

references

to

files

for

the

DATALINK

data

of

a

table.

The

rows

for

which

the

references

to

files

cannot

be

established

are

copied

to

the

exception

table

(if

specified),

and

modified

in

the

input

table.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

v

sysmaint

v

dbadm

v

CONTROL

privilege

on

the

table.

Required

connection:

Database

API

include

file:

sqlutil.h

sqluadau

-

Get

Authorizations

512

Common

Criteria

Certification:

Administration

and

User

Documentation

C

API

syntax:

/*

File:

sqlutil.h

*/

/*

API:

sqlurcon

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlurcon

(

char

*pTableName,

char

*pExTableName,

char

*pReportFileName,

void

*pReserved,

struct

sqlca

*pSqlca);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlutil.h

*/

/*

API:

sqlgrcon

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgrcon

(

unsigned

short

TableNameLen,

char

*pTableName,

unsigned

short

ExTableNameLen,

char

*pExTableName,

unsigned

short

ReportFleNameLen,

char

*pReportFileName,

void

*pReserved,

struct

sqlca

*pSqlca);

/*

...

*/

API

parameters:

TableNameLen

Input.

A

2-byte

unsigned

integer

representing

the

length

in

bytes

of

the

table

name.

pTableName

Input.

Specifies

the

table

on

which

reconciliation

is

to

be

performed.

An

alias,

or

the

fully

qualified

or

unqualified

table

name

can

be

specified.

A

qualified

table

name

is

in

the

form

schema.tablename.

If

an

unqualified

table

name

is

specified,

the

table

will

be

qualified

with

the

current

authorization

ID.

ExTableNameLen

Input.

A

2-byte

unsigned

integer

representing

the

length

in

bytes

of

the

exception

table

name.

pExTableName

Input.

Specifies

the

exception

table

into

which

rows

that

encounter

link

failures

for

DATALINK

values

are

to

be

copied.

ReportFileNameLen

Input.

A

2-byte

unsigned

integer

representing

the

length

in

bytes

of

the

report

file

name.

pReportFileName

Input.

Specifies

the

file

that

will

contain

information

about

the

files

that

are

unlinked

during

reconciliation.

The

name

must

be

fully

qualified

(for

example,

/u/johnh/report).

The

reconcile

utility

appends

a

.ulk

extension

to

the

specified

file

name

(for

example,

report.ulk).

pReserved

Reserved

for

future

use.

sqlurcon

-

Reconcile

Chapter

14.

DB2

UDB

APIs

for

Administrators

513

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

Usage

notes:

During

reconciliation,

attempts

are

made

to

link

files

which

exist

according

to

table

data,

but

which

do

not

exist

according

to

Data

Links

File

Manager

metadata,

if

no

other

conflict

exists.

Reconciliation

is

performed

with

respect

to

all

DATALINK

data

in

the

table.

If

file

references

cannot

be

re-established,

the

violating

rows

are

inserted

into

the

exception

table

(if

specified).

These

rows

are

not

deleted

from

the

input

table.

To

ensure

file

reference

integrity,

the

offending

DATALINK

values

are

nulled.

If

the

column

is

defined

as

not

nullable,

the

DATALINK

values

are

replaced

by

a

zero

length

URL.

If

an

exception

table

is

not

specified,

the

DATALINK

column

values

for

which

file

references

cannot

be

re-established

are

copied

to

an

exception

report

file

(<pReportFileName>.exp),

along

with

the

column

ID

and

a

comment.

At

the

end

of

the

reconciliation

process,

the

table

is

taken

out

of

datalink

reconcile

pending

(DRP)

state.

Related

reference:

v

“SQLCA”

in

the

Administrative

API

Reference

sqluvqdp

-

Quiesce

Table

Spaces

for

Table

Quiesces

table

spaces

for

a

table.

There

are

three

valid

quiesce

modes:

share,

intent

to

update,

and

exclusive.

There

are

three

possible

table

space

states

resulting

from

the

quiesce

function:

QUIESCED

SHARE,

QUIESCED

UPDATE,

and

QUIESCED

EXCLUSIVE.

Scope:

In

a

single-partition

database

environment,

this

API

quiesces

all

table

spaces

involved

in

a

load

operation

in

exclusive

mode

for

the

duration

of

the

load.

In

a

partitioned

database

environment,

this

API

acts

locally

on

a

database

partition.

It

quiesces

only

that

portion

of

table

spaces

belonging

to

the

database

partition

on

which

the

load

is

performed.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

v

sysmaint

v

dbadm

v

load

Required

connection:

Database

sqlurcon

-

Reconcile

514

Common

Criteria

Certification:

Administration

and

User

Documentation

API

include

file:

sqlutil.h

C

API

syntax:

/*

File:

sqlutil.h

*/

/*

API:

sqluvqdp

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqluvqdp

(

char

*pTableName,

sqlint32

QuiesceMode,

void

*pReserved,

struct

sqlca

*pSqlca);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlutil.h

*/

/*

API:

sqlgvqdp

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgvqdp

(

unsigned

short

TableNameLen,

char

*pTableName,

sqlint32

QuiesceMode,

void

*pReserved,

struct

sqlca

*pSqlca);

/*

...

*/

API

parameters:

TableNameLen

Input.

A

2-byte

unsigned

integer

representing

the

length

in

bytes

of

the

table

name.

pTableName

Input.

A

string

containing

the

table

name

as

used

in

the

system

catalog.

This

may

be

a

two-part

name

with

the

schema

and

the

table

name

separated

by

a

period

(.).

If

the

schema

is

not

provided,

the

CURRENT

SCHEMA

will

be

used.

The

table

cannot

be

a

system

catalog

table.

This

field

is

mandatory.

QuiesceMode

Input.

Specifies

the

quiesce

mode.

Valid

values

(defined

in

sqlutil)

are:

SQLU_QUIESCEMODE_SHARE

For

share

mode

SQLU_QUIESCEMODE_INTENT_UPDATE

For

intent

to

update

mode

SQLU_QUIESCEMODE_EXCLUSIVE

For

exclusive

mode

SQLU_QUIESCEMODE_RESET

To

reset

the

state

of

the

table

spaces

to

normal

if

either

of

the

following

is

true:

v

The

caller

owns

the

quiesce

v

The

caller

who

sets

the

quiesce

disconnects,

creating

a

″phantom

quiesce″

sqluvqdp

-

Quiesce

Table

Spaces

for

Table

Chapter

14.

DB2

UDB

APIs

for

Administrators

515

SQLU_QUIESCEMODE_RESET_OWNED

To

reset

the

state

of

the

table

spaces

to

normal

if

the

caller

owns

the

quiesce.

This

field

is

mandatory.

pReserved

Reserved

for

future

use.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

REXX

API

syntax:

QUIESCE

TABLESPACES

FOR

TABLE

table_name

{SHARE

|

INTENT

TO

UPDATE

|

EXCLUSIVE

|

RESET}

REXX

API

parameters:

table_name

Name

of

the

table

as

used

in

the

system

catalog.

This

may

be

a

two-part

name

with

the

schema

and

the

table

name

separated

by

a

period

(.).

If

the

schema

is

not

provided,

the

CURRENT

SCHEMA

will

be

used.

Usage

notes:

This

API

is

not

supported

for

declared

temporary

tables.

When

the

quiesce

share

request

is

received,

the

transaction

requests

intent

share

locks

for

the

table

spaces

and

a

share

lock

for

the

table.

When

the

transaction

obtains

the

locks,

the

state

of

the

table

spaces

is

changed

to

QUIESCED

SHARE.

The

state

is

granted

to

the

quiescer

only

if

there

is

no

conflicting

state

held

by

other

users.

The

state

of

the

table

spaces

is

recorded

in

the

table

space

table,

along

with

the

authorization

ID

and

the

database

agent

ID

of

the

quiescer,

so

that

the

state

is

persistent.

The

table

cannot

be

changed

while

the

table

spaces

for

the

table

are

in

QUIESCED

SHARE

state.

Other

share

mode

requests

to

the

table

and

table

spaces

will

be

allowed.

When

the

transaction

commits

or

rolls

back,

the

locks

are

released,

but

the

table

spaces

for

the

table

remain

in

QUIESCED

SHARE

state

until

the

state

is

explicitly

reset.

When

the

quiesce

exclusive

request

is

made,

the

transaction

requests

super

exclusive

locks

on

the

table

spaces,

and

a

super

exclusive

lock

on

the

table.

When

the

transaction

obtains

the

locks,

the

state

of

the

table

spaces

changes

to

QUIESCED

EXCLUSIVE.

The

state

of

the

table

spaces,

along

with

the

authorization

ID

and

the

database

agent

ID

of

the

quiescer,

are

recorded

in

the

table

space

table.

Since

the

table

spaces

are

held

in

super

exclusive

mode,

no

other

access

to

the

table

spaces

is

allowed.

The

user

who

invokes

the

quiesce

function

(the

quiescer),

however,

has

exclusive

access

to

the

table

and

the

table

spaces.

When

a

quiesce

update

request

is

made,

the

table

spaces

are

locked

in

intent

exclusive

(IX)

mode,

and

the

table

is

locked

in

update

(U)

mode.

The

state

of

the

table

spaces

with

the

quiescer

is

recorded

in

the

table

space

table.

There

is

a

limit

of

five

quiescers

on

a

table

space

at

any

given

time.

Since

QUIESCED

EXCLUSIVE

is

incompatible

with

any

other

state,

and

QUIESCED

sqluvqdp

-

Quiesce

Table

Spaces

for

Table

516

Common

Criteria

Certification:

Administration

and

User

Documentation

UPDATE

is

incompatible

with

another

QUIESCED

UPDATE,

the

five

quiescer

limit,

if

reached,

must

have

at

least

four

QUIESCED

SHARE

and

at

most

one

QUIESCED

UPDATE.

A

quiescer

can

upgrade

the

state

of

a

table

space

from

a

less

restrictive

state

to

a

more

restrictive

one

(for

example,

S

to

U,

or

U

to

X).

If

a

user

requests

a

state

lower

than

one

that

is

already

held,

the

original

state

is

returned.

States

are

not

downgraded.

The

quiesced

state

of

a

table

space

must

be

reset

explicitly

by

using

SQLU_QUIESCEMODE_RESET.

Related

reference:

v

“SQLCA”

in

the

Administrative

API

Reference

v

“db2DatabaseQuiesce

-

Database

Quiesce”

on

page

402

v

“db2InstanceQuiesce

-

Instance

Quiesce”

in

the

Administrative

API

Reference

Related

samples:

v

“tbmove.sqc

--

How

to

move

table

data

(C)”

v

“tbmove.sqC

--

How

to

move

table

data

(C++)”

v

“tload.sqb

--

How

to

export

and

load

table

data

(IBM

COBOL)”

sqluvqdp

-

Quiesce

Table

Spaces

for

Table

Chapter

14.

DB2

UDB

APIs

for

Administrators

517

sqluvqdp

-

Quiesce

Table

Spaces

for

Table

518

Common

Criteria

Certification:

Administration

and

User

Documentation

Chapter

15.

SQL

Statements

for

Administrators

ALTER

FUNCTION

.

.

.

.

.

.

.

.

.

.

. 519

ALTER

METHOD

.

.

.

.

.

.

.

.

.

.

.

. 521

ALTER

PROCEDURE

.

.

.

.

.

.

.

.

.

.

. 522

ALTER

TABLE

.

.

.

.

.

.

.

.

.

.

.

.

. 525

ALTER

TABLESPACE

.

.

.

.

.

.

.

.

.

. 557

ALTER

VIEW

.

.

.

.

.

.

.

.

.

.

.

.

. 563

COMMENT

.

.

.

.

.

.

.

.

.

.

.

.

.

. 565

CREATE

FUNCTION

.

.

.

.

.

.

.

.

.

.

. 574

CREATE

INDEX

.

.

.

.

.

.

.

.

.

.

.

. 575

CREATE

METHOD

.

.

.

.

.

.

.

.

.

.

. 583

CREATE

PROCEDURE

.

.

.

.

.

.

.

.

.

. 588

CREATE

SCHEMA

.

.

.

.

.

.

.

.

.

.

. 588

CREATE

TABLE

.

.

.

.

.

.

.

.

.

.

.

. 591

CREATE

TABLESPACE

.

.

.

.

.

.

.

.

.

. 648

CREATE

VIEW

.

.

.

.

.

.

.

.

.

.

.

.

. 656

DELETE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 670

DROP

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 676

GRANT

(Database

Authorities)

.

.

.

.

.

.

. 700

GRANT

(Index

Privileges)

.

.

.

.

.

.

.

.

. 704

GRANT

(Package

Privileges)

.

.

.

.

.

.

.

. 705

GRANT

(Routine

Privileges)

.

.

.

.

.

.

.

. 708

GRANT

(Schema

Privileges)

.

.

.

.

.

.

.

. 711

GRANT

(Sequence

Privileges)

.

.

.

.

.

.

.

. 713

GRANT

(Server

Privileges)

.

.

.

.

.

.

.

.

. 715

GRANT

(Table

Space

Privileges)

.

.

.

.

.

.

. 716

GRANT

(Table,

View,

or

Nickname

Privileges)

.

. 718

INSERT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 724

REVOKE

(Database

Authorities)

.

.

.

.

.

.

. 733

RENAME

.

.

.

.

.

.

.

.

.

.

.

.

.

. 736

REVOKE

(Index

Privileges)

.

.

.

.

.

.

.

.

. 738

REVOKE

(Package

Privileges)

.

.

.

.

.

.

.

. 740

REVOKE

(Routine

Privileges)

.

.

.

.

.

.

.

. 742

REVOKE

(Schema

Privileges)

.

.

.

.

.

.

.

. 745

REVOKE

(Sequence

Privileges)

.

.

.

.

.

.

. 747

REVOKE

(Server

Privileges)

.

.

.

.

.

.

.

. 749

REVOKE

(Table

Space

Privileges)

.

.

.

.

.

.

. 750

REVOKE

(Table,

View,

or

Nickname

Privileges)

752

UPDATE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 757

ALTER

FUNCTION

The

ALTER

FUNCTION

statement

modifies

the

properties

of

an

existing

function.

Invocation:

This

statement

can

be

embedded

in

an

application

program

or

issued

through

the

use

of

dynamic

SQL

statements.

It

is

an

executable

statement

that

can

be

dynamically

prepared

only

if

DYNAMICRULES

run

behavior

is

in

effect

for

the

package

(SQLSTATE

42509).

Authorization:

The

privileges

held

by

the

authorization

ID

of

the

statement

must

include

at

least

one

of

the

following:

v

SYSADM

or

DBADM

authority

v

ALTERIN

privilege

on

the

schema

of

the

function

v

Definer

of

the

function,

as

recorded

in

the

DEFINER

column

of

SYSCAT.ROUTINES

To

alter

the

EXTERNAL

NAME

of

a

function,

the

privileges

held

by

the

authorization

ID

of

the

statement

must

also

include

at

least

one

of

the

following:

v

SYSADM

or

DBADM

authority

v

CREATE_EXTERNAL_ROUTINE

authority

on

the

database

To

alter

a

function

to

be

not

fenced,

the

privileges

held

by

the

authorization

ID

of

the

statement

must

also

include

at

least

one

of

the

following:

v

SYSADM

or

DBADM

authority

v

CREATE_NOT_FENCED_ROUTINE

authority

on

the

database

©

Copyright

IBM

Corp.

1993-2004

519

To

alter

a

function

to

be

fenced,

no

additional

authorities

or

privileges

are

required.

If

the

authorization

ID

has

insufficient

authority

to

perform

the

operation,

an

error

(SQLSTATE

42502)

is

raised.

Syntax:

��

ALTER

function-designator

�

EXTERNAL

NAME

'string'

identifier

FENCED

NOT

FENCED

THREADSAFE

NOT

THREADSAFE

��

Description:

function-designator

Uniquely

identifies

the

function

to

be

altered.

For

more

information,

see

Common

syntax

elements

.

EXTERNAL

NAME

’string’

or

identifier

Identifies

the

name

of

the

user-written

code

that

implements

the

function.

This

option

can

only

be

specified

when

altering

external

functions

(SQLSTATE

42849).

FENCED

or

NOT

FENCED

Specifies

whether

the

function

is

considered

safe

to

run

in

the

database

manager

operating

environment’s

process

or

address

space

(NOT

FENCED),

or

not

(FENCED).

Most

functions

have

the

option

of

running

as

FENCED

or

NOT

FENCED.

If

a

function

is

altered

to

be

FENCED,

the

database

manager

insulates

its

internal

resources

(for

example,

data

buffers)

from

access

by

the

function.

In

general,

a

function

running

as

FENCED

will

not

perform

as

well

as

a

similar

one

running

as

NOT

FENCED.

CAUTION:

Use

of

NOT

FENCED

for

functions

that

were

not

adequately

coded,

reviewed,

and

tested

can

compromise

the

integrity

of

DB2.

DB2

takes

some

precautions

against

many

of

the

common

types

of

inadvertent

failures

that

might

occur,

but

cannot

guarantee

complete

integrity

when

NOT

FENCED

user-defined

functions

are

used.

A

function

declared

as

NOT

THREADSAFE

cannot

be

altered

to

be

NOT

FENCED

(SQLSTATE

42613).

If

a

function

has

any

parameters

defined

AS

LOCATOR,

and

was

defined

with

the

NO

SQL

option,

the

function

cannot

be

altered

to

be

FENCED

(SQLSTATE

42613).

This

option

cannot

be

altered

for

LANGUAGE

OLE,

OLEDB,

or

CLR

functions

(SQLSTATE

42849).

THREADSAFE

or

NOT

THREADSAFE

Specifies

whether

the

function

is

considered

safe

to

run

in

the

same

process

as

other

routines

(THREADSAFE),

or

not

(NOT

THREADSAFE).

If

the

function

is

defined

with

LANGUAGE

other

than

OLE

and

OLEDB:

ALTER

FUNCTION

520

Common

Criteria

Certification:

Administration

and

User

Documentation

v

If

the

function

is

defined

as

THREADSAFE,

the

database

manager

can

invoke

the

function

in

the

same

process

as

other

routines.

In

general,

to

be

threadsafe,

a

function

should

not

use

any

global

or

static

data

areas.

Most

programming

references

include

a

discussion

of

writing

threadsafe

routines.

Both

FENCED

and

NOT

FENCED

functions

can

be

THREADSAFE.

v

If

the

function

is

defined

as

NOT

THREADSAFE,

the

database

manager

will

never

invoke

the

function

in

the

same

process

as

another

routine.

Only

a

fenced

function

can

be

NOT

THREADSAFE

(SQLSTATE

42613).

This

option

may

not

be

altered

for

LANGUAGE

OLE

or

OLEDB

functions

(SQLSTATE

42849).

Notes:

v

It

is

not

possible

to

alter

a

function

that

is

in

the

SYSIBM,

SYSFUN,

or

SYSPROC

schema

(SQLSTATE

42832).

v

Functions

declared

as

LANGUAGE

SQL,

sourced

functions,

or

template

functions

cannot

be

altered

(SQLSTATE

42917).

Example:

The

function

MAIL()

has

been

thoroughly

tested.

To

improve

its

performance,

alter

the

function

to

be

not

fenced.

ALTER

FUNCTION

MAIL()

NOT

FENCED

Related

reference:

v

“CREATE

FUNCTION

(OLE

DB

External

Table)

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

FUNCTION

(External

Scalar)

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

FUNCTION

(External

Table)

statement”

in

the

SQL

Reference,

Volume

2

v

“Common

syntax

elements”

in

the

SQL

Reference,

Volume

2

ALTER

METHOD

The

ALTER

METHOD

statement

modifies

an

existing

method

by

changing

the

method

body

associated

with

the

method.

Invocation:

This

statement

can

be

embedded

in

an

application

program

or

issued

through

the

use

of

dynamic

SQL

statements.

It

is

an

executable

statement

that

can

be

dynamically

prepared

only

if

DYNAMICRULES

run

behavior

is

in

effect

for

the

package

(SQLSTATE

42509).

Authorization:

The

privileges

held

by

the

authorization

ID

of

the

statement

must

include

at

least

one

of

the

following:

v

SYSADM

or

DBADM

authority

v

CREATE_EXTERNAL_ROUTINE

authority

on

the

database,

and

at

least

one

of:

–

ALTERIN

privilege

on

the

schema

of

the

type

ALTER

FUNCTION

Chapter

15.

SQL

Statements

for

Administrators

521

–

Definer

of

the

type,

as

recorded

in

the

DEFINER

column

of

SYSCAT.DATATYPES

If

the

authorization

ID

has

insufficient

authority

to

perform

the

operation,

an

error

(SQLSTATE

42502)

is

raised.

Syntax:

��

ALTER

method-designator

EXTERNAL

NAME

'string'

identifier

��

Description:

method-designator

Uniquely

identifies

the

method

to

be

altered.

For

more

information,

see

Common

syntax

elements

.

EXTERNAL

NAME

’string’

or

identifier

Identifies

the

name

of

the

user-written

code

that

implements

the

method.

This

option

can

only

be

specified

when

altering

external

methods

(SQLSTATE

42849).

Notes:

v

It

is

not

possible

to

alter

a

method

that

is

in

the

SYSIBM,

SYSFUN,

or

SYSPROC

schema

(SQLSTATE

42832).

v

Methods

declared

as

LANGUAGE

SQL

cannot

be

altered

(SQLSTATE

42917).

v

Methods

declared

as

LANGUAGE

CLR

cannot

be

altered

(SQLSTATE

42849).

v

The

specified

method

must

have

a

body

before

it

can

be

altered

(SQLSTATE

42704).

Example:

Alter

the

method

DISTANCE()

in

the

structured

type

ADDRESS_T

to

use

the

library

newaddresslib.

ALTER

METHOD

DISTANCE()

FOR

TYPE

ADDRESS_T

EXTERNAL

NAME

’newaddresslib!distance2’

Related

reference:

v

“CREATE

METHOD”

on

page

583

v

“Common

syntax

elements”

in

the

SQL

Reference,

Volume

2

ALTER

PROCEDURE

The

ALTER

PROCEDURE

statement

modifies

an

existing

procedure

by

changing

the

properties

of

the

procedure.

Invocation:

This

statement

can

be

embedded

in

an

application

program

or

issued

through

the

use

of

dynamic

SQL

statements.

It

is

an

executable

statement

that

can

be

dynamically

prepared

only

if

DYNAMICRULES

run

behavior

is

in

effect

for

the

package

(SQLSTATE

42509).

Authorization:

ALTER

METHOD

522

Common

Criteria

Certification:

Administration

and

User

Documentation

The

privileges

held

by

the

authorization

ID

of

the

statement

must

include

at

least

one

of

the

following:

v

SYSADM

or

DBADM

authority

v

ALTERIN

privilege

on

the

schema

of

the

procedure

v

Definer

of

the

procedure,

as

recorded

in

the

DEFINER

column

of

SYSCAT.ROUTINES

To

alter

the

EXTERNAL

NAME

of

a

procedure,

the

privileges

held

by

the

authorization

ID

of

the

statement

must

also

include

at

least

one

of

the

following:

v

SYSADM

or

DBADM

authority

v

CREATE_EXTERNAL_ROUTINE

authority

on

the

database

To

alter

a

procedure

to

be

not

fenced,

the

privileges

held

by

the

authorization

ID

of

the

statement

must

also

include

at

least

one

of

the

following:

v

SYSADM

or

DBADM

authority

v

CREATE_NOT_FENCED_ROUTINE

authority

on

the

database

To

alter

a

procedure

to

be

fenced,

no

additional

authorities

or

privileges

are

required.

If

the

authorization

ID

has

insufficient

authority

to

perform

the

operation,

an

error

(SQLSTATE

42502)

is

raised.

Syntax:

��

ALTER

procedure-designator

�

EXTERNAL

NAME

'string'

identifier

FENCED

NOT

FENCED

EXTERNAL

ACTION

NO

EXTERNAL

ACTION

THREADSAFE

NOT

THREADSAFE

NEW

SAVEPOINT

LEVEL

��

Description:

procedure-designator

Uniquely

identifies

the

procedure

to

be

altered.

For

more

information,

see

Common

syntax

elements

.

EXTERNAL

NAME

’string’

or

identifier

Identifies

the

name

of

the

user-written

code

that

implements

the

procedure.

This

option

can

only

be

specified

when

altering

external

procedures

(SQLSTATE

42849).

The

EXTERNAL

NAME

clause

cannot

be

altered

in

procedures

that

were

declared

as

LANGUAGE

SQL

(SQLSTATE

42917).

FENCED

or

NOT

FENCED

Specifies

whether

the

procedure

is

considered

safe

to

run

in

the

database

manager

operating

environment’s

process

or

address

space

(NOT

FENCED),

or

not

(FENCED).

Most

procedures

have

the

option

of

running

as

FENCED

or

NOT

FENCED.

ALTER

PROCEDURE

Chapter

15.

SQL

Statements

for

Administrators

523

If

a

procedure

is

altered

to

be

FENCED,

the

database

manager

insulates

its

internal

resources

(for

example,

data

buffers)

from

access

by

the

procedure.

In

general,

a

procedure

running

as

FENCED

will

not

perform

as

well

as

a

similar

one

running

as

NOT

FENCED.

CAUTION:

Use

of

NOT

FENCED

for

procedures

that

were

not

adequately

coded,

reviewed,

and

tested

can

compromise

the

integrity

of

DB2.

DB2

takes

some

precautions

against

many

of

the

common

types

of

inadvertent

failures

that

might

occur,

but

cannot

guarantee

complete

integrity

when

NOT

FENCED

stored

procedures

are

used.

This

option

can

only

be

specified

when

altering

external

procedures

(SQLSTATE

42849).

A

procedure

declared

as

NOT

THREADSAFE

cannot

be

altered

to

be

NOT

FENCED

(SQLSTATE

42613).

If

a

procedure

has

any

parameters

defined

AS

LOCATOR,

and

was

defined

with

the

NO

SQL

option,

the

procedure

cannot

be

altered

to

be

FENCED

(SQLSTATE

42613).

This

option

cannot

be

altered

for

LANGUAGE

OLE

or

CLR

procedures

(SQLSTATE

42849).

The

FENCED

or

NOT

FENCED

clause

cannot

be

altered

in

procedures

that

were

declared

as

LANGUAGE

SQL

(SQLSTATE

42917).

EXTERNAL

ACTION

or

NO

EXTERNAL

ACTION

Specifies

whether

the

procedure

takes

some

action

that

changes

the

state

of

an

object

not

managed

by

the

database

manager

(EXTERNAL

ACTION),

or

not

(NO

EXTERNAL

ACTION).

If

NO

EXTERNAL

ACTION

is

specified,

the

system

can

use

certain

optimizations

that

assume

the

procedure

has

no

external

impact.

THREADSAFE

or

NOT

THREADSAFE

Specifies

whether

the

procedure

is

considered

safe

to

run

in

the

same

process

as

other

routines

(THREADSAFE),

or

not

(NOT

THREADSAFE).

If

the

procedure

is

defined

with

LANGUAGE

other

than

OLE:

v

If

the

procedure

is

defined

as

THREADSAFE,

the

database

manager

can

invoke

the

procedure

in

the

same

process

as

other

routines.

In

general,

to

be

threadsafe,

a

procedure

should

not

use

any

global

or

static

data

areas.

Most

programming

references

include

a

discussion

of

writing

threadsafe

routines.

Both

FENCED

and

NOT

FENCED

procedures

can

be

THREADSAFE.

v

If

the

procedure

is

defined

as

NOT

THREADSAFE,

the

database

manager

will

never

invoke

the

procedure

in

the

same

process

as

another

routine.

Only

a

fenced

procedure

can

be

NOT

THREADSAFE

(SQLSTATE

42613).

This

option

can

only

be

specified

when

altering

external

procedures

(SQLSTATE

42849).

This

option

cannot

be

altered

for

LANGUAGE

OLE

procedures

(SQLSTATE

42849).

The

THREADSAFE

or

NOT

THREADSAFE

clause

cannot

be

altered

in

procedures

that

were

declared

as

LANGUAGE

SQL

(SQLSTATE

42917).

NEW

SAVEPOINT

LEVEL

Specifies

that

a

new

savepoint

level

is

to

be

created

for

the

procedure.

A

ALTER

PROCEDURE

524

Common

Criteria

Certification:

Administration

and

User

Documentation

savepoint

level

refers

to

the

scope

of

reference

for

any

savepoint-related

statement,

as

well

as

to

the

name

space

used

for

comparison

and

reference

of

any

savepoint

names.

The

savepoint

level

for

a

procedure

can

only

be

altered

to

NEW

SAVEPOINT

LEVEL.

Rules:

v

It

is

not

possible

to

alter

a

procedure

that

is

in

the

SYSIBM,

SYSFUN,

or

SYSPROC

schema

(SQLSTATE

42832).

Example:

Alter

the

procedure

PARTS_ON_HAND()

to

be

not

fenced.

ALTER

PROCEDURE

PARTS_ON_HAND()

NOT

FENCED

Related

reference:

v

“CREATE

PROCEDURE”

on

page

588

v

“Common

syntax

elements”

in

the

SQL

Reference,

Volume

2

ALTER

TABLE

The

ALTER

TABLE

statement

alters

the

definition

of

a

table.

Invocation:

This

statement

can

be

embedded

in

an

application

program

or

issued

through

the

use

of

dynamic

SQL

statements.

It

is

an

executable

statement

that

can

be

dynamically

prepared

only

if

DYNAMICRULES

run

behavior

is

in

effect

for

the

package

(SQLSTATE

42509).

Authorization:

The

privileges

held

by

the

authorization

ID

of

the

statement

must

include

at

least

one

of

the

following:

v

ALTER

privilege

on

the

table

to

be

altered

v

CONTROL

privilege

on

the

table

to

be

altered

v

ALTERIN

privilege

on

the

schema

of

the

table

v

SYSADM

or

DBADM

authority.

To

create

or

drop

a

foreign

key,

the

privileges

held

by

the

authorization

ID

of

the

statement

must

include

one

of

the

following

on

the

parent

table:

v

REFERENCES

privilege

on

the

table

v

REFERENCES

privilege

on

each

column

of

the

specified

parent

key

v

CONTROL

privilege

on

the

table

v

SYSADM

or

DBADM

authority.

To

drop

a

primary

key

or

unique

constraint

of

table

T,

the

privileges

held

by

the

authorization

ID

of

the

statement

must

include

at

least

one

of

the

following

on

every

table

that

is

a

dependent

of

this

parent

key

of

T:

v

ALTER

privilege

on

the

table

v

CONTROL

privilege

on

the

table

ALTER

PROCEDURE

Chapter

15.

SQL

Statements

for

Administrators

525

v

ALTERIN

privilege

on

the

schema

of

the

table

v

SYSADM

or

DBADM

authority.

To

alter

a

table

to

become

a

materialized

query

table

(using

a

fullselect),

the

privileges

held

by

the

authorization

ID

of

the

statement

must

include

at

least

one

of

the

following:

v

CONTROL

on

the

table

v

SYSADM

or

DBADM

authority;

and

at

least

one

of

the

following,

on

each

table

or

view

identified

in

the

fullselect:

v

SELECT

and

ALTER

privilege

on

the

table

or

view

v

CONTROL

privilege

on

the

table

or

view

v

SELECT

privilege

on

the

table

or

view

and

ALTERIN

privilege

on

the

schema

of

the

table

or

view

v

SYSADM

or

DBADM

authority.

To

alter

a

table

so

that

it

is

no

longer

a

materialized

query

table,

the

privileges

held

by

the

authorization

ID

of

the

statement

must

include

at

least

one

of

the

following,

on

each

table

or

view

identified

in

the

fullselect

used

to

define

the

materialized

query

table:

v

ALTER

privilege

on

the

table

or

view

v

CONTROL

privilege

on

the

table

or

view

v

ALTERIN

privilege

on

the

schema

of

the

table

or

view

v

SYSADM

or

DBADM

authority

Syntax:

��

ALTER

TABLE

table-name

�

ALTER

TABLE

526

Common

Criteria

Certification:

Administration

and

User

Documentation

�

�

COLUMN

ADD

column-definition

unique-constraint

referential-constraint

check-constraint

partitioning-key-definition

RESTRICT

ON

DROP

MATERIALIZED

QUERY

ADD

materialized-query-definition

ALTER

FOREIGN

KEY

constraint-name

constraint-alteration

CHECK

COLUMN

ALTER

column-alteration

DROP

PRIMARY

KEY

FOREIGN

KEY

constraint-name

UNIQUE

CHECK

CONSTRAINT

PARTITIONING

KEY

RESTRICT

ON

DROP

MATERIALIZED

DROP

QUERY

DATA

CAPTURE

NONE

CHANGES

INCLUDE

LONGVAR

COLUMNS

ACTIVATE

NOT

LOGGED

INITIALLY

WITH

EMPTY

TABLE

PCTFREE

integer

LOCKSIZE

ROW

TABLE

APPEND

ON

OFF

CARDINALITY

VOLATILE

NOT

VOLATILE

ACTIVATE

VALUE

COMPRESSION

DEACTIVATE

LOG

INDEX

BUILD

NULL

OFF

ON

��

materialized-query-definition:

(

fullselect

)

refreshable-table-options

refreshable-table-options:

*

DATA

INITIALLY

DEFERRED

*

REFRESH

DEFERRED

IMMEDIATE

*

�

�

ENABLE

QUERY

OPTIMIZATION

DISABLE

QUERY

OPTIMIZATION

*

MAINTAINED

BY

SYSTEM

USER

FEDERATED_TOOL

*

ALTER

TABLE

Chapter

15.

SQL

Statements

for

Administrators

527

column-definition:

column-name

(1)

data-type

column-options

column-options:

�

NOT

NULL

(2)

lob-options

(3)

datalink-options

(4)

SCOPE

typed-table-name2

typed-view-name2

PRIMARY

KEY

CONSTRAINT

constraint-name

UNIQUE

references-clause

CHECK

(

check-condition

)

constraint-attributes

generated-column-spec

COMPRESS

SYSTEM

DEFAULT

Notes:

1 If

the

first

column-option

chosen

is

the

generated-column-spec,

then

the

data-type

can

be

omitted

and

computed

by

the

generation-expression.

2 The

lob-options

clause

only

applies

to

large

object

types

(BLOB,

CLOB

and

DBCLOB)

and

distinct

types

based

on

large

object

types.

3 The

datalink-options

clause

only

applies

to

the

DATALINK

type

and

distinct

types

based

on

the

DATALINK

type.

4 The

SCOPE

clause

only

applies

to

the

REF

type.

lob-options:

LOGGED

*

NOT

LOGGED

NOT

COMPACT

*

*

COMPACT

datalink-options:

LINKTYPE

URL

NO

LINK

CONTROL

FILE

LINK

CONTROL

file-link-options

MODE

DB2OPTIONS

file-link-options:

*

INTEGRITY

ALL

*

READ

PERMISSION

FS

DB

�

ALTER

TABLE

528

Common

Criteria

Certification:

Administration

and

User

Documentation

�

*

WRITE

PERMISSION

FS

BLOCKED

ADMIN

REQUIRING

TOKEN

FOR

UPDATE

NOT

�

�

*

RECOVERY

NO

YES

*

ON

UNLINK

RESTORE

*

DELETE

references-clause:

REFERENCES

table-name

nickname

�

,

(

column-name

)

�

�

rule-clause

constraint-attributes

rule-clause:

ON

DELETE

NO

ACTION

ON

UPDATE

NO

ACTION

*

*

*

ON

DELETE

RESTRICT

ON

UPDATE

RESTRICT

CASCADE

SET

NULL

generated-column-spec:

default-clause

GENERATED

ALWAYS

AS

(

generation-expression

)

default-clause:

WITH

DEFAULT

constant

datetime-special-register

user-special-register

CURRENT

SCHEMA

NULL

cast-function

(

constant

)

datetime-special-register

user-special-register

CURRENT

SCHEMA

unique-constraint:

CONSTRAINT

constraint-name

UNIQUE

PRIMARY

KEY

�

,

(

column-name

)

referential-constraint:

ALTER

TABLE

Chapter

15.

SQL

Statements

for

Administrators

529

CONSTRAINT

constraint-name

�

,

FOREIGN

KEY

(

column-name

)

�

�

references-clause

check-constraint:

CONSTRAINT

constraint-name

CHECK

(

check-condition

)

�

�

constraint-attributes

check-condition:

search-condition

functional-dependency

functional-dependency:

�

�

column-name

DETERMINED

BY

column-name

,

,

(

column-name

)

(

column-name

)

constraint-attributes:

*

ENFORCED

NOT

ENFORCED

*

ENABLE

QUERY

OPTIMIZATION

DISABLE

QUERY

OPTIMIZATION

*

partitioning-key-definition:

PARTITIONING

KEY

�

,

(

column-name

)

USING

HASHING

column-alteration:

ALTER

TABLE

530

Common

Criteria

Certification:

Administration

and

User

Documentation

column-name

SET

DATA

TYPE

VARCHAR

(

integer

)

CHARACTER

VARYING

CHAR

VARYING

VARGRAPHIC

generated-column-spec

EXPRESSION

AS

(

generation-expression

)

INLINE

LENGTH

integer

generation-alteration

identity-alteration

identity-alteration

DROP

IDENTITY

EXPRESSION

DEFAULT

SET

generated-column-spec

ADD

SCOPE

typed-table-name

typed-view-name

COMPRESS

SYSTEM

DEFAULT

OFF

generated-column-spec:

default-clause

ALWAYS

GENERATED

identity-options

BY

DEFAULT

AS

(

generation-expression

)

identity-options:

AS

IDENTITY

�

(1)

1

(

START

WITH

numeric-constant

)

1

INCREMENT

BY

numeric-constant

NO

MINVALUE

MINVALUE

numeric-constant

NO

MAXVALUE

MAXVALUE

numeric-constant

NO

CYCLE

CYCLE

CACHE

20

NO

CACHE

CACHE

integer-constant

generation-alteration:

SET

GENERATED

ALWAYS

BY

DEFAULT

identity-alteration:

ALTER

TABLE

Chapter

15.

SQL

Statements

for

Administrators

531

�

(1)

SET

INCREMENT

BY

numeric-constant

SET

NO

MINVALUE

MINVALUE

numeric-constant

SET

NO

MAXVALUE

MAXVALUE

numeric-constant

SET

NO

CYCLE

CYCLE

SET

NO

CACHE

CACHE

integer-constant

SET

NO

ORDER

ORDER

RESTART

WITH

numeric-constant

constraint-alteration:

�

(1)

ENABLE

QUERY

OPTIMIZATION

DISABLE

ENFORCED

NOT

Notes:

1 The

same

clause

must

not

be

specified

more

than

once.

Description:

table-name

The

table-name

must

identify

a

table

that

exists

at

the

current

server.

It

cannot

be

a

nickname

(SQLSTATE

42809)

and

must

not

be

a

view,

a

catalog

table,

or

a

declared

temporary

table

(SQLSTATE

42995).

If

table-name

identifies

a

materialized

query

table,

alterations

are

limited

to

adding

or

dropping

the

materialized

query

table,

activating

not

logged

initially,

adding

or

dropping

RESTRICT

ON

DROP,

and

changing

pctfree,

locksize,

append,

or

volatile.

If

table-name

identifies

a

range-clustered

table,

alterations

are

limited

to

adding,

changing,

or

dropping

constraints,

activating

not

logged

initially,

adding

or

dropping

RESTRICT

ON

DROP,

changing

locksize,

data

capture,

or

volatile,

and

setting

column

default

values.

ADD

column-definition

Adds

a

column

to

the

table.

The

table

must

not

be

a

typed

table

(SQLSTATE

428DH).

For

all

existing

rows

in

the

table,

the

value

of

the

new

column

is

set

to

its

default

value.

The

new

column

is

the

last

column

of

the

table;

that

is,

if

initially

there

are

n

columns,

the

added

column

is

column

n+1.

Adding

the

new

column

must

not

make

the

total

byte

count

of

all

columns

exceed

the

maximum

record

size.

column-name

Is

the

name

of

the

column

to

be

added

to

the

table.

The

name

cannot

be

qualified.

Existing

column

names

in

the

table

cannot

be

used

(SQLSTATE

42711).

ALTER

TABLE

532

Common

Criteria

Certification:

Administration

and

User

Documentation

data-type

Is

one

of

the

data

types

listed

under

“CREATE

TABLE”.

NOT

NULL

Prevents

the

column

from

containing

null

values.

The

default-clause

must

also

be

specified

(SQLSTATE

42601).

lob-options

Specifies

options

for

LOB

data

types.

See

lob-options

in

“CREATE

TABLE”.

datalink-options

Specifies

options

for

DATALINK

data

types.

See

datalink-options

in

“CREATE

TABLE”.

SCOPE

Specify

a

scope

for

a

reference

type

column.

typed-table-name2

The

name

of

a

typed

table.

The

data

type

of

column-name

must

be

REF(S),

where

S

is

the

type

of

typed-table-name2

(SQLSTATE

428DM).

No

checking

is

done

of

the

default

value

for

column-name

to

ensure

that

the

value

actually

references

an

existing

row

in

typed-table-name2.

typed-view-name2

The

name

of

a

typed

view.

The

data

type

of

column-name

must

be

REF(S),

where

S

is

the

type

of

typed-view-name2

(SQLSTATE

428DM).

No

checking

is

done

of

the

default

value

for

column-name

to

ensure

that

the

values

actually

references

an

existing

row

in

typed-view-name2.

CONSTRAINT

constraint-name

Names

the

constraint.

A

constraint-name

must

not

identify

a

constraint

that

was

already

specified

within

the

same

ALTER

TABLE

statement,

or

as

the

name

of

any

other

existing

constraint

on

the

table

(SQLSTATE

42710).

If

the

constraint

name

is

not

specified

by

the

user,

an

18-character

identifier

unique

within

the

identifiers

of

the

existing

constraints

defined

on

the

table

is

generated

by

the

system.

(The

identifier

consists

of

″SQL″

followed

by

a

sequence

of

15

numeric

characters

that

are

generated

by

a

timestamp-based

function.)

When

used

with

a

PRIMARY

KEY

or

UNIQUE

constraint,

the

constraint-name

may

be

used

as

the

name

of

an

index

that

is

created

to

support

the

constraint.

See

“Notes”

on

page

551

for

details

on

index

names

associated

with

unique

constraints.

PRIMARY

KEY

This

provides

a

shorthand

method

of

defining

a

primary

key

composed

of

a

single

column.

Thus,

if

PRIMARY

KEY

is

specified

in

the

definition

of

column

C,

the

effect

is

the

same

as

if

the

PRIMARY

KEY(C)

clause

were

specified

as

a

separate

clause.

The

column

cannot

contain

null

values,

so

the

NOT

NULL

attribute

must

also

be

specified

(SQLSTATE

42831).

See

PRIMARY

KEY

within

the

description

of

the

unique-constraint

below.

UNIQUE

This

provides

a

shorthand

method

of

defining

a

unique

key

composed

of

a

single

column.

Thus,

if

UNIQUE

is

specified

in

the

definition

of

column

C,

the

effect

is

the

same

as

if

the

UNIQUE(C)

clause

were

specified

as

a

separate

clause.

See

UNIQUE

within

the

description

of

the

unique-constraint

below.

ALTER

TABLE

Chapter

15.

SQL

Statements

for

Administrators

533

references-clause

This

provides

a

shorthand

method

of

defining

a

foreign

key

composed

of

a

single

column.

Thus,

if

a

references-clause

is

specified

in

the

definition

of

column

C,

the

effect

is

the

same

as

if

that

references-clause

were

specified

as

part

of

a

FOREIGN

KEY

clause

in

which

C

is

the

only

identified

column.

See

references-clause

in

“CREATE

TABLE”.

CHECK

(check-condition)

This

provides

a

shorthand

method

of

defining

a

check

constraint

that

applies

to

a

single

column.

See

check-condition

in

“CREATE

TABLE”.

generated-column-spec

For

details

on

column

generation,

see

“CREATE

TABLE”.

default-clause

Specifies

a

default

value

for

the

column.

WITH

An

optional

keyword.

DEFAULT

Provides

a

default

value

in

the

event

a

value

is

not

supplied

on

INSERT

or

is

specified

as

DEFAULT

on

INSERT

or

UPDATE.

If

a

specific

default

value

is

not

specified

following

the

DEFAULT

keyword,

the

default

value

depends

on

the

data

type

of

the

column

as

shown

in

Table

57.

If

a

column

is

defined

as

a

DATALINK

or

structured

type,

then

a

DEFAULT

clause

cannot

be

specified.

If

a

column

is

defined

using

a

distinct

type,

then

the

default

value

of

the

column

is

the

default

value

of

the

source

data

type

cast

to

the

distinct

type.

Table

57.

Default

Values

(when

no

value

specified)

Data

Type

Default

Value

Numeric

0

Fixed-length

character

string

Blanks

Varying-length

character

string

A

string

of

length

0

Fixed-length

graphic

string

Double-byte

blanks

Varying-length

graphic

string

A

string

of

length

0

Date

For

existing

rows,

a

date

corresponding

to

January

1,

0001.

For

added

rows,

the

current

date.

Time

For

existing

rows,

a

time

corresponding

to

0

hours,

0

minutes,

and

0

seconds.

For

added

rows,

the

current

time.

Timestamp

For

existing

rows,

a

date

corresponding

to

January

1,

0001,

and

a

time

corresponding

to

0

hours,

0

minutes,

0

seconds

and

0

microseconds.

For

added

rows,

the

current

timestamp.

Binary

string

(blob)

A

string

of

length

0

ALTER

TABLE

534

Common

Criteria

Certification:

Administration

and

User

Documentation

Omission

of

DEFAULT

from

a

column-definition

results

in

the

use

of

the

null

value

as

the

default

for

the

column.

Specific

types

of

values

that

can

be

specified

with

the

DEFAULT

keyword

are

as

follows.

constant

Specifies

the

constant

as

the

default

value

for

the

column.

The

specified

constant

must:

v

represent

a

value

that

could

be

assigned

to

the

column

in

accordance

with

the

rules

of

assignment

as

described

in

Chapter

3

v

not

be

a

floating-point

constant

unless

the

column

is

defined

with

a

floating-point

data

type

v

not

have

non-zero

digits

beyond

the

scale

of

the

column

data

type

if

the

constant

is

a

decimal

constant

(for

example,

1.234

cannot

be

the

default

for

a

DECIMAL(5,2)

column)

v

be

expressed

with

no

more

than

254

characters

including

the

quote

characters,

any

introducer

character

such

as

the

X

for

a

hexadecimal

constant,

and

characters

from

the

fully

qualified

function

name

and

parentheses

when

the

constant

is

the

argument

of

a

cast-function.

datetime-special-register

Specifies

the

value

of

the

datetime

special

register

(CURRENT

DATE,

CURRENT

TIME,

or

CURRENT

TIMESTAMP)

at

the

time

of

INSERT,

UPDATE,

or

LOAD

as

the

default

for

the

column.

The

data

type

of

the

column

must

be

the

data

type

that

corresponds

to

the

special

register

specified

(for

example,

data

type

must

be

DATE

when

CURRENT

DATE

is

specified).

For

existing

rows,

the

value

is

the

current

date,

current

time

or

current

timestamp

when

the

ALTER

TABLE

statement

is

processed.

user-special-register

Specifies

the

value

of

the

user

special

register

(CURRENT

USER,

SESSION_USER,

SYSTEM_USER)

at

the

time

of

INSERT,

UPDATE,

or

LOAD

as

the

default

for

the

column.

The

data

type

of

the

column

must

be

a

character

string

with

a

length

not

less

than

the

length

attribute

of

a

user

special

register.

Note

that

USER

can

be

specified

in

place

of

SESSION_USER

and

CURRENT_USER

can

be

specified

in

place

of

CURRENT

USER.

For

existing

rows,

the

value

is

the

CURRENT

USER,

SESSION_USER,

or

SYSTEM_USER

of

the

ALTER

TABLE

statement.

CURRENT

SCHEMA

Specifies

the

value

of

the

CURRENT

SCHEMA

special

register

at

the

time

of

INSERT,

UPDATE,

or

LOAD

as

the

default

for

the

column.

If

CURRENT

SCHEMA

is

specified,

the

data

type

of

the

column

must

be

a

character

string

with

a

length

greater

than

or

equal

to

the

length

attribute

of

the

CURRENT

SCHEMA

special

register.

For

existing

rows,

the

value

of

the

CURRENT

SCHEMA

special

register

at

the

time

the

ALTER

TABLE

statement

is

processed.

NULL

Specifies

NULL

as

the

default

for

the

column.

If

NOT

NULL

was

specified,

DEFAULT

NULL

must

not

be

specified

within

the

same

column

definition.

ALTER

TABLE

Chapter

15.

SQL

Statements

for

Administrators

535

cast-function

This

form

of

a

default

value

can

only

be

used

with

columns

defined

as

a

distinct

type,

BLOB

or

datetime

(DATE,

TIME

or

TIMESTAMP)

data

type.

For

distinct

type,

with

the

exception

of

distinct

types

based

on

BLOB

or

datetime

types,

the

name

of

the

function

must

match

the

name

of

the

distinct

type

for

the

column.

If

qualified

with

a

schema

name,

it

must

be

the

same

as

the

schema

name

for

the

distinct

type.

If

not

qualified,

the

schema

name

from

function

resolution

must

be

the

same

as

the

schema

name

for

the

distinct

type.

For

a

distinct

type

based

on

a

datetime

type,

where

the

default

value

is

a

constant,

a

function

must

be

used

and

the

name

of

the

function

must

match

the

name

of

the

source

type

of

the

distinct

type

with

an

implicit

or

explicit

schema

name

of

SYSIBM.

For

other

datetime

columns,

the

corresponding

datetime

function

may

also

be

used.

For

a

BLOB

or

a

distinct

type

based

on

BLOB,

a

function

must

be

used

and

the

name

of

the

function

must

be

BLOB

with

an

implicit

or

explicit

schema

name

of

SYSIBM.

constant

Specifies

a

constant

as

the

argument.

The

constant

must

conform

to

the

rules

of

a

constant

for

the

source

type

of

the

distinct

type

or

for

the

data

type

if

not

a

distinct

type.

If

the

cast-function

is

BLOB,

the

constant

must

be

a

string

constant.

datetime-special-register

Specifies

CURRENT

DATE,

CURRENT

TIME,

or

CURRENT

TIMESTAMP.

The

source

type

of

the

distinct

type

of

the

column

must

be

the

data

type

that

corresponds

to

the

specified

special

register.

user-special-register

Specifies

CURRENT

USER,

SESSION_USER,

or

SYSTEM_USER.

The

data

type

of

the

source

type

of

the

distinct

type

of

the

column

must

be

a

string

data

type

with

a

length

of

at

least

8

bytes.

If

the

cast-function

is

BLOB,

the

length

attribute

must

be

at

least

8

bytes.

CURRENT

SCHEMA

Specifies

the

value

of

the

CURRENT

SCHEMA

special

register.

The

data

type

of

the

source

type

of

the

distinct

type

of

the

column

must

be

a

character

string

with

a

length

greater

than

or

equal

to

the

length

attribute

of

the

CURRENT

SCHEMA

special

register.

If

the

cast-function

is

BLOB,

the

length

attribute

must

be

at

least

8

bytes.

If

the

value

specified

is

not

valid,

an

error

(SQLSTATE

42894)

is

returned.

GENERATED

Specifies

that

DB2

generates

values

for

the

column.

ALWAYS

Specifies

that

DB2

will

always

generate

a

value

for

the

column

when

a

row

is

inserted

into

the

table,

or

whenever

the

result

value

of

the

generation-expression

might

change.

The

result

of

the

expression

is

stored

in

the

table.

GENERATED

ALWAYS

is

the

recommended

option

ALTER

TABLE

536

Common

Criteria

Certification:

Administration

and

User

Documentation

unless

data

propagation

or

unload

and

reload

operations

are

being

performed.

GENERATED

ALWAYS

is

the

required

option

for

generated

columns.

BY

DEFAULT

Specifies

that

DB2

will

generate

a

value

for

the

column

when

a

row

is

inserted

into

the

table,

or

updated,

specifying

DEFAULT

for

the

column,

unless

an

explicit

value

is

specified.

BY

DEFAULT

is

the

recommended

option

when

using

data

propagation

or

performing

unload

and

reload

operations.

identity-options

This

clause

cannot

be

specified

when

adding

a

column

to

an

existing

table.

AS

(generation-expression)

Specifies

that

the

definition

of

the

column

is

based

on

an

expression.

Requires

that

the

table

be

put

in

check

pending

state,

using

the

SET

INTEGRITY

statement.

After

the

ALTER

TABLE

statement,

the

SET

INTEGRITY

statement

with

FORCE

GENERATED

must

be

used

to

update

and

check

all

the

values

in

that

column

against

the

new

expression.

For

details

on

specifying

a

column

with

a

generation-expression,

see

“CREATE

TABLE”.

COMPRESS

SYSTEM

DEFAULT

Specifies

that

system

default

values

(that

is,

the

default

values

used

for

the

data

types

when

no

specific

values

are

specified)

are

to

be

stored

using

minimal

space.

If

the

VALUE

COMPRESSION

clause

is

not

specified,

a

warning

is

returned

(SQLSTATE

01648)

and

system

default

values

are

not

stored

using

minimal

space.

Allowing

system

default

values

to

be

stored

in

this

manner

causes

a

slight

performance

penalty

during

insert

and

update

operations

on

the

column

because

of

extra

checking

that

is

done.

The

base

data

type

must

not

be

DATE,

TIME,

or

TIMESTAMP

(SQLSTATE

42842).

If

the

base

data

type

is

a

varying-length

string,

this

clause

is

ignored.

String

values

of

length

0

are

automatically

compressed

if

a

table

has

been

set

with

VALUE

COMPRESSION.

ADD

unique-constraint

Defines

a

unique

or

primary

key

constraint.

A

primary

key

or

unique

constraint

cannot

be

added

to

a

table

that

is

a

subtable

(SQLSTATE

429B3).

If

the

table

is

a

supertable

at

the

top

of

the

hierarchy,

the

constraint

applies

to

the

table

and

all

its

subtables.

CONSTRAINT

constraint-name

Names

the

primary

key

or

unique

constraint.

For

more

information,

see

constraint-name

in

“CREATE

TABLE”.

UNIQUE

(column-name...,)

Defines

a

unique

key

composed

of

the

identified

columns.

The

identified

columns

must

be

defined

as

NOT

NULL.

Each

column-name

must

identify

a

column

of

the

table

and

the

same

column

must

not

be

identified

more

than

once.

The

name

cannot

be

qualified.

The

number

of

identified

columns

must

not

exceed

16,

and

the

sum

of

their

stored

lengths

must

not

exceed

1024.

No

LOB,

LONG

VARCHAR,

LONG

VARGRAPHIC,

DATALINK,

distinct

type

based

on

any

of

these

types,

or

structured

type

may

be

used

as

part

of

a

unique

key,

even

if

the

length

attribute

of

the

column

is

small

enough

to

fit

within

the

1024-byte

limit

(SQLSTATE

54008).

The

set

of

columns

in

the

unique

key

cannot

be

the

same

as

the

set

of

columns

of

the

ALTER

TABLE

Chapter

15.

SQL

Statements

for

Administrators

537

primary

key

or

another

unique

key

(SQLSTATE

01543).

(If

LANGLEVEL

is

SQL92E

or

MIA,

an

error

is

returned,

SQLSTATE

42891.)

Any

existing

values

in

the

set

of

identified

columns

must

be

unique

(SQLSTATE

23515).

A

check

is

performed

to

determine

if

an

existing

index

matches

the

unique

key

definition

(ignoring

any

INCLUDE

columns

in

the

index).

An

index

definition

matches

if

it

identifies

the

same

set

of

columns

without

regard

to

the

order

of

the

columns

or

the

direction

(ASC/DESC)

specifications.

If

a

matching

index

definition

is

found,

the

description

of

the

index

is

changed

to

indicate

that

it

is

required

by

the

system

and

it

is

changed

to

unique

(after

ensuring

uniqueness)

if

it

was

a

non-unique

index.

If

the

table

has

more

than

one

matching

index,

an

existing

unique

index

is

selected

(the

selection

is

arbitrary).

If

no

matching

index

is

found,

a

unique

index

will

automatically

be

created

for

the

columns,

as

described

in

CREATE

TABLE.

See

“Notes”

on

page

551

for

details

on

index

names

associated

with

unique

constraints.

PRIMARY

KEY

...(column-name,)

Defines

a

primary

key

composed

of

the

identified

columns.

Each

column-name

must

identify

a

column

of

the

table,

and

the

same

column

must

not

be

identified

more

than

once.

The

name

cannot

be

qualified.

The

number

of

identified

columns

must

not

exceed

16

and

the

sum

of

their

stored

lengths

must

not

exceed

1024.

The

table

must

not

have

a

primary

key

and

the

identified

columns

must

be

defined

as

NOT

NULL.

No

LOB,

LONG

VARCHAR,

LONG

VARGRAPHIC,

DATALINK,

distinct

type

based

on

any

of

these

types,

or

structured

type

may

be

used

as

part

of

a

primary

key,

even

if

the

length

attribute

of

the

column

is

small

enough

to

fit

within

the

1024-byte

limit

(SQLSTATE

54008).

The

set

of

columns

in

the

primary

key

cannot

be

the

same

as

the

set

of

columns

in

a

unique

key

(SQLSTATE

01543).

(If

LANGLEVEL

is

SQL92E

or

MIA,

an

error

is

returned,

SQLSTATE

42891.)

Any

existing

values

in

the

set

of

identified

columns

must

be

unique

(SQLSTATE

23515).

A

check

is

performed

to

determine

if

an

existing

index

matches

the

primary

key

definition

(ignoring

any

INCLUDE

columns

in

the

index).

An

index

definition

matches

if

it

identifies

the

same

set

of

columns

without

regard

to

the

order

of

the

columns

or

the

direction

(ASC/DESC)

specifications.

If

a

matching

index

definition

is

found,

the

description

of

the

index

is

changed

to

indicate

that

it

is

the

primary

index,

as

required

by

the

system,

and

it

is

changed

to

unique

(after

ensuring

uniqueness)

if

it

was

a

non-unique

index.

If

the

table

has

more

than

one

matching

index,

an

existing

unique

index

is

selected

(the

selection

is

arbitrary).

If

no

matching

index

is

found,

a

unique

index

will

automatically

be

created

for

the

columns,

as

described

in

CREATE

TABLE.

See

“Notes”

on

page

551

for

details

on

index

names

associated

with

unique

constraints.

Only

one

primary

key

can

be

defined

on

a

table.

ADD

referential-constraint

Defines

a

referential

constraint.

See

referential-constraint

in

“CREATE

TABLE”.

ADD

check-constraint

Defines

a

check

constraint

or

functional

dependency.

See

check-constraint

in

“CREATE

TABLE”.

ADD

partitioning-key-definition

Defines

a

partitioning

key.

The

table

must

be

defined

in

a

table

space

on

a

single-partition

database

partition

group

and

must

not

already

have

a

ALTER

TABLE

538

Common

Criteria

Certification:

Administration

and

User

Documentation

partitioning

key.

If

a

partitioning

key

already

exists

for

the

table,

the

existing

key

must

be

dropped

before

adding

the

new

partitioning

key.

A

partitioning

key

cannot

be

added

to

a

table

that

is

a

subtable

(SQLSTATE

428DH).

PARTITIONING

KEY

(column-name...)

Defines

a

partitioning

key

using

the

specified

columns.

Each

column-name

must

identify

a

column

of

the

table,

and

the

same

column

must

not

be

identified

more

than

once.

The

name

cannot

be

qualified.

A

column

cannot

be

used

as

part

of

a

partitioning

key

if

the

data

type

of

the

column

is

a

LONG

VARCHAR,

LONG

VARGRAPHIC,

BLOB,

CLOB,

DBCLOB,

DATALINK,

distinct

type

on

any

of

these

types,

or

structured

type.

USING

HASHING

Specifies

the

use

of

the

hashing

function

as

the

partitioning

method

for

data

distribution.

This

is

the

only

partitioning

method

supported.

ADD

RESTRICT

ON

DROP

Specifies

that

the

table

cannot

be

dropped,

and

that

the

table

space

that

contains

the

table

cannot

be

dropped.

ADD

MATERIALIZED

QUERY

materialized-query-definition

Changes

a

regular

table

to

a

materialized

query

table

for

use

during

query

optimization.

The

table

specified

by

table-name

must

not:

v

be

previously

defined

as

a

materialized

query

table

v

be

a

typed

table

v

have

any

constraints,

unique

indexes,

or

triggers

defined

v

be

referenced

in

the

definition

of

another

materialized

query

table.

If

table-name

does

not

meet

these

criteria,

an

error

is

returned

(SQLSTATE

428EW).

fullselect

Defines

the

query

in

which

the

table

is

based.

The

columns

of

the

existing

table

must:

v

have

the

same

number

of

columns

v

have

exactly

the

same

data

types

v

have

the

same

column

names

in

the

same

ordinal

positions

as

the

result

columns

of

fullselect

(SQLSTATE

428EW).

For

details

about

specifying

the

fullselect

for

a

materialized

query

table,

see

“CREATE

TABLE”.

One

additional

restriction

is

that

table-name

cannot

be

directly

or

indirectly

referenced

in

the

fullselect.

refreshable-table-options

Specifies

the

refreshable

options

for

altering

a

materialized

query

table.

DATA

INITIALLY

DEFERRED

The

data

in

the

table

must

be

validated

using

the

REFRESH

TABLE

or

SET

INTEGRITY

statement.

REFRESH

Indicates

how

the

data

in

the

table

is

maintained.

DEFERRED

The

data

in

the

table

can

be

refreshed

at

any

time

using

the

REFRESH

TABLE

statement.

The

data

in

the

table

only

reflects

the

result

of

the

query

as

a

snapshot

at

the

time

the

REFRESH

ALTER

TABLE

Chapter

15.

SQL

Statements

for

Administrators

539

TABLE

statement

is

processed.

Materialized

query

tables

defined

with

this

attribute

do

not

allow

INSERT,

UPDATE,

or

DELETE

statements

(SQLSTATE

42807).

IMMEDIATE

The

changes

made

to

the

underlying

tables

as

part

of

a

DELETE,

INSERT,

or

UPDATE

are

cascaded

to

the

materialized

query

table.

In

this

case,

the

content

of

the

table,

at

any

point-in-time,

is

the

same

as

if

the

specified

subselect

is

processed.

Materialized

query

tables

defined

with

this

attribute

do

not

allow

INSERT,

UPDATE,

or

DELETE

statements

(SQLSTATE

42807).

ENABLE

QUERY

OPTIMIZATION

The

materialized

query

table

can

be

used

for

query

optimization.

DISABLE

QUERY

OPTIMIZATION

The

materialized

query

table

will

not

be

used

for

query

optimization.

The

table

can

still

be

queried

directly.

MAINTAINED

BY

Specifies

whether

the

data

in

the

materialized

query

table

is

maintained

by

the

system,

user,

or

replication

tool.

SYSTEM

Specifies

that

the

data

in

the

materialized

query

table

is

maintained

by

the

system.

USER

Specifies

that

the

data

in

the

materialized

query

table

is

maintained

by

the

user.

The

user

is

allowed

to

perform

update,

delete,

or

insert

operations

against

user-maintained

materialized

query

tables.

The

REFRESH

TABLE

statement,

used

for

system-maintained

materialized

query

tables,

cannot

be

invoked

against

user-maintained

materialized

query

tables.

Only

a

REFRESH

DEFERRED

materialized

query

table

can

be

defined

as

MAINTAINED

BY

USER.

FEDERATED_TOOL

Specifies

that

the

data

in

the

materialized

query

table

is

maintained

by

the

replication

tool.

The

REFRESH

TABLE

statement,

used

for

system-maintained

materialized

query

tables,

cannot

be

invoked

against

federated_tool-maintained

materialized

query

tables.

Only

a

REFRESH

DEFERRED

materialized

query

table

can

be

defined

as

MAINTAINED

BY

FEDERATED_TOOL.

ALTER

FOREIGN

KEY

constraint-name

Alters

the

constraint

attributes

of

the

referential

constraint

constraint-name.

The

constraint-name

must

identify

an

existing

referential

constraint

(SQLSTATE

42704).

ALTER

CHECK

constraint-name

Alters

the

constraint

attributes

of

the

check

constraint

or

functional

dependency

constraint-name.

The

constraint-name

must

identify

an

existing

check

constraint

or

functional

dependency

(SQLSTATE

42704).

constraint-alteration

Options

for

changing

attributes

associated

with

referential

or

check

constraints.

ALTER

TABLE

540

Common

Criteria

Certification:

Administration

and

User

Documentation

ENFORCED

or

NOT

ENFORCED

Specifies

whether

the

constraint

is

enforced

by

the

database

manager

during

normal

operations

such

as

insert,

update,

or

delete.

ENFORCED

Change

the

constraint

to

ENFORCED.

ENFORCED

cannot

be

specified

for

a

functional

dependency

(SQLSTATE

42621).

NOT

ENFORCED

Change

the

constraint

to

NOT

ENFORCED.

This

should

only

be

specified

if

the

table

data

is

independently

known

to

conform

to

the

constraint.

ENABLE

QUERY

OPTIMIZATION

or

DISABLE

QUERY

OPTIMIZATION

Specifies

whether

the

constraint

or

functional

dependency

can

be

used

for

query

optimization

under

appropriate

circumstances.

ENABLE

QUERY

OPTIMIZATION

The

constraint

is

assumed

to

be

true

and

can

be

used

for

query

optimization.

DISABLE

QUERY

OPTIMIZATION

The

constraint

cannot

be

used

for

query

optimization.

ALTER

column-alteration

Alters

the

definition

of

a

column.

Only

the

specified

attributes

will

be

altered;

others

will

remain

unchanged.

column-name

Specifies

the

name

of

the

column

that

is

to

be

altered.

The

column-name

must

identify

an

existing

column

of

the

table

(SQLSTATE

42703).

The

name

cannot

be

qualified.

The

name

must

not

identify

a

column

that

is

being

added,

dropped,

or

altered

in

the

same

ALTER

TABLE

statement

(SQLSTATE

42711).

SET

DATA

TYPE

Sets

the

data

type

of

a

column.

The

table

must

not

be

a

typed

table

(SQLSTATE

428DH).

Altering

the

column

must

not

make

the

total

byte

count

of

all

columns

exceed

the

maximum

record

size

(SQLSTATE

54010).

If

the

column

is

used

in

a

unique

constraint

or

an

index,

the

new

length

must

not

cause

the

sum

of

the

stored

lengths

for

the

unique

constraint

or

index

to

exceed

1024

(SQLSTATE

54008).

VARCHAR

integer

Increases

the

length

of

an

existing

VARCHAR

column.

CHARACTER

VARYING

or

CHAR

VARYING

can

be

used

as

synonyms

for

the

VARCHAR

keyword.

The

data

type

of

column-name

must

be

VARCHAR,

and

the

current

maximum

length

defined

for

the

column

must

not

be

greater

than

the

value

for

integer

(SQLSTATE

42837).

The

value

of

integer

can

range

up

to

32

672.

VARGRAPHIC

integer

Increases

the

length

of

an

existing

VARGRAPHIC

column.

The

data

type

of

column-name

must

be

VARGRAPHIC,

and

the

current

maximum

length

defined

for

the

column

must

not

be

greater

than

the

value

for

integer

(SQLSTATE

42837).

The

value

of

integer

can

range

up

to

16

336.

SET

EXPRESSION

AS

(generation-expression)

Changes

the

expression

for

the

column

to

the

specified

ALTER

TABLE

Chapter

15.

SQL

Statements

for

Administrators

541

generation-expression.

SET

EXPRESSION

AS

requires

the

table

to

be

put

in

check

pending

state,

using

the

SET

INTEGRITY

statement.

After

the

ALTER

TABLE

statement,

the

SET

INTEGRITY

statement

must

be

used

to

update

and

check

all

the

values

in

that

column

against

the

new

expression.

The

column

must

already

be

defined

as

a

generated

column

based

on

an

expression

(SQLSTATE

42837),

and

must

not

have

appeared

in

the

DIMENSIONS

clause

of

the

table

(SQLSTATE

42997).

The

generation-expression

must

conform

to

the

same

rules

that

apply

when

defining

a

generated

column.

The

result

data

type

of

the

generation-expression

must

be

assignable

to

the

data

type

of

the

column

(SQLSTATE

42821).

SET

generated-column-spec

Specifies

the

technique

used

to

generate

a

value

for

the

column.

This

can

be

in

the

form

of

a

specific

default

value,

an

expression,

or

defining

the

column

as

an

identity

column.

If

an

existing

default

for

the

column

results

from

a

different

generation

technique,

that

default

must

be

dropped,

which

can

be

done

in

the

same

column-alteration

using

one

of

the

DROP

clauses.

default-clause

Specifies

a

new

default

value

for

the

column

that

is

to

be

altered.

The

column

must

not

already

be

defined

as

the

identity

column

or

have

a

generation

expression

defined

(SQLSTATE

42837).

The

specified

default

value

must

represent

a

value

that

could

be

assigned

to

the

column

in

accordance

with

the

rules

for

assignment

as

described

in

“Assignments

and

comparisons”.

Altering

the

default

value

does

not

change

the

value

that

is

associated

with

this

column

for

existing

rows.

GENERATED

ALWAYS

or

GENERATED

BY

DEFAULT

Specifies

when

the

database

manager

is

to

generate

values

for

the

column.

GENERATED

BY

DEFAULT

specifies

that

a

value

is

only

to

be

generated

when

a

value

is

not

provided,

or

the

DEFAULT

keyword

is

used

in

an

assignment

to

the

column.

GENERATED

ALWAYS

specifies

that

the

database

manager

is

to

always

generate

a

value

for

the

column.

GENERATED

BY

DEFAULT

cannot

be

specified

with

a

generation-expression.

identity-options

Specifies

that

the

column

is

the

identity

column

for

the

table.

The

column

must

not

already

be

defined

as

the

identity

column,

cannot

have

a

generation

expression,

or

cannot

have

an

explicit

default

(SQLSTATE

42837).

A

table

can

only

have

a

single

identity

column

(SQLSTATE

428C1).

The

column

must

be

specified

as

not

nullable

(SQLSTATE

42997),

and

the

data

type

associated

with

the

column

must

be

an

exact

numeric

data

type

with

a

scale

of

zero

(SQLSTATE

42815).

An

exact

numeric

data

type

is

one

of:

SMALLINT,

INTEGER,

BIGINT,

DECIMAL,

or

NUMERIC

with

a

scale

of

zero,

or

a

distinct

type

based

on

one

of

these

types.

For

details

on

identity

options,

see

“CREATE

TABLE”.

AS

(generation-expression)

Specifies

that

the

definition

of

the

column

is

based

on

an

expression.

The

column

must

not

already

be

defined

with

a

generation

expression,

cannot

be

the

identity

column,

or

cannot

have

an

explicit

default

(SQLSTATE

42837).

The

generation-expression

must

conform

to

the

same

rules

that

apply

when

defining

a

generated

column.

The

result

data

type

of

the

generation-expression

must

be

assignable

to

the

data

type

of

the

ALTER

TABLE

542

Common

Criteria

Certification:

Administration

and

User

Documentation

column

(SQLSTATE

42821).

The

column

must

not

be

referenced

in

the

partitioning

key

column

or

in

the

ORGANIZE

BY

clause

(SQLSTATE

42997).

SET

INLINE

LENGTH

integer

Changes

the

inline

length

of

an

existing

structured

type

column.

The

inline

length

indicates

the

maximum

byte

size

of

an

instance

of

a

structured

type

to

store

inline

with

the

rest

of

the

values

in

the

row.

Instances

of

structured

types

that

cannot

be

stored

inline

are

stored

separately

from

the

base

table

row,

similar

to

the

way

that

LOB

values

are

handled.

The

data

type

of

column-name

must

be

a

structured

type

(SQLSTATE

42842).

The

default

inline

length

for

a

structured-type

column

is

the

inline

length

of

its

type

(specified

explicitly

or

by

default

in

the

CREATE

TYPE

statement).

If

the

inline

length

of

a

structured

type

is

less

than

292,

the

value

292

is

used

for

the

inline

length

of

the

column.

The

explicit

inline

length

value

can

only

be

increased

(SQLSTATE

-1);

must

be

at

least

292;

and

cannot

exceed

32672

(SQLSTATE

54010).

Altering

the

column

must

not

make

the

total

byte

count

of

all

columns

exceed

the

maximum

record

size

(SQLSTATE

54010).

Data

that

is

already

stored

separately

from

the

rest

of

the

row

will

not

be

moved

inline

by

this

statement.

To

take

advantage

of

the

altered

inline

length

of

a

structured

type

column,

invoke

the

REORG

command

against

the

specified

table

after

altering

the

inline

length

of

its

column.

SET

GENERATED

ALWAYS

or

GENERATED

BY

DEFAULT

Specifies

when

the

database

manager

is

to

generate

values

for

the

column.

GENERATED

BY

DEFAULT

specifies

that

a

value

is

only

to

be

generated

when

a

value

is

not

provided

or

the

DEFAULT

keyword

is

used

in

an

assignment

to

the

column.

GENERATED

ALWAYS

specifies

that

the

database

manager

is

to

always

generate

a

value

for

the

column.

The

column

must

already

be

defined

as

a

generated

column

based

on

an

identity

column;

that

is,

defined

with

the

AS

IDENTITY

clause

(SQLSTATE

42837).

DROP

DEFAULT

Drops

the

current

default

for

the

column.

The

specified

column

must

have

a

default

value

(SQLSTATE

42837).

DROP

EXPRESSION

Drops

the

generated

expression

attributes

of

the

column,

making

the

column

a

non-generated

column.

DROP

EXPRESSION

is

not

allowed

if

the

column

is

not

a

generated

expression

column

(SQLSTATE

42837).

DROP

IDENTITY

Drops

the

identity

attributes

of

the

column,

making

the

column

a

simple

numeric

data

type

column.

DROP

IDENTITY

is

not

allowed

if

the

column

is

not

an

identity

column

(SQLSTATE

42837).

ADD

SCOPE

Add

a

scope

to

an

existing

reference

type

column

that

does

not

already

have

a

scope

defined

(SQLSTATE

428DK).

If

the

table

being

altered

is

a

typed

table,

the

column

must

not

be

inherited

from

a

supertable

(SQLSTATE

428DJ).

typed-table-name

The

name

of

a

typed

table.

The

data

type

of

column-name

must

be

ALTER

TABLE

Chapter

15.

SQL

Statements

for

Administrators

543

REF(S),

where

S

is

the

type

of

typed-table-name

(SQLSTATE

428DM).

No

checking

is

done

of

any

existing

values

in

column-name

to

ensure

that

the

values

actually

reference

existing

rows

in

typed-table-name.

typed-view-name

The

name

of

a

typed

view.

The

data

type

of

column-name

must

be

REF(S),

where

S

is

the

type

of

typed-view-name

(SQLSTATE

428DM).

No

checking

is

done

of

any

existing

values

in

column-name

to

ensure

that

the

values

actually

reference

existing

rows

in

typed-view-name.

COMPRESS

Specifies

whether

or

not

default

values

for

this

column

are

to

be

stored

more

efficiently.

SYSTEM

DEFAULT

Specifies

that

system

default

values

(that

is,

the

default

values

used

for

the

data

types

when

no

specific

values

are

specified)

are

to

be

stored

using

minimal

space.

If

the

table

is

not

already

set

with

the

VALUE

COMPRESSION

attribute

activated,

a

warning

is

returned

(SQLSTATE

01648),

and

system

default

values

are

not

stored

using

minimal

space.

Allowing

system

default

values

to

be

stored

in

this

manner

causes

a

slight

performance

penalty

during

insert

and

update

operations

on

the

column

because

of

the

extra

checking

that

is

done.

Existing

data

in

the

column

is

not

changed.

Consider

offline

table

reorganization

to

enable

existing

data

to

take

advantage

of

storing

system

default

values

using

minimal

space.

OFF

Specifies

that

system

default

values

are

to

be

stored

in

the

column

as

regular

values.

Existing

data

in

the

column

is

not

changed.

Offline

reorganization

is

recommended

to

change

existing

data.

The

base

data

type

must

not

be

DATE,

TIME

or

TIMESTAMP

(SQLSTATE

42842).

If

the

base

data

type

is

a

varying-length

string,

this

clause

is

ignored.

String

values

of

length

0

are

automatically

compressed

if

a

table

has

been

set

with

VALUE

COMPRESSION.

If

the

table

being

altered

is

a

typed

table,

the

column

must

not

be

inherited

from

a

supertable

(SQLSTATE

428DJ).

identity-alteration

Alters

the

identity

attributes

of

the

column.

The

column

must

be

an

identity

column.

SET

INCREMENT

BY

numeric-constant

Specifies

the

interval

between

consecutive

values

of

the

identity

column.

The

next

value

to

be

generated

for

the

identity

column

will

be

determined

from

the

last

assigned

value

with

the

increment

applied.

The

column

must

already

be

defined

with

the

IDENTITY

attribute

(SQLSTATE

42837).

This

value

can

be

any

positive

or

negative

value

that

could

be

assigned

to

this

column

(SQLSTATE

42815),

and

does

not

exceed

the

value

of

a

large

integer

constant

(SQLSTATE

42820),

without

non-zero

digits

existing

to

the

right

of

the

decimal

point

(SQLSTATE

428FA).

If

this

value

is

negative,

this

is

a

descending

sequence

after

the

ALTER

statement.

If

this

value

is

0

or

positive,

this

is

an

ascending

sequence

after

the

ALTER

statement.

ALTER

TABLE

544

Common

Criteria

Certification:

Administration

and

User

Documentation

SET

NO

MINVALUE

or

MINVALUE

numeric-constant

Specifies

the

minimum

value

at

which

a

descending

identity

column

either

cycles

or

stops

generating

values,

or

the

value

to

which

an

ascending

identity

column

cycles

after

reaching

the

maximum

value.

The

column

must

exist

in

the

specified

table

(SQLSTATE

42703),

and

must

already

be

defined

with

the

IDENTITY

attribute

(SQLSTATE

42837).

NO

MINVALUE

For

an

ascending

sequence,

the

value

is

the

original

starting

value.

For

a

descending

sequence,

the

value

is

the

minimum

value

of

the

data

type

of

the

column.

MINVALUE

numeric-constant

Specifies

the

numeric

constant

that

is

the

minimum

value.

This

value

can

be

any

positive

or

negative

value

that

could

be

assigned

to

this

column

(SQLSTATE

42815),

without

non-zero

digits

existing

to

the

right

of

the

decimal

point

(SQLSTATE

428FA),

but

the

value

must

be

less

than

or

equal

to

the

maximum

value

(SQLSTATE

42815).

SET

NO

MAXVALUE

or

MAXVALUE

numeric-constant

Specifies

the

maximum

value

at

which

an

ascending

identity

column

either

cycles

or

stops

generating

values,

or

the

value

to

which

a

descending

identity

column

cycles

after

reaching

the

minimum

value.

The

column

must

exist

in

the

specified

table

(SQLSTATE

42703),

and

must

already

be

defined

with

the

IDENTITY

attribute

(SQLSTATE

42837).

NO

MAXVALUE

For

an

ascending

sequence,

the

value

is

the

maximum

value

of

the

data

type

of

the

column.

For

a

descending

sequence,

the

value

is

the

original

starting

value.

MAXVALUE

numeric-constant

Specifies

the

numeric

constant

that

is

the

maximum

value.

This

value

can

be

any

positive

or

negative

value

that

could

be

assigned

to

this

column

(SQLSTATE

42815),

without

non-zero

digits

existing

to

the

right

of

the

decimal

point

(SQLSTATE

428FA),

but

the

value

must

be

greater

than

or

equal

to

the

minimum

value

(SQLSTATE

42815).

SET

NO

CYCLE

or

CYCLE

Specifies

whether

this

identity

column

should

continue

to

generate

values

after

generating

either

its

maximum

or

minimum

value.

The

column

must

exist

in

the

specified

table

(SQLSTATE

42703),

and

must

already

be

defined

with

the

IDENTITY

attribute

(SQLSTATE

42837).

NO

CYCLE

Specifies

that

values

will

not

be

generated

for

the

identity

column

once

the

maximum

or

minimum

value

has

been

reached.

CYCLE

Specifies

that

values

continue

to

be

generated

for

this

column

after

the

maximum

or

minimum

value

has

been

reached.

If

this

option

is

used,

then

after

an

ascending

identity

column

reaches

the

maximum

value,

it

generates

its

minimum

value;

or

after

a

descending

sequence

reaches

the

minimum

value,

it

generates

its

maximum

value.

The

maximum

and

minimum

values

for

the

identity

column

determine

the

range

that

is

used

for

cycling.

ALTER

TABLE

Chapter

15.

SQL

Statements

for

Administrators

545

When

CYCLE

is

in

effect,

duplicate

values

can

be

generated

for

an

identity

column.

Although

not

required,

if

unique

values

are

desired,

a

single-column

unique

index

defined

using

the

identity

column

will

ensure

uniqueness.

If

a

unique

index

exists

on

such

an

identity

column

and

a

non-unique

value

is

generated,

an

error

occurs

(SQLSTATE

23505).

SET

NO

CACHE

or

CACHE

integer-constant

Specifies

whether

to

keep

some

pre-allocated

values

in

memory

for

faster

access.

This

is

a

performance

and

tuning

option.

The

column

must

already

be

defined

with

the

IDENTITY

attribute

(SQLSTATE

42837).

NO

CACHE

Specifies

that

values

for

the

identity

column

are

not

to

be

pre-allocated.

In

a

data

sharing

environment,

if

the

identity

values

must

be

generated

in

order

of

request,

the

NO

CACHE

option

must

be

used.

When

this

option

is

specified,

the

values

of

the

identity

column

are

not

stored

in

the

cache.

In

this

case,

every

request

for

a

new

identity

value

results

in

synchronous

I/O

to

the

log.

CACHE

integer-constant

Specifies

how

many

values

of

the

identity

sequence

are

pre-allocated

and

kept

in

memory.

When

values

are

generated

for

the

identity

column,

pre-allocating

and

storing

values

in

the

cache

reduces

synchronous

I/O

to

the

log.

If

a

new

value

is

needed

for

the

identity

column

and

there

are

no

unused

values

available

in

the

cache,

the

allocation

of

the

value

requires

waiting

for

I/O

to

the

log.

However,

when

a

new

value

is

needed

for

the

identity

column

and

there

is

an

unused

value

in

the

cache,

the

allocation

of

that

identity

value

can

happen

more

quickly

by

avoiding

the

I/O

to

the

log.

In

the

event

of

a

database

deactivation,

either

normally

or

due

to

a

system

failure,

all

cached

sequence

values

that

have

not

been

used

in

committed

statements

are

lost

(that

is,

they

will

never

be

used).

The

value

specified

for

the

CACHE

option

is

the

maximum

number

of

values

for

the

identity

column

that

could

be

lost

in

case

of

system

failure.

The

minimum

value

is

2

(SQLSTATE

42815).

SET

NO

ORDER

or

ORDER

Specifies

whether

the

identity

column

values

must

be

generated

in

order

of

request.

The

column

must

exist

in

the

specified

table

(SQLSTATE

42703),

and

must

already

be

defined

with

the

IDENTITY

attribute

(SQLSTATE

42837).

NO

ORDER

Specifies

that

the

identity

column

values

do

not

need

to

be

generated

in

order

of

request.

ORDER

Specifies

that

the

identity

column

values

must

be

generated

in

order

of

request.

RESTART

or

RESTART

WITH

numeric-constant

Resets

the

state

of

the

sequence

associated

with

the

identity

column.

If

ALTER

TABLE

546

Common

Criteria

Certification:

Administration

and

User

Documentation

WITH

numeric-constant

is

not

specified,

the

sequence

for

the

identity

column

is

restarted

at

the

value

that

was

specified,

either

implicitly

or

explicitly,

as

the

starting

value

when

the

identity

column

was

originally

created.

The

column

must

exist

in

the

specified

table

(SQLSTATE

42703),

and

must

already

be

defined

with

the

IDENTITY

attribute

(SQLSTATE

42837).

RESTART

does

not

change

the

original

START

WITH

value.

The

numeric-constant

is

an

exact

numeric

constant

that

can

be

any

positive

or

negative

value

that

could

be

assigned

to

this

column

(SQLSTATE

42815),

without

non-zero

digits

existing

to

the

right

of

the

decimal

point

(SQLSTATE

428FA).

The

numeric-constant

will

be

used

as

the

next

value

for

the

column.

DROP

PRIMARY

KEY

Drops

the

definition

of

the

primary

key

and

all

referential

constraints

dependent

on

this

primary

key.

The

table

must

have

a

primary

key.

DROP

FOREIGN

KEY

constraint-name

Drops

the

referential

constraint

constraint-name.

The

constraint-name

must

identify

a

referential

constraint.

For

information

on

implications

of

dropping

a

referential

constraint

see

“Notes”

on

page

551.

DROP

UNIQUE

constraint-name

Drops

the

definition

of

the

unique

constraint

constraint-name

and

all

referential

constraints

dependent

on

this

unique

constraint.

The

constraint-name

must

identify

an

existing

UNIQUE

constraint.

For

information

on

implications

of

dropping

a

unique

constraint,

see

“Notes”

on

page

551.

DROP

CHECK

constraint-name

Drops

the

check

constraint

constraint-name.

The

constraint-name

must

identify

an

existing

check

constraint

defined

on

the

table.

DROP

CONSTRAINT

constraint-name

Drops

the

constraint

constraint-name.

The

constraint-name

must

identify

an

existing

check

constraint,

referential

constraint,

primary

key

or

unique

constraint

defined

on

the

table.

For

information

on

implications

of

dropping

a

constraint,

see

“Notes”

on

page

551.

DROP

PARTITIONING

KEY

Drops

the

partitioning

key.

The

table

must

have

a

partitioning

key

and

must

be

in

a

table

space

defined

on

a

single-partition

database

partition

group.

DROP

RESTRICT

ON

DROP

Removes

the

restriction

on

dropping

the

table,

and

the

table

space

that

contains

the

table.

DROP

MATERIALIZED

QUERY

Changes

a

materialized

query

table

so

that

it

is

no

longer

considered

a

materialized

query

table.

The

table

specified

by

table-name

must

be

defined

as

a

materialized

query

table

that

is

not

replicated

(SQLSTATE

428EW).

The

definition

of

the

columns

of

table-name

is

not

changed

but

the

table

can

no

longer

be

used

for

query

optimization

and

the

REFRESH

TABLE

statement

can

no

longer

be

used.

DATA

CAPTURE

Indicates

whether

extra

information

for

data

replication

is

to

be

written

to

the

log.

If

the

table

is

a

typed

table,

then

this

option

is

not

supported

(SQLSTATE

428DH

for

root

tables

or

428DR

for

other

subtables).

ALTER

TABLE

Chapter

15.

SQL

Statements

for

Administrators

547

NONE

Indicates

that

no

extra

information

will

be

logged.

CHANGES

Indicates

that

extra

information

regarding

SQL

changes

to

this

table

will

be

written

to

the

log.

This

option

is

required

if

this

table

will

be

replicated

and

the

Capture

program

is

used

to

capture

changes

for

this

table

from

the

log.

If

the

table

is

defined

to

allow

data

on

a

partition

other

than

the

catalog

partition

(multiple

partition

database

partition

group

or

database

partition

group

with

partition

other

than

the

catalog

partition),

then

this

option

is

not

supported

(SQLSTATE

42997).

If

the

schema

name

(implicit

or

explicit)

of

the

table

is

longer

than

18

bytes,

this

option

is

not

supported

(SQLSTATE

42997).

INCLUDE

LONGVAR

COLUMNS

Allows

data

replication

utilities

to

capture

changes

made

to

LONG

VARCHAR

or

LONG

VARGRAPHIC

columns.

The

clause

may

be

specified

for

tables

that

do

not

have

any

LONG

VARCHAR

or

LONG

VARGRAPHIC

columns

since

it

is

possible

to

ALTER

the

table

to

include

such

columns.

ACTIVATE

NOT

LOGGED

INITIALLY

Activates

the

NOT

LOGGED

INITIALLY

attribute

of

the

table

for

this

current

unit

of

work.

Any

changes

made

to

the

table

by

an

INSERT,

DELETE,

UPDATE,

CREATE

INDEX,

DROP

INDEX,

or

ALTER

TABLE

in

the

same

unit

of

work

after

the

table

is

altered

by

this

statement

are

not

logged.

Any

changes

made

to

the

system

catalog

by

the

ALTER

statement

in

which

the

NOT

LOGGED

INITIALLY

attribute

is

activated

are

logged.

Any

subsequent

changes

made

in

the

same

unit

of

work

to

the

system

catalog

information

are

logged.

At

the

completion

of

the

current

unit

of

work,

the

NOT

LOGGED

INITIALLY

attribute

is

deactivated

and

all

operations

that

are

done

on

the

table

in

subsequent

units

of

work

are

logged.

If

using

this

feature

to

avoid

locks

on

the

catalog

tables

while

inserting

data,

it

is

important

that

only

this

clause

be

specified

on

the

ALTER

TABLE

statement.

Use

of

any

other

clause

in

the

ALTER

TABLE

statement

will

result

in

catalog

locks.

If

no

other

clauses

are

specified

for

the

ALTER

TABLE

statement,

then

only

a

SHARE

lock

will

be

acquired

on

the

system

catalog

tables.

This

can

greatly

reduce

the

possibility

of

concurrency

conflicts

for

the

duration

of

time

between

when

this

statement

is

executed

and

when

the

unit

of

work

in

which

it

was

executed

is

ended.

If

the

table

is

a

typed

table,

this

option

is

only

supported

on

the

root

table

of

the

typed

table

hierarchy

(SQLSTATE

428DR).

For

more

information

about

the

NOT

LOGGED

INITIALLY

attribute,

see

the

description

of

this

attribute

in

“CREATE

TABLE”.

Note:

If

non-logged

activity

occurs

against

a

table

that

has

the

NOT

LOGGED

INITIALLY

attribute

activated,

and

if

a

statement

fails

(causing

a

rollback),

or

a

ROLLBACK

TO

SAVEPOINT

is

executed,

the

entire

unit

of

work

is

rolled

back

(SQL1476N).

Furthermore,

the

table

for

which

the

NOT

LOGGED

INITIALLY

attribute

was

activated

is

marked

inaccessible

after

the

rollback

has

occurred

and

can

only

be

dropped.

ALTER

TABLE

548

Common

Criteria

Certification:

Administration

and

User

Documentation

Therefore,

the

opportunity

for

errors

within

the

unit

of

work

in

which

the

NOT

LOGGED

INITIALLY

attribute

is

activated

should

be

minimized.

WITH

EMPTY

TABLE

Causes

all

data

currently

in

table

to

be

removed.

Once

the

data

has

been

removed,

it

cannot

be

recovered

except

through

use

of

the

RESTORE

facility.

If

the

unit

of

work

in

which

this

Alter

statement

was

issued

is

rolled

back,

the

table

data

will

NOT

be

returned

to

its

original

state.

When

this

action

is

requested,

no

DELETE

triggers

defined

on

the

affected

table

are

fired.

Any

indexes

that

exist

on

the

table

are

also

emptied.

PCTFREE

integer

Specifies

the

percentage

of

each

page

that

is

to

be

left

as

free

space

during

a

load

or

a

table

reorganization

operation.

The

first

row

on

each

page

is

added

without

restriction.

When

additional

rows

are

added

to

a

page,

at

least

integer

percent

of

the

page

is

left

as

free

space.

The

PCTFREE

value

is

considered

only

by

the

load

and

table

reorg

utilities.

The

value

of

integer

can

range

from

0

to

99.

A

PCTFREE

value

of

-1

in

the

catalog

(SYSCAT.TABLES)

is

interpreted

as

the

default

value.

The

default

PCTFREE

value

for

a

table

page

is

0.

If

the

table

is

a

typed

table,

this

option

is

only

supported

on

the

root

table

of

the

typed

table

hierarchy

(SQLSTATE

428DR).

LOCKSIZE

Indicates

the

size

(granularity)

of

locks

used

when

the

table

is

accessed.

Use

of

this

option

in

the

table

definition

will

not

prevent

normal

lock

escalation

from

occurring.

If

the

table

is

a

typed

table,

this

option

is

only

supported

on

the

root

table

of

the

typed

table

hierarchy

(SQLSTATE

428DR).

ROW

Indicates

the

use

of

row

locks.

This

is

the

default

lock

size

when

a

table

is

created.

TABLE

Indicates

the

use

of

table

locks.

This

means

that

the

appropriate

share

or

exclusive

lock

is

acquired

on

the

table

and

intent

locks

(except

intent

none)

are

not

used.

Use

of

this

value

may

improve

the

performance

of

queries

by

limiting

the

number

of

locks

that

need

to

be

acquired.

However,

concurrency

is

also

reduced

since

all

locks

are

held

over

the

complete

table.

APPEND

Indicates

whether

data

is

appended

to

the

end

of

the

table

data

or

placed

where

free

space

is

available

in

data

pages.

If

the

table

is

a

typed

table,

this

option

is

only

supported

on

the

root

table

of

the

typed

table

hierarchy

(SQLSTATE

428DR).

ON

Indicates

that

table

data

will

be

appended

and

information

about

free

space

on

pages

will

not

be

kept.

The

table

must

not

have

a

clustered

index

(SQLSTATE

428CA).

OFF

Indicates

that

table

data

will

be

placed

where

there

is

available

space.

This

is

the

default

when

a

table

is

created.

The

table

should

be

reorganized

after

setting

APPEND

OFF

since

the

information

about

available

free

space

is

not

accurate

and

may

result

in

poor

performance

during

insert.

ALTER

TABLE

Chapter

15.

SQL

Statements

for

Administrators

549

VOLATILE

CARDINALITY

or

NOT

VOLATILE

CARDINALITY

Indicates

to

the

optimizer

whether

or

not

the

cardinality

of

table

table-name

can

vary

significantly

at

run

time.

Volatility

applies

to

the

number

of

rows

in

the

table,

not

to

the

table

itself.

CARDINALITY

is

an

optional

keyword.

The

default

is

NOT

VOLATILE.

VOLATILE

Specifies

that

the

cardinality

of

table

table-name

can

vary

significantly

at

run

time,

from

empty

to

large.

To

access

the

table,

the

optimizer

will

use

an

index

scan

(rather

than

a

table

scan,

regardless

of

the

statistics)

if

that

index

is

index-only

(all

referenced

columns

are

in

the

index),

or

that

index

is

able

to

apply

a

predicate

in

the

index

scan.

The

list

prefetch

access

method

will

not

be

used

to

access

the

table.

If

the

table

is

a

typed

table,

this

option

is

only

supported

on

the

root

table

of

the

typed

table

hierarchy

(SQLSTATE

428DR).

NOT

VOLATILE

Specifies

that

the

cardinality

of

table-name

is

not

volatile.

Access

plans

to

this

table

will

continue

to

be

based

on

existing

statistics

and

on

the

current

optimization

level.

VALUE

COMPRESSION

Specifies

whether

or

not

NULL

and

0-length

data

values

are

to

be

stored

more

efficiently

for

most

data

types.

This

also

determines

the

row

format

that

is

to

be

used.

If

the

table

is

a

typed

table,

this

option

is

only

supported

on

the

root

table

of

the

typed

table

hierarchy

(SQLSTATE

428DR).

ACTIVATE

Specifies

that

0-length

data

values

for

columns

whose

data

type

is

BLOB,

CLOB,

DBCLOB,

LONG

VARCHAR,

or

LONG

VARGRAPHIC

are

to

be

stored

using

minimal

space.

Each

NULL

value

is

stored

without

using

an

additional

byte.

The

row

format

that

is

used

to

support

this

determines

the

byte

counts

for

each

data

type,

and

tends

to

cause

data

fragmentation

during

updates.

The

new

row

format

(specified

for

a

column

through

the

COMPRESS

SYSTEM

DEFAULT

option)

also

allows

system

default

values

for

the

column

to

be

stored

more

efficiently.

DEACTIVATE

Specifies

that

NULL

values

are

to

be

stored

with

space

set

aside

for

possible

future

updates.

This

space

is

not

set

aside

for

varying-length

columns.

The

row

format

used

determines

the

byte

counts

for

each

data

type.

It

also

does

not

support

efficient

storage

of

system

default

values

for

a

column.

If

columns

already

exist

with

the

COMPRESS

SYSTEM

DEFAULT

attribute,

a

warning

is

returned

(SQLSTATE

01648).

An

update

operation

will

cause

an

existing

row

to

be

changed

to

the

new

row

format.

Offline

table

reorganization

is

recommended

to

improve

the

performance

of

update

operations

on

existing

rows.

LOG

INDEX

BUILD

Specifies

the

level

of

logging

that

is

to

be

performed

during

create,

recreate,

or

reorganize

index

operations

on

this

table.

NULL

Specifies

that

the

value

of

the

logindexbuild

database

configuration

parameter

will

be

used

to

determine

whether

or

not

index

build

operations

are

to

be

completely

logged.

This

is

the

default

when

the

table

is

created.

ALTER

TABLE

550

Common

Criteria

Certification:

Administration

and

User

Documentation

OFF

Specifies

that

any

index

build

operations

on

this

table

will

be

logged

minimally.

This

value

overrides

the

setting

of

the

logindexbuild

database

configuration

parameter.

ON

Specifies

that

any

index

build

operations

on

this

table

will

be

logged

completely.

This

value

overrides

the

setting

of

the

logindexbuild

database

configuration

parameter.

Rules:

v

Any

unique

or

primary

key

constraint

defined

on

the

table

must

be

a

superset

of

the

partitioning

key,

if

there

is

one

(SQLSTATE

42997).

v

Primary

or

unique

keys

cannot

be

subsets

of

dimensions

(SQLSTATE

429BE).

v

A

column

can

only

be

referenced

in

one

ADD

or

ALTER

COLUMN

clause

in

a

single

ALTER

TABLE

statement

(SQLSTATE

42711).

v

A

column

length

cannot

be

altered

if

the

table

has

any

materialized

query

tables

that

are

dependent

on

the

table

(SQLSTATE

42997).

v

The

table

must

be

set

to

check

pending

state,

using

the

SET

INTEGRITY

statement

(SQLSTATE

55019),

before:

–

Adding

a

column

with

a

generation

expression

–

Altering

the

generated

expression

of

a

column

–

Changing

a

column

to

have

a

generated

expression

Notes:

v

Altering

a

table

to

a

materialized

query

table

will

put

the

table

in

check-pending

state.

If

the

table

is

defined

as

REFRESH

IMMEDIATE,

the

table

must

be

taken

out

of

check-pending

state

before

INSERT,

DELETE,

or

UPDATE

commands

can

be

invoked

on

the

table

referenced

by

the

fullselect.

The

table

can

be

taken

out

of

check-pending

state

by

using

REFRESH

TABLE

or

SET

INTEGRITY,

with

the

IMMEDIATE

CHECKED

option,

to

completely

refresh

the

data

in

the

table

based

on

the

fullselect.

If

the

data

in

the

table

accurately

reflects

the

result

of

the

fullselect,

the

IMMEDIATE

UNCHECKED

option

of

SET

INTEGRITY

can

be

used

to

take

the

table

out

of

check-pending

state.

v

Altering

a

table

to

change

it

to

a

REFRESH

IMMEDIATE

materialized

query

table

will

cause

any

packages

with

INSERT,

DELETE,

or

UPDATE

usage

on

the

table

referenced

by

the

fullselect

to

be

invalidated.

v

Altering

a

table

to

change

from

a

materialized

query

table

to

a

regular

table

will

cause

any

packages

dependent

on

the

table

to

be

invalidated.

v

Altering

a

table

to

change

from

a

MAINTAINED

BY

FEDERATED_TOOL

materialized

query

table

to

a

regular

table

will

not

cause

any

change

in

the

subscription

setup

of

the

replication

tool.

Because

a

subsequent

change

to

a

MAINTAINED

BY

SYSTEM

materialized

query

table

will

cause

the

replication

tool

to

fail,

you

must

change

the

subscription

setting

when

changing

a

MAINTAINED

BY

FEDERATED_TOOL

materialized

query

table.

v

If

a

deferred

materialized

query

table

is

associated

with

a

staging

table,

the

staging

table

will

be

dropped

if

the

materialized

query

table

is

altered

to

a

regular

table.

v

ADD

column

clauses

are

processed

prior

to

all

other

clauses.

Other

clauses

are

processed

in

the

order

that

they

are

specified.

v

Any

columns

added

via

ALTER

TABLE

will

not

automatically

be

added

to

any

existing

view

of

the

table.

ALTER

TABLE

Chapter

15.

SQL

Statements

for

Administrators

551

v

When

an

index

is

automatically

created

for

a

unique

or

primary

key

constraint,

the

database

manager

will

try

to

use

the

specified

constraint

name

as

the

index

name

with

a

schema

name

that

matches

the

schema

name

of

the

table.

If

this

matches

an

existing

index

name

or

no

name

for

the

constraint

was

specified,

the

index

is

created

in

the

SYSIBM

schema

with

a

system-generated

name

formed

of

″SQL″

followed

by

a

sequence

of

15

numeric

characters

generated

by

a

timestamp

based

function.

v

Any

table

that

may

be

involved

in

a

DELETE

operation

on

table

T

is

said

to

be

delete-connected

to

T.

Thus,

a

table

is

delete-connected

to

T

if

it

is

a

dependent

of

T

or

it

is

a

dependent

of

a

table

in

which

deletes

from

T

cascade.

v

A

package

has

an

insert

(update/delete)

usage

on

table

T

if

records

are

inserted

into

(updated

in/deleted

from)

T

either

directly

by

a

statement

in

the

package,

or

indirectly

through

constraints

or

triggers

executed

by

the

package

on

behalf

of

one

of

its

statements.

Similarly,

a

package

has

an

update

usage

on

a

column

if

the

column

is

modified

directly

by

a

statement

in

the

package,

or

indirectly

through

constraints

or

triggers

executed

by

the

package

on

behalf

of

one

of

its

statements.

v

In

a

federated

system,

a

remote

base

table

that

was

created

using

transparent

DDL

can

be

altered.

However,

transparent

DDL

does

impose

some

limitations

on

the

modifications

that

can

be

made:

–

A

remote

base

table

can

only

be

altered

by

adding

new

columns

or

specifying

a

primary

key.

–

You

cannot

specify

a

comment

on

an

existing

column

in

a

remote

base

table.

–

An

existing

primary

key

in

a

remote

base

table

cannot

be

altered

or

dropped.

–

Altering

a

remote

base

table

invalidates

any

packages

that

are

dependent

on

the

nickname

associated

with

that

remote

base

table.

–

The

remote

data

source

must

support

the

changes

being

requested

through

the

ALTER

TABLE

statement.

Depending

on

how

the

data

source

responds

to

requests

it

does

not

support,

an

error

might

be

returned

or

the

request

might

be

ignored.

–

An

attempt

to

alter

a

remote

base

table

that

was

not

created

using

transparent

DDL

returns

an

error.
v

Any

changes

to

primary

key,

unique

keys,

or

foreign

keys

may

have

the

following

effect

on

packages,

indexes,

and

other

foreign

keys.

–

If

a

primary

key

or

unique

key

is

added:

-

There

is

no

effect

on

packages,

foreign

keys,

or

existing

unique

keys.

(If

the

primary

or

unique

key

uses

an

existing

unique

index

that

was

created

in

a

previous

version

and

has

not

been

converted

to

support

deferred

uniqueness,

the

index

is

converted,

and

packages

with

update

usage

on

the

associated

table

are

invalidated.)
–

If

a

primary

key

or

unique

key

is

dropped:

-

The

index

is

dropped

if

it

was

automatically

created

for

the

constraint.

Any

packages

dependent

on

the

index

are

invalidated.

-

The

index

is

set

back

to

non-unique

if

it

was

converted

to

unique

for

the

constraint

and

it

is

no

longer

system-required.

Any

packages

dependent

on

the

index

are

invalidated.

-

The

index

is

set

to

no

longer

system

required

if

it

was

an

existing

unique

index

used

for

the

constraint.

There

is

no

effect

on

packages.

-

All

dependent

foreign

keys

are

dropped.

Further

action

is

taken

for

each

dependent

foreign

key,

as

specified

in

the

next

item.

ALTER

TABLE

552

Common

Criteria

Certification:

Administration

and

User

Documentation

–

If

a

foreign

key

is

added,

dropped,

or

altered

from

NOT

ENFORCED

to

ENFORCED

(or

ENFORCED

to

NOT

ENFORCED):

-

All

packages

with

an

insert

usage

on

the

object

table

are

invalidated.

-

All

packages

with

an

update

usage

on

at

least

one

column

in

the

foreign

key

are

invalidated.

-

All

packages

with

a

delete

usage

on

the

parent

table

are

invalidated.

-

All

packages

with

an

update

usage

on

at

least

one

column

in

the

parent

key

are

invalidated.
–

If

a

foreign

key

or

a

functional

dependency

is

altered

from

ENABLE

QUERY

OPTIMIZATION

to

DISABLE

QUERY

OPTIMIZATION:

-

All

packages

with

dependencies

on

the

constraint

for

optimization

purposes

are

invalidated.
–

Adding

a

column

to

a

table

will

result

in

invalidation

of

all

packages

with

insert

usage

on

the

altered

table.

If

the

added

column

is

the

first

user-defined

structured

type

column

in

the

table,

packages

with

DELETE

usage

on

the

altered

table

will

also

be

invalidated.

–

Adding

a

check

or

referential

constraint

to

a

table

that

already

exists

and

that

is

not

in

check

pending

state,

or

altering

the

existing

check

or

referential

constraint

from

NOT

ENFORCED

to

ENFORCED

on

an

existing

table

that

is

not

in

check

pending

state

will

cause

the

existing

rows

in

the

table

to

be

immediately

evaluated

against

the

constraint.

If

the

verification

fails,

an

error

(SQLSTATE

23512)

is

raised.

If

a

table

is

in

check

pending

state,

adding

a

check

or

referential

constraint,

or

altering

a

constraint

from

NOT

ENFORCED

to

ENFORCED

will

not

immediately

lead

to

the

enforcement

of

the

constraint.

Instead,

the

corresponding

constraint

type

flags

used

in

the

check

pending

operation

will

be

updated.

Issue

the

SET

INTEGRITY

statement

to

begin

enforcing

the

constraint.

–

Adding,

altering,

or

dropping

a

check

constraint

will

result

in

invalidation

of

all

packages

with

either

an

insert

usage

on

the

object

table,

an

update

usage

on

at

least

one

of

the

columns

involved

in

the

constraint,

or

a

select

usage

exploiting

the

constraint

to

improve

performance.

–

Adding

a

partitioning

key

will

result

in

invalidation

of

all

packages

with

an

update

usage

on

at

least

one

of

the

columns

of

the

partitioning

key.

–

A

partitioning

key

that

was

defined

by

default

as

the

first

column

of

the

primary

key

is

not

affected

by

dropping

the

primary

key

and

adding

a

different

primary

key.

–

Altering

a

column

to

increase

the

length

will

invalidate

all

packages

that

reference

the

table

(directly

or

indirectly

through

a

referential

constraint

or

trigger)

with

the

altered

column.

–

Altering

a

column

to

increase

the

length

will

regenerate

views

(except

typed

views)

that

are

dependent

on

the

table.

If

an

error

occurs

while

regenerating

a

view,

an

error

is

returned

(SQLSTATE

56098).

Any

typed

views

that

are

dependent

on

the

table

are

marked

inoperative.

–

Altering

a

column

to

increase

the

length

may

cause

errors

(SQLSTATE

54010)

in

processing

triggers

when

a

statement

that

would

involve

the

trigger

is

prepared

or

bound.

This

may

occur

when

row

length

based

on

the

sum

of

the

lengths

of

the

transition

variables

and

transition

table

columns

is

too

long.

If

such

a

trigger

were

dropped

a

subsequent

attempt

to

create

it

would

result

in

an

error

(SQLSTATE

54040).

–

VARCHAR

and

VARGRAPHIC

columns

that

have

been

altered

to

be

greater

than

4000

and

2000

respectively

should

not

be

used

as

input

parameters

in

functions

in

the

SYSFUN

schema

(SQLSTATE

22001).

ALTER

TABLE

Chapter

15.

SQL

Statements

for

Administrators

553

–

Altering

a

structured

type

column

to

increase

the

inline

length

will

invalidate

all

packages

that

reference

the

table,

either

directly

or

indirectly

through

a

referential

constraint

or

trigger.

–

Altering

a

structured

type

column

to

increase

the

inline

length

will

regenerate

views

that

are

dependent

on

the

table.

–

Changing

the

LOCKSIZE

for

a

table

will

result

in

invalidation

of

all

packages

that

have

a

dependency

on

the

altered

table.

–

The

ACTIVATE

NOT

LOGGED

INITIALLY

clause

cannot

be

used

when

DATALINK

columns

with

the

FILE

LINK

CONTROL

attribute

are

being

added

to

the

table

(SQLSTATE

42613).

–

Changing

VOLATILE

or

NOT

VOLATILE

CARDINALITY

will

result

in

invalidation

of

all

packages

that

have

a

dependency

on

the

altered

table.

–

Replication

customers

should

take

caution

when

increasing

the

length

of

VARCHAR

columns.

The

change

data

table

associated

with

an

application

table

might

already

be

at

or

near

the

DB2

rowsize

limit.

The

change

data

table

should

be

altered

before

the

application

table,

or

the

two

should

be

altered

within

the

same

unit

of

work,

to

ensure

that

the

alteration

can

be

completed

for

both

tables.

Consideration

should

be

given

for

copies,

which

may

also

be

at

or

near

the

rowsize

limit,

or

reside

on

platforms

which

lack

the

feature

to

increase

the

length

of

an

existing

column.

If

the

change

data

table

is

not

altered

before

the

Capture

program

processes

log

records

with

the

increased

VARCHAR

column

length,

the

Capture

program

will

likely

fail.

If

a

copy

containing

the

VARCHAR

column

is

not

altered

before

the

subscription

maintaining

the

copy

runs,

the

subscription

will

likely

fail.

–

Compatibilities

-

For

compatibility

with

previous

versions

of

DB2:

v

The

ADD

keyword

is

optional

for:

–

Unnamed

PRIMARY

KEY

constraints

–

Unnamed

referential

constraints

–

Referential

constraints

whose

name

follows

the

phrase

FOREIGN

KEY
v

The

CONSTRAINT

keyword

can

be

omitted

from

a

column-definition

defining

a

references-clause

v

constraint-name

can

be

specified

following

FOREIGN

KEY

(without

the

CONSTRAINT

keyword)

v

SET

SUMMARY

AS

can

be

specified

in

place

of

SET

MATERIALIZED

QUERY

AS

v

SET

MATERIALIZED

QUERY

AS

DEFINITION

ONLY

can

be

specified

in

place

of

DROP

MATERIALIZED

QUERY

v

SET

MATERIALIZED

QUERY

AS

(fullselect)

can

be

specified

in

place

of

ADD

MATERIALIZED

QUERY

(fullselect)
-

For

compatibility

with

previous

versions

of

DB2

and

for

consistency:

v

A

comma

can

be

used

to

separate

multiple

options

in

the

identity-alteration

clause.
-

The

following

syntax

is

also

supported:

v

NOMINVALUE,

NOMAXVALUE,

NOCYCLE,

NOCACHE,

and

NOORDER

Examples:

ALTER

TABLE

554

Common

Criteria

Certification:

Administration

and

User

Documentation

Example

1:

Add

a

new

column

named

RATING,

which

is

one

character

long,

to

the

DEPARTMENT

table.

ALTER

TABLE

DEPARTMENT

ADD

RATING

CHAR(1)

Example

2:

Add

a

new

column

named

SITE_NOTES

to

the

PROJECT

table.

Create

SITE_NOTES

as

a

varying-length

column

with

a

maximum

length

of

1000

characters.

The

values

of

the

column

do

not

have

an

associated

character

set

and

therefore

should

not

be

translated.

ALTER

TABLE

PROJECT

ADD

SITE_NOTES

VARCHAR(1000)

FOR

BIT

DATA

Example

3:

Assume

a

table

called

EQUIPMENT

exists

defined

with

the

following

columns:

Column

Name

Data

Type

EQUIP_NO

INT

EQUIP_DESC

VARCHAR(50)

LOCATION

VARCHAR(50)

EQUIP_OWNER

CHAR(3)

Add

a

referential

constraint

to

the

EQUIPMENT

table

so

that

the

owner

(EQUIP_OWNER)

must

be

a

department

number

(DEPTNO)

that

is

present

in

the

DEPARTMENT

table.

DEPTNO

is

the

primary

key

of

the

DEPARTMENT

table.

If

a

department

is

removed

from

the

DEPARTMENT

table,

the

owner

(EQUIP_OWNER)

values

for

all

equipment

owned

by

that

department

should

become

unassigned

(or

set

to

null).

Give

the

constraint

the

name

DEPTQUIP.

ALTER

TABLE

EQUIPMENT

ADD

CONSTRAINT

DEPTQUIP

FOREIGN

KEY

(EQUIP_OWNER)

REFERENCES

DEPARTMENT

ON

DELETE

SET

NULL

Also,

an

additional

column

is

needed

to

allow

the

recording

of

the

quantity

associated

with

this

equipment

record.

Unless

otherwise

specified,

the

EQUIP_QTY

column

should

have

a

value

of

1

and

must

never

be

null.

ALTER

TABLE

EQUIPMENT

ADD

COLUMN

EQUIP_QTY

SMALLINT

NOT

NULL

DEFAULT

1

Example

4:

Alter

table

EMPLOYEE.

Add

the

check

constraint

named

REVENUE

defined

so

that

each

employee

must

make

a

total

of

salary

and

commission

greater

than

$30,000.

ALTER

TABLE

EMPLOYEE

ADD

CONSTRAINT

REVENUE

CHECK

(SALARY

+

COMM

>

30000)

Example

5:

Alter

table

EMPLOYEE.

Drop

the

constraint

REVENUE

which

was

previously

defined.

ALTER

TABLE

EMPLOYEE

DROP

CONSTRAINT

REVENUE

Example

6:

Alter

a

table

to

log

SQL

changes

in

the

default

format.

ALTER

TABLE

SALARY1

DATA

CAPTURE

NONE

Example

7:

Alter

a

table

to

log

SQL

changes

in

an

expanded

format.

ALTER

TABLE

Chapter

15.

SQL

Statements

for

Administrators

555

ALTER

TABLE

SALARY2

DATA

CAPTURE

CHANGES

Example

8:

Alter

the

EMPLOYEE

table

to

add

4

new

columns

with

default

values.

ALTER

TABLE

EMPLOYEE

ADD

COLUMN

HEIGHT

MEASURE

DEFAULT

MEASURE(1)

ADD

COLUMN

BIRTHDAY

BIRTHDATE

DEFAULT

DATE(’01-01-1850’)

ADD

COLUMN

FLAGS

BLOB(1M)

DEFAULT

BLOB(X’01’)

ADD

COLUMN

PHOTO

PICTURE

DEFAULT

BLOB(X’00’)

The

default

values

use

various

function

names

when

specifying

the

default.

Since

MEASURE

is

a

distinct

type

based

on

INTEGER,

the

MEASURE

function

is

used.

The

HEIGHT

column

default

could

have

been

specified

without

the

function

since

the

source

type

of

MEASURE

is

not

BLOB

or

a

datetime

data

type.

Since

BIRTHDATE

is

a

distinct

type

based

on

DATE,

the

DATE

function

is

used

(BIRTHDATE

cannot

be

used

here).

For

the

FLAGS

and

PHOTO

columns

the

default

is

specified

using

the

BLOB

function

even

though

PHOTO

is

a

distinct

type.

To

specify

a

default

for

BIRTHDAY,

FLAGS

and

PHOTO

columns,

a

function

must

be

used

because

the

type

is

a

BLOB

or

a

distinct

type

sourced

on

a

BLOB

or

datetime

data

type.

Example

9:

A

table

called

CUSTOMERS

is

defined

with

the

following

columns:

Column

Name

Data

Type

BRANCH_NO

SMALLINT

CUSTOMER_NO

DECIMAL(7)

CUSTOMER_NAME

VARCHAR(50)

In

this

table,

the

primary

key

is

made

up

of

the

BRANCH_NO

and

CUSTOMER_NO

columns.

To

partition

the

table,

you

will

need

to

create

a

partitioning

key

for

the

table.

The

table

must

be

defined

in

a

table

space

on

a

single-node

database

partition

group.

The

primary

key

must

be

a

superset

of

the

partitioning

columns:

at

least

one

of

the

columns

of

the

primary

key

must

be

used

as

the

partitioning

key.

Make

BRANCH_NO

the

partitioning

key

as

follows:

ALTER

TABLE

CUSTOMERS

ADD

PARTITIONING

KEY

(BRANCH_NO)

Example

10:

A

remote

table

EMPLOYEE

was

created

in

a

federated

system

using

transparent

DDL.

Alter

the

remote

table

EMPLOYEE

to

add

the

columns

PHONE_NO

and

WORK_DEPT;

also

add

a

primary

key

on

the

existing

column

EMP_NO

and

the

new

column

WORK_DEPT.

ALTER

TABLE

EMPLOYEE

ADD

COLUMN

PHONE_NO

CHAR(4)

NOT

NULL

ADD

COLUMN

WORK_DEPT

CHAR(3)

ADD

PRIMARY

KEY

(EMP_NO,

WORK_DEPT)

Example

11:

Alter

the

DEPARTMENT

table

to

add

a

functional

dependency

FD1,

then

drop

the

functional

dependency

FD1

from

the

DEPARTMENT

table.

ALTER

TABLE

DEPARTMENT

ADD

COSTRAINT

FD1

CHECK

(

DEPTNAME

DETERMINED

BY

DEPTNO)

NOT

ENFORCED

ALTER

TABLE

DEPARTMENT

DROP

CHECK

FD1

Example

12:

Change

the

default

value

for

the

WORKDEPT

column

in

the

EMPLOYEE

table

to

123.

ALTER

TABLE

556

Common

Criteria

Certification:

Administration

and

User

Documentation

ALTER

TABLE

EMPLOYEE

ALTER

COLUMN

WORKDEPT

SET

DEFAULT

’123’

Related

concepts:

v

“What

is

transparent

DDL?”

in

the

Federated

Systems

Guide

Related

tasks:

v

“Altering

remote

tables

using

transparent

DDL”

in

the

Federated

Systems

Guide

Related

reference:

v

“ALTER

TYPE

(Structured)

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

TABLE”

on

page

591

v

“Assignments

and

comparisons”

in

the

SQL

Reference,

Volume

1

v

“ALTOBJ

procedure”

in

the

SQL

Administrative

Routines

Related

samples:

v

“dbrecov.sqc

--

How

to

recover

a

database

(C)”

v

“tbconstr.sqc

--

How

to

create,

use,

and

drop

constraints

(C)”

v

“dbrecov.sqC

--

How

to

recover

a

database

(C++)”

v

“dtstruct.sqC

--

Create,

use,

drop

a

hierarchy

of

structured

types

and

typed

tables

(C++)”

v

“tbconstr.sqC

--

How

to

create,

use,

and

drop

constraints

(C++)”

v

“TbGenCol.java

--

How

to

use

generated

columns

(JDBC)”

ALTER

TABLESPACE

The

ALTER

TABLESPACE

statement

is

used

to

modify

an

existing

table

space

in

the

following

ways:

v

Add

a

container

to,

or

drop

a

container

from

a

DMS

table

space;

that

is,

a

table

space

created

with

the

MANAGED

BY

DATABASE

option.

v

Modify

the

size

of

a

container

in

a

DMS

table

space.

v

Add

a

container

to

an

SMS

table

space

on

a

partition

that

currently

has

no

containers.

v

Modify

the

PREFETCHSIZE

setting

for

a

table

space.

v

Modify

the

BUFFERPOOL

used

for

tables

in

the

table

space.

v

Modify

the

OVERHEAD

setting

for

a

table

space.

v

Modify

the

TRANSFERRATE

setting

for

a

table

space.

v

Modify

the

file

system

caching

policy

for

a

table

space.

Invocation:

This

statement

can

be

embedded

in

an

application

program

or

issued

interactively.

It

is

an

executable

statement

that

can

be

dynamically

prepared

only

if

DYNAMICRULES

run

behavior

is

in

effect

for

the

package

(SQLSTATE

42509).

Authorization:

The

authorization

ID

of

the

statement

must

have

SYSCTRL

or

SYSADM

authority.

Syntax:

ALTER

TABLE

Chapter

15.

SQL

Statements

for

Administrators

557

��

ALTER

TABLESPACE

tablespace-name

�

�

�

ADD

database-container-clause

TO

STRIPE

SET

stripeset

on-db-partitions-clause

system-container-clause

on-db-partitions-clause

BEGIN

NEW

STRIPE

SET

database-container-clause

on-db-partitions-clause

DROP

drop-container-clause

on-db-partitions-clause

EXTEND

database-container-clause

REDUCE

all-containers-clause

on-db-partitions-clause

RESIZE

PREFETCHSIZE

AUTOMATIC

number-of-pages

integer

K

M

G

BUFFERPOOL

bufferpool-name

OVERHEAD

number-of-milliseconds

TRANSFERRATE

number-of-milliseconds

FILE

SYSTEM

CACHING

NO

FILE

SYSTEM

CACHING

DROPPED

TABLE

RECOVERY

ON

OFF

SWITCH

ONLINE

��

database-container-clause:

�

,

(

FILE

’

container-string

’

number-of-pages

)

DEVICE

integer

K

M

G

drop-container-clause:

�

,

(

FILE

’

container-string

’

)

DEVICE

system-container-clause:

�

,

(

’

container-string

’

)

on-db-partitions-clause:

ON

DBPARTITIONNUM

DBPARTITIONNUMS

(

�

�

�

,

db-partition-number1

TO

db-partition-number2

)

ALTER

TABLESPACE

558

Common

Criteria

Certification:

Administration

and

User

Documentation

all-containers-clause:

CONTAINERS

(

ALL

number-of-pages

)

integer

K

M

G

Description:

tablespace-name

Names

the

table

space.

This

is

a

one-part

name.

It

is

a

long

SQL

identifier

(either

ordinary

or

delimited).

ADD

Specifies

that

one

or

more

new

containers

are

to

be

added

to

the

table

space.

TO

STRIPE

SET

stripeset

Specifies

that

one

or

more

new

containers

are

to

be

added

to

the

table

space,

and

that

they

will

be

placed

into

the

given

stripe

set.

BEGIN

NEW

STRIPE

SET

Specifies

that

a

new

stripe

set

is

to

be

created

in

the

table

space,

and

that

one

or

more

containers

are

to

be

added

to

this

new

stripe

set.

Containers

that

are

subsequently

added

using

the

ADD

option

will

be

added

to

this

new

stripe

set

unless

TO

STRIPE

SET

is

specified.

DROP

Specifies

that

one

or

more

containers

are

to

be

dropped

from

the

table

space.

EXTEND

Specifies

that

existing

containers

are

to

be

increased

in

size.

The

size

specified

is

the

size

by

which

the

existing

container

is

increased.

If

the

all-containers-clause

is

specified,

all

containers

in

the

table

space

will

increase

by

this

size.

REDUCE

Specifies

that

existing

containers

are

to

be

reduced

in

size.

The

size

specified

is

the

size

by

which

the

existing

container

is

decreased.

If

the

all-containers-clause

is

specified,

all

containers

in

the

table

space

will

decrease

by

this

size.

RESIZE

Specifies

that

the

size

of

existing

containers

is

to

be

changed.

The

size

specified

is

the

new

size

for

the

container.

If

the

all-containers-clause

is

specified,

all

containers

in

the

table

space

will

be

changed

to

this

size.

If

the

operation

affects

more

than

one

container,

these

containers

must

all

either

increase

in

size,

or

decrease

in

size.

It

is

not

possible

to

increase

some

while

decreasing

others

(SQLSTATE

429BC).

database-container-clause

Adds

one

or

more

containers

to

a

DMS

table

space.

The

table

space

must

identify

a

DMS

table

space

that

already

exists

at

the

application

server.

drop-container-clause

Drops

one

or

more

containers

from

a

DMS

table

space.

The

table

space

must

identify

a

DMS

table

space

that

already

exists

at

the

application

server.

system-container-clause

Adds

one

or

more

containers

to

an

SMS

table

space

on

the

specified

partitions.

The

table

space

must

identify

an

SMS

table

space

that

already

exists

at

the

application

server.

There

must

not

be

any

containers

on

the

specified

partitions

for

the

table

space.

(SQLSTATE

42921).

ALTER

TABLESPACE

Chapter

15.

SQL

Statements

for

Administrators

559

on-db-partitions-clause

Specifies

one

or

more

partitions

for

the

corresponding

container

operations.

all-containers-clause

Extends,

reduces,

or

resizes

all

of

the

containers

in

a

DMS

table

space.

The

table

space

must

identify

a

DMS

table

space

that

already

exists

at

the

application

server.

PREFETCHSIZE

Prefetching

reads

in

data

needed

by

a

query

prior

to

it

being

referenced

by

the

query,

so

that

the

query

need

not

wait

for

I/O

to

be

performed.

AUTOMATIC

Specifies

that

the

prefetch

size

of

a

table

space

is

to

be

updated

automatically;

that

is,

the

prefetch

size

will

be

managed

by

DB2,

using

the

following

formula:

Prefetch

size

=

(number

of

containers)

*

(number

of

physical

disks

per

container)

*

(extent

size)

The

number

of

physical

disks

per

container

defaults

to

1,

unless

a

value

is

specified

through

the

DB2_PARALLEL_IO

registry

variable.

DB2

will

update

the

prefetch

size

automatically

whenever

the

number

of

containers

in

a

table

space

changes

(following

successful

execution

of

an

ALTER

TABLESPACE

statement

that

adds

or

drops

one

or

more

containers).

The

prefetch

size

is

updated

at

database

start-up.

Automatic

updating

of

the

prefetch

size

can

be

turned

off

by

specifying

a

numeric

value

in

the

PREFETCHSIZE

clause.

number-of-pages

Specifies

the

number

of

PAGESIZE

pages

that

will

be

read

from

the

table

space

when

data

prefetching

is

being

performed.

The

prefetch

size

value

can

also

be

specified

as

an

integer

value

followed

by

K

(for

kilobytes),

M

(for

megabytes),

or

G

(for

gigabytes).

If

specified

in

this

way,

the

floor

of

the

number

of

bytes

divided

by

the

page

size

is

used

to

determine

the

number

of

pages

value

for

prefetch

size.

BUFFERPOOL

bufferpool-name

The

name

of

the

buffer

pool

used

for

tables

in

this

table

space.

The

buffer

pool

must

currently

exist

in

the

database

(SQLSTATE

42704).

The

database

partition

group

of

the

table

space

must

be

defined

for

the

bufferpool

(SQLSTATE

42735).

OVERHEAD

number-of-milliseconds

Any

numeric

literal

(integer,

decimal,

or

floating

point)

that

specifies

the

I/O

controller

overhead

and

disk

seek

and

latency

time,

in

milliseconds.

The

number

should

be

an

average

for

all

containers

that

belong

to

the

table

space,

if

not

the

same

for

all

containers.

This

value

is

used

to

determine

the

cost

of

I/O

during

query

optimization.

TRANSFERRATE

number-of-milliseconds

Any

numeric

literal

(integer,

decimal,

or

floating

point)

that

specifies

the

time

to

read

one

page

(4K

or

8K)

into

memory,

in

milliseconds.

The

number

should

be

an

average

for

all

containers

that

belong

to

the

table

space,

if

not

the

same

for

all

containers.

This

value

is

used

to

determine

the

cost

of

I/O

during

query

optimization.

ALTER

TABLESPACE

560

Common

Criteria

Certification:

Administration

and

User

Documentation

FILE

SYSTEM

CACHING

or

NO

FILE

SYSTEM

CACHING

Specifies

whether

or

not

I/O

operations

will

be

cached

at

the

file

system

level.

Connections

to

the

database

must

be

terminated

before

a

new

caching

policy

takes

effect.

FILE

SYSTEM

CACHING

All

I/O

operations

in

the

target

table

space

will

be

cached

at

the

file

system

level.

NO

FILE

SYSTEM

CACHING

All

I/O

operations

will

bypass

the

file

system

level

cache.

DROPPED

TABLE

RECOVERY

Dropped

tables

in

the

specified

table

space

may

be

recovered

using

the

RECOVER

DROPPED

TABLE

ON

option

of

the

ROLLFORWARD

command.

SWITCH

ONLINE

table

spaces

in

OFFLINE

state

are

brought

online

if

the

containers

have

become

accessible.

If

the

containers

are

not

accessible

an

error

is

returned

(SQLSTATE

57048).

Notes:

v

Compatibilities

–

For

compatibility

with

versions

earlier

than

Version

8,

the

keyword:

-

NODE

can

be

substituted

for

DBPARTITIONNUM

-

NODES

can

be

substituted

for

DBPARTITIONNUMS
v

Each

container

definition

requires

53

bytes

plus

the

number

of

bytes

necessary

to

store

the

container

name.

The

combined

length

of

all

container

names

for

the

table

space

cannot

exceed

20

480

bytes

(SQLSTATE

54034).

v

Default

container

operations

are

container

operations

that

are

specified

in

the

ALTER

TABLESPACE

statement,

but

that

are

not

explicitly

directed

to

a

specific

database

partition.

These

container

operations

are

sent

to

any

database

partition

that

is

not

listed

in

the

statement.

If

these

default

container

operations

are

not

sent

to

any

database

partition,

because

all

database

partitions

are

explicitly

mentioned

for

a

container

operation,

a

warning

is

returned

(SQLSTATE

1758W).

v

Once

space

has

been

added

or

removed

from

a

table

space,

and

the

transaction

is

committed,

the

contents

of

the

table

space

may

be

rebalanced

across

the

containers.

Access

to

the

table

space

is

not

restricted

during

rebalancing.

v

If

the

table

space

is

in

OFFLINE

state

and

the

containers

have

become

accessible,

the

user

can

disconnect

all

applications

and

connect

to

the

database

again

to

bring

the

table

space

out

of

OFFLINE

state.

Alternatively,

SWITCH

ONLINE

option

can

bring

the

table

space

up

(out

of

OFFLINE)

while

the

rest

of

the

database

is

still

up

and

being

used.

v

If

adding

more

than

one

container

to

a

table

space,

it

is

recommended

that

they

be

added

in

the

same

statement

so

that

the

cost

of

rebalancing

is

incurred

only

once.

An

attempt

to

add

containers

to

the

same

table

space

in

separate

ALTER

TABLESPACE

statements

within

a

single

transaction

will

result

in

an

error

(SQLSTATE

55041).

v

Any

attempts

to

extend,

reduce,

resize,

or

drop

containers

that

do

not

exist

will

raise

an

error

(SQLSTATE

428B2).

v

When

extending,

reducing,

or

resizing

a

container,

the

container

type

must

match

the

type

that

was

used

when

the

container

was

created

(SQLSTATE

428B2).

ALTER

TABLESPACE

Chapter

15.

SQL

Statements

for

Administrators

561

v

An

attempt

to

change

container

sizes

in

the

same

table

space,

using

separate

ALTER

TABLESPACE

statements

but

within

a

single

transaction,

will

raise

an

error

(SQLSTATE

55041).

v

In

a

partitioned

database

if

more

than

one

database

partition

resides

on

the

same

physical

node,

the

same

device

or

specific

path

cannot

be

specified

for

such

database

partitions

(SQLSTATE

42730).

For

this

environment,

either

specify

a

unique

container-string

for

each

database

partition

or

use

a

relative

path

name.

v

Although

the

table

space

definition

is

transactional

and

the

changes

to

the

table

space

definition

are

reflected

in

the

catalog

tables

on

commit,

the

buffer

pool

with

the

new

definition

cannot

be

used

until

the

next

time

the

database

is

started.

The

buffer

pool

in

use,

when

the

ALTER

TABLESPACE

statement

was

issued,

will

continue

to

be

used

in

the

interim.

Rules:

v

The

BEGIN

NEW

STRIPE

SET

clause

cannot

be

specified

in

the

same

statement

as

ADD,

DROP,

EXTEND,

REDUCE,

and

RESIZE,

unless

those

clauses

are

being

directed

to

different

partitions

(SQLSTATE

429BC).

v

The

stripe

set

value

specified

with

the

TO

STRIPE

SET

clause

must

be

within

the

valid

range

for

the

table

space

being

altered

(SQLSTATE

42615).

v

When

adding

or

removing

space

from

the

table

space,

the

following

rules

must

be

followed:

–

EXTEND

and

RESIZE

can

be

used

in

the

same

statement,

provided

that

the

size

of

each

container

is

increasing

(SQLSTATE

429BC).

–

REDUCE

and

RESIZE

can

be

used

in

the

same

statement,

provided

that

the

size

of

each

container

is

decreasing

(SQLSTATE

429BC).

–

EXTEND

and

REDUCE

cannot

be

used

in

the

same

statement,

unless

they

are

being

directed

to

different

partitions

(SQLSTATE

429BC).

–

ADD

cannot

be

used

with

REDUCE

or

DROP

in

the

same

statement,

unless

they

are

being

directed

to

different

partitions

(SQLSTATE

429BC).

–

DROP

cannot

be

used

with

EXTEND

or

ADD

in

the

same

statement,

unless

they

are

being

directed

to

different

partitions

(SQLSTATE

429BC).

Examples:

Example

1:

Add

a

device

to

the

PAYROLL

table

space.

ALTER

TABLESPACE

PAYROLL

ADD

(DEVICE

’/dev/rhdisk9’

10000)

Example

2:

Change

the

prefetch

size

and

I/O

overhead

for

the

ACCOUNTING

table

space.

ALTER

TABLESPACE

ACCOUNTING

PREFETCHSIZE

64

OVERHEAD

19.3

Example

3:

Create

a

table

space

TS1,

then

resize

the

containers

so

that

all

of

the

containers

have

2000

pages.

(Three

different

ALTER

TABLESPACE

statements

that

will

accomplish

this

resizing

are

shown.)

CREATE

TABLESPACE

TS1

MANAGED

BY

DATABASE

USING

(FILE

’/conts/cont0’

1000,

DEVICE

’/dev/rcont1’

500,

FILE

’cont2’

700)

ALTER

TABLESPACE

562

Common

Criteria

Certification:

Administration

and

User

Documentation

ALTER

TABLESPACE

TS1

RESIZE

(FILE

’/conts/cont0’

2000,

DEVICE

’/dev/rcont1’

2000,

FILE

’cont2’

2000)

OR

ALTER

TABLESPACE

TS1

RESIZE

(ALL

2000)

OR

ALTER

TABLESPACE

TS1

EXTEND

(FILE

’/conts/cont0’

1000,

DEVICE

’/dev/rcont1’

1500,

FILE

’cont2’

1300)

Example

4:

Extend

all

of

the

containers

in

the

DATA_TS

table

space

by

1000

pages.

ALTER

TABLESPACE

DATA_TS

EXTEND

(ALL

1000)

Example

5:

Resize

all

of

the

containers

in

the

INDEX_TS

table

space

to

100

megabytes

(MB).

ALTER

TABLESPACE

INDEX_TS

RESIZE

(ALL

100

M)

Example

6:

Add

three

new

containers.

Extend

the

first

container,

and

resize

the

second.

ALTER

TABLESPACE

TS0

ADD

(FILE

’cont2’

2000,

FILE

’cont3’

2000)

ADD

(FILE

’cont4’

2000)

EXTEND

(FILE

’cont0’

100)

RESIZE

(FILE

’cont1’

3000)

Example

7:

Table

space

TSO

exists

on

partitions

0,

1

and

2.

Add

a

new

container

to

database

partition

0.

Extend

all

of

the

containers

on

database

partition

1.

Resize

a

container

on

all

database

partitions

other

than

the

ones

that

were

explicitly

specified

(that

is,

database

partitions

0

and

1).

ALTER

TABLESPACE

TS0

ADD

(FILE

’A’

200)

ON

DBPARTITIONNUM

(0)

EXTEND

(ALL

200)

ON

DBPARTITIONNUM

(1)

RESIZE

(FILE

’B’

500)

The

RESIZE

clause

is

the

default

container

clause

in

this

example,

and

will

be

executed

on

database

partition

2,

because

other

operations

are

being

explicitly

sent

to

database

partitions

0

and

1.

If,

however,

there

had

only

been

these

two

database

partitions,

the

statement

would

have

succeeded,

but

returned

a

warning

(SQL1758W)

that

default

containers

had

been

specified

but

not

used.

Related

reference:

v

“CREATE

TABLESPACE”

on

page

648

v

“System

environment

variables”

in

the

Administration

Guide:

Performance

ALTER

VIEW

The

ALTER

VIEW

statement

modifies

an

existing

view

by

altering

a

reference

type

column

to

add

a

scope.

Invocation:

ALTER

TABLESPACE

Chapter

15.

SQL

Statements

for

Administrators

563

This

statement

can

be

embedded

in

an

application

program

or

issued

through

the

use

of

dynamic

SQL

statements.

It

is

an

executable

statement

that

can

be

dynamically

prepared

only

if

DYNAMICRULES

run

behavior

is

in

effect

for

the

package

(SQLSTATE

42509).

Authorization:

The

privileges

held

by

the

authorization

ID

of

the

statement

must

include

at

least

one

of

the

following:

v

SYSADM

or

DBADM

authority

v

ALTERIN

privilege

on

the

schema

of

the

view

v

Definer

of

the

view

to

be

altered

v

CONTROL

privilege

on

the

view

to

be

altered.

Syntax:

��

ALTER

VIEW

view-name

�

�

�

COLUMN

ALTER

column-name

ADD

SCOPE

typed-table-name

typed-view-name

��

Description:

view-name

Identifies

the

view

to

be

changed.

It

must

be

a

view

described

in

the

catalog.

ALTER

COLUMN

column-name

Is

the

name

of

the

column

to

be

altered

in

the

view.

The

column-name

must

identify

an

existing

column

of

the

view

(SQLSTATE

42703).

The

name

cannot

be

qualified.

ADD

SCOPE

Add

a

scope

to

an

existing

reference

type

column

that

does

not

already

have

a

scope

defined

(SQLSTATE

428DK).

The

column

must

not

be

inherited

from

a

superview

(SQLSTATE

428DJ).

typed-table-name

The

name

of

a

typed

table.

The

data

type

of

column-name

must

be

REF(S),

where

S

is

the

type

of

typed-table-name

(SQLSTATE

428DM).

No

checking

is

done

of

any

existing

values

in

column-name

to

ensure

that

the

values

actually

reference

existing

rows

in

typed-table-name.

typed-view-name

The

name

of

a

typed

view.

The

data

type

of

column-name

must

be

REF(S),

where

S

is

the

type

of

typed-view-name

(SQLSTATE

428DM).

No

checking

is

done

of

any

existing

values

in

column-name

to

ensure

that

the

values

actually

reference

existing

rows

in

typed-view-name.

ALTER

VIEW

564

Common

Criteria

Certification:

Administration

and

User

Documentation

COMMENT

The

COMMENT

statement

adds

or

replaces

comments

in

the

catalog

descriptions

of

various

objects.

Invocation:

This

statement

can

be

embedded

in

an

application

program

or

issued

through

the

use

of

dynamic

SQL

statements.

It

is

an

executable

statement

that

can

be

dynamically

prepared

only

if

DYNAMICRULES

run

behavior

is

in

effect

for

the

package

(SQLSTATE

42509).

Authorization:

The

privileges

that

must

be

held

by

the

authorization

ID

of

the

COMMENT

statement

must

include

one

of

the

following:

v

SYSADM

or

DBADM

v

definer

of

the

object

(underlying

table

for

column

or

constraint)

as

recorded

in

the

DEFINER

column

of

the

catalog

view

for

the

object

(OWNER

column

for

a

schema)

v

ALTERIN

privilege

on

the

schema

(applicable

only

to

objects

allowing

more

than

one-part

names)

v

CONTROL

privilege

on

the

object

(applicable

to

index,

package,

table

and

view

objects

only)

v

ALTER

privilege

on

the

object

(applicable

to

table

objects

only)

Note

that

for

table

space

or

database

partition

group,

the

authorization

ID

must

have

SYSADM

or

SYSCTRL

authority.

Syntax:

��

COMMENT

ON

�

objects

IS

string-constant

,

table-name

(

column-name

IS

string-constant

)

view-name

��

objects:

COMMENT

Chapter

15.

SQL

Statements

for

Administrators

565

�

�

ALIAS

alias-name

COLUMN

table-name.column-name

view-name.column-name

CONSTRAINT

table-name.constraint-name

FUNCTION

function-name

(

)

,

data-type

SPECIFIC

FUNCTION

specific-name

FUNCTION

MAPPING

function-mapping-name

(1)

INDEX

index-name

NICKNAME

nickname

DATABASE

PARTITION

GROUP

db-partition-group-name

PACKAGE

package-id

schema-name.

VERSION

version-id

PROCEDURE

procedure-name

(

)

,

data-type

SPECIFIC

PROCEDURE

specific-name

SCHEMA

schema-name

SERVER

server-name

SERVER

OPTION

server-option-name

FOR

remote-server

TABLE

table-name

view-name

TABLESPACE

tablespace-name

TRIGGER

trigger-name

TYPE

type-name

(2)

DISTINCT

TYPE

MAPPING

type-mapping-name

WRAPPER

wrapper-name

remote-server:

SERVER

server-name

TYPE

server-type

VERSION

server-version

WRAPPER

wrapper-name

server-version:

version

.

release

.

mod

version-string-constant

Notes:

1 Index-name

can

be

the

name

of

either

an

index

or

an

index

specification.

2 The

keyword

DATA

can

be

used

as

a

synonym

for

DISTINCT.

Description:

COMMENT

566

Common

Criteria

Certification:

Administration

and

User

Documentation

ALIAS

alias-name

Indicates

a

comment

will

be

added

or

replaced

for

an

alias.

The

alias-name

must

identify

an

alias

that

is

described

in

the

catalog

(SQLSTATE

42704).

The

comment

replaces

the

value

of

the

REMARKS

column

of

the

SYSCAT.TABLES

catalog

view

for

the

row

that

describes

the

alias.

COLUMN

table-name.column-name

or

view-name.column-name

Indicates

a

comment

will

be

added

or

replaced

for

a

column.

The

table-name.column-name

or

view-name.column-name

combination

must

identify

a

column

and

table

combination

that

is

described

in

the

catalog

(SQLSTATE

42704).

The

comment

replaces

the

value

of

the

REMARKS

column

of

the

SYSCAT.COLUMNS

catalog

view

for

the

row

that

describes

the

column.

A

comment

cannot

be

made

on

a

column

of

an

inoperative

view.

(SQLSTATE

51024).

CONSTRAINT

table-name.constraint-name

Indicates

a

comment

will

be

added

or

replaced

for

a

constraint.

The

table-name.constraint-name

combination

must

identify

a

constraint

and

the

table

that

it

constrains;

they

must

be

described

in

the

catalog

(SQLSTATE

42704).

The

comment

replaces

the

value

of

the

REMARKS

column

of

the

SYSCAT.TABCONST

catalog

view

for

the

row

that

describes

the

constraint.

FUNCTION

Indicates

a

comment

will

be

added

or

replaced

for

a

function.

The

function

instance

specified

must

be

a

user-defined

function

or

function

template

described

in

the

catalog.

There

are

several

different

ways

available

to

identify

the

function

instance:

FUNCTION

function-name

Identifies

the

particular

function,

and

is

valid

only

if

there

is

exactly

one

function

with

the

function-name.

The

function

thus

identified

may

have

any

number

of

parameters

defined

for

it.

In

dynamic

SQL

statements,

the

CURRENT

SCHEMA

special

register

is

used

as

a

qualifier

for

an

unqualified

object

name.

In

static

SQL

statements

the

QUALIFIER

precompile/bind

option

implicitly

specifies

the

qualifier

for

unqualified

object

names.

If

no

function

by

this

name

exists

in

the

named

or

implied

schema,

an

error

(SQLSTATE

42704)

is

raised.

If

there

is

more

than

one

specific

instance

of

the

function

in

the

named

or

implied

schema,

an

error

(SQLSTATE

42725)

is

raised.

FUNCTION

function-name

(data-type,...)

Provides

the

function

signature,

which

uniquely

identifies

the

function

to

be

commented

upon.

The

function

selection

algorithm

is

not

used.

function-name

Gives

the

function

name

of

the

function

to

be

commented

upon.

In

dynamic

SQL

statements,

the

CURRENT

SCHEMA

special

register

is

used

as

a

qualifier

for

an

unqualified

object

name.

In

static

SQL

statements

the

QUALIFIER

precompile/bind

option

implicitly

specifies

the

qualifier

for

unqualified

object

names.

(data-type,...)

Must

match

the

data

types

that

were

specified

on

the

CREATE

FUNCTION

statement

in

the

corresponding

position.

The

number

of

data

types,

and

the

logical

concatenation

of

the

data

types

is

used

to

identify

the

specific

function

for

which

to

add

or

replace

the

comment.

COMMENT

Chapter

15.

SQL

Statements

for

Administrators

567

If

the

data-type

is

unqualified,

the

type

name

is

resolved

by

searching

the

schemas

on

the

SQL

path.

This

also

applies

to

data

type

names

specified

for

a

REFERENCE

type.

It

is

not

necessary

to

specify

the

length,

precision

or

scale

for

the

parameterized

data

types.

Instead

an

empty

set

of

parentheses

may

be

coded

to

indicate

that

these

attributes

are

to

be

ignored

when

looking

for

a

data

type

match.

FLOAT()

cannot

be

used

(SQLSTATE

42601)

since

the

parameter

value

indicates

different

data

types

(REAL

or

DOUBLE).

However,

if

length,

precision,

or

scale

is

coded,

the

value

must

exactly

match

that

specified

in

the

CREATE

FUNCTION

statement.

A

type

of

FLOAT(n)

does

not

need

to

match

the

defined

value

for

n

since

0

<n<25

means

REAL

and

24<n<54

means

DOUBLE.

Matching

occurs

based

on

whether

the

type

is

REAL

or

DOUBLE.

(Note

that

the

FOR

BIT

DATA

attribute

is

not

considered

part

of

the

signature

for

matching

purposes.

So,

for

example,

a

CHAR

FOR

BIT

DATA

specified

in

the

signature

would

match

a

function

defined

with

CHAR

only,

and

vice

versa.)

If

no

function

with

the

specified

signature

exists

in

the

named

or

implied

schema,

an

error

(SQLSTATE

42883)

is

raised.

SPECIFIC

FUNCTION

specific-name

Indicates

that

comments

will

be

added

or

replaced

for

a

function

(see

FUNCTION

for

other

methods

of

identifying

a

function).

Identifies

the

particular

user-defined

function

that

is

to

be

commented

upon,

using

the

specific

name

either

specified

or

defaulted

to

at

function

creation

time.

In

dynamic

SQL

statements,

the

CURRENT

SCHEMA

special

register

is

used

as

a

qualifier

for

an

unqualified

object

name.

In

static

SQL

statements

the

QUALIFIER

precompile/bind

option

implicitly

specifies

the

qualifier

for

unqualified

object

names.

The

specific-name

must

identify

a

specific

function

instance

in

the

named

or

implied

schema;

otherwise,

an

error

(SQLSTATE

42704)

is

raised.

It

is

not

possible

to

comment

on

a

function

that

is

in

the

SYSIBM,

SYSFUN,

or

SYSPROC

schema

(SQLSTATE

42832).

The

comment

replaces

the

value

of

the

REMARKS

column

of

the

SYSCAT.ROUTINES

catalog

view

for

the

row

that

describes

the

function.

FUNCTION

MAPPING

function-mapping-name

Indicates

a

comment

will

be

added

or

replaced

for

a

function

mapping.

The

function-mapping-name

must

identify

a

function

mapping

that

is

described

in

the

catalog

(SQLSTATE

42704).

The

comment

replaces

the

value

for

the

REMARKS

column

of

the

SYSCAT.FUNCMAPPINGS

catalog

view

for

the

row

that

describes

the

function

mapping.

INDEX

index-name

Indicates

a

comment

will

be

added

or

replaced

for

an

index

or

index

specification.

The

index-name

must

identify

either

a

distinct

index

or

an

index

specification

that

is

described

in

the

catalog

(SQLSTATE

42704).

The

comment

replaces

the

value

for

the

REMARKS

column

of

the

SYSCAT.INDEXES

catalog

view

for

the

row

that

describes

the

index

or

index

specification.

COMMENT

568

Common

Criteria

Certification:

Administration

and

User

Documentation

NICKNAME

nickname

Indicates

a

comment

will

be

added

or

replaced

for

a

nickname.

The

nickname

must

be

a

nickname

that

is

described

in

the

catalog

(SQLSTATE

42704).

The

comment

replaces

the

value

for

the

REMARKS

column

of

the

SYSCAT.TABLES

catalog

view

for

the

row

that

describes

the

nickname.

DATABASE

PARTITION

GROUP

db-partition-group-name

Indicates

a

comment

will

be

added

or

replaced

for

a

database

partition

group.

The

db-partition-group-name

must

identify

a

distinct

database

partition

group

that

is

described

in

the

catalog

(SQLSTATE

42704).

The

comment

replaces

the

value

for

the

REMARKS

column

of

the

SYSCAT.DBPARTITIONGROUPS

catalog

view

for

the

row

that

describes

the

database

partition

group.

PACKAGE

schema-name.package-id

Indicates

that

a

comment

will

be

added

or

replaced

for

a

package.

If

a

schema

name

is

not

specified,

the

package

ID

is

implicitly

qualified

by

the

default

schema.

The

schema

name

and

package

ID,

together

with

the

implicitly

or

explicitly

specified

version

ID,

must

identify

a

package

that

is

described

in

the

catalog

(SQLSTATE

42704).

The

comment

replaces

the

value

for

the

REMARKS

column

of

the

SYSCAT.PACKAGES

catalog

view

for

the

row

that

describes

the

package.

VERSION

version-id

Identifies

which

package

version

is

to

be

commented

on.

If

a

value

is

not

specified,

the

version

defaults

to

the

empty

string.

If

multiple

packages

with

the

same

package

name

but

different

versions

exist,

only

one

package

version

can

be

commented

on

in

one

invocation

of

the

COMMENT

statement.

Delimit

the

version

identifier

with

double

quotation

marks

when

it:

v

Is

generated

by

the

VERSION(AUTO)

precompiler

option

v

Begins

with

a

digit

v

Contains

lowercase

or

mixed-case

letters

If

the

statement

is

invoked

from

an

operating

system

command

prompt,

precede

each

double

quotation

mark

delimiter

with

a

back

slash

character

to

ensure

that

the

operating

system

does

not

strip

the

delimiters.

PROCEDURE

Indicates

a

comment

will

be

added

or

replaced

for

a

procedure.

The

procedure

instance

specified

must

be

a

stored

procedure

described

in

the

catalog.

There

are

several

different

ways

available

to

identify

the

procedure

instance:

PROCEDURE

procedure-name

Identifies

the

particular

procedure,

and

is

valid

only

if

there

is

exactly

one

procedure

with

the

procedure-name

in

the

schema.

The

procedure

thus

identified

may

have

any

number

of

parameters

defined

for

it.

In

dynamic

SQL

statements,

the

CURRENT

SCHEMA

special

register

is

used

as

a

qualifier

for

an

unqualified

object

name.

In

static

SQL

statements

the

QUALIFIER

precompile/bind

option

implicitly

specifies

the

qualifier

for

unqualified

object

names.

If

no

procedure

by

this

name

exists

in

the

named

or

implied

schema,

an

error

(SQLSTATE

42704)

is

raised.

If

there

is

more

than

one

specific

instance

of

the

procedure

in

the

named

or

implied

schema,

an

error

(SQLSTATE

42725)

is

raised.

PROCEDURE

procedure-name

(data-type,...)

This

is

used

to

provide

the

procedure

signature,

which

uniquely

identifies

the

procedure

to

be

commented

upon.

COMMENT

Chapter

15.

SQL

Statements

for

Administrators

569

procedure-name

Gives

the

procedure

name

of

the

procedure

to

be

commented

upon.

In

dynamic

SQL

statements,

the

CURRENT

SCHEMA

special

register

is

used

as

a

qualifier

for

an

unqualified

object

name.

In

static

SQL

statements

the

QUALIFIER

precompile/bind

option

implicitly

specifies

the

qualifier

for

unqualified

object

names.

(data-type,...)

Must

match

the

data

types

that

were

specified

on

the

CREATE

PROCEDURE

statement

in

the

corresponding

position.

The

number

of

data

types,

and

the

logical

concatenation

of

the

data

types

is

used

to

identify

the

specific

procedure

for

which

to

add

or

replace

the

comment.

If

the

data-type

is

unqualified,

the

type

name

is

resolved

by

searching

the

schemas

on

the

SQL

path.

This

also

applies

to

data

type

names

specified

for

a

REFERENCE

type.

It

is

not

necessary

to

specify

the

length,

precision

or

scale

for

the

parameterized

data

types.

Instead

an

empty

set

of

parentheses

may

be

coded

to

indicate

that

these

attributes

are

to

be

ignored

when

looking

for

a

data

type

match.

FLOAT()

cannot

be

used

(SQLSTATE

42601)

since

the

parameter

value

indicates

different

data

types

(REAL

or

DOUBLE).

However,

if

length,

precision,

or

scale

is

coded,

the

value

must

exactly

match

that

specified

in

the

CREATE

PROCEDURE

statement.

A

type

of

FLOAT(n)

does

not

need

to

match

the

defined

value

for

n

since

0<n<25

means

REAL

and

24<n<54

means

DOUBLE.

Matching

occurs

based

on

whether

the

type

is

REAL

or

DOUBLE.

If

no

procedure

with

the

specified

signature

exists

in

the

named

or

implied

schema,

an

error

(SQLSTATE

42883)

is

raised.

SPECIFIC

PROCEDURE

specific-name

Indicates

that

comments

will

be

added

or

replaced

for

a

procedure

(see

PROCEDURE

for

other

methods

of

identifying

a

procedure).

Identifies

the

particular

stored

procedure

that

is

to

be

commented

upon,

using

the

specific

name

either

specified

or

defaulted

to

at

procedure

creation

time.

In

dynamic

SQL

statements,

the

CURRENT

SCHEMA

special

register

is

used

as

a

qualifier

for

an

unqualified

object

name.

In

static

SQL

statements

the

QUALIFIER

precompile/bind

option

implicitly

specifies

the

qualifier

for

unqualified

object

names.

The

specific-name

must

identify

a

specific

procedure

instance

in

the

named

or

implied

schema;

otherwise,

an

error

(SQLSTATE

42704)

is

raised.

It

is

not

possible

to

comment

on

a

procedure

that

is

in

the

SYSIBM,

SYSFUN,

or

SYSPROC

schema

(SQLSTATE

42832).

The

comment

replaces

the

value

of

the

REMARKS

column

of

the

SYSCAT.ROUTINES

catalog

view

for

the

row

that

describes

the

procedure.

SCHEMA

schema-name

Indicates

a

comment

will

be

added

or

replaced

for

a

schema.

The

schema-name

must

identify

a

schema

that

is

described

in

the

catalog

(SQLSTATE

42704).

The

comment

replaces

the

value

of

the

REMARKS

column

of

the

SYSCAT.SCHEMATA

catalog

view

for

the

row

that

describes

the

schema.

COMMENT

570

Common

Criteria

Certification:

Administration

and

User

Documentation

SERVER

server-name

Indicates

a

comment

will

be

added

or

replaced

for

a

data

source.

The

server-name

must

identify

a

data

source

that

is

described

in

the

catalog

(SQLSTATE

42704).

The

comment

replaces

the

value

for

the

REMARKS

column

of

the

SYSCAT.SERVERS

catalog

view

for

the

row

that

describes

the

data

source.

SERVER

OPTION

server-option-name

FOR

remote-server

Indicates

a

comment

will

be

added

or

replaced

for

a

server

option.

server-option-name

Identifies

a

server

option.

This

option

must

be

one

that

is

described

in

the

catalog

(SQLSTATE

42704).

The

comment

replaces

the

value

for

the

REMARKS

column

of

the

SYSCAT.SERVEROPTIONS

catalog

view

for

the

row

that

describes

the

server

option.

remote-server

Describes

the

data

source

to

which

the

server-option

applies.

SERVER

server-name

Names

the

data

source

to

which

the

server-option

applies.

The

server-name

must

identify

a

data

source

that

is

described

in

the

catalog.

TYPE

server-type

Specifies

the

type

of

data

source—for

example,

DB2

Universal

Database

for

OS/390

or

Oracle—to

which

the

server-option

applies.

The

server-type

can

be

specified

in

either

lower-

or

uppercase;

it

will

be

stored

in

uppercase

in

the

catalog.

VERSION

Specifies

the

version

of

the

data

source

identified

by

server-name.

version

Specifies

the

version

number.

version

must

be

an

integer.

release

Specifies

the

number

of

the

release

of

the

version

denoted

by

version.

release

must

be

an

integer.

mod

Specifies

the

number

of

the

modification

of

the

release

denoted

by

release.

mod

must

be

an

integer.

version-string-constant

Specifies

the

complete

designation

of

the

version.

The

version-string-constant

can

be

a

single

value

(for

example,

‘8i’);

or

it

can

be

the

concatenated

values

of

version,

release,

and,

if

applicable,

mod

(for

example,

‘8.0.3’).

WRAPPER

wrapper-name

Identifies

the

wrapper

that

is

used

to

access

the

data

source

referenced

by

server-name.

TABLE

table-name

or

view-name

Indicates

a

comment

will

be

added

or

replaced

for

a

table

or

view.

The

table-name

or

view-name

must

identify

a

table

or

view

(not

an

alias

or

nickname)

that

is

described

in

the

catalog

(SQLSTATE

42704)

and

must

not

identify

a

declared

temporary

table

(SQLSTATE

42995).

The

comment

replaces

the

value

for

the

REMARKS

column

of

the

SYSCAT.TABLES

catalog

view

for

the

row

that

describes

the

table

or

view.

COMMENT

Chapter

15.

SQL

Statements

for

Administrators

571

TABLESPACE

tablespace-name

Indicates

a

comment

will

be

added

or

replaced

for

a

table

space.

The

tablespace-name

must

identify

a

distinct

table

space

that

is

described

in

the

catalog

(SQLSTATE

42704).

The

comment

replaces

the

value

for

the

REMARKS

column

of

the

SYSCAT.TABLESPACES

catalog

view

for

the

row

that

describes

the

tablespace.

TRIGGER

trigger-name

Indicates

a

comment

will

be

added

or

replaced

for

a

trigger.

The

trigger-name

must

identify

a

distinct

trigger

that

is

described

in

the

catalog

(SQLSTATE

42704).

The

comment

replaces

the

value

for

the

REMARKS

column

of

the

SYSCAT.TRIGGERS

catalog

view

for

the

row

that

describes

the

trigger.

TYPE

type-name

Indicates

a

comment

will

be

added

or

replaced

for

a

user-defined

type.

The

type-name

must

identify

a

user-defined

type

that

is

described

in

the

catalog

(SQLSTATE

42704).

If

DISTINCT

is

specified,

type-name

must

identify

a

distinct

type

that

is

described

in

the

catalog

(SQLSTATE

42704).

The

comment

replaces

the

value

of

the

REMARKS

column

of

the

SYSCAT.DATATYPES

catalog

view

for

the

row

that

describes

the

user-defined

type.

In

dynamic

SQL

statements,

the

CURRENT

SCHEMA

special

register

is

used

as

a

qualifier

for

an

unqualified

object

name.

In

static

SQL

statements

the

QUALIFIER

precompile/bind

option

implicitly

specifies

the

qualifier

for

unqualified

object

names.

TYPE

MAPPING

type-mapping-name

Indicates

a

comment

will

be

added

or

replaced

for

a

user-defined

data

type

mapping.

The

type-mapping-name

must

identify

a

data

type

mapping

that

is

described

in

the

catalog

(SQLSTATE

42704).

The

comment

replaces

the

value

for

the

REMARKS

column

of

the

SYSCAT.TYPEMAPPINGS

catalog

view

for

the

row

that

describes

the

mapping.

WRAPPER

wrapper-name

Indicates

a

comment

will

be

added

or

replaced

for

a

wrapper.

The

wrapper-name

must

identify

a

wrapper

that

is

described

in

the

catalog

(SQLSTATE

42704).

The

comment

replaces

the

value

for

the

REMARKS

column

of

the

SYSCAT.WRAPPERS

catalog

view

for

the

row

that

describes

the

wrapper.

IS

string-constant

Specifies

the

comment

to

be

added

or

replaced.

The

string-constant

can

be

any

character

string

constant

of

up

to

254

bytes.

(Carriage

return

and

line

feed

each

count

as

1

byte.)

table-name|view-name

(

{

column-name

IS

string-constant

}

...

)

This

form

of

the

COMMENT

statement

provides

the

ability

to

specify

comments

for

multiple

columns

of

a

table

or

view.

The

column

names

must

not

be

qualified,

each

name

must

identify

a

column

of

the

specified

table

or

view,

and

the

table

or

view

must

be

described

in

the

catalog.

The

table-name

cannot

be

a

declared

temporary

table

(SQLSTATE

42995).

A

comment

cannot

be

made

on

a

column

of

an

inoperative

view

(SQLSTATE

51024).

Notes:

v

Compatibilities

–

For

compatibility

with

previous

versions

of

DB2:

COMMENT

572

Common

Criteria

Certification:

Administration

and

User

Documentation

-

NODEGROUP

can

be

specified

in

place

of

DATABASE

PARTITION

GROUP

Examples:

Example

1:

Add

a

comment

for

the

EMPLOYEE

table.

COMMENT

ON

TABLE

EMPLOYEE

IS

’Reflects

first

quarter

reorganization’

Example

2:

Add

a

comment

for

the

EMP_VIEW1

view.

COMMENT

ON

TABLE

EMP_VIEW1

IS

’View

of

the

EMPLOYEE

table

without

salary

information’

Example

3:

Add

a

comment

for

the

EDLEVEL

column

of

the

EMPLOYEE

table.

COMMENT

ON

COLUMN

EMPLOYEE.EDLEVEL

IS

’highest

grade

level

passed

in

school’

Example

4:

Add

comments

for

two

different

columns

of

the

EMPLOYEE

table.

COMMENT

ON

EMPLOYEE

(WORKDEPT

IS

’see

DEPARTMENT

table

for

names’,

EDLEVEL

IS

’highest

grade

level

passed

in

school’

)

Example

5:

Pellow

wants

to

comment

on

the

CENTRE

function,

which

he

created

in

his

PELLOW

schema,

using

the

signature

to

identify

the

specific

function

to

be

commented

on.

COMMENT

ON

FUNCTION

CENTRE

(INT,FLOAT)

IS

'Frank’’s

CENTRE

fctn,

uses

Chebychev

method'

Example

6:

McBride

wants

to

comment

on

another

CENTRE

function,

which

she

created

in

the

PELLOW

schema,

using

the

specific

name

to

identify

the

function

instance

to

be

commented

on:

COMMENT

ON

SPECIFIC

FUNCTION

PELLOW.FOCUS92

IS

'Louise’’s

most

triumphant

CENTRE

function,

uses

the

Brownian

fuzzy-focus

technique'

Example

7:

Comment

on

the

function

ATOMIC_WEIGHT

in

the

CHEM

schema,

where

it

is

known

that

there

is

only

one

function

with

that

name:

COMMENT

ON

FUNCTION

CHEM.ATOMIC_WEIGHT

IS

'takes

atomic

nbr,

gives

atomic

weight'

Example

8:

Eigler

wants

to

comment

on

the

SEARCH

procedure,

which

he

created

in

his

EIGLER

schema,

using

the

signature

to

identify

the

specific

procedure

to

be

commented

on.

COMMENT

ON

PROCEDURE

SEARCH

(CHAR,INT)

IS

'Frank’’s

mass

search

and

replace

algorithm'

Example

9:

Macdonald

wants

to

comment

on

another

SEARCH

function,

which

he

created

in

the

EIGLER

schema,

using

the

specific

name

to

identify

the

procedure

instance

to

be

commented

on:

COMMENT

ON

SPECIFIC

PROCEDURE

EIGLER.DESTROY

IS

'Patrick’’s

mass

search

and

destroy

algorithm'

Example

10:

Comment

on

the

procedure

OSMOSIS

in

the

BIOLOGY

schema,

where

it

is

known

that

there

is

only

one

procedure

with

that

name:

COMMENT

ON

PROCEDURE

BIOLOGY.OSMOSIS

IS

'Calculations

modelling

osmosis'

COMMENT

Chapter

15.

SQL

Statements

for

Administrators

573

Example

11:

Comment

on

an

index

specification

named

INDEXSPEC.

COMMENT

ON

INDEX

INDEXSPEC

IS

’An

index

specification

that

indicates

to

the

optimizer

that

the

table

referenced

by

nickname

NICK1

has

an

index.’

Example

12:

Comment

on

the

wrapper

whose

default

name

is

NET8.

COMMENT

ON

WRAPPER

NET8

IS

’The

wrapper

for

data

sources

associated

with

Oracle’s

Net8

client

software.’

CREATE

FUNCTION

This

statement

is

used

to

register

or

define

a

user-defined

function

or

function

template

with

an

application

server.

There

are

five

different

types

of

functions

that

can

be

created

using

this

statement.

Each

of

these

is

described

separately.

v

External

Scalar.

The

function

is

written

in

a

programming

language

and

returns

a

scalar

value.

The

external

executable

is

registered

in

the

database,

along

with

various

attributes

of

the

function.

v

External

Table.

The

function

is

written

in

a

programming

language

and

returns

a

complete

table.

The

external

executable

is

registered

in

the

database

along

with

various

attributes

of

the

function.

v

OLE

DB

External

Table.

A

user-defined

OLE

DB

external

table

function

is

registered

in

the

database

to

access

data

from

an

OLE

DB

provider.

v

Sourced

or

Template.

A

source

function

is

implemented

by

invoking

another

function

(either

built-in,

external,

SQL,

or

source)

that

is

already

registered

in

the

database.

It

is

possible

to

create

a

partial

function,

called

a

function

template,

which

defines

what

types

of

values

are

to

be

returned,

but

which

contains

no

executable

code.

The

user

maps

it

to

a

data

source

function

within

a

federated

system,

so

that

the

data

source

function

can

be

invoked

from

a

federated

database.

A

function

template

can

be

registered

only

with

an

application

server

that

is

designated

as

a

federated

server.

v

SQL

Scalar,

Table

or

Row.

The

function

body

is

written

in

SQL

and

defined

together

with

the

registration

in

the

database.

It

returns

a

scalar

value,

a

table,

or

a

single

row.

Related

reference:

v

“CREATE

FUNCTION

(OLE

DB

External

Table)

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

FUNCTION

(SQL

Scalar,

Table,

or

Row)

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

FUNCTION

(External

Scalar)

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

FUNCTION

(External

Table)

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

FUNCTION

(Sourced

or

Template)

statement”

in

the

SQL

Reference,

Volume

2

Related

samples:

v

“dbinline.sqc

--

How

to

use

inline

SQL

Procedure

Language

(C)”

v

“udfcli.sqc

--

Call

a

variety

of

types

of

user-defined

functions

(C)”

COMMENT

574

Common

Criteria

Certification:

Administration

and

User

Documentation

v

“udfemcli.sqc

--

Call

a

variety

of

types

of

embedded

SQL

user-defined

functions.

(C)”

v

“udfcli.c

--

How

to

work

with

different

types

of

user-defined

functions

(UDFs)”

v

“udfcli.sqC

--

Call

a

variety

of

types

of

user-defined

functions

(C++)”

v

“udfemcli.sqC

--

Call

a

variety

of

types

of

embedded

SQL

user-defined

functions.

(C++)”

v

“UDFCreate.db2

--

How

to

catalog

the

Java

UDFs

contained

in

UDFsrv.java

”

v

“UDFjCreate.db2

--

How

to

catalog

the

Java

UDFs

contained

in

UDFjsrv.java

”

CREATE

INDEX

The

CREATE

INDEX

statement

is

used

to:

v

Create

an

index

on

a

DB2

table

v

Create

an

index

specification

(metadata

that

indicates

to

the

optimizer

that

a

data

source

table

has

an

index)

Invocation:

This

statement

can

be

embedded

in

an

application

program

or

issued

through

the

use

of

dynamic

SQL

statements.

It

is

an

executable

statement

that

can

be

dynamically

prepared

only

if

DYNAMICRULES

run

behavior

is

in

effect

for

the

package

(SQLSTATE

42509).

Authorization:

The

privileges

held

by

the

authorization

ID

of

the

statement

must

include

at

least

one

of

the

following:

v

SYSADM

or

DBADM

authority.

v

One

of:

–

CONTROL

privilege

on

the

table

or

nickname

on

which

the

index

is

defined

–

INDEX

privilege

on

the

table

or

nickname

on

which

the

index

is

defined.

and

one

of:

–

IMPLICIT_SCHEMA

authority

on

the

database,

if

the

implicit

or

explicit

schema

name

of

the

index

does

not

exist

–

CREATEIN

privilege

on

the

schema,

if

the

schema

name

of

the

index

refers

to

an

existing

schema.

No

explicit

privilege

is

required

to

create

an

index

on

a

declared

temporary

table.

Syntax:

��

CREATE

INDEX

index-name

UNIQUE

(1)

ON

table-name

(2)

nickname

�

�

�

,

ASC

(

column-name

)

DESC

SPECIFICATION

ONLY

*

�

CREATE

FUNCTION

Chapter

15.

SQL

Statements

for

Administrators

575

�

�

,

(3)

INCLUDE

(

column-name

)

*

�

�

�

CLUSTER

EXTEND

USING

index-extension-name

,

(

constant-expression

)

*

�

�

PCTFREE

10

PCTFREE

integer

*

LEVEL2

PCTFREE

integer

*

�

�

MINPCTUSED

integer

*

DISALLOW

REVERSE

SCANS

ALLOW

REVERSE

SCANS

*

�

�

PAGE

SPLIT

SYMMETRIC

PAGE

SPLIT

HIGH

LOW

*

COLLECT

STATISTICS

DETAILED

SAMPLED

��

Notes:

1 In

a

federated

system,

table-name

must

identify

a

table

in

the

federated

database.

It

cannot

identify

a

data

source

table.

2 If

nickname

is

specified,

the

CREATE

INDEX

statement

creates

an

index

specification.

In

this

case,

INCLUDE,

CLUSTER,

EXTEND

USING,

PCTFREE,

MINPCTUSED,

DISALLOW

REVERSE

SCANS,

ALLOW

REVERSE

SCANS,

PAGE

SPLIT,

or

COLLECT

STATISTICS

cannot

be

specified.

3 The

INCLUDE

clause

can

only

be

specified

if

UNIQUE

is

specified.

Description:

UNIQUE

If

ON

table-name

is

specified,

UNIQUE

prevents

the

table

from

containing

two

or

more

rows

with

the

same

value

of

the

index

key.

The

uniqueness

is

enforced

at

the

end

of

the

SQL

statement

that

updates

rows

or

inserts

new

rows.

The

uniqueness

is

also

checked

during

the

execution

of

the

CREATE

INDEX

statement.

If

the

table

already

contains

rows

with

duplicate

key

values,

the

index

is

not

created.

When

UNIQUE

is

used,

null

values

are

treated

as

any

other

values.

For

example,

if

the

key

is

a

single

column

that

may

contain

null

values,

that

column

may

contain

no

more

than

one

null

value.

If

the

UNIQUE

option

is

specified,

and

the

table

has

a

partitioning

key,

the

columns

in

the

index

key

must

be

a

superset

of

the

partitioning

key.

That

is,

the

columns

specified

for

a

unique

index

key

must

include

all

the

columns

of

the

partitioning

key

(SQLSTATE

42997).

Primary

or

unique

keys

cannot

be

subsets

of

dimensions

(SQLSTATE

429BE).

CREATE

INDEX

576

Common

Criteria

Certification:

Administration

and

User

Documentation

If

ON

nickname

is

specified,

UNIQUE

should

be

specified

only

if

the

data

for

the

index

key

contains

unique

values

for

every

row

of

the

data

source

table.

The

uniqueness

will

not

be

checked.

INDEX

index-name

Names

the

index

or

index

specification.

The

name,

including

the

implicit

or

explicit

qualifier,

must

not

identify

an

index

or

index

specification

that

is

described

in

the

catalog,

or

an

existing

index

on

a

declared

temporary

table

(SQLSTATE

42704).

The

qualifier

must

not

be

SYSIBM,

SYSCAT,

SYSFUN,

or

SYSSTAT

(SQLSTATE

42939).

The

implicit

or

explicit

qualifier

for

indexes

on

declared

global

temporary

tables

must

be

SESSION

(SQLSTATE

428EK).

ON

table-name

or

nickname

The

table-name

identifies

a

table

on

which

an

index

is

to

be

created.

The

table

must

be

a

base

table

(not

a

view),

a

materialized

query

table

described

in

the

catalog,

or

a

declared

temporary

table.

The

name

of

a

declared

temporary

table

must

be

qualified

with

SESSION.

The

table-name

must

not

identify

a

catalog

table

(SQLSTATE

42832).

If

UNIQUE

is

specified

and

table-name

is

a

typed

table,

it

must

not

be

a

subtable

(SQLSTATE

429B3).

nickname

is

the

nickname

on

which

an

index

specification

is

to

be

created.

The

nickname

references

either

a

data

source

table

whose

index

is

described

by

the

index

specification,

or

a

data

source

view

that

is

based

on

such

a

table.

The

nickname

must

be

listed

in

the

catalog.

column-name

For

an

index,

column-name

identifies

a

column

that

is

to

be

part

of

the

index

key.

For

an

index

specification,

column-name

is

the

name

by

which

the

federated

server

references

a

column

of

a

data

source

table.

Each

column-name

must

be

an

unqualified

name

that

identifies

a

column

of

the

table.

Up

to

16

columns

can

be

specified.

If

table-name

is

a

typed

table,

up

to

15

columns

can

be

specified.

If

table-name

is

a

subtable,

at

least

one

column-name

must

be

introduced

in

the

subtable;

that

is,

not

inherited

from

a

supertable

(SQLSTATE

428DS).

No

column-name

can

be

repeated

(SQLSTATE

42711).

The

sum

of

the

stored

lengths

of

the

specified

columns

must

not

be

greater

than

1024.

If

table-name

is

a

typed

table,

the

index

key

length

limit

is

further

reduced

by

4

bytes.

Note

that

this

length

can

be

reduced

by

system

overhead,

which

varies

according

to

the

data

type

of

the

column

and

whether

it

is

nullable.

For

more

information

on

overhead

affecting

this

limit,

see

“Bytes

Counts”

in

“CREATE

TABLE”.

No

LOB

column,

DATALINK

column,

or

distinct

type

column

based

on

a

LOB

or

DATALINK

may

be

used

as

part

of

an

index,

even

if

the

length

attribute

of

the

column

is

small

enough

to

fit

within

the

1024-byte

limit

(SQLSTATE

54008).

A

structured

type

column

can

only

be

specified

if

the

EXTEND

USING

clause

is

also

specified

(SQLSTATE

42962).

If

the

EXTEND

USING

clause

is

specified,

only

one

column

can

be

specified,

and

the

type

of

the

column

must

be

a

structured

type

or

a

distinct

type

that

is

not

based

on

a

LOB,

DATALINK,

LONG

VARCHAR,

or

LONG

VARGRAPHIC

(SQLSTATE

42997).

ASC

Specifies

that

index

entries

are

to

be

kept

in

ascending

order

of

the

column

values;

this

is

the

default

setting.

ASC

cannot

be

specified

for

indexes

that

are

defined

with

EXTEND

USING

(SQLSTATE

42601).

CREATE

INDEX

Chapter

15.

SQL

Statements

for

Administrators

577

DESC

Specifies

that

index

entries

are

to

be

kept

in

descending

order

of

the

column

values.

DESC

cannot

be

specified

for

indexes

that

are

defined

with

EXTEND

USING

(SQLSTATE

42601).

SPECIFICATION

ONLY

Indicates

that

this

statement

will

be

used

to

create

an

index

specification

that

applies

to

the

data

source

table

referenced

by

nickname.

SPECIFICATION

ONLY

must

be

specified

if

nickname

is

specified

(SQLSTATE

42601).

It

cannot

be

specified

if

table-name

is

specified

(SQLSTATE

42601).

This

clause

cannot

be

used

when

creating

an

index

on

a

declared

temporary

table

(SQLSTATE

42995).

INCLUDE

This

keyword

introduces

a

clause

that

specifies

additional

columns

to

be

appended

to

the

set

of

index

key

columns.

Any

columns

included

with

this

clause

are

not

used

to

enforce

uniqueness.

These

included

columns

may

improve

the

performance

of

some

queries

through

index

only

access.

The

columns

must

be

distinct

from

the

columns

used

to

enforce

uniqueness

(SQLSTATE

42711).

The

limits

for

the

number

of

columns

and

sum

of

the

length

attributes

apply

to

all

of

the

columns

in

the

unique

key

and

in

the

index.

This

clause

cannot

be

used

with

declared

temporary

tables

(SQLSTATE

42995).

column-name

Identifies

a

column

that

is

included

in

the

index

but

not

part

of

the

unique

index

key.

The

same

rules

apply

as

defined

for

columns

of

the

unique

index

key.

The

keywords

ASC

or

DESC

may

be

specified

following

the

column-name

but

have

no

effect

on

the

order.

INCLUDE

cannot

be

specified

for

indexes

that

are

defined

with

EXTEND

USING,

or

if

nickname

is

specified

(SQLSTATE

42601).

CLUSTER

Specifies

that

the

index

is

the

clustering

index

of

the

table.

The

cluster

factor

of

a

clustering

index

is

maintained

or

improved

dynamically

as

data

is

inserted

into

the

associated

table,

by

attempting

to

insert

new

rows

physically

close

to

the

rows

for

which

the

key

values

of

this

index

are

in

the

same

range.

Only

one

clustering

index

may

exist

for

a

table

so

CLUSTER

may

not

be

specified

if

it

was

used

in

the

definition

of

any

existing

index

on

the

table

(SQLSTATE

55012).

A

clustering

index

may

not

be

created

on

a

table

that

is

defined

to

use

append

mode

(SQLSTATE

428D8).

CLUSTER

is

disallowed

if

nickname

is

specified

(SQLSTATE

42601).

This

clause

cannot

be

used

with

declared

temporary

tables

(SQLSTATE

42995)

or

range-clustered

tables

(SQLSTATE

429BG).

EXTEND

USING

index-extension-name

Names

the

index-extension

used

to

manage

this

index.

If

this

clause

is

specified,

then

there

must

be

only

one

column-name

specified

and

that

column

must

be

a

structured

type

or

a

distinct

type

(SQLSTATE

42997).

The

index-extension-name

must

name

an

index

extension

described

in

the

catalog

(SQLSTATE

42704).

For

a

distinct

type,

the

column

must

exactly

match

the

type

of

the

corresponding

source

key

parameter

in

the

index

extension.

For

a

structured

type

column,

the

type

of

the

corresponding

source

key

parameter

must

be

the

same

type

or

a

supertype

of

the

column

type

(SQLSTATE

428E0).

This

clause

cannot

be

used

with

declared

temporary

tables

(SQLSTATE

42995).

CREATE

INDEX

578

Common

Criteria

Certification:

Administration

and

User

Documentation

constant-expression

Identifies

values

for

any

required

arguments

for

the

index

extension.

Each

expression

must

be

a

constant

value

with

a

data

type

that

exactly

matches

the

defined

data

type

of

the

corresponding

index

extension

parameters,

including

length

or

precision,

and

scale

(SQLSTATE

428E0).

This

clause

must

not

exceed

32

768

bytes

in

length

in

the

database

code

page

(SQLSTATE

22001).

PCTFREE

integer

Specifies

what

percentage

of

each

index

page

to

leave

as

free

space

when

building

the

index.

The

first

entry

in

a

page

is

added

without

restriction.

When

additional

entries

are

placed

in

an

index

page

at

least

integer

percent

of

free

space

is

left

on

each

page.

The

value

of

integer

can

range

from

0

to

99.

However,

if

a

value

greater

than

10

is

specified,

only

10

percent

free

space

will

be

left

in

non-leaf

pages.

The

default

is

10.

PCTFREE

is

disallowed

if

nickname

is

specified

(SQLSTATE

42601).

This

clause

cannot

be

used

with

declared

temporary

tables

(SQLSTATE

42995).

LEVEL2

PCTFREE

integer

Specifies

what

percentage

of

each

index

level

2

page

to

leave

as

free

space

when

building

the

index.

The

value

of

integer

can

range

from

0

to

99.

If

LEVEL2

PCTFREE

is

not

set,

a

minimum

of

10

or

PCTFREE

percent

of

free

space

is

left

on

all

non-leaf

pages.

If

LEVEL2

PCTFREE

is

set,

integer

percent

of

free

space

is

left

on

level

2

intermediate

pages,

and

a

minimum

of

10

or

integer

percent

of

free

space

is

left

on

level

3

and

higher

intermediate

pages.

LEVEL2

PCTFREE

is

disallowed

if

nickname

is

specified

(SQLSTATE

42601).

This

clause

cannot

be

used

with

declared

temporary

tables

(SQLSTATE

42995).

MINPCTUSED

integer

Indicates

whether

index

leaf

pages

are

merged

online,

and

the

threshold

for

the

minimum

percentage

of

space

used

on

an

index

leaf

page.

If,

after

a

key

is

removed

from

an

index

leaf

page,

the

percentage

of

space

used

on

the

page

is

at

or

below

integer

percent,

an

attempt

is

made

to

merge

the

remaining

keys

on

this

page

with

those

of

a

neighboring

page.

If

there

is

sufficient

space

on

one

of

these

pages,

the

merge

is

performed

and

one

of

the

pages

is

deleted.

The

value

of

integer

can

be

from

0

to

99.

However,

a

value

of

50

or

below

is

recommended

for

performance

reasons.

Specifying

this

option

will

have

an

impact

on

update

and

delete

performance.

For

type

2

indexes,

merging

is

only

done

during

update

and

delete

operations

when

there

is

an

exclusive

table

lock.

If

an

exclusive

table

lock

does

not

exist,

keys

are

marked

as

pseudo

deleted

during

update

and

delete

operations,

and

no

merging

is

done.

Consider

using

the

CLEANUP

ONLY

ALL

option

of

REORG

INDEXES

to

merge

leaf

pages

instead

of

using

the

MINPCTUSED

option

of

CREATE

INDEX.

MINPCTUSED

is

disallowed

if

nickname

is

specified

(SQLSTATE

42601).

This

clause

cannot

be

used

with

declared

temporary

tables

(SQLSTATE

42995).

DISALLOW

REVERSE

SCANS

Specifies

that

an

index

only

supports

forward

scans

or

scanning

of

the

index

in

the

order

defined

at

INDEX

CREATE

time.

This

is

the

default.

DISALLOW

REVERSE

SCANS

is

disallowed

if

nickname

is

specified

(SQLSTATE

42601).

CREATE

INDEX

Chapter

15.

SQL

Statements

for

Administrators

579

ALLOW

REVERSE

SCANS

Specifies

that

an

index

can

support

both

forward

and

reverse

scans;

that

is,

in

the

order

defined

at

INDEX

CREATE

time

and

in

the

opposite

(or

reverse)

order.

ALLOW

REVERSE

SCANS

is

disallowed

if

nickname

is

specified

(SQLSTATE

42601).

PAGE

SPLIT

Specifies

an

index

split

behavior.

The

default

is

SYMMETRIC.

SYMMETRIC

Specifies

that

pages

are

to

be

split

roughly

in

the

middle.

HIGH

Specifies

an

index

page

split

behavior

that

uses

the

space

on

index

pages

efficiently

when

the

values

of

the

index

keys

being

inserted

follow

a

particular

pattern.

The

index

key

must

contain

more

than

one

column.

For

a

subset

of

index

key

values,

the

leftmost

column

or

columns

of

the

index

must

contain

the

same

value,

and

the

rightmost

column

or

columns

of

the

index

must

contain

values

that

increase

with

each

insertion.

For

details,

see

“Options

on

the

CREATE

INDEX

statement”.

LOW

Specifies

an

index

page

split

behavior

that

uses

the

space

on

index

pages

efficiently

when

the

values

of

the

index

keys

being

inserted

follow

a

particular

pattern.

The

index

key

must

contain

more

than

one

column.

For

a

subset

of

index

key

values,

the

leftmost

column

or

columns

of

the

index

must

contain

the

same

value,

and

the

rightmost

column

or

columns

of

the

index

must

contain

values

that

decrease

with

each

insertion.

For

details,

see

“Options

on

the

CREATE

INDEX

statement”.

COLLECT

STATISTICS

Specifies

that

basic

index

statistics

are

to

be

collected

during

index

creation.

DETAILED

Specifies

that

extended

index

statistics

(CLUSTERFACTOR

and

PAGE_FETCH_PAIRS)

are

also

to

be

collected

during

index

creation.

SAMPLED

Specifies

that

sampling

can

be

used

when

compiling

extended

index

statistics.

Rules:

v

The

CREATE

INDEX

statement

will

fail

(SQLSTATE

01550)

if

attempting

to

create

an

index

that

matches

an

existing

index.

Two

index

descriptions

are

considered

duplicates

if:

–

the

set

of

columns

(both

key

and

include

columns)

and

their

order

in

the

index

is

the

same

as

that

of

an

existing

index

AND

–

the

ordering

attributes

are

the

same

AND

–

both

the

previously

existing

index

and

the

one

being

created

are

non-unique

OR

the

previously

existing

index

is

unique

AND

–

if

both

the

previously

existing

index

and

the

one

being

created

are

unique,

the

key

columns

of

the

index

being

created

are

the

same

or

a

superset

of

key

columns

of

the

previously

existing

index.

Notes:

v

Compatibilities

–

For

compatibility

with

DB2

for

OS/390:

CREATE

INDEX

580

Common

Criteria

Certification:

Administration

and

User

Documentation

-

The

following

syntax

is

tolerated

and

ignored:

v

CLOSE

v

DEFINE

v

FREEPAGE

v

GBPCACHE

v

PIECESIZE

v

TYPE

2

v

using-block
-

The

following

syntax

is

accepted

as

the

default

behavior:

v

COPY

NO

v

DEFER

NO
v

Concurrent

read/write

access

to

the

table

is

permitted

while

an

index

is

being

created.

Once

the

index

has

been

built,

changes

that

were

made

to

the

table

during

index

creation

time

are

forward-fitted

to

the

new

index.

Write

access

to

the

table

is

then

briefly

blocked

while

index

creation

completes,

after

which

the

new

index

becomes

available.

To

circumvent

this

default

behavior,

use

the

LOCK

TABLE

statement

to

explicitly

lock

the

table

before

issuing

a

CREATE

INDEX

statement.

(The

table

can

be

locked

in

either

SHARE

or

EXCLUSIVE

mode,

depending

on

whether

read

access

is

to

be

allowed.)

v

If

the

named

table

already

contains

data,

CREATE

INDEX

creates

the

index

entries

for

it.

If

the

table

does

not

yet

contain

data,

CREATE

INDEX

creates

a

description

of

the

index;

the

index

entries

are

created

when

data

is

inserted

into

the

table.

v

Once

the

index

is

created

and

data

is

loaded

into

the

table,

it

is

advisable

to

issue

the

RUNSTATS

command.

The

RUNSTATS

command

updates

statistics

collected

on

the

database

tables,

columns,

and

indexes.

These

statistics

are

used

to

determine

the

optimal

access

path

to

the

tables.

By

issuing

the

RUNSTATS

command,

the

database

manager

can

determine

the

characteristics

of

the

new

index.

If

data

has

been

loaded

before

the

CREATE

INDEX

statement

is

issued,

it

is

recommended

that

the

COLLECT

STATISTICS

option

on

the

CREATE

INDEX

statement

be

used

as

an

alternative

to

the

RUNSTATS

command.

v

Creating

an

index

with

a

schema

name

that

does

not

already

exist

will

result

in

the

implicit

creation

of

that

schema

provided

the

authorization

ID

of

the

statement

has

IMPLICIT_SCHEMA

authority.

The

schema

owner

is

SYSIBM.

The

CREATEIN

privilege

on

the

schema

is

granted

to

PUBLIC.

v

The

optimizer

can

recommend

indexes

prior

to

creating

the

actual

index.

v

If

an

index

specification

is

being

defined

for

a

data

source

table

that

has

an

index,

the

name

of

the

index

specification

does

not

have

to

match

the

name

of

the

index.

v

The

optimizer

uses

index

specifications

to

improve

access

to

the

data

source

tables

that

the

specifications

apply

to.

v

The

COLLECT

STATISTICS

options

are

not

supported

with

declared

temporary

tables

(SQLSTATE

42995).

v

The

COLLECT

STATISTICS

options

are

not

supported

if

a

nickname

is

specified

(SQLSTATE

42601).

v

When

creating

a

unique

index

on

a

materialized

query

table

(MQT),

consider

the

implications

of

this

uniqueness

constraint

on

other

processing.

For

example,

if

the

unique

index

does

not

match

the

uniqueness

attributes

of

the

materialized

query

for

a

refresh

immediate

system-maintained

MQT,

it

will

be

the

index

over

the

MQT

that

catches

uniqueness

violations

during

insert

or

update

operations

CREATE

INDEX

Chapter

15.

SQL

Statements

for

Administrators

581

against

the

underlying

table.

In

a

similar

scenario

with

a

refresh

deferred

system-maintained

MQT,

the

REFRESH

TABLE

statement

would

fail.

In

general,

a

unique

index

on

an

MQT

should

match

uniqueness

constraints

that

already

exist

for

data

based

on

the

underlying

table

or

that

can

be

inferred

from

the

query

associated

with

the

MQT.

Examples:

Example

1:

Create

an

index

named

UNIQUE_NAM

on

the

PROJECT

table.

The

purpose

of

the

index

is

to

ensure

that

there

are

not

two

entries

in

the

table

with

the

same

value

for

project

name

(PROJNAME).

The

index

entries

are

to

be

in

ascending

order.

CREATE

UNIQUE

INDEX

UNIQUE_NAM

ON

PROJECT(PROJNAME)

Example

2:

Create

an

index

named

JOB_BY_DPT

on

the

EMPLOYEE

table.

Arrange

the

index

entries

in

ascending

order

by

job

title

(JOB)

within

each

department

(WORKDEPT).

CREATE

INDEX

JOB_BY_DPT

ON

EMPLOYEE

(WORKDEPT,

JOB)

Example

3:

The

nickname

EMPLOYEE

references

a

data

source

table

called

CURRENT_EMP.

After

this

nickname

was

created,

an

index

was

defined

on

CURRENT_EMP.

The

columns

chosen

for

the

index

key

were

WORKDEBT

and

JOB.

Create

an

index

specification

that

describes

this

index.

Through

this

specification,

the

optimizer

will

know

that

the

index

exists

and

what

its

key

is.

With

this

information,

the

optimizer

can

improve

its

strategy

to

access

the

table.

CREATE

UNIQUE

INDEX

JOB_BY_DEPT

ON

EMPLOYEE

(WORKDEPT,

JOB)

SPECIFICATION

ONLY

Example

4:

Create

an

extended

index

type

named

SPATIAL_INDEX

on

a

structured

type

column

location.

The

description

in

index

extension

GRID_EXTENSION

is

used

to

maintain

SPATIAL_INDEX.

The

literal

is

given

to

GRID_EXTENSION

to

create

the

index

grid

size.

CREATE

INDEX

SPATIAL_INDEX

ON

CUSTOMER

(LOCATION)

EXTEND

USING

(GRID_EXTENSION

(x’000100100010001000400010’))

Example

5:

Create

an

index

named

IDX1

on

a

table

named

TAB1,

and

collect

basic

index

statistics

on

index

IDX1.

CREATE

INDEX

IDX1

ON

TAB1

(col1)

COLLECT

STATISTICS

Example

6:

Create

an

index

named

IDX2

on

a

table

named

TAB1,

and

collect

detailed

index

statistics

on

index

IDX2.

CREATE

INDEX

IDX2

ON

TAB1

(col2)

COLLECT

DETAILED

STATISTICS

Example

7:

Create

an

index

named

IDX3

on

a

table

named

TAB1,

and

collect

detailed

index

statistics

on

index

IDX3

using

sampling.

CREATE

INDEX

IDX3

ON

TAB1

(col3)

COLLECT

SAMPLED

DETAILED

STATISTICS

Related

concepts:

v

“Options

on

the

CREATE

INDEX

statement”

on

page

150

v

“Index

specifications

in

a

federated

system”

in

the

Federated

Systems

Guide

v

“Index

specifications”

in

the

Federated

Systems

Guide

CREATE

INDEX

582

Common

Criteria

Certification:

Administration

and

User

Documentation

Related

reference:

v

“CREATE

TABLE”

on

page

591

v

“Interaction

of

triggers

and

constraints”

in

the

SQL

Reference,

Volume

1

v

“CREATE

INDEX

EXTENSION

statement”

in

the

SQL

Reference,

Volume

2

Related

samples:

v

“dbstat.sqb

--

Reorganize

table

and

run

statistics

(MF

COBOL)”

v

“TbGenCol.java

--

How

to

use

generated

columns

(JDBC)”

CREATE

METHOD

This

statement

is

used

to

associate

a

method

body

with

a

method

specification

that

is

already

part

of

the

definition

of

a

user-defined

structured

type.

Invocation:

This

statement

can

be

embedded

in

an

application

program

or

issued

through

the

use

of

dynamic

SQL

statements.

It

is

an

executable

statement

that

can

be

dynamically

prepared

only

if

DYNAMICRULES

run

behavior

is

in

effect

for

the

package

(SQLSTATE

42509).

Authorization:

The

privileges

held

by

the

authorization

ID

of

the

statement

must

include

at

least

one

of

the

following:

v

SYSADM

or

DBADM

authority

v

CREATEIN

privilege

on

the

schema

of

the

structured

type

referred

to

in

the

CREATE

METHOD

statement

v

The

DEFINER

of

the

structured

type

referred

to

in

the

CREATE

METHOD

statement.

To

associate

an

external

method

body

with

its

method

specification,

the

authorization

ID

of

the

statement

must

also

include

at

least

one

of

the

following:

v

SYSADM

or

DBADM

authority

v

CREATE_EXTERNAL_ROUTINE

authority

on

the

database.

When

creating

an

SQL

method,

the

privileges

held

by

the

authorization

ID

of

the

statement

must

also

include,

for

each

table,

view,

or

nickname

identified

in

any

fullselect:

v

CONTROL

privilege

on

that

table,

view,

or

nickname,

or

v

SELECT

privilege

on

that

table,

view,

or

nickname

If

the

definer

of

an

SQL

method

can

only

create

the

method

because

the

definer

has

SYSADM

authority,

the

definer

is

granted

implicit

DBADM

authority

for

the

purpose

of

creating

the

method.

Group

privileges

other

than

PUBLIC

are

not

considered

for

any

table

or

view

specified

in

the

CREATE

METHOD

statement.

Authorization

requirements

of

the

data

source

for

the

table

or

view

referenced

by

the

nickname

are

applied

when

the

method

is

invoked.

The

authorization

ID

of

the

connection

may

be

mapped

to

a

different

remote

authorization

ID.

CREATE

INDEX

Chapter

15.

SQL

Statements

for

Administrators

583

If

the

authorization

ID

has

insufficient

authority

to

perform

the

operation,

an

error

is

raised

(SQLSTATE

42502).

Syntax:

��

CREATE

METHOD

method-name

FOR

type-name

method-signature

SPECIFIC

METHOD

specific-name

�

�

*

EXTERNAL

*

*

NAME

’string’

TRANSFORM

GROUP

group-name

identifier

INHERIT

ISOLATION

LEVEL

WITHOUT

LOCK

REQUEST

SQL-method-body

INHERIT

ISOLATION

LEVEL

WITH

LOCK

REQUEST

��

method-signature:

�

method-name

(

)

,

data-type1

parameter-name

AS

LOCATOR

�

�

RETURNS

data-type2

AS

LOCATOR

data-type3

CAST

FROM

data-type4

AS

LOCATOR

SQL-method-body:

RETURN

Statement

dynamic-compound-statement

Description:

METHOD

Identifies

an

existing

method

specification

that

is

associated

with

a

user-defined

structured

type.

The

method-specification

can

be

identified

through

one

of

the

following

means:

method-name

Names

the

method

specification

for

which

a

method

body

is

being

defined.

The

implicit

schema

is

the

schema

of

the

subject

type

(type-name).

There

must

be

only

one

method

specification

for

type-name

that

has

this

method-name

(SQLSTATE

42725).

method-signature

Provides

the

method

signature

which

uniquely

identifies

the

method

to

be

defined.

The

method

signature

must

match

the

method

specification

that

was

provided

on

the

CREATE

TYPE

or

ALTER

TYPE

statement

(SQLSTATE

42883).

method-name

Names

the

method

specification

for

which

a

method

body

is

being

defined.

The

implicit

schema

is

the

schema

of

the

subject

type

(type-name).

parameter-name

Identifies

the

parameter

name.

If

parameter

names

are

provided

in

CREATE

METHOD

584

Common

Criteria

Certification:

Administration

and

User

Documentation

the

method

signature,

they

must

be

exactly

the

same

as

the

corresponding

parts

of

the

matching

method

specification.

Parameter

names

are

supported

in

this

statement

solely

for

documentation

purposes.

data-type1

Specifies

the

data

type

of

each

parameter.

AS

LOCATOR

For

the

LOB

types

or

distinct

types

which

are

based

on

a

LOB

type,

the

AS

LOCATOR

clause

can

be

added.

RETURNS

This

clause

identifies

the

output

of

the

method.

If

a

RETURNS

clause

is

provided

in

the

method

signature,

it

must

be

exactly

the

same

as

the

corresponding

part

of

the

matching

method

specification

on

CREATE

TYPE.

The

RETURNS

clause

is

supported

in

this

statement

solely

for

documentation

purposes.

data-type2

Specifies

the

data

type

of

the

output.

AS

LOCATOR

For

LOB

types

or

distinct

types

which

are

based

on

LOB

types,

the

AS

LOCATOR

clause

can

be

added.

This

indicates

that

a

LOB

locator

is

to

be

returned

by

the

method

instead

of

the

actual

value.

data-type3

CAST

FROM

data-type4

This

form

of

the

RETURNS

clause

is

used

to

return

a

different

data

type

to

the

invoking

statement

from

the

data

type

that

was

returned

by

the

function

code.

AS

LOCATOR

For

LOB

types

or

distinct

types

which

are

based

on

LOB

types,

the

AS

LOCATOR

clause

can

be

used

to

indicate

that

a

LOB

locator

is

to

be

returned

from

the

method

instead

of

the

actual

value.

FOR

type-name

Names

the

type

for

which

the

specified

method

is

to

be

associated.

The

name

must

identify

a

type

already

described

in

the

catalog.

(SQLSTATE

42704)

In

dynamic

SQL

statements,

the

CURRENT

SCHEMA

special

register

is

used

as

a

qualifier

for

an

unqualified

object

name.

In

static

SQL

statements

the

QUALIFIER

precompile/bind

option

implicitly

specifies

the

qualifier

for

unqualified

object

names.

SPECIFIC

METHOD

specific-name

Identifies

the

particular

method,

using

the

specific

name

either

specified

or

defaulted

to

at

CREATE

TYPE

time.

The

specific-name

must

identify

a

method

specification

in

the

named

or

implicit

schema;

otherwise,

an

error

is

raised

(SQLSTATE

42704).

EXTERNAL

This

clause

indicates

that

the

CREATE

METHOD

statement

is

being

used

to

register

a

method,

based

on

code

written

in

an

external

programming

language,

and

adhering

to

the

documented

linkage

conventions

and

interface.

The

matching

method-specification

in

CREATE

TYPE

must

specify

a

LANGUAGE

other

than

SQL.

When

the

method

is

invoked,

the

subject

of

the

method

is

passed

to

the

implementation

as

an

implicit

first

parameter.

CREATE

METHOD

Chapter

15.

SQL

Statements

for

Administrators

585

If

the

NAME

clause

is

not

specified,

″NAME

method-name″

is

assumed.

NAME

This

clause

identifies

the

name

of

the

user-written

code

which

implements

the

method

being

defined.

’string’

The

’string’

option

is

a

string

constant

with

a

maximum

of

254

characters.

The

format

used

for

the

string

is

dependent

on

the

LANGUAGE

specified.

For

more

information

on

the

specific

language

conventions,

see

“CREATE

FUNCTION

(External

Scalar)”.

identifier

This

identifier

specified

is

an

SQL

identifier.

The

SQL

identifier

is

used

as

the

library-id

in

the

string.

Unless

it

is

a

delimited

identifier,

the

identifier

is

folded

to

upper

case.

If

the

identifier

is

qualified

with

a

schema

name,

the

schema

name

portion

is

ignored.

This

form

of

NAME

can

only

be

used

with

LANGUAGE

C

(as

defined

in

the

method-specification

on

CREATE

TYPE).

TRANSFORM

GROUP

group-name

Indicates

the

transform

group

that

is

used

for

user-defined

structured

type

transformations

when

invoking

the

method.

A

transform

is

required

since

the

method

definition

includes

a

user-defined

structured

type.

It

is

strongly

recommended

that

a

transform

group

name

be

specified;

if

this

clause

is

not

specified,

the

default

group-name

used

is

DB2_FUNCTION.

If

the

specified

(or

default)

group-name

is

not

defined

for

a

referenced

structured

type,

an

error

results

(SQLSTATE

42741).

Likewise,

if

a

required

FROM

SQL

or

TO

SQL

transform

function

is

not

defined

for

the

given

group-name

and

structured

type,

an

error

results

(SQLSTATE

42744).

INHERIT

ISOLATION

LEVEL

WITHOUT

LOCK

REQUEST

or

INHERIT

ISOLATION

LEVEL

WITH

LOCK

REQUEST

Specifies

whether

or

not

a

lock

request

can

be

associated

with

the

isolation-clause

of

the

statement

when

the

method

inherits

the

isolation

level

of

the

statement

that

invokes

the

method.

The

default

is

INHERIT

ISOLATION

LEVEL

WITHOUT

LOCK

REQUEST.

INHERIT

ISOLATION

LEVEL

WITHOUT

LOCK

REQUEST

Specifies

that,

as

the

method

inherits

the

isolation

level

of

the

invoking

statement,

it

cannot

be

invoked

in

the

context

of

an

SQL

statement

which

includes

a

lock-request-clause

as

part

of

a

specified

isolation-clause

(SQLSTATE

42601).

INHERIT

ISOLATION

LEVEL

WITH

LOCK

REQUEST

Specifies

that,

as

the

method

inherits

the

isolation

level

of

the

invoking

statement,

it

also

inherits

the

specified

lock-request-clause.

SQL-method-body

The

SQL-method-body

defines

how

the

method

is

implemented

if

the

method

specification

in

CREATE

TYPE

is

LANGUAGE

SQL.

The

SQL-method-body

must

comply

with

the

following

parts

of

method

specification:

v

DETERMINISTIC

or

NOT

DETERMINISTIC

(SQLSTATE

428C2)

v

EXTERNAL

ACTION

or

NO

EXTERNAL

ACTION

(SQLSTATE

428C2)

v

CONTAINS

SQL

or

READS

SQL

DATA

(SQLSTATE

42985)

CREATE

METHOD

586

Common

Criteria

Certification:

Administration

and

User

Documentation

Parameter

names

can

be

referenced

in

the

SQL-method-body.

The

subject

of

the

method

is

passed

to

the

method

implementation

as

an

implicit

first

parameter

named

SELF.

For

additional

details,

see

“Compound

SQL

(Dynamic)”

and

“RETURN

Statement”.

Rules:

v

The

method

specification

must

be

previously

defined

using

the

CREATE

TYPE

or

ALTER

TYPE

statement

before

CREATE

METHOD

can

be

used

(SQLSTATE

42723).

v

If

the

method

being

created

is

an

overriding

method,

those

packages

that

are

dependent

on

the

following

methods

are

invalidated:

–

The

original

method

–

Other

overriding

methods

that

have

as

their

subject

a

supertype

of

the

method

being

created

Notes:

v

If

the

method

allows

SQL,

the

external

program

must

not

attempt

to

access

any

federated

objects

(SQLSTATE

55047).

v

Privileges

The

definer

of

a

method

always

receives

the

EXECUTE

privilege

on

the

method,

as

well

as

the

right

to

drop

the

method.

If

an

EXTERNAL

method

is

created,

the

definer

of

the

method

always

receives

the

EXECUTE

privilege

WITH

GRANT

OPTION.

If

an

SQL

method

is

created,

the

definer

of

the

method

will

only

be

given

the

EXECUTE

privilege

WITH

GRANT

OPTION

on

the

method

when

the

definer

has

WITH

GRANT

OPTION

on

all

privileges

required

to

define

the

method,

or

if

the

definer

has

SYSADM

or

DBADM

authority.

The

definer

of

an

SQL

method

only

acquires

privileges

if

the

privileges

from

which

they

are

derived

exist

at

the

time

the

method

is

created.

The

definer

must

have

these

privileges

either

directly,

or

because

PUBLIC

has

the

privileges.

Privileges

held

by

groups

of

which

the

method

definer

is

a

member

are

not

considered.

When

using

the

method,

the

connected

user’s

authorization

ID

must

have

the

valid

privileges

on

the

table

or

view

that

the

nickname

references

at

the

data

source.

v

Table

access

restrictions

If

a

method

is

defined

as

READS

SQL

DATA,

no

statement

in

the

method

can

access

a

table

that

is

being

modified

by

the

statement

which

invoked

the

method

(SQLSTATE

57053).

Examples:

Example

1:

CREATE

METHOD

BONUS

(RATE

DOUBLE)

FOR

EMP

RETURN

SELF..SALARY

*

RATE

Example

2:

CREATE

METHOD

SAMEZIP

(addr

address_t)

RETURNS

INTEGER

FOR

address_t

RETURN

(CASE

CREATE

METHOD

Chapter

15.

SQL

Statements

for

Administrators

587

WHEN

(self..zip

=

addr..zip)

THEN

1

ELSE

0

END)

Example

3:

CREATE

METHOD

DISTANCE

(address_t)

FOR

address_t

EXTERNAL

NAME

’addresslib!distance’

TRANSFORM

GROUP

func_group

Related

reference:

v

“RETURN

statement”

in

the

SQL

Reference,

Volume

2

v

“Compound

SQL

(Dynamic)

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

FUNCTION

(External

Scalar)

statement”

in

the

SQL

Reference,

Volume

2

CREATE

PROCEDURE

The

CREATE

PROCEDURE

statement

defines

a

procedure

with

an

application

server.

There

are

two

different

types

of

procedures

that

can

be

created

using

this

statement.

Each

of

these

is

described

separately.

v

External.

The

procedure

body

is

written

in

a

programming

language.

The

external

executable

is

referenced

by

a

procedure

defined

with

an

application

server,

along

with

various

attributes

of

the

procedure.

v

SQL.

The

procedure

body

is

written

in

SQL.

The

procedure

body

is

defined

with

an

application

server

along

with

various

attributes

of

the

procedure.

Related

reference:

v

“CREATE

PROCEDURE

(External)

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

PROCEDURE

(SQL)

statement”

in

the

SQL

Reference,

Volume

2

CREATE

SCHEMA

The

CREATE

SCHEMA

statement

defines

a

schema.

It

is

also

possible

to

create

some

objects

and

grant

privileges

on

objects

within

the

statement.

Invocation:

This

statement

can

be

embedded

in

an

application

program

or

issued

through

the

use

of

dynamic

SQL

statements.

It

is

an

executable

statement

that

can

be

dynamically

prepared

only

if

DYNAMICRULES

run

behavior

is

in

effect

for

the

package

(SQLSTATE

42509).

Authorization:

An

authorization

ID

that

holds

SYSADM

or

DBADM

authority

can

create

a

schema

with

any

valid

schema-name

or

authorization-name.

An

authorization

ID

that

does

not

hold

SYSADM

or

DBADM

authority

can

only

create

a

schema

with

a

schema-name

or

authorization-name

that

matches

the

authorization

ID

of

the

statement.

CREATE

METHOD

588

Common

Criteria

Certification:

Administration

and

User

Documentation

If

the

statement

includes

any

schema-SQL-statements

the

privileges

held

by

the

authorization-name

(if

not

specified,

it

defaults

to

the

authorization

ID

of

the

statement)

must

include

at

least

one

of

the

following:

v

The

privileges

required

to

perform

each

of

the

schema-SQL-statements

v

SYSADM

or

DBADM

authority.

Syntax:

��

CREATE

SCHEMA

schema-name

AUTHORIZATION

authorization-name

schema-name

AUTHORIZATION

authorization-name

�

�

�

schema-SQL-statement

��

Description:

schema-name

Names

the

schema.

The

name

must

not

identify

a

schema

already

described

in

the

catalog

(SQLSTATE

42710).

The

name

cannot

begin

with

’SYS’

(SQLSTATE

42939).

The

owner

of

the

schema

is

the

authorization

ID

that

issued

the

statement.

AUTHORIZATION

authorization-name

Identifies

the

user

who

is

the

owner

of

the

schema.

The

value

of

authorization-name

is

also

used

to

name

the

schema.

The

authorization-name

must

not

identify

a

schema

already

described

in

the

catalog

(SQLSTATE

42710).

schema-name

AUTHORIZATION

authorization-name

Identifies

a

schema

called

schema-name,

whose

owner

is

authorization-name.

The

schema-name

must

not

identify

a

schema

already

described

in

the

catalog

(SQLSTATE

42710).

The

schema-name

cannot

begin

with

’SYS’

(SQLSTATE

42939).

schema-SQL-statement

SQL

statements

that

can

be

included

as

part

of

the

CREATE

SCHEMA

statement

are:

v

CREATE

TABLE

statement,

excluding

typed

tables

and

materialized

query

tables

v

CREATE

VIEW

statement,

excluding

typed

views

v

CREATE

INDEX

statement

v

COMMENT

statement

v

GRANT

statement

Notes:

v

The

owner

of

the

schema

is

determined

as

follows:

–

If

an

AUTHORIZATION

clause

is

specified,

the

specified

authorization-name

is

the

schema

owner

–

If

an

AUTHORIZATION

clause

is

not

specified,

the

authorization

ID

that

issued

the

CREATE

SCHEMA

statement

is

the

schema

owner.
v

The

schema

owner

is

assumed

to

be

a

user

(not

a

group).

CREATE

SCHEMA

Chapter

15.

SQL

Statements

for

Administrators

589

v

When

the

schema

is

explicitly

created

with

the

CREATE

SCHEMA

statement,

the

schema

owner

is

granted

CREATEIN,

DROPIN,

and

ALTERIN

privileges

on

the

schema

with

the

ability

to

grant

these

privileges

to

other

users.

v

The

definer

of

any

object

created

as

part

of

the

CREATE

SCHEMA

statement

is

the

schema

owner.

The

schema

owner

is

also

the

grantor

for

any

privileges

granted

as

part

of

the

CREATE

SCHEMA

statement.

v

Unqualified

object

names

in

any

SQL

statement

within

the

CREATE

SCHEMA

statement

are

implicitly

qualified

by

the

name

of

the

created

schema.

v

If

the

CREATE

statement

contains

a

qualified

name

for

the

object

being

created,

the

schema

name

specified

in

the

qualified

name

must

be

the

same

as

the

name

of

the

schema

being

created

(SQLSTATE

42875).

Any

other

objects

referenced

within

the

statements

may

be

qualified

with

any

valid

schema

name.

v

It

is

recommended

not

to

use

″SESSION″

as

a

schema

name.

Since

declared

temporary

tables

must

be

qualified

by

″SESSION″,

it

is

possible

to

have

an

application

declare

a

temporary

table

with

a

name

identical

to

that

of

a

persistent

table.

An

SQL

statement

that

references

a

table

with

the

schema

name

″SESSION″

will

resolve

(at

statement

compile

time)

to

the

declared

temporary

table

rather

than

a

persistent

table

with

the

same

name.

Since

an

SQL

statement

is

compiled

at

different

times

for

static

embedded

and

dynamic

embedded

SQL

statements,

the

results

depend

on

when

the

declared

temporary

table

is

defined.

If

persistent

tables,

views

or

aliases

are

not

defined

with

a

schema

name

of

″SESSION″,

these

issues

do

not

require

consideration.

Examples:

Example

1:

As

a

user

with

DBADM

authority,

create

a

schema

called

RICK

with

the

user

RICK

as

the

owner.

CREATE

SCHEMA

RICK

AUTHORIZATION

RICK

Example

2:

Create

a

schema

that

has

an

inventory

part

table

and

an

index

over

the

part

number.

Give

authority

on

the

table

to

user

JONES.

CREATE

SCHEMA

INVENTRY

CREATE

TABLE

PART

(PARTNO

SMALLINT

NOT

NULL,

DESCR

VARCHAR(24),

QUANTITY

INTEGER)

CREATE

INDEX

PARTIND

ON

PART

(PARTNO)

GRANT

ALL

ON

PART

TO

JONES

Example

3:

Create

a

schema

called

PERS

with

two

tables

that

each

have

a

foreign

key

that

references

the

other

table.

This

is

an

example

of

a

feature

of

the

CREATE

SCHEMA

statement

that

allows

such

a

pair

of

tables

to

be

created

without

the

use

of

the

ALTER

TABLE

statement.

CREATE

SCHEMA

PERS

CREATE

TABLE

ORG

(DEPTNUMB

SMALLINT

NOT

NULL,

DEPTNAME

VARCHAR(14),

MANAGER

SMALLINT,

DIVISION

VARCHAR(10),

LOCATION

VARCHAR(13),

CONSTRAINT

PKEYDNO

PRIMARY

KEY

(DEPTNUMB),

CONSTRAINT

FKEYMGR

FOREIGN

KEY

(MANAGER)

REFERENCES

STAFF

(ID)

)

CREATE

SCHEMA

590

Common

Criteria

Certification:

Administration

and

User

Documentation

CREATE

TABLE

STAFF

(ID

SMALLINT

NOT

NULL,

NAME

VARCHAR(9),

DEPT

SMALLINT,

JOB

VARCHAR(5),

YEARS

SMALLINT,

SALARY

DECIMAL(7,2),

COMM

DECIMAL(7,2),

CONSTRAINT

PKEYID

PRIMARY

KEY

(ID),

CONSTRAINT

FKEYDNO

FOREIGN

KEY

(DEPT)

REFERENCES

ORG

(DEPTNUMB)

)

Related

reference:

v

“COMMENT”

on

page

565

v

“CREATE

INDEX”

on

page

575

v

“CREATE

TABLE”

on

page

591

v

“CREATE

VIEW”

on

page

656

v

“GRANT

(Table,

View,

or

Nickname

Privileges)”

on

page

718

CREATE

TABLE

The

CREATE

TABLE

statement

defines

a

table.

The

definition

must

include

its

name

and

the

names

and

attributes

of

its

columns.

The

definition

can

include

other

attributes

of

the

table,

such

as

its

primary

key

or

check

constraints.

To

declare

a

global

temporary

table,

use

the

DECLARE

GLOBAL

TEMPORARY

TABLE

statement.

Invocation:

This

statement

can

be

embedded

in

an

application

program

or

issued

through

the

use

of

dynamic

SQL

statements.

It

is

an

executable

statement

that

can

be

dynamically

prepared

only

if

DYNAMICRULES

run

behavior

is

in

effect

for

the

package

(SQLSTATE

42509).

Authorization:

The

privileges

held

by

the

authorization

ID

of

the

statement

must

include

at

least

one

of

the

following:

v

SYSADM

or

DBADM

authority

v

CREATETAB

authority

on

the

database

and

USE

privilege

on

the

table

space

as

well

as

one

of:

–

IMPLICIT_SCHEMA

authority

on

the

database,

if

the

implicit

or

explicit

schema

name

of

the

table

does

not

exist

–

CREATEIN

privilege

on

the

schema,

if

the

schema

name

of

the

table

refers

to

an

existing

schema.

If

a

subtable

is

being

defined,

the

authorization

ID

must

be

the

same

as

the

definer

of

the

root

table

of

the

table

hierarchy.

To

define

a

foreign

key,

the

privileges

held

by

the

authorization

ID

of

the

statement

must

include

one

of

the

following

on

the

parent

table:

v

REFERENCES

privilege

on

the

table

v

REFERENCES

privilege

on

each

column

of

the

specified

parent

key

CREATE

SCHEMA

Chapter

15.

SQL

Statements

for

Administrators

591

v

CONTROL

privilege

on

the

table

v

SYSADM

or

DBADM

authority.

To

define

a

materialized

query

table

(using

a

fullselect)

the

privileges

held

by

the

authorization

ID

of

the

statement

must

include

at

least

one

of

the

following

on

each

table

or

view

identified

in

the

fullselect:

v

SELECT

privilege

on

the

table

or

view

and

ALTER

privilege

if

REFRESH

DEFERRED

or

REFRESH

IMMEDIATE

is

specified

v

CONTROL

privilege

on

the

table

or

view

v

SYSADM

or

DBADM

authority.

To

define

a

staging

table

associated

with

a

materialized

query

table,

the

privileges

held

by

the

authorization

ID

of

the

statement

must

include

at

least

one

of

the

following:

v

CONTROL

privilege

or

ALTER

privilege

on

the

materialized

query

table,

and

at

least

one

of

the

following

on

each

table

or

view

identified

in

the

fullselect

of

the

materialized

query

table:

–

SELECT

privilege

and

ALTER

privilege

on

the

table

or

view

–

CONTROL

privilege

on

the

table

or

view
v

SYSADM

or

DBADM

authority

Syntax:

��

CREATE

TABLE

table-name

element-list

OF

type-name1

typed-table-options

materialized-query-definition

staging-table-definition

LIKE

table-name1

view-name

copy-options

nickname

�

�

*

�

�

,

DIMENSIONS

ORGANIZE

BY

(

column-name

)

,

(

column-name

)

KEY

SEQUENCE

sequence-key-spec

�

�

DATA

CAPTURE

NONE

*

DATA

CAPTURE

CHANGES

*

�

�

IN

tablespace-name1

tablespace-options

*

�

�

�

,

USING

HASHING

PARTITIONING

KEY

(

column

)

REPLICATED

�

CREATE

TABLE

592

Common

Criteria

Certification:

Administration

and

User

Documentation

�

*

VALUE

COMPRESSION

*

WITH

RESTRICT

ON

DROP

�

�

*

NOT

LOGGED

INITIALLY

*

CCSID

ASCII

UNICODE

*

�

�

�

,

ADD

OPTIONS

(

table-option-name

string-constant

)

��

sequence-key-spec:

�

,

AT

(

column-name

ENDING

constant

)

FROM

STARTING

constant

�

�

ALLOW

OVERFLOW

DISALLOW

OVERFLOW

element-list:

�

,

(

column-definition

)

unique-constraint

referential-constraint

check-constraint

typed-table-options:

HIERARCHY

hierarchy-name

typed-element-list

under-clause

under-clause:

UNDER

supertable-name

INHERIT

SELECT

PRIVILEGES

typed-element-list:

�

,

(

OID-column-definition

)

with-options

unique-constraint

check-constraint

CREATE

TABLE

Chapter

15.

SQL

Statements

for

Administrators

593

materialized-query-definition:

�

,

(

column-name

)

AS

(

fullselect

)

�

�

materialized-query-table-options

materialized-query-table-options:

WITH

NO

DATA

copy-options

refreshable-table-options

copy-options:

*

COLUMN

INCLUDING

DEFAULTS

EXCLUDING

*

�

�

COLUMN

ATTRIBUTES

EXCLUDING

IDENTITY

COLUMN

ATTRIBUTES

INCLUDING

IDENTITY

*

refreshable-table-options:

*

DATA

INITIALLY

DEFERRED

*

REFRESH

DEFERRED

IMMEDIATE

*

�

�

ENABLE

QUERY

OPTIMIZATION

DISABLE

QUERY

OPTIMIZATION

*

MAINTAINED

BY

SYSTEM

USER

FEDERATED_TOOL

*

staging-table-definition:

�

,

(

staging-column-name

)

FOR

table-name2

PROPAGATE

IMMEDIATE

CREATE

TABLE

594

Common

Criteria

Certification:

Administration

and

User

Documentation

tablespace-options:

(1)

INDEX

IN

tablespace-name2

LONG

IN

tablespace-name3

column-definition:

column-name

(2)

data-type

column-options

column-options:

�

NOT

NULL

(3)

lob-options

(4)

datalink-options

(5)

SCOPE

typed-table-name

typed-view-name

PRIMARY

KEY

CONSTRAINT

constraint-name

UNIQUE

references-clause

CHECK

(

check-condition

)

constraint-attributes

generated-column-spec

(6)

INLINE

LENGTH

integer

COMPRESS

SYSTEM

DEFAULT

Notes:

1 Specifying

which

table

space

will

contain

a

table’s

index

can

only

be

done

when

the

table

is

created.

2 If

the

first

column-option

chosen

is

a

generated-column-spec

with

a

generation-expression,

then

the

data-type

can

be

omitted.

It

will

be

determined

from

the

resulting

data

type

of

the

generation-expression.

3 The

lob-options

clause

only

applies

to

large

object

types

(BLOB,

CLOB

and

DBCLOB)

and

distinct

types

based

on

large

object

types.

4 The

datalink-options

clause

only

applies

to

the

DATALINK

type

and

distinct

types

based

on

the

DATALINK

type.

5 The

SCOPE

clause

only

applies

to

the

REF

type.

6 INLINE

LENGTH

only

applies

to

columns

defined

as

structured

types.

data-type:

CREATE

TABLE

Chapter

15.

SQL

Statements

for

Administrators

595

SMALLINT

INTEGER

INT

BIGINT

FLOAT

(

integer

)

REAL

PRECISION

DOUBLE

DECIMAL

DEC

(

integer

)

NUMERIC

,integer

NUM

CHARACTER

CHAR

(integer)

(1)

VARCHAR

(

integer

)

FOR

BIT

DATA

CHARACTER

VARYING

CHAR

LONG

VARCHAR

BLOB

BINARY

LARGE

OBJECT

(

integer

)

CLOB

K

CHARACTER

LARGE

OBJECT

M

CHAR

G

DBCLOB

GRAPHIC

(integer)

VARGRAPHIC

(integer)

LONG

VARGRAPHIC

DATE

TIME

TIMESTAMP

DATALINK

(

integer

)

distinct-type-name

structured-type-name

REF

(type-name2)

Notes:

1 The

FOR

BIT

DATA

clause

can

be

specified

in

any

order

with

the

other

column

constraints

that

follow.

default-values:

constant

datetime-special-register

user-special-register

CURRENT

SCHEMA

NULL

cast-function

(

constant

)

datetime-special-register

user-special-register

CURRENT

SCHEMA

lob-options:

LOGGED

NOT

COMPACT

*

*

*

NOT

LOGGED

COMPACT

CREATE

TABLE

596

Common

Criteria

Certification:

Administration

and

User

Documentation

datalink-options:

LINKTYPE

URL

NO

LINK

CONTROL

FILE

LINK

CONTROL

file-link-options

MODE

DB2OPTIONS

file-link-options:

*

INTEGRITY

ALL

*

READ

PERMISSION

FS

DB

�

�

*

WRITE

PERMISSION

FS

BLOCKED

ADMIN

REQUIRING

TOKEN

FOR

UPDATE

NOT

�

�

*

RECOVERY

NO

YES

*

ON

UNLINK

RESTORE

*

DELETE

generated-column-spec:

default-clause

GENERATED

ALWAYS

AS

IDENTITY

BY

DEFAULT

identity-options

GENERATED

ALWAYS

AS

(

generation-expression

)

identity-options:

�

(1)

1

(

START

WITH

numeric-constant

)

1

INCREMENT

BY

numeric-constant

NO

MINVALUE

MINVALUE

numeric-constant

NO

MAXVALUE

MAXVALUE

numeric-constant

NO

CYCLE

CYCLE

CACHE

20

NO

CACHE

CACHE

integer-constant

NO

ORDER

ORDER

Notes:

1 The

same

clause

must

not

be

specified

more

than

once.

references-clause:

REFERENCES

table-name

nickname

�

,

(

column-name

)

�

CREATE

TABLE

Chapter

15.

SQL

Statements

for

Administrators

597

�

rule-clause

constraint-attributes

rule-clause:

ON

DELETE

NO

ACTION

ON

UPDATE

NO

ACTION

*

*

*

ON

DELETE

RESTRICT

ON

UPDATE

RESTRICT

CASCADE

SET

NULL

constraint-attributes:

*

ENFORCED

NOT

ENFORCED

*

ENABLE

QUERY

OPTIMIZATION

DISABLE

QUERY

OPTIMIZATION

*

default-clause:

WITH

DEFAULT

default-values

unique-constraint:

CONSTRAINT

constraint-name

UNIQUE

PRIMARY

KEY

�

,

(

column-name

)

referential-constraint:

CONSTRAINT

constraint-name

FOREIGN

KEY

�

,

(

column-name

)

�

�

references-clause

check-constraint:

CONSTRAINT

constraint-name

CHECK

(

check-condition

)

�

�

constraint-attributes

check-condition:

search-condition

functional-dependency

CREATE

TABLE

598

Common

Criteria

Certification:

Administration

and

User

Documentation

functional-dependency:

�

�

column-name

DETERMINED

BY

column-name

,

,

(

column-name

)

(

column-name

)

OID-column-definition:

REF

IS

OID-column-name

USER

GENERATED

with-options:

column-name

WITH

OPTIONS

column-options

Description:

System-maintained

materialized

query

tables

and

user-maintained

materialized

query

tables

are

referred

to

by

the

common

term

materialized

query

table,

unless

there

is

a

need

to

identify

each

one

separately.

table-name

Names

the

table.

The

name,

including

the

implicit

or

explicit

qualifier,

must

not

identify

a

table,

view,

nickname,

or

alias

described

in

the

catalog.

The

schema

name

must

not

be

SYSIBM,

SYSCAT,

SYSFUN,

or

SYSSTAT

(SQLSTATE

42939).

OF

type-name1

Specifies

that

the

columns

of

the

table

are

based

on

the

attributes

of

the

structured

type

identified

by

type-name1.

If

type-name1

is

specified

without

a

schema

name,

the

type

name

is

resolved

by

searching

the

schemas

on

the

SQL

path

(defined

by

the

FUNCPATH

preprocessing

option

for

static

SQL

and

by

the

CURRENT

PATH

register

for

dynamic

SQL).

The

type

name

must

be

the

name

of

an

existing

user-defined

type

(SQLSTATE

42704)

and

it

must

be

an

instantiable

structured

type

(SQLSTATE

428DP)

with

at

least

one

attribute

(SQLSTATE

42997).

If

UNDER

is

not

specified,

an

object

identifier

column

must

be

specified

(refer

to

the

OID-column-definition).

This

object

identifier

column

is

the

first

column

of

the

table.

The

object

ID

column

is

followed

by

columns

based

on

the

attributes

of

type-name1.

HIERARCHY

hierarchy-name

Names

the

hierarchy

table

associated

with

the

table

hierarchy.

It

is

created

at

the

same

time

as

the

root

table

of

the

hierarchy.

The

data

for

all

subtables

in

the

typed

table

hierarchy

is

stored

in

the

hierarchy

table.

A

hierarchy

table

cannot

be

directly

referenced

in

SQL

statements.

A

hierarchy-name

is

a

table-name.

The

hierarchy-name,

including

the

implicit

or

explicit

schema

name,

must

not

identify

a

table,

nickname,

view,

or

alias

described

in

the

catalog.

If

the

schema

name

is

specified,

it

must

be

the

same

as

the

schema

name

of

the

table

being

created

(SQLSTATE

428DQ).

If

this

clause

is

omitted

when

defining

the

root

table,

a

name

is

generated

by

the

system

consisting

of

the

name

of

the

table

being

created

followed

by

a

unique

suffix

such

that

the

identifier

is

unique

within

the

identifiers

of

the

existing

tables,

views,

aliases,

and

nicknames.

UNDER

supertable-name

Indicates

that

the

table

is

a

subtable

of

supertable-name.

The

supertable

must

be

CREATE

TABLE

Chapter

15.

SQL

Statements

for

Administrators

599

an

existing

table

(SQLSTATE

42704)

and

the

table

must

be

defined

using

a

structured

type

that

is

the

immediate

supertype

of

type-name1

(SQLSTATE

428DB).

The

schema

name

of

table-name

and

supertable-name

must

be

the

same

(SQLSTATE

428DQ).

The

table

identified

by

supertable-name

must

not

have

any

existing

subtable

already

defined

using

type-name1

(SQLSTATE

42742).

The

columns

of

the

table

include

the

object

identifier

column

of

the

supertable

with

its

type

modified

to

be

REF(type-name1),

followed

by

columns

based

on

the

attributes

of

type-name1

(remember

that

the

type

includes

the

attributes

of

its

supertype).

The

attribute

names

cannot

be

the

same

as

the

OID

column

name

(SQLSTATE

42711).

Other

table

options

including

table

space,

data

capture,

not

logged

initially

and

partitioning

key

options

cannot

be

specified.

These

options

are

inherited

from

the

supertable

(SQLSTATE

42613).

INHERIT

SELECT

PRIVILEGES

Any

user

or

group

holding

a

SELECT

privilege

on

the

supertable

will

be

granted

an

equivalent

privilege

on

the

newly

created

subtable.

The

subtable

definer

is

considered

to

be

the

grantor

of

this

privilege.

element-list

Defines

the

elements

of

a

table.

This

includes

the

definition

of

columns

and

constraints

on

the

table.

typed-element-list

Defines

the

additional

elements

of

a

typed

table.

This

includes

the

additional

options

for

the

columns,

the

addition

of

an

object

identifier

column

(root

table

only),

and

constraints

on

the

table.

materialized-query-definition

If

the

table

definition

is

based

on

the

result

of

a

query,

the

table

is

a

materialized

query

table

based

on

the

query.

column-name

Names

the

columns

in

the

table.

If

a

list

of

column

names

is

specified,

it

must

consist

of

as

many

names

as

there

are

columns

in

the

result

table

of

the

fullselect.

Each

column-name

must

be

unique

and

unqualified.

If

a

list

of

column

names

is

not

specified,

the

columns

of

the

table

inherit

the

names

of

the

columns

of

the

result

table

of

the

fullselect.

A

list

of

column

names

must

be

specified

if

the

result

table

of

the

fullselect

has

duplicate

column

names

of

an

unnamed

column

(SQLSTATE

42908).

An

unnamed

column

is

a

column

derived

from

a

constant,

function,

expression,

or

set

operation

that

is

not

named

using

the

AS

clause

of

the

select

list.

AS

Introduces

the

query

that

is

used

for

the

definition

of

the

table

and

that

determines

the

data

to

be

included

in

the

table.

fullselect

Defines

the

query

on

which

the

table

is

based.

The

resulting

column

definitions

are

the

same

as

those

for

a

view

defined

with

the

same

query.

Every

select

list

element

must

have

a

name

(use

the

AS

clause

for

expressions).

The

materialized-query-definition

defines

attributes

of

the

materialized

query

table.

The

option

chosen

also

defines

the

contents

of

the

fullselect

as

follows.

When

WITH

NO

DATA

is

specified,

any

valid

fullselect

that

does

not

reference

a

typed

table

or

a

typed

view

can

be

specified.

CREATE

TABLE

600

Common

Criteria

Certification:

Administration

and

User

Documentation

When

REFRESH

DEFERRED

or

REFRESH

IMMEDIATE

is

specified,

the

fullselect

cannot

include

(SQLSTATE

428EC):

v

References

to

a

materialized

query

table,

declared

temporary

table,

or

typed

table

in

any

FROM

clause

v

References

to

a

view

where

the

fullselect

of

the

view

violates

any

of

the

listed

restrictions

on

the

fullselect

of

the

materialized

query

table

v

Expressions

that

are

a

reference

type

or

DATALINK

type

(or

distinct

type

based

on

these

types)

v

Functions

that

have

any

of

the

following

attributes:

–

EXTERNAL

ACTION

–

LANGUAGE

SQL

–

CONTAINS

SQL

–

READS

SQL

DATA

–

MODIFIES

SQL

DATA
v

Functions

that

depend

on

physical

characteristics

(for

example,

DBPARTITIONNUM,

HASHEDVALUE)

v

Table

or

view

references

to

system

objects

(Explain

tables

also

should

not

be

specified)

v

Expressions

that

are

a

structured

type

or

LOB

type

(or

a

distinct

type

based

on

a

LOB

type)

When

REPLICATED

is

specified,

the

following

restrictions

apply:

v

The

GROUP

BY

clause

is

not

allowed.

v

The

materialized

query

table

must

only

reference

a

single

table;

that

is,

it

cannot

include

a

join.

When

REFRESH

IMMEDIATE

is

specified:

v

The

query

must

be

a

subselect,

with

the

exception

that

UNION

ALL

is

supported

in

the

input

table

expression

of

a

GROUP

BY.

v

The

query

cannot

be

recursive.

v

The

query

cannot

include:

–

References

to

a

nickname

–

Functions

that

are

not

deterministic

–

Scalar

fullselects

–

Predicates

with

fullselects

–

Special

registers

–

SELECT

DISTINCT
v

If

the

FROM

clause

references

more

than

one

table

or

view,

it

can

only

define

an

inner

join

without

using

the

explicit

INNER

JOIN

syntax.

v

When

a

GROUP

BY

clause

is

specified,

the

following

considerations

apply:

–

The

supported

column

functions

are

SUM,

COUNT,

COUNT_BIG

and

GROUPING

(without

DISTINCT).

The

select

list

must

contain

a

COUNT(*)

or

COUNT_BIG(*)

column.

If

the

materialized

query

table

select

list

contains

SUM(X),

where

X

is

a

nullable

argument,

the

materialized

query

table

must

also

have

COUNT(X)

in

its

select

list.

These

column

functions

cannot

be

part

of

any

expressions.

–

A

HAVING

clause

is

not

allowed.

CREATE

TABLE

Chapter

15.

SQL

Statements

for

Administrators

601

–

If

in

a

multiple

partition

database

partition

group,

the

partitioning

key

must

be

a

subset

of

the

GROUP

BY

items.
v

The

materialized

query

table

must

not

contain

duplicate

rows,

and

the

following

restrictions

specific

to

this

uniqueness

requirement

apply,

depending

upon

whether

or

not

a

GROUP

BY

clause

is

specified.

–

When

a

GROUP

BY

clause

is

specified,

the

following

uniqueness-related

restrictions

apply:

-

All

GROUP

BY

items

must

be

included

in

the

select

list.

-

When

the

GROUP

BY

contains

GROUPING

SETS,

CUBE,

or

ROLLUP,

the

GROUP

BY

items

and

associated

GROUPING

column

functions

in

the

select

list

must

form

a

unique

key

of

the

result

set.

Thus,

the

following

restrictions

must

be

satisfied:

v

No

grouping

sets

can

be

repeated.

For

example,

ROLLUP(X,Y),X

is

not

allowed,

because

it

is

equivalent

to

GROUPING

SETS((X,Y),(X),(X)).

v

If

X

is

a

nullable

GROUP

BY

item

that

appears

within

GROUPING

SETS,

CUBE,

or

ROLLUP,

then

GROUPING(X)

must

appear

in

the

select

list.
–

When

a

GROUP

BY

clause

is

not

specified,

the

following

uniqueness-related

restrictions

apply:

-

The

materialized

query

table’s

uniqueness

requirement

is

achieved

by

deriving

a

unique

key

for

the

materialized

view

from

one

of

the

unique

key

constraints

defined

in

each

of

the

underlying

tables.

Therefore,

the

underlying

tables

must

have

at

least

one

unique

key

constraint

defined

on

them,

and

the

columns

of

these

keys

must

appear

in

the

select

list

of

the

materialized

query

table

definition.
v

When

MAINTAINED

BY

FEDERATED_TOOL

is

specified,

only

references

to

nicknames

are

allowed

in

a

FROM

clause.

When

REFRESH

DEFERRED

is

specified,

and

the

materialized

query

table

is

created

with

the

intention

of

providing

it

with

an

associated

staging

table

in

a

later

statement,

the

fullselect

of

the

materialized

query

table

must

follow

the

same

restrictions

and

rules

as

a

fullselect

used

to

create

a

materialized

query

table

with

the

REFRESH

IMMEDIATE

option.

A

materialized

query

table

whose

fullselect

contains

a

GROUP

BY

clause

is

summarizing

data

from

the

tables

referenced

in

the

fullselect.

Such

a

materialized

query

table

is

also

known

as

a

summary

table.

A

summary

table

is

a

specialized

type

of

materialized

query

table.

WITH

NO

DATA

The

query

is

used

only

to

define

the

table.

The

table

is

not

populated

using

the

results

of

query

and

the

REFRESH

TABLE

statement

cannot

be

used.

When

the

CREATE

TABLE

statement

is

completed,

the

table

is

no

longer

considered

a

materialized

query

table.

The

columns

of

the

table

are

defined

based

on

the

definitions

of

the

columns

that

result

from

the

fullselect.

If

the

fullselect

references

a

single

table

in

the

FROM

clause,

select

list

items

that

are

columns

of

that

table

are

defined

using

the

column

name,

data

type,

and

nullability

characteristic

of

the

referenced

table.

refreshable-table-options

Define

the

refreshable

options

of

the

materialized

query

table

attributes.

CREATE

TABLE

602

Common

Criteria

Certification:

Administration

and

User

Documentation

DATA

INITIALLY

DEFERRED

Data

is

not

inserted

into

the

table

as

part

of

the

CREATE

TABLE

statement.

A

REFRESH

TABLE

statement

specifying

the

table-name

is

used

to

insert

data

into

the

table.

REFRESH

Indicates

how

the

data

in

the

table

is

maintained.

DEFERRED

The

data

in

the

table

can

be

refreshed

at

any

time

using

the

REFRESH

TABLE

statement.

The

data

in

the

table

only

reflects

the

result

of

the

query

as

a

snapshot

at

the

time

the

REFRESH

TABLE

statement

is

processed.

System-maintained

materialized

query

tables

defined

with

this

attribute

do

not

allow

INSERT,

UPDATE,

or

DELETE

statements

(SQLSTATE

42807).

User-maintained

materialized

query

tables

defined

with

this

attribute

do

allow

INSERT,

UPDATE,

or

DELETE

statements.

IMMEDIATE

The

changes

made

to

the

underlying

tables

as

part

of

a

DELETE,

INSERT,

or

UPDATE

are

cascaded

to

the

materialized

query

table.

In

this

case,

the

content

of

the

table,

at

any

point-in-time,

is

the

same

as

if

the

specified

subselect

is

processed.

Materialized

query

tables

defined

with

this

attribute

do

not

allow

INSERT,

UPDATE,

or

DELETE

statements

(SQLSTATE

42807).

ENABLE

QUERY

OPTIMIZATION

The

materialized

query

table

can

be

used

for

query

optimization

under

appropriate

circumstances.

DISABLE

QUERY

OPTIMIZATION

The

materialized

query

table

will

not

be

used

for

query

optimization.

The

table

can

still

be

queried

directly.

MAINTAINED

BY

Specifies

whether

the

data

in

the

materialized

query

table

is

maintained

by

the

system,

user,

or

replication

tool.

The

default

is

SYSTEM.

SYSTEM

Specifies

that

the

data

in

the

materialized

query

table

is

maintained

by

the

system.

USER

Specifies

that

the

data

in

the

materialized

query

table

is

maintained

by

the

user.

The

user

is

allowed

to

perform

update,

delete,

or

insert

operations

against

user-maintained

materialized

query

tables.

The

REFRESH

TABLE

statement,

used

for

system-maintained

materialized

query

tables,

cannot

be

invoked

against

user-maintained

materialized

query

tables.

Only

a

REFRESH

DEFERRED

materialized

query

table

can

be

defined

as

MAINTAINED

BY

USER.

FEDERATED_TOOL

Specifies

that

the

data

in

the

materialized

query

table

is

maintained

by

the

replication

tool.

The

REFRESH

TABLE

statement,

used

for

system-maintained

materialized

query

tables,

cannot

be

invoked

against

federated_tool-maintained

materialized

query

tables.

Only

a

REFRESH

DEFERRED

materialized

query

table

can

be

defined

as

MAINTAINED

BY

FEDERATED_TOOL.

staging-table-definition

Defines

the

query

supported

by

the

staging

table

indirectly

through

an

associated

materialized

query

table.

The

underlying

tables

of

the

materialized

CREATE

TABLE

Chapter

15.

SQL

Statements

for

Administrators

603

query

table

are

also

the

underlying

tables

for

its

associated

staging

table.

The

staging

table

collects

changes

that

need

to

be

applied

to

the

materialized

query

table

to

synchronize

it

with

the

contents

of

the

underlying

tables.

staging-column-name

Names

the

columns

in

the

staging

table.

If

a

list

of

column

names

is

specified,

it

must

consist

of

two

more

names

than

there

are

columns

in

the

materialized

query

table

for

which

the

staging

table

is

defined.

If

the

materialized

query

table

is

a

replicated

materialized

query

table,

or

the

query

defining

the

materialized

query

table

does

not

contain

a

GROUP

BY

clause,

the

list

of

column

names

must

consist

of

three

more

names

than

there

are

columns

in

the

materialized

query

table

for

which

the

staging

table

is

defined.

Each

column

name

must

be

unique

and

unqualified.

If

a

list

of

column

names

is

not

specified,

the

columns

of

the

table

inherit

the

names

of

the

columns

of

the

associated

materialized

query

table.

The

additional

columns

are

named

GLOBALTRANSID

and

GLOBALTRANSTIME,

and

if

a

third

column

is

necessary,

it

is

named

OPERATIONTYPE.

Table

58.

Extra

Columns

Appended

in

Staging

Tables

Column

Name

Data

Type

Column

Description

GLOBALTRANSID

CHAR(8)

FOR

BIT

DATA

The

global

transaction

ID

for

each

propagated

row

GLOBALTRANSTIME

CHAR(13)

FOR

BIT

DATA

The

timestamp

of

the

transaction

OPERATIONTYPE

INTEGER

Operation

for

the

propagated

row,

either

insert,

update,

or

delete.

A

list

of

column

names

must

be

specified

if

any

of

the

columns

of

the

associated

materialized

query

table

duplicates

any

of

the

generated

column

names

(SQLSTATE

42711).

FOR

table-name2

Specifies

the

materialized

query

table

that

is

used

for

the

definition

of

the

staging

table.

The

name,

including

the

implicit

or

explicit

schema,

must

identify

a

materialized

query

table

that

exists

at

the

current

server

defined

with

REFRESH

DEFERRED.

The

fullselect

of

the

associated

materialized

query

table

must

follow

the

same

restrictions

and

rules

as

a

fullselect

used

to

create

a

materialized

query

table

with

the

REFRESH

IMMEDIATE

option.

The

contents

of

the

staging

table

can

be

used

to

refresh

the

materialized

query

table,

by

invoking

the

REFRESH

TABLE

statement,

if

the

contents

of

the

staging

table

are

consistent

with

the

associated

materialized

query

table

and

the

underlying

source

tables.

PROPAGATE

IMMEDIATE

The

changes

made

to

the

underlying

tables

as

part

of

a

delete,

insert,

or

update

operation

are

cascaded

to

the

staging

table

in

the

same

delete,

insert,

or

update

operation.

If

the

staging

table

is

not

marked

inconsistent,

its

content,

at

any

point-in-time,

is

the

delta

changes

to

the

underlying

table

since

the

last

refresh

materialized

query

table.

LIKE

table-name1

or

view-name

or

nickname

Specifies

that

the

columns

of

the

table

have

exactly

the

same

name

and

description

as

the

columns

of

the

identified

table

(table-name1),

view

CREATE

TABLE

604

Common

Criteria

Certification:

Administration

and

User

Documentation

(view-name)

or

nickname

(nickname).

The

name

specified

after

LIKE

must

identify

a

table,

view

or

nickname

that

exists

in

the

catalog,

or

a

declared

temporary

table.

A

typed

table

or

typed

view

cannot

be

specified

(SQLSTATE

428EC).

The

use

of

LIKE

is

an

implicit

definition

of

n

columns,

where

n

is

the

number

of

columns

in

the

identified

table,

view

or

nickname.

v

If

a

table

is

identified,

then

the

implicit

definition

includes

the

column

name,

data

type

and

nullability

characteristic

of

each

of

the

columns

of

table-name1.

If

EXCLUDING

COLUMN

DEFAULTS

is

not

specified,

then

the

column

default

is

also

included.

v

If

a

view

is

identified,

then

the

implicit

definition

includes

the

column

name,

data

type,

and

nullability

characteristic

of

each

of

the

result

columns

of

the

fullselect

defined

in

view-name.

v

If

a

nickname

is

identified,

then

the

implicit

definition

includes

the

column

name,

data

type,

and

nullability

characteristic

of

each

column

of

nickname.

Column

default

and

identity

column

attributes

may

be

included

or

excluded,

based

on

the

copy-attributes

clauses.

The

implicit

definition

does

not

include

any

other

attributes

of

the

identified

table,

view

or

nickname.

Thus

the

new

table

does

not

have

any

unique

constraints,

foreign

key

constraints,

triggers,

or

indexes.

The

table

is

created

in

the

table

space

implicitly

or

explicitly

specified

by

the

IN

clause,

and

the

table

has

any

other

optional

clause

only

if

the

optional

clause

is

specified.

copy-options

These

options

specify

whether

or

not

to

copy

additional

attributes

of

the

source

result

table

definition

(table,

view

or

fullselect).

INCLUDING

COLUMN

DEFAULTS

Column

defaults

for

each

updatable

column

of

the

source

result

table

definition

are

copied.

Columns

that

are

not

updatable

will

not

have

a

default

defined

in

the

corresponding

column

of

the

created

table.

If

LIKE

table-name

is

specified

and

table-name

identifies

a

base

table

or

declared

temporary

table,

then

INCLUDING

COLUMN

DEFAULTS

is

the

default.

EXCLUDING

COLUMN

DEFAULTS

Columns

defaults

are

not

copied

from

the

source

result

table

definition.

This

clause

is

the

default,

except

when

LIKE

table-name

is

specified

and

table-name

identifies

a

base

table

or

declared

temporary

table.

INCLUDING

IDENTITY

COLUMN

ATTRIBUTES

Identity

column

attributes

are

copied

from

the

source

result

table

definition,

if

possible.

It

is

possible

to

copy

the

identity

column

attributes,

if

the

element

of

the

corresponding

column

in

the

table,

view,

or

fullselect

is

the

name

of

a

table

column,

or

the

name

of

a

view

column

which

directly

or

indirectly

maps

to

the

name

of

a

base

table

column

with

the

identity

property.

In

all

other

cases,

the

columns

of

the

new

table

will

not

get

the

identity

property.

For

example:

v

the

select-list

of

the

fullselect

includes

multiple

instances

of

an

identity

column

name

(that

is,

selecting

the

same

column

more

than

once)

v

the

select

list

of

the

fullselect

includes

multiple

identity

columns

(that

is,

it

involves

a

join)

v

the

identity

column

is

included

in

an

expression

in

the

select

list

v

the

fullselect

includes

a

set

operation

(union,

except,

or

intersect).

CREATE

TABLE

Chapter

15.

SQL

Statements

for

Administrators

605

EXCLUDING

IDENTITY

COLUMN

ATTRIBUTES

Identity

column

attributes

are

not

copied

from

the

source

result

table

definition.

ORGANIZE

BY

DIMENSIONS

(column-name,...)

Specifies

a

dimension

for

each

column

or

group

of

columns

used

to

cluster

the

table

data.

The

use

of

parentheses

within

the

dimension

list

specifies

that

a

group

of

columns

is

to

be

treated

as

one

dimension.

The

DIMENSIONS

keyword

is

optional.

A

clustering

block

index

is

automatically

maintained

for

each

specified

dimension,

and

a

block

index,

consisting

of

all

columns

used

in

the

clause,

is

maintained

if

none

of

the

clustering

block

indexes

includes

them

all.

The

set

of

columns

used

in

the

ORGANIZE

BY

clause

must

follow

the

rules

for

the

CREATE

INDEX

statement.

Each

column

name

specified

in

the

ORGANIZE

BY

clause

must

be

defined

for

the

table

(SQLSTATE

42703),

and

a

dimension

cannot

occur

more

than

once

in

the

dimension

list

(SQLSTATE

42709).

Pages

of

the

table

are

arranged

in

blocks

of

equal

size,

which

is

the

extent

size

of

the

tablespace,

and

all

rows

of

each

block

contain

the

same

combination

of

dimension

values.

ORGANIZE

BY

KEY

SEQUENCE

sequence-key-spec

Specifies

that

the

table

is

organized

in

ascending

key

sequence

with

a

fixed

size

based

on

the

specified

range

of

key

sequence

values.

A

table

organized

in

this

way

is

referred

to

as

a

range-clustered

table.

Each

possible

key

value

in

the

defined

range

has

a

predetermined

location

in

the

physical

table.

The

storage

required

for

a

range-clustered

table

must

be

available

when

the

table

is

created,

and

must

be

sufficient

to

contain

the

number

of

rows

in

the

specified

range

multiplied

by

the

row

size

(for

details

on

determining

the

space

requirement,

see

“Row

Size”

on

page

638

and

“Byte

Counts”

on

page

638).

column-name

Specifies

a

column

of

the

table

that

is

included

in

the

unique

key

that

determines

the

sequence

of

the

range-clustered

table.

The

data

type

of

the

column

must

be

SMALLINT,

INTEGER,

or

BIGINT

(SQLSTATE

42611),

and

the

columns

must

be

defined

as

NOT

NULL

(SQLSTATE

42831).

The

same

column

must

not

be

identified

more

than

once

in

the

sequence

key.

The

number

of

identified

columns

must

not

exceed

16

(SQLSTATE

54008).

A

unique

index

entry

will

automatically

be

created

in

the

catalog

for

the

columns

in

the

key

sequence

specified

with

ascending

order

for

each

column.

The

name

of

the

index

will

be

SQL,

followed

by

a

character

timestamp

(yymmddhhmmssxxx),

with

SYSIBM

as

the

schema

name.

An

actual

index

object

is

not

created

in

storage,

because

the

table

organization

is

ordered

by

this

key.

If

a

primary

key

or

a

unique

constraint

is

defined

on

the

same

columns

as

the

range-clustered

table

sequence

key,

this

same

index

entry

is

used

for

the

constraint.

For

the

key

sequence

specification,

a

check

constraint

exists

to

reflect

the

column

constraints.

If

the

DISALLOW

OVERFLOW

clause

is

specified,

the

name

of

the

check

constraint

will

be

RCT,

and

the

check

constraint

is

enforced.

If

the

ALLOW

OVERFLOW

clause

is

specified,

the

name

of

the

check

constraint

will

be

RCT_OFLOW,

and

the

check

constraint

is

not

enforced.

STARTING

FROM

constant

Specifies

the

constant

value

at

the

low

end

of

the

range

for

column-name.

CREATE

TABLE

606

Common

Criteria

Certification:

Administration

and

User

Documentation

Values

less

than

the

specified

constant

are

only

allowed

if

the

ALLOW

OVERFLOW

option

is

specified.

If

column-name

is

a

SMALLINT

or

INTEGER

column,

the

constant

must

be

an

INTEGER

constant.

If

column-name

is

a

BIGINT

column,

the

constant

must

be

an

INTEGER

or

BIGINT

constant

(SQLSTATE

42821).

If

a

starting

constant

is

not

specified,

the

default

value

is

1.

ENDING

AT

constant

Specifies

the

constant

value

at

the

high

end

of

the

range

for

column-name.

Values

greater

than

the

specified

constant

are

only

allowed

if

the

ALLOW

OVERFLOW

option

is

specified.

The

value

of

the

ending

constant

must

be

greater

than

the

starting

constant.

If

column-name

is

a

SMALLINT

or

INTEGER

column,

the

constant

must

be

an

INTEGER

constant.

If

column-name

is

a

BIGINT

column,

the

constant

must

be

an

INTEGER

or

BIGINT

constant

(SQLSTATE

42821).

ALLOW

OVERFLOW

Specifies

that

the

range-clustered

table

allows

rows

with

key

values

that

are

outside

of

the

defined

range

of

values.

When

a

range-clustered

table

is

created

to

allow

overflows,

the

rows

with

key

values

outside

of

the

range

are

placed

at

the

end

of

the

defined

range

without

any

predetermined

order.

Operations

involving

these

overflow

rows

are

less

efficient

than

operations

on

rows

having

key

values

within

the

defined

range.

DISALLOW

OVERFLOW

Specifies

that

the

range-clustered

table

does

not

allow

rows

with

key

values

that

are

not

within

the

defined

range

of

values

(SQLSTATE

23513).

Range-clustered

tables

that

disallow

overflows

will

always

maintain

all

rows

in

ascending

key

sequence.

column-definition

Defines

the

attributes

of

a

column.

column-name

Names

a

column

of

the

table.

The

name

cannot

be

qualified,

and

the

same

name

cannot

be

used

for

more

than

one

column

of

the

table

(SQLSTATE

42711).

A

table

may

have

the

following:

v

A

4K

page

size

with

a

maximum

of

500

columns,

where

the

byte

counts

of

the

columns

must

not

be

greater

than

4

005.

v

An

8K

page

size

with

a

maximum

of

1

012

columns,

where

the

byte

counts

of

the

columns

must

not

be

greater

than

8

101.

v

A

16K

page

size

with

a

maximum

of

1

012

columns,

where

the

byte

counts

of

the

columns

must

not

be

greater

than

16

293.

v

A

32K

page

size

with

a

maximum

of

1

012

columns,

where

the

byte

counts

of

the

columns

must

not

be

greater

than

32

677.

For

more

details,

see

“Row

Size”

on

page

638.

data-type

Is

one

of

the

types

in

the

following

list.

Use:

SMALLINT

For

a

small

integer.

INTEGER

or

INT

For

a

large

integer.

CREATE

TABLE

Chapter

15.

SQL

Statements

for

Administrators

607

BIGINT

For

a

big

integer.

FLOAT(integer)

For

a

single

or

double-precision

floating-point

number,

depending

on

the

value

of

the

integer.

The

value

of

the

integer

must

be

in

the

range

1

through

53.

The

values

1

through

24

indicate

single

precision

and

the

values

25

through

53

indicate

double-precision.

You

can

also

specify:

REAL

For

single

precision

floating-point.

DOUBLE

For

double-precision

floating-point.

DOUBLE

PRECISION

For

double-precision

floating-point.

FLOAT

For

double-precision

floating-point.

DECIMAL(precision-integer,

scale-integer)

or

DEC(precision-integer,

scale-integer)

For

a

decimal

number.

The

first

integer

is

the

precision

of

the

number;

that

is,

the

total

number

of

digits;

it

may

range

from

1

to

31.

The

second

integer

is

the

scale

of

the

number;

that

is,

the

number

of

digits

to

the

right

of

the

decimal

point;

it

may

range

from

0

to

the

precision

of

the

number.

If

precision

and

scale

are

not

specified,

the

default

values

of

5,0

are

used.

The

words

NUMERIC

and

NUM

can

be

used

as

synonyms

for

DECIMAL

and

DEC.

CHARACTER(integer)

or

CHAR(integer)

or

CHARACTER

or

CHAR

For

a

fixed-length

character

string

of

length

integer,

which

may

range

from

1

to

254.

If

the

length

specification

is

omitted,

a

length

of

1

character

is

assumed.

VARCHAR(integer),

or

CHARACTER

VARYING(integer),

or

CHAR

VARYING(integer)

For

a

varying-length

character

string

of

maximum

length

integer,

which

may

range

from

1

to

32

672.

LONG

VARCHAR

For

a

varying-length

character

string

with

a

maximum

length

of

32

700.

FOR

BIT

DATA

Specifies

that

the

contents

of

the

column

are

to

be

treated

as

bit

(binary)

data.

During

data

exchange

with

other

systems,

code

page

conversions

are

not

performed.

Comparisons

are

done

in

binary,

irrespective

of

the

database

collating

sequence.

BLOB

or

BINARY

LARGE

OBJECT(integer

[K

|

M

|

G])

For

a

binary

large

object

string

of

the

specified

maximum

length

in

bytes.

The

length

may

be

in

the

range

of

1

byte

to

2

147

483

647

bytes.

If

integer

by

itself

is

specified,

that

is

the

maximum

length.

If

integer

K

(in

either

upper-

or

lowercase)

is

specified,

the

maximum

length

is

1

024

times

integer.

The

maximum

value

for

integer

is

2

097

152.

If

a

multiple

of

K,

M

or

G

that

calculates

out

to

2

147

483

648

is

specified,

the

actual

value

used

is

2

147

483

647

(or

2

gigabytes

minus

1

byte),

which

is

the

maximum

length

for

a

LOB

column.

CREATE

TABLE

608

Common

Criteria

Certification:

Administration

and

User

Documentation

If

integer

M

is

specified,

the

maximum

length

is

1

048

576

times

integer.

The

maximum

value

for

integer

is

2

048.

If

integer

G

is

specified,

the

maximum

length

is

1

073

741

824

times

integer.

The

maximum

value

for

integer

is

2.

If

the

length

specification

is

omitted,

a

length

of

1

048

576

(1

megabyte)

is

assumed.

To

create

BLOB

strings

greater

than

1

gigabyte,

you

must

specify

the

NOT

LOGGED

option.

Any

number

of

spaces

is

allowed

between

the

integer

and

K,

M,

or

G,

and

a

space

is

not

required.

For

example,

all

of

the

following

are

valid:

BLOB(50K)

BLOB(50

K)

BLOB

(50

K)

CLOB

or

CHARACTER

(CHAR)

LARGE

OBJECT(integer

[K

|

M

|

G])

For

a

character

large

object

string

of

the

specified

maximum

length

in

bytes.

The

meaning

of

the

integer

K

|

M

|

G

is

the

same

as

for

BLOB.

If

the

length

specification

is

omitted,

a

length

of

1

048

576

(1

megabyte)

is

assumed.

To

create

CLOB

strings

greater

than

1

gigabyte,

you

must

specify

the

NOT

LOGGED

option.

It

is

not

possible

to

specify

the

FOR

BIT

DATA

clause

for

CLOB

columns.

However,

a

CHAR

FOR

BIT

DATA

string

can

be

assigned

to

a

CLOB

column,

and

a

CHAR

FOR

BIT

DATA

string

can

be

concatenated

with

a

CLOB

string.

DBCLOB(integer

[K

|

M

|

G])

For

a

double-byte

character

large

object

string

of

the

specified

maximum

length

in

double-byte

characters.

The

meaning

of

the

integer

K

|

M

|

G

is

similar

to

that

for

BLOB.

The

differences

are

that

the

number

specified

is

the

number

of

double-byte

characters,

and

that

the

maximum

size

is

1

073

741

823

double-byte

characters.

If

the

length

specification

is

omitted,

a

length

of

1

048

576

double-byte

characters

is

assumed.

To

create

DBCLOB

strings

greater

than

1

gigabyte,

you

must

specify

the

NOT

LOGGED

option.

GRAPHIC(integer)

For

a

fixed-length

graphic

string

of

length

integer

which

may

range

from

1

to

127.

If

the

length

specification

is

omitted,

a

length

of

1

is

assumed.

VARGRAPHIC(integer)

For

a

varying-length

graphic

string

of

maximum

length

integer,

which

may

range

from

1

to

16

336.

LONG

VARGRAPHIC

For

a

varying-length

graphic

string

with

a

maximum

length

of

16

350.

DATE

For

a

date.

TIME

For

a

time.

CREATE

TABLE

Chapter

15.

SQL

Statements

for

Administrators

609

TIMESTAMP

For

a

timestamp.

DATALINK

or

DATALINK(integer)

For

a

link

to

a

data

file

stored

outside

the

database.

The

column

in

the

table

consists

of

″anchor

values″

that

contain

the

reference

information

that

is

required

to

establish

and

maintain

the

link

to

the

external

data

as

well

as

an

optional

comment.

The

length

of

a

DATALINK

column

is

200

bytes.

If

integer

is

specified,

it

must

be

200.

If

the

length

specification

is

omitted,

a

length

of

200

bytes

is

assumed.

A

DATALINK

value

is

an

encapsulated

value

with

a

set

of

built-in

scalar

functions.

There

is

a

function

called

DLVALUE

to

create

a

DATALINK

value,

and

functions

called

DLNEWCOPY,

DLPREVIOUSCOPY,

and

DLREPLACECONTENT

that

can

also

be

used

to

construct

a

DATALINK

value

under

special

circumstances.

(DLVALUE

should

be

used

to

construct

a

regular

DATALINK

value.)

The

following

functions

can

be

used

to

extract

attributes

from

a

DATALINK

value.

v

DLCOMMENT

v

DLLINKTYPE

v

DLURLCOMPLETE

v

DLURLCOMPLETEONLY

v

DLURLCOMPLETEWRITE

v

DLURLPATH

v

DLURLPATHONLY

v

DLURLPATHWRITE

v

DLURLSCHEME

v

DLURLSERVER

A

DATALINK

column

has

the

following

restrictions:

v

The

column

cannot

be

part

of

any

index.

Therefore,

it

cannot

be

included

as

a

column

of

a

primary

key

or

unique

constraint

(SQLSTATE

42962).

v

The

column

cannot

be

a

foreign

key

of

a

referential

constraint

(SQLSTATE

42830).

v

A

default

value

(WITH

DEFAULT)

cannot

be

specified

for

the

column.

If

the

column

is

nullable,

the

default

for

the

column

is

NULL

(SQLSTATE

42894).

distinct-type-name

For

a

user-defined

type

that

is

a

distinct

type.

If

a

distinct

type

name

is

specified

without

a

schema

name,

the

distinct

type

name

is

resolved

by

searching

the

schemas

on

the

SQL

path

(defined

by

the

FUNCPATH

preprocessing

option

for

static

SQL

and

by

the

CURRENT

PATH

register

for

dynamic

SQL).

If

a

column

is

defined

using

a

distinct

type,

then

the

data

type

of

the

column

is

the

distinct

type.

The

length

and

the

scale

of

the

column

are

respectively

the

length

and

the

scale

of

the

source

type

of

the

distinct

type.

CREATE

TABLE

610

Common

Criteria

Certification:

Administration

and

User

Documentation

If

a

column

defined

using

a

distinct

type

is

a

foreign

key

of

a

referential

constraint,

then

the

data

type

of

the

corresponding

column

of

the

primary

key

must

have

the

same

distinct

type.

structured-type-name

For

a

user-defined

type

that

is

a

structured

type.

If

a

structured

type

name

is

specified

without

a

schema

name,

the

structured

type

name

is

resolved

by

searching

the

schemas

on

the

SQL

path

(defined

by

the

FUNCPATH

preprocessing

option

for

static

SQL,

and

by

the

CURRENT

PATH

register

for

dynamic

SQL).

If

a

column

is

defined

using

a

structured

type,

then

the

static

data

type

of

the

column

is

the

structured

type.

The

column

may

include

values

with

a

dynamic

type

that

is

a

subtype

of

structured-type-name.

A

column

defined

using

a

structured

type

cannot

be

used

in

a

primary

key,

unique

constraint,

foreign

key,

index

key

or

partitioning

key

(SQLSTATE

42962).

If

a

column

is

defined

using

a

structured

type,

and

contains

a

reference-type

attribute

at

any

level

of

nesting,

that

reference-type

attribute

is

unscoped.

To

use

such

an

attribute

in

a

dereference

operation,

it

is

necessary

to

specify

a

SCOPE

explicitly,

using

a

CAST

specification.

If

a

column

is

defined

using

a

structured

type

with

an

attribute

of

type

DATALINK,

or

a

distinct

type

sourced

on

DATALINK,

this

column

can

only

be

null.

An

attempt

to

use

the

constructor

function

for

this

type

will

return

an

error

(SQLSTATE

428ED)

and

so

no

instance

of

this

type

can

be

inserted

into

the

column.

REF

(type-name2)

For

a

reference

to

a

typed

table.

If

type-name2

is

specified

without

a

schema

name,

the

type

name

is

resolved

by

searching

the

schemas

on

the

SQL

path

(defined

by

the

FUNCPATH

preprocessing

option

for

static

SQL

and

by

the

CURRENT

PATH

register

for

dynamic

SQL).

The

underlying

data

type

of

the

column

is

based

on

the

representation

data

type

specified

in

the

REF

USING

clause

of

the

CREATE

TYPE

statement

for

type-name2

or

the

root

type

of

the

data

type

hierarchy

that

includes

type-name2.

column-options

Defines

additional

options

related

to

columns

of

the

table.

NOT

NULL

Prevents

the

column

from

containing

null

values.

If

NOT

NULL

is

not

specified,

the

column

can

contain

null

values,

and

its

default

value

is

either

the

null

value

or

the

value

provided

by

the

WITH

DEFAULT

clause.

lob-options

Specifies

options

for

LOB

data

types.

LOGGED

Specifies

that

changes

made

to

the

column

are

to

be

written

to

the

log.

The

data

in

such

columns

is

then

recoverable

with

database

utilities

(such

as

RESTORE

DATABASE).

LOGGED

is

the

default.

LOBs

greater

than

1

gigabyte

cannot

be

logged

(SQLSTATE

42993).

CREATE

TABLE

Chapter

15.

SQL

Statements

for

Administrators

611

NOT

LOGGED

Specifies

that

changes

made

to

the

column

are

not

to

be

logged.

NOT

LOGGED

has

no

effect

on

a

commit

or

rollback

operation;

that

is,

the

database’s

consistency

is

maintained

even

if

a

transaction

is

rolled

back,

regardless

of

whether

or

not

the

LOB

value

is

logged.

The

implication

of

not

logging

is

that

during

a

roll

forward

operation,

after

a

backup

or

load

operation,

the

LOB

data

will

be

replaced

by

zeros

for

those

LOB

values

that

would

have

had

log

records

replayed

during

the

roll

forward.

During

crash

recovery,

all

committed

changes

and

changes

rolled

back

will

reflect

the

expected

results.

COMPACT

Specifies

that

the

values

in

the

LOB

column

should

take

up

minimal

disk

space

(free

any

extra

disk

pages

in

the

last

group

used

by

the

LOB

value),

rather

than

leave

any

leftover

space

at

the

end

of

the

LOB

storage

area

that

might

facilitate

subsequent

append

operations.

Note

that

storing

data

in

this

way

may

cause

a

performance

penalty

in

any

append

(length-increasing)

operations

on

the

column.

NOT

COMPACT

Specifies

some

space

for

insertions

to

assist

in

future

changes

to

the

LOB

values

in

the

column.

This

is

the

default.

datalink-options

Specifies

the

options

associated

with

a

DATALINK

data

type.

LINKTYPE

URL

This

defines

the

type

of

link

as

a

Uniform

Resource

Locator

(URL).

NO

LINK

CONTROL

Specifies

that

there

will

not

be

any

check

made

to

determine

that

the

file

exists.

Only

the

syntax

of

the

URL

will

be

checked.

There

is

no

database

manager

control

over

the

file.

FILE

LINK

CONTROL

Specifies

that

a

check

should

be

made

for

the

existence

of

the

file.

Additional

options

may

be

used

to

give

the

database

manager

further

control

over

the

file.

file-link-options

Additional

options

to

define

the

level

of

database

manager

control

of

the

file

link.

INTEGRITY

Specifies

the

level

of

integrity

of

the

link

between

a

DATALINK

value

and

the

actual

file.

ALL

Any

file

specified

as

a

DATALINK

value

is

under

the

control

of

the

database

manager

and

may

NOT

be

deleted

or

renamed

using

standard

file

system

programming

interfaces.

READ

PERMISSION

Specifies

how

permission

to

read

the

file

specified

in

a

DATALINK

value

is

determined.

FS

The

read

access

permission

is

determined

by

the

file

CREATE

TABLE

612

Common

Criteria

Certification:

Administration

and

User

Documentation

system

permissions.

Such

files

can

be

accessed

without

retrieving

the

file

name

from

the

column.

DB

The

read

access

permission

is

determined

by

the

database.

Access

to

the

file

will

only

be

allowed

by

passing

a

valid

file

access

token,

returned

on

retrieval

of

the

DATALINK

value

from

the

table,

in

the

open

operation.

WRITE

PERMISSION

Specifies

how

permission

to

write

to

the

file

specified

in

a

DATALINK

value

is

determined.

FS

The

write

access

permission

is

determined

by

the

file

system

permissions.

Such

files

can

be

accessed

without

retrieving

the

file

name

from

the

column.

BLOCKED

Write

access

is

blocked.

The

file

cannot

be

directly

updated

through

any

interface.

An

alternative

mechanism

must

be

used

to

cause

updates

to

the

information.

For

example,

the

file

is

copied,

the

copy

updated,

and

then

the

DATALINK

value

updated

to

point

to

the

new

copy

of

the

file.

ADMIN

The

write

permission

is

determined

by

the

Data

Links

Manager.

Write

access

to

the

file

will

only

be

allowed

by

passing

a

valid

write

token,

returned

on

retrieval

of

the

DATALINK

value

from

the

table,

by

using

the

DLURLCOMPLETEWRITE

or

DLURLPATHWRITE

scalar

function,

in

the

open

operation.

This

value

can

be

specified

only

when

READ

PERMISSION

DB

is

also

specified.

The

access

privilege

for

a

given

linked

file

is

defined

and

maintained

in

the

Data

Links

Manager.

Once

a

file

is

opened

for

write

with

a

valid

write

token

by

a

user

(the

updater),

other

users

can

still

open

the

file

for

read

by

using

a

valid

read

or

write

token.

However,

only

the

same

updater

can

repeatedly

open

the

file

for

write

with

the

same

write

token.

The

same

updater

also

needs

the

same

write

token

to

perform

any

subsequent

read

operation.

REQUIRING

TOKEN

FOR

UPDATE

To

complete

the

file

update,

the

write

token

used

to

open

and

modify

the

file

must

be

contained

in

the

file

reference

specified

during

invocation

of

the

scalar

functions

DLNEWCOPY

or

DLPREVIOUSCOPY

in

the

SQL

UPDATE

statement.

NOT

REQUIRING

TOKEN

FOR

UPDATE

To

complete

the

file

update,

a

write

token

is

not

required

in

the

file

reference

specified

during

invocation

of

the

scalar

functions

DLNEWCOPY

or

DLPREVIOUSCOPY

in

the

SQL

UPDATE

statement.

RECOVERY

Specifies

whether

or

not

DB2

will

support

point

in

time

recovery

of

files

referenced

by

values

in

this

column.

CREATE

TABLE

Chapter

15.

SQL

Statements

for

Administrators

613

YES

DB2

will

support

point

in

time

recovery

of

files

referenced

by

values

in

this

column.

This

value

can

only

be

specified

when

INTEGRITY

ALL

and

WRITE

PERMISSION

BLOCKED

or

WRITE

PERMISSION

ADMIN

are

also

specified.

NO

Specifies

that

point

in

time

recovery

will

not

be

supported.

ON

UNLINK

Specifies

the

action

taken

on

a

file

when

a

DATALINK

value

is

changed

or

deleted

(unlinked).

Note

that

this

is

not

applicable

when

WRITE

PERMISSION

FS

is

used.

RESTORE

Specifies

that

when

a

file

is

unlinked,

the

Data

Links

File

Manager

will

attempt

to

return

the

file

to

the

owner

with

the

permissions

that

existed

at

the

time

the

file

was

linked.

In

the

case

where

the

user

is

no

longer

registered

with

the

file

server,

the

file

is

assigned

to

a

special

predefined

“dfmunknown”

user

ID.

This

can

only

be

specified

when

INTEGRITY

ALL

and

WRITE

PERMISSION

BLOCKED

or

WRITE

PERMISSION

ADMIN

are

also

specified.

DELETE

Specifies

that

the

file

will

be

deleted

when

it

is

unlinked.

This

can

only

be

specified

when

READ

PERMISSION

DB

and

WRITE

PERMISSION

BLOCKED

or

WRITE

PERMISSION

ADMIN

are

also

specified.

MODE

DB2OPTIONS

This

mode

defines

a

set

of

default

file

link

options.

The

defaults

defined

by

DB2OPTIONS

are:

v

INTEGRITY

ALL

v

READ

PERMISSION

FS

v

WRITE

PERMISSION

FS

v

RECOVERY

NO

ON

UNLINK

is

not

applicable

since

WRITE

PERMISSION

FS

is

used.

SCOPE

Identifies

the

scope

of

the

reference

type

column.

A

scope

must

be

specified

for

any

column

that

is

intended

to

be

used

as

the

left

operand

of

a

dereference

operator

or

as

the

argument

of

the

DEREF

function.

Specifying

the

scope

for

a

reference

type

column

may

be

deferred

to

a

subsequent

ALTER

TABLE

statement

to

allow

the

target

table

to

be

defined,

usually

in

the

case

of

mutually

referencing

tables.

typed-table-name

The

name

of

a

typed

table.

The

table

must

already

exist

or

be

the

same

as

the

name

of

the

table

being

created

(SQLSTATE

42704).

The

data

type

of

column-name

must

be

REF(S),

where

S

is

the

type

of

typed-table-name

(SQLSTATE

428DM).

No

checking

is

done

of

values

assigned

to

column-name

to

ensure

that

the

values

actually

reference

existing

rows

in

typed-table-name.

CREATE

TABLE

614

Common

Criteria

Certification:

Administration

and

User

Documentation

typed-view-name

The

name

of

a

typed

view.

The

view

must

already

exist

or

be

the

same

as

the

name

of

the

view

being

created

(SQLSTATE

42704).

The

data

type

of

column-name

must

be

REF(S),

where

S

is

the

type

of

typed-view-name

(SQLSTATE

428DM).

No

checking

is

done

of

values

assigned

to

column-name

to

ensure

that

the

values

actually

reference

existing

rows

in

typed-view-name.

CONSTRAINT

constraint-name

Names

the

constraint.

A

constraint-name

must

not

identify

a

constraint

that

was

already

specified

within

the

same

CREATE

TABLE

statement.

(SQLSTATE

42710).

If

this

clause

is

omitted,

an

18-character

identifier

that

is

unique

among

the

identifiers

of

existing

constraints

defined

on

the

table

is

generated

by

the

system.

(The

identifier

consists

of

″SQL″

followed

by

a

sequence

of

15

numeric

characters

generated

by

a

timestamp-based

function.)

When

used

with

a

PRIMARY

KEY

or

UNIQUE

constraint,

the

constraint-name

may

be

used

as

the

name

of

an

index

that

is

created

to

support

the

constraint.

PRIMARY

KEY

This

provides

a

shorthand

method

of

defining

a

primary

key

composed

of

a

single

column.

Thus,

if

PRIMARY

KEY

is

specified

in

the

definition

of

column

C,

the

effect

is

the

same

as

if

the

PRIMARY

KEY(C)

clause

is

specified

as

a

separate

clause.

A

primary

key

cannot

be

specified

if

the

table

is

a

subtable

(SQLSTATE

429B3)

since

the

primary

key

is

inherited

from

the

supertable.

See

PRIMARY

KEY

within

the

description

of

the

unique-constraint

below.

UNIQUE

This

provides

a

shorthand

method

of

defining

a

unique

key

composed

of

a

single

column.

Thus,

if

UNIQUE

is

specified

in

the

definition

of

column

C,

the

effect

is

the

same

as

if

the

UNIQUE(C)

clause

is

specified

as

a

separate

clause.

A

unique

constraint

cannot

be

specified

if

the

table

is

a

subtable

(SQLSTATE

429B3)

since

unique

constraints

are

inherited

from

the

supertable.

See

UNIQUE

within

the

description

of

the

unique-constraint

below.

references-clause

This

provides

a

shorthand

method

of

defining

a

foreign

key

composed

of

a

single

column.

Thus,

if

a

references-clause

is

specified

in

the

definition

of

column

C,

the

effect

is

the

same

as

if

that

references-clause

were

specified

as

part

of

a

FOREIGN

KEY

clause

in

which

C

is

the

only

identified

column.

See

references-clause

under

referential-constraint

below.

CHECK

(check-condition)

This

provides

a

shorthand

method

of

defining

a

check

constraint

that

applies

to

a

single

column.

See

CHECK

(check-condition)

below.

INLINE

LENGTH

integer

This

option

is

only

valid

for

a

column

defined

using

a

structured

type

(SQLSTATE

42842)

and

indicates

the

maximum

byte

size

of

an

instance

CREATE

TABLE

Chapter

15.

SQL

Statements

for

Administrators

615

of

a

structured

type

to

store

inline

with

the

rest

of

the

values

in

the

row.

Instances

of

structured

types

that

cannot

be

stored

inline

are

stored

separately

from

the

base

table

row,

similar

to

the

way

that

LOB

values

are

handled.

This

takes

place

automatically.

The

default

INLINE

LENGTH

for

a

structured-type

column

is

the

inline

length

of

its

type

(specified

explicitly

or

by

default

in

the

CREATE

TYPE

statement).

If

INLINE

LENGTH

of

the

structured

type

is

less

than

292,

the

value

292

is

used

for

the

INLINE

LENGTH

of

the

column.

Note:

The

inline

lengths

of

subtypes

are

not

counted

in

the

default

inline

length,

meaning

that

instances

of

subtypes

may

not

fit

inline

unless

an

explicit

INLINE

LENGTH

is

specified

at

CREATE

TABLE

time

to

account

for

existing

and

future

subtypes.

The

explicit

INLINE

LENGTH

value

must

be

at

least

292

and

cannot

exceed

32672

(SQLSTATE

54010).

COMPRESS

SYSTEM

DEFAULT

Specifies

that

system

default

values

(that

is,

the

default

values

used

for

the

data

types

when

no

specific

values

are

specified)

are

to

be

stored

using

minimal

space.

If

the

VALUE

COMPRESSION

clause

is

not

specified,

a

warning

is

returned

(SQLSTATE

01648)

and

system

default

values

are

not

stored

using

minimal

space.

Allowing

system

default

values

to

be

stored

in

this

manner

causes

a

slight

performance

penalty

during

insert

and

update

operations

on

the

column

because

of

extra

checking

that

is

done.

The

base

data

type

must

not

be

DATE,

TIME,

or

TIMESTAMP

(SQLSTATE

42842).

If

the

base

data

type

is

a

varying-length

string,

this

clause

is

ignored.

String

values

of

length

0

are

automatically

compressed

if

a

table

has

been

set

with

VALUE

COMPRESSION.

generated-column-spec

default-clause

Specifies

a

default

value

for

the

column.

WITH

An

optional

keyword.

DEFAULT

Provides

a

default

value

in

the

event

a

value

is

not

supplied

on

INSERT

or

is

specified

as

DEFAULT

on

INSERT

or

UPDATE.

If

a

default

value

is

not

specified

following

the

DEFAULT

keyword,

the

default

value

depends

on

the

data

type

of

the

column

as

shown

in

“ALTER

TABLE”.

If

a

column

is

defined

as

a

DATALINK,

then

a

default

value

cannot

be

specified

(SQLSTATE

42613).

The

only

possible

default

is

NULL.

If

the

column

is

based

on

a

column

of

a

typed

table,

a

specific

default

value

must

be

specified

when

defining

a

default.

A

default

value

cannot

be

specified

for

the

object

identifier

column

of

a

typed

table

(SQLSTATE

42997).

CREATE

TABLE

616

Common

Criteria

Certification:

Administration

and

User

Documentation

If

a

column

is

defined

using

a

distinct

type,

then

the

default

value

of

the

column

is

the

default

value

of

the

source

data

type

cast

to

the

distinct

type.

If

a

column

is

defined

using

a

structured

type,

the

default-clause

cannot

be

specified

(SQLSTATE

42842).

Omission

of

DEFAULT

from

a

column-definition

results

in

the

use

of

the

null

value

as

the

default

for

the

column.

If

such

a

column

is

defined

NOT

NULL,

then

the

column

does

not

have

a

valid

default.

default-values

Specific

types

of

default

values

that

can

be

specified

are

as

follows.

constant

Specifies

the

constant

as

the

default

value

for

the

column.

The

specified

constant

must:

v

represent

a

value

that

could

be

assigned

to

the

column

in

accordance

with

the

rules

of

assignment

as

described

in

Chapter

3

v

not

be

a

floating-point

constant

unless

the

column

is

defined

with

a

floating-point

data

type

v

not

have

non-zero

digits

beyond

the

scale

of

the

column

data

type

if

the

constant

is

a

decimal

constant

(for

example,

1.234

cannot

be

the

default

for

a

DECIMAL(5,2)

column)

v

be

expressed

with

no

more

than

254

characters

including

the

quote

characters,

any

introducer

character

such

as

the

X

for

a

hexadecimal

constant,

and

characters

from

the

fully

qualified

function

name

and

parentheses

when

the

constant

is

the

argument

of

a

cast-function.

datetime-special-register

Specifies

the

value

of

the

datetime

special

register

(CURRENT

DATE,

CURRENT

TIME,

or

CURRENT

TIMESTAMP)

at

the

time

of

INSERT,

UPDATE,

or

LOAD

as

the

default

for

the

column.

The

data

type

of

the

column

must

be

the

data

type

that

corresponds

to

the

special

register

specified

(for

example,

data

type

must

be

DATE

when

CURRENT

DATE

is

specified).

user-special-register

Specifies

the

value

of

the

user

special

register

(CURRENT

USER,

SESSION_USER,

SYSTEM_USER)

at

the

time

of

INSERT,

UPDATE,

or

LOAD

as

the

default

for

the

column.

The

data

type

of

the

column

must

be

a

character

string

with

a

length

not

less

than

the

length

attribute

of

a

user

special

register.

Note

that

USER

can

be

specified

in

place

of

SESSION_USER

and

CURRENT_USER

can

be

specified

in

place

of

CURRENT

USER.

CURRENT

SCHEMA

Specifies

the

value

of

the

CURRENT

SCHEMA

special

register

at

the

time

of

INSERT,

UPDATE,

or

LOAD

as

the

default

for

the

column.

If

CURRENT

SCHEMA

is

specified,

the

data

type

of

the

column

must

be

a

character

string

with

CREATE

TABLE

Chapter

15.

SQL

Statements

for

Administrators

617

a

length

greater

than

or

equal

to

the

length

attribute

of

the

CURRENT

SCHEMA

special

register.

NULL

Specifies

NULL

as

the

default

for

the

column.

If

NOT

NULL

was

specified,

DEFAULT

NULL

may

be

specified

within

the

same

column

definition

but

will

result

in

an

error

on

any

attempt

to

set

the

column

to

the

default

value.

cast-function

This

form

of

a

default

value

can

only

be

used

with

columns

defined

as

a

distinct

type,

BLOB

or

datetime

(DATE,

TIME

or

TIMESTAMP)

data

type.

For

distinct

type,

with

the

exception

of

distinct

types

based

on

BLOB

or

datetime

types,

the

name

of

the

function

must

match

the

name

of

the

distinct

type

for

the

column.

If

qualified

with

a

schema

name,

it

must

be

the

same

as

the

schema

name

for

the

distinct

type.

If

not

qualified,

the

schema

name

from

function

resolution

must

be

the

same

as

the

schema

name

for

the

distinct

type.

For

a

distinct

type

based

on

a

datetime

type,

where

the

default

value

is

a

constant,

a

function

must

be

used

and

the

name

of

the

function

must

match

the

name

of

the

source

type

of

the

distinct

type

with

an

implicit

or

explicit

schema

name

of

SYSIBM.

For

other

datetime

columns,

the

corresponding

datetime

function

may

also

be

used.

For

a

BLOB

or

a

distinct

type

based

on

BLOB,

a

function

must

be

used

and

the

name

of

the

function

must

be

BLOB

with

an

implicit

or

explicit

schema

name

of

SYSIBM.

constant

Specifies

a

constant

as

the

argument.

The

constant

must

conform

to

the

rules

of

a

constant

for

the

source

type

of

the

distinct

type

or

for

the

data

type

if

not

a

distinct

type.

If

the

cast-function

is

BLOB,

the

constant

must

be

a

string

constant.

datetime-special-register

Specifies

CURRENT

DATE,

CURRENT

TIME,

or

CURRENT

TIMESTAMP.

The

source

type

of

the

distinct

type

of

the

column

must

be

the

data

type

that

corresponds

to

the

specified

special

register.

user-special-register

Specifies

CURRENT

USER,

SESSION_USER,

or

SYSTEM_USER.

The

data

type

of

the

source

type

of

the

distinct

type

of

the

column

must

be

a

string

data

type

with

a

length

of

at

least

8

bytes.

If

the

cast-function

is

BLOB,

the

length

attribute

must

be

at

least

8

bytes.

CURRENT

SCHEMA

Specifies

the

value

of

the

CURRENT

SCHEMA

special

register.

The

data

type

of

the

source

type

of

the

distinct

type

of

the

column

must

be

a

character

string

with

a

length

greater

than

or

equal

to

the

length

attribute

of

the

CURRENT

SCHEMA

special

register.

If

the

cast-function

is

BLOB,

the

length

attribute

must

be

at

least

8

bytes.

CREATE

TABLE

618

Common

Criteria

Certification:

Administration

and

User

Documentation

If

the

value

specified

is

not

valid,

an

error

is

returned

(SQLSTATE

42894).

GENERATED

Indicates

that

DB2

generates

values

for

the

column.

GENERATED

must

be

specified

if

the

column

is

to

be

considered

an

IDENTITY

column.

ALWAYS

Specifies

that

DB2

will

always

generate

a

value

for

the

column

when

a

row

is

inserted

into

the

table,

or

whenever

the

result

value

of

the

generation-expression

changes.

The

result

of

the

expression

is

stored

in

the

table.

GENERATED

ALWAYS

is

the

recommended

value

unless

data

propagation

or

unload

and

reload

operations

are

being

done.

GENERATED

ALWAYS

is

the

required

value

for

generated

columns.

BY

DEFAULT

Specifies

that

DB2

will

generate

a

value

for

the

column

when

a

row

is

inserted,

or

updated

specifying

the

DEFAULT

clause,

unless

an

explicit

value

is

specified.

BY

DEFAULT

is

the

recommended

value

when

using

data

propagation

or

performing

an

unload

and

reload

operation.

Although

not

explicitly

required,

a

unique

single-column

index

should

be

defined

on

the

generated

column

to

ensure

uniqueness

of

the

values.

AS

IDENTITY

Specifies

that

the

column

is

to

be

the

identity

column

for

this

table.

A

table

can

only

have

a

single

IDENTITY

column

(SQLSTATE

428C1).

The

IDENTITY

keyword

can

only

be

specified

if

the

data

type

associated

with

the

column

is

an

exact

numeric

type

with

a

scale

of

zero,

or

a

user-defined

distinct

type

for

which

the

source

type

is

an

exact

numeric

type

with

a

scale

of

zero

(SQLSTATE

42815).

SMALLINT,

INTEGER,

BIGINT,

or

DECIMAL

with

a

scale

of

zero,

or

a

distinct

type

based

on

one

of

these

types,

are

considered

exact

numeric

types.

By

contrast,

single-

and

double-precision

floating

points

are

considered

approximate

numeric

data

types.

Reference

types,

even

if

represented

by

an

exact

numeric

type,

cannot

be

defined

as

identity

columns.

An

identity

column

is

implicitly

NOT

NULL.

An

identity

column

cannot

have

a

DEFAULT

clause

(SQLSTATE

42623).

START

WITH

numeric-constant

Specifies

the

first

value

for

the

identity

column.

This

value

can

be

any

positive

or

negative

value

that

could

be

assigned

to

this

column

(SQLSTATE

42815),

without

non-zero

digits

existing

to

the

right

of

the

decimal

point

(SQLSTATE

428FA).

The

default

is

MINVALUE

for

ascending

sequences,

and

MAXVALUE

for

descending

sequences.

INCREMENT

BY

numeric-constant

Specifies

the

interval

between

consecutive

values

of

the

identity

column.

This

value

can

be

any

positive

or

negative

value

that

could

be

assigned

to

this

column

(SQLSTATE

42815),

and

does

not

exceed

the

value

of

a

large

integer

constant

(SQLSTATE

42820),

without

non-zero

digits

existing

to

the

right

of

the

decimal

point

(SQLSTATE

428FA).

CREATE

TABLE

Chapter

15.

SQL

Statements

for

Administrators

619

If

this

value

is

negative,

this

is

a

descending

sequence.

If

this

value

is

0,

or

positive,

this

is

an

ascending

sequence.

The

default

is

1.

NO

MINVALUE

or

MINVALUE

Specifies

the

minimum

value

at

which

a

descending

identity

column

either

cycles

or

stops

generating

values,

or

an

ascending

identity

column

cycles

to

after

reaching

the

maximum

value.

NO

MINVALUE

For

an

ascending

sequence,

the

value

is

the

START

WITH

value,

or

1

if

START

WITH

was

not

specified.

For

a

descending

sequence,

the

value

is

the

minimum

value

of

the

data

type

of

the

column.

This

is

the

default.

MINVALUE

numeric-constant

Specifies

the

numeric

constant

that

is

the

minimum

value.

This

value

can

be

any

positive

or

negative

value

that

could

be

assigned

to

this

column

(SQLSTATE

42815),

without

non-zero

digits

existing

to

the

right

of

the

decimal

point

(SQLSTATE

428FA),

but

the

value

must

be

less

than

or

equal

to

the

maximum

value

(SQLSTATE

42815).

NO

MAXVALUE

or

MAXVALUE

Specifies

the

maximum

value

at

which

an

ascending

identity

column

either

cycles

or

stops

generating

values,

or

a

descending

identity

column

cycles

to

after

reaching

the

minimum

value.

NO

MAXVALUE

For

an

ascending

sequence,

the

value

is

the

maximum

value

of

the

data

type

of

the

column.

For

a

descending

sequence,

the

value

is

the

START

WITH

value,

or

-1

if

START

WITH

was

not

specified.

This

is

the

default.

MAXVALUE

numeric-constant

Specifies

the

numeric

constant

that

is

the

maximum

value.

This

value

can

be

any

positive

or

negative

value

that

could

be

assigned

to

this

column

(SQLSTATE

42815),

without

non-zero

digits

existing

to

the

right

of

the

decimal

point

(SQLSTATE

428FA),

but

the

value

must

be

greater

than

or

equal

to

the

minimum

value

(SQLSTATE

42815).

NO

CYCLE

or

CYCLE

Specifies

whether

this

identity

column

should

continue

to

generate

values

after

generating

either

its

maximum

or

minimum

value.

NO

CYCLE

Specifies

that

values

will

not

be

generated

for

the

identity

column

once

the

maximum

or

minimum

value

has

been

reached.

This

is

the

default.

CYCLE

Specifies

that

values

continue

to

be

generated

for

this

column

after

the

maximum

or

minimum

value

has

been

reached.

If

this

option

is

used,

after

an

ascending

identity

column

reaches

the

maximum

value,

it

generates

its

minimum

value;

or

after

a

descending

sequence

reaches

CREATE

TABLE

620

Common

Criteria

Certification:

Administration

and

User

Documentation

the

minimum

value,

it

generates

its

maximum

value.

The

maximum

and

minimum

values

for

the

identity

column

determine

the

range

that

is

used

for

cycling.

When

CYCLE

is

in

effect,

DB2

may

generate

duplicate

values

for

an

identity

column.

Although

not

explicitly

required,

a

unique,

single-column

index

should

be

defined

on

the

generated

column

to

ensure

uniqueness

of

the

values,

if

unique

values

are

desired.

If

a

unique

index

exists

on

such

an

identity

column

and

a

non-unique

value

is

generated,

an

error

occurs

(SQLSTATE

23505).

NO

CACHE

or

CACHE

Specifies

whether

to

keep

some

pre-allocated

values

in

memory

for

faster

access.

If

a

new

value

is

needed

for

the

identity

column,

and

there

are

none

available

in

the

cache,

then

the

end

of

the

new

cache

block

must

be

logged.

However,

when

a

new

value

is

needed

for

the

identity

column,

and

there

is

an

unused

value

in

the

cache,

then

the

allocation

of

that

identity

value

is

faster,

because

no

logging

is

necessary.

This

is

a

performance

and

tuning

option.

NO

CACHE

Specifies

that

values

for

the

identity

column

are

not

to

be

pre-allocated.

When

this

option

is

specified,

the

values

of

the

identity

column

are

not

stored

in

the

cache.

In

this

case,

every

request

for

a

new

identity

value

results

in

synchronous

I/O

to

the

log.

CACHE

integer-constant

Specifies

how

many

values

of

the

identity

sequence

are

to

be

pre-allocated

and

kept

in

memory.

When

values

are

generated

for

the

identity

column,

pre-allocating

and

storing

values

in

the

cache

reduces

synchronous

I/O

to

the

log.

If

a

new

value

is

needed

for

the

identity

column

and

there

are

no

unused

values

available

in

the

cache,

the

allocation

of

the

value

involves

waiting

for

I/O

to

the

log.

However,

when

a

new

value

is

needed

for

the

identity

column

and

there

is

an

unused

value

in

the

cache,

the

allocation

of

that

identity

value

can

happen

more

quickly

by

avoiding

the

I/O

to

the

log.

In

the

event

of

a

database

deactivation,

either

normally

or

due

to

a

system

failure,

all

cached

sequence

values

that

have

not

been

used

in

committed

statements

are

lost;

that

is,

they

will

never

be

used.

The

value

specified

for

the

CACHE

option

is

the

maximum

number

of

values

for

the

identity

column

that

could

be

lost

in

case

of

database

deactivation.

(If

a

database

is

not

explicitly

activated,

using

the

ACTIVATE

command

or

API,

when

the

last

application

is

disconnected

from

the

database,

an

implicit

deactivation

occurs.)

The

minimum

value

is

2

(SQLSTATE

42815).

The

default

value

is

CACHE

20.

CREATE

TABLE

Chapter

15.

SQL

Statements

for

Administrators

621

NO

ORDER

or

ORDER

Specifies

whether

the

identity

values

must

be

generated

in

order

of

request.

NO

ORDER

Specifies

that

the

values

do

not

need

to

be

generated

in

order

of

request.

This

is

the

default.

ORDER

Specifies

that

the

values

must

be

generated

in

order

of

request.

GENERATED

ALWAYS

AS

(generation-expression)

Specifies

that

the

definition

of

the

column

is

based

on

an

expression.

(If

the

expression

for

a

GENERATED

ALWAYS

column

includes

a

user-defined

external

function,

changing

the

executable

for

the

function

(such

that

the

results

change

for

given

arguments)

can

result

in

inconsistent

data.

This

can

be

avoided

by

using

the

SET

INTEGRITY

statement

to

force

the

generation

of

new

values.)

The

generation-expression

cannot

contain

any

of

the

following

(SQLSTATE

42621):

v

Subqueries

v

Column

functions

v

Dereference

operations

or

DEREF

functions

v

User-defined

or

built-in

functions

that

are

non-deterministic

v

User-defined

functions

using

the

EXTERNAL

ACTION

option

v

User-defined

functions

defined

with

either

CONTAINS

SQL

or

READS

SQL

DATA

v

Host

variables

or

parameter

markers

v

Special

registers

v

References

to

columns

defined

later

in

the

column

list

v

References

to

other

generated

columns

The

data

type

for

the

column

is

based

on

the

result

data

type

of

the

generation-expression.

A

CAST

specification

can

be

used

to

force

a

particular

data

type

and

to

provide

a

scope

(for

a

reference

type

only).

If

data-type

is

specified,

values

are

assigned

to

the

column

according

to

the

appropriate

assignment

rules.

A

generated

column

is

implicitly

considered

nullable,

unless

the

NOT

NULL

column

option

is

used.

The

data

type

of

a

generated

column

must

be

one

for

which

equality

is

defined.

This

excludes

columns

of

type

LONG

VARCHAR,

LONG

VARGRAPHIC,

or

DATALINK;

LOB

data

types;

structured

types;

and

distinct

types

based

on

any

of

these

types

(SQLSTATE

42962).

OID-column-definition

Defines

the

object

identifier

column

for

the

typed

table.

REF

IS

OID-column-name

USER

GENERATED

Specifies

that

an

object

identifier

(OID)

column

is

defined

in

the

table

as

the

first

column.

An

OID

is

required

for

the

root

table

of

a

table

hierarchy

(SQLSTATE

428DX).

The

table

must

be

a

typed

table

(the

OF

clause

must

be

present)

that

is

not

a

subtable

(SQLSTATE

42613).

The

name

for

the

column

is

defined

as

OID-column-name

and

cannot

be

the

same

as

the

name

of

any

attribute

of

the

structured

type

type-name1

(SQLSTATE

42711).

The

CREATE

TABLE

622

Common

Criteria

Certification:

Administration

and

User

Documentation

column

is

defined

with

type

REF(type-name1),

NOT

NULL

and

a

system

required

unique

index

(with

a

default

index

name)

is

generated.

This

column

is

referred

to

as

the

object

identifier

column

or

OID

column.

The

keywords

USER

GENERATED

indicate

that

the

initial

value

for

the

OID

column

must

be

provided

by

the

user

when

inserting

a

row.

Once

a

row

is

inserted,

the

OID

column

cannot

be

updated

(SQLSTATE

42808).

with-options

Defines

additional

options

that

apply

to

columns

of

a

typed

table.

column-name

Specifies

the

name

of

the

column

for

which

additional

options

are

specified.

The

column-name

must

correspond

to

the

name

of

a

column

of

the

table

that

is

not

also

a

column

of

a

supertable

(SQLSTATE

428DJ).

A

column

name

can

only

appear

in

one

WITH

OPTIONS

clause

in

the

statement

(SQLSTATE

42613).

If

an

option

is

already

specified

as

part

of

the

type

definition

(in

CREATE

TYPE),

the

options

specified

here

override

the

options

in

CREATE

TYPE.

WITH

OPTIONS

column-options

Defines

options

for

the

specified

column.

See

column-options

described

earlier.

If

the

table

is

a

subtable,

primary

key

or

unique

constraints

cannot

be

specified

(SQLSTATE

429B3).

DATA

CAPTURE

Indicates

whether

extra

information

for

inter-database

data

replication

is

to

be

written

to

the

log.

This

clause

cannot

be

specified

when

creating

a

subtable

(SQLSTATE

42613).

If

the

table

is

a

typed

table,

then

this

option

is

not

supported

(SQLSTATE

428DH

or

42HDR).

NONE

Indicates

that

no

extra

information

will

be

logged.

CHANGES

Indicates

that

extra

information

regarding

SQL

changes

to

this

table

will

be

written

to

the

log.

This

option

is

required

if

this

table

will

be

replicated

and

the

Capture

program

is

used

to

capture

changes

for

this

table

from

the

log.

If

the

table

is

defined

to

allow

data

on

a

partition

other

than

the

catalog

partition

(multiple

partition

database

partition

group

or

database

partition

group

with

a

partition

other

than

the

catalog

partition),

then

this

option

is

not

supported

(SQLSTATE

42997).

If

the

schema

name

(implicit

or

explicit)

of

the

table

is

longer

than

18

bytes,

then

this

option

is

not

supported

(SQLSTATE

42997).

WITH

RESTRICT

ON

DROP

Indicates

that

the

table

cannot

be

dropped,

and

that

the

table

space

that

contains

the

table

cannot

be

dropped.

IN

tablespace-name1

Identifies

the

table

space

in

which

the

table

will

be

created.

The

table

space

must

exist,

and

be

a

REGULAR

table

space

over

which

the

authorization

ID

of

the

statement

has

USE

privilege.

If

no

other

table

space

is

specified,

then

all

table

parts

will

be

stored

in

this

table

space.

This

clause

cannot

be

specified

when

creating

a

subtable

(SQLSTATE

CREATE

TABLE

Chapter

15.

SQL

Statements

for

Administrators

623

42613),

since

the

table

space

is

inherited

from

the

root

table

of

the

table

hierarchy.

If

this

clause

is

not

specified,

a

table

space

for

the

table

is

determined

as

follows:

IF

table

space

IBMDEFAULTGROUP

over

which

the

user

has

USE

privilege

exists

with

sufficient

page

size

THEN

choose

it

ELSE

IF

a

table

space

over

which

the

user

has

USE

privilege

exists

with

sufficient

page

size

(see

below

when

multiple

table

spaces

qualify)

THEN

choose

it

ELSE

issue

an

error

(SQLSTATE

42727).

If

more

than

one

table

space

is

identified

by

the

ELSE

IF

condition,

then

choose

the

table

space

with

the

smallest

sufficient

page

size

over

which

the

authorization

ID

of

the

statement

has

USE

privilege.

When

more

than

one

table

space

qualifies,

preference

is

given

according

to

who

was

granted

the

USE

privilege:

1.

the

authorization

ID

2.

a

group

to

which

the

authorization

ID

belongs

3.

PUBLIC

If

more

than

one

table

space

still

qualifies,

the

final

choice

is

made

by

the

database

manager.

Determination

of

the

table

space

may

change

when:

v

table

spaces

are

dropped

or

created

v

USE

privileges

are

granted

or

revoked.

The

sufficient

page

size

of

a

table

is

determined

by

either

the

byte

count

of

the

row

or

the

number

of

columns.

See

“Row

Size”

on

page

638

for

more

information.

tablespace-options

Specifies

the

table

space

in

which

indexes

and/or

long

column

values

will

be

stored.

For

details

on

types

of

table

spaces,

see

“CREATE

TABLESPACE”.

INDEX

IN

tablespace-name2

Identifies

the

table

space

in

which

any

indexes

on

the

table

will

be

created.

This

option

is

allowed

only

when

the

primary

table

space

specified

in

the

IN

clause

is

a

DMS

table

space.

The

specified

table

space

must

exist,

must

be

a

REGULAR

or

LARGE

DMS

table

space

over

which

the

authorization

ID

of

the

statement

has

USE

privilege,

and

must

be

in

the

same

database

partition

group

as

tablespace-name1

(SQLSTATE

42838).

Note

that

specifying

which

table

space

will

contain

a

table’s

index

can

only

be

done

when

the

table

is

created.

The

checking

of

USE

privilege

over

the

table

space

for

the

index

is

only

carried

out

at

table

creation

time.

The

database

manager

will

not

require

that

the

authorization

ID

of

a

CREATE

INDEX

statement

have

USE

privilege

on

the

table

space

when

an

index

is

created

later.

LONG

IN

tablespace-name3

Identifies

the

table

space

in

which

the

values

of

any

long

columns

(LONG

VARCHAR,

LONG

VARGRAPHIC,

LOB

data

types,

distinct

types

with

any

of

these

as

source

types,

or

any

columns

defined

with

user-defined

structured

types

with

values

that

cannot

CREATE

TABLE

624

Common

Criteria

Certification:

Administration

and

User

Documentation

be

stored

inline)

will

be

stored.

This

option

is

allowed

only

when

the

primary

table

space

specified

in

the

IN

clause

is

a

DMS

table

space.

The

table

space

must

exist,

must

be

a

LARGE

DMS

table

space

over

which

the

authorization

ID

of

the

statement

has

USE

privilege,

and

must

be

in

the

same

database

partition

group

as

tablespace-name1

(SQLSTATE

42838).

Note

that

specifying

which

table

space

will

contain

a

table’s

long

and

LOB

columns

can

only

be

done

when

the

table

is

created.

The

checking

of

USE

privilege

over

the

table

space

for

the

long

and

LOB

columns

is

only

carried

out

at

table

creation

time.

The

database

manager

will

not

require

that

the

authorization

ID

of

an

ALTER

TABLE

statement

have

USE

privilege

on

the

table

space

when

a

long

or

LOB

column

is

added

later.

PARTITIONING

KEY

(column-name,...)

Specifies

the

partitioning

key

used

when

data

in

the

table

is

partitioned.

Each

column-name

must

identify

a

column

of

the

table

and

the

same

column

must

not

be

identified

more

than

once.

No

column

with

data

type

that

is

a

LONG

VARCHAR,

LONG

VARGRAPHIC,

BLOB,

CLOB,

DBCLOB,

DATALINK,

distinct

type

based

on

any

of

these

types,

or

structured

type

may

be

used

as

part

of

a

partitioning

key

(SQLSTATE

42962).

A

partitioning

key

cannot

be

specified

for

a

table

that

is

a

subtable

(SQLSTATE

42613),

since

the

partitioning

key

is

inherited

from

the

root

table

in

the

table

hierarchy.

If

this

clause

is

not

specified,

and

this

table

resides

in

a

multiple

partition

database

partition

group,

then

the

partitioning

key

is

defined

as

follows:

v

if

the

table

is

a

typed

table,

the

object

identifier

column

v

if

a

primary

key

is

specified,

the

first

column

of

the

primary

key

is

the

partitioning

key

v

otherwise,

the

first

column

whose

data

type

is

not

a

LOB,

LONG

VARCHAR,

LONG

VARGRAPHIC,

DATALINK

column,

distinct

type

based

on

one

of

these

types,

or

structured

type

column

is

the

partitioning

key.

If

none

of

the

columns

satisfy

the

requirement

of

the

default

partitioning

key,

the

table

is

created

without

one.

Such

tables

are

allowed

only

in

table

spaces

defined

on

single-partition

database

partition

groups.

For

tables

in

table

spaces

defined

on

single-partition

database

partition

groups,

any

collection

of

non-long

type

columns

can

be

used

to

define

the

partitioning

key.

If

you

do

not

specify

this

parameter,

no

partitioning

key

is

created.

For

restrictions

related

to

the

partitioning

key,

see

634.

USING

HASHING

Specifies

the

use

of

the

hashing

function

as

the

partitioning

method

for

data

distribution.

This

is

the

only

partitioning

method

supported.

REPLICATED

Specifies

that

the

data

stored

in

the

table

is

physically

replicated

on

each

database

partition

of

the

database

partition

group

of

the

table

space

in

which

the

table

is

defined.

This

means

that

a

copy

of

all

the

CREATE

TABLE

Chapter

15.

SQL

Statements

for

Administrators

625

data

in

the

table

exists

on

each

of

these

database

partitions.

This

option

can

only

be

specified

for

a

materialized

query

table

(SQLSTATE

42997).

VALUE

COMPRESSION

Specifies

that

NULL

and

0-length

data

values

are

to

be

stored

more

efficiently

for

most

data

types.

This

also

determines

the

row

format

that

is

to

be

used.

If

the

table

is

a

typed

table,

this

option

is

only

supported

on

the

root

table

of

the

typed

table

hierarchy

(SQLSTATE

428DR).

The

0-length

data

values

for

columns

whose

data

type

is

BLOB,

CLOB,

DBCLOB,

LONG

VARCHAR,

or

LONG

VARGRAPHIC

are

stored

using

minimal

space.

Each

NULL

value

is

stored

without

using

an

additional

byte.

The

row

format

that

is

used

to

support

this

determines

the

byte

counts

for

each

data

type,

and

tends

to

cause

data

fragmentation

during

updates.

The

new

row

format

(specified

for

a

column

through

the

COMPRESS

SYSTEM

DEFAULT

option)

also

allows

system

default

values

for

the

column

to

be

stored

more

efficiently.

NOT

LOGGED

INITIALLY

Any

changes

made

to

the

table

by

an

Insert,

Delete,

Update,

Create

Index,

Drop

Index,

or

Alter

Table

operation

in

the

same

unit

of

work

in

which

the

table

is

created

are

not

logged.

For

other

considerations

when

using

this

option,

see

the

“Notes”

section

of

this

statement.

All

catalog

changes

and

storage

related

information

are

logged,

as

are

all

operations

that

are

done

on

the

table

in

subsequent

units

of

work.

Note:

If

non-logged

activity

occurs

against

a

table

that

has

the

NOT

LOGGED

INITIALLY

attribute

activated,

and

if

a

statement

fails

(causing

a

rollback),

or

a

ROLLBACK

TO

SAVEPOINT

is

executed,

the

entire

unit

of

work

is

rolled

back

(SQL1476N).

Furthermore,

the

table

for

which

the

NOT

LOGGED

INITIALLY

attribute

was

activated

is

marked

inaccessible

after

the

rollback

has

occurred,

and

can

only

be

dropped.

Therefore,

the

opportunity

for

errors

within

the

unit

of

work

in

which

the

NOT

LOGGED

INITIALLY

attribute

is

activated

should

be

minimized.

CCSID

Specifies

the

encoding

scheme

for

string

data

stored

in

the

table.

If

the

CCSID

clause

is

not

specified,

the

default

is

CCSID

UNICODE

for

Unicode

databases,

and

CCSID

ASCII

for

all

other

databases.

ASCII

Specifies

that

string

data

is

encoded

in

the

database

code

page.

If

the

database

is

a

Unicode

database,

CCSID

ASCII

cannot

be

specified

(SQLSTATE

56031).

UNICODE

Specifies

that

string

data

is

encoded

in

Unicode.

If

the

database

is

a

Unicode

database,

character

data

is

in

UTF-8,

and

graphic

data

is

in

UCS-2.

If

the

database

is

not

a

Unicode

database,

character

data

is

in

UTF-8.

If

the

database

is

not

a

Unicode

database,

tables

can

be

created

with

CCSID

UNICODE,

but

the

following

rules

apply:

CREATE

TABLE

626

Common

Criteria

Certification:

Administration

and

User

Documentation

v

The

alternate

collating

sequence

must

be

specified

in

the

database

configuration

before

creating

the

table

(SQLSTATE

56031).

CCSID

UNICODE

tables

collate

with

the

alternate

collating

sequence

specified

in

the

database

configuration.

v

Tables

or

table

functions

created

with

CCSID

ASCII,

and

tables

or

table

functions

created

with

CCSID

UNICODE,

cannot

both

be

used

in

a

single

SQL

statement

(SQLSTATE

53090).

This

applies

to

tables

and

table

functions

referenced

directly

in

the

statement,

as

well

as

to

tables

and

table

functions

referenced

indirectly

(such

as,

for

example,

through

referential

integrity

constraints,

triggers,

materialized

query

tables,

and

tables

in

the

body

of

views).

v

Tables

created

with

CCSID

UNICODE

cannot

be

referenced

in

SQL

functions

or

SQL

methods

(SQLSTATE

560C0).

v

An

SQL

statement

that

references

a

table

created

with

CCSID

UNICODE

cannot

invoke

an

SQL

function

or

SQL

method

(SQLSTATE

53090).

v

Graphic

types

and

user-defined

types

cannot

be

used

in

CCSID

UNICODE

tables

(SQLSTATE

560C1).

v

Tables

cannot

have

both

the

CCSID

UNICODE

clause

and

the

DATA

CAPTURE

CHANGES

clause

specified

(SQLSTATE

42613).

v

The

Explain

tables

cannot

be

created

with

CCSID

UNICODE

(SQLSTATE

55002).

v

Declared

global

temporary

tables

cannot

be

created

with

CCSID

UNICODE

(SQLSTATE

56031).

v

CCSID

UNICODE

tables

cannot

be

created

in

a

CREATE

SCHEMA

statement

(SQLSTATE

53090).

v

The

exception

table

for

a

load

operation

must

have

the

same

CCSID

as

the

target

table

for

the

operation

(SQLSTATE

428A5).

v

The

exception

table

for

a

SET

INTEGRITY

statement

must

have

the

same

CCSID

as

the

target

table

for

the

statement

(SQLSTATE

53090).

v

The

target

table

for

event

monitor

data

must

not

be

declared

as

CCSID

UNICODE

(SQLSTATE

55049).

v

Statements

that

reference

a

CCSID

UNICODE

table

can

only

be

invoked

from

a

DB2

Version

8.1

or

later

client

(SQLSTATE

42997).

v

SQL

statements

are

always

interpreted

in

the

database

code

page.

In

particular,

this

means

that

every

character

in

literals,

hex

literals,

and

delimited

identifiers

must

have

a

representation

in

the

database

code

page;

otherwise,

the

character

will

be

replaced

with

the

substitution

character.

Host

variables

in

the

application

are

always

in

the

application

code

page,

regardless

of

the

CCSID

of

any

tables

in

the

SQL

statements

that

are

invoked.

DB2

will

perform

code

page

conversions

as

necessary

to

convert

data

between

the

application

code

page

and

the

section

code

page.

The

registry

variable

DB2CODEPAGE

can

be

set

at

the

client

to

change

the

application

code

page.

OPTIONS

(ADD

table-option-name

string-constant,

...)

Table

options

are

used

to

identify

the

remote

base

table.

The

table-option-name

is

the

name

of

the

option.

The

string-constant

specifies

the

setting

for

the

table

option.

The

string-constant

must

be

enclosed

in

single

quotation

marks.

The

remote

server

(the

server

name

that

was

specified

in

the

CREATE

SERVER

statement)

must

be

specified

in

the

OPTIONS

clause.

The

OPTIONS

clause

can

also

be

used

to

override

the

schema

or

the

unqualified

name

of

the

remote

base

table

that

is

being

created.

CREATE

TABLE

Chapter

15.

SQL

Statements

for

Administrators

627

It

is

recommended

that

a

schema

name

be

specified.

If

a

remote

schema

name

is

not

specified,

the

qualifier

for

the

table

name

is

used.

If

the

table

name

has

no

qualifier,

the

authorization

ID

of

the

statement

is

used.

If

an

unqualified

name

for

the

remote

base

table

is

not

specified,

table-name

is

used.

unique-constraint

Defines

a

unique

or

primary

key

constraint.

If

the

table

has

a

partitioning

key,

then

any

unique

or

primary

key

must

be

a

superset

of

the

partitioning

key.

A

unique

or

primary

key

constraint

cannot

be

specified

for

a

table

that

is

a

subtable

(SQLSTATE

429B3).

Primary

or

unique

keys

cannot

be

subsets

of

dimensions

(SQLSTATE

429BE).

If

the

table

is

a

root

table,

the

constraint

applies

to

the

table

and

all

its

subtables.

CONSTRAINT

constraint-name

Names

the

primary

key

or

unique

constraint.

UNIQUE

(column-name,...)

Defines

a

unique

key

composed

of

the

identified

columns.

The

identified

columns

must

be

defined

as

NOT

NULL.

Each

column-name

must

identify

a

column

of

the

table

and

the

same

column

must

not

be

identified

more

than

once.

The

number

of

identified

columns

must

not

exceed

16,

and

the

sum

of

their

stored

lengths

must

not

exceed

1024

(refer

to

“Byte

Counts”

on

page

638

for

the

stored

lengths).

Unique

keys

with

variable

keyparts

can

have

a

size

greater

than

255

if

the

registry

variable

DB2_INDEX_2BYTEVARLEN

is

set

to

ON.

No

LOB,

LONG

VARCHAR,

LONG

VARGRAPHIC,

DATALINK,

distinct

type

based

on

one

of

these

types,

or

structured

type

may

be

used

as

part

of

a

unique

key,

even

if

the

length

attribute

of

the

column

is

small

enough

to

fit

within

the

1024-byte

limit

(SQLSTATE

54008).

The

set

of

columns

in

the

unique

key

cannot

be

the

same

as

the

set

of

columns

in

the

primary

key

or

another

unique

key

(SQLSTATE

01543).

(If

LANGLEVEL

is

SQL92E

or

MIA,

an

error

is

returned,

SQLSTATE

42891.)

A

unique

constraint

cannot

be

specified

if

the

table

is

a

subtable

(SQLSTATE

429B3),

because

unique

constraints

are

inherited

from

the

supertable.

The

description

of

the

table

as

recorded

in

the

catalog

includes

the

unique

key

and

its

unique

index.

A

unique

index

will

automatically

be

created

for

the

columns

in

the

sequence

specified

with

ascending

order

for

each

column.

The

name

of

the

index

will

be

the

same

as

the

constraint-name

if

this

does

not

conflict

with

an

existing

index

in

the

schema

where

the

table

is

created.

If

the

index

name

conflicts,

the

name

will

be

SQL,

followed

by

a

character

timestamp

(yymmddhhmmssxxx),

with

SYSIBM

as

the

schema

name.

PRIMARY

KEY

(column-name,...)

Defines

a

primary

key

composed

of

the

identified

columns.

The

clause

must

not

be

specified

more

than

once,

and

the

identified

columns

must

be

defined

as

NOT

NULL.

Each

column-name

must

identify

a

column

of

the

table,

and

the

same

column

must

not

be

identified

more

than

once.

The

number

of

identified

columns

must

not

exceed

16,

and

the

sum

of

their

stored

lengths

must

not

exceed

1024

(refer

to

“Byte

Counts”

on

page

638

for

the

stored

lengths).

Primary

keys

with

variable

keyparts

can

have

a

size

greater

than

255

if

the

registry

variable

DB2_INDEX_2BYTEVARLEN

CREATE

TABLE

628

Common

Criteria

Certification:

Administration

and

User

Documentation

is

set

to

ON.

No

LOB,

LONG

VARCHAR,

LONG

VARGRAPHIC,

DATALINK,

distinct

type

based

on

one

of

these

types,

or

structured

type

can

be

used

as

part

of

a

primary

key,

even

if

the

length

attribute

of

the

column

is

small

enough

to

fit

within

the

1024-byte

limit

(SQLSTATE

54008).

The

set

of

columns

in

the

primary

key

cannot

be

the

same

as

the

set

of

columns

in

a

unique

key

(SQLSTATE

01543).

(If

LANGLEVEL

is

SQL92E

or

MIA,

an

error

is

returned,

SQLSTATE

42891.)

Only

one

primary

key

can

be

defined

on

a

table.

A

primary

key

cannot

be

specified

if

the

table

is

a

subtable

(SQLSTATE

429B3)

since

the

primary

key

is

inherited

from

the

supertable.

The

description

of

the

table

as

recorded

in

the

catalog

includes

the

primary

key

and

its

primary

index.

A

unique

index

will

automatically

be

created

for

the

columns

in

the

sequence

specified

with

ascending

order

for

each

column.

The

name

of

the

index

will

be

the

same

as

the

constraint-name

if

this

does

not

conflict

with

an

existing

index

in

the

schema

where

the

table

is

created.

If

the

index

name

conflicts,

the

name

will

be

SQL,

followed

by

a

character

timestamp

(yymmddhhmmssxxx),

with

SYSIBM

as

the

schema

name.

If

the

table

has

a

partitioning

key,

the

columns

of

a

unique-constraint

must

be

a

superset

of

the

partitioning

key

columns;

column

order

is

unimportant.

referential-constraint

Defines

a

referential

constraint.

CONSTRAINT

constraint-name

Names

the

referential

constraint.

FOREIGN

KEY

(column-name,...)

Defines

a

referential

constraint

with

the

specified

constraint-name.

Let

T1

denote

the

object

table

of

the

statement.

The

foreign

key

of

the

referential

constraint

is

composed

of

the

identified

columns.

Each

name

in

the

list

of

column

names

must

identify

a

column

of

T1

and

the

same

column

must

not

be

identified

more

than

once.

The

number

of

identified

columns

must

not

exceed

16

and

the

sum

of

their

stored

lengths

must

not

exceed

1024

(refer

to

“Byte

Counts”

on

page

638

for

the

stored

lengths).

Foreign

keys

can

be

defined

on

variable

length

columns

whose

length

is

greater

than

255

bytes.

No

LOB,

LONG

VARCHAR,

LONG

VARGRAPHIC,

DATALINK,

distinct

type

based

on

one

of

these

types,

or

structured

type

column

may

be

used

as

part

of

a

foreign

key

(SQLSTATE

42962).

There

must

be

the

same

number

of

foreign

key

columns

as

there

are

in

the

parent

key

and

the

data

types

of

the

corresponding

columns

must

be

compatible

(SQLSTATE

42830).

Two

column

descriptions

are

compatible

if

they

have

compatible

data

types

(both

columns

are

numeric,

character

strings,

graphic,

date/time,

or

have

the

same

distinct

type).

references-clause

Specifies

the

parent

table

or

the

parent

nickname,

and

the

parent

key

for

the

referential

constraint.

REFERENCES

table-name

or

nickname

The

table

or

nickname

specified

in

a

REFERENCES

clause

must

identify

a

base

table

or

a

nickname

that

is

described

in

the

catalog,

but

must

not

identify

a

catalog

table.

CREATE

TABLE

Chapter

15.

SQL

Statements

for

Administrators

629

A

referential

constraint

is

a

duplicate

if

its

foreign

key,

parent

key,

and

parent

table

or

parent

nickname

are

the

same

as

the

foreign

key,

parent

key,

and

parent

table

or

parent

nickname

of

a

previously

specified

referential

constraint.

Duplicate

referential

constraints

are

ignored,

and

a

warning

is

returned

(SQLSTATE

01543).

In

the

following

discussion,

let

T2

denote

the

identified

parent

table,

and

let

T1

denote

the

table

being

created

(or

altered).

(T1

and

T2

may

be

the

same

table).

The

specified

foreign

key

must

have

the

same

number

of

columns

as

the

parent

key

of

T2

and

the

description

of

the

nth

column

of

the

foreign

key

must

be

comparable

to

the

description

of

the

nth

column

of

that

parent

key.

Datetime

columns

are

not

considered

to

be

comparable

to

string

columns

for

the

purposes

of

this

rule.

(column-name,...)

The

parent

key

of

a

referential

constraint

is

composed

of

the

identified

columns.

Each

column-name

must

be

an

unqualified

name

that

identifies

a

column

of

T2.

The

same

column

must

not

be

identified

more

than

once.

The

list

of

column

names

must

match

the

set

of

columns

(in

any

order)

of

the

primary

key

or

a

unique

constraint

that

exists

on

T2

(SQLSTATE

42890).

If

a

column

name

list

is

not

specified,

then

T2

must

have

a

primary

key

(SQLSTATE

42888).

Omission

of

the

column

name

list

is

an

implicit

specification

of

the

columns

of

that

primary

key

in

the

sequence

originally

specified.

The

referential

constraint

specified

by

a

FOREIGN

KEY

clause

defines

a

relationship

in

which

T2

is

the

parent

and

T1

is

the

dependent.

rule-clause

Specifies

what

action

to

take

on

dependent

tables.

ON

DELETE

Specifies

what

action

is

to

take

place

on

the

dependent

tables

when

a

row

of

the

parent

table

is

deleted.

There

are

four

possible

actions:

v

NO

ACTION

(default)

v

RESTRICT

v

CASCADE

v

SET

NULL

The

delete

rule

applies

when

a

row

of

T2

is

the

object

of

a

DELETE

or

propagated

delete

operation

and

that

row

has

dependents

in

T1.

Let

p

denote

such

a

row

of

T2.

v

If

RESTRICT

or

NO

ACTION

is

specified,

an

error

occurs

and

no

rows

are

deleted.

v

If

CASCADE

is

specified,

the

delete

operation

is

propagated

to

the

dependents

of

p

in

T1.

v

If

SET

NULL

is

specified,

each

nullable

column

of

the

foreign

key

of

each

dependent

of

p

in

T1

is

set

to

null.

SET

NULL

must

not

be

specified

unless

some

column

of

the

foreign

key

allows

null

values.

Omission

of

the

clause

is

an

implicit

specification

of

ON

DELETE

NO

ACTION.

CREATE

TABLE

630

Common

Criteria

Certification:

Administration

and

User

Documentation

If

T1

is

delete-connected

to

T2

through

multiple

paths,

defining

two

SET

NULL

rules

with

overlapping

foreign

key

definitions

is

not

allowed.

For

example:

T1

(i1,

i2,

i3).

Rule1

with

foreign

key

(i1,

i2)

and

Rule2

with

foreign

key

(i2,

i3)

is

not

allowed.

The

firing

order

of

the

rules

is:

1.

RESTRICT

2.

SET

NULL

OR

CASCADE

3.

NO

ACTION

If

any

row

in

T1

is

affected

by

two

different

rules,

an

error

occurs

and

no

rows

are

deleted.

A

referential

constraint

cannot

be

defined

if

it

would

cause

a

table

to

be

delete-connected

to

itself

by

a

cycle

involving

two

or

more

tables,

and

where

one

of

the

delete

rules

is

RESTRICT

or

SET

NULL

(SQLSTATE

42915).

A

referential

constraint

that

would

cause

a

table

to

be

delete-connected

to

either

itself

or

another

table

by

multiple

paths

can

be

defined,

except

in

the

following

cases

(SQLSTATE

42915):

v

A

table

must

not

be

both

a

dependent

table

in

a

CASCADE

relationship

(self-referencing,

or

referencing

another

table),

and

have

a

self-referencing

relationship

in

which

the

delete

rule

is

RESTRICT

or

SET

NULL.

v

A

key

overlaps

another

key

when

at

least

one

column

in

one

key

is

the

same

as

a

column

in

the

other

key.

When

a

table

is

delete-connected

to

another

table

through

multiple

relationships

with

overlapping

foreign

keys,

those

relationships

must

have

the

same

delete

rule,

and

none

of

the

delete

rules

can

be

SET

NULL.

v

When

a

table

is

delete-connected

to

another

table

through

multiple

relationships,

and

at

least

one

of

those

relationships

is

specified

with

a

delete

rule

of

SET

NULL,

the

foreign

key

definitions

of

these

relationships

must

not

contain

any

partitioning

key

or

MDC

key

column.

v

When

two

tables

are

delete-connected

to

the

same

table

through

CASCADE

relationships,

the

two

tables

must

not

be

delete-connected

to

each

other

if

the

delete

rule

of

the

last

relationship

in

each

delete-connected

path

is

RESTRICT

or

SET

NULL.

If

any

row

in

T1

is

affected

by

different

delete

rules,

the

result

would

be

the

effect

of

all

the

actions

specified

by

these

rules.

AFTER

triggers

and

CHECK

constraints

on

T1

will

also

see

the

effect

of

all

the

actions.

An

example

of

this

is

a

row

that

is

targeted

to

be

set

null

through

one

delete-connected

path

to

an

ancestor

table,

and

targeted

to

be

deleted

by

a

second

delete-connected

path

to

the

same

ancestor

table.

The

result

would

be

the

deletion

of

the

row.

AFTER

DELETE

triggers

on

this

descendant

table

would

be

activated,

but

AFTER

UPDATE

triggers

would

not.

In

applying

the

above

rules

to

referential

constraints,

in

which

either

the

parent

table

or

the

dependent

table

is

a

member

of

a

typed

table

hierarchy,

all

the

referential

constraints

that

apply

to

any

table

in

the

respective

hierarchies

are

taken

into

consideration.

CREATE

TABLE

Chapter

15.

SQL

Statements

for

Administrators

631

ON

UPDATE

Specifies

what

action

is

to

take

place

on

the

dependent

tables

when

a

row

of

the

parent

table

is

updated.

The

clause

is

optional.

ON

UPDATE

NO

ACTION

is

the

default

and

ON

UPDATE

RESTRICT

is

the

only

alternative.

The

difference

between

NO

ACTION

and

RESTRICT

is

described

in

the

“Notes”

section

of

this

statement.

constraint-attributes

Defines

attributes

associated

with

referential

integrity

or

check

constraints.

ENFORCED

or

NOT

ENFORCED

Specifies

whether

the

constraint

is

enforced

by

the

database

manager

during

normal

operations

such

as

insert,

update,

or

delete.

The

default

is

ENFORCED.

ENFORCED

The

constraint

is

enforced

by

the

database

manager.

ENFORCED

cannot

be

specified

for

a

functional

dependency

(SQLSTATE

42621).

ENFORCED

cannot

be

specified

when

a

referential

constraint

refers

to

a

nickname

(SQLSTATE

428G7).

NOT

ENFORCED

The

constraint

is

not

enforced

by

the

database

manager.

This

should

only

be

specified

if

the

table

data

is

independently

known

to

conform

to

the

constraint.

ENABLE

QUERY

OPTIMIZATION

or

DISABLE

QUERY

OPTIMIZATION

Specifies

whether

the

constraint

or

functional

dependency

can

be

used

for

query

optimization

under

appropriate

circumstances.

The

default

is

ENABLE

QUERY

OPTIMIZATION.

ENABLE

QUERY

OPTIMIZATION

The

constraint

is

assumed

to

be

true

and

can

be

used

for

query

optimization.

DISABLE

QUERY

OPTIMIZATION

The

constraint

cannot

be

used

for

query

optimization.

check-constraint

Defines

a

check

constraint.

A

check-constraint

is

a

search-condition

that

must

evaluate

to

not

false

or

a

functional

dependency

that

is

defined

between

columns.

CONSTRAINT

constraint-name

Names

the

check

constraint.

CHECK

(check-condition)

Defines

a

check

constraint.

The

search-condition

must

be

true

or

unknown

for

every

row

of

the

table.

search-condition

The

search-condition

has

the

following

restrictions:

v

A

column

reference

must

be

to

a

column

of

the

table

being

created.

v

The

search-condition

cannot

contain

a

TYPE

predicate.

v

The

search-condition

cannot

contain

any

of

the

following

(SQLSTATE

42621):

–

Subqueries

CREATE

TABLE

632

Common

Criteria

Certification:

Administration

and

User

Documentation

–

Dereference

operations

or

DEREF

functions

where

the

scoped

reference

argument

is

other

than

the

object

identifier

(OID)

column

–

CAST

specifications

with

a

SCOPE

clause

–

Column

functions

–

Functions

that

are

not

deterministic

–

Functions

defined

to

have

an

external

action

–

User-defined

functions

defined

with

either

CONTAINS

SQL

or

READS

SQL

DATA

–

Host

variables

–

Parameter

markers

–

Special

registers

–

References

to

generated

columns

other

than

the

identity

column

functional-dependency

Defines

a

functional

dependency

between

columns.

column-name

DETERMINED

BY

column-name

or

(column-name,...)

DETERMINED

BY

(column-name,...)

The

parent

set

of

columns

contains

the

identified

columns

that

immediately

precede

the

DETERMINED

BY

clause.

The

child

set

of

columns

contains

the

identified

columns

that

immediately

follow

the

DETERMINED

BY

clause.

All

of

the

restrictions

on

the

search-condition

apply

to

parent

set

and

child

set

columns,

and

only

simple

column

references

are

allowed

in

the

set

of

columns

(SQLSTATE

42621).

The

same

column

must

not

be

identified

more

than

once

in

the

functional

dependency

(SQLSTATE

42709).

The

data

type

of

the

column

must

not

be

a

LOB

data

type,

a

distinct

type

based

on

a

LOB

data

type,

or

a

structured

type

(SQLSTATE

42962).

No

column

in

the

child

set

of

columns

can

be

a

nullable

column

(SQLSTATE

42621).

If

a

check

constraint

is

specified

as

part

of

a

column-definition,

a

column

reference

can

only

be

made

to

the

same

column.

Check

constraints

specified

as

part

of

a

table

definition

can

have

column

references

identifying

columns

previously

defined

in

the

CREATE

TABLE

statement.

Check

constraints

are

not

checked

for

inconsistencies,

duplicate

conditions,

or

equivalent

conditions.

Therefore,

contradictory

or

redundant

check

constraints

can

be

defined,

resulting

in

possible

errors

at

execution

time.

The

search-condition

“IS

NOT

NULL”

can

be

specified;

however,

it

is

recommended

that

nullability

be

enforced

directly,

using

the

NOT

NULL

attribute

of

a

column.

For

example,

CHECK

(salary

+

bonus

>

30000)

is

accepted

if

salary

is

set

to

NULL,

because

CHECK

constraints

must

be

either

satisfied

or

unknown,

and

in

this

case,

salary

is

unknown.

However,

CHECK

(salary

IS

NOT

NULL)

would

be

considered

false

and

a

violation

of

the

constraint

if

salary

is

set

to

NULL.

Check

constraints

with

search-condition

are

enforced

when

rows

in

the

table

are

inserted

or

updated.

A

check

constraint

defined

on

a

table

automatically

applies

to

all

subtables

of

that

table.

A

functional

dependency

is

not

enforced

by

the

database

manager

during

normal

operations

such

as

insert,

update,

delete,

or

set

integrity.

The

CREATE

TABLE

Chapter

15.

SQL

Statements

for

Administrators

633

functional

dependency

might

be

used

during

query

rewrite

to

optimize

queries.

Incorrect

results

might

be

returned

if

the

integrity

of

a

functional

dependency

is

not

maintained.

Rules:

v

The

sum

of

the

byte

counts

of

the

columns,

including

the

inline

lengths

of

all

structured

type

columns,

must

not

be

greater

than

the

row

size

limit

that

is

based

on

the

page

size

of

the

table

space

(SQLSTATE

54010).

For

more

information,

see

“Byte

Counts”

on

page

638.

For

typed

tables,

the

byte

count

is

applied

to

the

columns

of

the

root

table

of

the

table

hierarchy,

and

every

additional

column

introduced

by

every

subtable

in

the

table

hierarchy

(additional

subtable

columns

must

be

considered

nullable

for

byte

count

purposes,

even

if

defined

as

not

nullable).

There

is

also

an

additional

4

bytes

of

overhead

to

identify

the

subtable

to

which

each

row

belongs.

v

The

number

of

columns

in

a

table

cannot

exceed

1

012

(SQLSTATE

54011).

For

typed

tables,

the

total

number

of

attributes

of

the

types

of

all

of

the

subtables

in

the

table

hierarchy

cannot

exceed

1010.

v

An

object

identifier

column

of

a

typed

table

cannot

be

updated

(SQLSTATE

42808).

v

Any

unique

or

primary

key

constraint

defined

on

the

table

must

be

a

superset

of

the

partitioning

key

(SQLSTATE

42997).

v

The

following

table

provides

the

supported

combinations

of

DATALINK

options

in

the

file-link-options

(SQLSTATE

42613).

WRITE

PERMISSION

ADMIN

can

only

combine

with

READ

PERMISSION

DB.

(Other

combinations

in

the

RECOVERY

and

the

ON

UNLINK

clause

are

supported.)

Table

59.

Valid

DATALINK

File

Control

Option

Combinations.

Any

combination

that

cannot

be

found

in

this

table

is

not

supported,

and

results

in

SQLSTATE

42613.

INTEGRITY

READ

PERMISSION

WRITE

PERMISSION

RECOVERY

ON

UNLINK

ALL

FS

FS

NO

Not

applicable

ALL

FS

BLOCKED

NO

RESTORE

ALL

FS

BLOCKED

YES

RESTORE

ALL

DB

BLOCKED

NO

RESTORE

ALL

DB

BLOCKED

NO

DELETE

ALL

DB

BLOCKED

YES

RESTORE

ALL

DB

BLOCKED

YES

DELETE

ALL

DB

ADMIN

NO

RESTORE

ALL

DB

ADMIN

NO

DELETE

ALL

DB

ADMIN

YES

RESTORE

ALL

DB

ADMIN

YES

DELETE

v

The

following

rules

only

apply

to

partitioned

databases.

–

Tables

composed

only

of

columns

with

types

LOB,

LONG

VARCHAR,

LONG

VARGRAPHIC,

DATALINK,

distinct

type

based

on

one

of

these

types,

or

structured

type

can

only

be

created

in

table

spaces

defined

on

single-partition

database

partition

groups.

–

The

partitioning

key

definition

of

a

table

in

a

table

space

defined

on

a

multiple

partition

database

partition

group

cannot

be

altered.

–

The

partitioning

key

column

of

a

typed

table

must

be

the

OID

column.

CREATE

TABLE

634

Common

Criteria

Certification:

Administration

and

User

Documentation

v

A

range-clustered

table

cannot

be

specified

in

a

database

with

multiple

database

partitions

(SQLSTATE

42997).

v

The

following

restrictions

apply

to

range-clustered

tables:

–

VALUE

COMPRESSION

cannot

be

activated.

–

A

clustering

index

cannot

be

created.

–

Altering

the

table

to

add

a

column

is

not

supported.

–

Altering

the

table

to

change

the

data

type

of

a

column

is

not

supported.

–

Altering

the

table

to

change

PCTFREE

is

not

supported.

–

Altering

the

table

to

set

APPEND

ON

is

not

suported.

–

DETAILED

statistics

are

not

available.

–

The

load

utility

cannot

be

used

to

populate

the

table.

Notes:

v

Compatibilities

–

For

compatibility

with

previous

versions

of

DB2:

-

The

CONSTRAINT

keyword

can

be

omitted

from

a

column-definition

defining

a

references-clause.

-

constraint-name

can

be

specified

following

FOREIGN

KEY

(without

the

CONSTRAINT

keyword).

-

SUMMARY

can

optionally

be

specified

after

CREATE.

-

DEFINITION

ONLY

can

be

specified

in

place

of

WITH

NO

DATA.
–

For

compatibility

with

previous

versions

of

DB2,

and

for

consistency:

-

A

comma

can

be

used

to

separate

multiple

options

in

the

identity-options

clause.
–

For

compatibility

with

DB2

UDB

for

OS/390

and

z/OS:

-

The

following

syntax

is

accepted

as

the

default

behavior:

v

IN

database-name.tablespace-name

v

IN

DATABASE

database-name

v

FOR

MIXED

DATA

v

FOR

SBCS

DATA
-

The

following

syntax

is

also

supported:

v

NOMINVALUE,

NOMAXVALUE,

NOCYCLE,

NOCACHE,

and

NOORDER
v

Creating

a

table

with

a

schema

name

that

does

not

already

exist

will

result

in

the

implicit

creation

of

that

schema

provided

the

authorization

ID

of

the

statement

has

IMPLICIT_SCHEMA

authority.

The

schema

owner

is

SYSIBM.

The

CREATEIN

privilege

on

the

schema

is

granted

to

PUBLIC.

v

If

a

foreign

key

is

specified:

–

All

packages

with

a

delete

usage

on

the

parent

table

are

invalidated.

–

All

packages

with

an

update

usage

on

at

least

one

column

in

the

parent

key

are

invalidated.
v

Creating

a

subtable

causes

invalidation

of

all

packages

that

depend

on

any

table

in

table

hierarchy.

v

VARCHAR

and

VARGRAPHIC

columns

that

are

greater

than

4

000

and

2

000

respectively

should

not

be

used

as

input

parameters

in

functions

in

SYSFUN

schema.

Errors

will

occur

when

the

function

is

invoked

with

an

argument

value

that

exceeds

these

lengths

(SQLSTATE

22001).

CREATE

TABLE

Chapter

15.

SQL

Statements

for

Administrators

635

v

The

use

of

NO

ACTION

or

RESTRICT

as

delete

or

update

rules

for

referential

constraints

determines

when

the

constraint

is

enforced.

A

delete

or

update

rule

of

RESTRICT

is

enforced

before

all

other

constraints,

including

those

referential

constraints

with

modifying

rules

such

as

CASCADE

or

SET

NULL.

A

delete

or

update

rule

of

NO

ACTION

is

enforced

after

other

referential

constraints.

One

example

where

different

behavior

is

evident

involves

the

deletion

of

rows

from

a

view

that

is

defined

as

a

UNION

ALL

of

related

tables.

Table

T1

is

a

parent

of

table

T3;

delete

rule

as

noted

below.

Table

T2

is

a

parent

of

table

T3;

delete

rule

CASCADE.

CREATE

VIEW

V1

AS

SELECT

*

FROM

T1

UNION

ALL

SELECT

*

FROM

T2

DELETE

FROM

V1

If

table

T1

is

a

parent

of

table

T3

with

a

delete

rule

of

RESTRICT,

a

restrict

violation

will

be

raised

(SQLSTATE

23001)

if

there

are

any

child

rows

for

parent

keys

of

T1

in

T3.

If

table

T1

is

a

parent

of

table

T3

with

a

delete

rule

of

NO

ACTION,

the

child

rows

may

be

deleted

by

the

delete

rule

of

CASCADE

when

deleting

rows

from

T2

before

the

NO

ACTION

delete

rule

is

enforced

for

the

deletes

from

T1.

If

deletes

from

T2

did

not

result

in

deleting

all

child

rows

for

parent

keys

of

T1

in

T3,

then

a

constraint

violation

will

be

raised

(SQLSTATE

23504).

Note

that

the

SQLSTATE

returned

is

different

depending

on

whether

the

delete

or

update

rule

is

RESTRICT

or

NO

ACTION.

v

For

tables

in

table

spaces

defined

on

multiple

partition

database

partition

groups,

table

collocation

should

be

considered

in

choosing

the

partitioning

keys.

Following

is

a

list

of

items

to

consider:

–

The

tables

must

be

in

the

same

database

partition

group

for

collocation.

The

table

spaces

may

be

different,

but

must

be

defined

in

the

same

database

partition

group.

–

The

partitioning

keys

of

the

tables

must

have

the

same

number

of

columns,

and

the

corresponding

key

columns

must

be

partition

compatible

for

collocation.

–

The

choice

of

partitioning

key

also

has

an

impact

on

performance

of

joins.

If

a

table

is

frequently

joined

with

another

table,

you

should

consider

the

joining

column(s)

as

a

partitioning

key

for

both

tables.
v

The

NOT

LOGGED

INITIALLY

clause

cannot

be

used

when

DATALINK

columns

with

the

FILE

LINK

CONTROL

attribute

are

present

in

the

table

(SQLSTATE

42613).

v

The

NOT

LOGGED

INITIALLY

option

is

useful

for

situations

where

a

large

result

set

needs

to

be

created

with

data

from

an

alternate

source

(another

table

or

a

file)

and

recovery

of

the

table

is

not

necessary.

Using

this

option

will

save

the

overhead

of

logging

the

data.

The

following

considerations

apply

when

this

option

is

specified:

–

When

the

unit

of

work

is

committed,

all

changes

that

were

made

to

the

table

during

the

unit

of

work

are

flushed

to

disk.

–

When

you

run

the

rollforward

utility

and

it

encounters

a

log

record

that

indicates

that

a

table

in

the

database

was

either

populated

by

the

Load

utility

or

created

with

the

NOT

LOGGED

INITIALLY

option,

the

table

will

be

marked

as

unavailable.

The

table

will

be

dropped

by

the

rollforward

utility

if

it

later

encounters

a

DROP

TABLE

log.

Otherwise,

after

the

database

is

recovered,

an

error

will

be

issued

if

any

attempt

is

made

to

access

the

table

(SQLSTATE

55019).

The

only

operation

permitted

is

to

drop

the

table.

–

Once

such

a

table

is

backed

up

as

part

of

a

database

or

table

space

back

up,

recovery

of

the

table

becomes

possible.

CREATE

TABLE

636

Common

Criteria

Certification:

Administration

and

User

Documentation

v

A

REFRESH

DEFERRED

system-maintained

materialized

query

table

defined

with

ENABLE

QUERY

OPTIMIZATION

can

be

used

to

optimize

the

processing

of

queries

if

CURRENT

REFRESH

AGE

is

set

to

ANY

and

CURRENT

MAINTAINED

TABLE

TYPES

FOR

OPTIMIZATION

is

set

such

that

it

includes

system-maintained

materialized

query

tables.

A

REFRESH

DEFERRED

user-maintained

materialized

query

table

defined

with

ENABLE

QUERY

OPTIMIZATION

can

be

used

to

optimize

the

processing

of

queries

if

CURRENT

REFRESH

AGE

is

set

to

ANY

and

CURRENT

MAINTAINED

TABLE

TYPES

FOR

OPTIMIZATION

is

set

such

that

it

includes

user-maintained

materialized

query

tables.

A

REFRESH

IMMEDIATE

materialized

query

table

defined

with

ENABLE

QUERY

OPTIMIZATION

is

always

considered

for

optimization.

For

this

optimization

to

be

able

to

use

a

REFRESH

DEFERRED

or

a

REFRESH

IMMEDIATE

materialized

query

table,

the

fullselect

must

conform

to

certain

rules

in

addition

to

those

already

described.

The

fullselect

must:

–

be

a

subselect

with

a

GROUP

BY

clause

or

a

subselect

with

a

single

table

reference

–

not

include

DISTINCT

anywhere

in

the

select

list

–

not

include

any

special

registers

–

not

include

functions

that

are

not

deterministic.

If

the

query

specified

when

creating

a

materialized

query

table

does

not

conform

to

these

rules,

a

warning

is

returned

(SQLSTATE

01633).

v

If

a

materialized

query

table

is

defined

with

REFRESH

IMMEDIATE,

or

a

staging

table

is

defined

with

PROPAGATE

IMMEDIATE,

it

is

possible

for

an

error

to

occur

when

attempting

to

apply

the

change

resulting

from

an

insert,

update,

or

delete

operation

on

an

underlying

table.

The

error

will

cause

the

failure

of

the

insert,

update,

or

delete

operation

on

the

underlying

table.

v

Materialized

query

tables

or

staging

tables

cannot

be

used

as

exception

tables

when

constraints

are

checked

in

bulk,

such

as

during

load

operations

or

during

execution

of

the

SET

INTEGRITY

statement.

v

Certain

operations

cannot

be

performed

on

a

table

that

is

referenced

by

a

materialized

query

table

defined

with

REFRESH

IMMEDIATE,

or

defined

with

REFRESH

DEFERRED

with

an

associated

staging

table:

–

IMPORT

REPLACE

cannot

be

used.

–

ALTER

TABLE

NOT

LOGGED

INITIALLY

WITH

EMPTY

TABLE

cannot

be

done.
v

In

a

federated

system,

nicknames

for

relational

data

sources

or

local

tables

can

be

used

as

the

underlying

tables

to

create

a

materialized

query

table.

Nicknames

for

non-relational

data

sources

are

not

supported.

When

a

nickname

is

one

of

the

underlying

tables,

the

REFRESH

DEFERRED

option

must

be

used.

System-maintained

materialized

query

tables

that

reference

nicknames

are

not

supported

in

a

partitioned

database

environment.

v

Transparent

DDL:

In

a

federated

system,

a

remote

base

table

can

be

created,

altered,

or

dropped

using

DB2

UDB

SQL.

This

capability

is

known

as

transparent

DDL.

Before

a

remote

base

table

can

be

created

on

a

data

source,

the

federated

server

must

be

configured

to

access

that

data

source.

This

configuration

includes

creating

the

wrapper

for

the

data

source,

supplying

the

server

definition

for

the

server

where

the

remote

base

table

will

be

located,

and

creating

the

user

mappings

between

the

federated

server

and

the

data

source.

Transparent

DDL

does

impose

some

limitations

on

what

can

be

included

in

the

CREATE

TABLE

statement:

–

Only

columns

and

a

primary

key

can

be

created

on

the

remote

base

table.

–

The

remote

data

source

must

support:

CREATE

TABLE

Chapter

15.

SQL

Statements

for

Administrators

637

-

The

remote

column

data

types

to

which

the

DB2

column

data

types

are

mapped

-

The

primary

key

option

in

the

CREATE

TABLE

statement

Depending

on

how

the

data

source

responds

to

requests

it

does

not

support,

an

error

might

be

returned

or

the

request

might

be

ignored.

When

a

remote

base

table

is

created

using

transparent

DDL,

a

nickname

is

automatically

created

for

that

remote

base

table.

v

A

referential

constraint

may

be

defined

in

such

a

way

that

either

the

parent

table

or

the

dependent

table

is

a

part

of

a

table

hierarchy.

In

such

a

case,

the

effect

of

the

referential

constraint

is

as

follows:

1.

Effects

of

INSERT,

UPDATE,

and

DELETE

statements:

–

If

a

referential

constraint

exists,

in

which

PT

is

a

parent

table

and

DT

is

a

dependent

table,

the

constraint

ensures

that

for

each

row

of

DT

(or

any

of

its

subtables)

that

has

a

non-null

foreign

key,

a

row

exists

in

PT

(or

one

of

its

subtables)

with

a

matching

parent

key.

This

rule

is

enforced

against

any

action

that

affects

a

row

of

PT

or

DT,

regardless

of

how

that

action

is

initiated.
2.

Effects

of

DROP

TABLE

statements:

–

for

referential

constraints

in

which

the

dropped

table

is

the

parent

table

or

dependent

table,

the

constraint

is

dropped

–

for

referential

constraints

in

which

a

supertable

of

the

dropped

table

is

the

parent

table

the

rows

of

the

dropped

table

are

considered

to

be

deleted

from

the

supertable.

The

referential

constraint

is

checked

and

its

delete

rule

is

invoked

for

each

of

the

deleted

rows.

–

for

referential

constraints

in

which

a

supertable

of

the

dropped

table

is

the

dependent

table,

the

constraint

is

not

checked.

Deletion

of

a

row

from

a

dependent

table

cannot

result

in

violation

of

a

referential

constraint.
v

Privileges:

When

any

table

is

created,

the

definer

of

the

table

is

granted

CONTROL

privilege.

When

a

subtable

is

created,

the

SELECT

privilege

that

each

user

or

group

has

on

the

immediate

supertable

is

automatically

granted

on

the

subtable

with

the

table

definer

as

the

grantor.

v

Row

Size:

The

maximum

number

of

bytes

allowed

in

the

row

of

a

table

is

dependent

on

the

page

size

of

the

table

space

in

which

the

table

is

created

(tablspace-name1).

The

following

list

shows

the

row

size

limit

and

number

of

columns

limit

associated

with

each

table

space

page

size.

Table

60.

Limits

for

Number

of

Columns

and

Row

Size

in

Each

Table

Space

Page

Size

Page

Size

Row

Size

Limit

Column

Count

Limit

4K

4

005

500

8K

8

101

1

012

16K

16

293

1

012

32K

32

677

1

012

The

actual

number

of

columns

for

a

table

may

be

further

limited

by

the

following

formula:

Total

Columns

*

8

+

Number

of

LOB

Columns

*

12

+

Number

of

Datalink

Columns

*

28

<=

row

size

limit

for

page

size.

v

Byte

Counts:

The

following

table

contains

the

byte

counts

of

columns

by

data

type

for

columns

that

do

not

allow

null

values.

In

tables

without

value

compression,

each

column

that

allows

nulls

requires

an

additional

byte.

CREATE

TABLE

638

Common

Criteria

Certification:

Administration

and

User

Documentation

If

a

table

is

based

on

a

structured

type,

an

additional

4

bytes

of

overhead

is

reserved

to

identify

rows

of

subtables,

regardless

of

whether

or

not

subtables

are

defined.

Additional

subtable

columns

must

be

considered

nullable

for

byte

count

purposes,

even

if

defined

as

not

nullable.

When

calculating

stored

lengths,

to

ensure

that

the

1024-byte

limit

is

not

exceeded

in

an

index

or

in

constraints

(note

that

constraints

are

enforced

through

indexes),

the

overhead

is

2

bytes

instead

of

4

bytes.

Table

61.

Byte

Counts

of

Columns

by

Data

Type

Data

type

Byte

count

when

VALUE

COMPRESSION

is

activated

for

the

table

Byte

count

when

VALUE

COMPRESSION

is

not

activated,

either

implicitly

or

explicitly,

for

the

table;

if

the

column

is

nullable,

add

1

to

the

indicated

byte

count

ROW

OVERHEAD

2

0

INTEGER

6

4

SMALLINT

4

2

BIGINT

10

8

REAL

6

4

DOUBLE

10

8

DECIMAL

The

integral

part

of

(p/2)+3,

where

p

is

the

precision

The

integral

part

of

(p/2)+1,

where

p

is

the

precision

CHAR(n)

n+2

n

VARCHAR(n)

n+2

n+4

(within

a

table);

n+2

(within

an

index)

LONG

VARCHAR

22

24

GRAPHIC(n)

n*2+2

n*2

VARGRAPHIC(n)

(n*2)+2

(n*2)+4

(within

a

table);

(n*2)+2

(within

an

index)

LONG

VARGRAPHIC

22

24

DATE

6

4

TIME

5

3

TIMESTAMP

12

10

DATALINK(n)

n+52

n+54

Maximum

LOB

length

1024

701

72

Maximum

LOB

length

8192

94

96

Maximum

LOB

length

65

536

118

120

Maximum

LOB

length

524

000

142

144

Maximum

LOB

length

4

190

000

166

168

Maximum

LOB

length

134

000

000

198

200

Maximum

LOB

length

536

000

000

222

224

Maximum

LOB

length

1

070

000

000

254

256

CREATE

TABLE

Chapter

15.

SQL

Statements

for

Administrators

639

Table

61.

Byte

Counts

of

Columns

by

Data

Type

(continued)

Data

type

Byte

count

when

VALUE

COMPRESSION

is

activated

for

the

table

Byte

count

when

VALUE

COMPRESSION

is

not

activated,

either

implicitly

or

explicitly,

for

the

table;

if

the

column

is

nullable,

add

1

to

the

indicated

byte

count

Maximum

LOB

length

1

470

000

000

278

280

Maximum

LOB

length

2

147

483

647

314

316

1

Each

LOB

value

has

a

LOB

descriptor

in

the

base

record

that

points

to

the

location

of

the

actual

value.

The

size

of

the

descriptor

varies

according

to

the

maximum

length

defined

for

the

column.

For

a

distinct

type,

the

byte

count

is

equivalent

to

the

length

of

the

source

type

of

the

distinct

type.

For

a

reference

type,

the

byte

count

is

equivalent

to

the

length

of

the

built-in

data

type

on

which

the

reference

type

is

based.

For

a

structured

type,

the

byte

count

is

equivalent

to

the

INLINE

LENGTH

+

4.

The

INLINE

LENGTH

is

the

value

specified

(or

implicitly

calculated)

for

the

column

in

the

column-options

clause.

v

Dimension

Columns:

Because

each

distinct

value

of

a

dimension

column

is

assigned

to

a

different

block

of

the

table,

clustering

on

an

expression

may

be

desirable,

such

as

″INTEGER(ORDER_DATE)/100″.

In

this

case,

a

generated

column

can

be

defined

for

the

table,

and

this

generated

column

may

then

be

used

in

the

ORGANIZE

BY

DIMENSIONS

clause.

If

the

expression

is

monotonic

with

respect

to

a

column

of

the

table,

DB2

may

use

the

dimension

index

to

satisfy

range

predicates

on

that

column.

For

example,

if

the

expression

is

simply

column-name

+

some-positive-constant,

it

is

monotonic

increasing.

User-defined

functions,

certain

built-in

functions,

and

using

more

than

one

column

in

an

expression,

prevent

monotonicity

or

its

detection.

Dimensions

involving

generated

columns

whose

expressions

are

non-monotonic,

or

whose

monotonicity

cannot

be

determined,

can

still

be

created,

but

range

queries

along

slice

or

cell

boundaries

of

these

dimensions

are

not

supported.

Equality

and

IN

predicates

can

be

processed

by

slices

or

cells.

A

generated

column

is

monotonic

if

the

following

is

true

with

respect

to

the

generating

function,

fn:

–

Monotonic

increasing.

For

every

possible

pair

of

values

x1

and

x2,

if

x2>x1,

then

fn(x2)>fn(x1).

For

example:

SALARY

-

10000

–

Monotonic

decreasing.

For

every

possible

pair

of

values

x1

and

x2,

if

x2>x1,

then

fn(x2)<fn(x1).

For

example:

-SALARY

–

Monotonic

non-decreasing.

For

every

possible

pair

of

values

x1

and

x2,

if

x2>x1,

then

fn(x2)>=fn(x1).

For

example:

SALARY/1000

–

Monotonic

non-increasing.

For

every

possible

pair

of

values

x1

and

x2,

if

x2>x1,

then

fn(x2)<=fn(x1).

For

example:

-SALARY/1000

CREATE

TABLE

640

Common

Criteria

Certification:

Administration

and

User

Documentation

The

expression

″PRICE*DISCOUNT″

is

not

monotonic,

because

it

involves

more

than

one

column

of

the

table.

v

Range-clustered

tables:

Organizing

a

table

by

key

sequence

is

effective

for

certain

types

of

tables.

The

table

should

have

an

integer

key

that

is

tightly

clustered

(dense)

over

the

range

of

possible

values.

The

columns

of

this

integer

key

must

not

be

nullable,

and

the

key

should

logically

be

the

primary

key

of

the

table.

The

organization

of

a

range-clustered

table

precludes

the

need

for

a

separate

unique

index

object,

providing

direct

access

to

the

row

for

a

specified

key

value,

or

a

range

of

rows

for

a

specified

range

of

key

values.

The

allocation

of

all

the

space

for

the

complete

set

of

rows

in

the

defined

key

sequence

range

is

done

during

table

creation,

and

must

be

considered

when

defining

a

range-clustered

table.

The

storage

space

is

not

available

for

any

other

use,

even

though

the

rows

are

initially

marked

deleted.

If

the

full

key

sequence

range

will

be

populated

with

data

only

over

a

long

period

of

time,

this

table

organization

may

not

be

an

appropriate

choice.

Examples:

Example

1:

Create

table

TDEPT

in

the

DEPARTX

table

space.

DEPTNO,

DEPTNAME,

MGRNO,

and

ADMRDEPT

are

column

names.

CHAR

means

the

column

will

contain

character

data.

NOT

NULL

means

that

the

column

cannot

contain

a

null

value.

VARCHAR

means

the

column

will

contain

varying-length

character

data.

The

primary

key

consists

of

the

column

DEPTNO.

CREATE

TABLE

TDEPT

(DEPTNO

CHAR(3)

NOT

NULL,

DEPTNAME

VARCHAR(36)

NOT

NULL,

MGRNO

CHAR(6),

ADMRDEPT

CHAR(3)

NOT

NULL,

PRIMARY

KEY(DEPTNO))

IN

DEPARTX

Example

2:

Create

table

PROJ

in

the

SCHED

table

space.

PROJNO,

PROJNAME,

DEPTNO,

RESPEMP,

PRSTAFF,

PRSTDATE,

PRENDATE,

and

MAJPROJ

are

column

names.

CHAR

means

the

column

will

contain

character

data.

DECIMAL

means

the

column

will

contain

packed

decimal

data.

5,2

means

the

following:

5

indicates

the

number

of

decimal

digits,

and

2

indicates

the

number

of

digits

to

the

right

of

the

decimal

point.

NOT

NULL

means

that

the

column

cannot

contain

a

null

value.

VARCHAR

means

the

column

will

contain

varying-length

character

data.

DATE

means

the

column

will

contain

date

information

in

a

three-part

format

(year,

month,

and

day).

CREATE

TABLE

PROJ

(PROJNO

CHAR(6)

NOT

NULL,

PROJNAME

VARCHAR(24)

NOT

NULL,

DEPTNO

CHAR(3)

NOT

NULL,

RESPEMP

CHAR(6)

NOT

NULL,

PRSTAFF

DECIMAL(5,2)

,

PRSTDATE

DATE

,

PRENDATE

DATE

,

MAJPROJ

CHAR(6)

NOT

NULL)

IN

SCHED

Example

3:

Create

a

table

called

EMPLOYEE_SALARY

where

any

unknown

salary

is

considered

0.

No

table

space

is

specified,

so

that

the

table

will

be

created

in

a

table

space

selected

by

the

system

based

on

the

rules

described

for

the

IN

tablespace-name1

clause.

CREATE

TABLE

Chapter

15.

SQL

Statements

for

Administrators

641

CREATE

TABLE

EMPLOYEE_SALARY

(DEPTNO

CHAR(3)

NOT

NULL,

DEPTNAME

VARCHAR(36)

NOT

NULL,

EMPNO

CHAR(6)

NOT

NULL,

SALARY

DECIMAL(9,2)

NOT

NULL

WITH

DEFAULT)

Example

4:

Create

distinct

types

for

total

salary

and

miles

and

use

them

for

columns

of

a

table

created

in

the

default

table

space.

In

a

dynamic

SQL

statement

assume

the

CURRENT

SCHEMA

special

register

is

JOHNDOE

and

the

CURRENT

PATH

is

the

default

(″SYSIBM″,″SYSFUN″,″JOHNDOE″).

If

a

value

for

SALARY

is

not

specified

it

must

be

set

to

0

and

if

a

value

for

LIVING_DIST

is

not

specified

it

must

to

set

to

1

mile.

CREATE

DISTINCT

TYPE

JOHNDOE.T_SALARY

AS

INTEGER

WITH

COMPARISONS

CREATE

DISTINCT

TYPE

JOHNDOE.MILES

AS

FLOAT

WITH

COMPARISONS

CREATE

TABLE

EMPLOYEE

(ID

INTEGER

NOT

NULL,

NAME

CHAR

(30),

SALARY

T_SALARY

NOT

NULL

WITH

DEFAULT,

LIVING_DIST

MILES

DEFAULT

MILES(1)

)

Example

5:

Create

distinct

types

for

image

and

audio

and

use

them

for

columns

of

a

table.

No

table

space

is

specified,

so

that

the

table

will

be

created

in

a

table

space

selected

by

the

system

based

on

the

rules

described

for

the

IN

tablespace-name1

clause.

Assume

the

CURRENT

PATH

is

the

default.

CREATE

DISTINCT

TYPE

IMAGE

AS

BLOB

(10M)

CREATE

DISTINCT

TYPE

AUDIO

AS

BLOB

(1G)

CREATE

TABLE

PERSON

(SSN

INTEGER

NOT

NULL,

NAME

CHAR

(30),

VOICE

AUDIO,

PHOTO

IMAGE)

Example

6:

Create

table

EMPLOYEE

in

the

HUMRES

table

space.

The

constraints

defined

on

the

table

are

the

following:

v

The

values

of

department

number

must

lie

in

the

range

10

to

100.

v

The

job

of

an

employee

can

only

be

either

’Sales’,

’Mgr’

or

’Clerk’.

v

Every

employee

that

has

been

with

the

company

since

1986

must

make

more

than

$40,500.

Note:

If

the

columns

included

in

the

check

constraints

are

nullable

they

could

also

be

NULL.

CREATE

TABLE

EMPLOYEE

(ID

SMALLINT

NOT

NULL,

NAME

VARCHAR(9),

DEPT

SMALLINT

CHECK

(DEPT

BETWEEN

10

AND

100),

JOB

CHAR(5)

CHECK

(JOB

IN

(’Sales’,’Mgr’,’Clerk’)),

HIREDATE

DATE,

SALARY

DECIMAL(7,2),

COMM

DECIMAL(7,2),

PRIMARY

KEY

(ID),

CONSTRAINT

YEARSAL

CHECK

(YEAR(HIREDATE)

>

1986

OR

SALARY

>

40500)

)

IN

HUMRES

CREATE

TABLE

642

Common

Criteria

Certification:

Administration

and

User

Documentation

Example

7:

Create

a

table

that

is

wholly

contained

in

the

PAYROLL

table

space.

CREATE

TABLE

EMPLOYEE

.....

IN

PAYROLL

Example

8:

Create

a

table

with

its

data

part

in

ACCOUNTING

and

its

index

part

in

ACCOUNT_IDX.

CREATE

TABLE

SALARY.....

IN

ACCOUNTING

INDEX

IN

ACCOUNT_IDX

Example

9:

Create

a

table

and

log

SQL

changes

in

the

default

format.

CREATE

TABLE

SALARY1

.....

or

CREATE

TABLE

SALARY1

.....

DATA

CAPTURE

NONE

Example

10:

Create

a

table

and

log

SQL

changes

in

an

expanded

format.

CREATE

TABLE

SALARY2

.....

DATA

CAPTURE

CHANGES

Example

11:

Create

a

table

EMP_ACT

in

the

SCHED

table

space.

EMPNO,

PROJNO,

ACTNO,

EMPTIME,

EMSTDATE,

and

EMENDATE

are

column

names.

Constraints

defined

on

the

table

are:

v

The

value

for

the

set

of

columns,

EMPNO,

PROJNO,

and

ACTNO,

in

any

row

must

be

unique.

v

The

value

of

PROJNO

must

match

an

existing

value

for

the

PROJNO

column

in

the

PROJECT

table

and

if

the

project

is

deleted

all

rows

referring

to

the

project

in

EMP_ACT

should

also

be

deleted.

CREATE

TABLE

EMP_ACT

(EMPNO

CHAR(6)

NOT

NULL,

PROJNO

CHAR(6)

NOT

NULL,

ACTNO

SMALLINT

NOT

NULL,

EMPTIME

DECIMAL(5,2),

EMSTDATE

DATE,

EMENDATE

DATE,

CONSTRAINT

EMP_ACT_UNIQ

UNIQUE

(EMPNO,PROJNO,ACTNO),

CONSTRAINT

FK_ACT_PROJ

FOREIGN

KEY

(PROJNO)

REFERENCES

PROJECT

(PROJNO)

ON

DELETE

CASCADE

)

IN

SCHED

A

unique

index

called

EMP_ACT_UNIQ

is

automatically

created

in

the

same

schema

to

enforce

the

unique

constraint.

Example

12:

Create

a

table

that

is

to

hold

information

about

famous

goals

for

the

ice

hockey

hall

of

fame.

The

table

will

list

information

about

the

player

who

scored

the

goal,

the

goaltender

against

who

it

was

scored,

the

date

and

place,

and

a

description.

When

available,

it

will

also

point

to

places

where

newspaper

articles

about

the

game

are

stored

and

where

still

and

moving

pictures

of

the

goal

are

stored.

The

newspaper

articles

are

to

be

linked

so

they

cannot

be

deleted

or

renamed

but

all

existing

display

and

update

applications

must

continue

to

operate.

The

still

pictures

and

movies

are

to

be

linked

with

access

under

complete

control

of

DB2.

The

still

pictures

are

to

have

recovery

and

are

to

be

returned

to

their

original

owner

if

unlinked.

The

movie

pictures

are

not

to

have

recovery

and

are

to

be

deleted

if

unlinked.

The

description

column

and

the

three

DATALINK

columns

are

nullable.

CREATE

TABLE

Chapter

15.

SQL

Statements

for

Administrators

643

CREATE

TABLE

HOCKEY_GOALS

(

BY_PLAYER

VARCHAR(30)

NOT

NULL,

BY_TEAM

VARCHAR(30)

NOT

NULL,

AGAINST_PLAYER

VARCHAR(30)

NOT

NULL,

AGAINST_TEAM

VARCHAR(30)

NOT

NULL,

DATE_OF_GOAL

DATE

NOT

NULL,

DESCRIPTION

CLOB(5000),

ARTICLES

DATALINK

LINKTYPE

URL

FILE

LINK

CONTROL

MODE

DB2OPTIONS,

SNAPSHOT

DATALINK

LINKTYPE

URL

FILE

LINK

CONTROL

INTEGRITY

ALL

READ

PERMISSION

DB

WRITE

PERMISSION

BLOCKED

RECOVERY

YES

ON

UNLINK

RESTORE,

MOVIE

DATALINK

LINKTYPE

URL

FILE

LINK

CONTROL

INTEGRITY

ALL

READ

PERMISSION

DB

WRITE

PERMISSION

BLOCKED

RECOVERY

NO

ON

UNLINK

DELETE

)

Example

13:

Suppose

an

exception

table

is

needed

for

the

EMPLOYEE

table.

One

can

be

created

using

the

following

statement.

CREATE

TABLE

EXCEPTION_EMPLOYEE

AS

(SELECT

EMPLOYEE.*,

CURRENT

TIMESTAMP

AS

TIMESTAMP,

CAST

(’’

AS

CLOB(32K))

AS

MSG

FROM

EMPLOYEE

)

WITH

NO

DATA

Example

14:

Given

the

following

table

spaces

with

the

indicated

attributes:

TBSPACE

PAGESIZE

USER

USERAUTH

DEPT4K

4096

BOBBY

Y

PUBLIC4K

4096

PUBLIC

Y

DEPT8K

8192

BOBBY

Y

DEPT8K

8192

RICK

Y

PUBLIC8K

8192

PUBLIC

Y

v

If

RICK

creates

the

following

table,

it

is

placed

in

table

space

PUBLIC4K

since

the

byte

count

is

less

than

4005;

but

if

BOBBY

creates

the

same

table,

it

is

placed

in

table

space

DEPT4K,

since

BOBBY

has

USE

privilege

because

of

an

explicit

grant:

CREATE

TABLE

DOCUMENTS

(SUMMARY

VARCHAR(1000),

REPORT

VARCHAR(2000))

v

If

BOBBY

creates

the

following

table,

it

is

placed

in

table

space

DEPT8K

since

the

byte

count

is

greater

than

4005,

and

BOBBY

has

USE

privilege

because

of

an

explicit

grant.

However,

if

DUNCAN

creates

the

same

table,

it

is

placed

in

table

space

PUBLIC8K,

since

DUNCAN

has

no

specific

privileges:

CREATE

TABLE

CURRICULUM

(SUMMARY

VARCHAR(1000),

REPORT

VARCHAR(2000),

EXERCISES

VARCHAR(1500))

Example

15:

Create

a

table

with

a

LEAD

column

defined

with

the

structured

type

EMP.

Specify

an

INLINE

LENGTH

of

300

bytes

for

the

LEAD

column,

indicating

that

any

instances

of

LEAD

that

cannot

fit

within

the

300

bytes

are

stored

outside

the

table

(separately

from

the

base

table

row,

similar

to

the

way

LOB

values

are

handled).

CREATE

TABLE

PROJECTS

(PID

INTEGER,

LEAD

EMP

INLINE

LENGTH

300,

STARTDATE

DATE,

...)

CREATE

TABLE

644

Common

Criteria

Certification:

Administration

and

User

Documentation

Example

16:

Create

a

table

DEPT

with

five

columns

named

DEPTNO,

DEPTNAME,

MGRNO,

ADMRDEPT,

and

LOCATION.

Column

DEPT

is

to

be

defined

as

an

IDENTITY

column

such

that

DB2

will

always

generate

a

value

for

it.

The

values

for

the

DEPT

column

should

begin

with

500

and

increment

by

1.

CREATE

TABLE

DEPT

(DEPTNO

SMALLINT

NOT

NULL

GENERATED

ALWAYS

AS

IDENTITY

(START

WITH

500,

INCREMENT

BY

1),

DEPTNAME

VARCHAR(36)

NOT

NULL,

MGRNO

CHAR(6),

ADMRDEPT

SMALLINT

NOT

NULL,

LOCATION

CHAR(30))

Example

17:

Create

a

SALES

table

that

is

partitioned

on

the

YEAR

column,

and

that

has

dimensions

on

the

REGION

and

YEAR

columns.

Data

will

be

distributed

across

partitions

according

to

hashed

values

of

the

YEAR

column.

On

each

partition,

data

will

be

organized

into

extents

based

on

unique

combinations

of

values

of

the

REGION

and

YEAR

columns

on

those

partitions.

CREATE

TABLE

SALES

(CUSTOMER

VARCHAR(80),

REGION

CHAR(5),

YEAR

INTEGER)

PARTITIONING

KEY

(YEAR)

ORGANIZE

BY

DIMENSIONS

(REGION,

YEAR)

Example

18:

Create

a

SALES

table

with

a

PURCHASEYEARMONTH

column

that

is

generated

from

the

PURCHASEDATE

column.

Use

an

expression

to

create

a

column

that

is

monotonic

with

respect

to

the

original

PURCHASEDATE

column,

and

is

therefore

suitable

for

use

as

a

dimension.

The

table

is

partitioned

on

the

REGION

column,

and

organized

within

each

partition

into

extents

according

to

the

PURCHASEYEARMONTH

column;

that

is,

different

regions

will

be

on

different

partitions,

and

different

purchase

months

will

belong

to

different

cells

(or

sets

of

extents)

within

those

partitions.

CREATE

TABLE

SALES

(CUSTOMER

VARCHAR(80),

REGION

CHAR(5),

PURCHASEDATE

DATE,

PURCHASEYEARMONTH

INTEGER

GENERATED

ALWAYS

AS

(INTEGER(PURCHASEDATE)/100))

PARTITIONING

KEY

(REGION)

ORGANIZE

BY

DIMENSIONS

(PURCHASEYEARMONTH)

Example

19:

Create

a

CUSTOMER

table

with

a

CUSTOMERNUMDIM

column

that

is

generated

from

the

CUSTOMERNUM

column.

Use

an

expression

to

create

a

column

that

is

monotonic

with

respect

to

the

original

CUSTOMERNUM

column,

and

is

therefore

suitable

for

use

as

a

dimension.

The

table

is

organized

into

cells

according

to

the

CUSTOMERNUMDIM

column,

so

that

there

is

a

different

cell

in

the

table

for

every

50

customers.

If

a

unique

index

were

created

on

CUSTOMERNUM,

customer

numbers

would

be

clustered

in

such

a

way

that

each

set

of

50

values

would

be

found

in

a

particular

set

of

extents

in

the

table.

CREATE

TABLE

CUSTOMER

(CUSTOMERNUM

INTEGER,

CUSTOMERNAME

VARCHAR(80),

ADDRESS

VARCHAR(200),

CITY

VARCHAR(50),

COUNTRY

VARCHAR(50),

CODE

VARCHAR(15),

CUSTOMERNUMDIM

INTEGER

GENERATED

ALWAYS

AS

(CUSTOMERNUM/50))

ORGANIZE

BY

DIMENSIONS

(CUSTOMERNUMDIM)

CREATE

TABLE

Chapter

15.

SQL

Statements

for

Administrators

645

Example

20:

Create

a

remote

base

table

called

EMPLOYEE

on

the

Oracle

server,

ORASERVER.

A

nickname,

named

EMPLOYEE,

which

refers

to

this

newly

created

remote

base

table,

will

also

automatically

be

created.

CREATE

TABLE

EMPLOYEE

(EMP_NO

CHAR(6)

NOT

NULL,

FIRST_NAME

VARCHAR(12)

NOT

NULL,

MID_INT

CHAR(1)

NOT

NULL,

LAST_NAME

VARCHAR(15)

NOT

NULL,

HIRE_DATE

DATE,

JOB

CHAR(8),

SALARY

DECIMAL(9,2),

PRIMARY

KEY

(EMP_NO))

OPTIONS

(REMOTE_SERVER

’ORASERVER’,

REMOTE_SCHEMA

’J15USER1’,

REMOTE_TABNAME

’EMPLOYEE’)

The

following

CREATE

TABLE

statements

show

how

to

specify

the

table

name,

or

the

table

name

and

the

explicit

remote

base

table

name,

to

get

the

desired

case.

The

lowercase

identifier,

employee,

is

used

to

illustrate

the

implicit

folding

of

identifiers.

Create

a

remote

base

table

called

EMPLOYEE

(uppercase

characters)

on

an

Informix

server,

and

create

a

nickname

named

EMPLOYEE

(uppercase

characters)

on

that

table:

CREATE

TABLE

employee

(EMP_NO

CHAR(6)

NOT

NULL,

...)

OPTIONS

(REMOTE_SERVER

’INFX_SERVER’)

If

the

REMOTE_TABNAME

option

is

not

specified,

and

table-name

is

not

delimited,

the

remote

base

table

name

will

be

in

uppercase

characters,

even

if

the

remote

data

source

normally

stores

names

in

lowercase

characters.

Create

a

remote

base

table

called

employee

(lowercase

characters)

on

an

Informix

server,

and

create

a

nickname

named

EMPLOYEE

(uppercase

characters)

on

that

table:

CREATE

TABLE

employee

(EMP_NO

CHAR(6)

NOT

NULL,

...)

OPTIONS

(REMOTE_SERVER

’INFX_SERVER’,

REMOTE_TABNAME

’employee’)

When

creating

a

table

at

a

remote

data

source

that

supports

delimited

identifiers,

use

the

REMOTE_TABNAME

option

and

a

character

string

constant

that

specifies

the

table

name

in

the

desired

case.

Create

a

remote

base

table

called

employee

(lowercase

characters)

on

an

Informix

server,

and

create

a

nickname

named

employee

(lowercase

characters)

on

that

table:

CREATE

TABLE

"employee"

(EMP_NO

CHAR(6)

NOT

NULL,

...)

OPTIONS

(REMOTE_SERVER

’INFX_SERVER’)

CREATE

TABLE

646

Common

Criteria

Certification:

Administration

and

User

Documentation

If

the

REMOTE_TABNAME

option

is

not

specified,

and

table-name

is

delimited,

the

remote

base

table

name

will

be

identical

to

table-name.

Example

21:

Create

a

range-clustered

table

that

can

be

used

to

locate

a

student

using

a

student

ID.

For

each

student

record,

include

the

school

ID,

program

ID,

student

number,

student

ID,

student

first

name,

student

last

name,

and

student

grade

point

average

(GPA).

CREATE

TABLE

STUDENTS

(SCHOOL_ID

INTEGER

NOT

NULL,

PROGRAM_ID

INTEGER

NOT

NULL,

STUDENT_NUM

INTEGER

NOT

NULL,

STUDENT_ID

INTEGER

NOT

NULL,

FIRST_NAME

CHAR(30),

LAST_NAME

CHAR(30),

GPA

DOUBLE)

ORGANIZE

BY

KEY

SEQUENCE

(STUDENT_ID

STARTING

FROM

1

ENDING

AT

1000000)

DISALLOW

OVERFLOW

The

size

of

each

record

is

the

sum

of

the

columns,

plus

alignment,

plus

the

range-clustered

table

row

header.

In

this

case,

the

row

size

is

98

bytes:

4

+

4

+

4

+

4

+

30

+

30

+

8

+

3

(for

nullable

columns)

+

1

(for

alignment)

+

10

(for

the

header).

With

a

4-KB

page

size

(or

4096

bytes),

after

accounting

for

page

overhead,

there

are

4038

bytes

available,

enough

room

for

41

records

per

page.

Allowing

for

1

million

student

records,

there

is

a

need

for

(1

million

divided

by

41

records

per

page)

24

391

pages.

With

two

additional

pages

for

table

overhead,

the

final

number

of

4-KB

pages

that

are

allocated

when

the

table

is

created

is

24

393.

Example

22:

Create

a

table

named

DEPARTMENT

with

a

functional

dependency

that

has

no

specified

constraint

name.

CREATE

TABLE

DEPARTMENT

(DEPTNO

SMALLINT

NOT

NULL,

DEPTNAME

VARCHAR(36)

NOT

NULL,

MGRNO

CHAR(6),

ADMRDEPT

SMALLINT

NOT

NULL,

LOCATION

CHAR(30),

CHECK

(DEPTNAME

DETERMINED

BY

DEPTNO)

NOT

ENFORCED)

Related

concepts:

v

“Multidimensional

clustering

tables”

in

the

Administration

Guide:

Planning

v

“What

is

transparent

DDL?”

in

the

Federated

Systems

Guide

Related

tasks:

v

“Creating

new

remote

tables

using

transparent

DDL”

in

the

Federated

Systems

Guide

Related

reference:

v

“Subselect”

on

page

904

v

“ALTER

TABLE”

on

page

525

v

“CREATE

TABLESPACE”

on

page

648

v

“DECLARE

GLOBAL

TEMPORARY

TABLE

statement”

in

the

SQL

Reference,

Volume

2

v

“Assignments

and

comparisons”

in

the

SQL

Reference,

Volume

1

v

“Partition-compatible

data

types”

in

the

SQL

Reference,

Volume

1

CREATE

TABLE

Chapter

15.

SQL

Statements

for

Administrators

647

Related

samples:

v

“dtudt.c

--

How

to

create,

use,

and

drop

user-defined

distinct

types.”

v

“tbconstr.c

--

How

to

work

with

constraints

associated

with

tables”

v

“tbcreate.c

--

How

to

create,

alter

and

drop

tables”

v

“dtudt.sqc

--

How

to

create,

use,

and

drop

user-defined

distinct

types

(C)”

v

“tbconstr.sqc

--

How

to

create,

use,

and

drop

constraints

(C)”

v

“tbcreate.sqc

--

How

to

create

and

drop

tables

(C)”

v

“tbident.sqc

--

How

to

use

identity

columns

(C)”

v

“tbtrig.sqc

--

How

to

use

a

trigger

on

a

table

(C)”

v

“dtudt.sqC

--

How

to

create,

use,

and

drop

user-defined

distinct

types

(C++)”

v

“tbconstr.sqC

--

How

to

create,

use,

and

drop

constraints

(C++)”

v

“tbcreate.sqC

--

How

to

create

and

drop

tables

(C++)”

v

“tbtrig.sqC

--

How

to

use

a

trigger

on

a

table

(C++)”

v

“DtUdt.java

--

How

to

create,

use

and

drop

user

defined

distinct

types

(JDBC)”

v

“TbConstr.java

--

How

to

create,

use

and

drop

constraints

(JDBC)”

v

“TbCreate.java

--

How

to

create

and

drop

tables

(JDBC)”

v

“TbGenCol.java

--

How

to

use

generated

columns

(JDBC)”

v

“TbIdent.java

--

How

to

use

Identity

Columns

(JDBC)”

v

“TbTrig.java

--

How

to

use

triggers

(JDBC)”

v

“DtUdt.sqlj

--

How

to

create,

use

and

drop

user

defined

distinct

types

(SQLj)”

v

“TbConstr.sqlj

--

How

to

create,

use

and

drop

constraints

(SQLj)”

v

“TbCreate.sqlj

--

How

to

create

and

drop

tables

(SQLj)”

v

“TbIdent.sqlj

--

How

to

use

Identity

Columns

(SQLj)”

v

“TbTrig.sqlj

--

How

to

use

triggers

(SQLj)”

v

“impexp.sqb

--

Export

and

import

tables

with

table

data

(MF

COBOL)”

CREATE

TABLESPACE

The

CREATE

TABLESPACE

statement

creates

a

new

table

space

within

the

database,

assigns

containers

to

the

table

space,

and

records

the

table

space

definition

and

attributes

in

the

catalog.

Invocation:

This

statement

can

be

embedded

in

an

application

program

or

issued

interactively.

It

is

an

executable

statement

that

can

be

dynamically

prepared

only

if

DYNAMICRULES

run

behavior

is

in

effect

for

the

package

(SQLSTATE

42509).

Authorization:

The

authorization

ID

of

the

statement

must

have

SYSCTRL

or

SYSADM

authority.

Syntax:

��

CREATE

REGULAR

LARGE

SYSTEM

TEMPORARY

USER

TABLESPACE

tablespace-name

�

CREATE

TABLE

648

Common

Criteria

Certification:

Administration

and

User

Documentation

�

DATABASE

PARTITION

GROUP

IN

db-partition-group-name

�

�

PAGESIZE

4096

PAGESIZE

integer

K

�

�

MANAGED

BY

SYSTEM

system-containers

DATABASE

database-containers

�

�

EXTENTSIZE

number-of-pages

integer

K

M

PREFETCHSIZE

number-of-pages

integer

K

M

G

�

�

BUFFERPOOL

bufferpool-name

OVERHEAD

12.67

OVERHEAD

number-of-milliseconds

�

�

FILE

SYSTEM

CACHING

NO

FILE

SYSTEM

CACHING

TRANSFERRATE

0.18

TRANSFERRATE

number-of-milliseconds

�

�

DROPPED

TABLE

RECOVERY

ON

OFF

��

system-containers:

�

�

,

USING

(

’

container-string

’

)

on-db-partitions-clause

database-containers:

�

USING

container-clause

on-db-partitions-clause

container-clause:

�

,

(

FILE

’

container-string

’

number-of-pages

)

DEVICE

integer

K

M

G

CREATE

TABLESPACE

Chapter

15.

SQL

Statements

for

Administrators

649

on-db-partitions-clause:

ON

DBPARTITIONNUM

DBPARTITIONNUMS

(

�

�

�

,

db-partition-number1

TO

db-partition-number2

)

Description:

REGULAR

Stores

all

data

except

for

temporary

tables.

LARGE

Stores

long

or

LOB

table

columns.

It

can

also

store

structured

type

columns

or

index

data.

The

table

space

must

be

a

DMS

table

space.

SYSTEM

TEMPORARY

Stores

temporary

tables

(work

areas

used

by

the

database

manager

to

perform

operations

such

as

sorts

or

joins).

The

keyword

SYSTEM

is

optional.

Note

that

a

database

must

always

have

at

least

one

SYSTEM

TEMPORARY

table

space,

as

temporary

tables

can

only

be

stored

in

such

a

table

space.

A

temporary

table

space

is

created

automatically

when

a

database

is

created.

USER

TEMPORARY

Stores

declared

global

temporary

tables.

Note

that

no

user

temporary

table

spaces

exist

when

a

database

is

created.

At

least

one

user

temporary

table

space

should

be

created

with

appropriate

USE

privileges,

to

allow

definition

of

declared

temporary

tables.

tablespace-name

Names

the

table

space.

This

is

a

one-part

name.

It

is

an

SQL

identifier

(either

ordinary

or

delimited).

The

tablespace-name

must

not

identify

a

table

space

that

already

exists

in

the

catalog

(SQLSTATE

42710).

The

tablespace-name

must

not

begin

with

the

characters

’SYS’

(SQLSTATE

42939).

IN

DATABASE

PARTITION

GROUP

db-partition-group-name

Specifies

the

database

partition

group

for

the

table

space.

The

database

partition

group

must

exist.

The

only

database

partition

group

that

can

be

specified

when

creating

a

SYSTEM

TEMPORARY

table

space

is

IBMTEMPGROUP.

The

DATABASE

PARTITION

GROUP

keywords

are

optional.

If

the

database

partition

group

is

not

specified,

the

default

database

partition

group

(IBMDEFAULTGROUP)

is

used

for

REGULAR,

LARGE,

and

USER

TEMPORARY

table

spaces.

For

SYSTEM

TEMPORARY

table

spaces,

the

default

database

partition

group

IBMTEMPGROUP

is

used.

PAGESIZE

integer

[K]

Defines

the

size

of

pages

used

for

the

table

space.

The

valid

values

for

integer

without

the

suffix

K

are

4

096

or

8

192,

16

384,

or

32

768.

The

valid

values

for

integer

with

the

suffix

K

are

4

or

8,

16,

or

32.

An

error

occurs

if

the

page

size

is

not

one

of

these

values

(SQLSTATE

428DE)

or

the

page

size

is

not

the

same

as

the

page

size

of

the

bufferpool

associated

with

the

table

space

(SQLSTATE

428CB).

The

default

is

4

096

byte

(4K)

pages.

Any

number

of

spaces

is

allowed

between

integer

and

K,

including

no

space.

CREATE

TABLESPACE

650

Common

Criteria

Certification:

Administration

and

User

Documentation

MANAGED

BY

SYSTEM

Specifies

that

the

table

space

is

to

be

a

system

managed

space

(SMS)

table

space.

system-containers

Specify

the

containers

for

an

SMS

table

space.

USING

(’container-string’,...)

For

an

SMS

table

space,

identifies

one

or

more

containers

that

will

belong

to

the

table

space

and

in

which

the

table

space

data

will

be

stored.

The

container-string

cannot

exceed

240

bytes

in

length.

Each

container-string

can

be

an

absolute

or

relative

directory

name.

The

directory

name,

if

not

absolute,

is

relative

to

the

database

directory.

If

any

component

of

the

directory

name

does

not

exist,

it

is

created

by

the

database

manager.

When

a

table

space

is

dropped,

all

components

created

by

the

database

manager

are

deleted.

If

the

directory

identified

by

container-string

exist,

it

must

not

contain

any

files

or

subdirectories

(SQLSTATE

428B2).

The

format

of

container-string

is

dependent

on

the

operating

system.

The

containers

are

specified

in

the

normal

manner

for

the

operating

system.

For

example,

a

Windows

directory

path

begins

with

a

drive

letter

and

a

“:”,

while

on

UNIX-based

systems,

a

path

begins

with

a

“/”.

Remote

resources

(such

as

LAN-redirected

drives

or

NFS-mounted

file

systems)

are

currently

only

supported

when

using

Network

Appliance

Filers,

IBM

iSCSI,

IBM

Network

Attached

Storage,

Network

Appliance

iSCSI,

NEC

iStorage

S2100,

S2200,

or

S4100,

or

NEC

Storage

NS

Series

with

a

Windows

DB2

server.

Note

that

NEC

Storage

NS

Series

is

only

supported

with

the

use

of

an

uninterrupted

power

supply

(UPS);

continuous

UPS

(rather

than

standby)

is

recommended..

on-db-partitions-clause

Specifies

the

partition

or

partitions

on

which

the

containers

are

created

in

a

partitioned

database.

If

this

clause

is

not

specified,

then

the

containers

are

created

on

the

partitions

in

the

database

partition

group

that

are

not

explicitly

specified

in

any

other

on-db-partitions-clauses.

For

a

SYSTEM

TEMPORARY

table

space

defined

on

database

partition

group

IBMTEMPGROUP,

when

the

on-db-partitions-clause

is

not

specified,

the

containers

will

also

be

created

on

all

new

partitions

added

to

the

database.

MANAGED

BY

DATABASE

Specifies

that

the

table

space

is

to

be

a

database

managed

space

(DMS)

table

space.

database-containers

Specify

the

containers

for

a

DMS

table

space.

USING

Introduces

a

container-clause.

container-clause

Specifies

the

containers

for

a

DMS

table

space.

(FILE|DEVICE

’container-string’

number-of-pages,...)

For

a

DMS

table

space,

identifies

one

or

more

containers

that

will

belong

to

the

table

space

and

in

which

the

table

space

data

will

be

stored.

The

type

of

the

container

(either

FILE

or

DEVICE)

and

its

size

(in

PAGESIZE

pages)

are

specified.

The

size

can

also

be

specified

as

an

integer

value

followed

by

K

(for

kilobytes),

M

(for

megabytes)

or

G

CREATE

TABLESPACE

Chapter

15.

SQL

Statements

for

Administrators

651

(for

gigabytes).

If

specified

in

this

way,

the

floor

of

the

number

of

bytes

divided

by

the

pagesize

is

used

to

determine

the

number

of

pages

for

the

container.

A

mixture

of

FILE

and

DEVICE

containers

can

be

specified.

The

container-string

cannot

exceed

254

bytes

in

length.

For

a

FILE

container,

the

container-string

must

be

an

absolute

or

relative

file

name.

The

file

name,

if

not

absolute,

is

relative

to

the

database

directory.

If

any

component

of

the

directory

name

does

not

exist,

it

is

created

by

the

database

manager.

If

the

file

does

not

exist,

it

will

be

created

and

initialized

to

the

specified

size

by

the

database

manager.

When

a

table

space

is

dropped,

all

components

created

by

the

database

manager

are

deleted.

Note:

If

the

file

exists

it

is

overwritten

and

if

it

is

smaller

than

specified

it

is

extended.

The

file

will

not

be

truncated

if

it

is

larger

than

specified.

For

a

DEVICE

container,

the

container-string

must

be

a

device

name.

The

device

must

already

exist.

All

containers

must

be

unique

across

all

databases;

a

container

can

belong

to

only

one

table

space.

The

size

of

the

containers

can

differ,

however

optimal

performance

is

achieved

when

all

containers

are

the

same

size.

The

exact

format

of

container-string

is

dependent

on

the

operating

system.

The

containers

will

be

specified

in

the

normal

manner

for

the

operating

system.

Remote

resources

(such

as

LAN-redirected

drives

or

NFS-mounted

file

systems)

are

currently

only

supported

when

using

Network

Appliance

Filers,

IBM

iSCSI,

IBM

Network

Attached

Storage,

Network

Appliance

iSCSI,

NEC

iStorage

S2100,

S2200,

or

S4100,

or

NEC

Storage

NS

Series

with

a

Windows

DB2

server.

Note

that

NEC

Storage

NS

Series

is

only

supported

with

the

use

of

an

uninterrupted

power

supply

(UPS);

continuous

UPS

(rather

than

standby)

is

recommended..

on-db-partitions-clause

Specifies

the

partition

or

partitions

on

which

the

containers

are

created

in

a

partitioned

database.

If

this

clause

is

not

specified,

then

the

containers

are

created

on

the

partitions

in

the

database

partition

group

that

are

not

explicitly

specified

in

any

other

on-db-partitions-clause.

For

a

SYSTEM

TEMPORARY

table

space

defined

on

database

partition

group

IBMTEMPGROUP,

when

the

on-db-partitions-clause

is

not

specified,

the

containers

will

also

be

created

on

all

new

partitions

added

to

the

database.

on-db-partitions-clause

Specifies

the

partitions

on

which

containers

are

created

in

a

partitioned

database.

ON

DBPARTITIONNUMS

Keywords

that

indicate

that

specific

partitions

are

specified.

DBPARTITIONNUM

is

a

synonym

for

DBPARTITIONNUMS.

db-partition-number1

Specify

a

database

partition

number.

TO

db-partition-number2

Specify

a

range

of

partition

numbers.

The

value

of

db-partition-number2

must

be

greater

than

or

equal

to

the

value

of

db-partition-number1

(SQLSTATE

428A9).

All

partitions

between

and

including

the

specified

CREATE

TABLESPACE

652

Common

Criteria

Certification:

Administration

and

User

Documentation

partition

numbers

are

included

in

the

partitions

for

which

the

containers

are

created

if

the

partition

is

included

in

the

database

partition

group

of

the

table

space.

The

partition

specified

by

number

and

every

partition

in

the

range

of

partitions

must

exist

in

the

database

partition

group

on

which

the

table

space

is

defined

(SQLSTATE

42729).

A

partition-number

may

only

appear

explicitly

or

within

a

range

in

exactly

one

on-db-partitions-clause

for

the

statement

(SQLSTATE

42613).

EXTENTSIZE

number-of-pages

Specifies

the

number

of

PAGESIZE

pages

that

will

be

written

to

a

container

before

skipping

to

the

next

container.

The

extent

size

value

can

also

be

specified

as

an

integer

value

followed

by

K

(for

kilobytes)

or

M

(for

megabytes).

If

specified

in

this

way,

the

floor

of

the

number

of

bytes

divided

by

the

page

size

is

used

to

determine

the

value

for

the

extent

size.

The

database

manager

cycles

repeatedly

through

the

containers

as

data

is

stored.

The

default

value

is

provided

by

the

DFT_EXTENT_SZ

database

configuration

parameter,

which

has

a

valid

range

of

2-256

pages.

PREFETCHSIZE

number-of-pages

Specifies

the

number

of

PAGESIZE

pages

that

will

be

read

from

the

table

space

when

data

prefetching

is

being

performed.

The

prefetch

size

value

can

also

be

specified

as

an

integer

value

followed

by

K

(for

kilobytes),

M

(for

megabytes),

or

G

(for

gigabytes).

If

specified

in

this

way,

the

floor

of

the

number

of

bytes

divided

by

the

pagesize

is

used

to

determine

the

number

of

pages

value

for

prefetch

size.

Prefetching

reads

in

data

needed

by

a

query

prior

to

it

being

referenced

by

the

query,

so

that

the

query

need

not

wait

for

I/O

to

be

performed.

The

default

value

is

provided

by

the

DFT_PREFETCH_SZ

configuration

parameter.

BUFFERPOOL

bufferpool-name

The

name

of

the

buffer

pool

used

for

tables

in

this

table

space.

The

buffer

pool

must

exist

(SQLSTATE

42704).

If

not

specified,

the

default

buffer

pool

(IBMDEFAULTBP)

is

used.

The

page

size

of

the

bufferpool

must

match

the

page

size

specified

(or

defaulted)

for

the

table

space

(SQLSTATE

428CB).

The

database

partition

group

of

the

table

space

must

be

defined

for

the

bufferpool

(SQLSTATE

42735).

OVERHEAD

number-of-milliseconds

Any

numeric

literal

(integer,

decimal,

or

floating

point)

that

specifies

the

I/O

controller

overhead

and

disk

seek

and

latency

time,

in

milliseconds.

The

number

should

be

an

average

for

all

containers

that

belong

to

the

table

space,

if

not

the

same

for

all

containers.

This

value

is

used

to

determine

the

cost

of

I/O

during

query

optimization.

FILE

SYSTEM

CACHING

or

NO

FILE

SYSTEM

CACHING

Specifies

whether

or

not

I/O

operations

are

to

be

cached

at

the

file

system

level.

The

default

is

FILE

SYSTEM

CACHING.

FILE

SYSTEM

CACHING

Specifies

that

all

I/O

operations

in

the

target

table

space

are

to

be

cached

at

the

file

system

level.

CREATE

TABLESPACE

Chapter

15.

SQL

Statements

for

Administrators

653

NO

FILE

SYSTEM

CACHING

Specifies

that

all

I/O

operations

are

to

bypass

the

file

system-level

cache.

TRANSFERRATE

number-of-milliseconds

Any

numeric

literal

(integer,

decimal,

or

floating

point)

that

specifies

the

time

to

read

one

page

into

memory,

in

milliseconds.

The

number

should

be

an

average

for

all

containers

that

belong

to

the

table

space,

if

not

the

same

for

all

containers.

This

value

is

used

to

determine

the

cost

of

I/O

during

query

optimization.

DROPPED

TABLE

RECOVERY

Dropped

tables

in

the

specified

table

space

may

be

recovered

using

the

RECOVER

TABLE

ON

option

of

the

ROLLFORWARD

command.

This

clause

can

only

be

specified

for

a

REGULAR

table

space

(SQLSTATE

42613).

Notes:

v

Compatibilities

–

For

compatibility

with

previous

versions

of

DB2:

-

NODE

can

be

specified

in

place

of

DBPARTITIONNUM

-

NODES

can

be

specified

in

place

of

DBPARTITIONNUMS

-

NODEGROUP

can

be

specified

in

place

of

DATABASE

PARTITION

GROUP

-

LONG

can

be

specified

in

place

of

LARGE
v

Choosing

between

a

database-managed

space

or

a

system-managed

space

for

a

table

space

is

a

fundamental

choice

involving

trade-offs.

v

Each

container

definition

requires

53

bytes

plus

the

number

of

bytes

necessary

to

store

the

container

name.

The

combined

length

of

all

container

names

for

the

table

space

cannot

exceed

20

480

bytes

(SQLSTATE

54034).

v

When

more

than

one

TEMPORARY

table

space

exists

in

the

database,

they

will

be

used

in

round-robin

fashion

in

order

to

balance

their

usage.

v

In

a

partitioned

database,

if

more

than

one

database

partition

resides

on

the

same

physical

node,

the

same

device

or

specific

path

cannot

be

specified

for

such

database

partitions

(SQLSTATE

42730).

For

this

environment,

either

specify

a

unique

container-string

for

each

database

partition

or

use

a

relative

path

name.

v

You

can

specify

a

database

partition

expression

for

container

string

syntax

when

creating

either

SMS

or

DMS

containers.

You

would

typically

specify

the

database

partition

expression

if

you

were

using

multiple

logical

database

partitions

in

the

partitioned

database

system.

This

ensures

that

container

names

are

unique

across

nodes

(database

partition

servers).

When

you

specify

the

expression,

the

database

partition

number

is

part

of

the

container

name

or,

if

you

specify

additional

arguments,

the

result

of

the

argument

is

part

of

the

container

name.

You

use

the

argument

“

$N”

([blank]$N)

to

indicate

a

database

partition

expression.

A

database

partition

expression

can

be

used

anywhere

in

the

container

name,

and

multiple

database

partition

expressions

can

be

specified.

Terminate

the

database

partition

expression

with

a

space

character;

whatever

follows

the

space

is

appended

to

the

container

name

after

the

database

partition

expression

is

evaluated.

If

there

is

no

space

character

in

the

container

name

after

the

database

partition

expression,

it

is

assumed

that

the

rest

of

the

string

is

part

of

the

expression.

The

argument

can

only

be

used

in

one

of

the

following

forms:

Table

62.

Arguments

for

Creating

Containers.

Operators

are

evaluated

from

left

to

right.

The

database

partition

number

in

the

examples

is

assumed

to

be

5.

Syntax

Example

Value

[blank]$N

"

$N"

5

CREATE

TABLESPACE

654

Common

Criteria

Certification:

Administration

and

User

Documentation

Table

62.

Arguments

for

Creating

Containers

(continued).

Operators

are

evaluated

from

left

to

right.

The

database

partition

number

in

the

examples

is

assumed

to

be

5.

Syntax

Example

Value

[blank]$N+[number]

"

$N+1011"

1016

[blank]$N%[number]

"

$N%3"

a

2

[blank]$N+[number]%[number]

"

$N+12%13"

4

[blank]$N%[number]+[number]

"

$N%3+20"

22

a

%

is

modulus.

For

example:

CREATE

TABLESPACE

TS1

MANAGED

BY

DATABASE

USING

(device

’/dev/rcont

$N’

20000)

On

a

two

database

partition

system,

the

following

containers

would

be

created:

/dev/rcont0

-

on

DATABASE

PARTITION

0

/dev/rcont1

-

on

DATABASE

PARTITION

1

CREATE

TABLESPACE

TS2

MANAGED

BY

DATABASE

USING

(file

’/DB2/containers/TS2/container

$N+100’

10000)

On

a

four

database

partition

system,

the

following

containers

would

be

created:

/DB2/containers/TS2/container100

-

on

DATABASE

PARTITION

0

/DB2/containers/TS2/container101

-

on

DATABASE

PARTITION

1

/DB2/containers/TS2/container102

-

on

DATABASE

PARTITION

2

/DB2/containers/TS2/container103

-

on

DATABASE

PARTITION

3

CREATE

TABLESPACE

TS3

MANAGED

BY

SYSTEM

USING

(’/TS3/cont

$N%2’,’/TS3/cont

$N%2+2’)

On

a

two

database

partition

system,

the

following

containers

would

be

created:

/TS3/cont0

-

On

DATABASE

PARTITION

0

/TS3/cont2

-

On

DATABASE

PARTITION

0

/TS3/cont1

-

On

DATABASE

PARTITION

1

/TS3/cont3

-

On

DATABASE

PARTITION

1

If

database

partition

=

5,

the

containers:

’/dbdir/node

$N

/cont1’

’/

$N+1000

/file1’

’

$N%10

/container’

’/dir/

$N%5+2000

/dmscont’

are

created

as:

’/dbdir/node5/cont1’

’/1005/file1’

’5/container’

’/dir/2000/dmscont’

Examples:

Example

1:

Create

a

regular

DMS

table

space

on

a

UNIX-based

system

using

3

devices

of

10

000

4K

pages

each.

Specify

their

I/O

characteristics.

CREATE

TABLESPACE

PAYROLL

MANAGED

BY

DATABASE

USING

(DEVICE’/dev/rhdisk6’

10000,

CREATE

TABLESPACE

Chapter

15.

SQL

Statements

for

Administrators

655

DEVICE

’/dev/rhdisk7’

10000,

DEVICE

’/dev/rhdisk8’

10000)

OVERHEAD

12.67

TRANSFERRATE

0.18

Example

2:

Create

a

regular

SMS

table

space

on

Windows

NT

or

Windows

2000

using

3

directories

on

three

separate

drives,

with

a

64-page

extent

size,

and

a

32-page

prefetch

size.

CREATE

TABLESPACE

ACCOUNTING

MANAGED

BY

SYSTEM

USING

(’d:\acc_tbsp’,

’e:\acc_tbsp’,

’f:\acc_tbsp’)

EXTENTSIZE

64

PREFETCHSIZE

32

Example

3:

Create

a

temporary

DMS

table

space

on

Unix

using

2

files

of

50,000

pages

each,

and

a

256-page

extent

size.

CREATE

TEMPORARY

TABLESPACE

TEMPSPACE2

MANAGED

BY

DATABASE

USING

(FILE

’/tmp/tempspace2.f1’

50000,

FILE

’/tmp/tempspace2.f2’

50000)

EXTENTSIZE

256

Example

4:

Create

a

DMS

table

space

on

database

partition

group

ODDNODEGROUP

(partitions

1,3,5)

on

a

Unix

partitioned

database.

On

all

partitions,

use

the

device

/dev/rhdisk0

for

10

000

4K

pages.

Also

specify

a

partition-specific

device

for

each

partition

with

40

000

4K

pages.

CREATE

TABLESPACE

PLANS

MANAGED

BY

DATABASE

USING

(DEVICE

’/dev/rhdisk0’

10000,

DEVICE

’/dev/rn1hd01’

40000)

ON

DBPARTITIONNUM

(1)

USING

(DEVICE

’/dev/rhdisk0’

10000,

DEVICE

’/dev/rn3hd03’

40000)

ON

DBPARTITIONNUM

(3)

USING

(DEVICE

’/dev/rhdisk0’

10000,

DEVICE

’/dev/rn5hd05’

40000)

ON

DBPARTITIONNUM

(5)

Related

samples:

v

“tbtemp.sqc

--

How

to

use

a

declared

temporary

table

(C)”

v

“TbTemp.java

--

How

to

use

Declared

Temporary

Table

(JDBC)”

CREATE

VIEW

The

CREATE

VIEW

statement

creates

a

view

on

one

or

more

tables,

views

or

nicknames.

Invocation:

This

statement

can

be

embedded

in

an

application

program

or

issued

through

the

use

of

dynamic

SQL

statements.

It

is

an

executable

statement

that

can

be

dynamically

prepared

only

if

DYNAMICRULES

run

behavior

is

in

effect

for

the

package

(SQLSTATE

42509).

Authorization:

The

privileges

held

by

the

authorization

ID

of

the

statement

must

include

at

least

one

of

the

following:

v

SYSADM

or

DBADM

authority

or

v

For

each

table,

view

or

nickname

identified

in

any

fullselect:

CREATE

TABLESPACE

656

Common

Criteria

Certification:

Administration

and

User

Documentation

–

CONTROL

privilege

on

that

table

or

view,

or

–

SELECT

privilege

on

that

table

or

view

and

at

least

one

of

the

following:

–

IMPLICIT_SCHEMA

authority

on

the

database,

if

the

implicit

or

explicit

schema

name

of

the

view

does

not

exist

–

CREATEIN

privilege

on

the

schema,

if

the

schema

name

of

the

view

refers

to

an

existing

schema.

If

creating

a

subview,

the

authorization

ID

of

the

statement

must:

–

be

the

same

as

the

definer

of

the

root

table

of

the

table

hierarchy.

–

have

SELECT

WITH

GRANT

on

the

underlying

table

of

the

subview

or

the

superview

must

not

have

SELECT

privilege

granted

to

any

user

other

than

the

view

definer.

Group

privileges

are

not

considered

for

any

table

or

view

specified

in

the

CREATE

VIEW

statement.

Privileges

are

not

considered

when

defining

a

view

on

federated

database

nickname.

Authorization

requirements

of

the

data

source

for

the

table

or

view

referenced

by

the

nickname

are

applied

when

the

query

is

processed.

The

authorization

ID

of

the

statement

may

be

mapped

to

a

different

remote

authorization

ID.

If

a

view

definer

can

only

create

the

view

because

the

definer

has

SYSADM

authority,

then

the

definer

is

granted

explicit

DBADM

authority

for

the

purpose

of

creating

the

view.

Syntax:

��

CREATE

VIEW

view-name

�

,

(

column-name

)

OF

type-name

root-view-definition

subview-definition

�

�

AS

�

fullselect

,

WITH

common-table-expression

*

�

�

CASCADED

WITH

CHECK

OPTION

LOCAL

*

WITH

NO

ROW

MOVEMENT

WITH

ROW

MOVEMENT

*

��

root-view-definition:

MODE

DB2SQL

(

oid-column

)

,

with-options

CREATE

VIEW

Chapter

15.

SQL

Statements

for

Administrators

657

subview-definition:

MODE

DB2SQL

under-clause

(

with-options

)

EXTEND

oid-column:

REF

IS

oid-column-name

USER

GENERATED

UNCHECKED

with-options:

�

�

,

,

column-name

WITH

OPTIONS

SCOPE

typed-table-name

typed-view-name

READ

ONLY

under-clause:

UNDER

superview-name

INHERIT

SELECT

PRIVILEGES

Description:

view-name

Names

the

view.

The

name,

including

the

implicit

or

explicit

qualifier,

must

not

identify

a

table,

view,

nickname

or

alias

described

in

the

catalog.

The

qualifier

must

not

be

SYSIBM,

SYSCAT,

SYSFUN,

or

SYSSTAT

(SQLSTATE

42939).

The

name

can

be

the

same

as

the

name

of

an

inoperative

view

(see

“Inoperative

views”

on

page

665).

In

this

case

the

new

view

specified

in

the

CREATE

VIEW

statement

will

replace

the

inoperative

view.

The

user

will

get

a

warning

(SQLSTATE

01595)

when

an

inoperative

view

is

replaced.

No

warning

is

returned

if

the

application

was

bound

with

the

bind

option

SQLWARN

set

to

NO.

column-name

Names

the

columns

in

the

view.

If

a

list

of

column

names

is

specified,

it

must

consist

of

as

many

names

as

there

are

columns

in

the

result

table

of

the

fullselect.

Each

column-name

must

be

unique

and

unqualified.

If

a

list

of

column

names

is

not

specified,

the

columns

of

the

view

inherit

the

names

of

the

columns

of

the

result

table

of

the

fullselect.

A

list

of

column

names

must

be

specified

if

the

result

table

of

the

fullselect

has

duplicate

column

names

or

an

unnamed

column

(SQLSTATE

42908).

An

unnamed

column

is

a

column

derived

from

a

constant,

function,

expression,

or

set

operation

that

is

not

named

using

the

AS

clause

of

the

select

list.

OF

type-name

Specifies

that

the

columns

of

the

view

are

based

on

the

attributes

of

the

structured

type

identified

by

type-name.

If

type-name

is

specified

without

a

schema

name,

the

type

name

is

resolved

by

searching

the

schemas

on

the

SQL

path

(defined

by

the

FUNCPATH

preprocessing

option

for

static

SQL

and

by

the

CURRENT

PATH

register

for

dynamic

SQL).

The

type

name

must

be

the

CREATE

VIEW

658

Common

Criteria

Certification:

Administration

and

User

Documentation

name

of

an

existing

user-defined

type

(SQLSTATE

42704)

and

it

must

be

a

structured

type

that

is

instantiable

(SQLSTATE

428DP).

MODE

DB2SQL

This

clause

is

used

to

specify

the

mode

of

the

typed

view.

This

is

the

only

valid

mode

currently

supported.

UNDER

superview-name

Indicates

that

the

view

is

a

subview

of

superview-name.

The

superview

must

be

an

existing

view

(SQLSTATE

42704)

and

the

view

must

be

defined

using

a

structured

type

that

is

the

immediate

supertype

of

type-name

(SQLSTATE

428DB).

The

schema

name

of

view-name

and

superview-name

must

be

the

same

(SQLSTATE

428DQ).

The

view

identified

by

superview-name

must

not

have

any

existing

subview

already

defined

using

type-name

(SQLSTATE

42742).

The

columns

of

the

view

include

the

object

identifier

column

of

the

superview

with

its

type

modified

to

be

REF(type-name),

followed

by

columns

based

on

the

attributes

of

type-name

(remember

that

the

type

includes

the

attributes

of

its

supertype).

INHERIT

SELECT

PRIVILEGES

Any

user

or

group

holding

a

SELECT

privilege

on

the

superview

will

be

granted

an

equivalent

privilege

on

the

newly

created

subview.

The

subview

definer

is

considered

to

be

the

grantor

of

this

privilege.

OID-column

Defines

the

object

identifier

column

for

the

typed

view.

REF

IS

OID-column-name

USER

GENERATED

Specifies

that

an

object

identifier

(OID)

column

is

defined

in

the

view

as

the

first

column.

An

OID

is

required

for

the

root

view

of

a

view

hierarchy

(SQLSTATE

428DX).

The

view

must

be

a

typed

view

(the

OF

clause

must

be

present)

that

is

not

a

subview

(SQLSTATE

42613).

The

name

for

the

column

is

defined

as

OID-column-name

and

cannot

be

the

same

as

the

name

of

any

attribute

of

the

structured

type

type-name

(SQLSTATE

42711).

The

first

column

specified

in

fullselect

must

be

of

type

REF(type-name)

(you

may

need

to

cast

it

so

that

it

has

the

appropriate

type).

If

UNCHECKED

is

not

specified,

it

must

be

based

on

a

not

nullable

column

on

which

uniqueness

is

enforced

through

an

index

(primary

key,

unique

constraint,

unique

index,

or

OID-column).

This

column

will

be

referred

to

as

the

object

identifier

column

or

OID

column.

The

keywords

USER

GENERATED

indicate

that

the

initial

value

for

the

OID

column

must

be

provided

by

the

user

when

inserting

a

row.

Once

a

row

is

inserted,

the

OID

column

cannot

be

updated

(SQLSTATE

42808).

UNCHECKED

Defines

the

object

identifier

column

of

the

typed

view

definition

to

assume

uniqueness

even

though

the

system

can

not

prove

this

uniqueness.

This

is

intended

for

use

with

tables

or

views

that

are

being

defined

into

a

typed

view

hierarchy

where

the

user

knows

that

the

data

conforms

to

this

uniqueness

rule

but

it

does

not

comply

with

the

rules

that

allow

the

system

to

prove

uniqueness.

UNCHECKED

option

is

mandatory

for

view

hierarchies

that

range

over

multiple

hierarchies

or

legacy

tables

or

views

By

specifying

UNCHECKED,

the

user

takes

responsibility

for

ensuring

that

each

row

of

the

view

has

a

unique

OID.

If

the

user

fails

to

ensure

this

property,

and

a

view

contains

duplicate

OID

values,

then

a

path-expression

or

DEREF

operator

involving

one

of

the

non-unique

OID

values

may

result

in

an

error

(SQLSTATE

21000).

CREATE

VIEW

Chapter

15.

SQL

Statements

for

Administrators

659

with-options

Defines

additional

options

that

apply

to

columns

of

a

typed

view.

column-name

WITH

OPTIONS

Specifies

the

name

of

the

column

for

which

additional

options

are

specified.

The

column-name

must

correspond

to

the

name

of

an

attribute

defined

in

(not

inherited

by)

the

type-name

of

the

view.

The

column

must

be

a

reference

type

(SQLSTATE

42842).

It

cannot

correspond

to

a

column

that

also

exists

in

the

superview

(SQLSTATE

428DJ).

A

column

name

can

only

appear

in

one

WITH

OPTIONS

SCOPE

clause

in

the

statement

(SQLSTATE

42613).

SCOPE

Identifies

the

scope

of

the

reference

type

column.

A

scope

must

be

specified

for

any

column

that

is

intended

to

be

used

as

the

left

operand

of

a

dereference

operator

or

as

the

argument

of

the

DEREF

function.

Specifying

the

scope

for

a

reference

type

column

may

be

deferred

to

a

subsequent

ALTER

VIEW

statement

(if

the

scope

is

not

inherited)

to

allow

the

target

table

or

view

to

be

defined,

usually

in

the

case

of

mutually

referencing

views

and

tables.

If

no

scope

is

specified

for

a

reference

type

column

of

the

view

and

the

underlying

table

or

view

column

was

scoped,

then

the

underlying

column’s

scope

is

inherited

by

the

reference

type

column.

The

column

remains

unscoped

if

the

underlying

table

or

view

column

did

not

have

a

scope.

See

663

for

more

information

about

scope

and

reference

type

columns.

typed-table-name

The

name

of

a

typed

table.

The

table

must

already

exist

or

be

the

same

as

the

name

of

the

table

being

created

(SQLSTATE

42704).

The

data

type

of

column-name

must

be

REF(S),

where

S

is

the

type

of

typed-table-name

(SQLSTATE

428DM).

No

checking

is

done

of

any

existing

values

in

column-name

to

ensure

that

the

values

actually

reference

existing

rows

in

typed-table-name.

typed-view-name

The

name

of

a

typed

view.

The

view

must

already

exist

or

be

the

same

as

the

name

of

the

view

being

created

(SQLSTATE

42704).

The

data

type

of

column-name

must

be

REF(S),

where

S

is

the

type

of

typed-view-name

(SQLSTATE

428DM).

No

checking

is

done

of

any

existing

values

in

column-name

to

ensure

that

the

values

actually

reference

existing

rows

in

typed-view-name.

READ

ONLY

Identifies

the

column

as

a

read-only

column.

This

option

is

used

to

force

a

column

to

be

read-only

so

that

subview

definitions

can

specify

an

expression

for

the

same

column

that

is

implicitly

read-only.

AS

Identifies

the

view

definition.

WITH

common-table-expression

Defines

a

common

table

expression

for

use

with

the

fullselect

that

follows.

A

common

table

expression

cannot

be

specified

when

defining

a

typed

view.

fullselect

Defines

the

view.

At

any

time,

the

view

consists

of

the

rows

that

would

result

if

the

SELECT

statement

were

executed.

The

fullselect

must

not

reference

host

variables,

parameter

markers,

or

declared

temporary

tables.

However,

a

parameterized

view

can

be

created

as

an

SQL

table

function.

CREATE

VIEW

660

Common

Criteria

Certification:

Administration

and

User

Documentation

The

fullselect

cannot

include

an

SQL

data

change

statement

in

the

FROM

clause

(SQLSTATE

428FL).

For

Typed

Views

and

Subviews:

The

fullselect

must

conform

to

the

following

rules

otherwise

an

error

is

returned

(SQLSTATE

428EA

unless

otherwise

specified).

v

The

fullselect

must

not

include

references

to

the

DBPARTITIONNUM

or

HASHEDVALUE

functions,

non-deterministic

functions,

or

functions

defined

to

have

external

action.

v

The

body

of

the

view

must

consist

of

a

single

subselect,

or

a

UNION

ALL

of

two

or

more

subselects.

Let

each

of

the

subselects

participating

directly

in

the

view

body

be

called

a

branch

of

the

view.

A

view

may

have

one

or

more

branches.

v

The

FROM-clause

of

each

branch

must

consist

of

a

single

table

or

view

(not

necessarily

typed),

called

the

underlying

table

or

view

of

that

branch.

v

The

underlying

table

or

view

of

each

branch

must

be

in

a

separate

hierarchy

(that

is,

a

view

cannot

have

multiple

branches

with

their

underlying

tables

or

views

in

the

same

hierarchy).

v

None

of

the

branches

of

a

typed

view

definition

may

specify

GROUP

BY

or

HAVING.

v

If

the

view

body

contains

UNION

ALL,

then

the

root

view

in

the

hierarchy

must

specify

the

UNCHECKED

option

for

its

OID

column.

For

a

hierarchy

of

views

and

subviews:

Let

BR1

and

BR2

be

any

branches

that

appear

in

the

definitions

of

views

in

the

hierarchy.

Let

T1

be

the

underlying

table

or

view

of

BR1,

and

let

T2

be

the

underlying

table

or

view

of

BR2.

Then:

v

If

T1

and

T2

are

not

in

the

same

hierarchy,

then

the

root

view

in

the

view

hierarchy

must

specify

the

UNCHECKED

option

for

its

OID

column.

v

If

T1

and

T2

are

in

the

same

hierarchy,

then

BR1

and

BR2

must

contain

predicates

or

ONLY-clauses

that

are

sufficient

to

guarantee

that

their

row-sets

are

disjoint.

For

typed

subviews

defined

using

EXTEND

AS:

For

every

branch

in

the

body

of

the

subview:

v

The

underlying

table

of

each

branch

must

be

a

(not

necessarily

proper)

subtable

of

some

underlying

table

of

the

immediate

superview.

v

The

expressions

in

the

SELECT

list

must

be

assignable

to

the

non-inherited

columns

of

the

subview

(SQLSTATE

42854).

For

typed

subviews

defined

using

AS

without

EXTEND:

v

For

every

branch

in

the

body

of

the

subview,

the

expressions

in

the

SELECT-list

must

be

assignable

to

the

declared

types

of

the

inherited

and

non-inherited

columns

of

the

subview

(SQLSTATE

42854).

v

The

OID-expression

of

each

branch

over

a

given

hierarchy

in

the

subview

must

be

equivalent

(except

for

casting)

to

the

OID-expression

in

the

branch

over

the

same

hierarchy

in

the

root

view.

v

The

expression

for

a

column

not

defined

(implicitly

or

explicitly)

as

READ

ONLY

in

a

superview

must

be

equivalent

in

all

branches

over

the

same

underlying

hierarchy

in

its

subviews.

WITH

CHECK

OPTION

Specifies

the

constraint

that

every

row

that

is

inserted

or

updated

through

the

CREATE

VIEW

Chapter

15.

SQL

Statements

for

Administrators

661

view

must

conform

to

the

definition

of

the

view.

A

row

that

does

not

conform

to

the

definition

of

the

view

is

a

row

that

does

not

satisfy

the

search

conditions

of

the

view.

WITH

CHECK

OPTION

must

not

be

specified

if

any

of

the

following

conditions

is

true:

v

The

view

is

read-only

(SQLSTATE

42813).

If

WITH

CHECK

OPTION

is

specified

for

an

updatable

view

that

does

not

allow

inserts,

the

constraint

applies

to

updates

only.

v

The

view

references

the

NODENUMBER

or

PARTITION

function,

a

non-deterministic

function,

or

a

function

with

external

action

(SQLSTATE

42997).

v

A

nickname

is

the

update

target

of

the

view.

v

A

view

that

has

an

INSTEAD

OF

trigger

defined

on

it

is

the

update

target

of

the

view

(SQLSTATE

428FQ).

If

WITH

CHECK

OPTION

is

omitted,

the

definition

of

the

view

is

not

used

in

the

checking

of

any

insert

or

update

operations

that

use

the

view.

Some

checking

might

still

occur

during

insert

or

update

operations

if

the

view

is

directly

or

indirectly

dependent

on

another

view

that

includes

WITH

CHECK

OPTION.

Because

the

definition

of

the

view

is

not

used,

rows

might

be

inserted

or

updated

through

the

view

that

do

not

conform

to

the

definition

of

the

view.

CASCADED

The

WITH

CASCADED

CHECK

OPTION

constraint

on

a

view

V

means

that

V

inherits

the

search

conditions

as

constraints

from

any

updatable

view

on

which

V

is

dependent.

Furthermore,

every

updatable

view

that

is

dependent

on

V

is

also

subject

to

these

constraints.

Thus,

the

search

conditions

of

V

and

each

view

on

which

V

is

dependent

are

ANDed

together

to

form

a

constraint

that

is

applied

for

an

insert

or

update

of

V

or

of

any

view

dependent

on

V.

LOCAL

The

WITH

LOCAL

CHECK

OPTION

constraint

on

a

view

V

means

the

search

condition

of

V

is

applied

as

a

constraint

for

an

insert

or

update

of

V

or

of

any

view

that

is

dependent

on

V.

The

difference

between

CASCADED

and

LOCAL

is

shown

in

the

following

example.

Consider

the

following

updatable

views

(substituting

for

Y

from

column

headings

of

the

table

that

follows):

V1

defined

on

table

T

V2

defined

on

V1

WITH

Y

CHECK

OPTION

V3

defined

on

V2

V4

defined

on

V3

WITH

Y

CHECK

OPTION

V5

defined

on

V4

The

following

table

shows

the

search

conditions

against

which

inserted

or

updated

rows

are

checked:

Y

is

LOCAL

Y

is

CASCADED

V1

checked

against:

no

view

no

view

V2

checked

against:

V2

V2,

V1

V3

checked

against:

V2

V2,

V1

V4

checked

against:

V2,

V4

V4,

V3,

V2,

V1

V5

checked

against:

V2,

V4

V4,

V3,

V2,

V1

CREATE

VIEW

662

Common

Criteria

Certification:

Administration

and

User

Documentation

Consider

the

following

updatable

view

which

shows

the

impact

of

the

WITH

CHECK

OPTION

using

the

default

CASCADED

option:

CREATE

VIEW

V1

AS

SELECT

COL1

FROM

T1

WHERE

COL1

>

10

CREATE

VIEW

V2

AS

SELECT

COL1

FROM

V1

WITH

CHECK

OPTION

CREATE

VIEW

V3

AS

SELECT

COL1

FROM

V2

WHERE

COL1

<

100

The

following

INSERT

statement

using

V1

will

succeed

because

V1

does

not

have

a

WITH

CHECK

OPTION

and

V1

is

not

dependent

on

any

other

view

that

has

a

WITH

CHECK

OPTION.

INSERT

INTO

V1

VALUES(5)

The

following

INSERT

statement

using

V2

will

result

in

an

error

because

V2

has

a

WITH

CHECK

OPTION

and

the

insert

would

produce

a

row

that

did

not

conform

to

the

definition

of

V2.

INSERT

INTO

V2

VALUES(5)

The

following

INSERT

statement

using

V3

will

result

in

an

error

even

though

it

does

not

have

WITH

CHECK

OPTION

because

V3

is

dependent

on

V2

which

does

have

a

WITH

CHECK

OPTION

(SQLSTATE

44000).

INSERT

INTO

V3

VALUES(5)

The

following

INSERT

statement

using

V3

will

succeed

even

though

it

does

not

conform

to

the

definition

of

V3

(V3

does

not

have

a

WITH

CHECK

OPTION);

it

does

conform

to

the

definition

of

V2

which

does

have

a

WITH

CHECK

OPTION.

INSERT

INTO

V3

VALUES(200)

WITH

NO

ROW

MOVEMENT

or

WITH

ROW

MOVEMENT

Specifies

the

action

to

take

for

an

updatable

UNION

ALL

view

when

a

row

is

updated

in

a

way

that

violates

a

check

constraint

on

the

underlyig

table.

The

default

is

WITH

NO

ROW

MOVEMENT.

WITH

NO

ROW

MOVEMENT

Specifies

that

an

error

(SQLSTATE

23513)

is

to

be

returned

if

a

row

is

updated

in

a

way

that

violates

a

check

constraint

on

the

underlying

table.

WITH

ROW

MOVEMENT

Specifies

that

an

updated

row

is

to

be

moved

to

the

appropriate

underlying

table,

even

if

it

violates

a

check

constraint

on

that

table.

Row

movement

involves

deletion

of

the

rows

that

violate

the

check

constraint,

and

insertion

of

those

rows

back

into

the

view.

The

WITH

ROW

MOVEMENT

clause

can

only

be

specified

for

UNION

ALL

views

whose

columns

are

all

updatable

(SQLSTATE

429BJ).

If

a

row

is

inserted

(perhaps

after

trigger

activation)

into

the

same

underlying

table

from

which

it

was

deleted,

an

error

is

returned

(SQLSTATE

23524).

A

view

defined

using

the

WITH

ROW

MOVEMENT

clause

must

not

contain

nested

UNION

ALL

operations,

except

in

the

outermost

fullselect

(SQLSTATE

429BJ).

Notes:

v

Compatibilities:

–

For

compatibility

with

previous

versions

of

DB2:

CREATE

VIEW

Chapter

15.

SQL

Statements

for

Administrators

663

-

The

FEDERATED

keyword

can

be

specified

between

the

keywords

CREATE

and

VIEW.

The

FEDERATED

keyword

is

ignored,

however,

because

a

warning

is

no

longer

returned

if

federated

objects

are

used

in

the

view

definition.
v

Creating

a

view

with

a

schema

name

that

does

not

already

exist

will

result

in

the

implicit

creation

of

that

schema

provided

the

authorization

ID

of

the

statement

has

IMPLICIT_SCHEMA

authority.

The

schema

owner

is

SYSIBM.

The

CREATEIN

privilege

on

the

schema

is

granted

to

PUBLIC.

v

View

columns

inherit

the

NOT

NULL

WITH

DEFAULT

attribute

from

the

base

table

or

view

except

when

columns

are

derived

from

an

expression.

When

a

row

is

inserted

or

updated

into

an

updatable

view,

it

is

checked

against

the

constraints

(primary

key,

referential

integrity,

and

check)

if

any

are

defined

on

the

base

table.

v

A

new

view

cannot

be

created

if

it

uses

an

inoperative

view

in

its

definition.

(SQLSTATE

51024).

v

This

statement

does

not

support

declared

temporary

tables

(SQLSTATE

42995).

v

Deletable

views:

A

view

is

deletable

if

an

INSTEAD

OF

trigger

for

the

delete

operation

has

been

defined

for

the

view,

or

if

all

of

the

following

are

true:

–

each

FROM

clause

of

the

outer

fullselect

identifies

only

one

base

table

(with

no

OUTER

clause),

deletable

view

(with

no

OUTER

clause),

deletable

nested

table

expression,

or

deletable

common

table

expression

(cannot

identify

a

nickname)

–

the

outer

fullselect

does

not

include

a

VALUES

clause

–

the

outer

fullselect

does

not

include

a

GROUP

BY

clause

or

HAVING

clause

–

the

outer

fullselect

does

not

include

column

functions

in

the

select

list

–

the

outer

fullselect

does

not

include

SET

operations

(UNION,

EXCEPT

or

INTERSECT)

with

the

exception

of

UNION

ALL

–

the

base

tables

in

the

operands

of

a

UNION

ALL

must

not

be

the

same

table

and

each

operand

must

be

deletable

–

the

select

list

of

the

outer

fullselect

does

not

include

DISTINCT

–

the

FROM

clause

of

the

outer

fullselect

does

not

include

a

data-change-table-reference

v

Updatable

views:

A

column

of

a

view

is

updatable

if

an

INSTEAD

OF

trigger

for

the

update

operation

has

been

defined

for

the

view,

or

if

all

of

the

following

are

true:

–

the

view

is

deletable

(independent

of

an

INSTEAD

OF

trigger

for

delete),

the

column

resolves

to

a

column

of

a

base

table

(not

using

a

dereference

operation),

and

the

READ

ONLY

option

is

not

specified

–

all

the

corresponding

columns

of

the

operands

of

a

UNION

ALL

have

exactly

matching

data

types

(including

length

or

precision

and

scale)

and

matching

default

values

if

the

fullselect

of

the

view

includes

a

UNION

ALL

A

view

is

updatable

if

any

column

of

the

view

is

updatable.

v

Insertable

views:

–

A

view

is

insertable

if

an

INSTEAD

OF

trigger

for

the

insert

operation

has

been

defined

for

the

view,

or

at

least

one

column

of

the

view

is

updatable

(independent

of

an

INSTEAD

OF

trigger

for

update),

and

the

fullselect

of

the

view

does

not

include

UNION

ALL.

–

A

given

row

can

be

inserted

into

a

view

(including

a

UNION

ALL)

if,

and

only

if,

it

fulfills

the

check

constraints

of

exactly

one

of

the

underlying

base

tables.

CREATE

VIEW

664

Common

Criteria

Certification:

Administration

and

User

Documentation

–

To

insert

into

a

view

that

includes

non-updatable

columns,

those

columns

must

be

omitted

from

the

column

list.
v

Read-only

views:

A

view

is

read-only

if

it

is

not

deletable,

updatable,

or

insertable.

The

READONLY

column

in

the

SYSCAT.VIEWS

catalog

view

indicates

if

a

view

is

read-only

without

considering

INSTEAD

OF

triggers.

v

Common

table

expressions

and

nested

table

expressions

follow

the

same

set

of

rules

for

determining

whether

they

are

deletable,

updatable,

insertable,

or

read-only.

v

Inoperative

views:

An

inoperative

view

is

a

view

that

is

no

longer

available

for

SQL

statements.

A

view

becomes

inoperative

if:

–

A

privilege,

upon

which

the

view

definition

is

dependent,

is

revoked.

–

An

object

such

as

a

table,

nickname,

alias

or

function,

upon

which

the

view

definition

is

dependent,

is

dropped.

–

A

view,

upon

which

the

view

definition

is

dependent,

becomes

inoperative.

–

A

view

that

is

the

superview

of

the

view

definition

(the

subview)

becomes

inoperative.

In

practical

terms,

an

inoperative

view

is

one

in

which

the

view

definition

has

been

unintentionally

dropped.

For

example,

when

an

alias

is

dropped,

any

view

defined

using

that

alias

is

made

inoperative.

All

dependent

views

also

become

inoperative

and

packages

dependent

on

the

view

are

no

longer

valid.

Until

the

inoperative

view

is

explicitly

recreated

or

dropped,

a

statement

using

that

inoperative

view

cannot

be

compiled

(SQLSTATE

51024)

with

the

exception

of

the

CREATE

ALIAS,

CREATE

VIEW,

DROP

VIEW,

and

COMMENT

ON

TABLE

statements.

Until

the

inoperative

view

has

been

explicitly

dropped,

its

qualified

name

cannot

be

used

to

create

another

table

or

alias

(SQLSTATE

42710).

An

inoperative

view

may

be

recreated

by

issuing

a

CREATE

VIEW

statement

using

the

definition

text

of

the

inoperative

view.

This

view

definition

text

is

stored

in

the

TEXT

column

of

the

SYSCAT.VIEWS

catalog.

When

recreating

an

inoperative

view,

it

is

necessary

to

explicitly

grant

any

privileges

required

on

that

view

by

others,

due

to

the

fact

that

all

authorization

records

on

a

view

are

deleted

if

the

view

is

marked

inoperative.

Note

that

there

is

no

need

to

explicitly

drop

the

inoperative

view

in

order

to

recreate

it.

Issuing

a

CREATE

VIEW

statement

with

the

same

view-name

as

an

inoperative

view

will

cause

that

inoperative

view

to

be

replaced,

and

the

CREATE

VIEW

statement

will

return

a

warning

(SQLSTATE

01595).

Inoperative

views

are

indicated

by

an

X

in

the

VALID

column

of

the

SYSCAT.VIEWS

catalog

view

and

an

X

in

the

STATUS

column

of

the

SYSCAT.TABLES

catalog

view.

v

Privileges:

The

definer

of

a

view

always

receives

the

SELECT

privilege

on

the

view

as

well

as

the

right

to

drop

the

view.

The

definer

of

a

view

will

get

CONTROL

privilege

on

the

view

only

if

the

definer

has

CONTROL

privilege

on

every

base

table,

view,

or

nickname

identified

in

the

fullselect,

or

if

the

definer

has

SYSADM

or

DBADM

authority.

The

definer

of

the

view

is

granted

INSERT,

UPDATE,

column

level

UPDATE

or

DELETE

privileges

on

the

view

if

the

view

is

not

read-only

and

the

definer

has

the

corresponding

privileges

on

the

underlying

objects.

CREATE

VIEW

Chapter

15.

SQL

Statements

for

Administrators

665

For

a

view

defined

WITH

ROW

MOVEMENT,

the

definer

acquires

the

UPDATE

privilege

on

the

view

only

if

the

definer

has

the

UPDATE

privilege

on

all

columns

of

the

view,

as

well

as

INSERT

and

DELETE

privileges

on

all

underlying

tables

or

views.

The

definer

of

a

view

only

acquires

privileges

if

the

privileges

from

which

they

are

derived

exist

at

the

time

the

view

is

created.

The

definer

must

have

these

privileges

either

directly

or

because

PUBLIC

has

these

privilege.

Privileges

are

not

considered

when

defining

a

view

on

a

federated

server

nickname.

However,

when

using

a

view

on

a

nickname,

the

user’s

authorization

ID

must

have

valid

select

privileges

on

the

table

or

view

that

the

nickname

references

at

the

data

source.

Otherwise,

an

error

is

returned.

Privileges

held

by

groups

of

which

the

view

definer

is

a

member,

are

not

considered.

When

a

subview

is

created,

the

SELECT

privileges

held

on

the

immediate

superview

are

automatically

granted

on

the

subview.

v

Scope

and

REF

columns:

When

selecting

a

reference

type

column

in

the

fullselect

of

a

view

definition,

consider

the

target

type

and

scope

that

is

required.

–

If

the

required

target

type

and

scope

is

the

same

as

the

underlying

table

or

view,

the

column

can

simply

be

selected.

–

If

the

scope

needs

to

be

changed,

use

the

WITH

OPTIONS

SCOPE

clause

to

define

the

required

scope

table

or

view.

–

If

the

target

type

of

the

reference

needs

to

be

changed,

the

column

must

be

cast

first

to

the

representation

type

of

the

reference

and

then

to

the

new

reference

type.

The

scope

in

this

case

can

be

specified

in

the

cast

to

the

reference

type

or

using

the

WITH

OPTIONS

SCOPE

clause.

For

example,

assume

you

select

column

Y

defined

as

REF(TYP1)

SCOPE

TAB1.

You

want

this

to

be

defined

as

REF(VTYP1)

SCOPE

VIEW1.

The

select

list

item

would

be

as

follows:

CAST(CAST(Y

AS

VARCHAR(16)

FOR

BIT

DATA)

AS

REF(VTYP1)

SCOPE

VIEW1)

v

Identity

columns:

A

column

of

a

view

is

considered

an

identity

column,

if

the

element

of

the

corresponding

column

in

the

fullselect

of

the

view

definition

is

the

name

of

an

identity

column

of

a

table,

or

the

name

of

a

column

of

a

view

which

directly

or

indirectly

maps

to

the

name

of

an

identity

column

of

a

base

table.

In

all

other

cases,

the

columns

of

a

view

will

not

get

the

identity

property.

For

example:

–

the

select-list

of

the

view

definition

includes

multiple

instances

of

the

name

of

an

identity

column

(that

is,

selecting

the

same

column

more

than

once)

–

the

view

definition

involves

a

join

–

a

column

in

the

view

definition

includes

an

expression

that

refers

to

an

identity

column

–

the

view

definition

includes

a

UNION

When

inserting

into

a

view

for

which

the

select

list

of

the

view

definition

directly

or

indirectly

includes

the

name

of

an

identity

column

of

a

base

table,

the

same

rules

apply

as

if

the

INSERT

statement

directly

referenced

the

identity

column

of

the

base

table.

v

Federated

views:

A

federated

view

is

a

view

that

includes

a

reference

to

a

nickname

somewhere

in

the

fullselect.

The

presence

of

such

a

nickname

changes

the

authorization

model

used

for

the

view

when

the

view

is

subsequently

referenced

in

a

query.

When

the

view

is

created,

no

privilege

checking

is

done

to

determine

whether

the

view

definer

has

access

to

the

underlying

data

source

table

or

view

of

a

CREATE

VIEW

666

Common

Criteria

Certification:

Administration

and

User

Documentation

nickname.

Privilege

checking

of

references

to

tables

or

views

at

the

federated

database

are

handled

as

usual,

requiring

the

view

definer

to

have

at

least

SELECT

privilege

on

such

objects.

When

a

federated

view

is

subsequently

referenced

in

a

query,

the

nicknames

result

in

queries

against

the

data

source,

and

the

authorization

ID

that

issued

the

query

(or

the

remote

authorization

ID

to

which

it

maps)

must

have

the

necessary

privileges

to

access

the

data

source

table

or

view.

The

authorization

ID

that

issues

the

query

referencing

the

federated

view

is

not

required

to

have

any

additional

privileges

on

tables

or

views

(non-federated)

that

exist

at

the

federated

server.

v

ROW

MOVEMENT,

triggers

and

constraints:

When

a

view

that

is

defined

using

the

WITH

ROW

MOVEMENT

clause

is

updated,

the

sequence

of

trigger

and

constraints

operations

is

as

follows:

1.

BEFORE

UPDATE

triggers

are

activated

for

all

rows

being

updated,

including

rows

that

will

eventually

be

moved.

2.

The

update

operation

is

processed.

3.

Constraints

are

processed

for

all

updated

rows.

4.

AFTER

UPDATE

triggers

(both

row-level

and

statement-level)

are

activated

in

creation

order,

for

all

rows

that

satisfy

the

constraints

after

the

update

operation.

Because

this

is

an

UPDATE

statement,

all

UPDATE

statement-level

triggers

are

activated

for

all

underlying

tables.

5.

BEFORE

DELETE

triggers

are

activated

for

all

rows

that

did

not

satisfy

the

constraints

after

the

update

operation

(these

are

the

rows

that

are

to

be

moved).

6.

The

delete

operation

is

processed.

7.

Constraints

are

processed

for

all

deleted

rows.

8.

AFTER

DELETE

triggers

(both

row-level

and

statement-level)

are

activated

in

creation

order,

for

all

deleted

rows.

Statement-level

triggers

are

activated

for

only

those

tables

that

are

involved

in

the

delete

operation.

9.

BEFORE

INSERT

triggers

are

activated

for

all

rows

being

inserted

(that

is,

the

rows

being

moved).

The

new

transition

tables

for

the

BEFORE

INSERT

triggers

contain

the

input

data

provided

by

the

user.

10.

The

insert

operation

is

processed.

11.

Constraints

are

processed

for

all

inserted

rows.

12.

AFTER

INSERT

triggers

(both

row-level

and

statement-level)

are

activated

in

creation

order,

for

all

inserted

rows.

Statement-level

triggers

are

activated

for

only

those

tables

that

are

involved

in

the

insert

operation.
v

Nested

UNION

ALL

views:

A

view

defined

with

UNION

ALL

and

based,

either

directly

or

indirectly,

on

a

view

that

is

also

defined

with

UNION

ALL

cannot

be

updated

if

either

view

is

defined

using

the

WITH

ROW

MOVEMENT

clause

(SQLSTATE

429BK).

Examples:

Example

1:

Create

a

view

named

MA_PROJ

upon

the

PROJECT

table

that

contains

only

those

rows

with

a

project

number

(PROJNO)

starting

with

the

letters

‘MA’.

CREATE

VIEW

MA_PROJ

AS

SELECT

*

FROM

PROJECT

WHERE

SUBSTR(PROJNO,

1,

2)

=

’MA’

CREATE

VIEW

Chapter

15.

SQL

Statements

for

Administrators

667

Example

2:

Create

a

view

as

in

example

1,

but

select

only

the

columns

for

project

number

(PROJNO),

project

name

(PROJNAME)

and

employee

in

charge

of

the

project

(RESPEMP).

CREATE

VIEW

MA_PROJ

AS

SELECTPROJNO,

PROJNAME,

RESPEMP

FROM

PROJECT

WHERE

SUBSTR(PROJNO,

1,

2)

=

’MA’

Example

3:

Create

a

view

as

in

example

2,

but,

in

the

view,

call

the

column

for

the

employee

in

charge

of

the

project

IN_CHARGE.

CREATE

VIEW

MA_PROJ

(PROJNO,

PROJNAME,

IN_CHARGE)

AS

SELECTPROJNO,

PROJNAME,

RESPEMP

FROM

PROJECT

WHERE

SUBSTR(PROJNO,

1,

2)

=

’MA’

Note:

Even

though

only

one

of

the

column

names

is

being

changed,

the

names

of

all

three

columns

in

the

view

must

be

listed

in

the

parentheses

that

follow

MA_PROJ.

Example

4:

Create

a

view

named

PRJ_LEADER

that

contains

the

first

four

columns

(PROJNO,

PROJNAME,

DEPTNO,

RESPEMP)

from

the

PROJECT

table

together

with

the

last

name

(LASTNAME)

of

the

person

who

is

responsible

for

the

project

(RESPEMP).

Obtain

the

name

from

the

EMPLOYEE

table

by

matching

EMPNO

in

EMPLOYEE

to

RESPEMP

in

PROJECT.

CREATE

VIEW

PRJ_LEADER

AS

SELECT

PROJNO,

PROJNAME,

DEPTNO,

RESPEMP,

LASTNAME

FROM

PROJECT,

EMPLOYEE

WHERE

RESPEMP

=

EMPNO

Example

5:

Create

a

view

as

in

example

4,

but

in

addition

to

the

columns

PROJNO,

PROJNAME,

DEPTNO,

RESPEMP,

and

LASTNAME,

show

the

total

pay

(SALARY

+

BONUS

+

COMM)

of

the

employee

who

is

responsible.

Also

select

only

those

projects

with

mean

staffing

(PRSTAFF)

greater

than

one.

CREATE

VIEW

PRJ_LEADER

(PROJNO,

PROJNAME,

DEPTNO,

RESPEMP,

LASTNAME,

TOTAL_PAY

)

AS

SELECT

PROJNO,

PROJNAME,

DEPTNO,

RESPEMP,

LASTNAME,

SALARY+BONUS+COMM

FROM

PROJECT,

EMPLOYEE

WHERE

RESPEMP

=

EMPNO

AND

PRSTAFF

>

1

Specifying

the

column

name

list

could

be

avoided

by

naming

the

expression

SALARY+BONUS+COMM

as

TOTAL_PAY

in

the

fullselect.

CREATE

VIEW

PRJ_LEADER

AS

SELECT

PROJNO,

PROJNAME,

DEPTNO,

RESPEMP,

LASTNAME,

SALARY+BONUS+COMM

AS

TOTAL_PAY

FROM

PROJECT,

EMPLOYEE

WHERE

RESPEMP

=

EMPNO

AND

PRSTAFF

>

1

Example

6:

Given

the

set

of

tables

and

views

shown

in

the

following

figure:

CREATE

VIEW

668

Common

Criteria

Certification:

Administration

and

User

Documentation

User

ZORPIE

(who

does

not

have

either

DBADM

or

SYSADM

authority)

has

been

granted

the

privileges

shown

in

brackets

below

each

object:

1.

ZORPIE

will

get

CONTROL

privilege

on

the

view

that

she

creates

with:

CREATE

VIEW

VA

AS

SELECT

*

FROM

S1.V1

because

she

has

CONTROL

on

S1.V1.

(CONTROL

on

S1.V1

must

have

been

granted

to

ZORPIE

by

someone

with

DBADM

or

SYSADM

authority.)

It

does

not

matter

which,

if

any,

privileges

she

has

on

the

underlying

base

table.

2.

ZORPIE

will

not

be

allowed

to

create

the

view:

CREATE

VIEW

VB

AS

SELECT

*

FROM

S1.V2

because

she

has

neither

CONTROL

nor

SELECT

on

S1.V2.

It

does

not

matter

that

she

has

CONTROL

on

the

underlying

base

table

(S1.T2).

3.

ZORPIE

will

get

CONTROL

privilege

on

the

view

that

she

creates

with:

CREATE

VIEW

VC

(COLA,

COLB,

COLC,

COLD)

AS

SELECT

*

FROM

S1.V1,

S1.T2

WHERE

COLA

=

COLC

because

the

fullselect

of

ZORPIE.VC

references

view

S1.V1

and

table

S1.T2

and

she

has

CONTROL

on

both

of

these.

Note

that

the

view

VC

is

read-only,

so

ZORPIE

does

not

get

INSERT,

UPDATE

or

DELETE

privileges.

4.

ZORPIE

will

get

SELECT

privilege

on

the

view

that

she

creates

with:

CREATE

VIEW

VD

(COLA,COLB,

COLE,

COLF)

AS

SELECT

*

FROM

S1.V1,

S1.V3

WHERE

COLA

=

COLE

because

the

fullselect

of

ZORPIE.VD

references

the

two

views

S1.V1

and

S1.V3,

one

on

which

she

has

only

SELECT

privilege,

and

one

on

which

she

has

CONTROL

privilege.

She

is

given

the

lesser

of

the

two

privileges,

SELECT,

on

ZORPIE.VD.

5.

ZORPIE

will

get

INSERT,

UPDATE

and

DELETE

privilege

WITH

GRANT

OPTION

and

SELECT

privilege

on

the

view

VE

in

the

following

view

definition.

CREATE

VIEW

VE

AS

SELECT

*

FROM

S1.V1

WHERE

COLA

>

ANY

(SELECT

COLE

FROM

S1.V3)

ZORPIE’s

privileges

on

VE

are

determined

primarily

by

her

privileges

on

S1.V1.

Since

S1.V3

is

only

referenced

in

a

subquery,

she

only

needs

SELECT

privilege

on

S1.V3

to

create

the

view

VE.

The

definer

of

a

view

only

gets

COLA COLB

INTEGERCHAR(5)

COLC COLD

INTEGERCHAR(5)

COLE COLF

INTEGERCHAR(5)

...SELECT * FROM S1.T1 ...SELECT * FROM S1.T2 ...SELECT * FROM S1.T3

table: S1.T1 table: S1.T2 table: S1.T3

view: S1.V1 view: S1.V2 view: S1.V3

(SELECT, INSERT) (CONTROL) (SELECT)

(CONTROL) (none) (SELECT)

Figure

12.

Tables

and

Views

for

Example

6

CREATE

VIEW

Chapter

15.

SQL

Statements

for

Administrators

669

CONTROL

on

the

view

if

they

have

CONTROL

on

all

objects

referenced

in

the

view

definition.

ZORPIE

does

not

have

CONTROL

on

S1.V3,

consequently

she

does

not

get

CONTROL

on

VE.

Related

reference:

v

“CREATE

FUNCTION

(SQL

Scalar,

Table,

or

Row)

statement”

in

the

SQL

Reference,

Volume

2

v

“SQL

queries”

in

the

SQL

Reference,

Volume

1

DELETE

The

DELETE

statement

deletes

rows

from

a

table,

nickname,

or

view,

or

the

underlying

tables,

nicknames,

or

views

of

the

specified

fullselect.

Deleting

a

row

from

a

nickname

deletes

the

row

from

the

data

source

object

to

which

the

nickname

refers.

Deleting

a

row

from

a

view

deletes

the

row

from

the

table

on

which

the

view

is

based

if

no

INSTEAD

OF

trigger

is

defined

for

the

delete

operation

on

this

view.

If

such

a

trigger

is

defined,

the

trigger

will

be

executed

instead.

There

are

two

forms

of

this

statement:

v

The

Searched

DELETE

form

is

used

to

delete

one

or

more

rows

(optionally

determined

by

a

search

condition).

v

The

Positioned

DELETE

form

is

used

to

delete

exactly

one

row

(as

determined

by

the

current

position

of

a

cursor).

Invocation:

A

DELETE

statement

can

be

embedded

in

an

application

program

or

issued

through

the

use

of

dynamic

SQL

statements.

It

is

an

executable

statement

that

can

be

dynamically

prepared.

Authorization:

To

execute

either

form

of

this

statement,

the

privileges

held

by

the

authorization

ID

of

the

statement

must

include

at

least

one

of

the

following:

v

DELETE

privilege

on

the

table,

view,

or

nickname

for

which

rows

are

to

be

deleted

v

CONTROL

privilege

on

the

table,

view,

or

nickname

for

which

rows

are

to

be

deleted

v

SYSADM

or

DBADM

authority.

To

execute

a

Searched

DELETE

statement,

the

privileges

held

by

the

authorization

ID

of

the

statement

must

also

include

at

least

one

of

the

following

for

each

table,

view,

or

nickname

referenced

by

a

subquery:

v

SELECT

privilege

v

CONTROL

privilege

v

SYSADM

or

DBADM

authority.

If

the

package

used

to

process

the

statement

is

precompiled

with

SQL92

rules

(option

LANGLEVEL

with

a

value

of

SQL92E

or

MIA),

and

the

searched

form

of

a

DELETE

statement

includes

a

reference

to

a

column

of

the

table

or

view

in

the

search-condition,

the

privileges

held

by

the

authorization

ID

of

the

statement

must

also

include

at

least

one

of

the

following:

CREATE

VIEW

670

Common

Criteria

Certification:

Administration

and

User

Documentation

v

SELECT

privilege

v

CONTROL

privilege

v

SYSADM

or

DBADM

authority.

If

the

specified

table

or

view

is

preceded

by

the

ONLY

keyword,

the

privileges

held

by

the

authorization

ID

of

the

statement

must

also

include

the

SELECT

privilege

for

every

subtable

or

subview

of

the

specified

table

or

view.

Group

privileges

are

not

checked

for

static

DELETE

statements.

If

the

target

of

the

delete

operation

is

a

nickname,

the

privileges

on

the

object

at

the

data

source

are

not

considered

until

the

statement

is

executed

at

the

data

source.

At

this

time,

the

authorization

ID

that

is

used

to

connect

to

the

data

source

must

have

the

privileges

required

for

the

operation

on

the

object

at

the

data

source.

The

authorization

ID

of

the

statement

may

be

mapped

to

a

different

authorization

ID

at

the

data

source.

Syntax:

searched-delete:

��

DELETE

FROM

table-name

view-name

nickname

ONLY

(

table-name

)

view-name

(

fullselect

)

correlation-clause

�

�

include-columns

assignment-clause

�

�

WHERE

search-condition

WITH

RR

RS

CS

UR

��

include-columns:

INCLUDE

�

,

(

column-name

data-type

)

positioned-delete:

��

DELETE

FROM

table-name

view-name

nickname

ONLY

(

table-name

)

view-name

correlation-clause

�

�

WHERE

CURRENT

OF

cursor-name

��

DELETE

Chapter

15.

SQL

Statements

for

Administrators

671

correlation-clause:

AS

correlation-name

(

column-name

)

Description:

FROM

table-name,

view-name,

nickname,

or

(fullselect)

Identifies

the

object

of

the

delete

operation.

The

name

must

identify

a

table

or

view

that

exists

in

the

catalog,

but

it

must

not

identify

a

catalog

table,

a

catalog

view,

a

system-maintained

materialized

query

table,

or

a

read-only

view.

If

table-name

is

a

typed

table,

rows

of

the

table

or

any

of

its

proper

subtables

may

get

deleted

by

the

statement.

If

view-name

is

a

typed

view,

rows

of

the

underlying

table

or

underlying

tables

of

the

view’s

proper

subviews

may

get

deleted

by

the

statement.

If

view-name

is

a

regular

view

with

an

underlying

table

that

is

a

typed

table,

rows

of

the

typed

table

or

any

of

its

proper

subtables

may

get

deleted

by

the

statement.

If

the

object

of

the

delete

operation

is

a

fullselect,

the

fullselect

must

be

deletable,

as

defined

in

the

“Deletable

views”

Notes

item

in

the

description

of

the

CREATE

VIEW

statement.

Only

the

columns

of

the

specified

table

can

be

referenced

in

the

WHERE

clause.

For

a

positioned

DELETE,

the

associated

cursor

must

also

have

specified

the

table

or

view

in

the

FROM

clause

without

using

ONLY.

FROM

ONLY

(table-name)

Applicable

to

typed

tables,

the

ONLY

keyword

specifies

that

the

statement

should

apply

only

to

data

of

the

specified

table

and

rows

of

proper

subtables

cannot

be

deleted

by

the

statement.

For

a

positioned

DELETE,

the

associated

cursor

must

also

have

specified

the

table

in

the

FROM

clause

using

ONLY.

If

table-name

is

not

a

typed

table,

the

ONLY

keyword

has

no

effect

on

the

statement.

FROM

ONLY

(view-name)

Applicable

to

typed

views,

the

ONLY

keyword

specifies

that

the

statement

should

apply

only

to

data

of

the

specified

view

and

rows

of

proper

subviews

cannot

be

deleted

by

the

statement.

For

a

positioned

DELETE,

the

associated

cursor

must

also

have

specified

the

view

in

the

FROM

clause

using

ONLY.

If

view-name

is

not

a

typed

view,

the

ONLY

keyword

has

no

effect

on

the

statement.

correlation-clause

Can

be

used

within

the

search-condition

to

designate

a

table,

view,

nickname,

or

fullselect.

For

a

description

of

correlation-clause,

see

“table-reference”

in

the

description

of

“Subselect”.

include-columns

Specifies

a

set

of

columns

that

are

included,

along

with

the

columns

of

table-name

or

view-name,

in

the

intermediate

result

table

of

the

DELETE

statement

when

it

is

nested

in

the

FROM

clause

of

a

fullselect.

The

include-columns

are

appended

at

the

end

of

the

list

of

columns

that

are

specified

for

table-name

or

view-name.

INCLUDE

Specifies

a

list

of

columns

to

be

included

in

the

intermediate

result

table

of

the

DELETE

statement.

DELETE

672

Common

Criteria

Certification:

Administration

and

User

Documentation

column-name

Specifies

a

column

of

the

intermediate

result

table

of

the

DELETE

statement.

The

name

cannot

be

the

same

as

the

name

of

another

include

column

or

a

column

in

table-name

or

view-name

(SQLSTATE

42711).

data-type

Specifies

the

data

type

of

the

include

column.

The

data

type

must

be

one

that

is

supported

by

the

CREATE

TABLE

statement.

assignment-clause

See

the

description

of

assignment-clause

under

the

UPDATE

statement.

The

same

rules

apply.

The

include-columns

are

the

only

columns

that

can

be

set

using

the

assignment-clause

(SQLSTATE

42703).

WHERE

Specifies

a

condition

that

selects

the

rows

to

be

deleted.

The

clause

can

be

omitted,

a

search

condition

specified,

or

a

cursor

named.

If

the

clause

is

omitted,

all

rows

of

the

table

or

view

are

deleted.

search-condition

Each

column-name

in

the

search

condition,

other

than

in

a

subquery

must

identify

a

column

of

the

table

or

view.

The

search-condition

is

applied

to

each

row

of

the

table,

view,

or

nickname,

and

the

deleted

rows

are

those

for

which

the

result

of

the

search-condition

is

true.

If

the

search

condition

contains

a

subquery,

the

subquery

can

be

thought

of

as

being

executed

each

time

the

search

condition

is

applied

to

a

row,

and

the

results

used

in

applying

the

search

condition.

In

actuality,

a

subquery

with

no

correlated

references

is

executed

once,

whereas

a

subquery

with

a

correlated

reference

may

have

to

be

executed

once

for

each

row.

If

a

subquery

refers

to

the

object

table

of

a

DELETE

statement

or

a

dependent

table

with

a

delete

rule

of

CASCADE

or

SET

NULL,

the

subquery

is

completely

evaluated

before

any

rows

are

deleted.

CURRENT

OF

cursor-name

Identifies

a

cursor

that

is

defined

in

a

DECLARE

CURSOR

statement

of

the

program.

The

DECLARE

CURSOR

statement

must

precede

the

DELETE

statement.

The

table,

view,

or

nickname

named

must

also

be

named

in

the

FROM

clause

of

the

SELECT

statement

of

the

cursor,

and

the

result

table

of

the

cursor

must

not

be

read-only.

(For

an

explanation

of

read-only

result

tables,

see

“DECLARE

CURSOR”.)

When

the

DELETE

statement

is

executed,

the

cursor

must

be

positioned

on

a

row:

that

row

is

the

one

deleted.

After

the

deletion,

the

cursor

is

positioned

before

the

next

row

of

its

result

table.

If

there

is

no

next

row,

the

cursor

is

positioned

after

the

last

row.

WITH

Specifies

the

isolation

level

used

when

locating

the

rows

to

be

deleted.

RR

Repeatable

Read

RS

Read

Stability

CS

Cursor

Stability

DELETE

Chapter

15.

SQL

Statements

for

Administrators

673

UR

Uncommitted

Read

The

default

isolation

level

of

the

statement

is

the

isolation

level

of

the

package

in

which

the

statement

is

bound.

Rules:

v

Triggers:

DELETE

statements

may

cause

triggers

to

be

executed.

A

trigger

may

cause

other

statements

to

be

executed,

or

may

raise

error

conditions

based

on

the

deleted

rows.

If

a

DELETE

statement

on

a

view

causes

an

INSTEAD

OF

trigger

to

fire,

referential

integrity

will

be

checked

against

the

updates

performed

in

the

trigger,

and

not

against

the

underlying

tables

of

the

view

that

caused

the

trigger

to

fire.

v

Referential

Integrity:

If

the

identified

table

or

the

base

table

of

the

identified

view

is

a

parent,

the

rows

selected

for

delete

must

not

have

any

dependents

in

a

relationship

with

a

delete

rule

of

RESTRICT,

and

the

DELETE

must

not

cascade

to

descendent

rows

that

have

dependents

in

a

relationship

with

a

delete

rule

of

RESTRICT.

If

the

delete

operation

is

not

prevented

by

a

RESTRICT

delete

rule,

the

selected

rows

are

deleted.

Any

rows

that

are

dependents

of

the

selected

rows

are

also

affected:

–

The

nullable

columns

of

the

foreign

keys

of

any

rows

that

are

their

dependents

in

a

relationship

with

a

delete

rule

of

SET

NULL

are

set

to

the

null

value.

–

Any

rows

that

are

their

dependents

in

a

relationship

with

a

delete

rule

of

CASCADE

are

also

deleted,

and

the

above

rules

apply,

in

turn,

to

those

rows.

The

delete

rule

of

NO

ACTION

is

checked

to

enforce

that

any

non-null

foreign

key

refers

to

an

existing

parent

row

after

the

other

referential

constraints

have

been

enforced.

Notes:

v

If

an

error

occurs

during

the

execution

of

a

multiple

row

DELETE,

no

changes

are

made

to

the

database.

v

Unless

appropriate

locks

already

exist,

one

or

more

exclusive

locks

are

acquired

during

the

execution

of

a

successful

DELETE

statement.

Issuing

a

COMMIT

or

ROLLBACK

statement

will

release

the

locks.

Until

the

locks

are

released

by

a

commit

or

rollback

operation,

the

effect

of

the

delete

operation

can

only

be

perceived

by:

–

The

application

process

that

performed

the

deletion

–

Another

application

process

using

isolation

level

UR.

The

locks

can

prevent

other

application

processes

from

performing

operations

on

the

table.

v

If

an

application

process

deletes

a

row

on

which

any

of

its

cursors

are

positioned,

those

cursors

are

positioned

before

the

next

row

of

their

result

table.

Let

C

be

a

cursor

that

is

positioned

before

row

R

(as

a

result

of

an

OPEN,

a

DELETE

through

C,

a

DELETE

through

some

other

cursor,

or

a

searched

DELETE).

In

the

presence

of

INSERT,

UPDATE,

and

DELETE

operations

that

affect

the

base

table

from

which

R

is

derived,

the

next

FETCH

operation

referencing

C

does

not

necessarily

position

C

on

R.

For

example,

the

operation

can

position

C

on

R’,

where

R’

is

a

new

row

that

is

now

the

next

row

of

the

result

table.

DELETE

674

Common

Criteria

Certification:

Administration

and

User

Documentation

v

SQLERRD(3)

in

the

SQLCA

shows

the

number

of

rows

that

qualified

for

the

delete

operation.

In

the

context

of

an

SQL

procedure

statement,

the

value

can

be

retrieved

using

the

ROW_COUNT

variable

of

the

GET

DIAGNOSTICS

statement.

SQLERRD(5)

in

the

SQLCA

shows

the

number

of

rows

affected

by

referential

constraints

and

by

triggered

statements.

It

includes

rows

that

were

deleted

as

a

result

of

a

CASCADE

delete

rule

and

rows

in

which

foreign

keys

were

set

to

NULL

as

the

result

of

a

SET

NULL

delete

rule.

With

regards

to

triggered

statements,

it

includes

the

number

of

rows

that

were

inserted,

updated,

or

deleted.

v

If

an

error

occurs

that

prevents

deleting

all

rows

matching

the

search

condition

and

all

operations

required

by

existing

referential

constraints,

no

changes

are

made

to

the

table

and

the

error

is

returned.

v

For

nicknames,

the

external

server

option

iud_app_svpt_enforce

poses

an

additional

limitation.

Refer

to

the

Federated

documentation

for

more

information.

v

For

some

data

sources,

the

SQLCODE

-20190

may

be

returned

on

a

delete

against

a

nickname

because

of

potential

data

inconsistency.

Refer

to

the

Federated

documentation

for

more

information.

v

For

any

deleted

row

that

includes

currently

linked

files

through

DATALINK

columns,

the

files

are

unlinked,

and

will

be

either

restored

or

deleted,

depending

on

the

datalink

column

definition.

An

error

may

occur

when

attempting

to

delete

a

DATALINK

value

if

the

file

server

referenced

in

the

value

is

no

longer

registered

with

the

database

server

(SQLSTATE

55022).

An

error

may

also

occur

when

deleting

a

row

that

has

a

link

to

a

server

that

is

unavailable

at

the

time

of

deletion

(SQLSTATE

57050).

Examples:

Example

1:

Delete

department

(DEPTNO)

‘D11’

from

the

DEPARTMENT

table.

DELETE

FROM

DEPARTMENT

WHERE

DEPTNO

=

’D11’

Example

2:

Delete

all

the

departments

from

the

DEPARTMENT

table

(that

is,

empty

the

table).

DELETE

FROM

DEPARTMENT

Example

3:

Delete

from

the

EMPLOYEE

table

any

sales

rep

or

field

rep

who

didn’t

make

a

sale

in

1995.

DELETE

FROM

EMPLOYEE

WHERE

LASTNAME

NOT

IN

(SELECT

SALES_PERSON

FROM

SALES

WHERE

YEAR(SALES_DATE)=1995)

AND

JOB

IN

(’SALESREP’,’FIELDREP’)

Example

4:

Delete

all

the

duplicate

employee

rows

from

the

EMPLOYEE

table.

An

employee

row

is

considered

to

be

a

duplicate

if

the

last

names

match.

Keep

the

employee

row

with

the

smallest

first

name

in

lexical

order.

DELETE

FROM

(SELECT

ROWNUMBER()

OVER

(PARTITON

BY

LASTNAME

ORDER

BY>/ph>

FIRSTNME)

FROM

EMPLOYEE)

AS

E(RN)

WHERE

RN

=

1

Related

reference:

DELETE

Chapter

15.

SQL

Statements

for

Administrators

675

v

“Search

conditions”

in

the

SQL

Reference,

Volume

1

v

“Subselect”

on

page

904

v

“CREATE

VIEW”

on

page

656

v

“DECLARE

CURSOR

statement”

in

the

SQL

Reference,

Volume

2

v

“UPDATE”

on

page

757

v

“SQLCA

(SQL

communications

area)”

on

page

1004

Related

samples:

v

“dbuse.c

--

How

to

use

a

database”

v

“tbmod.c

--

How

to

modify

table

data”

v

“dbuse.sqc

--

How

to

use

a

database

(C)”

v

“tbconstr.sqc

--

How

to

create,

use,

and

drop

constraints

(C)”

v

“tbmod.sqc

--

How

to

modify

table

data

(C)”

v

“dbuse.sqC

--

How

to

use

a

database

(C++)”

v

“tbconstr.sqC

--

How

to

create,

use,

and

drop

constraints

(C++)”

v

“tbmod.sqC

--

How

to

modify

table

data

(C++)”

v

“delet.sqb

--

How

to

delete

table

data

(MF

COBOL)”

v

“updat.sqb

--

How

to

update,

delete

and

insert

table

data

(MF

COBOL)”

v

“DbUse.java

--

How

to

use

a

database

(JDBC)”

v

“TbConstr.java

--

How

to

create,

use

and

drop

constraints

(JDBC)”

v

“TbMod.java

--

How

to

modify

table

data

(JDBC)”

v

“DbUse.sqlj

--

How

to

use

a

database

(SQLj)”

v

“TbConstr.sqlj

--

How

to

create,

use

and

drop

constraints

(SQLj)”

v

“TbMod.sqlj

--

How

to

modify

table

data

(SQLj)”

DROP

The

DROP

statement

deletes

an

object.

Any

objects

that

are

directly

or

indirectly

dependent

on

that

object

are

either

deleted

or

made

inoperative.

Whenever

an

object

is

deleted,

its

description

is

deleted

from

the

catalog

and

any

packages

that

reference

the

object

are

invalidated.

Invocation:

This

statement

can

be

embedded

in

an

application

program

or

issued

through

the

use

of

dynamic

SQL

statements.

It

is

an

executable

statement

that

can

be

dynamically

prepared

only

if

DYNAMICRULES

run

behavior

is

in

effect

for

the

package

(SQLSTATE

42509).

Authorization:

The

privileges

that

must

be

held

by

the

authorization

ID

of

the

DROP

statement

when

dropping

objects

that

allow

two-part

names

must

include

one

of

the

following

or

an

error

will

result

(SQLSTATE

42501):

v

SYSADM

or

DBADM

authority

v

DROPIN

privilege

on

the

schema

for

the

object

v

definer

of

the

object

as

recorded

in

the

DEFINER

column

of

the

catalog

view

for

the

object

DELETE

676

Common

Criteria

Certification:

Administration

and

User

Documentation

v

CONTROL

privilege

on

the

object

(applicable

only

to

indexes,

index

specifications,

nicknames,

packages,

tables,

and

views).

v

definer

of

the

user-defined

type

as

recorded

in

the

DEFINER

column

of

the

catalog

view

SYSCAT.DATATYPES

(applicable

only

when

dropping

a

method

associated

with

a

user-defined

type)

The

authorization

ID

of

the

DROP

statement

when

dropping

a

table

or

view

hierarchy

must

hold

one

of

the

above

privileges

for

each

of

the

tables

or

views

in

the

hierarchy.

The

authorization

ID

of

the

DROP

statement

when

dropping

a

schema

must

have

SYSADM

or

DBADM

authority

or

be

the

schema

owner

as

recorded

in

the

OWNER

column

of

SYSCAT.SCHEMATA.

The

authorization

ID

of

the

DROP

statement

when

dropping

a

buffer

pool,

database

partition

group,

or

table

space

must

have

SYSADM

or

SYSCTRL

authority.

The

authorization

ID

of

the

DROP

statement

when

dropping

an

event

monitor,

server

definition,

data

type

mapping,

function

mapping

or

a

wrapper

must

have

SYSADM

or

DBADM

authority.

The

authorization

ID

of

the

DROP

statement

when

dropping

a

user

mapping

must

have

SYSADM

or

DBADM

authority,

if

this

authorization

ID

is

different

from

the

federated

database

authorization

name

within

the

mapping.

Otherwise,

if

the

authorization

ID

and

the

authorization

name

match,

no

authorities

or

privileges

are

required.

The

authorization

ID

of

the

DROP

statement

when

dropping

a

transform

must

hold

SYSADM

or

DBADM

authority,

or

must

be

the

DEFINER

of

type-name.

Syntax:

��

DROP

�

DROP

Chapter

15.

SQL

Statements

for

Administrators

677

�

�

�

�

�

ALIAS

alias-name

BUFFERPOOL

bufferpool-name

EVENT

MONITOR

event-monitor-name

RESTRICT

FUNCTION

function-name

(

)

,

data-type

RESTRICT

SPECIFIC

FUNCTION

specific-name

FUNCTION

MAPPING

function-mapping-name

(1)

INDEX

index-name

INDEX

EXTENSION

index-extension-name

RESTRICT

RESTRICT

METHOD

method-name

FOR

type-name

(

)

,

datatype

RESTRICT

SPECIFIC

METHOD

specific-name

NICKNAME

nickname

DATABASE

PARTITION

GROUP

db-partition-group-name

PACKAGE

package-id

schema-name.

VERSION

version-id

RESTRICT

PROCEDURE

procedure-name

(

)

,

data-type

RESTRICT

SPECIFIC

PROCEDURE

specific-name

SCHEMA

schema-name

RESTRICT

RESTRICT

SEQUENCE

sequence-name

SERVER

server-name

TABLE

table-name

TABLE

HIERARCHY

root-table-name

,

TABLESPACE

tablespace-name

TABLESPACES

TRANSFORM

ALL

FOR

type-name

TRANSFORMS

group-name

TRIGGER

trigger-name

TYPE

type-name

(2)

RESTRICT

DISTINCT

TYPE

MAPPING

type-mapping-name

USER

MAPPING

FOR

authorization-name

SERVER

server-name

USER

VIEW

view-name

VIEW

HIERARCHY

root-view-name

WRAPPER

wrapper-name

��

Notes:

1 Index-name

can

be

the

name

of

either

an

index

or

an

index

specification.

2 DATA

can

also

be

used

when

dropping

any

user-defined

type.

Description:

ALIAS

alias-name

Identifies

the

alias

that

is

to

be

dropped.

The

alias-name

must

identify

an

alias

that

is

described

in

the

catalog

(SQLSTATE

42704).

The

specified

alias

is

deleted.

DROP

678

Common

Criteria

Certification:

Administration

and

User

Documentation

All

tables,

views,

and

triggers

that

reference

the

alias

are

made

inoperative.

(This

includes

both

the

table

referenced

in

the

ON

clause

of

the

CREATE

TRIGGER

statement,

and

all

tables

referenced

within

the

triggered

SQL

statements.)

BUFFERPOOL

bufferpool-name

Identifies

the

buffer

pool

that

is

to

be

dropped.

The

bufferpool-name

must

identify

a

buffer

pool

that

is

described

in

the

catalog

(SQLSTATE

42704).

There

can

be

no

table

spaces

assigned

to

the

buffer

pool

(SQLSTATE

42893).

The

IBMDEFAULTBP

buffer

pool

cannot

be

dropped

(SQLSTATE

42832).

Buffer

pool

memory

is

released

immediately,

to

be

used

by

DB2.

Disk

storage

may

not

be

released

until

the

next

connection

to

the

database.

EVENT

MONITOR

event-monitor-name

Identifies

the

event

monitor

that

is

to

be

dropped.

The

event-monitor-name

must

identify

an

event

monitor

that

is

described

in

the

catalog

(SQLSTATE

42704).

If

the

identified

event

monitor

is

ON,

an

error

(SQLSTATE

55034)

is

returned;

otherwise,

the

event

monitor

is

deleted.

If

there

are

event

files

in

the

target

path

of

the

event

monitor

when

the

event

monitor

is

dropped,

the

event

files

are

not

deleted.

However,

if

a

new

event

monitor

that

specifies

the

same

target

path

is

created,

the

event

files

are

deleted.

When

dropping

WRITE

TO

TABLE

event

monitors,

table

information

is

removed

from

the

SYSCAT.EVENTTABLES

catalog

view,

but

the

tables

themselves

are

not

dropped.

FUNCTION

Identifies

an

instance

of

a

user-defined

function

(either

a

complete

function

or

a

function

template)

that

is

to

be

dropped.

The

function

instance

specified

must

be

a

user-defined

function

described

in

the

catalog.

Functions

implicitly

generated

by

the

CREATE

DISTINCT

TYPE

statement

cannot

be

dropped.

There

are

several

different

ways

available

to

identify

the

function

instance:

FUNCTION

function-name

Identifies

the

particular

function,

and

is

valid

only

if

there

is

exactly

one

function

instance

with

the

function-name.

The

function

thus

identified

may

have

any

number

of

parameters

defined

for

it.

In

dynamic

SQL

statements,

the

CURRENT

SCHEMA

special

register

is

used

as

a

qualifier

for

an

unqualified

object

name.

In

static

SQL

statements

the

QUALIFIER

precompile/bind

option

implicitly

specifies

the

qualifier

for

unqualified

object

names.

If

no

function

by

this

name

exists

in

the

named

or

implied

schema,

an

error

(SQLSTATE

42704)

is

raised.

If

there

is

more

than

one

specific

instance

of

the

function

in

the

named

or

implied

schema,

an

error

(SQLSTATE

42725)

is

raised.

FUNCTION

function-name

(data-type,...)

Provides

the

function

signature,

which

uniquely

identifies

the

function

to

be

dropped.

The

function

selection

algorithm

is

not

used.

function-name

Gives

the

function

name

of

the

function

to

be

dropped.

In

dynamic

SQL

statements,

the

CURRENT

SCHEMA

special

register

is

used

as

a

qualifier

for

an

unqualified

object

name.

In

static

SQL

statements

the

QUALIFIER

precompile/bind

option

implicitly

specifies

the

qualifier

for

unqualified

object

names.

DROP

Chapter

15.

SQL

Statements

for

Administrators

679

(data-type,...)

Must

match

the

data

types

that

were

specified

on

the

CREATE

FUNCTION

statement

in

the

corresponding

position.

The

number

of

data

types,

and

the

logical

concatenation

of

the

data

types

is

used

to

identify

the

specific

function

instance

which

is

to

be

dropped.

If

the

data-type

is

unqualified,

the

type

name

is

resolved

by

searching

the

schemas

on

the

SQL

path.

This

also

applies

to

data

type

names

specified

for

a

REFERENCE

type.

It

is

not

necessary

to

specify

the

length,

precision

or

scale

for

the

parameterized

data

types.

Instead,

an

empty

set

of

parentheses

may

be

coded

to

indicate

that

these

attributes

are

to

be

ignored

when

looking

for

a

data

type

match.

FLOAT()

cannot

be

used

(SQLSTATE

42601)

since

the

parameter

value

indicates

different

data

types

(REAL

or

DOUBLE).

If

length,

precision,

or

scale

is

coded,

the

value

must

exactly

match

that

specified

in

the

CREATE

FUNCTION

statement.

A

type

of

FLOAT(n)

does

not

need

to

match

the

defined

value

for

n

since

0<n<25

means

REAL

and

24<n<54

means

DOUBLE.

Matching

occurs

based

on

whether

the

type

is

REAL

or

DOUBLE.

RESTRICT

The

RESTRICT

keyword

enforces

the

rule

that

the

function

is

not

to

be

dropped

if

any

of

the

following

dependencies

exists:

v

Another

routine

is

sourced

on

the

function.

v

A

view

uses

the

function.

v

A

trigger

uses

the

function.

v

A

materialized

query

table

uses

the

function

in

its

definition.

RESTRICT

is

the

default

behavior.

If

no

function

with

the

specified

signature

exists

in

named

or

implied

schema,

an

error

(SQLSTATE

42883)

is

raised.

SPECIFIC

FUNCTION

specific-name

Identifies

the

particular

user-defined

function

that

is

to

be

dropped,

using

the

specific

name

either

specified

or

defaulted

to

at

function

creation

time.

In

dynamic

SQL

statements,

the

CURRENT

SCHEMA

special

register

is

used

as

a

qualifier

for

an

unqualified

object

name.

In

static

SQL

statements

the

QUALIFIER

precompile/bind

option

implicitly

specifies

the

qualifier

for

unqualified

object

names.

The

specific-name

must

identify

a

specific

function

instance

in

the

named

or

implied

schema;

otherwise,

an

error

(SQLSTATE

42704)

is

raised.

RESTRICT

The

RESTRICT

keyword

enforces

the

rule

that

the

function

is

not

to

be

dropped

if

any

of

the

following

dependencies

exists:

v

Another

routine

is

sourced

on

the

function.

v

A

view

uses

the

function.

v

A

trigger

uses

the

function.

RESTRICT

is

the

default

behavior.

It

is

not

possible

to

drop

a

function

that

is

in

the

SYSIBM,

SYSFUN,

or

the

SYSPROC

schema

(SQLSTATE

42832).

DROP

680

Common

Criteria

Certification:

Administration

and

User

Documentation

Other

objects

can

be

dependent

upon

a

function.

All

such

dependencies

must

be

removed

before

the

function

can

be

dropped,

with

the

exception

of

packages

which

are

marked

inoperative.

An

attempt

to

drop

a

function

with

such

dependencies

will

result

in

an

error

(SQLSTATE

42893).

See

691

for

a

list

of

these

dependencies.

If

the

function

can

be

dropped,

it

is

dropped.

Any

package

dependent

on

the

specific

function

being

dropped

is

marked

as

inoperative.

Such

a

package

is

not

implicitly

rebound.

It

must

either

be

rebound

by

use

of

the

BIND

or

REBIND

command,

or

it

must

be

re-prepared

by

use

of

the

PREP

command.

FUNCTION

MAPPING

function-mapping-name

Identifies

the

function

mapping

that

is

to

be

dropped.

The

function-mapping-name

must

identify

a

user-defined

function

mapping

that

is

described

in

the

catalog

(SQLSTATE

42704).

The

function

mapping

is

deleted

from

the

database.

Default

function

mappings

cannot

be

dropped,

but

can

be

disabled

by

using

the

CREATE

FUNCTION

MAPPING

statement.

Dropping

a

user-defined

function

mapping

that

was

created

to

override

a

default

function

mapping

reinstates

the

default

function

mapping.

Packages

having

a

dependency

on

a

dropped

function

mapping

are

invalidated.

INDEX

index-name

Identifies

the

index

or

index

specification

that

is

to

be

dropped.

The

index-name

must

identify

an

index

or

index

specification

that

is

described

in

the

catalog

(SQLSTATE

42704).

It

cannot

be

an

index

required

by

the

system

for

a

primary

key

or

unique

constraint

or

for

a

replicated

materialized

query

table

(SQLSTATE

42917).

The

specified

index

or

index

specification

is

deleted.

Packages

having

a

dependency

on

a

dropped

index

or

index

specification

are

invalidated.

INDEX

EXTENSION

index-extension-name

RESTRICT

Identifies

the

index

extension

that

is

to

be

dropped.

The

index-extension-name

must

identify

an

index

extension

that

is

described

in

the

catalog

(SQLSTATE

42704).

The

RESTRICT

keyword

enforces

the

rule

that

no

index

can

be

defined

that

depends

on

this

index

extension

definition

(SQLSTATE

42893).

METHOD

Identifies

a

method

body

that

is

to

be

dropped.

The

method

body

specified

must

be

a

method

described

in

the

catalog

(SQLSTATE

42704).

Method

bodies

that

are

implicitly

generated

by

the

CREATE

TYPE

statement

cannot

be

dropped.

DROP

METHOD

deletes

the

body

of

a

method,

but

the

method

specification

(signature)

remains

as

a

part

of

the

definition

of

the

subject

type.

After

dropping

the

body

of

a

method,

the

method

specification

can

be

removed

from

the

subject

type

definition

by

ALTER

TYPE

DROP

METHOD.

There

are

several

ways

available

to

identify

the

method

body

to

be

dropped:

METHOD

method-name

Identifies

the

particular

method

to

be

dropped,

and

is

valid

only

if

there

is

exactly

one

method

instance

with

name

method-name

and

subject

type

type-name.

Thus,

the

method

identified

may

have

any

number

of

parameters.

If

no

method

by

this

name

exists

for

the

type

type-name,

an

DROP

Chapter

15.

SQL

Statements

for

Administrators

681

error

(SQLSTATE

42704)

is

raised.

If

there

is

more

than

one

specific

instance

of

the

method

for

the

named

data

type,

an

error

(SQLSTATE

42725)

is

raised.

METHOD

method-name

(data-type,...)

Provides

the

method

signature,

which

uniquely

identifies

the

method

to

be

dropped.

The

method

selection

algorithm

is

not

used.

method-name

The

method

name

of

the

method

to

be

dropped

for

the

specified

type.

The

name

must

be

an

unqualified

identifier.

(data-type,

...)

Must

match

the

data

types

that

were

specified

in

the

corresponding

positions

of

the

method-specification

of

the

CREATE

TYPE

or

ALTER

TYPE

statement.

The

number

of

data

types

and

the

logical

concatenation

of

the

data

types

are

used

to

identify

the

specific

method

instance

which

is

to

be

dropped.

If

the

data-type

is

unqualified,

the

type

name

is

resolved

by

searching

the

schemas

on

the

SQL

path.

It

is

not

necessary

to

specify

the

length,

precision

or

scale

for

the

parameterized

data

types.

Instead,

an

empty

set

of

parentheses

may

be

coded

to

indicate

that

these

attributes

are

to

be

ignored

when

looking

for

a

data

type

match.

FLOAT()

cannot

be

used

(SQLSTATE

42601)

since

the

parameter

value

indicates

different

data

types

(REAL

or

DOUBLE).

However,

if

length,

precision,

or

scale

is

coded,

the

value

must

exactly

match

that

specified

in

the

CREATE

TYPE

statement.

A

type

of

FLOAT(n)

does

not

need

to

match

the

defined

value

for

n

since

0<n<25

means

REAL

and

24<n<54

means

DOUBLE.

Matching

occurs

based

on

whether

the

type

is

REAL

or

DOUBLE.

If

no

method

with

the

specified

signature

exists

for

the

named

data

type,

an

error

is

raised

(SQLSTATE

42883).

FOR

type-name

Names

the

type

for

which

the

specified

method

is

to

be

dropped.

The

name

must

identify

a

type

already

described

in

the

catalog

(SQLSTATE

42704).

In

dynamic

SQL

statements,

the

CURRENT

SCHEMA

special

register

is

used

as

a

qualifier

for

an

unqualified

type

name.

In

static

SQL

statements,

the

QUALIFIER

precompile/bind

option

implicitly

specifies

the

qualifier

for

unqualified

type

names.

RESTRICT

The

RESTRICT

keyword

enforces

the

rule

that

the

method

is

not

to

be

dropped

if

any

of

the

following

dependencies

exists:

v

Another

routine

is

sourced

on

the

method.

v

A

view

uses

the

method.

v

A

trigger

uses

the

method.

RESTRICT

is

the

default

behavior.

SPECIFIC

METHOD

specific-name

Identifies

the

particular

method

that

is

to

be

dropped,

using

a

name

either

specified

or

defaulted

to

at

CREATE

TYPE

or

ALTER

TYPE

time.

If

the

specific

name

is

unqualified,

the

CURRENT

SCHEMA

special

register

is

used

as

a

qualifier

for

an

unqualified

specific

name

in

dynamic

SQL.

In

DROP

682

Common

Criteria

Certification:

Administration

and

User

Documentation

static

SQL

statements

the

QUALIFIER

precompile/bind

option

implicitly

specifies

the

qualifier

for

an

unqualified

specific

name.

The

specific-name

must

identify

a

method;

otherwise,

an

error

is

raised

(SQLSTATE

42704).

RESTRICT

The

RESTRICT

keyword

enforces

the

rule

that

the

method

is

not

to

be

dropped

if

any

of

the

following

dependencies

exists:

v

Another

routine

is

sourced

on

the

method.

v

A

view

uses

the

method.

v

A

trigger

uses

the

function.

RESTRICT

is

the

default

method.

Other

objects

can

be

dependent

upon

a

method.

All

such

dependencies

must

be

removed

before

the

method

can

be

dropped,

with

the

exception

of

packages

which

will

be

marked

inoperative

if

the

drop

is

successful.

An

attempt

to

drop

a

method

with

such

dependencies

will

result

in

an

error

(SQLSTATE

42893).

If

the

method

can

be

dropped,

it

will

be

dropped.

Any

package

dependent

on

the

specific

method

being

dropped

is

marked

as

inoperative.

Such

a

package

is

not

implicitly

re-bound.

Either

it

must

be

re-bound

by

use

of

the

BIND

or

REBIND

command,

or

it

must

be

re-prepared

by

use

of

the

PREP

command.

If

the

specific

method

being

dropped

overrides

another

method,

all

packages

dependent

on

the

overridden

method

—

and

on

methods

that

override

this

method

in

supertypes

of

the

specific

method

being

dropped

—

are

invalidated.

NICKNAME

nickname

Identifies

the

nickname

that

is

to

be

dropped.

The

nickname

must

be

listed

in

the

catalog

(SQLSTATE

42704).

The

nickname

is

deleted

from

the

database.

All

information

about

the

columns

and

indexes

associated

with

the

nickname

is

deleted

from

the

catalog.

Any

materialized

query

tables

that

are

dependent

on

the

nickname

are

dropped.

Any

index

specifications

that

are

dependent

on

the

nickname

are

dropped.

Any

views

that

are

dependent

on

the

nickname

are

marked

inoperative.

Any

packages

that

are

dependent

on

the

dropped

index

specifications

or

inoperative

views

are

invalidated.

The

data

source

table

that

the

nickname

references

is

not

affected.

If

an

SQL

function

or

method

is

dependent

on

a

nickname,

that

nickname

cannot

be

dropped

(SQLSTATE

42893).

DATABASE

PARTITION

GROUP

db-partition-group-name

Identifies

the

database

partition

group

that

is

to

be

dropped.

The

db-partition-group-name

parameter

must

identify

a

database

partition

group

that

is

described

in

the

catalog

(SQLSTATE

42704).

This

is

a

one-part

name.

Dropping

a

database

partition

group

drops

all

table

spaces

defined

in

the

database

partition

group.

All

existing

database

objects

with

dependencies

on

the

tables

in

the

table

spaces

(such

as

packages,

referential

constraints,

and

so

on)

are

dropped

or

invalidated

(as

appropriate),

and

dependent

views

and

triggers

are

made

inoperative.

System-defined

database

partition

groups

cannot

be

dropped

(SQLSTATE

42832).

If

a

DROP

DATABASE

PARTITION

GROUP

statement

is

issued

against

a

database

partition

group

that

is

currently

undergoing

a

data

redistribution,

the

DROP

Chapter

15.

SQL

Statements

for

Administrators

683

drop

database

partition

group

operation

fails,

and

an

error

is

returned

(SQLSTATE

55038).

However,

a

partially

redistributed

database

partition

group

can

be

dropped.

A

database

partition

group

can

become

partially

redistributed

if

a

REDISTRIBUTE

DATABASE

PARTITION

GROUP

command

does

not

execute

to

completion.

This

can

happen

if

it

is

interrupted

by

either

an

error

or

a

FORCE

APPLICATION

ALL

command.

(For

a

partially

redistributed

database

partition

group,

the

REBALANCE_PMAP_ID

in

the

SYSCAT.DBPARTITIONGROUPS

catalog

is

not

−1.)

PACKAGE

schema-name.package-id

Identifies

the

package

that

is

to

be

dropped.

If

a

schema

name

is

not

specified,

the

package

identifier

is

implicitly

qualified

by

the

default

schema.

The

schema

name

and

package

identifier,

together

with

the

implicitly

or

explicitly

specified

version

identifier,

must

identify

a

package

that

is

described

in

the

catalog

(SQLSTATE

42704).

The

specified

package

is

deleted.

If

the

package

being

dropped

is

the

only

package

identified

by

schema-name.package-id

(that

is,

there

are

no

other

versions),

all

privileges

on

the

package

are

also

deleted.

VERSION

version-id

Identifies

which

package

version

is

to

be

dropped.

If

a

value

is

not

specified,

the

version

defaults

to

the

empty

string.

If

multiple

packages

with

the

same

package

name

but

different

versions

exist,

only

one

package

version

can

be

dropped

in

one

invocation

of

the

DROP

statement.

Delimit

the

version

identifier

with

double

quotation

marks

when

it:

v

Is

generated

by

the

VERSION(AUTO)

precompiler

option

v

Begins

with

a

digit

v

Contains

lowercase

or

mixed-case

letters

If

the

statement

is

invoked

from

an

operating

system

command

prompt,

precede

each

double

quotation

mark

delimiter

with

a

back

slash

character

to

ensure

that

the

operating

system

does

not

strip

the

delimiters.

PROCEDURE

Identifies

an

instance

of

a

stored

procedure

that

is

to

be

dropped.

The

procedure

instance

specified

must

be

a

stored

procedure

described

in

the

catalog.

There

are

several

different

ways

available

to

identify

the

procedure

instance:

PROCEDURE

procedure-name

Identifies

the

particular

procedure

to

be

dropped,

and

is

valid

only

if

there

is

exactly

one

procedure

instance

with

the

procedure-name

in

the

schema.

The

procedure

thus

identified

may

have

any

number

of

parameters

defined

for

it.

If

no

procedure

by

this

name

exists

in

the

named

or

implied

schema,

an

error

(SQLSTATE

42704)

is

raised.

In

dynamic

SQL

statements,

the

CURRENT

SCHEMA

special

register

is

used

as

a

qualifier

for

an

unqualified

object

name.

In

static

SQL

statements

the

QUALIFIER

precompile/bind

option

implicitly

specifies

the

qualifier

for

unqualified

object

names.

If

there

is

more

than

one

specific

instance

of

the

procedure

in

the

named

or

implied

schema,

an

error

(SQLSTATE

42725)

is

returned.

RESTRICT

The

RESTRICT

keyword

prevents

the

procedure

from

being

dropped

if

a

trigger

definition,

an

SQL

function,

or

an

SQL

method

contains

a

CALL

statement

with

the

name

of

the

procedure.

RESTRICT

is

the

default

behavior.

DROP

684

Common

Criteria

Certification:

Administration

and

User

Documentation

PROCEDURE

procedure-name

(data-type,...)

Provides

the

procedure

signature,

which

uniquely

identifies

the

procedure

to

be

dropped.

The

procedure

selection

algorithm

is

not

used.

procedure-name

Gives

the

procedure

name

of

the

procedure

to

be

dropped.

In

dynamic

SQL

statements,

the

CURRENT

SCHEMA

special

register

is

used

as

a

qualifier

for

an

unqualified

object

name.

In

static

SQL

statements

the

QUALIFIER

precompile/bind

option

implicitly

specifies

the

qualifier

for

unqualified

object

names.

(data-type,...)

Must

match

the

data

types

that

were

specified

on

the

CREATE

PROCEDURE

statement

in

the

corresponding

position.

The

number

of

data

types,

and

the

logical

concatenation

of

the

data

types

is

used

to

identify

the

specific

procedure

instance

which

is

to

be

dropped.

If

the

data-type

is

unqualified,

the

type

name

is

resolved

by

searching

the

schemas

on

the

SQL

path.

This

also

applies

to

data

type

names

specified

for

a

REFERENCE

type.

It

is

not

necessary

to

specify

the

length,

precision

or

scale

for

the

parameterized

data

types.

Instead,

an

empty

set

of

parentheses

may

be

coded

to

indicate

that

these

attributes

are

to

be

ignored

when

looking

for

a

data

type

match.

FLOAT()

cannot

be

used

(SQLSTATE

42601)

since

the

parameter

value

indicates

different

data

types

(REAL

or

DOUBLE).

However,

if

length,

precision,

or

scale

is

coded,

the

value

must

exactly

match

that

specified

in

the

CREATE

FUNCTION

statement.

A

type

of

FLOAT(n)

does

not

need

to

match

the

defined

value

for

n

since

0<n<25

means

REAL

and

24<n<54

means

DOUBLE.

Matching

occurs

based

on

whether

the

type

is

REAL

or

DOUBLE.

If

no

procedure

with

the

specified

signature

exists

in

named

or

implied

schema,

an

error

(SQLSTATE

42883)

is

returned.

SPECIFIC

PROCEDURE

specific-name

Identifies

the

particular

stored

procedure

that

is

to

be

dropped,

using

the

specific

name

either

specified

or

defaulted

to

at

procedure

creation

time.

In

dynamic

SQL

statements,

the

CURRENT

SCHEMA

special

register

is

used

as

a

qualifier

for

an

unqualified

object

name.

In

static

SQL

statements

the

QUALIFIER

precompile/bind

option

implicitly

specifies

the

qualifier

for

unqualified

object

names.

The

specific-name

must

identify

a

specific

procedure

instance

in

the

named

or

implied

schema;

otherwise,

an

error

(SQLSTATE

42704)

is

raised.

RESTRICT

The

RESTRICT

keyword

prevents

the

procedure

from

being

dropped

if

a

trigger

definition,

an

SQL

function,

or

an

SQL

method

contains

a

CALL

statement

with

the

name

of

the

procedure.

RESTRICT

is

the

default

behavior.

It

is

not

possible

to

drop

a

procedure

that

is

in

the

SYSIBM,

SYSFUN,

or

the

SYSPROC

schema

(SQLSTATE

42832).

SCHEMA

schema-name

RESTRICT

Identifies

the

particular

schema

to

be

dropped.

The

schema-name

must

identify

a

schema

that

is

described

in

the

catalog

(SQLSTATE

42704).

The

RESTRICT

DROP

Chapter

15.

SQL

Statements

for

Administrators

685

keyword

enforces

the

rule

that

no

objects

can

be

defined

in

the

specified

schema

for

the

schema

to

be

deleted

from

the

database

(SQLSTATE

42893).

SEQUENCE

sequence-name

Identifies

the

particular

sequence

that

is

to

be

dropped.

The

sequence-name,

along

with

the

implicit

or

explicit

schema

name,

must

identify

an

existing

sequence

at

the

current

server.

If

no

sequence

by

this

name

exists

in

the

explicitly

or

implicitly

specified

schema,

an

error

(SQLSTATE

42704)

is

raised.

The

RESTRICT

option,

which

is

the

default,

prevents

the

sequence

from

being

dropped

if

any

of

the

following

dependencies

exist:

v

A

trigger

exists

such

that

a

NEXT

VALUE

or

PREVIOUS

VALUE

expression

in

the

trigger

specifies

the

sequence

(SQLSTATE

42893).

v

An

SQL

function

or

an

SQL

method

exists

such

that

a

NEXT

VALUE

expression

in

the

routine

body

specifies

the

sequence

(SQLSTATE

42893).

SERVER

server-name

Identifies

the

data

source

whose

definition

is

to

be

dropped

from

the

catalog.

The

server-name

must

identify

a

data

source

that

is

described

in

the

catalog

(SQLSTATE

42704).

The

definition

of

the

data

source

is

deleted.

All

nicknames

for

tables

and

views

residing

at

the

data

source

are

dropped.

Any

index

specifications

dependent

on

these

nicknames

are

dropped.

Any

user-defined

function

mappings,

user-defined

type

mappings,

and

user

mappings

that

are

dependent

on

the

dropped

server

definition

are

also

dropped.

All

packages

dependent

on

the

dropped

server

definition,

function

mappings,

nicknames,

and

index

specifications

are

invalidated.

TABLE

table-name

Identifies

the

base

table,

declared

temporary

table,

or

nickname

that

is

to

be

dropped.

The

table-name

must

identify

a

table

that

is

described

in

the

catalog

or,

if

it

is

a

declared

temporary

table,

the

table-name

must

be

qualified

by

the

schema

name

SESSION

and

exist

in

the

application

(SQLSTATE

42704).

The

subtables

of

a

typed

table

are

dependent

on

their

supertables.

All

subtables

must

be

dropped

before

a

supertable

can

be

dropped

(SQLSTATE

42893).

The

specified

table

is

deleted

from

the

database.

All

indexes,

primary

keys,

foreign

keys,

check

constraints,

materialized

query

tables,

and

staging

tables

referencing

the

table

are

dropped.

All

views

and

triggers

that

reference

the

table

are

made

inoperative.

(This

includes

both

the

table

referenced

in

the

ON

clause

of

the

CREATE

TRIGGER

statement,

and

all

tables

referenced

within

the

triggered

SQL

statements.)

All

packages

depending

on

any

object

dropped

or

marked

inoperative

will

be

invalidated.

This

includes

packages

dependent

on

any

supertables

above

the

subtable

in

the

hierarchy.

Any

reference

columns

for

which

the

dropped

table

is

defined

as

the

scope

of

the

reference

become

unscoped.

Packages

are

not

dependent

on

declared

temporary

tables,

and

therefore

are

not

invalidated

when

such

a

table

is

dropped.

All

files

that

are

linked

through

any

DATALINK

columns

are

unlinked.

The

unlink

operation

is

performed

asynchronously

so

the

files

may

not

be

immediately

available

for

other

operations.

In

a

federated

system,

a

remote

table

that

was

created

using

transparent

DDL

can

be

dropped.

Dropping

a

remote

table

also

drops

the

nickname

associated

with

that

table,

and

invalidates

any

packages

that

are

dependent

on

that

nickname.

DROP

686

Common

Criteria

Certification:

Administration

and

User

Documentation

When

a

subtable

is

dropped

from

a

table

hierarchy,

the

columns

associated

with

the

subtable

are

no

longer

accessible

although

they

continue

to

be

considered

with

respect

to

limits

on

the

number

of

columns

and

size

of

the

row.

Dropping

a

subtable

has

the

effect

of

deleting

all

the

rows

of

the

subtable

from

the

supertables.

This

may

result

in

activation

of

triggers

or

referential

integrity

constraints

defined

on

the

supertables.

When

a

declared

temporary

table

is

dropped,

and

its

creation

preceded

the

active

unit

of

work

or

savepoint,

then

the

table

will

be

functionally

dropped

and

the

application

will

not

be

able

to

access

the

table.

However,

the

table

will

still

reserve

some

space

in

its

table

space

and

will

prevent

that

USER

TEMPORARY

table

space

from

being

dropped

or

the

database

partition

group

of

the

USER

TEMPORARY

table

space

from

being

redistributed

until

the

unit

of

work

is

committed

or

savepoint

is

ended.

Dropping

a

declared

temporary

table

causes

the

data

in

the

table

to

be

destroyed,

regardless

of

whether

DROP

is

committed

or

rolled

back.

A

table

cannot

be

dropped

if

it

has

the

RESTRICT

ON

DROP

attribute.

TABLE

HIERARCHY

root-table-name

Identifies

the

typed

table

hierarchy

that

is

to

be

dropped.

The

root-table-name

must

identify

a

typed

table

that

is

the

root

table

in

the

typed

table

hierarchy

(SQLSTATE

428DR).

The

typed

table

identified

by

root-table-name

and

all

of

its

subtables

are

deleted

from

the

database.

All

indexes,

materialized

query

tables,

staging

tables,

primary

keys,

foreign

keys,

and

check

constraints

referencing

the

dropped

tables

are

dropped.

All

views

and

triggers

that

reference

the

dropped

tables

are

made

inoperative.

All

packages

depending

on

any

object

dropped

or

marked

inoperative

will

be

invalidated.

Any

reference

columns

for

which

one

of

the

dropped

tables

is

defined

as

the

scope

of

the

reference

become

unscoped.

All

files

that

are

linked

through

any

DATALINK

columns

are

unlinked.

The

unlink

operation

is

performed

asynchronously

so

the

files

may

not

be

immediately

available

for

other

operations.

Unlike

dropping

a

single

subtable,

dropping

the

table

hierarchy

does

not

result

in

the

activation

of

delete

triggers

of

any

tables

in

the

hierarchy

nor

does

it

log

the

deleted

rows.

TABLESPACE

or

TABLESPACES

tablespace-name

Identifies

the

table

spaces

that

are

to

be

dropped.

tablespace-name

must

identify

a

table

space

that

is

described

in

the

catalog

(SQLSTATE

42704).

This

is

a

one-part

name.

The

table

spaces

will

not

be

dropped

(SQLSTATE

55024)

if

there

is

any

table

that

stores

at

least

one

of

its

parts

in

a

table

space

being

dropped,

and

has

one

or

more

of

its

parts

in

another

table

space

that

is

not

being

dropped

(these

tables

would

need

to

be

dropped

first),

or

if

any

table

that

resides

in

the

table

space

has

the

RESTRICT

ON

DROP

attribute.

System

table

spaces

cannot

be

dropped

(SQLSTATE

42832).

A

SYSTEM

TEMPORARY

table

space

cannot

be

dropped

(SQLSTATE

55026)

if

it

is

the

only

temporary

table

space

that

exists

in

the

database.

A

USER

TEMPORARY

table

space

cannot

be

dropped

if

there

is

a

declared

temporary

table

created

in

it

(SQLSTATE

55039).

Even

if

a

declared

temporary

table

has

been

dropped,

the

USER

TEMPORARY

table

space

will

still

be

considered

to

be

in

use

until

the

unit

of

work

containing

the

DROP

TABLE

has

been

committed.

Dropping

a

table

space

drops

all

objects

defined

in

the

table

space.

All

existing

database

objects

with

dependencies

on

the

table

space,

such

as

packages,

DROP

Chapter

15.

SQL

Statements

for

Administrators

687

referential

constraints,

and

so

on,

are

dropped

or

invalidated

(as

appropriate),

and

dependent

views

and

triggers

are

made

inoperative.

Containers

created

by

a

user

are

not

deleted.

Any

directories

in

the

path

of

the

container

name

that

were

created

by

the

database

manager

on

CREATE

TABLESPACE

are

deleted.

All

containers

that

are

below

the

database

directory

are

deleted.

When

DROP

TABLESPACE

is

committed,

the

DMS

file

containers

or

SMS

containers

for

the

specified

table

space

are

deleted,

if

possible.

If

the

containers

cannot

be

deleted

(because

they

are

being

kept

open

by

another

agent,

for

example),

the

files

are

truncated

to

zero-length.

After

all

connections

are

terminated,

or

the

DEACTIVATE

DATABASE

command

is

issued,

these

zero-length

files

are

deleted.

TRANSFORM

ALL

FOR

type-name

Indicates

that

all

transforms

groups

defined

for

the

user-defined

data

type

type-name

are

to

be

dropped.

The

transform

functions

referenced

in

these

groups

are

not

dropped.

In

dynamic

SQL

statements,

the

CURRENT

SCHEMA

special

register

is

used

as

a

qualifier

for

an

unqualified

object

name.

In

static

SQL

statements,

the

QUALIFIER

precompile/bind

option

implicitly

specifies

the

qualifier

for

unqualified

object

names.

The

type-name

must

identify

a

user-defined

type

described

in

the

catalog

(SQLSTATE

42704).

If

there

are

not

transforms

defined

for

type-name,

an

error

is

raised

(SQLSTATE

42740).

DROP

TRANSFORM

is

the

inverse

of

CREATE

TRANSFORM.

It

causes

the

transform

functions

associated

with

certain

groups,

for

a

given

datatype,

to

become

undefined.

The

functions

formerly

associated

with

these

groups

still

exist

and

can

still

be

called

explicitly,

but

they

no

longer

have

the

transform

property,

and

are

no

longer

invoked

implicitly

for

exchanging

values

with

the

host

language

environment.

The

transform

group

is

not

dropped

if

there

is

a

user-defined

function

(or

method)

written

in

a

language

other

than

SQL

that

has

a

dependency

on

one

of

the

group’s

transform

functions

defined

for

the

user-defined

type

type-name

(SQLSTATE

42893).

Such

a

function

has

a

dependency

on

the

transform

function

associated

with

the

referenced

transform

group

defined

for

type

type-name.

Packages

that

depend

on

a

transform

function

associated

with

the

named

transform

group

are

marked

inoperative.

TRANSFORMS

group-name

FOR

type-name

Indicates

that

the

specified

transform

group

for

the

user-defined

data

type

type-name

is

to

be

dropped.

The

transform

functions

referenced

in

this

group

are

not

dropped.

In

dynamic

SQL

statements,

the

CURRENT

SCHEMA

special

register

is

used

as

a

qualifier

for

an

unqualified

object

name.

In

static

SQL

statements,

the

QUALIFIER

precompile/bind

option

implicitly

specifies

the

qualifier

for

unqualified

object

names.

The

type-name

must

identify

a

user-defined

type

described

in

the

catalog

(SQLSTATE

42704),

and

the

group-name

must

identify

an

existing

transform

group

for

type-name.

TRIGGER

trigger-name

Identifies

the

trigger

that

is

to

be

dropped.

The

trigger-name

must

identify

a

trigger

that

is

described

in

the

catalog

(SQLSTATE

42704).

The

specified

trigger

is

deleted.

Dropping

triggers

causes

certain

packages

to

be

marked

invalid.

If

trigger-name

specifies

an

INSTEAD

OF

trigger

on

a

view,

another

trigger

may

depend

on

that

trigger

through

an

update

against

the

view.

DROP

688

Common

Criteria

Certification:

Administration

and

User

Documentation

TYPE

type-name

Identifies

the

user-defined

type

to

be

dropped.

In

dynamic

SQL

statements,

the

CURRENT

SCHEMA

special

register

is

used

as

a

qualifier

for

an

unqualified

object

name.

In

static

SQL

statements

the

QUALIFIER

precompile/bind

option

implicitly

specifies

the

qualifier

for

unqualified

object

names.

For

a

structured

type,

the

associated

reference

type

is

also

dropped.

The

type-name

must

identify

a

user-defined

type

described

in

the

catalog.

If

DISTINCT

is

specified,

then

the

type-name

must

identify

a

distinct

type

described

in

the

catalog.

RESTRICT

The

type

is

not

dropped

(SQLSTATE

42893)

if

any

of

the

following

is

true:

v

The

type

is

used

as

the

type

of

a

column

of

a

table

or

view.

v

The

type

has

a

subtype.

v

The

type

is

a

structured

type

used

as

the

data

type

of

a

typed

table

or

a

typed

view.

v

The

type

is

an

attribute

of

another

structured

type.

v

There

exists

a

column

of

a

table

whose

type

might

contain

an

instance

of

type-name.

This

can

occur

if

type-name

is

the

type

of

the

column

or

is

used

elsewhere

in

the

column’s

associated

type

hierarchy.

More

formally,

for

any

type

T,

T

cannot

be

dropped

if

there

exists

a

column

of

a

table

whose

type

directly

or

indirectly

uses

type-name.

v

The

type

is

the

target

type

of

a

reference-type

column

of

a

table

or

view,

or

a

reference-type

attribute

of

another

structured

type.

v

The

type,

or

a

reference

to

the

type,

is

a

parameter

type

or

a

return

value

type

of

a

function

or

method.

v

The

type,

or

a

reference

to

the

type,

is

used

in

the

body

of

an

SQL

function

or

method,

but

it

is

not

a

parameter

type

or

a

return

value

type.

v

The

type

is

used

in

a

check

constraint,

trigger,

view

definition,

or

index

extension.

If

RESTRICT

is

not

specified,

the

behavior

is

the

same

as

RESTRICT,

except

for

functions

and

methods

that

use

the

type.

Functions

that

use

the

type:

If

the

user-defined

type

can

be

dropped,

then

for

every

function,

F

(with

specific

name

SF),

that

has

parameters

or

a

return

value

of

the

type

being

dropped

or

a

reference

to

the

type

being

dropped,

the

following

DROP

FUNCTION

statement

is

effectively

executed:

DROP

SPECIFIC

FUNCTION

SF

It

is

possible

that

this

statement

also

would

cascade

to

drop

dependent

functions.

If

all

of

these

functions

are

also

in

the

list

to

be

dropped

because

of

a

dependency

on

the

user-defined

type,

the

drop

of

the

user-defined

type

will

succeed

(otherwise

it

fails

with

SQLSTATE

42893).

Methods

that

use

the

type:

If

the

user-defined

type

can

be

dropped,

then

for

every

method,

M

of

type

T1

(with

specific

name

SM),

that

has

parameters

or

a

return

value

of

the

type

being

dropped

or

a

reference

to

the

type

being

dropped,

the

following

statements

are

effectively

executed:

DROP

SPECIFIC

METHOD

SM

ALTER

TYPE

T1

DROP

SPECIFIC

METHOD

SM

The

existence

of

objects

that

are

dependent

on

these

methods

may

cause

the

DROP

TYPE

operation

to

fail.

DROP

Chapter

15.

SQL

Statements

for

Administrators

689

All

packages

that

are

dependent

on

methods

defined

in

supertypes

of

the

type

being

dropped,

and

that

are

eligible

for

overriding,

are

invalidated.

TYPE

MAPPING

type-mapping-name

Identifies

the

user-defined

data

type

mapping

to

be

dropped.

The

type-mapping-name

must

identify

a

data

type

mapping

that

is

described

in

the

catalog

(SQLSTATE

42704).

The

data

type

mapping

is

deleted

from

the

database.

No

additional

objects

are

dropped.

USER

MAPPING

FOR

authorization-name

|

USER

SERVER

server-name

Identifies

the

user

mapping

to

be

dropped.

This

mapping

associates

an

authorization

name

that

is

used

to

access

the

federated

database

with

an

authorization

name

that

is

used

to

access

a

data

source.

The

first

of

these

two

authorization

names

is

either

identified

by

the

authorization-name

or

referenced

by

the

special

register

USER.

The

server-name

identifies

the

data

source

that

the

second

authorization

name

is

used

to

access.

The

authorization-name

must

be

listed

in

the

catalog

(SQLSTATE

42704).

The

server-name

must

identify

a

data

source

that

is

described

in

the

catalog

(SQLSTATE

42704).

The

user

mapping

is

deleted.

No

additional

objects

are

dropped.

VIEW

view-name

Identifies

the

view

that

is

to

be

dropped.

The

view-name

must

identify

a

view

that

is

described

in

the

catalog

(SQLSTATE

42704).

The

subviews

of

a

typed

view

are

dependent

on

their

superviews.

All

subviews

must

be

dropped

before

a

superview

can

be

dropped

(SQLSTATE

42893).

The

specified

view

is

deleted.

The

definition

of

any

view

or

trigger

that

is

directly

or

indirectly

dependent

on

that

view

is

marked

inoperative.

Any

materialized

query

table

or

staging

table

that

is

dependent

on

any

view

that

is

marked

inoperative

is

dropped.

Any

packages

dependent

on

a

view

that

is

dropped

or

marked

inoperative

will

be

invalidated.

This

includes

packages

dependent

on

any

superviews

above

the

subview

in

the

hierarchy.

Any

reference

columns

for

which

the

dropped

view

is

defined

as

the

scope

of

the

reference

become

unscoped.

VIEW

HIERARCHY

root-view-name

Identifies

the

typed

view

hierarchy

that

is

to

be

dropped.

The

root-view-name

must

identify

a

typed

view

that

is

the

root

view

in

the

typed

view

hierarchy

(SQLSTATE

428DR).

The

typed

view

identified

by

root-view-name

and

all

of

its

subviews

are

deleted

from

the

database.

The

definition

of

any

view

or

trigger

that

is

directly

or

indirectly

dependent

on

any

of

the

dropped

views

is

marked

inoperative.

Any

packages

dependent

on

any

view

or

trigger

that

is

dropped

or

marked

inoperative

will

be

invalidated.

Any

reference

columns

for

which

a

dropped

view

or

view

marked

inoperative

is

defined

as

the

scope

of

the

reference

become

unscoped.

WRAPPER

wrapper-name

Identifies

the

wrapper

to

be

dropped.

The

wrapper-name

must

identify

a

wrapper

that

is

described

in

the

catalog

(SQLSTATE

42704).

The

wrapper

is

deleted.

All

server

definitions,

user-defined

function

mappings,

and

user-defined

data

type

mappings

that

are

dependent

on

the

wrapper

are

dropped.

All

user-defined

function

mappings,

nicknames,

user-defined

data

type

mappings,

and

user

mappings

that

are

dependent

on

the

dropped

server

definitions

are

DROP

690

Common

Criteria

Certification:

Administration

and

User

Documentation

also

dropped.

Any

index

specifications

dependent

on

the

dropped

nicknames

are

dropped,

and

any

views

dependent

on

these

nicknames

are

marked

inoperative.

All

packages

dependent

on

the

dropped

objects

and

inoperative

views

are

invalidated.

Rules:

Dependencies:

Table

63

on

page

692

shows

the

dependencies

that

objects

have

on

each

other.

Not

all

dependencies

are

explicitly

recorded

in

the

catalog.

For

example,

there

is

no

record

of

the

constraints

on

which

a

package

has

dependencies.

Four

different

types

of

dependencies

are

shown:

R

Restrict

semantics.

The

underlying

object

cannot

be

dropped

as

long

as

the

object

that

depends

on

it

exists.

C

Cascade

semantics.

Dropping

the

underlying

object

causes

the

object

that

depends

on

it

(the

depending

object)

to

be

dropped

as

well.

However,

if

the

depending

object

cannot

be

dropped

because

it

has

a

Restrict

dependency

on

some

other

object,

the

drop

of

the

underlying

object

will

fail.

X

Inoperative

semantics.

Dropping

the

underlying

object

causes

the

object

that

depends

on

it

to

become

inoperative.

It

remains

inoperative

until

a

user

takes

some

explicit

action.

A

Automatic

Invalidation/Revalidation

semantics.

Dropping

the

underlying

object

causes

the

object

that

depends

on

it

to

become

invalid.

The

database

manager

attempts

to

revalidate

the

invalid

object.

A

package

used

by

a

function

or

a

method,

or

by

a

procedure

that

is

called

directly

or

indirectly

from

a

function

or

method,

will

only

be

automatically

revalidated

if

the

routine

is

defined

as

MODIFIES

SQL

DATA.

If

the

routine

is

not

MODIFIES

SQL

DATA,

an

error

is

returned

(SQLSTATE

56098).

Some

DROP

statement

parameters

and

objects

are

not

shown

in

Table

63

on

page

692

because

they

would

result

in

blank

rows

or

columns:

v

EVENT

MONITOR,

PACKAGE,

PROCEDURE,

SCHEMA,

TYPE

MAPPING,

and

USER

MAPPING

DROP

statements

do

not

have

object

dependencies.

v

Alias,

bufferpool,

partitioning

key,

privilege,

and

procedure

object

types

do

not

have

DROP

statement

dependencies.

v

A

DROP

SERVER,

DROP

FUNCTION

MAPPING,

or

DROP

TYPE

MAPPING

statement

in

a

given

unit

of

work

(UOW)

cannot

be

processed

under

either

of

the

following

conditions:

–

The

statement

references

a

single

data

source,

and

the

UOW

already

includes

a

SELECT

statement

that

references

a

nickname

for

a

table

or

view

within

this

data

source

(SQLSTATE

55006).

–

The

statement

references

a

category

of

data

sources

(for

example,

all

data

sources

of

a

specific

type

and

version),

and

the

UOW

already

includes

a

SELECT

statement

that

references

a

nickname

for

a

table

or

view

within

one

of

these

data

sources

(SQLSTATE

55006).

DROP

Chapter

15.

SQL

Statements

for

Administrators

691

Table

63.

Dependencies

Object

Type

→

Statement

↓

C

O

N

S

T

R

A

I

N

T

F

U

N

C

T

I

O

N

F

U

N

C

M

A

P

P

I

N

G

I

N

D

E

X

I

N

D

E

X

E

X

T

E

N

S

I

O

N

M

E

T

H

O

D

N

I

C

K

N

A

M

E

N

O

D

E

G

R

O

U

P

P

A

C

K

A

G

E31

S

E

R

V

E

R

T

A

B

L

E

T

A

B

L

E

S

P

A

C

E

T

R

I

G

G

E

R

T

Y

P

E

T

Y

P

E

M

A

P

P

I

N

G

U

S

E

R

M

A

P

P

I

N

G

V

I

E

W

ALTER

FUNCTION

-

-

-

-

-

-

-

-

A

-

-

-

-

-

-

-

-

ALTER

METHOD

-

-

-

-

-

-

-

-

A

-

-

-

-

-

-

-

-

ALTER

NICKNAME,

altering

the

local

name

or

the

local

type

R33

R

-

-

-

R

-

-

A

-

R

-

-

-

-

-

R

ALTER

NICKNAME,

altering

a

column

option

or

a

nickname

option

-

-

-

-

-

-

-

-

A

-

R

-

-

-

-

-

-

ALTER

NICKNAME,

adding,

altering,

or

dropping

a

constraint

-

-

-

-

-

-

-

-

A

-

-

-

-

-

-

-

-

ALTER

PROCEDURE

-

-

-

-

-

-

-

-

A

-

-

-

-

-

-

-

-

ALTER

SERVER

-

-

-

-

-

-

-

-

A

-

-

-

-

-

-

-

-

ALTER

TABLE

DROP

CONSTRAINT

C

-

-

-

-

-

-

-

A1

-

-

-

-

-

-

-

-

ALTER

TABLE

DROP

PARTITIONING

KEY

-

-

-

-

-

-

-

R20

A1

-

-

-

-

-

-

-

-

ALTER

TYPE

ADD

ATTRIBUTE

-

-

-

-

R

-

-

-

A23

-

R24

-

-

-

-

-

R14

ALTER

TYPE

ALTER

METHOD

-

-

-

-

-

-

-

-

A

-

-

-

-

-

-

-

-

ALTER

TYPE

DROP

ATTRIBUTE

-

-

-

-

R

-

-

-

A23

-

R24

-

-

-

-

-

R14

ALTER

TYPE

ADD

METHOD

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

ALTER

TYPE

DROP

METHOD

-

-

-

-

-

R27

-

-

-

-

-

-

-

-

-

-

-

CREATE

METHOD

-

-

-

-

-

-

-

-

A28

-

-

-

-

-

-

-

-

CREATE

TYPE

-

-

-

-

-

-

-

-

A29

-

-

-

-

-

-

-

-

DROP

ALIAS

-

R

-

-

-

-

-

-

A3

-

R3

-

X3

-

-

-

X3

DROP

BUFFERPOOL

-

-

-

-

-

-

-

-

-

-

-

R

-

-

-

-

-

DROP

DATABASE

PARTITION

GROUP

-

-

-

-

-

-

-

-

-

-

-

C

-

-

-

-

-

DROP

FUNCTION

R

R7

R

-

R

R7

-

-

X

-

R

-

R

-

-

-

R

DROP

FUNCTION

MAPPING

-

-

-

-

-

-

-

-

A

-

-

-

-

-

-

-

-

DROP

INDEX

R

-

-

-

-

-

-

-

A

-

-

-

-

-

-

-

R17

DROP

INDEX

EXTENSION

-

R

-

R

-

-

-

-

-

-

-

-

-

-

-

-

-

DROP

METHOD

R

R7

R

-

R

R

-

-

X/A30

-

R

-

R

-

-

-

R

DROP

NICKNAME

-

R

-

C

-

R

-

-

A

-

C11

-

-

-

-

-

X16

DROP

692

Common

Criteria

Certification:

Administration

and

User

Documentation

Table

63.

Dependencies

(continued)

Object

Type

→

Statement

↓

C

O

N

S

T

R

A

I

N

T

F

U

N

C

T

I

O

N

F

U

N

C

M

A

P

P

I

N

G

I

N

D

E

X

I

N

D

E

X

E

X

T

E

N

S

I

O

N

M

E

T

H

O

D

N

I

C

K

N

A

M

E

N

O

D

E

G

R

O

U

P

P

A

C

K

A

G

E31

S

E

R

V

E

R

T

A

B

L

E

T

A

B

L

E

S

P

A

C

E

T

R

I

G

G

E

R

T

Y

P

E

T

Y

P

E

M

A

P

P

I

N

G

U

S

E

R

M

A

P

P

I

N

G

V

I

E

W

DROP

PROCEDURE

-

R7

-

-

-

R7

-

-

A

-

-

-

R

-

-

-

-

DROP

SEQUENCE

-

R

-

-

-

R

-

-

A

-

-

-

R

-

-

-

-

DROP

SERVER

-

C21

C19

-

-

-

C

-

A

-

-

-

-

-

C19

C

-

DROP

TABLE32

C

R

-

C

-

-

-

-

A9

-

RC11

-

X16

-

-

-

X16

DROP

TABLE

HIERARCHY

C

R

-

C

-

-

-

-

A9

-

RC11

-

X16

-

-

-

X16

DROP

TABLESPACE

-

-

-

C6

-

-

-

-

-

-

CR6

-

-

-

-

-

-

DROP

TRANSFORM

-

R

-

-

-

-

-

-

X

-

-

-

-

-

-

-

-

DROP

TRIGGER

-

-

-

-

-

-

-

-

A1

-

-

-

X26

-

-

-

-

DROP

TYPE

R13

R5

-

-

R

-

-

-

A12

-

R18

-

R13

R4

-

-

R14

DROP

VIEW

-

R

-

-

-

-

-

-

A2

-

-

-

X16

-

-

-

X15

DROP

VIEW

HIERARCHY

-

R

-

-

-

-

-

-

A2

-

-

-

X16

-

-

-

X16

DROP

WRAPPER

-

-

C

-

-

-

-

-

-

C

-

-

-

-

C

-

-

REVOKE

a

privilege10

-

CR25

-

-

-

CR25

-

-

A1

-

CX8

-

X

-

-

-

X8

1

This

dependency

is

implicit

in

depending

on

a

table

with

these

constraints,

triggers,

or

a

partitioning

key.

2

If

a

package

has

an

INSERT,

UPDATE,

or

DELETE

statement

acting

upon

a

view,

then

the

package

has

an

insert,

update

or

delete

usage

on

the

underlying

base

table

of

the

view.

In

the

case

of

UPDATE,

the

package

has

an

update

usage

on

each

column

of

the

underlying

base

table

that

is

modified

by

the

UPDATE.

If

a

package

has

a

statement

acting

on

a

typed

view,

creating

or

dropping

any

view

in

the

same

view

hierarchy

will

invalidate

the

package.

3

If

a

package,

materialized

query

table,

staging

table,

view,

or

trigger

uses

an

alias,

it

becomes

dependent

both

on

the

alias

and

the

object

that

the

alias

references.

If

the

alias

is

in

a

chain,

a

dependency

is

created

on

each

alias

in

the

chain.

Aliases

themselves

are

not

dependent

on

anything.

It

is

possible

for

an

alias

to

be

defined

on

an

object

that

does

not

exist.

4

A

user-defined

type

T

can

depend

on

another

user-defined

type

B,

if

T:

v

names

B

as

the

data

type

of

an

attribute

v

has

an

attribute

of

REF(B)

v

has

B

as

a

supertype.
5

Dropping

a

data

type

cascades

to

drop

the

functions

and

methods

that

use

that

data

type

as

a

parameter

or

a

result

type,

and

methods

defined

on

the

data

type.

Dropping

of

these

functions

and

methods

will

not

be

prevented

DROP

Chapter

15.

SQL

Statements

for

Administrators

693

by

the

fact

that

they

depend

on

each

other.

However,

for

functions

or

methods

using

the

datatype

within

their

bodies,

restrict

semantics

apply.

6

Dropping

a

table

space

or

a

list

of

table

spaces

causes

all

the

tables

that

are

completely

contained

within

the

given

table

space

or

list

to

be

dropped.

However,

if

a

table

spans

table

spaces

(indexes

or

long

columns

in

different

table

spaces)

and

those

table

spaces

are

not

in

the

list

being

dropped

then

the

table

space(s)

cannot

be

dropped

as

long

as

the

table

exists.

7

A

function

can

depend

on

another

specific

function

if

the

depending

function

names

the

base

function

in

a

SOURCE

clause.

A

function

or

method

can

also

depend

on

another

specific

function

or

method

if

the

depending

routine

is

written

in

SQL

and

uses

the

base

routine

in

its

body.

An

external

method,

or

an

external

function

with

a

structured

type

parameter

or

returns

type

will

also

depend

on

one

or

more

transform

functions.

8

Only

loss

of

SELECT

privilege

will

cause

a

materialized

query

table

to

be

dropped

or

a

view

to

become

inoperative.

If

the

view

that

is

made

inoperative

is

included

in

a

typed

view

hierarchy,

all

of

its

subviews

also

become

inoperative.

9

If

a

package

has

an

INSERT,

UPDATE,

or

DELETE

statement

acting

on

table

T,

then

the

package

has

an

insert,

update

or

delete

usage

on

T.

In

the

case

of

UPDATE,

the

package

has

an

update

usage

on

each

column

of

T

that

is

modified

by

the

UPDATE.

If

a

package

has

a

statement

acting

on

a

typed

table,

creating

or

dropping

any

table

in

the

same

table

hierarchy

will

invalidate

the

package.

10

Dependencies

do

not

exist

at

the

column

level

because

privileges

on

columns

cannot

be

revoked

individually.

If

a

package,

trigger

or

view

includes

the

use

of

OUTER(Z)

in

the

FROM

clause,

there

is

a

dependency

on

the

SELECT

privilege

on

every

subtable

or

subview

of

Z.

Similarly,

if

a

package,

trigger,

or

view

includes

the

use

of

DEREF(Y)

where

Y

is

a

reference

type

with

a

target

table

or

view

Z,

there

is

a

dependency

on

the

SELECT

privilege

on

every

subtable

or

subview

of

Z.

11

A

materialized

query

table

is

dependent

on

the

underlying

tables

or

nicknames

specified

in

the

fullselect

of

the

table

definition.

Cascade

semantics

apply

to

dependent

materialized

query

tables.

A

subtable

is

dependent

on

its

supertables

up

to

the

root

table.

A

supertable

cannot

be

dropped

until

all

of

its

subtables

are

dropped.

12

A

package

can

depend

on

structured

types

as

a

result

of

using

the

TYPE

predicate

or

the

subtype-treatment

expression

(TREAT

expression

AS

data-type).

The

package

has

a

dependency

on

the

subtypes

of

each

structured

type

specified

in

the

right

side

of

the

TYPE

predicate,

or

the

right

side

of

the

TREAT

expression.

Dropping

or

creating

a

structured

type

that

alters

the

subtypes

on

which

the

package

is

dependent

causes

invalidation.

All

packages

that

are

dependent

on

methods

defined

in

supertypes

of

the

type

being

dropped,

and

that

are

eligible

for

overriding,

are

invalidated.

13

A

check

constraint

or

trigger

is

dependent

on

a

type

if

the

type

is

used

DROP

694

Common

Criteria

Certification:

Administration

and

User

Documentation

anywhere

in

the

constraint

or

trigger.

There

is

no

dependency

on

the

subtypes

of

a

structured

type

used

in

a

TYPE

predicate

within

a

check

constraint

or

trigger.

14

A

view

is

dependent

on

a

type

if

the

type

is

used

anywhere

in

the

view

definition

(this

includes

the

type

of

typed

view).

There

is

no

dependency

on

the

subtypes

of

a

structured

type

used

in

a

TYPE

predicate

within

a

view

definition.

15

A

subview

is

dependent

on

its

superview

up

to

the

root

view.

A

superview

cannot

be

dropped

until

all

its

subviews

are

dropped.

Refer

to

16

for

additional

view

dependencies.

16

A

trigger

or

view

is

also

dependent

on

the

target

table

or

target

view

of

a

dereference

operation

or

DEREF

function.

A

trigger

or

view

with

a

FROM

clause

that

includes

OUTER(Z)

is

dependent

on

all

the

subtables

or

subviews

of

Z

that

existed

at

the

time

the

trigger

or

view

was

created.

17

A

typed

view

can

depend

on

the

existence

of

a

unique

index

to

ensure

the

uniqueness

of

the

object

identifier

column.

18

A

table

may

depend

on

a

user

defined

data

type

(distinct

or

structured)

because

the

type

is:

v

used

as

the

type

of

a

column

v

used

as

the

type

of

the

table

v

used

as

an

attribute

of

the

type

of

the

table

v

used

as

the

target

type

of

a

reference

type

that

is

the

type

of

a

column

of

the

table

or

an

attribute

of

the

type

of

the

table

v

directly

or

indirectly

used

by

a

type

that

is

the

column

of

the

table.
19

Dropping

a

server

cascades

to

drop

the

function

mappings

and

type

mappings

created

for

that

named

server.

20

If

the

partitioning

key

is

defined

on

a

table

in

a

multiple

partition

database

partition

group,

the

partitioning

key

is

required.

21

If

a

dependent

OLE

DB

table

function

has

″R″

dependent

objects

(see

DROP

FUNCTION),

then

the

server

cannot

be

dropped.

22

An

SQL

function

or

method

can

depend

on

the

objects

referenced

by

its

body.

23

When

an

attribute

A

of

type

TA

of

type-name

T

is

dropped,

the

following

DROP

statements

are

effectively

executed:

Mutator

method:

DROP

METHOD

A

(TA)

FOR

T

Observer

method:

DROP

METHOD

A

()

FOR

T

ALTER

TYPE

T

DROP

METHOD

A(TA)

DROP

METHOD

A()

24

A

table

may

depend

on

an

attribute

of

a

user-defined

structured

data

type

in

the

following

cases:

1.

The

table

is

a

typed

table

that

is

based

on

type-name

or

any

of

its

subtypes.

2.

The

table

has

an

existing

column

of

a

type

that

directly

or

indirectly

refers

to

type-name.
25

A

REVOKE

of

SELECT

privilege

on

a

table

or

view

that

is

used

in

the

body

of

an

SQL

function

or

method

body

causes

an

attempt

to

drop

the

function

or

method

body,

if

the

function

or

method

body

defined

no

longer

has

the

SELECT

privilege.

If

such

a

function

or

method

body

is

used

in

a

DROP

Chapter

15.

SQL

Statements

for

Administrators

695

view,

trigger,

function,

or

method

body,

it

cannot

be

dropped,

and

the

REVOKE

is

restricted

as

a

result.

Otherwise,

the

REVOKE

cascades

and

drops

such

functions.

26

A

trigger

depends

on

an

INSTEAD

OF

trigger

when

it

modifies

the

view

on

which

the

INSTEAD

OF

trigger

is

defined,

and

the

INSTEAD

OF

trigger

fires.

27

A

method

declaration

of

an

original

method

that

is

overridden

by

other

methods

cannot

be

dropped.(SQLSTATE

-2).

28

If

the

method

of

the

method

body

being

created

is

declared

to

override

another

method,

all

packages

dependent

on

the

overridden

method,

and

on

methods

that

override

this

method

in

supertypes

of

the

method

being

created,

are

invalidated.

29

When

a

new

subtype

of

an

existing

type

is

created,

all

packages

dependent

on

methods

that

are

defined

in

supertypes

of

the

type

being

created,

and

that

are

eligible

for

overriding

(for

example,

no

mutators

or

observers),

are

invalidated.

30

If

the

specific

method

of

the

method

body

being

dropped

is

declared

to

override

another

method,

all

packages

dependent

on

the

overridden

method,

and

on

methods

that

override

this

method

in

supertypes

of

the

specific

method

being

dropped,

are

invalidated.

31

Cached

dynamic

SQL

has

the

same

semantics

as

packages.

32

When

a

remote

base

table

is

dropped

using

the

DROP

TABLE

statement,

both

the

nickname

and

the

remote

base

table

are

dropped.

33

A

primary

key

or

unique

keys

that

are

not

referenced

by

a

foreign

key

do

not

restrict

the

altering

of

a

nickname

local

name

or

local

type.

Notes:

v

Compatibilities

–

For

compatibility

with

previous

versions

of

DB2:

-

NODEGROUP

can

be

specified

in

place

of

DATABASE

PARTITION

GROUP
–

For

compatibility

with

DB2

UDB

for

OS/390

and

z/OS:

-

SYNONYM

can

be

specified

in

place

of

ALIAS

-

PROGRAM

can

be

specified

in

place

of

PACKAGE
v

It

is

valid

to

drop

a

user-defined

function

while

it

is

in

use.

Also,

a

cursor

can

be

open

over

a

statement

which

contains

a

reference

to

a

user-defined

function,

and

while

this

cursor

is

open

the

function

can

be

dropped

without

causing

the

cursor

fetches

to

fail.

v

If

a

package

which

depends

on

a

user-defined

function

is

executing,

it

is

not

possible

for

another

authorization

ID

to

drop

the

function

until

the

package

completes

its

current

unit

of

work.

At

that

point,

the

function

is

dropped

and

the

package

becomes

inoperative.

The

next

request

for

this

package

results

in

an

error

indicating

that

the

package

must

be

explicitly

rebound.

v

The

removal

of

a

function

body

(this

is

very

different

from

dropping

the

function)

can

occur

while

an

application

which

needs

the

function

body

is

executing.

This

may

or

may

not

cause

the

statement

to

fail,

depending

on

whether

the

function

body

still

needs

to

be

loaded

into

storage

by

the

database

manager

on

behalf

of

the

statement.

DROP

696

Common

Criteria

Certification:

Administration

and

User

Documentation

v

For

any

dropped

table

that

includes

currently

linked

files

through

DATALINK

columns,

the

files

are

unlinked,

and

will

be

either

restored

or

deleted,

depending

on

the

datalink

column

definition.

v

If

a

table

containing

a

DATALINK

column

is

dropped

while

any

DB2

Data

Links

Managers

configured

to

the

database

are

unavailable,

either

through

DROP

TABLE

or

DROP

TABLESPACE,

then

the

operation

will

fail

(SQLSTATE

57050).

v

In

addition

to

the

dependencies

recorded

for

any

explicitly

specified

UDF,

the

following

dependencies

are

recorded

when

transforms

are

implicitly

required:

1.

When

the

structured

type

parameter

or

result

of

a

function

or

method

requires

a

transform,

a

dependency

is

recorded

for

the

function

or

method

on

the

required

TO

SQL

or

FROM

SQL

transform

function.

2.

When

an

SQL

statement

included

in

a

package

requires

a

transform

function,

a

dependency

is

recorded

for

the

package

on

the

designated

TO

SQL

or

FROM

SQL

transform

function.

Since

the

above

describes

the

only

circumstances

under

which

dependencies

are

recorded

due

to

implicit

invocation

of

transforms,

no

objects

other

than

functions,

methods,

or

packages

can

have

a

dependency

on

implicitly

invoked

transform

functions.

On

the

other

hand,

explicit

calls

to

transform

functions

(in

views

and

triggers,

for

example)

do

result

in

the

usual

dependencies

of

these

other

types

of

objects

on

transform

functions.

As

a

result,

a

DROP

TRANSFORM

statement

may

also

fail

due

to

these

″explicit″

type

dependencies

of

objects

on

the

transform(s)

being

dropped

(SQLSTATE

42893).

v

Since

the

dependency

catalogs

do

not

distinguish

between

depending

on

a

function

as

a

transform

versus

depending

on

a

function

by

explicit

function

call,

it

is

suggested

that

explicit

calls

to

transform

functions

are

not

written.

In

such

an

instance,

the

transform

property

on

the

function

cannot

be

dropped,

or

packages

will

be

marked

inoperative,

simply

because

they

contain

explicit

invocations

in

an

SQL

expression.

v

System

created

sequences

for

IDENTITY

columns

cannot

be

dropped

using

the

DROP

SEQUENCE

statement.

v

When

a

sequence

is

dropped,

all

privileges

on

the

sequence

are

also

dropped

and

any

packages

that

refer

to

the

sequence

are

invalidated.

v

For

relational

nicknames,

the

DROP

NICKNAME

statement

within

a

given

unit

of

work

(UOW)

cannot

be

processed

under

either

of

the

following

conditions

(SQLSTATE

55007):

–

A

nickname

referenced

in

this

statement

has

a

cursor

open

on

it

in

the

same

UOW

–

Either

an

INSERT,

DELETE,

or

UPDATE

statement

is

already

issued

in

the

same

UOW

against

the

nickname

that

is

referenced

in

this

statement
v

For

non-relational

nicknames,

the

DROP

NICKNAME

statement

within

a

given

unit

of

work

(UOW)

cannot

be

processed

under

any

of

the

following

conditions

(SQLSTATE

55007):

–

A

nickname

referenced

in

this

statement

has

a

cursor

open

on

it

in

the

same

UOW

–

A

nickname

referenced

in

this

statement

is

already

referenced

by

a

SELECT

statement

in

the

same

UOW

–

Either

an

INSERT,

DELETE,

or

UPDATE

statement

has

already

been

issued

in

the

same

UOW

against

the

nickname

that

is

referenced

in

this

statement
v

A

DROP

SERVER

statement

(SQLSTATE

55006),

or

a

DROP

FUNCTION

MAPPING

or

DROP

TYPE

MAPPING

statement

(SQLSTATE

55007)

within

a

given

unit

of

work

(UOW)

cannot

be

processed

under

either

of

the

following

conditions:

DROP

Chapter

15.

SQL

Statements

for

Administrators

697

–

The

statement

references

a

single

data

source,

and

the

UOW

already

includes

one

of

the

following:

-

A

SELECT

statement

that

references

a

nickname

for

a

table

or

view

within

this

data

source

-

An

open

cursor

on

a

nickname

for

a

table

or

view

within

this

data

source

-

Either

an

INSERT,

DELETE,

or

UPDATE

statement

issued

against

a

nickname

for

a

table

or

view

within

this

data

source
–

The

statement

references

a

category

of

data

sources

(for

example,

all

data

sources

of

a

specific

type

and

version),

and

the

UOW

already

includes

one

of

the

following:

-

A

SELECT

statement

that

references

a

nickname

for

a

table

or

view

within

one

of

these

data

sources

-

An

open

cursor

on

a

nickname

for

a

table

or

view

within

one

of

these

data

sources

-

Either

an

INSERT,

DELETE,

or

UPDATE

statement

issued

against

a

nickname

for

a

table

or

view

within

one

of

these

data

sources

Examples:

Example

1:

Drop

table

TDEPT.

DROP

TABLE

TDEPT

Example

2:

Drop

the

view

VDEPT.

DROP

VIEW

VDEPT

Example

3:

The

authorization

ID

HEDGES

attempts

to

drop

an

alias.

DROP

ALIAS

A1

The

alias

HEDGES.A1

is

removed

from

the

catalogs.

Example

4:

Hedges

attempts

to

drop

an

alias,

but

specifies

T1

as

the

alias-name,

where

T1

is

the

name

of

an

existing

table

(not

the

name

of

an

alias).

DROP

ALIAS

T1

This

statement

fails

(SQLSTATE

42809).

Example

5:

Drop

the

BUSINESS_OPS

database

partition

group.

To

drop

the

database

partition

group,

the

two

table

spaces

(ACCOUNTING

and

PLANS)

in

the

database

partition

group

must

first

be

dropped.

DROP

TABLESPACE

ACCOUNTING

DROP

TABLESPACE

PLANS

DROP

DATABASE

PARTITION

GROUP

BUSINESS_OPS

Example

6:

Pellow

wants

to

drop

the

CENTRE

function,

which

he

created

in

his

PELLOW

schema,

using

the

signature

to

identify

the

function

instance

to

be

dropped.

DROP

FUNCTION

CENTRE

(INT,FLOAT)

Example

7:

McBride

wants

to

drop

the

FOCUS92

function,

which

she

created

in

the

PELLOW

schema,

using

the

specific

name

to

identify

the

function

instance

to

be

dropped.

DROP

698

Common

Criteria

Certification:

Administration

and

User

Documentation

DROP

SPECIFIC

FUNCTION

PELLOW.FOCUS92

Example

8:

Drop

the

function

ATOMIC_WEIGHT

from

the

CHEM

schema,

where

it

is

known

that

there

is

only

one

function

with

that

name.

DROP

FUNCTION

CHEM.ATOMIC_WEIGHT

Example

9:

Drop

the

trigger

SALARY_BONUS,

which

caused

employees

under

a

specified

condition

to

receive

a

bonus

to

their

salary.

DROP

TRIGGER

SALARY_BONUS

Example

10:

Drop

the

distinct

data

type

named

shoesize,

if

it

is

not

currently

in

use.

DROP

DISTINCT

TYPE

SHOESIZE

Example

11:

Drop

the

SMITHPAY

event

monitor.

DROP

EVENT

MONITOR

SMITHPAY

Example

12:

Drop

the

schema

from

Example

2

under

CREATE

SCHEMA

using

RESTRICT.

Notice

that

the

table

called

PART

must

be

dropped

first.

DROP

TABLE

PART

DROP

SCHEMA

INVENTRY

RESTRICT

Example

13:

Macdonald

wants

to

drop

the

DESTROY

procedure,

which

he

created

in

the

EIGLER

schema,

using

the

specific

name

to

identify

the

procedure

instance

to

be

dropped.

DROP

SPECIFIC

PROCEDURE

EIGLER.DESTROY

Example

14:

Drop

the

procedure

OSMOSIS

from

the

BIOLOGY

schema,

where

it

is

known

that

there

is

only

one

procedure

with

that

name.

DROP

PROCEDURE

BIOLOGY.OSMOSIS

Example

15:

User

SHAWN

used

one

authorization

ID

to

access

the

federated

database

and

another

to

access

the

database

at

an

Oracle

data

source

called

ORACLE1.

A

mapping

was

created

between

the

two

authorizations,

but

SHAWN

no

longer

needs

to

access

the

data

source.

Drop

the

mapping.

DROP

USER

MAPPING

FOR

SHAWN

SERVER

ORACLE1

Example

16:

An

index

of

a

data

source

table

that

a

nickname

references

has

been

deleted.

Drop

the

index

specification

that

was

created

to

let

the

optimizer

know

about

this

index.

DROP

INDEX

INDEXSPEC

Example

17:

Drop

the

MYSTRUCT1

transform

group.

DROP

TRANSFORM

MYSTRUCT1

FOR

POLYGON

Example

18:

Drop

the

method

BONUS

for

the

EMP

data

type

in

the

PERSONNEL

schema.

DROP

METHOD

BONUS

(SALARY

DECIMAL(10,2))

FOR

PERSONNEL.EMP

Example

19:

Drop

the

sequence

ORG_SEQ,

with

restrictions.

DROP

SEQUENCE

ORG_SEQ

DROP

Chapter

15.

SQL

Statements

for

Administrators

699

Example

20:

A

remote

table

EMPLOYEE

was

created

in

a

federated

system

using

transparent

DDL.

Access

to

the

table

is

no

longer

needed.

Drop

the

remote

table

EMPLOYEE.

DROP

TABLE

EMPLOYEE

Example

21:

Drop

the

function

mapping

BONUS_CALC

and

reinstate

the

default

function

mapping

(if

one

exists).

DROP

FUNCTION

MAPPING

BONUS_CALC

Related

tasks:

v

“Disabling

a

default

function

mapping”

in

the

Federated

Systems

Guide

v

“Dropping

a

user-defined

function

mapping”

in

the

Federated

Systems

Guide

v

“Dropping

remote

tables

using

transparent

DDL”

in

the

Federated

Systems

Guide

Related

reference:

v

“CREATE

TRIGGER

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

VIEW”

on

page

656

v

“CREATE

FUNCTION

MAPPING

statement”

in

the

SQL

Reference,

Volume

2

Related

samples:

v

“dbstat.sqb

--

Reorganize

table

and

run

statistics

(MF

COBOL)”

v

“dtstruct.sqC

--

Create,

use,

drop

a

hierarchy

of

structured

types

and

typed

tables

(C++)”

v

“tbconstr.sqC

--

How

to

create,

use,

and

drop

constraints

(C++)”

v

“tbcreate.sqC

--

How

to

create

and

drop

tables

(C++)”

v

“tbtrig.sqC

--

How

to

use

a

trigger

on

a

table

(C++)”

v

“DbSeq.java

--

How

to

create,

alter

and

drop

a

sequence

in

a

database

(JDBC)”

v

“TbConstr.java

--

How

to

create,

use

and

drop

constraints

(JDBC)”

v

“TbCreate.java

--

How

to

create

and

drop

tables

(JDBC)”

v

“TbTemp.java

--

How

to

use

Declared

Temporary

Table

(JDBC)”

v

“TbTrig.java

--

How

to

use

triggers

(JDBC)”

v

“UDFDrop.db2

--

How

to

uncatalog

the

Java

UDFs

contained

in

UDFsrv.java

”

v

“spdrop.db2

--

How

to

uncatalog

the

stored

procedures

contained

in

spserver.sqc

(C)”

v

“tbconstr.sqc

--

How

to

create,

use,

and

drop

constraints

(C)”

v

“tbcreate.sqc

--

How

to

create

and

drop

tables

(C)”

v

“tbtemp.sqc

--

How

to

use

a

declared

temporary

table

(C)”

v

“tbtrig.sqc

--

How

to

use

a

trigger

on

a

table

(C)”

v

“TbConstr.sqlj

--

How

to

create,

use

and

drop

constraints

(SQLj)”

v

“TbCreate.sqlj

--

How

to

create

and

drop

tables

(SQLj)”

v

“TbTrig.sqlj

--

How

to

use

triggers

(SQLj)”

GRANT

(Database

Authorities)

This

form

of

the

GRANT

statement

grants

authorities

that

apply

to

the

entire

database

(rather

than

privileges

that

apply

to

specific

objects

within

the

database).

Invocation:

DROP

700

Common

Criteria

Certification:

Administration

and

User

Documentation

This

statement

can

be

embedded

in

an

application

program

or

issued

through

the

use

of

dynamic

SQL

statements.

It

is

an

executable

statement

that

can

be

dynamically

prepared

only

if

DYNAMICRULES

run

behavior

is

in

effect

for

the

package

(SQLSTATE

42509).

Authorization:

To

grant

DBADM

authority,

SYSADM

authority

is

required.

To

grant

other

authorities,

either

DBADM

or

SYSADM

authority

is

required.

Syntax:

��

GRANT

�

,

BINDADD

CONNECT

CREATETAB

CREATE_EXTERNAL_ROUTINE

CREATE_NOT_FENCED_ROUTINE

IMPLICIT_SCHEMA

DBADM

LOAD

QUIESCE_CONNECT

ON

DATABASE

�

�

�

,

TO

authorization-name

USER

GROUP

PUBLIC

��

Description:

BINDADD

Grants

the

authority

to

create

packages.

The

creator

of

a

package

automatically

has

the

CONTROL

privilege

on

that

package

and

retains

this

privilege

even

if

the

BINDADD

authority

is

subsequently

revoked.

CONNECT

Grants

the

authority

to

access

the

database.

CREATETAB

Grants

the

authority

to

create

base

tables.

The

creator

of

a

base

table

automatically

has

the

CONTROL

privilege

on

that

table.

The

creator

retains

this

privilege

even

if

the

CREATETAB

authority

is

subsequently

revoked.

There

is

no

explicit

authority

required

for

view

creation.

A

view

can

be

created

at

any

time

if

the

authorization

ID

of

the

statement

used

to

create

the

view

has

either

CONTROL

or

SELECT

privilege

on

each

base

table

of

the

view.

CREATE_EXTERNAL_ROUTINE

Grants

the

authority

to

register

external

routines.

Care

must

be

taken

that

routines

so

registered

will

not

have

adverse

side

effects.

(For

more

information,

see

the

description

of

the

THREADSAFE

clause

on

the

CREATE

or

ALTER

routine

statements.)

Once

an

external

routine

has

been

registered,

it

continues

to

exist,

even

if

CREATE_EXTERNAL_ROUTINE

is

subsequently

revoked.

CREATE_NOT_FENCED_ROUTINE

Grants

the

authority

to

register

routines

that

execute

in

the

database

manager’s

GRANT

(Database

Authorities)

Chapter

15.

SQL

Statements

for

Administrators

701

process.

Care

must

be

taken

that

routines

so

registered

will

not

have

adverse

side

effects.

(For

more

information,

see

the

description

of

the

FENCED

clause

on

the

CREATE

or

ALTER

routine

statements.)

Once

a

routine

has

been

registered

as

not

fenced,

it

continues

to

run

in

this

manner,

even

if

CREATE_NOT_FENCED_ROUTINE

is

subsequently

revoked.

CREATE_EXTERNAL_ROUTINE

is

automatically

granted

to

an

authorization-name

that

is

granted

CREATE_NOT_FENCED_ROUTINE

authority.

IMPLICIT_SCHEMA

Grants

the

authority

to

implicitly

create

a

schema.

DBADM

Grants

the

database

administrator

authority

and

all

other

database

authorities.

A

database

administrator

has

all

privileges

against

all

objects

in

the

database,

and

can

grant

these

privileges

to

others.

Note:

All

other

database

authorities

are

implicitly

and

automatically

granted

to

an

authorization-name

that

is

granted

DBADM

authority.

LOAD

Grants

the

authority

to

load

in

this

database.

This

authority

gives

a

user

the

right

to

use

the

LOAD

utility

in

this

database.

SYSADM

and

DBADM

also

have

this

authority

by

default.

However,

if

a

user

only

has

LOAD

authority

(not

SYSADM

or

DBADM),

the

user

is

also

required

to

have

table-level

privileges.

In

addition

to

LOAD

privilege,

the

user

is

required

to

have:

v

INSERT

privilege

on

the

table

for

LOAD

with

mode

INSERT,

TERMINATE

(to

terminate

a

previous

LOAD

INSERT),

or

RESTART

(to

restart

a

previous

LOAD

INSERT)

v

INSERT

and

DELETE

privilege

on

the

table

for

LOAD

with

mode

REPLACE,

TERMINATE

(to

terminate

a

previous

LOAD

REPLACE),

or

RESTART

(to

restart

a

previous

LOAD

REPLACE)

v

INSERT

privilege

on

the

exception

table,

if

such

a

table

is

used

as

part

of

LOAD

QUIESCE_CONNECT

Grants

the

authority

to

access

the

database

while

it

is

quiesced.

TO

Specifies

to

whom

the

authorities

are

granted.

USER

Specifies

that

the

authorization-name

identifies

a

user.

GROUP

Specifies

that

the

authorization-name

identifies

a

group

name.

authorization-name,...

Lists

the

authorization

IDs

of

one

or

more

users

or

groups.

The

list

of

authorization

IDs

cannot

include

the

authorization

ID

of

the

user

issuing

the

statement

(SQLSTATE

42502).

PUBLIC

Grants

the

authorities

to

all

users.

DBADM

cannot

be

granted

to

PUBLIC.

Rules:

v

If

neither

USER

nor

GROUP

is

specified,

then

GRANT

(Database

Authorities)

702

Common

Criteria

Certification:

Administration

and

User

Documentation

–

If

the

authorization-name

is

defined

in

the

operating

system

only

as

GROUP,

GROUP

is

assumed.

–

If

the

authorization-name

is

defined

in

the

operating

system

only

as

USER,

or

if

it

is

undefined,

USER

is

assumed.

–

If

the

authorization-name

is

defined

in

the

operating

system

as

both,

an

error

(SQLSTATE

56092)

is

returned.

Notes:

v

Compatibilities

–

For

compatibility

with

previous

versions

of

DB2:

-

CREATE_NOT_FENCED

can

be

specified

in

place

of

CREATE_NOT_FENCED_ROUTINE

Examples:

Example

1:

Give

the

users

WINKEN,

BLINKEN,

and

NOD

the

authority

to

connect

to

the

database.

GRANT

CONNECT

ON

DATABASE

TO

USER

WINKEN,

USER

BLINKEN,

USER

NOD

Example

2:

GRANT

BINDADD

authority

on

the

database

to

a

group

named

D024.

There

is

both

a

group

and

a

user

called

D024

in

the

system.

GRANT

BINDADD

ON

DATABASE

TO

GROUP

D024

Observe

that,

the

GROUP

keyword

must

be

specified;

otherwise,

an

error

will

occur

since

both

a

user

and

a

group

named

D024

exist.

Any

member

of

the

D024

group

will

be

allowed

to

bind

packages

in

the

database,

but

the

D024

user

will

not

be

allowed

(unless

this

user

is

also

a

member

of

the

group

D024,

had

been

granted

BINDADD

authority

previously,

or

BINDADD

authority

had

been

granted

to

another

group

of

which

D024

was

a

member).

Related

reference:

v

“GRANT

(Index

Privileges)”

on

page

704

v

“GRANT

(Package

Privileges)”

on

page

705

v

“GRANT

(Schema

Privileges)”

on

page

711

v

“GRANT

(Table,

View,

or

Nickname

Privileges)”

on

page

718

v

“GRANT

(Server

Privileges)”

on

page

715

v

“GRANT

(Table

Space

Privileges)”

on

page

716

v

“GRANT

(Sequence

Privileges)”

on

page

713

v

“GRANT

(Routine

Privileges)”

on

page

708

Related

samples:

v

“dbauth.sqb

--

How

to

grant

and

display

authorities

on

a

database

(MF

COBOL)”

v

“dbauth.sqc

--

How

to

grant,

display,

and

revoke

authorities

at

database

level

(C)”

v

“dbauth.sqC

--

How

to

grant,

display,

and

revoke

authorities

at

database

level

(C++)”

v

“DbAuth.java

--

Grant,

display

or

revoke

privileges

on

database

(JDBC)”

v

“DbAuth.sqlj

--

Grant,

display

or

revoke

privileges

on

database

(SQLj)”

GRANT

(Database

Authorities)

Chapter

15.

SQL

Statements

for

Administrators

703

GRANT

(Index

Privileges)

This

form

of

the

GRANT

statement

grants

the

CONTROL

privilege

on

indexes.

Invocation:

This

statement

can

be

embedded

in

an

application

program

or

issued

through

the

use

of

dynamic

SQL

statements.

It

is

an

executable

statement

that

can

be

dynamically

prepared

only

if

DYNAMICRULES

run

behavior

is

in

effect

for

the

package

(SQLSTATE

42509).

Authorization:

The

privileges

held

by

the

authorization

ID

of

the

statement

must

include

at

least

one

of

the

following:

v

DBADM

authority

v

SYSADM

authority.

Syntax:

��

GRANT

CONTROL

ON

INDEX

index-name

�

�

�

,

TO

authorization-name

USER

GROUP

PUBLIC

��

Description:

CONTROL

Grants

the

privilege

to

drop

the

index.

This

is

the

CONTROL

authority

for

indexes,

which

is

automatically

granted

to

creators

of

indexes.

ON

INDEX

index-name

Identifies

the

index

for

which

the

CONTROL

privilege

is

to

be

granted.

TO

Specifies

to

whom

the

privileges

are

granted.

USER

Specifies

that

the

authorization-name

identifies

a

user.

GROUP

Specifies

that

the

authorization-name

identifies

a

group

name.

authorization-name,...

Lists

the

authorization

IDs

of

one

or

more

users

or

groups.

The

list

of

authorization

IDs

cannot

include

the

authorization

ID

of

the

user

issuing

the

statement

(SQLSTATE

42502).

PUBLIC

Grants

the

privileges

to

all

users.

Rules:

GRANT

(Index

Privileges)

704

Common

Criteria

Certification:

Administration

and

User

Documentation

v

If

neither

USER

nor

GROUP

is

specified,

then

–

If

the

authorization-name

is

defined

in

the

operating

system

only

as

GROUP,

then

GROUP

is

assumed.

–

If

the

authorization-name

is

defined

in

the

operating

system

only

as

USER

or

if

it

is

undefined,

USER

is

assumed.

–

If

the

authorization-name

is

defined

in

the

operating

system

as

both,

an

error

(SQLSTATE

56092)

is

returned.

Example:

GRANT

CONTROL

ON

INDEX

DEPTIDX

TO

USER

USER4

Related

reference:

v

“GRANT

(Database

Authorities)”

on

page

700

v

“GRANT

(Package

Privileges)”

on

page

705

v

“GRANT

(Schema

Privileges)”

on

page

711

v

“GRANT

(Table,

View,

or

Nickname

Privileges)”

on

page

718

v

“GRANT

(Server

Privileges)”

on

page

715

v

“GRANT

(Table

Space

Privileges)”

on

page

716

v

“GRANT

(Sequence

Privileges)”

on

page

713

v

“GRANT

(Routine

Privileges)”

on

page

708

GRANT

(Package

Privileges)

This

form

of

the

GRANT

statement

grants

privileges

on

a

package.

Invocation:

This

statement

can

be

embedded

in

an

application

program

or

issued

through

the

use

of

dynamic

SQL

statements.

It

is

an

executable

statement

that

can

be

dynamically

prepared

only

if

DYNAMICRULES

run

behavior

is

in

effect

for

the

package

(SQLSTATE

42509).

Authorization:

The

privileges

held

by

the

authorization

ID

of

the

statement

must

include

at

least

one

of

the

following:

v

CONTROL

privilege

on

the

referenced

package

v

The

WITH

GRANT

OPTION

for

each

identified

privilege

on

package-name.

v

SYSADM

or

DBADM

authority.

To

grant

the

CONTROL

privilege,

SYSADM

or

DBADM

authority

is

required.

Syntax:

��

GRANT

�

,

BIND

CONTROL

(1)

EXECUTE

�

GRANT

(Index

Privileges)

Chapter

15.

SQL

Statements

for

Administrators

705

�

(2)

ON

PACKAGE

package-id

schema-name.

�

�

�

,

TO

authorization-name

USER

GROUP

PUBLIC

WITH

GRANT

OPTION

��

Notes:

1 RUN

can

be

used

as

a

synonym

for

EXECUTE.

2 PROGRAM

can

be

used

as

a

synonym

for

PACKAGE.

Description:

BIND

Grants

the

privilege

to

bind

a

package.

The

BIND

privilege

allows

a

user

to

re-issue

the

BIND

command

against

that

package,

or

to

issue

the

REBIND

command.

It

also

allows

a

user

to

create

a

new

version

of

an

existing

package.

In

addition

to

the

BIND

privilege,

a

user

must

hold

the

necessary

privileges

on

each

table

referenced

by

static

DML

statements

contained

in

a

program.

This

is

necessary,

because

authorization

on

static

DML

statements

is

checked

at

bind

time.

CONTROL

Grants

the

privilege

to

rebind,

drop,

or

execute

the

package,

and

extend

package

privileges

to

other

users.

The

CONTROL

privilege

for

packages

is

automatically

granted

to

creators

of

packages.

A

package

owner

is

the

package

binder,

or

the

ID

specified

with

the

OWNER

option

at

bind/precompile

time.

BIND

and

EXECUTE

are

automatically

granted

to

an

authorization-name

that

is

granted

CONTROL

privilege.

CONTROL

grants

the

ability

to

grant

the

above

privileges

(except

for

CONTROL)

to

others.

EXECUTE

Grants

the

privilege

to

execute

the

package.

ON

PACKAGE

schema-name.package-id

Specifies

the

name

of

the

package

on

which

privileges

are

to

be

granted.

If

a

schema

name

is

not

specified,

the

package

ID

is

implicitly

qualified

by

the

default

schema.

The

granting

of

a

package

privilege

applies

to

all

versions

of

the

package

(that

is,

to

all

packages

that

share

the

same

package

ID

and

package

schema).

TO

Specifies

to

whom

the

privileges

are

granted.

USER

Specifies

that

the

authorization-name

identifies

a

user.

GROUP

Specifies

that

the

authorization-name

identifies

a

group

name.

authorization-name,...

Lists

the

authorization

IDs

of

one

or

more

users

or

groups.

GRANT

(Package

Privileges)

706

Common

Criteria

Certification:

Administration

and

User

Documentation

The

list

of

authorization

IDs

cannot

include

the

authorization

ID

of

the

user

issuing

the

statement

(SQLSTATE

42502).

PUBLIC

Grants

the

privileges

to

all

users.

WITH

GRANT

OPTION

Allows

the

specified

authorization-name

to

GRANT

the

privileges

to

others.

If

the

specified

privileges

include

CONTROL,

the

WITH

GRANT

OPTION

applies

to

all

of

the

applicable

privileges

except

for

CONTROL

(SQLSTATE

01516).

Rules:

v

If

neither

USER

nor

GROUP

is

specified,

then

–

If

the

authorization-name

is

defined

in

the

operating

system

only

as

GROUP,

then

GROUP

is

assumed.

–

If

the

authorization-name

is

defined

in

the

operating

system

only

as

USER

or

if

it

is

undefined,

USER

is

assumed.

–

If

the

authorization-name

is

defined

in

the

operating

system

as

both,

an

error

(SQLSTATE

56092)

is

returned.

Notes:

v

Package

privileges

apply

to

all

versions

of

a

package

(that

is,

all

packages

that

share

the

same

package

ID

and

package

schema).

It

is

not

possible

to

restrict

access

to

only

one

version.

Because

CONTROL

privilege

is

implicitly

granted

to

the

binder

of

a

package,

if

two

different

users

bind

two

versions

of

a

package,

then

both

users

will

implicitly

be

granted

access

to

each

other’s

package.

Examples:

Example

1:

Grant

the

EXECUTE

privilege

on

PACKAGE

CORPDATA.PKGA

to

PUBLIC.

GRANT

EXECUTE

ON

PACKAGE

CORPDATA.PKGA

TO

PUBLIC

Example

2:

GRANT

EXECUTE

privilege

on

package

CORPDATA.PKGA

to

a

user

named

EMPLOYEE.

There

is

neither

a

group

nor

a

user

called

EMPLOYEE.

GRANT

EXECUTE

ON

PACKAGE

CORPDATA.PKGA

TO

EMPLOYEE

or

GRANT

EXECUTE

ON

PACKAGE

CORPDATA.PKGA

TO

USER

EMPLOYEE

Related

reference:

v

“GRANT

(Database

Authorities)”

on

page

700

v

“GRANT

(Index

Privileges)”

on

page

704

v

“GRANT

(Schema

Privileges)”

on

page

711

v

“GRANT

(Table,

View,

or

Nickname

Privileges)”

on

page

718

v

“GRANT

(Server

Privileges)”

on

page

715

v

“GRANT

(Table

Space

Privileges)”

on

page

716

v

“GRANT

(Sequence

Privileges)”

on

page

713

GRANT

(Package

Privileges)

Chapter

15.

SQL

Statements

for

Administrators

707

v

“GRANT

(Routine

Privileges)”

on

page

708

GRANT

(Routine

Privileges)

This

form

of

the

GRANT

statement

grants

privileges

on

a

routine

(function,

method,

or

procedure).

Invocation:

This

statement

can

be

embedded

in

an

application

program

or

issued

through

the

use

of

dynamic

SQL

statements.

It

is

an

executable

statement

that

can

be

dynamically

prepared

only

if

DYNAMICRULES

run

behavior

is

in

effect

for

the

package

(SQLSTATE

42509).

Authorization:

The

privileges

held

by

the

authorization

ID

of

the

statement

must

include

at

least

one

of

the

following:

v

WITH

GRANT

OPTION

for

EXECUTE

on

the

routine

v

SYSADM

or

DBADM

authority

To

grant

all

routine

EXECUTE

privileges

in

the

schema

or

type,

the

privileges

held

by

the

authorization

ID

must

include

at

least

one

of

the

following:

v

WITH

GRANT

OPTION

for

EXECUTE

on

all

existing

and

future

routines

(of

the

specified

type)

in

the

specified

schema

v

SYSADM

or

DBADM

authority

Syntax:

��

GRANT

EXECUTE

ON

function-designator

FUNCTION

*

schema.

method-designator

METHOD

*

FOR

type-name

*

schema.

procedure-designator

PROCEDURE

*

schema.

�

�

�

,

TO

authorization-name

USER

GROUP

PUBLIC

WITH

GRANT

OPTION

��

Description:

EXECUTE

Grants

the

privilege

to

run

the

identified

user-defined

function,

method,

or

stored

procedure.

function-designator

Uniquely

identifies

the

function.

GRANT

(Package

Privileges)

708

Common

Criteria

Certification:

Administration

and

User

Documentation

FUNCTION

schema.*

Identifies

all

the

functions

in

the

schema,

including

any

functions

that

may

be

created

in

the

future.

In

dynamic

SQL

statements,

if

a

schema

is

not

specified,

the

schema

in

the

CURRENT

SCHEMA

special

register

will

be

used.

In

static

SQL

statements,

if

a

schema

is

not

specified,

the

schema

in

the

QUALIFIER

precompile/bind

option

will

be

used.

method-designator

Uniquely

identifies

the

method.

METHOD

*

Identifies

all

the

methods

for

the

type

type-name,

including

any

methods

that

may

be

created

in

the

future.

FOR

type-name

Names

the

type

in

which

the

specified

method

is

found.

The

name

must

identify

a

type

already

described

in

the

catalog

(SQLSTATE

42704).

In

dynamic

SQL

statements,

the

value

of

the

CURRENT

SCHEMA

special

register

is

used

as

a

qualifier

for

an

unqualified

type

name.

In

static

SQL

statements,

the

QUALIFIER

precompile/bind

option

implicitly

specifies

the

qualifier

for

unqualified

type

names.

An

asterisk

(*)

can

be

used

in

place

of

type-name

to

identify

all

types

in

the

schema,

including

any

types

that

may

be

created

in

the

future.

procedure-designator

Uniquely

identifies

the

procedure.

PROCEDURE

schema.*

Identifies

all

the

procedures

in

the

schema,

including

any

procedures

that

may

be

created

in

the

future.

In

dynamic

SQL

statements,

if

a

schema

is

not

specified,

the

schema

in

the

CURRENT

SCHEMA

special

register

will

be

used.

In

static

SQL

statements,

if

a

schema

is

not

specified,

the

schema

in

the

QUALIFIER

precompile/bind

option

will

be

used.

TO

Specifies

to

whom

the

EXECUTE

privilege

is

granted.

USER

Specifies

that

the

authorization-name

identifies

a

user.

GROUP

Specifies

that

the

authorization-name

identifies

a

group

name.

authorization-name,...

Lists

the

authorization

IDs

of

one

or

more

users

or

groups.

PUBLIC

Grants

the

EXECUTE

privilege

to

all

users.

WITH

GRANT

OPTION

Allows

the

specified

authorization-names

to

GRANT

the

EXECUTE

privilege

to

others.

If

the

WITH

GRANT

OPTION

is

omitted,

the

specified

authorization-name

can

only

grant

the

EXECUTE

privilege

to

others

if

they:

v

have

SYSADM

or

DBADM

authority

or

v

received

the

ability

to

grant

the

EXECUTE

privilege

from

some

other

source.

Rules:

v

It

is

not

possible

to

grant

the

EXECUTE

privilege

on

a

function

or

method

defined

with

schema

’SYSIBM’

or

’SYSFUN’

(SQLSTATE

42832).

GRANT

(Routine

Privileges)

Chapter

15.

SQL

Statements

for

Administrators

709

v

If

neither

USER

nor

GROUP

is

specified,

then:

–

If

the

authorization-name

is

defined

in

the

operating

system

only

as

GROUP,

then

GROUP

is

assumed.

–

If

the

authorization-name

is

defined

in

the

operating

system

only

as

USER

or

if

it

is

undefined,

USER

is

assumed.

–

If

the

authorization-name

is

defined

in

the

operating

system

as

both

USER

and

GROUP,

an

error

(SQLSTATE

56092)

is

returned.
v

In

general,

the

GRANT

statement

will

process

the

granting

of

privileges

that

the

authorization

ID

of

the

statement

is

allowed

to

grant,

returning

a

warning

(SQLSTATE

01007)

if

one

or

more

privileges

was

not

granted.

If

the

package

used

for

processing

the

statement

was

precompiled

with

LANGLEVEL

set

to

SQL92E

or

MIA,

and

no

privileges

were

granted,

a

warning

is

returned

(SQLSTATE

01007).

If

the

grantor

has

no

privileges

on

the

object

of

the

grant

operation,

an

error

is

returned

(SQLSTATE

42501).

Examples:

Example

1:

Grant

the

EXECUTE

privilege

on

function

CALC_SALARY

to

user

JONES.

Assume

that

there

is

only

one

function

in

the

schema

with

function

name

CALC_SALARY.

GRANT

EXECUTE

ON

FUNCTION

CALC_SALARY

TO

JONES

Example

2:

Grant

the

EXECUTE

privilege

on

procedure

VACATION_ACCR

to

all

users

at

the

current

server.

GRANT

EXECUTE

ON

PROCEDURE

VACATION_ACCR

TO

PUBLIC

Example

3:

Grant

the

EXECUTE

privilege

on

function

DEPT_TOTALS

to

the

administrative

assistant

and

give

the

assistant

the

ability

to

grant

the

EXECUTE

privilege

on

this

function

to

others.

The

function

has

the

specific

name

DEPT85_TOT.

Assume

that

the

schema

has

more

than

one

function

named

DEPT_TOTALS.

GRANT

EXECUTE

ON

SPECIFIC

FUNCTION

DEPT85_TOT

TO

ADMIN_A

WITH

GRANT

OPTION

Example

4:

Grant

the

EXECUTE

privilege

on

function

NEW_DEPT_HIRES

to

HR

(Human

Resources).

The

function

has

two

input

parameters

of

type

INTEGER

and

CHAR(10),

respectively.

Assume

that

the

schema

has

more

than

one

function

named

NEW_DEPT_HIRES.

GRANT

EXECUTE

ON

FUNCTION

NEW_DEPT_HIRES

(INTEGER,

CHAR(10))

TO

HR

Example

5:

Grant

the

EXECUTE

privilege

on

method

SET_SALARY

of

type

EMPLOYEE

to

user

JONES.

GRANT

EXECUTE

ON

METHOD

SET_SALARY

FOR

EMPLOYEE

TO

JONES

Related

reference:

v

“GRANT

(Database

Authorities)”

on

page

700

v

“GRANT

(Index

Privileges)”

on

page

704

v

“GRANT

(Package

Privileges)”

on

page

705

v

“GRANT

(Schema

Privileges)”

on

page

711

v

“GRANT

(Table,

View,

or

Nickname

Privileges)”

on

page

718

v

“GRANT

(Server

Privileges)”

on

page

715

v

“GRANT

(Table

Space

Privileges)”

on

page

716

GRANT

(Routine

Privileges)

710

Common

Criteria

Certification:

Administration

and

User

Documentation

v

“GRANT

(Sequence

Privileges)”

on

page

713

v

“Common

syntax

elements”

in

the

SQL

Reference,

Volume

2

GRANT

(Schema

Privileges)

This

form

of

the

GRANT

statement

grants

privileges

on

a

schema.

Invocation:

This

statement

can

be

embedded

in

an

application

program

or

issued

through

the

use

of

dynamic

SQL

statements.

It

is

an

executable

statement

that

can

be

dynamically

prepared

only

if

DYNAMICRULES

run

behavior

is

in

effect

for

the

package

(SQLSTATE

42509).

Authorization:

The

privileges

held

by

the

authorization

ID

of

the

statement

must

include

at

least

one

of

the

following:

v

WITH

GRANT

OPTION

for

each

identified

privilege

on

schema-name

v

SYSADM

or

DBADM

authority

Privileges

cannot

be

granted

on

schema

names

SYSIBM,

SYSCAT,

SYSFUN

and

SYSSTAT

by

any

user

(SQLSTATE

42501).

Syntax:

��

GRANT

ALTERIN

CREATEIN

DROPIN

ON

SCHEMA

schema-name

�

�

�

,

TO

authorization-name

USER

GROUP

PUBLIC

WITH

GRANT

OPTION

��

Description:

ALTERIN

Grants

the

privilege

to

alter

or

comment

on

all

objects

in

the

schema.

The

owner

of

an

explicitly

created

schema

automatically

receives

ALTERIN

privilege.

CREATEIN

Grants

the

privilege

to

create

objects

in

the

schema.

Other

authorities

or

privileges

required

to

create

the

object

(such

as

CREATETAB)

are

still

required.

The

owner

of

an

explicitly

created

schema

automatically

receives

CREATEIN

privilege.

An

implicitly

created

schema

has

CREATEIN

privilege

automatically

granted

to

PUBLIC.

DROPIN

Grants

the

privilege

to

drop

all

objects

in

the

schema.

The

owner

of

an

explicitly

created

schema

automatically

receives

DROPIN

privilege.

GRANT

(Routine

Privileges)

Chapter

15.

SQL

Statements

for

Administrators

711

ON

SCHEMA

schema-name

Identifies

the

schema

on

which

the

privileges

are

to

be

granted.

TO

Specifies

to

whom

the

privileges

are

granted.

USER

Specifies

that

the

authorization-name

identifies

a

user.

GROUP

Specifies

that

the

authorization-name

identifies

a

group

name.

authorization-name,...

Lists

the

authorization

IDs

of

one

or

more

users

or

groups.

The

list

of

authorization

IDs

cannot

include

the

authorization

ID

of

the

user

issuing

the

statement

(SQLSTATE

42502).

PUBLIC

Grants

the

privileges

to

all

users.

WITH

GRANT

OPTION

Allows

the

specified

authorization-names

to

GRANT

the

privileges

to

others.

If

the

WITH

GRANT

OPTION

is

omitted,

the

specified

authorization-names

can

only

grant

the

privileges

to

others

if

they:

v

have

DBADM

authority

or

v

received

the

ability

to

grant

privileges

from

some

other

source.

Rules:

v

If

neither

USER

nor

GROUP

is

specified,

then

–

If

the

authorization-name

is

defined

in

the

operating

system

only

as

GROUP,

then

GROUP

is

assumed.

–

If

the

authorization-name

is

defined

in

the

operating

system

only

as

USER

or

if

it

is

undefined,

USER

is

assumed.

–

If

the

authorization-name

is

defined

in

the

operating

system

as

both,

an

error

(SQLSTATE

56092)

is

returned.
v

In

general,

the

GRANT

statement

will

process

the

granting

of

privileges

that

the

authorization

ID

of

the

statement

is

allowed

to

grant,

returning

a

warning

(SQLSTATE

01007)

if

one

or

more

privileges

was

not

granted.

If

no

privileges

were

granted,

an

error

is

returned

(SQLSTATE

42501).

(If

the

package

used

for

processing

the

statement

was

precompiled

with

LANGLEVEL

set

to

SQL92E

for

MIA,

a

warning

is

returned

(SQLSTATE

01007),

unless

the

grantor

has

no

privileges

on

the

object

of

the

grant

operation.)

Examples:

Example

1:

Grant

user

JSINGLETON

to

the

ability

to

create

objects

in

schema

CORPDATA.

GRANT

CREATEIN

ON

SCHEMA

CORPDATA

TO

JSINGLETON

Example

2:

Grant

user

IHAKES

the

ability

to

create

and

drop

objects

in

schema

CORPDATA.

GRANT

CREATEIN,

DROPIN

ON

SCHEMA

CORPDATA

TO

IHAKES

Related

reference:

v

“GRANT

(Database

Authorities)”

on

page

700

GRANT

(Schema

Privileges)

712

Common

Criteria

Certification:

Administration

and

User

Documentation

v

“GRANT

(Index

Privileges)”

on

page

704

v

“GRANT

(Package

Privileges)”

on

page

705

v

“GRANT

(Table,

View,

or

Nickname

Privileges)”

on

page

718

v

“GRANT

(Server

Privileges)”

on

page

715

v

“GRANT

(Table

Space

Privileges)”

on

page

716

v

“GRANT

(Sequence

Privileges)”

on

page

713

v

“GRANT

(Routine

Privileges)”

on

page

708

GRANT

(Sequence

Privileges)

This

form

of

the

GRANT

statement

grants

privileges

on

a

sequence.

Invocation:

This

statement

can

be

embedded

in

an

application

program

or

issued

through

the

use

of

dynamic

SQL

statements.

It

is

an

executable

statement

that

can

be

dynamically

prepared

only

if

DYNAMICRULES

run

behavior

is

in

effect

for

the

package

(SQLSTATE

42509).

Authorization:

The

privileges

held

by

the

authorization

ID

of

the

statement

must

include

at

least

one

of

the

following:

v

WITH

GRANT

OPTION

for

each

identified

privilege

on

sequence-name

v

SYSADM

or

DBADM

authority

Syntax:

��

GRANT

�

,

USAGE

ALTER

ON

SEQUENCE

sequence-name

�

�

�

,

TO

authorization-name

USER

GROUP

PUBLIC

WITH

GRANT

OPTION

��

Description:

USAGE

Grants

the

privilege

to

reference

a

sequence

using

nextval-expression

or

prevval-expression.

ALTER

Grants

the

privilege

to

alter

sequence

properties

using

the

ALTER

SEQUENCE

statement.

ON

SEQUENCE

sequence-name

Identifies

the

sequence

on

which

the

specified

privileges

are

to

be

granted.

The

sequence

name,

including

an

implicit

or

explicit

schema

qualifier,

must

uniquely

identify

an

existing

sequence

at

the

current

server.

If

no

sequence

by

this

name

exists,

an

error

(SQLSTATE

42704)

is

returned.

GRANT

(Schema

Privileges)

Chapter

15.

SQL

Statements

for

Administrators

713

TO

Specifies

to

whom

the

specified

privileges

are

granted.

USER

Specifies

that

the

authorization-name

identifies

a

user.

GROUP

Specifies

that

the

authorization-name

identifies

a

group.

authorization-name,...

Lists

the

authorization

IDs

of

one

or

more

users

or

groups.

PUBLIC

Grants

the

specified

privileges

to

all

users.

WITH

GRANT

OPTION

Allows

the

specified

authorization-name

to

grant

the

specified

privileges

to

others.

If

the

WITH

GRANT

OPTION

is

omitted,

the

specified

authorization-name

can

only

grant

the

specified

privileges

to

others

if

they:

v

have

SYSADM

or

DBADM

authority

or

v

received

the

ability

to

grant

the

specified

privileges

from

some

other

source.

Rules:

v

If

neither

USER

nor

GROUP

is

specified,

then:

–

If

the

authorization-name

is

defined

in

the

operating

system

only

as

GROUP,

then

GROUP

is

assumed.

–

If

the

authorization-name

is

defined

in

the

operating

system

only

as

USER

or

if

it

is

undefined,

then

USER

is

assumed.

–

If

the

authorization-name

is

defined

in

the

operating

system

as

both

USER

and

GROUP,

an

error

(SQLSTATE

56092)

is

returned.
v

In

general,

the

GRANT

statement

will

process

the

granting

of

privileges

that

the

authorization

ID

of

the

statement

is

allowed

to

grant,

returning

a

warning

(SQLSTATE

01007)

if

one

or

more

privileges

is

not

granted.

If

no

privileges

are

granted,

an

error

is

returned

(SQLSTATE

42501).

(If

the

package

used

for

processing

the

statement

was

precompiled

with

LANGLEVEL

set

to

SQL92E

or

MIA,

a

warning

is

returned

(SQLSTATE

01007),

unless

the

grantor

has

no

privileges

on

the

object

of

the

grant

operation.)

Example:

Example

1:

Grant

any

user

the

USAGE

privilege

on

a

sequence

called

ORG_SEQ.

GRANT

USAGE

ON

SEQUENCE

ORG_SEQ

TO

PUBLIC

Example

2:

Grant

user

BOBBY

the

ability

to

alter

a

sequence

called

GENERATE_ID,

and

to

grant

this

privilege

to

others.

GRANT

ALTER

ON

SEQUENCE

GENERATE_ID

TO

BOBBY

WITH

GRANT

OPTION

Related

reference:

v

“GRANT

(Database

Authorities)”

on

page

700

v

“GRANT

(Index

Privileges)”

on

page

704

v

“GRANT

(Package

Privileges)”

on

page

705

v

“GRANT

(Schema

Privileges)”

on

page

711

v

“GRANT

(Table,

View,

or

Nickname

Privileges)”

on

page

718

GRANT

(Sequence

Privileges)

714

Common

Criteria

Certification:

Administration

and

User

Documentation

v

“GRANT

(Server

Privileges)”

on

page

715

v

“GRANT

(Table

Space

Privileges)”

on

page

716

v

“GRANT

(Routine

Privileges)”

on

page

708

GRANT

(Server

Privileges)

This

form

of

the

GRANT

statement

grants

the

privilege

to

access

and

use

a

specified

data

source

in

pass-through

mode.

Invocation:

This

statement

can

be

embedded

in

an

application

program

or

issued

through

the

use

of

dynamic

SQL

statements.

It

is

an

executable

statement

that

can

be

dynamically

prepared

only

if

DYNAMICRULES

run

behavior

is

in

effect

for

the

package

(SQLSTATE

42509).

Authorization:

The

authorization

ID

of

the

statement

must

have

either

SYSADM

or

DBADM

authority.

Syntax:

��

GRANT

PASSTHRU

ON

SERVER

server-name

TO

�

�

�

,

authorization-name

USER

GROUP

PUBLIC

��

Description:

server-name

Names

the

data

source

for

which

the

privilege

to

use

in

pass-through

mode

is

being

granted.

server-name

must

identify

a

data

source

that

is

described

in

the

catalog.

TO

Specifies

to

whom

the

privilege

is

granted.

USER

Specifies

that

the

authorization-name

identifies

a

user.

GROUP

Specifies

that

the

authorization-name

identifies

a

group

name.

authorization-name,...

Lists

the

authorization

IDs

of

one

or

more

users

or

groups.

The

list

of

authorization

IDs

cannot

include

the

authorization

ID

of

the

user

issuing

the

statement

(SQLSTATE

42502).

PUBLIC

Grants

to

all

users

the

privilege

to

pass

through

to

server-name.

GRANT

(Sequence

Privileges)

Chapter

15.

SQL

Statements

for

Administrators

715

Examples:

Example

1:

Give

R.

Smith

and

J.

Jones

the

privilege

to

pass

through

to

data

source

SERVALL.

Their

authorization

IDs

are

RSMITH

and

JJONES.

GRANT

PASSTHRU

ON

SERVER

SERVALL

TO

USER

RSMITH,

USER

JJONES

Example

2:

Grant

the

privilege

to

pass

through

to

data

source

EASTWING

to

a

group

whose

authorization

ID

is

D024.

There

is

a

user

whose

authorization

ID

is

also

D024.

GRANT

PASSTHRU

ON

SERVER

EASTWING

TO

GROUP

D024

The

GROUP

keyword

must

be

specified;

otherwise,

an

error

will

occur

because

D024

is

a

user’s

ID

as

well

as

the

specified

group’s

ID

(SQLSTATE

56092).

Any

member

of

group

D024

will

be

allowed

to

pass

through

to

EASTWING.

Therefore,

if

user

D024

belongs

to

the

group,

this

user

will

be

able

to

pass

through

to

EASTWING.

Related

reference:

v

“GRANT

(Database

Authorities)”

on

page

700

v

“GRANT

(Index

Privileges)”

on

page

704

v

“GRANT

(Package

Privileges)”

on

page

705

v

“GRANT

(Schema

Privileges)”

on

page

711

v

“GRANT

(Table,

View,

or

Nickname

Privileges)”

on

page

718

v

“GRANT

(Table

Space

Privileges)”

on

page

716

v

“GRANT

(Sequence

Privileges)”

on

page

713

v

“GRANT

(Routine

Privileges)”

on

page

708

GRANT

(Table

Space

Privileges)

This

form

of

the

GRANT

statement

grants

privileges

on

a

table

space.

Invocation:

This

statement

can

be

embedded

in

an

application

program

or

issued

through

the

use

of

dynamic

SQL

statements.

It

is

an

executable

statement

that

can

be

dynamically

prepared

only

if

DYNAMICRULES

run

behavior

is

in

effect

for

the

package

(SQLSTATE

42509).

Authorization:

The

privileges

held

by

the

authorization

ID

of

the

statement

must

include

at

least

one

of

the

following:

v

WITH

GRANT

OPTION

for

use

of

the

table

space

v

SYSADM,

SYSCTRL,

or

DBADM

authority

Syntax:

��

GRANT

USE

OF

TABLESPACE

tablespace-name

TO

�

GRANT

(Server

Privileges)

716

Common

Criteria

Certification:

Administration

and

User

Documentation

�

�

,

authorization-name

USER

GROUP

PUBLIC

WITH

GRANT

OPTION

��

Description:

USE

Grants

the

privilege

to

specify

or

default

to

the

table

space

when

creating

a

table.

The

creator

of

a

table

space

automatically

receives

USE

privilege

with

grant

option.

OF

TABLESPACE

tablespace-name

Identifies

the

table

space

on

which

the

USE

privilege

is

to

be

granted.

The

table

space

cannot

be

SYSCATSPACE

(SQLSTATE

42838)

or

a

system

temporary

table

space

(SQLSTATE

42809).

TO

Specifies

to

whom

the

USE

privilege

is

granted.

USER

Specifies

that

the

authorization-name

identifies

a

user.

GROUP

Specifies

that

the

authorization-name

identifies

a

group

name.

authorization-name

Lists

the

authorization

IDs

of

one

or

more

users

or

groups.

The

list

of

authorization

IDs

cannot

include

the

authorization

ID

of

the

user

issuing

the

statement

(SQLSTATE

42502).

PUBLIC

Grants

the

USE

privilege

to

all

users.

WITH

GRANT

OPTION

Allows

the

specified

authorization-name

to

GRANT

the

USE

privilege

to

others.

If

the

WITH

GRANT

OPTION

is

omitted,

the

specified

authorization-name

can

only

GRANT

the

USE

privilege

to

others

if

they:

v

have

SYSADM

or

DBADM

authority

or

v

received

the

ability

to

GRANT

the

USE

privilege

from

some

other

source.

Notes:

If

neither

USER

nor

GROUP

is

specified,

then

v

If

the

authorization-name

is

defined

in

the

operating

system

only

as

GROUP,

then

GROUP

is

assumed.

v

If

the

authorization-name

is

defined

in

the

operating

system

only

as

USER,

or

if

it

is

undefined,

then

USER

is

assumed.

v

If

the

authorization-name

is

defined

in

the

operating

system

as

both,

an

error

(SQLSTATE

56092)

is

returned.

Examples:

Example

1:

Grant

user

BOBBY

the

ability

to

create

tables

in

table

space

PLANS

and

to

grant

this

privilege

to

others.

GRANT

USE

OF

TABLESPACE

PLANS

TO

BOBBY

WITH

GRANT

OPTION

GRANT

(Table

Space

Privileges)

Chapter

15.

SQL

Statements

for

Administrators

717

Related

reference:

v

“GRANT

(Database

Authorities)”

on

page

700

v

“GRANT

(Index

Privileges)”

on

page

704

v

“GRANT

(Package

Privileges)”

on

page

705

v

“GRANT

(Schema

Privileges)”

on

page

711

v

“GRANT

(Table,

View,

or

Nickname

Privileges)”

on

page

718

v

“GRANT

(Server

Privileges)”

on

page

715

v

“GRANT

(Sequence

Privileges)”

on

page

713

v

“GRANT

(Routine

Privileges)”

on

page

708

GRANT

(Table,

View,

or

Nickname

Privileges)

This

form

of

the

GRANT

statement

grants

privileges

on

a

table,

view,

or

nickname.

Invocation:

This

statement

can

be

embedded

in

an

application

program

or

issued

through

the

use

of

dynamic

SQL

statements.

It

is

an

executable

statement

that

can

be

dynamically

prepared

only

if

DYNAMICRULES

run

behavior

is

in

effect

for

the

package

(SQLSTATE

42509).

Authorization:

The

privileges

held

by

the

authorization

ID

of

the

statement

must

include

at

least

one

of

the

following:

v

CONTROL

privilege

on

the

referenced

table,

view,

or

nickname

v

The

WITH

GRANT

OPTION

for

each

identified

privilege.

If

ALL

is

specified,

the

authorization

ID

must

have

some

grantable

privilege

on

the

identified

table,

view,

or

nickname.

v

SYSADM

or

DBADM

authority.

To

grant

the

CONTROL

privilege,

SYSADM

or

DBADM

authority

is

required.

To

grant

privileges

on

catalog

tables

and

views,

either

SYSADM

or

DBADM

authority

is

required.

Syntax:

GRANT

(Table

Space

Privileges)

718

Common

Criteria

Certification:

Administration

and

User

Documentation

��

GRANT

�

�

�

PRIVILEGES

ALL

,

ALTER

CONTROL

DELETE

INDEX

INSERT

REFERENCES

,

(

column-name

)

SELECT

UPDATE

,

(

column-name

)

�

�

TABLE

ON

table-name

(1)

view-name

nickname

�

,

TO

authorization-name

USER

GROUP

PUBLIC

�

�

WITH

GRANT

OPTION

��

Notes:

1 ALTER,

INDEX,

and

REFERENCES

privileges

are

not

applicable

to

views.

Description:

ALL

or

ALL

PRIVILEGES

Grants

all

the

appropriate

privileges,

except

CONTROL,

on

the

base

table,

view,

or

nickname

named

in

the

ON

clause.

If

the

authorization

ID

of

the

statement

has

CONTROL

privilege

on

the

table,

view,

or

nickname,

or

DBADM

or

SYSADM

authority,

then

all

the

privileges

applicable

to

the

object

(except

CONTROL)

are

granted.

Otherwise,

the

privileges

granted

are

all

those

grantable

privileges

that

the

authorization

ID

of

the

statement

has

on

the

identified

table,

view,

or

nickname.

If

ALL

is

not

specified,

one

or

more

of

the

keywords

in

the

list

of

privileges

must

be

specified.

ALTER

Grants

the

privilege

to:

v

Add

columns

to

a

base

table

definition.

v

Create

or

drop

a

primary

key

or

unique

constraint

on

a

base

table.

v

Create

or

drop

a

foreign

key

on

a

base

table.

The

REFERENCES

privilege

on

each

column

of

the

parent

table

is

also

required.

v

Create

or

drop

a

check

constraint

on

a

base

table.

GRANT

(Table,

View,

or

Nickname

Privileges)

Chapter

15.

SQL

Statements

for

Administrators

719

v

Create

a

trigger

on

a

base

table.

v

Add,

reset,

or

drop

a

column

option

for

a

nickname.

v

Change

a

nickname

column

name

or

data

type.

v

Add

or

change

a

comment

on

a

base

table

or

a

nickname.

CONTROL

Grants:

v

All

of

the

appropriate

privileges

in

the

list,

that

is:

–

ALTER,

CONTROL,

DELETE,

INSERT,

INDEX,

REFERENCES,

SELECT,

and

UPDATE

to

base

tables

–

CONTROL,

DELETE,

INSERT,

SELECT,

and

UPDATE

to

views

–

ALTER,

CONTROL,

INDEX,

and

REFERENCES

to

nicknames
v

The

ability

to

grant

the

above

privileges

(except

for

CONTROL)

to

others.

v

The

ability

to

drop

the

base

table,

view,

or

nickname.

This

ability

cannot

be

extended

to

others

on

the

basis

of

holding

CONTROL

privilege.

The

only

way

that

it

can

be

extended

is

by

granting

the

CONTROL

privilege

itself

and

that

can

only

be

done

by

someone

with

SYSADM

or

DBADM

authority.

v

The

ability

to

execute

the

RUNSTATS

utility

on

the

table

and

indexes.

v

The

ability

to

execute

the

REORG

utility

on

the

table.

v

The

ability

to

issue

the

SET

INTEGRITY

statement

against

a

base

table,

materialized

query

table,

or

staging

table.

The

definer

of

a

base

table,

materialized

query

table,

staging

table,

or

nickname

automatically

receives

the

CONTROL

privilege.

The

definer

of

a

view

automatically

receives

the

CONTROL

privilege

if

the

definer

holds

the

CONTROL

privilege

on

all

tables,

views,

and

nicknames

identified

in

the

fullselect.

DELETE

Grants

the

privilege

to

delete

rows

from

the

table

or

updatable

view.

INDEX

Grants

the

privilege

to

create

an

index

on

a

table,

or

an

index

specification

on

a

nickname.

This

privilege

cannot

be

granted

on

a

view.

The

creator

of

an

index

or

index

specification

automatically

has

the

CONTROL

privilege

on

the

index

or

index

specification

(authorizing

the

creator

to

drop

the

index

or

index

specification).

In

addition,

the

creator

retains

the

CONTROL

privilege

even

if

the

INDEX

privilege

is

revoked.

INSERT

Grants

the

privilege

to

insert

rows

into

the

table

or

updatable

view

and

to

run

the

IMPORT

utility.

REFERENCES

Grants

the

privilege

to

create

and

drop

a

foreign

key

referencing

the

table

as

the

parent.

If

the

authorization

ID

of

the

statement

has

one

of:

v

DBADM

or

SYSADM

authority

v

CONTROL

privilege

on

the

table

v

REFERENCES

WITH

GRANT

OPTION

on

the

table

then

the

grantee(s)

can

create

referential

constraints

using

all

columns

of

the

table

as

parent

key,

even

those

added

later

using

the

ALTER

TABLE

statement.

GRANT

(Table,

View,

or

Nickname

Privileges)

720

Common

Criteria

Certification:

Administration

and

User

Documentation

Otherwise,

the

privileges

granted

are

all

those

grantable

column

REFERENCES

privileges

that

the

authorization

ID

of

the

statement

has

on

the

identified

table.

The

privilege

can

be

granted

on

a

nickname,

although

foreign

keys

cannot

be

defined

to

reference

nicknames.

REFERENCES

(column-name,...)

Grants

the

privilege

to

create

and

drop

a

foreign

key

using

only

those

columns

specified

in

the

column

list

as

a

parent

key.

Each

column-name

must

be

an

unqualified

name

that

identifies

a

column

of

the

table

identified

in

the

ON

clause.

Column

level

REFERENCES

privilege

cannot

be

granted

on

typed

tables,

typed

views,

or

nicknames

(SQLSTATE

42997).

SELECT

Grants

the

privilege

to:

v

Retrieve

rows

from

the

table

or

view.

v

Create

views

on

the

table.

v

Run

the

EXPORT

utility

against

the

table

or

view.

UPDATE

Grants

the

privilege

to

use

the

UPDATE

statement

on

the

table

or

updatable

view

identified

in

the

ON

clause.

If

the

authorization

ID

of

the

statement

has

one

of:

v

DBADM

or

SYSADM

authority

v

CONTROL

privilege

on

the

table

or

view

v

UPDATE

WITH

GRANT

OPTION

on

the

table

or

view

then

the

grantee(s)

can

update

all

updatable

columns

of

the

table

or

view

on

which

the

grantor

has

with

grant

privilege

as

well

as

those

columns

added

later

using

the

ALTER

TABLE

statement.

Otherwise,

the

privileges

granted

are

all

those

grantable

column

UPDATE

privileges

that

the

authorization

ID

of

the

statement

has

on

the

identified

table

or

view.

UPDATE

(column-name,...)

Grants

the

privilege

to

use

the

UPDATE

statement

to

update

only

those

columns

specified

in

the

column

list.

Each

column-name

must

be

an

unqualified

name

that

identifies

a

column

of

the

table

or

view

identified

in

the

ON

clause.

Column

level

UPDATE

privilege

cannot

be

granted

on

typed

tables,

typed

views,

or

nicknames

(SQLSTATE

42997).

ON

TABLE

table-name

or

view-name

or

nickname

Specifies

the

table,

view,

or

nickname

on

which

privileges

are

to

be

granted.

No

privileges

may

be

granted

on

an

inoperative

view

or

an

inoperative

materialized

query

table

(SQLSTATE

51024).

No

privileges

may

be

granted

on

a

declared

temporary

table

(SQLSTATE

42995).

TO

Specifies

to

whom

the

privileges

are

granted.

USER

Specifies

that

the

authorization-name

identifies

a

user.

GROUP

Specifies

that

the

authorization-name

identifies

a

group

name.

GRANT

(Table,

View,

or

Nickname

Privileges)

Chapter

15.

SQL

Statements

for

Administrators

721

authorization-name,...

Lists

the

authorization

IDs

of

one

or

more

users

or

groups.

(Previous

restrictions

on

grants

to

the

authorization

ID

of

the

user

issuing

the

statement

have

been

removed.)

A

privilege

that

is

granted

to

a

group

is

not

used

for

authorization

checking:

v

On

static

DML

statements

in

a

package

v

On

a

base

table

while

processing

a

CREATE

VIEW

statement

v

On

a

base

table

while

processing

a

CREATE

TABLE

statement

for

a

materialized

query

table

In

DB2

Universal

Database,

table

privileges

granted

to

groups

only

apply

to

statements

that

are

dynamically

prepared.

For

example,

if

the

INSERT

privilege

on

the

PROJECT

table

has

been

granted

to

group

D204

but

not

UBIQUITY

(a

member

of

D204)

UBIQUITY

could

issue

the

statement:

EXEC

SQL

EXECUTE

IMMEDIATE

:INSERT_STRING;

where

the

content

of

the

string

is:

INSERT

INTO

PROJECT

(PROJNO,

PROJNAME,

DEPTNO,

RESPEMP)

VALUES

(’AD3114’,

’TOOL

PROGRAMMING’,

’D21’,

’000260’);

but

could

not

precompile

or

bind

a

program

with

the

statement:

EXEC

SQL

INSERT

INTO

PROJECT

(PROJNO,

PROJNAME,

DEPTNO,

RESPEMP)

VALUES

(’AD3114’,

’TOOL

PROGRAMMING’,

’D21’,

’000260’);

PUBLIC

Grants

the

privileges

to

all

users.

(Previous

restrictions

on

the

use

of

privileges

granted

to

PUBLIC

for

static

SQL

statements

and

the

CREATE

VIEW

statement

have

been

removed.)

WITH

GRANT

OPTION

Allows

the

specified

authorization-names

to

GRANT

the

privileges

to

others.

If

the

specified

privileges

include

CONTROL,

the

WITH

GRANT

OPTION

applies

to

all

the

applicable

privileges

except

for

CONTROL

(SQLSTATE

01516).

Rules:

v

If

neither

USER

nor

GROUP

is

specified,

then

–

If

the

authorization-name

is

defined

in

the

operating

system

only

as

GROUP,

then

GROUP

is

assumed.

–

If

the

authorization-name

is

defined

in

the

operating

system

only

as

USER

or

if

it

is

undefined,

USER

is

assumed.

–

If

the

authorization-name

is

defined

in

the

operating

system

as

both,

an

error

(SQLSTATE

56092)

is

returned.
v

In

general,

the

GRANT

statement

will

process

the

granting

of

privileges

that

the

authorization

ID

of

the

statement

is

allowed

to

grant,

returning

a

warning

(SQLSTATE

01007)

if

one

or

more

privileges

was

not

granted.

If

no

privileges

were

granted,

an

error

is

returned

(SQLSTATE

42501).

(If

the

package

used

for

processing

the

statement

was

precompiled

with

LANGLEVEL

set

to

SQL92E

or

MIA,

a

warning

is

returned

(SQLSTATE

01007),

unless

the

grantor

has

no

privileges

on

the

object

of

the

grant

operation.)

If

CONTROL

privilege

is

specified,

privileges

will

only

be

granted

if

the

authorization

ID

of

the

statement

has

SYSADM

or

DBADM

authority

(SQLSTATE

42501).

GRANT

(Table,

View,

or

Nickname

Privileges)

722

Common

Criteria

Certification:

Administration

and

User

Documentation

Notes:

v

Compatibilities

–

For

compatibility

with

DB2

UDB

for

OS/390

and

z/OS:

-

The

following

syntax

is

tolerated

and

ignored:

v

PUBLIC

AT

ALL

LOCATIONS
v

Privileges

may

be

granted

independently

at

every

level

of

a

table

hierarchy.

A

user

with

a

privilege

on

a

supertable

may

affect

the

subtables.

For

example,

an

update

specifying

the

supertable

T

may

show

up

as

a

change

to

a

row

in

the

subtable

S

of

T

done

by

a

user

with

UPDATE

privilege

on

T

but

without

UPDATE

privilege

on

S.

A

user

can

only

operate

directly

on

the

subtable

if

the

necessary

privilege

is

held

on

the

subtable.

v

Granting

nickname

privileges

has

no

effect

on

data

source

object

(table

or

view)

privileges.

Typically,

data

source

privileges

are

required

for

the

table

or

view

that

a

nickname

references

when

attempting

to

retrieve

data.

Examples:

Example

1:

Grant

all

privileges

on

the

table

WESTERN_CR

to

PUBLIC.

GRANT

ALL

ON

WESTERN_CR

TO

PUBLIC

Example

2:

Grant

the

appropriate

privileges

on

the

CALENDAR

table

so

that

users

PHIL

and

CLAIRE

can

read

it

and

insert

new

entries

into

it.

Do

not

allow

them

to

change

or

remove

any

existing

entries.

GRANT

SELECT,

INSERT

ON

CALENDAR

TO

USER

PHIL,

USER

CLAIRE

Example

3:

Grant

all

privileges

on

the

COUNCIL

table

to

user

FRANK

and

the

ability

to

extend

all

privileges

to

others.

GRANT

ALL

ON

COUNCIL

TO

USER

FRANK

WITH

GRANT

OPTION

Example

4:

GRANT

SELECT

privilege

on

table

CORPDATA.EMPLOYEE

to

a

user

named

JOHN.

There

is

a

user

called

JOHN

and

no

group

called

JOHN.

GRANT

SELECT

ON

CORPDATA.EMPLOYEE

TO

JOHN

or

GRANT

SELECT

ON

CORPDATA.EMPLOYEE

TO

USER

JOHN

Example

5:

GRANT

SELECT

privilege

on

table

CORPDATA.EMPLOYEE

to

a

group

named

JOHN.

There

is

a

group

called

JOHN

and

no

user

called

JOHN.

GRANT

SELECT

ON

CORPDATA.EMPLOYEE

TO

JOHN

or

GRANT

SELECT

ON

CORPDATA.EMPLOYEE

TO

GROUP

JOHN

Example

6:

GRANT

INSERT

and

SELECT

on

table

T1

to

both

a

group

named

D024

and

a

user

named

D024.

GRANT

INSERT,

SELECT

ON

TABLE

T1

TO

GROUP

D024,

USER

D024

GRANT

(Table,

View,

or

Nickname

Privileges)

Chapter

15.

SQL

Statements

for

Administrators

723

In

this

case,

both

the

members

of

the

D024

group

and

the

user

D024

would

be

allowed

to

INSERT

into

and

SELECT

from

the

table

T1.

Also,

there

would

be

two

rows

added

to

the

SYSCAT.TABAUTH

catalog

view.

Example

7:

GRANT

INSERT,

SELECT,

and

CONTROL

on

the

CALENDAR

table

to

user

FRANK.

FRANK

must

be

able

to

pass

the

privileges

on

to

others.

GRANT

CONTROL

ON

TABLE

CALENDAR

TO

FRANK

WITH

GRANT

OPTION

The

result

of

this

statement

is

a

warning

(SQLSTATE

01516)

that

CONTROL

was

not

given

the

WITH

GRANT

OPTION.

Frank

now

has

the

ability

to

grant

any

privilege

on

CALENDAR

including

INSERT

and

SELECT

as

required.

FRANK

cannot

grant

CONTROL

on

CALENDAR

to

other

users

unless

he

has

SYSADM

or

DBADM

authority.

Example

8:

User

JON

created

a

nickname

for

an

Oracle

table

that

had

no

index.

The

nickname

is

ORAREM1.

Later,

the

Oracle

DBA

defined

an

index

for

this

table.

User

SHAWN

now

wants

DB2

to

know

that

this

index

exists,

so

that

the

optimizer

can

devise

strategies

to

access

the

table

more

efficiently.

SHAWN

can

inform

DB2

of

the

index

by

creating

an

index

specification

for

ORAREM1.

Give

SHAWN

the

index

privilege

on

this

nickname,

so

that

he

can

create

the

index

specification.

GRANT

INDEX

ON

NICKNAME

ORAREM1

TO

USER

SHAWN

Related

reference:

v

“ALTER

TABLE”

on

page

525

v

“GRANT

(Database

Authorities)”

on

page

700

v

“GRANT

(Index

Privileges)”

on

page

704

v

“GRANT

(Package

Privileges)”

on

page

705

v

“GRANT

(Schema

Privileges)”

on

page

711

v

“GRANT

(Server

Privileges)”

on

page

715

v

“GRANT

(Table

Space

Privileges)”

on

page

716

v

“GRANT

(Sequence

Privileges)”

on

page

713

v

“GRANT

(Routine

Privileges)”

on

page

708

Related

samples:

v

“tbpriv.sqc

--

How

to

grant,

display,

and

revoke

privileges

(C)”

v

“tbpriv.sqC

--

How

to

grant,

display,

and

revoke

privileges

(C++)”

v

“TbPriv.java

--

How

to

grant,

display

and

revoke

privileges

on

a

table

(JDBC)”

v

“TbPriv.sqlj

--

How

to

grant,

display

and

revoke

privileges

on

a

table

(SQLj)”

INSERT

The

INSERT

statement

inserts

rows

into

a

table,

nickname,

or

view,

or

the

underlying

tables,

nicknames,

or

views

of

the

specified

fullselect.

Inserting

a

row

into

a

nickname

inserts

the

row

into

the

data

source

object

to

which

the

nickname

refers.

Inserting

a

row

into

a

view

also

inserts

the

row

into

the

table

on

which

the

view

is

based,

if

no

INSTEAD

OF

trigger

is

defined

for

the

insert

operation

on

this

view.

If

such

a

trigger

is

defined,

the

trigger

will

be

executed

instead.

Invocation:

GRANT

(Table,

View,

or

Nickname

Privileges)

724

Common

Criteria

Certification:

Administration

and

User

Documentation

This

statement

can

be

embedded

in

an

application

program

or

issued

through

the

use

of

dynamic

SQL

statements.

It

is

an

executable

statement

that

can

be

dynamically

prepared.

Authorization:

To

execute

this

statement,

the

privileges

held

by

the

authorization

ID

of

the

statement

must

include

at

least

one

of

the

following:

v

INSERT

privilege

on

the

table,

view

or

nickname

where

rows

are

to

be

inserted

v

CONTROL

privilege

on

the

table,

view

or

nickname

where

rows

are

to

be

inserted

v

SYSADM

or

DBADM

authority.

In

addition,

for

each

table,

view

or

nickname

referenced

in

any

fullselect

used

in

the

INSERT

statement,

the

privileges

held

by

the

authorization

ID

of

the

statement

must

include

at

least

one

of

the

following:

v

SELECT

privilege

v

CONTROL

privilege

v

SYSADM

or

DBADM

authority.

GROUP

privileges

are

not

checked

for

static

INSERT

statements.

If

the

target

of

the

insert

operation

is

a

nickname,

the

privileges

on

the

object

at

the

data

source

are

not

considered

until

the

statement

is

executed

at

the

data

source.

At

this

time,

the

authorization

ID

that

is

used

to

connect

to

the

data

source

must

have

the

privileges

required

for

the

operation

on

the

object

at

the

data

source.

The

authorization

ID

of

the

statement

may

be

mapped

to

a

different

authorization

ID

at

the

data

source.

Syntax:

��

INSERT

INTO

table-name

view-name

nickname

(

fullselect

)

�

,

(

column-name

)

�

�

include-columns

�

INSERT

Chapter

15.

SQL

Statements

for

Administrators

725

�

�

�

�

,

VALUES

expression

NULL

DEFAULT

,

(

expression

)

NULL

DEFAULT

fullselect

,

WITH

common-table-expression

WITH

RR

RS

CS

UR

��

include-columns:

INCLUDE

�

,

(

column-name

data-type

)

Description:

INTO

table-name,

view-name,

nickname,

or

(fullselect)

Identifies

the

object

of

the

insert

operation.

The

name

must

identify

a

table,

view

or

nickname

that

exists

at

the

application

server,

but

it

must

not

identify

a

catalog

table,

a

system-maintained

materialized

query

table,

a

view

of

a

catalog

table,

or

a

read-only

view,

unless

an

INSTEAD

OF

trigger

is

defined

for

the

insert

operation

on

the

subject

view.

Rows

inserted

into

a

nickname

are

placed

in

the

data

source

object

to

which

the

nickname

refers.

If

the

object

of

the

insert

operation

is

a

fullselect,

the

fullselect

must

be

insertable,

as

defined

in

the

“Insertable

views”

Notes

item

in

the

description

of

the

CREATE

VIEW

statement.

If

no

INSTEAD

OF

trigger

exists

for

the

insert

operation

on

this

view,

a

value

cannot

be

inserted

into

a

view

column

that

is

derived

from:

v

A

constant,

expression,

or

scalar

function

v

The

same

base

table

column

as

some

other

column

of

the

view

If

the

object

of

the

insert

operation

is

a

view

with

such

columns,

a

list

of

column

names

must

be

specified,

and

the

list

must

not

identify

these

columns.

A

row

can

be

inserted

into

a

view

or

a

fullselect

that

is

defined

using

a

UNION

ALL

if

the

row

satisfies

the

check

constraints

of

exactly

one

of

the

underlying

base

tables.

If

a

row

satisfies

the

check

constraints

of

more

than

one

table,

or

no

table

at

all,

an

error

is

returned

(SQLSTATE

23513).

(column-name,...)

Specifies

the

columns

for

which

insert

values

are

provided.

Each

name

must

be

an

unqualified

name

that

identifies

a

column

of

the

table

or

view,

or

a

column

in

the

fullselect.

The

same

column

must

not

be

identified

more

than

once.

A

column

that

cannot

accept

inserted

values

(for

example,

a

column

based

on

an

expression)

must

not

be

identified.

Omission

of

the

column

list

is

an

implicit

specification

of

a

list

in

which

every

column

of

the

table

or

view,

or

every

item

in

the

select-list

of

the

fullselect

is

INSERT

726

Common

Criteria

Certification:

Administration

and

User

Documentation

identified

in

left-to-right

order.

This

list

is

established

when

the

statement

is

prepared

and,

therefore,

does

not

include

columns

that

were

added

to

a

table

after

the

statement

was

prepared.

include-columns

Specifies

a

set

of

columns

that

are

included,

along

with

the

columns

of

table-name

or

view-name,

in

the

intermediate

result

table

of

the

INSERT

statement

when

it

is

nested

in

the

FROM

clause

of

a

fullselect.

The

include-columns

are

appended

at

the

end

of

the

list

of

columns

that

are

specified

for

table-name

or

view-name.

INCLUDE

Specifies

a

list

of

columns

to

be

included

in

the

intermediate

result

table

of

the

INSERT

statement.

This

clause

can

only

be

specified

if

the

INSERT

statement

is

nested

in

the

FROM

clause

of

a

fullselect.

column-name

Specifies

a

column

of

the

intermediate

result

table

of

the

INSERT

statement.

The

name

cannot

be

the

same

as

the

name

of

another

include

column

or

a

column

in

table-name

or

view-name

(SQLSTATE

42711).

data-type

Specifies

the

data

type

of

the

include

column.

The

data

type

must

be

one

that

is

supported

by

the

CREATE

TABLE

statement.

VALUES

Introduces

one

or

more

rows

of

values

to

be

inserted.

Each

host

variable

named

must

be

described

in

the

program

in

accordance

with

the

rules

for

declaring

host

variables.

The

number

of

values

for

each

row

must

equal

the

number

of

names

in

the

implicit

or

explicit

column

list

and

the

columns

identified

in

the

INCLUDE

clause.

The

first

value

is

inserted

in

the

first

column

in

the

list,

the

second

value

in

the

second

column,

and

so

on.

expression

An

expression

can

be

any

expression

defined

in

“Expressions”.

NULL

Specifies

the

null

value

and

should

only

be

specified

for

nullable

columns.

DEFAULT

Specifies

that

the

default

value

is

to

be

used.

The

result

of

specifying

DEFAULT

depends

on

how

the

column

was

defined,

as

follows:

v

If

the

column

was

defined

as

a

generated

column

based

on

an

expression,

the

column

value

is

generated

by

the

system,

based

on

that

expression.

v

If

the

IDENTITY

clause

is

used,

the

value

is

generated

by

the

database

manager.

v

If

the

WITH

DEFAULT

clause

is

used,

the

value

inserted

is

as

defined

for

the

column

(see

default-clause

in

“CREATE

TABLE”).

v

If

the

NOT

NULL

clause

is

used

and

the

GENERATED

clause

is

not

used,

or

the

WITH

DEFAULT

clause

is

not

used

or

DEFAULT

NULL

is

used,

the

DEFAULT

keyword

cannot

be

specified

for

that

column

(SQLSTATE

23502).

v

When

inserting

into

a

nickname,

the

DEFAULT

keyword

will

be

passed

through

the

INSERT

statement

to

the

data

source

only

if

the

data

source

supports

the

DEFAULT

keyword

in

its

query

language

syntax.

INSERT

Chapter

15.

SQL

Statements

for

Administrators

727

WITH

common-table-expression

Defines

a

common

table

expression

for

use

with

the

fullselect

that

follows.

fullselect

Specifies

a

set

of

new

rows

in

the

form

of

the

result

table

of

a

fullselect.

There

may

be

one,

more

than

one,

or

none.

If

the

result

table

is

empty,

SQLCODE

is

set

to

+100

and

SQLSTATE

is

set

to

'02000'.

When

the

base

object

of

the

INSERT

and

the

base

object

of

the

fullselect

or

any

subquery

of

the

fullselect,

are

the

same

table,

the

fullselect

is

completely

evaluated

before

any

rows

are

inserted.

The

number

of

columns

in

the

result

table

must

equal

the

number

of

names

in

the

column

list.

The

value

of

the

first

column

of

the

result

is

inserted

in

the

first

column

in

the

list,

the

second

value

in

the

second

column,

and

so

on.

WITH

Specifies

the

isolation

level

at

which

the

fullselect

is

executed.

RR

Repeatable

Read

RS

Read

Stability

CS

Cursor

Stability

UR

Uncommitted

Read

The

default

isolation

level

of

the

statement

is

the

isolation

level

of

the

package

in

which

the

statement

is

bound.

Rules:

v

Triggers:

INSERT

statements

may

cause

triggers

to

be

executed.

A

trigger

may

cause

other

statements

to

be

executed,

or

may

raise

error

conditions

based

on

the

inserted

values.

If

an

insert

operation

into

a

view

causes

an

INSTEAD

OF

trigger

to

fire,

validity,

referential

integrity,

and

constraints

will

be

checked

against

the

updates

that

are

performed

in

the

trigger,

and

not

against

the

view

that

caused

the

trigger

to

fire,

or

its

underlying

tables.

v

Default

values:

The

value

inserted

in

any

column

that

is

not

in

the

column

list

is

either

the

default

value

of

the

column

or

null.

Columns

that

do

not

allow

null

values

and

are

not

defined

with

NOT

NULL

WITH

DEFAULT

must

be

included

in

the

column

list.

Similarly,

if

you

insert

into

a

view,

the

value

inserted

into

any

column

of

the

base

table

that

is

not

in

the

view

is

either

the

default

value

of

the

column

or

null.

Hence,

all

columns

of

the

base

table

that

are

not

in

the

view

must

have

either

a

default

value

or

allow

null

values.

The

only

value

that

can

be

inserted

into

a

generated

column

defined

with

the

GENERATED

ALWAYS

clause

is

DEFAULT

(SQLSTATE

428C9).

v

Length:

If

the

insert

value

of

a

column

is

a

number,

the

column

must

be

a

numeric

column

with

the

capacity

to

represent

the

integral

part

of

the

number.

If

the

insert

value

of

a

column

is

a

string,

the

column

must

either

be

a

string

column

with

a

length

attribute

at

least

as

great

as

the

length

of

the

string,

or

a

datetime

column

if

the

string

represents

a

date,

time,

or

timestamp.

v

Assignment:

Insert

values

are

assigned

to

columns

in

accordance

with

specific

assignment

rules.

v

Validity:

If

the

table

named,

or

the

base

table

of

the

view

named,

has

one

or

more

unique

indexes,

each

row

inserted

into

the

table

must

conform

to

the

INSERT

728

Common

Criteria

Certification:

Administration

and

User

Documentation

constraints

imposed

by

those

indexes.

If

a

view

whose

definition

includes

WITH

CHECK

OPTION

is

named,

each

row

inserted

into

the

view

must

conform

to

the

definition

of

the

view.

For

an

explanation

of

the

rules

governing

this

situation,

see

“CREATE

VIEW”.

v

Referential

Integrity:

For

each

constraint

defined

on

a

table,

each

non-null

insert

value

of

the

foreign

key

must

be

equal

to

a

primary

key

value

of

the

parent

table.

v

Check

Constraint:

Insert

values

must

satisfy

the

check

conditions

of

the

check

constraints

defined

on

the

table.

An

INSERT

to

a

table

with

check

constraints

defined

has

the

constraint

conditions

evaluated

once

for

each

row

that

is

inserted.

v

Datalinks:

Insert

statements

that

include

DATALINK

values

will

result

in

an

attempt

to

link

the

file

if

a

URL

value

is

included

(not

empty

string

or

blanks)

and

the

column

is

defined

with

FILE

LINK

CONTROL.

Errors

in

the

DATALINK

value

or

in

linking

the

file

will

cause

the

insert

to

fail

(SQLSTATE

428D1

or

57050).

Notes:

v

After

execution

of

an

INSERT

statement,

the

value

of

the

third

variable

of

the

SQLERRD(3)

portion

of

the

SQLCA

indicates

the

number

of

rows

that

were

passed

to

the

insert

operation.

In

the

context

of

an

SQL

procedure

statement,

the

value

can

be

retrieved

using

the

ROW_COUNT

variable

of

the

GET

DIAGNOSTICS

statement.

SQLERRD(5)

contains

the

count

of

all

triggered

insert,

update

and

delete

operations.

v

Unless

appropriate

locks

already

exist,

one

or

more

exclusive

locks

are

acquired

at

the

execution

of

a

successful

INSERT

statement.

Until

the

locks

are

released,

an

inserted

row

can

only

be

accessed

by:

–

The

application

process

that

performed

the

insert.

–

Another

application

process

using

isolation

level

UR

through

a

read-only

cursor,

SELECT

INTO

statement,

or

subselect

used

in

a

subquery.
v

For

further

information

about

locking,

see

the

description

of

the

COMMIT,

ROLLBACK,

and

LOCK

TABLE

statements.

v

If

an

application

is

running

against

a

partitioned

database,

and

it

is

bound

with

option

INSERT

BUF,

then

INSERT

with

VALUES

statements

which

are

not

processed

using

EXECUTE

IMMEDIATE

may

be

buffered.

DB2

assumes

that

such

an

INSERT

statement

is

being

processed

inside

a

loop

in

the

application’s

logic.

Rather

than

execute

the

statement

to

completion,

it

attempts

to

buffer

the

new

row

values

in

one

or

more

buffers.

As

a

result

the

actual

insertions

of

the

rows

into

the

table

are

performed

later,

asynchronous

with

the

application’s

INSERT

logic.

Be

aware

that

this

asynchronous

insertion

may

cause

an

error

related

to

an

INSERT

to

be

returned

on

some

other

SQL

statement

that

follows

the

INSERT

in

the

application.

This

has

the

potential

to

dramatically

improve

INSERT

performance,

but

is

best

used

with

clean

data,

due

to

the

asynchronous

nature

of

the

error

handling.

v

When

a

row

is

inserted

into

a

table

that

has

an

identity

column,

DB2

generates

a

value

for

the

identity

column.

–

For

a

GENERATED

ALWAYS

identity

column,

DB2

always

generates

the

value.

–

For

a

GENERATED

BY

DEFAULT

column,

if

a

value

is

not

explicitly

specified

(with

a

VALUES

clause,

or

subselect),

DB2

generates

a

value.

The

first

value

generated

by

DB2

is

the

value

of

the

START

WITH

specification

for

the

identity

column.

INSERT

Chapter

15.

SQL

Statements

for

Administrators

729

v

When

a

value

is

inserted

for

a

user-defined

distinct

type

identity

column,

the

entire

computation

is

done

in

the

source

type,

and

the

result

is

cast

to

the

distinct

type

before

the

value

is

actually

assigned

to

the

column.

(There

is

no

casting

of

the

previous

value

to

the

source

type

prior

to

the

computation.)

v

When

inserting

into

a

GENERATED

ALWAYS

identity

column,

DB2

will

always

generate

a

value

for

the

column,

and

users

must

not

specify

a

value

at

insertion

time.

If

a

GENERATED

ALWAYS

identity

column

is

listed

in

the

column-list

of

the

INSERT

statement,

with

a

non-DEFAULT

value

in

the

VALUES

clause,

an

error

occurs

(SQLSTATE

428C9).

For

example,

assuming

that

EMPID

is

defined

as

an

identity

column

that

is

GENERATED

ALWAYS,

then

the

command:

INSERT

INTO

T2

(EMPID,

EMPNAME,

EMPADDR)

VALUES

(:hv_valid_emp_id,

:hv_name,

:hv_addr)

will

result

in

an

error.

v

When

inserting

into

a

GENERATED

BY

DEFAULT

column,

DB2

will

allow

an

actual

value

for

the

column

to

be

specified

within

the

VALUES

clause,

or

from

a

subselect.

However,

when

a

value

is

specified

in

the

VALUES

clause,

DB2

does

not

perform

any

verification

of

the

value.

In

order

to

guarantee

uniqueness

of

the

values,

a

unique

index

on

the

identity

column

must

be

created.

When

inserting

into

a

table

with

a

GENERATED

BY

DEFAULT

identity

column,

without

specifying

a

column

list,

the

VALUES

clause

can

specify

the

DEFAULT

keyword

to

represent

the

value

for

the

identity

column.

DB2

will

generate

the

value

for

the

identity

column.

INSERT

INTO

T2

(EMPID,

EMPNAME,

EMPADDR)

VALUES

(DEFAULT,

:hv_name,

:hv_addr)

In

this

example,

EMPID

is

defined

as

an

identity

column,

and

thus

the

value

inserted

into

this

column

is

generated

by

DB2.

v

The

rules

for

inserting

into

an

identity

column

with

a

subselect

are

similar

to

those

for

an

insert

with

a

VALUES

clause.

A

value

for

an

identity

column

may

only

be

specified

if

the

identity

column

is

defined

as

GENERATED

BY

DEFAULT.

For

example,

assume

T1

and

T2

are

tables

with

the

same

definition,

both

containing

columns

intcol1

and

identcol2

(both

are

type

INTEGER

and

the

second

column

has

the

identity

attribute).

Consider

the

following

insert:

INSERT

INTO

T2

SELECT

*

FROM

T1

This

example

is

logically

equivalent

to:

INSERT

INTO

T2

(intcol1,identcol2)

SELECT

intcol1,

identcol2

FROM

T1

In

both

cases,

the

INSERT

statement

is

providing

an

explicit

value

for

the

identity

column

of

T2.

This

explicit

specification

can

be

given

a

value

for

the

identity

column,

but

the

identity

column

in

T2

must

be

defined

as

GENERATED

BY

DEFAULT.

Otherwise,

an

error

will

result

(SQLSTATE

428C9).

If

there

is

a

table

with

a

column

defined

as

a

GENERATED

ALWAYS

identity,

it

is

still

possible

to

propagate

all

other

columns

from

a

table

with

the

same

definition.

For

example,

given

the

example

tables

T1

and

T2

described

above,

the

intcol1

values

from

T1

to

T2

can

be

propagated

with

the

following

SQL:

INSERT

730

Common

Criteria

Certification:

Administration

and

User

Documentation

INSERT

INTO

T2

(intcol1)

SELECT

intcol1

FROM

T1

Note

that,

because

identcol2

is

not

specified

in

the

column-list,

it

will

be

filled

in

with

its

default

(generated)

value.

v

When

inserting

a

row

into

a

single

column

table

where

the

column

is

defined

as

a

GENERATED

ALWAYS

identity

column,

it

is

possible

to

specify

a

VALUES

clause

with

the

DEFAULT

keyword.

In

this

case,

the

application

does

not

provide

any

value

for

the

table,

and

DB2

generates

the

value

for

the

identity

column.

INSERT

INTO

IDTABLE

VALUES(DEFAULT)

Assuming

the

same

single

column

table

for

which

the

column

has

the

identity

attribute,

to

insert

multiple

rows

with

a

single

INSERT

statement,

the

following

INSERT

statement

could

be

used:

INSERT

INTO

IDTABLE

VALUES

(DEFAULT),

(DEFAULT),

(DEFAULT),

(DEFAULT)

v

When

DB2

generates

a

value

for

an

identity

column,

that

generated

value

is

consumed;

the

next

time

that

a

value

is

needed,

DB2

will

generate

a

new

value.

This

is

true

even

when

an

INSERT

statement

involving

an

identity

column

fails

or

is

rolled

back.

For

example,

assume

that

a

unique

index

has

been

created

on

the

identity

column.

If

a

duplicate

key

violation

is

detected

in

generating

a

value

for

an

identity

column,

an

error

occurs

(SQLSTATE

23505)

and

the

value

generated

for

the

identity

column

is

considered

to

be

consumed.

This

can

occur

when

the

identity

column

is

defined

as

GENERATED

BY

DEFAULT

and

the

system

tries

to

generate

a

new

value,

but

the

user

has

explicitly

specified

values

for

the

identity

column

in

previous

INSERT

statements.

Reissuing

the

same

INSERT

statement

in

this

case

can

lead

to

success.

DB2

will

generate

the

next

value

for

the

identity

column,

and

it

is

possible

that

this

next

value

will

be

unique,

and

that

this

INSERT

statement

will

be

successful.

v

If

the

maximum

value

for

the

identity

column

is

exceeded

(or

minimum

value

for

a

descending

sequence)

in

generating

a

value

for

an

identity

column,

an

error

occurs

(SQLSTATE

23522).

In

this

situation,

the

user

would

have

to

DROP

and

CREATE

a

new

table

with

an

identity

column

having

a

larger

range

(that

is,

change

the

data

type

or

increment

value

for

the

column

to

allow

for

a

larger

range

of

values).

For

example,

an

identity

column

may

have

been

defined

with

a

data

type

of

SMALLINT,

and

eventually

the

column

runs

out

of

assignable

values.

To

redefine

the

identity

column

as

INTEGER,

the

data

would

need

to

be

unloaded,

the

table

would

have

to

be

dropped

and

recreated

with

a

new

definition

for

the

column,

and

then

the

data

would

be

reloaded.

When

the

table

is

redefined,

it

needs

to

specify

a

START

WITH

value

for

the

identity

column

such

that

the

next

value

generated

by

DB2

will

be

the

next

value

in

the

original

sequence.

To

determine

the

end

value,

issue

a

query

using

MAX

of

the

identity

column

(for

an

ascending

sequence),

or

MIN

of

the

identity

column

(for

a

descending

sequence),

before

unloading

the

data.

Examples:

Example

1:

Insert

a

new

department

with

the

following

specifications

into

the

DEPARTMENT

table:

v

Department

number

(DEPTNO)

is

‘E31’

INSERT

Chapter

15.

SQL

Statements

for

Administrators

731

v

Department

name

(DEPTNAME)

is

‘ARCHITECTURE’

v

Managed

by

(MGRNO)

a

person

with

number

‘00390’

v

Reports

to

(ADMRDEPT)

department

‘E01’.

INSERT

INTO

DEPARTMENT

VALUES

(’E31’,

’ARCHITECTURE’,

’00390’,

’E01’)

Example

2:

Insert

a

new

department

into

the

DEPARTMENT

table

as

in

example

1,

but

do

not

assign

a

manager

to

the

new

department.

INSERT

INTO

DEPARTMENT

(DEPTNO,

DEPTNAME,

ADMRDEPT

)

VALUES

(’E31’,

’ARCHITECTURE’,

’E01’)

Example

3:

Insert

two

new

departments

using

one

statement

into

the

DEPARTMENT

table

as

in

example

2,

but

do

not

assign

a

manager

to

the

new

department.

INSERT

INTO

DEPARTMENT

(DEPTNO,

DEPTNAME,

ADMRDEPT)

VALUES

(’B11’,

’PURCHASING’,

’B01’),

(’E41’,

’DATABASE

ADMINISTRATION’,

’E01’)

Example

4:

Create

a

temporary

table

MA_EMP_ACT

with

the

same

columns

as

the

EMP_ACT

table.

Load

MA_EMP_ACT

with

the

rows

from

the

EMP_ACT

table

with

a

project

number

(PROJNO)

starting

with

the

letters

‘MA’.

CREATE

TABLE

MA_EMP_ACT

(

EMPNO

CHAR(6)

NOT

NULL,

PROJNO

CHAR(6)

NOT

NULL,

ACTNO

SMALLINT

NOT

NULL,

EMPTIME

DEC(5,2),

EMSTDATE

DATE,

EMENDATE

DATE

)

INSERT

INTO

MA_EMP_ACT

SELECT

*

FROM

EMP_ACT

WHERE

SUBSTR(PROJNO,

1,

2)

=

’MA’

Example

5:

Use

a

C

program

statement

to

add

a

skeleton

project

to

the

PROJECT

table.

Obtain

the

project

number

(PROJNO),

project

name

(PROJNAME),

department

number

(DEPTNO),

and

responsible

employee

(RESPEMP)

from

host

variables.

Use

the

current

date

as

the

project

start

date

(PRSTDATE).

Assign

a

NULL

value

to

the

remaining

columns

in

the

table.

EXEC

SQL

INSERT

INTO

PROJECT

(PROJNO,

PROJNAME,

DEPTNO,

RESPEMP,

PRSTDATE)

VALUES

(:PRJNO,

:PRJNM,

:DPTNO,

:REMP,

CURRENT

DATE);

Example

6:

Specify

an

INSERT

statement

as

the

data-change-table-reference

within

a

SELECT

statement.

Define

an

extra

include

column

whose

values

are

specified

in

the

VALUES

clause,

which

is

then

used

as

an

ordering

column

for

the

inserted

rows.

SELECT

inorder.ordernum

FROM

(INSERT

INTO

orders(custno)INCLUDE

(insertnum

integer)

VALUES(:cnum1,

1),

(:cnum2,

2))

InsertedOrders

ORDER

BY

insertnum;

Related

reference:

v

“Expressions”

in

the

SQL

Reference,

Volume

1

v

“CREATE

TABLE”

on

page

591

v

“CREATE

VIEW”

on

page

656

v

“SQL

queries”

in

the

SQL

Reference,

Volume

1

v

“Assignments

and

comparisons”

in

the

SQL

Reference,

Volume

1

INSERT

732

Common

Criteria

Certification:

Administration

and

User

Documentation

Related

samples:

v

“dtlob.sqc

--

How

to

use

the

LOB

data

type

(C)”

v

“tbident.sqc

--

How

to

use

identity

columns

(C)”

v

“tbmod.sqc

--

How

to

modify

table

data

(C)”

v

“tbtrig.sqc

--

How

to

use

a

trigger

on

a

table

(C)”

v

“dtlob.sqC

--

How

to

use

the

LOB

data

type

(C++)”

v

“tbmod.sqC

--

How

to

modify

table

data

(C++)”

v

“tbtrig.sqC

--

How

to

use

a

trigger

on

a

table

(C++)”

v

“DtLob.java

--

How

to

use

LOB

data

type

(JDBC)”

v

“TbIdent.java

--

How

to

use

Identity

Columns

(JDBC)”

v

“TbMod.java

--

How

to

modify

table

data

(JDBC)”

v

“TbTrig.java

--

How

to

use

triggers

(JDBC)”

v

“TbIdent.sqlj

--

How

to

use

Identity

Columns

(SQLj)”

v

“TbMod.sqlj

--

How

to

modify

table

data

(SQLj)”

v

“TbTrig.sqlj

--

How

to

use

triggers

(SQLj)”

v

“updat.sqb

--

How

to

update,

delete

and

insert

table

data

(MF

COBOL)”

REVOKE

(Database

Authorities)

This

form

of

the

REVOKE

statement

revokes

authorities

that

apply

to

the

entire

database.

Invocation:

This

statement

can

be

embedded

in

an

application

program

or

issued

through

the

use

of

dynamic

SQL

statements.

It

is

an

executable

statement

that

can

be

dynamically

prepared

only

if

DYNAMICRULES

run

behavior

is

in

effect

for

the

package

(SQLSTATE

42509).

Authorization:

The

privileges

held

by

the

authorization

ID

of

the

statement

must

include

at

least

one

of

the

following:

v

DBADM

authority

v

SYSADM

authority

To

revoke

DBADM

authority,

SYSADM

authority

is

required.

Syntax:

��

REVOKE

�

,

BINDADD

CONNECT

CREATETAB

CREATE_EXTERNAL_ROUTINE

CREATE_NOT_FENCED_ROUTINE

IMPLICIT_SCHEMA

DBADM

LOAD

QUIESCE_CONNECT

ON

DATABASE

�

INSERT

Chapter

15.

SQL

Statements

for

Administrators

733

�

�

,

FROM

authorization-name

USER

GROUP

PUBLIC

BY

ALL

��

Description:

BINDADD

Revokes

the

authority

to

create

packages.

The

creator

of

a

package

automatically

has

the

CONTROL

privilege

on

that

package

and

retains

this

privilege

even

if

his

BINDADD

authority

is

subsequently

revoked.

The

BINDADD

authority

cannot

be

revoked

from

an

authorization-name

holding

DBADM

authority

without

also

revoking

the

DBADM

authority.

CONNECT

Revokes

the

authority

to

access

the

database.

Revoking

the

CONNECT

authority

from

a

user

does

not

affect

any

privileges

that

were

granted

to

that

user

on

objects

in

the

database.

If

the

user

is

subsequently

granted

the

CONNECT

authority

again,

all

previously

held

privileges

are

still

valid

(assuming

they

were

not

explicitly

revoked).

The

CONNECT

authority

cannot

be

revoked

from

an

authorization-name

holding

DBADM

authority

without

also

revoking

the

DBADM

authority

(SQLSTATE

42504).

CREATETAB

Revokes

the

authority

to

create

tables.

The

creator

of

a

table

automatically

has

the

CONTROL

privilege

on

that

table,

and

retains

this

privilege

even

if

his

CREATETAB

authority

is

subsequently

revoked.

The

CREATETAB

authority

cannot

be

revoked

from

an

authorization-name

holding

DBADM

authority

without

also

revoking

the

DBADM

authority

(SQLSTATE

42504).

CREATE_EXTERNAL_ROUTINE

Revokes

the

authority

to

register

external

routines.

Once

an

external

routine

has

been

registered,

it

continues

to

exist,

even

if

CREATE_EXTERNAL_ROUTINE

is

subsequently

revoked

from

the

authorization

ID

that

registered

the

routine.

CREATE_EXTERNAL_ROUTINE

authority

cannot

be

revoked

from

an

authorization-name

holding

DBADM

or

CREATE_NOT_FENCED_ROUTINE

authority

without

also

revoking

DBADM

or

CREATE_NOT_FENCED_ROUTINE

authority

(SQLSTATE

42504).

CREATE_NOT_FENCED_ROUTINE

Revokes

the

authority

to

register

routines

that

execute

in

the

database

manager’s

process.

Once

a

routine

has

been

registered

as

not

fenced,

it

continues

to

run

in

this

manner,

even

if

CREATE_NOT_FENCED_ROUTINE

is

subsequently

revoked

from

the

authorization

ID

that

registered

the

routine.

CREATE_NOT_FENCED_ROUTINE

authority

cannot

be

revoked

from

an

authorization-name

holding

DBADM

authority

without

also

revoking

the

DBADM

authority

(SQLSTATE

42504).

REVOKE

(Database

Authorities)

734

Common

Criteria

Certification:

Administration

and

User

Documentation

IMPLICIT_SCHEMA

Revokes

the

authority

to

implicitly

create

a

schema.

It

does

not

affect

the

ability

to

create

objects

in

existing

schemas

or

to

process

a

CREATE

SCHEMA

statement.

DBADM

Revokes

the

DBADM

authority.

DBADM

authority

cannot

be

revoked

from

PUBLIC

(because

it

cannot

be

granted

to

PUBLIC).

CAUTION:

Revoking

DBADM

authority

does

not

automatically

revoke

any

privileges

that

were

held

by

the

authorization-name

on

objects

in

the

database,

nor

does

it

revoke

any

of

the

other

database

authorities

that

were

implicitly

and

automatically

granted

when

DBADM

authority

was

originally

granted.

LOAD

Revokes

the

authority

to

LOAD

in

this

database.

QUIESCE_CONNECT

Revokes

the

authority

to

access

the

database

while

it

is

quiesced.

FROM

Indicates

from

whom

the

authorities

are

revoked.

USER

Specifies

that

the

authorization-name

identifies

a

user.

GROUP

Specifies

that

the

authorization-name

identifies

a

group

name.

authorization-name,...

Lists

one

or

more

authorization

IDs.

The

authorization

ID

of

the

REVOKE

statement

itself

cannot

be

used

(SQLSTATE

42502).

It

is

not

possible

to

revoke

the

authorities

from

an

authorization-name

that

is

the

same

as

the

authorization

ID

of

the

REVOKE

statement.

PUBLIC

Revokes

the

authorities

from

PUBLIC.

BY

ALL

Revokes

each

named

privilege

from

all

named

users

who

were

explicitly

granted

those

privileges,

regardless

of

who

granted

them.

This

is

the

default

behavior.

Rules:

v

If

neither

USER

nor

GROUP

is

specified,

then:

–

If

all

rows

for

the

grantee

in

the

SYSCAT.DBAUTH

catalog

view

have

a

GRANTEETYPE

of

U,

then

USER

will

be

assumed.

–

If

all

rows

have

a

GRANTEETYPE

of

G,

then

GROUP

will

be

assumed.

–

If

some

rows

have

U

and

some

rows

have

G,

then

an

error

(SQLSTATE

56092)

is

raised.

Notes:

v

Compatibilities

REVOKE

(Database

Authorities)

Chapter

15.

SQL

Statements

for

Administrators

735

For

compatibility

with

versions

earlier

than

Version

8,

the

option

CREATE_NOT_FENCED

can

be

substituted

for

CREATE_NOT_FENCED_ROUTINE.

v

Revoking

a

specific

privilege

does

not

necessarily

revoke

the

ability

to

perform

an

action.

A

user

may

proceed

with

a

task

if

other

privileges

are

held

by

PUBLIC

or

a

group,

or

if

the

user

has

a

higher

level

authority,

such

as

DBADM.

Examples:

Example

1:

Given

that

USER6

is

only

a

user

and

not

a

group,

revoke

the

privilege

to

create

tables

from

the

user

USER6.

REVOKE

CREATETAB

ON

DATABASE

FROM

USER6

Example

2:

Revoke

BINDADD

authority

on

the

database

from

a

group

named

D024.

There

are

two

rows

in

the

SYSCAT.DBAUTH

catalog

view

for

this

grantee;

one

with

a

GRANTEETYPE

of

U

and

one

with

a

GRANTEETYPE

of

G.

REVOKE

BINDADD

ON

DATABASE

FROM

GROUP

D024

In

this

case,

the

GROUP

keyword

must

be

specified;

otherwise

an

error

will

occur

(SQLSTATE

56092).

Related

reference:

v

“REVOKE

(Index

Privileges)”

on

page

738

v

“REVOKE

(Package

Privileges)”

on

page

740

v

“REVOKE

(Schema

Privileges)”

on

page

745

v

“REVOKE

(Table,

View,

or

Nickname

Privileges)”

on

page

752

v

“REVOKE

(Server

Privileges)”

on

page

749

v

“REVOKE

(Table

Space

Privileges)”

on

page

750

v

“REVOKE

(Routine

Privileges)”

on

page

742

Related

samples:

v

“dbauth.sqc

--

How

to

grant,

display,

and

revoke

authorities

at

database

level

(C)”

v

“dbauth.sqC

--

How

to

grant,

display,

and

revoke

authorities

at

database

level

(C++)”

v

“DbAuth.java

--

Grant,

display

or

revoke

privileges

on

database

(JDBC)”

v

“DbAuth.sqlj

--

Grant,

display

or

revoke

privileges

on

database

(SQLj)”

RENAME

The

RENAME

statement

renames

an

existing

table

or

index.

Invocation:

This

statement

can

be

embedded

in

an

application

program

or

issued

through

the

use

of

dynamic

SQL

statements.

It

is

an

executable

statement

that

can

be

dynamically

prepared

only

if

DYNAMICRULES

run

behavior

is

in

effect

for

the

package

(SQLSTATE

42509).

Authorization:

REVOKE

(Database

Authorities)

736

Common

Criteria

Certification:

Administration

and

User

Documentation

The

privileges

held

by

the

authorization

ID

of

the

statement

must

include

either

SYSADM

or

DBADM

authority,

CONTROL

privilege

on

the

table

or

index,

or

ALTERIN

privilege

on

the

schema.

Syntax:

��

TABLE

RENAME

source-table-name

TO

target-identifier

INDEX

source-index-name

��

Description:

TABLE

source-table-name

Names

the

existing

table

that

is

to

be

renamed.

The

name,

including

the

schema

name,

must

identify

a

table

that

already

exists

in

the

database

(SQLSTATE

42704).

It

must

not

be

the

name

of

a

catalog

table

(SQLSTATE

42832),

a

materialized

query

table,

a

typed

table

(SQLSTATE

42997),

a

declared

global

temporary

table

(SQLSTATE

42995),

a

nickname,

or

an

object

other

than

a

table

or

an

alias

(SQLSTATE

42809).

The

TABLE

keyword

is

optional.

INDEX

source-index-name

Names

the

existing

index

that

is

to

be

renamed.

The

name,

including

the

schema

name,

must

identify

an

index

that

already

exists

in

the

database

(SQLSTATE

42704).

It

must

not

be

the

name

of

an

index

on

a

declared

global

temporary

table

(SQLSTATE

42995).

The

schema

name

must

not

be

SYSIBM,

SYSCAT,

SYSFUN,

or

SYSSTAT

(SQLSTATE

42832).

target-identifier

Specifies

the

new

name

for

the

table

or

index

without

a

schema

name.

The

schema

name

of

the

source

object

is

used

to

qualify

the

new

name

for

the

object.

The

qualified

name

must

not

identify

a

table,

view,

alias,

or

index

that

already

exists

in

the

database

(SQLSTATE

42710).

Rules:

When

renaming

a

table,

the

source

table

must

not:

v

Be

referenced

in

any

existing

view

definitions

or

materialized

query

table

definitions

v

Be

referenced

in

any

triggered

SQL

statements

in

existing

triggers

or

be

the

subject

table

of

an

existing

trigger

v

Be

referenced

in

an

SQL

function

v

Have

any

check

constraints

v

Have

any

generated

columns

other

than

the

identity

column

v

Be

a

parent

or

dependent

table

in

any

referential

integrity

constraints

v

Be

the

scope

of

any

existing

reference

column.

An

error

(SQLSTATE

42986)

is

returned

if

the

source

table

violates

one

or

more

of

these

conditions.

When

renaming

an

index:

v

The

source

index

must

not

be

a

system-generated

index

for

an

implementation

table

on

which

a

typed

table

is

based

(SQLSTATE

42858).

Notes:

v

Catalog

entries

are

updated

to

reflect

the

new

table

or

index

name.

RENAME

Chapter

15.

SQL

Statements

for

Administrators

737

v

All

authorizations

associated

with

the

source

table

or

index

name

are

transferred

to

the

new

table

or

index

name

(the

authorization

catalog

tables

are

updated

appropriately).

v

Indexes

defined

over

the

source

table

are

transferred

to

the

new

table

(the

index

catalog

tables

are

updated

appropriately).

v

RENAME

TABLE

invalidates

any

packages

that

are

dependent

on

the

source

table.

RENAME

INDEX

invalidates

any

packages

that

are

dependent

on

the

source

index.

v

If

an

alias

is

used

for

the

source-table-name,

it

must

resolve

to

a

table

name.

The

table

is

renamed

within

the

schema

of

this

table.

The

alias

is

not

changed

by

the

RENAME

statement

and

continues

to

refer

to

the

old

table

name.

v

A

table

with

primary

key

or

unique

constraints

can

be

renamed

if

none

of

the

primary

key

or

unique

constraints

are

referenced

by

any

foreign

key.

Examples:

Change

the

name

of

the

EMP

table

to

EMPLOYEE.

RENAME

TABLE

EMP

TO

EMPLOYEE

RENAME

TABLE

ABC.EMP

TO

EMPLOYEE

Change

the

name

of

the

index

NEW-IND

to

IND.

RENAME

INDEX

NEW-IND

TO

IND

RENAME

INDEX

ABC.NEW-IND

TO

IND

REVOKE

(Index

Privileges)

This

form

of

the

REVOKE

statement

revokes

the

CONTROL

privilege

on

an

index.

Invocation:

This

statement

can

be

embedded

in

an

application

program

or

issued

through

the

use

of

dynamic

SQL

statements.

It

is

an

executable

statement

that

can

be

dynamically

prepared

only

if

DYNAMICRULES

run

behavior

is

in

effect

for

the

package

(SQLSTATE

42509).

Authorization:

The

authorization

ID

of

the

statement

must

hold

either

SYSADM

or

DBADM

authority

(SQLSTATE

42501).

Syntax:

��

REVOKE

CONTROL

ON

INDEX

index-name

�

�

�

,

FROM

authorization-name

USER

GROUP

PUBLIC

BY

ALL

��

Description:

RENAME

738

Common

Criteria

Certification:

Administration

and

User

Documentation

CONTROL

Revokes

the

privilege

to

drop

the

index.

This

is

the

CONTROL

privilege

for

indexes,

which

is

automatically

granted

to

creators

of

indexes.

ON

INDEX

index-name

Specifies

the

name

of

the

index

on

which

the

CONTROL

privilege

is

to

be

revoked.

FROM

Indicates

from

whom

the

privileges

are

revoked.

USER

Specifies

that

the

authorization-name

identifies

a

user.

GROUP

Specifies

that

the

authorization-name

identifies

a

group

name.

authorization-name,...

Lists

one

or

more

authorization

IDs.

The

authorization

ID

of

the

REVOKE

statement

itself

cannot

be

used

(SQLSTATE

42502).

It

is

not

possible

to

revoke

the

privileges

from

an

authorization-name

that

is

the

same

as

the

authorization

ID

of

the

REVOKE

statement.

PUBLIC

Revokes

the

privileges

from

PUBLIC.

BY

ALL

Revokes

the

privilege

from

all

named

users

who

were

explicitly

granted

that

privilege,

regardless

of

who

granted

it.

This

is

the

default

behavior.

Rules:

v

If

neither

USER

nor

GROUP

is

specified,

then:

–

If

all

rows

for

the

grantee

in

the

SYSCAT.INDEXAUTH

catalog

view

have

a

GRANTEETYPE

of

U,

then

USER

will

be

assumed.

–

If

all

rows

have

a

GRANTEETYPE

of

G,

then

GROUP

will

be

assumed.

–

If

some

rows

have

U

and

some

rows

have

G,

then

an

error

(SQLSTATE

56092)

is

raised.

Notes:

v

Revoking

a

specific

privilege

does

not

necessarily

revoke

the

ability

to

perform

the

action.

A

user

may

proceed

with

their

task

if

other

privileges

are

held

by

PUBLIC

or

a

group,

or

if

they

have

authorities

such

as

ALTERIN

on

the

schema

of

an

index.

Examples:

Example

1:

Given

that

USER4

is

only

a

user

and

not

a

group,

revoke

the

privilege

to

drop

an

index

DEPTIDX

from

the

user

USER4.

REVOKE

CONTROL

ON

INDEX

DEPTIDX

FROM

USER4

Example

2:

Revoke

the

privilege

to

drop

an

index

LUNCHITEMS

from

the

user

CHEF

and

the

group

WAITERS.

REVOKE

CONTROL

ON

INDEX

LUNCHITEMS

FROM

USER

CHEF,

GROUP

WAITERS

Related

reference:

REVOKE

(Index

Privileges)

Chapter

15.

SQL

Statements

for

Administrators

739

v

“REVOKE

(Database

Authorities)”

on

page

733

v

“REVOKE

(Package

Privileges)”

on

page

740

v

“REVOKE

(Schema

Privileges)”

on

page

745

v

“REVOKE

(Table,

View,

or

Nickname

Privileges)”

on

page

752

v

“REVOKE

(Server

Privileges)”

on

page

749

v

“REVOKE

(Table

Space

Privileges)”

on

page

750

v

“REVOKE

(Routine

Privileges)”

on

page

742

REVOKE

(Package

Privileges)

This

form

of

the

REVOKE

statement

revokes

CONTROL,

BIND,

and

EXECUTE

privileges

against

a

package.

Invocation:

This

statement

can

be

embedded

in

an

application

program

or

issued

through

the

use

of

dynamic

SQL

statements.

It

is

an

executable

statement

that

can

be

dynamically

prepared

only

if

DYNAMICRULES

run

behavior

is

in

effect

for

the

package

(SQLSTATE

42509).

Authorization:

The

privileges

held

by

the

authorization

ID

of

the

statement

must

include

at

least

one

of

the

following:

v

CONTROL

privilege

on

the

referenced

package

v

SYSADM

or

DBADM

authority.

To

revoke

the

CONTROL

privilege,

SYSADM

or

DBADM

authority

are

required.

Syntax:

��

REVOKE

�

,

BIND

CONTROL

(1)

EXECUTE

�

�

(2)

ON

PACKAGE

package-id

schema-name.

�

�

�

,

FROM

authorization-name

USER

GROUP

PUBLIC

BY

ALL

��

Notes:

1 RUN

can

be

used

as

a

synonym

for

EXECUTE.

2 PROGRAM

can

be

used

as

a

synonym

for

PACKAGE.

REVOKE

(Index

Privileges)

740

Common

Criteria

Certification:

Administration

and

User

Documentation

Description:

BIND

Revokes

the

privilege

to

execute

BIND

or

REBIND

on—or

to

add

a

new

version

of—

the

referenced

package.

The

BIND

privilege

cannot

be

revoked

from

an

authorization-name

that

holds

CONTROL

privilege

on

the

package,

without

also

revoking

the

CONTROL

privilege.

CONTROL

Revokes

the

privilege

to

drop

the

package

and

to

extend

package

privileges

to

other

users.

Revoking

CONTROL

does

not

revoke

the

other

package

privileges.

EXECUTE

Revokes

the

privilege

to

execute

the

package.

The

EXECUTE

privilege

cannot

be

revoked

from

an

authorization-name

that

holds

CONTROL

privilege

on

the

package

without

also

revoking

the

CONTROL

privilege.

ON

PACKAGE

schema-name.package-id

Specifies

the

name

of

the

package

on

which

privileges

are

to

be

revoked.

If

a

schema

name

is

not

specified,

the

package

ID

is

implicitly

qualified

by

the

default

schema.

The

revoking

of

a

package

privilege

applies

to

all

versions

of

the

package.

FROM

Indicates

from

whom

the

privileges

are

revoked.

USER

Specifies

that

the

authorization-name

identifies

a

user.

GROUP

Specifies

that

the

authorization-name

identifies

a

group

name.

authorization-name,...

Lists

one

or

more

authorization

IDs.

The

authorization

ID

of

the

REVOKE

statement

itself

cannot

be

used

(SQLSTATE

42502).

It

is

not

possible

to

revoke

the

privileges

from

an

authorization-name

that

is

the

same

as

the

authorization

ID

of

the

REVOKE

statement.

PUBLIC

Revokes

the

privileges

from

PUBLIC.

BY

ALL

Revokes

each

named

privilege

from

all

named

users

who

were

explicitly

granted

those

privileges,

regardless

of

who

granted

them.

This

is

the

default

behavior.

Rules:

v

If

neither

USER

nor

GROUP

is

specified,

then:

–

If

all

rows

for

the

grantee

in

the

SYSCAT.PACKAGEAUTH

catalog

view

have

a

GRANTEETYPE

of

U,

then

USER

will

be

assumed.

–

If

all

rows

have

a

GRANTEETYPE

of

G,

then

GROUP

will

be

assumed.

–

If

some

rows

have

U

and

some

rows

have

G,

then

an

error

(SQLSTATE

56092)

is

raised.

REVOKE

(Package

Privileges)

Chapter

15.

SQL

Statements

for

Administrators

741

Notes:

v

Revoking

a

specific

privilege

does

not

necessarily

revoke

the

ability

to

perform

the

action.

A

user

may

proceed

with

their

task

if

other

privileges

are

held

by

PUBLIC

or

a

group,

or

if

they

have

privileges

such

as

ALTERIN

on

the

schema

of

a

package.

Examples:

Example

1:

Revoke

the

EXECUTE

privilege

on

package

CORPDATA.PKGA

from

PUBLIC.

REVOKE

EXECUTE

ON

PACKAGE

CORPDATA.PKGA

FROM

PUBLIC

Example

2:

Revoke

CONTROL

authority

on

the

RRSP_PKG

package

for

the

user

FRANK

and

for

PUBLIC.

REVOKE

CONTROL

ON

PACKAGE

RRSP_PKG

FROM

USER

FRANK,

PUBLIC

Related

reference:

v

“REVOKE

(Database

Authorities)”

on

page

733

v

“REVOKE

(Index

Privileges)”

on

page

738

v

“REVOKE

(Schema

Privileges)”

on

page

745

v

“REVOKE

(Table,

View,

or

Nickname

Privileges)”

on

page

752

v

“REVOKE

(Server

Privileges)”

on

page

749

v

“REVOKE

(Table

Space

Privileges)”

on

page

750

v

“REVOKE

(Routine

Privileges)”

on

page

742

REVOKE

(Routine

Privileges)

This

form

of

the

REVOKE

statement

revokes

privileges

on

a

routine

(function,

method,

or

procedure).

Invocation:

This

statement

can

be

embedded

in

an

application

program

or

issued

through

the

use

of

dynamic

SQL

statements.

It

is

an

executable

statement

that

can

be

dynamically

prepared

only

if

DYNAMICRULES

run

behavior

is

in

effect

for

the

package

(SQLSTATE

42509).

Authorization:

The

privileges

held

by

the

authorization

ID

of

the

statement

must

include

at

least

one

of

the

following:

v

SYSADM

or

DBADM

authority

Syntax:

REVOKE

(Package

Privileges)

742

Common

Criteria

Certification:

Administration

and

User

Documentation

��

REVOKE

EXECUTE

ON

function-designator

FUNCTION

*

schema.

method-designator

METHOD

*

FOR

type-name

*

schema.

procedure-designator

PROCEDURE

*

schema.

�

�

�

,

FROM

authorization-name

USER

GROUP

PUBLIC

BY

ALL

RESTRICT

��

Description:

EXECUTE

Revokes

the

privilege

to

run

the

identified

user-defined

function,

method,

or

stored

procedure.

function-designator

Uniquely

identifies

the

function.

FUNCTION

schema.*

Identifies

the

explicit

grant

for

all

the

existing

and

future

functions

in

the

schema.

Revoking

the

schema.*

privilege

does

not

revoke

any

privileges

that

were

granted

on

a

specific

function.

In

dynamic

SQL

statements,

if

a

schema

is

not

specified,

the

schema

in

the

CURRENT

SCHEMA

special

register

will

be

used.

In

static

SQL

statements,

if

a

schema

is

not

specified,

the

schema

in

the

QUALIFIER

precompile/bind

option

will

be

used.

method-designator

Uniquely

identifies

the

method.

METHOD

*

Identifies

the

explicit

grant

for

all

the

existing

and

future

methods

for

the

type

type-name.

Revoking

the

*

privilege

does

not

revoke

any

privileges

that

were

granted

on

a

specific

method.

FOR

type-name

Names

the

type

in

which

the

specified

method

is

found.

The

name

must

identify

a

type

already

described

in

the

catalog

(SQLSTATE

42704).

In

dynamic

SQL

statements,

the

value

of

the

CURRENT

SCHEMA

special

register

is

used

as

a

qualifier

for

an

unqualified

type

name.

In

static

SQL

statements,

the

QUALIFIER

precompile/bind

option

implicitly

specifies

the

qualifier

for

unqualified

type

names.

An

asterisk

(*)

can

be

used

in

place

of

type-name

to

identify

the

explicit

grant

on

all

existing

and

future

methods

for

all

existing

and

future

types

in

the

schema.

Revoking

the

privilege

using

an

asterisk

for

method

and

type-name

does

not

revoke

any

privileges

that

were

granted

on

a

specific

method

or

on

all

methods

for

a

specific

type.

procedure-designator

Uniquely

identifies

the

procedure.

REVOKE

(Routine

Privileges)

Chapter

15.

SQL

Statements

for

Administrators

743

PROCEDURE

schema.*

Identifies

the

explicit

grant

for

all

the

existing

and

future

procedures

in

the

schema.

Revoking

the

schema.*

privilege

does

not

revoke

any

privileges

that

were

granted

on

a

specific

procedure.

In

dynamic

SQL

statements,

if

a

schema

is

not

specified,

the

schema

in

the

CURRENT

SCHEMA

special

register

will

be

used.

In

static

SQL

statements,

if

a

schema

is

not

specified,

the

schema

in

the

QUALIFIER

precompile/bind

option

will

be

used.

FROM

Specifies

from

whom

the

EXECUTE

privilege

is

revoked.

USER

Specifies

that

the

authorization-name

identifies

a

user.

GROUP

Specifies

that

the

authorization-name

identifies

a

group

name.

authorization-name,...

Lists

the

authorization

IDs

of

one

or

more

users

or

groups.

The

list

of

authorization

IDs

cannot

include

the

authorization

ID

of

the

user

issuing

the

statement

(SQLSTATE

42502).

PUBLIC

Revokes

the

EXECUTE

privilege

from

all

users.

BY

ALL

Revokes

the

EXECUTE

privilege

from

all

named

users

who

were

explicitly

granted

the

privilege,

regardless

of

who

granted

it.

This

is

the

default

behavior.

RESTRICT

Specifies

that

the

EXECUTE

privilege

cannot

be

revoked

if

both

of

the

following

are

true

(SQLSTATE

42893):

v

The

specified

routine

is

used

in

a

view,

trigger,

constraint,

index

extension,

SQL

function,

SQL

method,

transform

group,

or

is

referenced

as

the

SOURCE

of

a

sourced

function.

v

The

loss

of

the

EXECUTE

privilege

would

cause

the

definer

of

the

view,

trigger,

constraint,

index

extension,

SQL

function,

SQL

method,

transform

group,

or

sourced

function

to

no

longer

be

able

to

execute

the

specified

routine.

Rules:

v

It

is

not

possible

to

revoke

the

EXECUTE

privilege

on

a

function

or

method

defined

with

schema

’SYSIBM’

or

’SYSFUN’

(SQLSTATE

42832).

v

If

neither

USER

nor

GROUP

is

specified,

then:

–

If

all

rows

for

the

grantee

in

the

SYSCAT.ROUTINEAUTH

catalog

views

have

a

GRANTEETYPE

of

U,

then

USER

is

assumed.

–

If

all

rows

have

a

GRANTEETYPE

of

G,

then

GROUP

is

assumed.

–

If

some

rows

have

U

and

some

rows

have

G,

an

error

(SQLSTATE

56092)

is

raised.

Examples:

Example

1:

Revoke

the

EXECUTE

privilege

on

function

CALC_SALARY

from

user

JONES.

Assume

that

there

is

only

one

function

in

the

schema

with

function

name

CALC_SALARY.

REVOKE

EXECUTE

ON

FUNCTION

CALC_SALARY

FROM

JONES

RESTRICT

REVOKE

(Routine

Privileges)

744

Common

Criteria

Certification:

Administration

and

User

Documentation

Example

2:

Revoke

the

EXECUTE

privilege

on

procedure

VACATION_ACCR

from

all

users

at

the

current

server.

REVOKE

EXECUTE

ON

PROCEDURE

VACATION_ACCR

FROM

PUBLIC

RESTRICT

Example

3:

Revoke

the

EXECUTE

privilege

on

function

NEW_DEPT_HIRES

from

HR

(Human

Resources).

The

function

has

two

input

parameters

of

type

INTEGER

and

CHAR(10),

respectively.

Assume

that

the

schema

has

more

than

one

function

named

NEW_DEPT_HIRES.

REVOKE

EXECUTE

ON

FUNCTION

NEW_DEPT_HIRES

(INTEGER,

CHAR(10))

FROM

HR

RESTRICT

Example

4:

Revoke

the

EXECUTE

privilege

on

method

SET_SALARY

for

type

EMPLOYEE

from

user

Jones.

REVOKE

EXECUTE

ON

METHOD

SET_SALARY

FOR

EMPLOYEE

FROM

JONES

RESTRICT

Related

reference:

v

“REVOKE

(Database

Authorities)”

on

page

733

v

“REVOKE

(Index

Privileges)”

on

page

738

v

“REVOKE

(Package

Privileges)”

on

page

740

v

“REVOKE

(Schema

Privileges)”

on

page

745

v

“REVOKE

(Table,

View,

or

Nickname

Privileges)”

on

page

752

v

“REVOKE

(Server

Privileges)”

on

page

749

v

“REVOKE

(Table

Space

Privileges)”

on

page

750

v

“Common

syntax

elements”

in

the

SQL

Reference,

Volume

2

REVOKE

(Schema

Privileges)

This

form

of

the

REVOKE

statement

revokes

the

privileges

on

a

schema.

Invocation:

This

statement

can

be

embedded

in

an

application

program

or

issued

through

the

use

of

dynamic

SQL

statements.

It

is

an

executable

statement

that

can

be

dynamically

prepared

only

if

DYNAMICRULES

run

behavior

is

in

effect

for

the

package

(SQLSTATE

42509).

Authorization:

The

authorization

ID

of

the

statement

must

hold

either

SYSADM

or

DBADM

authority

(SQLSTATE

42501).

Syntax:

��

REVOKE

�

,

ALTERIN

CREATEIN

DROPIN

ON

SCHEMA

schema-name

�

REVOKE

(Routine

Privileges)

Chapter

15.

SQL

Statements

for

Administrators

745

�

FROM

authorization-name

USER

GROUP

PUBLIC

BY

ALL

��

Description:

ALTERIN

Revokes

the

privilege

to

alter

or

comment

on

objects

in

the

schema.

CREATEIN

Revokes

the

privilege

to

create

objects

in

the

schema.

DROPIN

Revokes

the

privilege

to

drop

objects

in

the

schema.

ON

SCHEMA

schema-name

Specifies

the

name

of

the

schema

on

which

privileges

are

to

be

revoked.

FROM

Indicates

from

whom

the

privileges

are

revoked.

USER

Specifies

that

the

authorization-name

identifies

a

user.

GROUP

Specifies

that

the

authorization-name

identifies

a

group

name.

authorization-name,...

Lists

one

or

more

authorization

IDs.

The

authorization

ID

of

the

REVOKE

statement

itself

cannot

be

used

(SQLSTATE

42502).

It

is

not

possible

to

revoke

the

privileges

from

an

authorization-name

that

is

the

same

as

the

authorization

ID

of

the

REVOKE

statement.

PUBLIC

Revokes

the

privileges

from

PUBLIC.

BY

ALL

Revokes

each

named

privilege

from

all

named

users

who

were

explicitly

granted

those

privileges,

regardless

of

who

granted

them.

This

is

the

default

behavior.

Rules:

v

If

neither

USER

nor

GROUP

is

specified,

then:

–

If

all

rows

for

the

grantee

in

the

SYSCAT.SCHEMAAUTH

catalog

view

have

a

GRANTEETYPE

of

U,

then

USER

will

be

assumed.

–

If

all

rows

have

a

GRANTEETYPE

of

G,

then

GROUP

will

be

assumed.

–

If

some

rows

have

U

and

some

rows

have

G,

then

an

error

(SQLSTATE

56092)

is

raised.

Notes:

v

Revoking

a

specific

privilege

does

not

necessarily

revoke

the

ability

to

perform

the

action.

A

user

may

proceed

with

their

task

if

other

privileges

are

held

by

PUBLIC

or

a

group,

or

if

they

have

a

higher

level

authority

such

as

DBADM.

Examples:

REVOKE

(Schema

Privileges)

746

Common

Criteria

Certification:

Administration

and

User

Documentation

Example

1:

Given

that

USER4

is

only

a

user

and

not

a

group,

revoke

the

privilege

to

create

objects

in

schema

DEPTIDX

from

the

user

USER4.

REVOKE

CREATEIN

ON

SCHEMA

DEPTIDX

FROM

USER4

Example

2:

Revoke

the

privilege

to

drop

objects

in

schema

LUNCH

from

the

user

CHEF

and

the

group

WAITERS.

REVOKE

DROPIN

ON

SCHEMA

LUNCH

FROM

USER

CHEF,

GROUP

WAITERS

Related

reference:

v

“REVOKE

(Database

Authorities)”

on

page

733

v

“REVOKE

(Index

Privileges)”

on

page

738

v

“REVOKE

(Package

Privileges)”

on

page

740

v

“REVOKE

(Table,

View,

or

Nickname

Privileges)”

on

page

752

v

“REVOKE

(Server

Privileges)”

on

page

749

v

“REVOKE

(Table

Space

Privileges)”

on

page

750

v

“REVOKE

(Routine

Privileges)”

on

page

742

REVOKE

(Sequence

Privileges)

This

form

of

the

REVOKE

statement

revokes

privileges

on

a

sequence.

Invocation:

This

statement

can

be

embedded

in

an

application

program

or

issued

through

the

use

of

dynamic

SQL

statements.

It

is

an

executable

statement

that

can

be

dynamically

prepared.

However,

if

the

bind

option

DYNAMICRULES

BIND

applies,

the

statement

cannot

be

dynamically

prepared

(SQLSTATE

42509).

Authorization:

The

privileges

held

by

the

authorization

ID

of

the

statement

must

include

SYSADM

or

DBADM

authority.

Syntax:

��

REVOKE

�

,

ALTER

USAGE

ON

SEQUENCE

sequence-name

�

�

�

,

FROM

authorization-name

USER

GROUP

PUBLIC

RESTRICT

��

Description:

ALTER

Revokes

the

privilege

to

change

the

properties

of

a

sequence

or

to

restart

sequence

number

generation

using

the

ALTER

SEQUENCE

statement.

REVOKE

(Schema

Privileges)

Chapter

15.

SQL

Statements

for

Administrators

747

USAGE

Revokes

the

privilege

to

reference

a

sequence

using

nextval-expression

or

prevval-expression.

ON

SEQUENCE

sequence-name

Identifies

the

sequence

on

which

the

specified

privileges

are

to

be

revoked.

The

sequence

name,

including

an

implicit

or

explicit

schema

qualifier,

must

uniquely

identify

an

existing

sequence

at

the

current

server.

If

no

sequence

by

this

name

exists,

an

error

is

returned

(SQLSTATE

42704).

FROM

Specifies

from

whom

the

privileges

are

revoked.

USER

Specifies

that

the

authorization-name

identifies

a

user.

GROUP

Specifies

that

the

authorization-name

identifies

a

group.

authorization-name,...

Lists

the

authorization

IDs

of

one

or

more

users

or

groups.

The

authorization

ID

of

the

REVOKE

statement

itself

cannot

be

specified

(SQLSTATE

42502).

PUBLIC

Revokes

the

specified

privileges

from

all

users.

RESTRICT

This

optional

keyword

indicates

that

the

statement

will

fail

if

any

objects

depend

on

the

privilege

being

revoked.

Rules:

v

If

neither

USER

nor

GROUP

is

specified,

then:

–

If

all

rows

for

the

grantee

in

the

SYSCAT.SEQUENCEAUTH

catalog

view

have

a

GRANTEETYPE

of

U,

then

USER

is

assumed.

–

If

all

rows

have

a

GRANTEETYPE

of

G,

then

GROUP

is

assumed.

–

If

some

rows

have

U

and

some

rows

have

G,

an

error

is

returned

(SQLSTATE

56092).

Notes:

v

Revoking

a

specific

privilege

does

not

necessarily

remove

the

ability

to

perform

an

action.

A

user

can

proceed

if

other

privileges

are

held

by

PUBLIC

or

by

a

group

to

which

the

user

belongs,

or

if

the

user

has

a

higher

level

of

authority,

such

as

DBADM.

Examples:

Example

1:

Revoke

the

USAGE

privilege

on

a

sequence

called

GENERATE_ID

from

user

ENGLES.

There

is

one

row

in

the

SYSCAT.SEQUENCEAUTH

catalog

view

for

this

sequence

and

grantee,

and

the

GRANTEETYPE

value

is

U.

REVOKE

USAGE

ON

SEQUENCE

GENERATE_ID

FROM

ENGLES

Example

2:

Revoke

alter

privileges

on

sequence

GENERATE_ID

that

were

previously

granted

to

all

local

users.

(Grants

to

specific

users

are

not

affected.)

REVOKE

ALTER

ON

SEQUENCE

GENERATE_ID

FROM

PUBLIC

Example

3:

Revoke

all

privileges

on

sequence

GENERATE_ID

from

users

PELLOW

and

MLI,

and

from

group

PLANNERS.

REVOKE

(Schema

Privileges)

748

Common

Criteria

Certification:

Administration

and

User

Documentation

REVOKE

ALTER,

USAGE

ON

SEQUENCE

GENERATE_ID

FROM

USER

PELLOW,

USER

MLI,

GROUP

PLANNERS

Related

reference:

v

“REVOKE

(Database

Authorities)”

on

page

733

v

“REVOKE

(Index

Privileges)”

on

page

738

v

“REVOKE

(Package

Privileges)”

on

page

740

v

“REVOKE

(Schema

Privileges)”

on

page

745

v

“REVOKE

(Table,

View,

or

Nickname

Privileges)”

on

page

752

v

“REVOKE

(Server

Privileges)”

on

page

749

v

“REVOKE

(Table

Space

Privileges)”

on

page

750

v

“GRANT

(Sequence

Privileges)”

on

page

713

v

“REVOKE

(Routine

Privileges)”

on

page

742

REVOKE

(Server

Privileges)

This

form

of

the

REVOKE

statement

revokes

the

privilege

to

access

and

use

a

specified

data

source

in

pass-through

mode.

Invocation:

This

statement

can

be

embedded

in

an

application

program

or

issued

through

the

use

of

dynamic

SQL

statements.

It

is

an

executable

statement

that

can

be

dynamically

prepared

only

if

DYNAMICRULES

run

behavior

is

in

effect

for

the

package

(SQLSTATE

42509).

Authorization:

The

authorization

ID

of

the

statement

must

have

SYSADM

or

DBADM

authority.

Syntax:

��

REVOKE

PASSTHRU

ON

SERVER

server-name

FROM

�

�

�

,

authorization-name

USER

GROUP

PUBLIC

BY

ALL

��

Description:

SERVER

server-name

Names

the

data

source

for

which

the

privilege

to

use

in

pass-through

mode

is

being

revoked.

server-name

must

identify

a

data

source

that

is

described

in

the

catalog.

FROM

Specifies

from

whom

the

privilege

is

revoked.

USER

Specifies

that

the

authorization-name

identifies

a

user.

REVOKE

(Schema

Privileges)

Chapter

15.

SQL

Statements

for

Administrators

749

GROUP

Specifies

that

the

authorization-name

identifies

a

group

name.

authorization-name,...

Lists

the

authorization

IDs

of

one

or

more

users

or

groups.

The

authorization

ID

of

the

REVOKE

statement

itself

cannot

be

used

(SQLSTATE

42502).

It

is

not

possible

to

revoke

the

privileges

from

an

authorization-name

that

is

the

same

as

the

authorization

ID

of

the

REVOKE

statement.

PUBLIC

Revokes

from

all

users

the

privilege

to

pass

through

to

server-name.

BY

ALL

Revokes

the

privilege

from

all

named

users

who

were

explicitly

granted

that

privilege,

regardless

of

who

granted

it.

This

is

the

default

behavior.

Examples:

Example

1:

Revoke

USER6’s

privilege

to

pass

through

to

data

source

MOUNTAIN.

REVOKE

PASSTHRU

ON

SERVER

MOUNTAIN

FROM

USER

USER6

Example

2:

Revoke

group

D024’s

privilege

to

pass

through

to

data

source

EASTWING.

REVOKE

PASSTHRU

ON

SERVER

EASTWING

FROM

GROUP

D024

The

members

of

group

D024

will

no

longer

be

able

to

use

their

group

ID

to

pass

through

to

EASTWING.

But

if

any

members

have

the

privilege

to

pass

through

to

EASTWING

under

their

own

user

IDs,

they

will

retain

this

privilege.

Related

reference:

v

“REVOKE

(Database

Authorities)”

on

page

733

v

“REVOKE

(Index

Privileges)”

on

page

738

v

“REVOKE

(Package

Privileges)”

on

page

740

v

“REVOKE

(Schema

Privileges)”

on

page

745

v

“REVOKE

(Table,

View,

or

Nickname

Privileges)”

on

page

752

v

“REVOKE

(Table

Space

Privileges)”

on

page

750

v

“REVOKE

(Routine

Privileges)”

on

page

742

REVOKE

(Table

Space

Privileges)

This

form

of

the

REVOKE

statement

revokes

the

USE

privilege

on

a

table

space.

Invocation:

This

statement

can

be

embedded

in

an

application

program

or

issued

through

the

use

of

dynamic

SQL

statements.

It

is

an

executable

statement

that

can

be

dynamically

prepared

only

if

DYNAMICRULES

run

behavior

is

in

effect

for

the

package

(SQLSTATE

42509).

Authorization:

The

authorization

ID

of

the

statement

must

hold

either

SYSADM,

SYSCTRL

or

DBADM

authority

(SQLSTATE

42501).

REVOKE

(Server

Privileges)

750

Common

Criteria

Certification:

Administration

and

User

Documentation

Syntax:

��

REVOKE

USE

OF

TABLESPACE

tablespace-name

FROM

�

�

�

,

authorization-name

USER

GROUP

PUBLIC

BY

ALL

��

Description:

USE

Revokes

the

privilege

to

specify

or

default

to

the

table

space

when

creating

a

table.

OF

TABLESPACE

tablespace-name

Specifies

the

table

space

on

which

the

USE

privilege

is

to

be

revoked.

The

table

space

cannot

be

SYSCATSPACE

(SQLSTATE

42838)

or

a

SYSTEM

TEMPORARY

table

space

(SQLSTATE

42809).

FROM

Indicates

from

whom

the

USE

privilege

is

revoked.

USER

Specifies

that

the

authorization-name

identifies

a

user.

GROUP

Specifies

that

the

authorization-name

identifies

a

group

name.

authorization-name

Lists

one

or

more

authorization

IDs.

The

authorization

ID

of

the

REVOKE

statement

itself

cannot

be

used

(SQLSTATE

42502).

It

is

not

possible

to

revoke

the

privileges

from

an

authorization-name

that

is

the

same

as

the

authorization

ID

of

the

REVOKE

statement.

PUBLIC

Revokes

the

USE

privilege

from

PUBLIC.

BY

ALL

Revokes

the

privilege

from

all

named

users

who

were

explicitly

granted

that

privilege,

regardless

of

who

granted

it.

This

is

the

default

behavior.

Rules:

v

If

neither

USER

nor

GROUP

is

specified,

then:

–

If

all

rows

for

the

grantee

in

the

SYSCAT.TBSPACEAUTH

catalog

view

have

a

GRANTEETYPE

of

U,

then

USER

will

be

assumed.

–

If

all

rows

have

a

GRANTEETYPE

of

G,

then

GROUP

will

be

assumed.

–

If

some

rows

have

U

and

some

rows

have

G,

then

an

error

results

(SQLSTATE

56092).

Notes:

REVOKE

(Table

Space

Privileges)

Chapter

15.

SQL

Statements

for

Administrators

751

v

Revoking

the

USE

privilege

does

not

necessarily

revoke

the

ability

to

create

tables

in

that

table

space.

A

user

may

still

be

able

to

create

tables

in

that

table

space

if

the

USE

privilege

is

held

by

PUBLIC

or

a

group,

or

if

the

user

has

a

higher

level

authority,

such

as

DBADM.

Examples:

Example

1:

Revoke

the

privilege

to

create

tables

in

table

space

PLANS

from

the

user

BOBBY.

REVOKE

USE

OF

TABLESPACE

PLANS

FROM

USER

BOBBY

Related

reference:

v

“REVOKE

(Database

Authorities)”

on

page

733

v

“REVOKE

(Index

Privileges)”

on

page

738

v

“REVOKE

(Package

Privileges)”

on

page

740

v

“REVOKE

(Schema

Privileges)”

on

page

745

v

“REVOKE

(Table,

View,

or

Nickname

Privileges)”

on

page

752

v

“REVOKE

(Server

Privileges)”

on

page

749

v

“REVOKE

(Routine

Privileges)”

on

page

742

REVOKE

(Table,

View,

or

Nickname

Privileges)

This

form

of

the

REVOKE

statement

revokes

privileges

on

a

table,

view,

or

nickname.

Invocation:

This

statement

can

be

embedded

in

an

application

program

or

issued

through

the

use

of

dynamic

SQL

statements.

It

is

an

executable

statement

that

can

be

dynamically

prepared

only

if

DYNAMICRULES

run

behavior

is

in

effect

for

the

package

(SQLSTATE

42509).

Authorization:

The

privileges

held

by

the

authorization

ID

of

the

statement

must

include

at

least

one

of

the

following:

v

SYSADM

or

DBADM

authority

v

CONTROL

privilege

on

the

referenced

table,

view,

or

nickname.

To

revoke

the

CONTROL

privilege,

either

SYSADM

or

DBADM

authority

is

required.

To

revoke

the

privileges

on

catalog

tables

and

views,

either

SYSADM

or

DBADM

authority

is

required.

Syntax:

REVOKE

(Table

Space

Privileges)

752

Common

Criteria

Certification:

Administration

and

User

Documentation

��

REVOKE

�

PRIVILEGES

ALL

,

ALTER

CONTROL

DELETE

INDEX

INSERT

REFERENCES

SELECT

UPDATE

ON

TABLE

table-name

view-name

nickname

�

�

�

,

FROM

authorization-name

USER

GROUP

PUBLIC

BY

ALL

��

Description:

ALL

or

ALL

PRIVILEGES

Revokes

all

privileges

(except

CONTROL)

held

by

an

authorization-name

for

the

specified

tables,

views,

or

nicknames.

If

ALL

is

not

used,

one

or

more

of

the

keywords

listed

below

must

be

used.

Each

keyword

revokes

the

privilege

described,

but

only

as

it

applies

to

the

tables,

views,

or

nicknames

named

in

the

ON

clause.

The

same

keyword

must

not

be

specified

more

than

once.

ALTER

Revokes

the

privilege

to

add

columns

to

the

base

table

definition;

create

or

drop

a

primary

key

or

unique

constraint

on

the

table;

create

or

drop

a

foreign

key

on

the

table;

add/change

a

comment

on

the

table,

view,

or

nickname;

create

or

drop

a

check

constraint;

create

a

trigger;

add,

reset,

or

drop

a

column

option

for

a

nickname;

or,

change

nickname

column

names

or

data

types.

CONTROL

Revokes

the

ability

to

drop

the

table,

view,

or

nickname,

and

the

ability

to

execute

the

RUNSTATS

utility

on

the

table

and

indexes.

Revoking

CONTROL

privilege

from

an

authorization-name

does

not

revoke

other

privileges

granted

to

the

user

on

that

object.

DELETE

Revokes

the

privilege

to

delete

rows

from

the

table,

updatable

view,

or

nickname.

INDEX

Revokes

the

privilege

to

create

an

index

on

the

table

or

an

index

specification

on

the

nickname.

The

creator

of

an

index

or

index

specification

automatically

has

the

CONTROL

privilege

over

the

index

or

index

specification

(authorizing

the

creator

to

drop

the

index

or

index

specification).

In

addition,

the

creator

retains

this

privilege

even

if

the

INDEX

privilege

is

revoked.

INSERT

Revokes

the

privileges

to

insert

rows

into

the

table,

updatable

view,

or

nickname,

and

to

run

the

IMPORT

utility.

REVOKE

(Table,

View,

or

Nickname

Privileges)

Chapter

15.

SQL

Statements

for

Administrators

753

REFERENCES

Revokes

the

privilege

to

create

or

drop

a

foreign

key

referencing

the

table

as

the

parent.

Any

column

level

REFERENCES

privileges

are

also

revoked.

SELECT

Revokes

the

privilege

to

retrieve

rows

from

the

table

or

view,

to

create

a

view

on

a

table,

and

to

run

the

EXPORT

utility

against

the

table

or

view.

Revoking

SELECT

privilege

may

cause

some

views

to

be

marked

inoperative.

(For

information

on

inoperative

views,

see

“CREATE

VIEW”.)

UPDATE

Revokes

the

privilege

to

update

rows

in

the

table,

updatable

view,

or

nickname.

Any

column

level

UPDATE

privileges

are

also

revoked.

ON

TABLE

table-name

or

view-name

or

nickname

Specifies

the

table,

view,

or

nickname

on

which

privileges

are

to

be

revoked.

The

table-name

cannot

be

a

declared

temporary

table

(SQLSTATE

42995).

FROM

Indicates

from

whom

the

privileges

are

revoked.

USER

Specifies

that

the

authorization-name

identifies

a

user.

GROUP

Specifies

that

the

authorization-name

identifies

a

group

name.

authorization-name,...

Lists

one

or

more

authorization

IDs.

The

ID

of

the

REVOKE

statement

itself

cannot

be

used

(SQLSTATE

42502).

It

is

not

possible

to

revoke

the

privileges

from

an

authorization-name

that

is

the

same

as

the

authorization

ID

of

the

REVOKE

statement.

PUBLIC

Revokes

the

privileges

from

PUBLIC.

BY

ALL

Revokes

each

named

privilege

from

all

named

users

who

were

explicitly

granted

those

privileges,

regardless

of

who

granted

them.

This

is

the

default

behavior.

Rules:

v

If

neither

USER

nor

GROUP

is

specified,

then:

–

If

all

rows

for

the

grantee

in

the

SYSCAT.TABAUTH

and

SYSCAT.COLAUTH

catalog

views

have

a

GRANTEETYPE

of

U,

then

USER

will

be

assumed.

–

If

all

rows

have

a

GRANTEETYPE

of

G,

then

GROUP

will

be

assumed.

–

If

some

rows

have

U

and

some

rows

have

G,

then

an

error

(SQLSTATE

56092)

is

raised.

Notes:

v

If

a

privilege

is

revoked

from

the

authorization-name

used

to

create

a

view

(this

is

called

the

view’s

DEFINER

in

SYSCAT.VIEWS),

that

privilege

is

also

revoked

from

any

dependent

views.

v

If

the

DEFINER

of

the

view

loses

a

SELECT

privilege

on

some

object

on

which

the

view

definition

depends

(or

an

object

upon

which

the

view

definition

depends

is

dropped,

or

made

inoperative

in

the

case

of

another

view),

the

view

will

be

made

inoperative.

REVOKE

(Table,

View,

or

Nickname

Privileges)

754

Common

Criteria

Certification:

Administration

and

User

Documentation

However,

if

a

DBADM

or

SYSADM

explicitly

revokes

all

privileges

on

the

view

from

the

DEFINER,

then

the

record

of

the

DEFINER

will

not

appear

in

SYSCAT.TABAUTH

but

nothing

will

happen

to

the

view

-

it

remains

operative.

v

Privileges

on

inoperative

views

cannot

be

revoked.

v

All

packages

dependent

upon

an

object

for

which

a

privilege

is

revoked

are

marked

invalid.

A

package

remains

invalid

until

a

bind

or

rebind

operation

on

the

application

is

successfully

executed,

or

the

application

is

executed

and

the

database

manager

successfully

rebinds

the

application

(using

information

stored

in

the

catalogs).

Packages

marked

invalid

due

to

a

revoke

may

be

successfully

rebound

without

any

additional

grants.

For

example,

if

a

package

owned

by

USER1

contains

a

SELECT

from

table

T1

and

the

SELECT

privilege

for

table

T1

is

revoked

from

USER1,

then

the

package

will

be

marked

invalid.

If

SELECT

authority

is

re-granted,

or

if

the

user

holds

DBADM

authority,

the

package

is

successfully

rebound

when

executed.

v

Packages,

triggers

or

views

that

include

the

use

of

OUTER(Z)

in

the

FROM

clause,

are

dependent

on

having

SELECT

privilege

on

every

subtable

or

subview

of

Z.

Similarly,

packages,

triggers,

or

views

that

include

the

use

of

DEREF(Y)

where

Y

is

a

reference

type

with

a

target

table

or

view

Z,

are

dependent

on

having

SELECT

privilege

on

every

subtable

or

subview

of

Z.

If

one

of

these

SELECT

privileges

is

revoked,

such

packages

are

invalidated

and

such

triggers

or

views

are

made

inoperative.

v

Table,

view,

or

nickname

privileges

cannot

be

revoked

from

an

authorization-name

with

CONTROL

on

the

object

without

also

revoking

the

CONTROL

privilege

(SQLSTATE

42504).

v

Revoking

a

specific

privilege

does

not

necessarily

revoke

the

ability

to

perform

the

action.

A

user

may

proceed

with

their

task

if

other

privileges

are

held

by

PUBLIC

or

a

group,

or

if

they

have

privileges

such

as

ALTERIN

on

the

schema

of

a

table

or

a

view.

v

If

the

DEFINER

of

the

materialized

query

table

loses

a

SELECT

privilege

on

a

table

on

which

the

materialized

query

table

definition

depends

(or

a

table

upon

which

the

materialized

query

table

definition

depends

is

dropped),

the

materialized

query

table

will

be

made

inoperative.

However,

if

a

DBADM

or

SYSADM

explicitly

revokes

all

privileges

on

the

materialized

query

table

from

the

DEFINER,

then

the

record

in

SYSTABAUTH

for

the

DEFINER

will

be

deleted,

but

nothing

will

happen

to

the

materialized

query

table

-

it

remains

operative.

v

Revoking

nickname

privileges

has

no

affect

on

data

source

object

(table

or

view)

privileges.

v

Revoking

the

SELECT

privilege

for

a

table

or

view

that

is

directly

or

indirectly

referenced

in

an

SQL

function

or

method

body

may

fail

if

the

SQL

function

or

method

body

cannot

be

dropped

because

some

other

object

is

dependent

on

it

(SQLSTATE

42893).

v

If

the

DEFINER

of

the

SQL

function

or

method

body

loses

the

SELECT

privilege

on

some

object

on

which

the

function

or

method

body

definition

depends

(or

if

an

object

upon

which

the

function

or

method

body

definition

depends

is

dropped),

the

function

or

method

body

will

be

dropped,

unless

another

object

depends

on

the

function

or

method

(SQLSTATE

42893).

Examples:

Example

1:

Revoke

SELECT

privilege

on

table

EMPLOYEE

from

user

ENGLES.

There

is

one

row

in

the

SYSCAT.TABAUTH

catalog

view

for

this

table

and

grantee

and

the

GRANTEETYPE

value

is

U.

REVOKE

(Table,

View,

or

Nickname

Privileges)

Chapter

15.

SQL

Statements

for

Administrators

755

REVOKE

SELECT

ON

TABLE

EMPLOYEE

FROM

ENGLES

Example

2:

Revoke

update

privileges

on

table

EMPLOYEE

previously

granted

to

all

local

users.

Note

that

grants

to

specific

users

are

not

affected.

REVOKE

UPDATE

ON

EMPLOYEE

FROM

PUBLIC

Example

3:

Revoke

all

privileges

on

table

EMPLOYEE

from

users

PELLOW

and

MLI

and

from

group

PLANNERS.

REVOKE

ALL

ON

EMPLOYEE

FROM

USER

PELLOW,

USER

MLI,

GROUP

PLANNERS

Example

4:

Revoke

SELECT

privilege

on

table

CORPDATA.EMPLOYEE

from

a

user

named

JOHN.

There

is

one

row

in

the

SYSCAT.TABAUTH

catalog

view

for

this

table

and

grantee

and

the

GRANTEETYPE

value

is

U.

REVOKE

SELECT

ON

CORPDATA.EMPLOYEE

FROM

JOHN

or

REVOKE

SELECT

ON

CORPDATA.EMPLOYEE

FROM

USER

JOHN

Note

that

an

attempt

to

revoke

the

privilege

from

GROUP

JOHN

would

result

in

an

error,

since

the

privilege

was

not

previously

granted

to

GROUP

JOHN.

Example

5:

Revoke

SELECT

privilege

on

table

CORPDATA.EMPLOYEE

from

a

group

named

JOHN.

There

is

one

row

in

the

SYSCAT.TABAUTH

catalog

view

for

this

table

and

grantee

and

the

GRANTEETYPE

value

is

G.

REVOKE

SELECT

ON

CORPDATA.EMPLOYEE

FROM

JOHN

or

REVOKE

SELECT

ON

CORPDATA.EMPLOYEE

FROM

GROUP

JOHN

Example

6:

Revoke

user

SHAWN’s

privilege

to

create

an

index

specification

on

nickname

ORAREM1.

REVOKE

INDEX

ON

ORAREM1

FROM

USER

SHAWN

Related

reference:

v

“CREATE

TABLE”

on

page

591

v

“CREATE

VIEW”

on

page

656

v

“DROP”

on

page

676

v

“REVOKE

(Database

Authorities)”

on

page

733

v

“REVOKE

(Index

Privileges)”

on

page

738

v

“REVOKE

(Package

Privileges)”

on

page

740

v

“REVOKE

(Schema

Privileges)”

on

page

745

v

“REVOKE

(Server

Privileges)”

on

page

749

v

“REVOKE

(Table

Space

Privileges)”

on

page

750

REVOKE

(Table,

View,

or

Nickname

Privileges)

756

Common

Criteria

Certification:

Administration

and

User

Documentation

v

“REVOKE

(Routine

Privileges)”

on

page

742

Related

samples:

v

“tbpriv.sqc

--

How

to

grant,

display,

and

revoke

privileges

(C)”

v

“tbpriv.sqC

--

How

to

grant,

display,

and

revoke

privileges

(C++)”

v

“TbPriv.java

--

How

to

grant,

display

and

revoke

privileges

on

a

table

(JDBC)”

v

“TbPriv.sqlj

--

How

to

grant,

display

and

revoke

privileges

on

a

table

(SQLj)”

UPDATE

The

UPDATE

statement

updates

the

values

of

specified

columns

in

rows

of

a

table,

view

or

nickname,

or

the

underlying

tables,

nicknames,

or

views

of

the

specified

fullselect.

Updating

a

row

of

a

view

updates

a

row

of

its

base

table,

if

no

INSTEAD

OF

trigger

is

defined

for

the

update

operation

on

this

view.

If

such

a

trigger

is

defined,

the

trigger

will

be

executed

instead.

Updating

a

row

using

a

nickname

updates

a

row

in

the

data

source

object

to

which

the

nickname

refers.

The

forms

of

this

statement

are:

v

The

Searched

UPDATE

form

is

used

to

update

one

or

more

rows

(optionally

determined

by

a

search

condition).

v

The

Positioned

UPDATE

form

is

used

to

update

exactly

one

row

(as

determined

by

the

current

position

of

a

cursor).

Invocation:

An

UPDATE

statement

can

be

embedded

in

an

application

program

or

issued

through

the

use

of

dynamic

SQL

statements.

It

is

an

executable

statement

that

can

be

dynamically

prepared.

Authorization:

The

privileges

held

by

the

authorization

ID

of

the

statement

must

include

at

least

one

of

the

following:

v

UPDATE

privilege

on

the

table,

view

or

nickname

where

rows

are

to

be

updated

v

UPDATE

privilege

on

each

of

the

columns

to

be

updated.

v

CONTROL

privilege

on

the

table,

view

or

nickname

where

rows

are

to

be

updated

v

SYSADM

or

DBADM

authority.

v

If

a

row-fullselect

is

included

in

the

assignment,

at

least

one

of

the

following

for

each

referenced

table,

view

or

nickname:

–

SELECT

privilege

–

CONTROL

privilege

–

SYSADM

or

DBADM

authority.

For

each

table,

view

or

nickname

referenced

by

a

subquery,

the

privileges

held

by

the

authorization

ID

of

the

statement

must

also

include

at

least

one

of

the

following:

v

SELECT

privilege

v

CONTROL

privilege

v

SYSADM

or

DBADM

authority.

REVOKE

(Table,

View,

or

Nickname

Privileges)

Chapter

15.

SQL

Statements

for

Administrators

757

If

the

package

used

to

process

the

statement

is

precompiled

with

SQL92

rules

(option

LANGLEVEL

with

a

value

of

SQL92E

or

MIA),

and

the

searched

form

of

an

UPDATE

statement

includes

a

reference

to

a

column

of

the

table,

view

or

nickname

in

the

right

side

of

the

assignment-clause,

or

anywhere

in

the

search-condition,

the

privileges

held

by

the

authorization

ID

of

the

statement

must

also

include

at

least

one

of

the

following:

v

SELECT

privilege

v

CONTROL

privilege

v

SYSADM

or

DBADM

authority.

If

the

specified

table

or

view

is

preceded

by

the

ONLY

keyword,

the

privileges

held

by

the

authorization

ID

of

the

statement

must

also

include

the

SELECT

privilege

for

every

subtable

or

subview

of

the

specified

table

or

view.

GROUP

privileges

are

not

checked

for

static

UPDATE

statements.

If

the

target

of

the

update

operation

is

a

nickname,

the

privileges

on

the

object

at

the

data

source

are

not

considered

until

the

statement

is

executed

at

the

data

source.

At

this

time,

the

authorization

ID

that

is

used

to

connect

to

the

data

source

must

have

the

privileges

required

for

the

operation

on

the

object

at

the

data

source.

The

authorization

ID

of

the

statement

may

be

mapped

to

a

different

authorization

ID

at

the

data

source.

Syntax:

searched-update:

��

UPDATE

table-name

view-name

nickname

ONLY

(

table-name

)

view-name

(

fullselect

)

correlation-clause

�

�

include-columns

SET

assignment-clause

�

�

WHERE

search-condition

WITH

RR

RS

CS

UR

��

positioned-update:

��

UPDATE

table-name

view-name

nickname

ONLY

(

table-name

)

view-name

correlation-clause

�

�

SET

assignment-clause

WHERE

CURRENT

OF

cursor-name

��

UPDATE

758

Common

Criteria

Certification:

Administration

and

User

Documentation

correlation-clause:

AS

correlation-name

�

,

(

column-name

)

include-columns:

INCLUDE

�

,

(

column-name

data-type

)

assignment-clause:

�

�

�

�

�

,

column-name

=

expression

NULL

DEFAULT

..attribute-name

,

,

(1)

(

column-name

)

=

(

expression

)

NULL

DEFAULT

..attribute-name

(2)

row-fullselect

Notes:

1 The

number

of

expressions,

NULLs

and

DEFAULTs

must

match

the

number

of

column

names.

2 The

number

of

columns

in

the

select

list

must

match

the

number

of

column

names.

Description:

table-name,

view-name,

nickname,

or

(fullselect)

Identifies

the

object

of

the

update

operation.

The

name

must

identify

a

table,

view,

or

nickname

described

in

the

catalog,

but

not

a

catalog

table,

a

view

of

a

catalog

table

(unless

it

is

one

of

the

updatable

SYSSTAT

views),

a

system-maintained

materialized

query

table,

or

a

read-only

view

that

has

no

INSTEAD

OF

trigger

defined

for

its

update

operations.

If

table-name

is

a

typed

table,

rows

of

the

table

or

any

of

its

proper

subtables

may

get

updated

by

the

statement.

Only

the

columns

of

the

specified

table

may

be

set

or

referenced

in

the

WHERE

clause.

For

a

positioned

UPDATE,

the

associated

cursor

must

also

have

specified

the

same

table,

view

or

nickname

in

the

FROM

clause

without

using

ONLY.

If

the

object

of

the

update

operation

is

a

fullselect,

the

fullselect

must

be

updatable,

as

defined

in

the

“Updatable

views”

Notes

item

in

the

description

of

the

CREATE

VIEW

statement.

ONLY

(table-name)

Applicable

to

typed

tables,

the

ONLY

keyword

specifies

that

the

statement

should

apply

only

to

data

of

the

specified

table

and

rows

of

proper

subtables

cannot

be

updated

by

the

statement.

For

a

positioned

UPDATE,

the

associated

UPDATE

Chapter

15.

SQL

Statements

for

Administrators

759

cursor

must

also

have

specified

the

table

in

the

FROM

clause

using

ONLY.

If

table-name

is

not

a

typed

table,

the

ONLY

keyword

has

no

effect

on

the

statement.

ONLY

(view-name)

Applicable

to

typed

views,

the

ONLY

keyword

specifies

that

the

statement

should

apply

only

to

data

of

the

specified

view

and

rows

of

proper

subviews

cannot

be

updated

by

the

statement.

For

a

positioned

UPDATE,

the

associated

cursor

must

also

have

specified

the

view

in

the

FROM

clause

using

ONLY.

If

view-name

is

not

a

typed

view,

the

ONLY

keyword

has

no

effect

on

the

statement.

correlation-clause

Can

be

used

within

search-condition

or

assignment-clause

to

designate

a

table,

view,

nickname,

or

fullselect.

For

a

description

of

correlation-clause,

see

“table-reference”

in

the

description

of

“Subselect”.

include-columns

Specifies

a

set

of

columns

that

are

included,

along

with

the

columns

of

table-name

or

view-name,

in

the

intermediate

result

table

of

the

UPDATE

statement

when

it

is

nested

in

the

FROM

clause

of

a

fullselect.

The

include-columns

are

appended

at

the

end

of

the

list

of

columns

that

are

specified

for

table-name

or

view-name.

INCLUDE

Specifies

a

list

of

columns

to

be

included

in

the

intermediate

result

table

of

the

UPDATE

statement.

column-name

Specifies

a

column

of

the

intermediate

result

table

of

the

UPDATE

statement.

The

name

cannot

be

the

same

as

the

name

of

another

include

column

or

a

column

in

table-name

or

view-name

(SQLSTATE

42711).

data-type

Specifies

the

data

type

of

the

include

column.

The

data

type

must

be

one

that

is

supported

by

the

CREATE

TABLE

statement.

SET

Introduces

the

assignment

of

values

to

column

names.

assignment-clause

column-name

Identifies

a

column

to

be

updated.

The

column-name

must

identify

an

updatable

column

of

the

specified

table,

view,

or

nickname,

or

identify

an

INCLUDE

column.

The

object

ID

column

of

a

typed

table

is

not

updatable

(SQLSTATE

428DZ).

A

column

must

not

be

specified

more

than

once,

unless

it

is

followed

by

..attribute-name

(SQLSTATE

42701).

If

it

specifies

an

INCLUDE

column,

the

column

name

cannot

be

qualified.

For

a

Positioned

UPDATE:

v

If

the

update-clause

was

specified

in

the

select-statement

of

the

cursor,

each

column

name

in

the

assignment-clause

must

also

appear

in

the

update-clause.

v

If

the

update-clause

was

not

specified

in

the

select-statement

of

the

cursor

and

LANGLEVEL

MIA

or

SQL92E

was

specified

when

the

application

was

precompiled,

the

name

of

any

updatable

column

may

be

specified.

v

If

the

update-clause

was

not

specified

in

the

select-statement

of

the

cursor

and

LANGLEVEL

SAA1

was

specified

either

explicitly

or

by

default

when

the

application

was

precompiled,

no

columns

may

be

updated.

UPDATE

760

Common

Criteria

Certification:

Administration

and

User

Documentation

..attribute-name

Specifies

the

attribute

of

a

structured

type

that

is

set

(referred

to

as

an

attribute

assignment.

The

column-name

specified

must

be

defined

with

a

user-defined

structured

type

(SQLSTATE

428DP).

The

attribute-name

must

be

an

attribute

of

the

structured

type

of

column-name

(SQLSTATE

42703).

An

assignment

that

does

not

involve

the

..attribute-name

clause

is

referred

to

as

a

conventional

assignment.

expression

Indicates

the

new

value

of

the

column.

The

expression

is

any

expression

of

the

type

described

in

“Expressions”.

The

expression

cannot

include

a

column

function

except

when

it

occurs

within

a

scalar

fullselect

(SQLSTATE

42903).

An

expression

may

contain

references

to

columns

of

the

target

table

of

the

UPDATE

statement.

For

each

row

that

is

updated,

the

value

of

such

a

column

in

an

expression

is

the

value

of

the

column

in

the

row

before

the

row

is

updated.

An

expression

cannot

contain

references

to

an

INCLUDE

column.

NULL

Specifies

the

null

value

and

can

only

be

specified

for

nullable

columns

(SQLSTATE

23502).

NULL

cannot

be

the

value

in

an

attribute

assignment

(SQLSTATE

429B9)

unless

it

is

specifically

cast

to

the

data

type

of

the

attribute.

DEFAULT

Specifies

that

the

default

value

should

be

used

based

on

how

the

corresponding

column

is

defined

in

the

table.

The

value

that

is

inserted

depends

on

how

the

column

was

defined.

v

If

the

column

was

defined

as

a

generated

column

based

on

an

expression,

the

column

value

will

be

generated

by

the

system,

based

on

the

expression.

v

If

the

column

was

defined

using

the

IDENTITY

clause,

the

value

is

generated

by

the

database

manager.

v

If

the

column

was

defined

using

the

WITH

DEFAULT

clause,

the

value

is

set

to

the

default

defined

for

the

column

(see

default-clause

in

“ALTER

TABLE”).

v

If

the

column

was

defined

using

the

NOT

NULL

clause

and

the

GENERATED

clause

was

not

used,

or

the

WITH

DEFAULT

clause

was

not

used,

or

DEFAULT

NULL

was

used,

the

DEFAULT

keyword

cannot

be

specified

for

that

column

(SQLSTATE

23502).

The

only

value

that

a

generated

column

defined

with

the

GENERATED

ALWAYS

clause

can

be

set

to

is

DEFAULT

(SQLSTATE

428C9).

The

DEFAULT

keyword

cannot

be

used

as

the

value

in

an

attribute

assignment

(SQLSTATE

429B9).

The

DEFAULT

keyword

cannot

be

used

as

the

value

in

an

assignment

for

update

on

a

nickname

where

the

data

source

does

not

support

DEFAULT

syntax.

row-fullselect

A

fullselect

that

returns

a

single

row

with

the

number

of

columns

corresponding

to

the

number

of

column-names

specified

for

assignment.

The

values

are

assigned

to

each

corresponding

column-name.

If

the

result

of

the

row-fullselect

is

no

rows,

then

null

values

are

assigned.

UPDATE

Chapter

15.

SQL

Statements

for

Administrators

761

A

row-fullselect

may

contain

references

to

columns

of

the

target

table

of

the

UPDATE

statement.

For

each

row

that

is

updated,

the

value

of

such

a

column

in

an

expression

is

the

value

of

the

column

in

the

row

before

the

row

is

updated.

An

error

is

returned

if

there

is

more

than

one

row

in

the

result

(SQLSTATE

21000).

WHERE

Introduces

a

condition

that

indicates

what

rows

are

updated.

You

can

omit

the

clause,

give

a

search

condition,

or

name

a

cursor.

If

the

clause

is

omitted,

all

rows

of

the

table,

view

or

nickname

are

updated.

search-condition

Each

column-name

in

the

search

condition,

other

than

in

a

subquery,

must

name

a

column

of

the

table,

view

or

nickname.

When

the

search

condition

includes

a

subquery

in

which

the

same

table

is

the

base

object

of

both

the

UPDATE

and

the

subquery,

the

subquery

is

completely

evaluated

before

any

rows

are

updated.

The

search-condition

is

applied

to

each

row

of

the

table,

view

or

nickname

and

the

updated

rows

are

those

for

which

the

result

of

the

search-condition

is

true.

If

the

search

condition

contains

a

subquery,

the

subquery

can

be

thought

of

as

being

executed

each

time

the

search

condition

is

applied

to

a

row,

and

the

results

used

in

applying

the

search

condition.

In

actuality,

a

subquery

with

no

correlated

references

is

executed

only

once,

whereas

a

subquery

with

a

correlated

reference

may

have

to

be

executed

once

for

each

row.

CURRENT

OF

cursor-name

Identifies

the

cursor

to

be

used

in

the

update

operation.

The

cursor-name

must

identify

a

declared

cursor,

explained

in

“DECLARE

CURSOR”.

The

DECLARE

CURSOR

statement

must

precede

the

UPDATE

statement

in

the

program.

The

table,

view

or

nickname

named

must

also

be

named

in

the

FROM

clause

of

the

SELECT

statement

of

the

cursor,

and

the

result

table

of

the

cursor

must

not

be

read-only.

(For

an

explanation

of

read-only

result

tables,

see

“DECLARE

CURSOR”.)

When

the

UPDATE

statement

is

executed,

the

cursor

must

be

positioned

on

a

row;

that

row

is

updated.

This

form

of

UPDATE

cannot

be

used

(SQLSTATE

42828)

if

the

cursor

references:

v

A

view

on

which

an

INSTEAD

OF

UPDATE

trigger

is

defined

v

A

view

that

includes

an

OLAP

function

in

the

select

list

of

the

fullselect

that

defines

the

view

v

A

view

that

is

defined,

either

directly

or

indirectly,

using

the

WITH

ROW

MOVEMENT

clause

WITH

Specifies

the

isolation

level

at

which

the

UPDATE

statement

is

executed.

RR

Repeatable

Read

RS

Read

Stability

CS

Cursor

Stability

UPDATE

762

Common

Criteria

Certification:

Administration

and

User

Documentation

UR

Uncommitted

Read

The

default

isolation

level

of

the

statement

is

the

isolation

level

of

the

package

in

which

the

statement

is

bound.

Rules:

v

Triggers:

UPDATE

statements

may

cause

triggers

to

be

executed.

A

trigger

may

cause

other

statements

to

be

executed,

or

may

raise

error

conditions

based

on

the

update

values.

If

an

update

operation

on

a

view

causes

an

INSTEAD

OF

trigger

to

fire,

validity,

referential

integrity,

and

constraints

will

be

checked

against

the

updates

that

are

performed

in

the

trigger,

and

not

against

the

view

that

caused

the

trigger

to

fire,

or

its

underlying

tables.

v

Assignment:

Update

values

are

assigned

to

columns

according

to

specific

assignment

rules.

v

Validity:

The

updated

row

must

conform

to

any

constraints

imposed

on

the

table

(or

on

the

base

table

of

the

view)

by

any

unique

index

on

an

updated

column.

If

a

view

is

used

that

is

not

defined

using

WITH

CHECK

OPTION,

rows

can

be

changed

so

that

they

no

longer

conform

to

the

definition

of

the

view.

Such

rows

are

updated

in

the

base

table

of

the

view

and

no

longer

appear

in

the

view.

If

a

view

is

used

that

is

defined

using

WITH

CHECK

OPTION,

an

updated

row

must

conform

to

the

definition

of

the

view.

For

an

explanation

of

the

rules

governing

this

situation,

see

“CREATE

VIEW”.

v

Check

Constraint:

Update

value

must

satisfy

the

check-conditions

of

the

check

constraints

defined

on

the

table.

An

UPDATE

to

a

table

with

check

constraints

defined

has

the

constraint

conditions

for

each

column

updated

evaluated

once

for

each

row

that

is

updated.

When

processing

an

UPDATE

statement,

only

the

check

constraints

referring

to

the

updated

columns

are

checked.

v

Referential

Integrity:

The

value

of

the

parent

unique

keys

cannot

be

changed

if

the

update

rule

is

RESTRICT

and

there

are

one

or

more

dependent

rows.

However,

if

the

update

rule

is

NO

ACTION,

parent

unique

keys

can

be

updated

as

long

as

every

child

has

a

parent

key

by

the

time

the

update

statement

completes.

A

non-null

update

value

of

a

foreign

key

must

be

equal

to

a

value

of

the

primary

key

of

the

parent

table

of

the

relationship.

Notes:

v

If

an

update

value

violates

any

constraints,

or

if

any

other

error

occurs

during

the

execution

of

the

UPDATE

statement,

no

rows

are

updated.

The

order

in

which

multiple

rows

are

updated

is

undefined.

v

An

update

to

a

view

defined

using

the

WITH

ROW

MOVEMENT

clause

could

cause

a

delete

operation

and

an

insert

operation

against

the

underlying

tables

of

the

view.

For

details,

see

the

description

of

the

CREATE

VIEW

statement.

v

When

an

UPDATE

statement

completes

execution,

the

value

of

SQLERRD(3)

in

the

SQLCA

is

the

number

of

rows

that

qualified

for

the

update

operation.

In

the

context

of

an

SQL

procedure

statement,

the

value

can

be

retrieved

using

the

ROW_COUNT

variable

of

the

GET

DIAGNOSTICS

statement.

The

SQLERRD(5)

field

contains

the

number

of

rows

inserted,

deleted,

or

updated

by

all

activated

triggers.

v

Unless

appropriate

locks

already

exist,

one

or

more

exclusive

locks

are

acquired

by

the

execution

of

a

successful

UPDATE

statement.

Until

the

locks

are

released,

the

updated

row

can

only

be

accessed

by

the

application

process

that

performed

UPDATE

Chapter

15.

SQL

Statements

for

Administrators

763

the

update

(except

for

applications

using

the

Uncommitted

Read

isolation

level).

For

further

information

on

locking,

see

the

descriptions

of

the

COMMIT,

ROLLBACK,

and

LOCK

TABLE

statements.

v

If

the

URL

value

of

a

DATALINK

column

is

updated,

this

is

the

same

as

deleting

the

old

DATALINK

value

then

inserting

the

new

one.

First,

if

the

old

value

was

linked

to

a

file,

that

file

is

unlinked.

Then,

unless

the

linkage

attributes

of

the

DATALINK

value

are

empty,

the

specified

file

is

linked

to

that

column.

The

only

exception

to

this

is

that

if

the

URL

of

the

new

DATALINK

value

is

identical

to

the

URL

of

the

existing

DATALINK

value,

there

is

no

need

to

communicate

with

the

associated

Data

Links

Manager

to

unlink

and

relink

the

same

file.

In

this

situation,

the

overhead

is

entirely

eliminated.

The

comment

value

of

a

DATALINK

column

can

be

updated

without

relinking

the

file

by

specifying

an

empty

string

as

the

URL

path

(for

example,

as

the

data-location

argument

of

the

DLVALUE

scalar

function

or

by

specifying

the

new

value

to

be

the

same

as

the

old

value).

If

a

DATALINK

column

is

updated

with

a

null,

it

is

the

same

as

deleting

the

existing

DATALINK

value.

An

error

may

occur

when

attempting

to

update

a

DATALINK

value

if

the

file

server

of

either

the

existing

value

or

the

new

value

is

no

longer

registered

with

the

database

server

(SQLSTATE

55022).

v

When

updating

the

column

distribution

statistics

for

a

typed

table,

the

subtable

that

first

introduced

the

column

must

be

specified.

v

Multiple

attribute

assignments

on

the

same

structured

type

column

occur

in

the

order

specified

in

the

SET

clause

and,

within

a

parenthesized

set

clause,

in

left-to-right

order.

v

An

attribute

assignment

invokes

the

mutator

method

for

the

attribute

of

the

user-defined

structured

type.

For

example,

the

assignment

st..a1=x

has

the

same

effect

as

using

the

mutator

method

in

the

assignment

st

=

st..a1(x).

v

While

a

given

column

may

be

a

target

column

in

only

one

conventional

assignment,

a

column

may

be

a

target

column

in

multiple

attribute

assignments

(but

only

if

it

is

not

also

a

target

column

in

a

conventional

assignment).

v

When

an

identity

column

defined

as

a

distinct

type

is

updated,

the

entire

computation

is

done

in

the

source

type,

and

the

result

is

cast

to

the

distinct

type

before

the

value

is

actually

assigned

to

the

column.

(There

is

no

casting

of

the

previous

value

to

the

source

type

prior

to

the

computation.)

v

To

have

DB2

generate

a

value

on

a

SET

statement

for

an

identity

column,

use

the

DEFAULT

keyword:

SET

NEW.EMPNO

=

DEFAULT

In

this

example,

NEW.EMPNO

is

defined

as

an

identity

column,

and

the

value

used

to

update

this

column

is

generated

by

DB2.

v

For

more

information

about

consuming

values

of

a

generated

sequence

for

an

identity

column,

or

about

exceeding

the

maximum

value

for

an

identity

column,

see

“INSERT”.

Examples:

v

Example

1:

Change

the

job

(JOB)

of

employee

number

(EMPNO)

‘000290’

in

the

EMPLOYEE

table

to

‘LABORER’.

UPDATE

EMPLOYEE

SET

JOB

=

’LABORER’

WHERE

EMPNO

=

’000290’

v

Example

2:

Increase

the

project

staffing

(PRSTAFF)

by

1.5

for

all

projects

that

department

(DEPTNO)

‘D21’

is

responsible

for

in

the

PROJECT

table.

UPDATE

764

Common

Criteria

Certification:

Administration

and

User

Documentation

UPDATE

PROJECT

SET

PRSTAFF

=

PRSTAFF

+

1.5

WHERE

DEPTNO

=

’D21’

v

Example

3:

All

the

employees

except

the

manager

of

department

(WORKDEPT)

‘E21’

have

been

temporarily

reassigned.

Indicate

this

by

changing

their

job

(JOB)

to

NULL

and

their

pay

(SALARY,

BONUS,

COMM)

values

to

zero

in

the

EMPLOYEE

table.

UPDATE

EMPLOYEE

SET

JOB=NULL,

SALARY=0,

BONUS=0,

COMM=0

WHERE

WORKDEPT

=

’E21’

AND

JOB

<>

’MANAGER’

This

statement

could

also

be

written

as

follows.

UPDATE

EMPLOYEE

SET

(JOB,

SALARY,

BONUS,

COMM)

=

(NULL,

0,

0,

0)

WHERE

WORKDEPT

=

’E21’

AND

JOB

<>

’MANAGER’

v

Example

4:

Update

the

salary

and

the

commission

column

of

the

employee

with

employee

number

000120

to

the

average

of

the

salary

and

of

the

commission

of

the

employees

of

the

updated

row’s

department,

respectively.

UPDATE

(SELECT

SALARY,

COMM,

AVG(SALARY)

OVER

(PARTITION

BY

WORKDEPT),

AVG(COMM)

OVER

(PARTITION

BY

WORKDEPT)

FROM

EMPLOYEE)

AS

E(SALARY,

COMM,

AVGSAL,

AVGCOMM)

SET

(SALARY,

COMM)

=

(AVGSAL,

AVGCOMM)

WHERE

EU.EMPNO

=

’000120’

The

previous

statement

is

semantically

equivalent

to

the

following

statement,

but

requires

only

one

access

to

the

EMPLOYEE

table,

whereas

the

following

statement

specifies

the

EMPLOYEE

table

twice.

UPDATE

EMPLOYEE

EU

SET

(EU.SALARY,

EU.COMM)

=

(SELECT

AVG(ES.SALARY),

AVG(ES.COMM)

FROM

EMPLOYEE

ES

WHERE

ES.WORKDEPT

=

EU.WORKDEPT)

WHERE

EU.EMPNO

=

’000120’

v

Example

5:

In

a

C

program

display

the

rows

from

the

EMPLOYEE

table

and

then,

if

requested

to

do

so,

change

the

job

(JOB)

of

certain

employees

to

the

new

job

keyed

in.

EXEC

SQL

DECLARE

C1

CURSOR

FOR

SELECT

*

FROM

EMPLOYEE

FOR

UPDATE

OF

JOB;

EXEC

SQL

OPEN

C1;

EXEC

SQL

FETCH

C1

INTO

...

;

if

(

strcmp

(change,

"YES")

==

0

)

EXEC

SQL

UPDATE

EMPLOYEE

SET

JOB

=

:newjob

WHERE

CURRENT

OF

C1;

EXEC

SQL

CLOSE

C1;

v

Example

6:

These

examples

mutate

attributes

of

column

objects.

Assume

that

the

following

types

and

tables

exist:

CREATE

TYPE

POINT

AS

(X

INTEGER,

Y

INTEGER)

NOT

FINAL

WITHOUT

COMPARISONS

MODE

DB2SQL

UPDATE

Chapter

15.

SQL

Statements

for

Administrators

765

CREATE

TYPE

CIRCLE

AS

(RADIUS

INTEGER,

CENTER

POINT)

NOT

FINAL

WITHOUT

COMPARISONS

MODE

DB2SQL

CREATE

TABLE

CIRCLES

(ID

INTEGER,

OWNER

VARCHAR(50),

C

CIRCLE

The

following

example

updates

the

CIRCLES

table

by

changing

the

OWNER

column

and

the

RADIUS

attribute

of

the

CIRCLE

column

where

the

ID

is

999:

UPDATE

CIRCLES

SET

OWNER

=

’Bruce’

C..RADIUS

=

5

WHERE

ID

=

999

The

following

example

transposes

the

X

and

Y

coordinates

of

the

center

of

the

circle

identified

by

999:

UPDATE

CIRCLES

SET

C..CENTER..X

=

C..CENTER..Y,

C..CENTER..Y

=

C..CENTER..X

WHERE

ID

=

999

The

following

example

is

another

way

of

writing

both

of

the

above

statements.

This

example

combines

the

effects

of

both

of

the

above

examples:

UPDATE

CIRCLES

SET

(OWNER,C..RADIUS,C..CENTER..X,C..CENTER..Y)

=

(’Bruce’,5,C..CENTER..Y,C..CENTER..X)

WHERE

ID

=

999

Related

reference:

v

“Expressions”

in

the

SQL

Reference,

Volume

1

v

“Search

conditions”

in

the

SQL

Reference,

Volume

1

v

“Subselect”

on

page

904

v

“ALTER

TABLE”

on

page

525

v

“CREATE

VIEW”

on

page

656

v

“DECLARE

CURSOR

statement”

in

the

SQL

Reference,

Volume

2

v

“INSERT”

on

page

724

v

“SQLCA

(SQL

communications

area)”

on

page

1004

v

“Assignments

and

comparisons”

in

the

SQL

Reference,

Volume

1

Related

samples:

v

“dbinline.sqc

--

How

to

use

inline

SQL

Procedure

Language

(C)”

v

“spserver.sqc

--

Definition

of

various

types

of

stored

procedures

(C)”

v

“tbmod.sqc

--

How

to

modify

table

data

(C)”

v

“tut_mod.sqc

--

How

to

modify

table

data

(C)”

v

“dtstruct.sqC

--

Create,

use,

drop

a

hierarchy

of

structured

types

and

typed

tables

(C++)”

v

“spserver.sqC

--

Definition

of

various

types

of

stored

procedures

(C++)”

v

“tbmod.sqC

--

How

to

modify

table

data

(C++)”

v

“tut_mod.sqC

--

How

to

modify

table

data

(C++)”

v

“SpServer.java

--

Provide

a

variety

of

types

of

stored

procedures

to

be

called

from

(JDBC)”

v

“TbMod.java

--

How

to

modify

table

data

(JDBC)”

v

“TutMod.java

--

Modify

data

in

a

table

(JDBC)”

v

“SpServer.sqlj

--

Provide

a

variety

of

types

of

stored

procedures

to

be

called

from

(SQLj)”

v

“TbMod.sqlj

--

How

to

modify

table

data

(SQLj)”

UPDATE

766

Common

Criteria

Certification:

Administration

and

User

Documentation

v

“TutMod.sqlj

--

Modify

data

in

a

table

(SQLj)”

v

“tbmod.c

--

How

to

modify

table

data”

v

“tut_mod.c

--

How

to

modify

table

data”

v

“updat.sqb

--

How

to

update,

delete

and

insert

table

data

(MF

COBOL)”

v

“varinp.sqb

--

How

to

update

table

data

using

parameter

markers

(MF

COBOL)”

UPDATE

Chapter

15.

SQL

Statements

for

Administrators

767

UPDATE

768

Common

Criteria

Certification:

Administration

and

User

Documentation

Chapter

16.

Configuration

Parameters

Configuration

parameters

.

.

.

.

.

.

.

.

. 769

Configuration

parameters

summary

.

.

.

.

.

. 771

Database

Manager

Configuration

Parameter

Summary

.

.

.

.

.

.

.

.

.

.

.

.

.

. 771

Database

Configuration

Parameter

Summary

775

DB2

Administration

Server

(DAS)

Configuration

Parameter

Summary

.

.

.

.

.

.

.

.

.

. 779

Configuring

DB2

with

configuration

parameters

779

Security-Related

Configuration

Parameters

.

.

. 782

audit_buf_sz

-

Audit

buffer

size

.

.

.

.

.

. 782

authentication

-

Authentication

type

.

.

.

.

. 783

authentication

-

Authentication

type

DAS

.

.

. 784

catalog_noauth

-

Cataloging

allowed

without

authority

.

.

.

.

.

.

.

.

.

.

.

.

.

. 784

dasadm_group

-

DAS

administration

authority

group

name

.

.

.

.

.

.

.

.

.

.

.

.

. 785

dftdbpath

-

Default

database

path

.

.

.

.

. 785

svcename

-

TCP/IP

service

name

.

.

.

.

.

. 786

sysadm_group

-

System

administration

authority

group

name

.

.

.

.

.

.

.

.

. 787

sysctrl_group

-

System

control

authority

group

name

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 788

sysmaint_group

-

System

maintenance

authority

group

name

.

.

.

.

.

.

.

.

.

.

.

.

. 789

sysmon_group

-

System

monitor

authority

group

name

.

.

.

.

.

.

.

.

.

.

.

.

. 790

trust_allclnts

-

Trust

all

clients

.

.

.

.

.

.

. 790

trust_clntauth

-

Trusted

clients

authentication

791

Locking

Configuration

Parameters

.

.

.

.

.

. 792

dlchktime

-

Time

interval

for

checking

deadlock

792

locktimeout

-

Lock

timeout

.

.

.

.

.

.

.

. 793

maxlocks

-

Maximum

percent

of

lock

list

before

escalation

.

.

.

.

.

.

.

.

.

.

.

.

.

. 794

autorestart

-

Auto

restart

enable

.

.

.

.

.

.

. 795

database_consistent

-

Database

is

consistent

.

.

. 796

Configuration

parameters

When

a

DB2

Universal

Database™

instance

or

a

database

is

created,

a

corresponding

configuration

file

is

created

with

default

parameter

values.

You

can

modify

these

parameter

values

to

improve

performance

and

other

characteristics

of

the

instance

or

database.

Configuration

files

contain

parameters

that

define

values

such

as

the

resources

allocated

to

the

DB2

UDB

products

and

to

individual

databases,

and

the

diagnostic

level.

There

are

two

types

of

configuration

files:

v

The

database

manager

configuration

file

for

each

DB2

UDB

instance

v

The

database

configuration

file

for

each

individual

database.

The

database

manager

configuration

file

is

created

when

a

DB2

UDB

instance

is

created.

The

parameters

it

contains

affect

system

resources

at

the

instance

level,

independent

of

any

one

database

that

is

part

of

that

instance.

Values

for

many

of

these

parameters

can

be

changed

from

the

system

default

values

to

improve

performance

or

increase

capacity,

depending

on

your

system’s

configuration.

There

is

one

database

manager

configuration

file

for

each

client

installation

as

well.

This

file

contains

information

about

the

client

enabler

for

a

specific

workstation.

A

subset

of

the

parameters

available

for

a

server

are

applicable

to

the

client.

Database

manager

configuration

parameters

are

stored

in

a

file

named

db2systm.

This

file

is

created

when

the

instance

of

the

database

manager

is

created.

In

UNIX-based

environments,

this

file

can

be

found

in

the

sqllib

subdirectory

for

the

instance

of

the

database

manager.

In

Windows,

the

default

location

of

this

file

is

the

instance

subdirectory

of

the

sqllib

directory.

If

the

DB2INSTPROF

variable

is

set,

the

file

is

in

the

instance

subdirectory

of

the

directory

specified

by

the

DB2INSTPROF

variable.

©

Copyright

IBM

Corp.

1993-2004

769

||
|
||
||
|
||

In

a

partitioned

database

environment,

this

file

resides

on

a

shared

file

system

so

that

all

database

partition

servers

have

access

to

the

same

file.

The

configuration

of

the

database

manager

is

the

same

on

all

database

partition

servers.

Most

of

the

parameters

either

affect

the

amount

of

system

resources

that

will

be

allocated

to

a

single

instance

of

the

database

manager,

or

they

configure

the

setup

of

the

database

manager

and

the

different

communications

subsystems

based

on

environmental

considerations.

In

addition,

there

are

other

parameters

that

serve

informative

purposes

only

and

cannot

be

changed.

All

of

these

parameters

have

global

applicability

independent

of

any

single

database

stored

under

that

instance

of

the

database

manager.

A

database

configuration

file

is

created

when

a

database

is

created,

and

resides

where

that

database

resides.

There

is

one

configuration

file

per

database.

Its

parameters

specify,

among

other

things,

the

amount

of

resource

to

be

allocated

to

that

database.

Values

for

many

of

the

parameters

can

be

changed

to

improve

performance

or

increase

capacity.

Different

changes

may

be

required,

depending

on

the

type

of

activity

in

a

specific

database.

Parameters

for

an

individual

database

are

stored

in

a

configuration

file

named

SQLDBCON.

This

file

is

stored

along

with

other

control

files

for

the

database

in

the

SQLnnnnn

directory,

where

nnnnn

is

a

number

assigned

when

the

database

was

created.

Each

database

has

its

own

configuration

file,

and

most

of

the

parameters

in

the

file

specify

the

amount

of

resources

allocated

to

that

database.

The

file

also

contains

descriptive

information,

as

well

as

flags

that

indicate

the

status

of

the

database.

In

a

partitioned

database

environment,

a

separate

SQLDBCON

file

exists

for

each

database

partition.

The

values

in

the

SQLDBCON

file

may

be

the

same

or

different

at

each

database

partition,

but

the

recommendation

is

that

the

database

configuration

parameter

values

be

the

same

on

all

partitions.

Related

concepts:

v

“Configuration

parameter

tuning”

in

the

Administration

Guide:

Performance

Related

tasks:

Equivalent
physical object

Database

Database
configuration parameters

Database manager
configuration parameters

Operating system
configuration file

System

Instance

Database
object or concept

Figure

13.

Relationship

between

database

objects

and

configuration

files

770

Common

Criteria

Certification:

Administration

and

User

Documentation

v

“Configuring

DB2

with

configuration

parameters”

on

page

779

Configuration

parameters

summary

Database

Manager

Configuration

Parameter

Summary

The

following

table

lists

the

parameters

in

the

database

manager

configuration

file

for

database

servers.

When

changing

the

database

manager

configuration

parameters,

consider

the

detailed

information

for

each

parameter.

Specific

operating

environment

information

including

defaults

is

part

of

each

parameter

description.

For

some

database

manager

configuration

parameters,

the

database

manager

must

be

stopped

(db2stop)

and

then

restarted

(db2start)

for

the

new

parameter

values

to

take

effect.

Other

parameters

can

be

changed

online;

these

are

called

configurable

online

configuration

parameters.

If

you

change

the

setting

of

a

configurable

online

database

manager

configuration

parameter

while

you

are

attached

to

an

instance,

the

default

behavior

of

the

UPDATE

DBM

CFG

command

is

to

apply

the

change

immediately.

If

you

do

not

want

the

change

applied

immediately,

use

the

DEFERRED

option

on

the

UPDATE

DBM

CFG

command.

The

column

“Auto.”

in

the

following

table

indicates

whether

the

parameter

supports

the

AUTOMATIC

keyword

on

the

UPDATE

DATABASE

MANAGER

CONFIGURATION

command.

If

you

set

a

parameter

to

automatic,

DB2

will

automatically

adjust

the

parameter

to

reflect

current

resource

requirements.

The

column

“Perf.

Impact”

provides

an

indication

of

the

relative

importance

of

each

parameter

as

it

relates

to

system

performance.

It

is

impossible

for

this

column

to

apply

accurately

to

all

environments;

you

should

view

this

information

as

a

generalization.

v

High

—

indicates

the

parameter

can

have

a

significant

impact

on

performance.

You

should

consciously

decide

the

values

of

these

parameters,

which,

in

some

cases,

means

that

you

will

accept

the

default

values

provided.

v

Medium

—

indicates

the

the

parameter

can

have

some

impact

on

performance.

Your

specific

environment

and

needs

will

determine

how

much

tuning

effort

should

be

focused

on

these

parameters.

v

Low

—

indicates

that

the

parameter

has

a

less

general

or

less

significant

impact

on

performance.

v

None

—

indicates

that

the

parameter

does

not

directly

impact

performance.

Although

you

do

not

have

to

tune

these

parameters

for

performance

enhancement,

they

can

be

very

important

for

other

aspects

of

your

system

configuration,

such

as

communication

support,

for

example.

The

columns

“Token”,

“Token

Value”,

and

“Data

Type”

provide

information

that

you

will

need

when

calling

the

db2CfgGet

or

the

db2CfgSet

API.

This

information

includes

configuration

parameter

identifiers,

entries

for

the

token

element

in

the

db2CfgParam

data

structure,

and

data

types

for

values

that

are

passed

to

the

structure.

Table

64.

Configurable

Database

Manager

Configuration

Parameters

Parameter

Cfg.

Online

Auto.

Perf.

Impact

Token

Token

Value

Data

Type

Additional

Information

agent_stack_sz

No

No

Low

SQLF_KTN_AGENT_STACK_SZ

61

Uint16

agentpri

No

No

High

SQLF_KTN_AGENTPRI

26

Sint16

aslheapsz

No

No

High

SQLF_KTN_ASLHEAPSZ

15

Uint32

Chapter

16.

Configuration

Parameters

771

|

|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|

|
|

|
|
|
|

|
|
|
|
|

||

|
|
||
|
||
|

Table

64.

Configurable

Database

Manager

Configuration

Parameters

(continued)

Parameter

Cfg.

Online

Auto.

Perf.

Impact

Token

Token

Value

Data

Type

Additional

Information

audit_buf_sz

No

No

High

SQLF_KTN_AUDIT_BUF_SZ

312

Sint32

“audit_buf_sz

-

Audit

buffer

size”

on

page

782

authentication1

No

No

Low

SQLF_KTN_AUTHENTICATION

78

Uint16

“authentication

-

Authentication

type”

on

page

783

catalog_noauth

Yes

No

None

SQLF_KTN_CATALOG_NOAUTH

314

Uint16

“catalog_noauth

-

Cataloging

allowed

without

authority”

on

page

784

clnt_krb_plugin

No

No

None

SQLF_KTN_CLNT_KRB_PLUGIN

812

char(33)

“clnt_krb_plugin

-

Client

Kerberos

plug-in”

on

page

1085

clnt_pw_plugin

No

No

None

SQLF_KTN_CLNT_PW_PLUGIN

811

char(33)

“clnt_pw_plugin

-

Client

userid-password

plug-in”

on

page

1085

comm_bandwidth

Yes

No

Medium

SQLF_KTN_COMM_BANDWIDTH

307

float

conn_elapse

Yes

No

Medium

SQLF_KTN_CONN_ELAPSE

508

Uint16

cpuspeed

Yes

No

Low2

SQLF_KTN_CPUSPEED

42

float

datalinks

No

No

Low

SQLF_KTN_DATALINKS

603

Sint16

dft_account_str

Yes

No

None

SQLF_KTN_DFT_ACCOUNT_STR

28

char(25)

dft_monswitches

v

dft_mon_bufpool

v

dft_mon_lock

v

dft_mon_sort

v

dft_mon_stmt

v

dft_mon_table

v

dft_mon_timestamp

v

dft_mon_uow

Yes

No

Medium

SQLF_KTN_DFT_MONSWITCHES3

v

SQLF_KTN_DFT_MON_BUFPOOL

v

SQLF_KTN_DFT_MON_LOCK

v

SQLF_KTN_DFT_MON_SORT

v

SQLF_KTN_DFT_MON_STMT

v

SQLF_KTN_DFT_MON_TABLE

v

SQLF_KTN_DFT_MON_

TIMESTAMP

v

SQLF_KTN_DFT_MON_UOW

29

v

33

v

34

v

35

v

31

v

32

v

36

v

30

Uint16

v

Uint16

v

Uint16

v

Uint16

v

Uint16

v

Uint16

v

Uint16

v

Uint16

dftdbpath

Yes

No

None

SQLF_KTN_DFTDBPATH

27

char(215)

“dftdbpath

-

Default

database

path”

on

page

785

diaglevel

Yes

No

Low

SQLF_KTN_DIAGLEVEL

64

Uint16

diagpath

Yes

No

None

SQLF_KTN_DIAGPATH

65

char(215)

dir_cache

No

No

Medium

SQLF_KTN_DIR_CACHE

40

Uint16

discover4

No

No

Medium

SQLF_KTN_DISCOVER

304

Uint16

discover_inst

Yes

No

Low

SQLF_KTN_DISCOVER_INST

308

Uint16

fcm_num_anchors

No

Yes

Medium

SQLF_KTN_FCM_NUM_ANCHORS

506

Sint32

fcm_num_buffers

Yes

No

Medium

SQLF_KTN_FCM_NUM_BUFFERS

503

Uint32

fcm_num_connect

No

Yes

Medium

SQLF_KTN_FCM_NUM_CONNECT

505

Sint32

fcm_num_rqb

No

Yes

Medium

SQLF_KTN_FCM_NUM_RQB

504

Uint32

fed_noauth

Yes

No

None

SQLF_KTN_FED_NOAUTH

806

Uint16

federated

No

No

Medium

SQLF_KTN_FEDERATED

604

Sint16

fenced_pool

No

No

Medium

SQLF_KTN_FENCED_POOL

80

Sint32

group_plugin

No

No

None

SQLF_KTN_GROUP_PLUGIN

810

char(33)

“group_plugin

-

Group

plug-in”

on

page

1086

health_mon

Yes

No

Low

SQLF_KTN_HEALTH_MON

804

Uint16

indexrec5

Yes

No

Medium

SQLF_KTN_INDEXREC

20

Uint16

instance_memory

No

Yes

Medium

SQLF_KTN_INSTANCE_MEMORY

803

Uint64

intra_parallel

No

No

High

SQLF_KTN_INTRA_PARALLEL

306

Sint16

java_heap_sz

No

No

High

SQLF_KTN_JAVA_HEAP_SZ

310

Sint32

jdk_path

No

No

None

SQLF_KTN_JDK_PATH

311

char(255)

keepfenced

No

No

Medium

SQLF_KTN_KEEPFENCED

81

Uint16

local_gssplugin

No

No

None

SQLF_KTN_LOCAL_GSSPLUGIN

816

char(33)

“local_gssplugin

-

GSS

API

plug-in

used

for

local

instance

level

authorization”

on

page

1086

max_connections

No

No

Medium

SQLF_DBTN_MAX_CONNECTIONS

802

Sint32

max_connretries

Yes

No

Medium

SQLF_KTN_MAX_CONNRETRIES

509

Uint16

772

Common

Criteria

Certification:

Administration

and

User

Documentation

|

|
|
||
|
||
|
|||
||||||||
|
||||||||
|
||||||||
|
|
||||||||
|
||||||||
|
|

||||
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|

||||||||
|

Table

64.

Configurable

Database

Manager

Configuration

Parameters

(continued)

Parameter

Cfg.

Online

Auto.

Perf.

Impact

Token

Token

Value

Data

Type

Additional

Information

max_coordagents

No

No

Medium

SQLF_KTN_MAX_COORDAGENTS

501

Sint32

max_querydegree

Yes

No

High

SQLF_KTN_MAX_QUERYDEGREE

303

Sint32

max_time_diff

No

No

Medium

SQLF_KTN_MAX_TIME_DIFF

510

Uint16

maxagents

No

No

Medium

SQLF_KTN_MAXAGENTS

12

Uint32

maxcagents

No

No

Medium

SQLF_KTN_MAXCAGENTS

13

Sint32

maxtotfilop

No

No

Medium

SQLF_KTN_MAXTOTFILOP

45

Uint16

min_priv_mem

No

No

Medium

SQLF_KTN_MIN_PRIV_MEM

43

Uint32

mon_heap_sz

No

No

Low

SQLF_KTN_MON_HEAP_SZ

79

Uint16

nname

No

No

None

SQLF_KTN_NNAME

7

char(8)

notifylevel

Yes

No

Low

SQLF_KTN_NOTIFYLEVEL

605

Sint16

num_initagents

No

No

Medium

SQLF_KTN_NUM_INITAGENTS

500

Uint32

num_initfenced

No

No

Medium

SQLF_KTN_NUM_INITFENCED

601

Sint32

num_poolagents

No

No

High

SQLF_KTN_NUM_POOLAGENTS

502

Sint32

numdb

No

No

Low

SQLF_KTN_NUMDB

6

Uint16

priv_mem_thresh

No

No

Medium

SQLF_KTN_PRIV_MEM_THRESH

44

Sint32

query_heap_sz

No

No

Medium

SQLF_KTN_QUERY_HEAP_SZ

49

Sint32

resync_interval

No

No

None

SQLF_KTN_RESYNC_INTERVAL

68

Uint16

rqrioblk

No

No

High

SQLF_KTN_RQRIOBLK

1

Uint16

sheapthres

No

No

High

SQLF_KTN_SHEAPTHRES

21

Uint32

spm_log_file_sz

No

No

Low

SQLF_KTN_SPM_LOG_FILE_SZ

90

Sint32

spm_log_path

No

No

Medium

SQLF_KTN_SPM_LOG_PATH

313

char(226)

spm_max_resync

No

No

Low

SQLF_KTN_SPM_MAX_RESYNC

91

Sint32

spm_name

No

No

None

SQLF_KTN_SPM_NAME

92

char(8)

srvcon_auth

No

No

None

SQLF_KTN_SRVCON_AUTH

815

Uint16

“srvcon_auth

-

Authentication

type

for

incoming

connections

at

the

server”

on

page

1087

srvcon_gssplugin_list

No

No

None

SQLF_KTN_SRVCON_GSSPLUGIN_

LIST

814

char(256)

“srvcon_gssplugin_list

-

List

of

GSS

API

plug-ins

for

incoming

connections

at

the

server”

on

page

1087

srv_plugin_mode

No

No

None

SQLF_KTN_SRV_PLUGIN_MODE

809

Uint16

“srv_plugin_mode

-

Server

plug-in

mode”

on

page

1088

srvcon_pw_plugin

No

No

None

SQLF_KTN_SRVCON_PW_PLUGIN

813

char(33)

“srvcon_pw_plugin

-

Userid-password

plug-in

for

incoming

connections

at

the

server”

on

page

1088

start_stop_time

Yes

No

Low

SQLF_KTN_START_STOP_TIME

511

Uint16

svcename

No

No

None

SQLF_KTN_SVCENAME

24

char(14)

“svcename

-

TCP/IP

service

name”

on

page

786

sysadm_group

No

No

None

SQLF_KTN_SYSADM_GROUP

39

char(16)

“sysadm_group

-

System

administration

authority

group

name”

on

page

787

sysctrl_group

No

No

None

SQLF_KTN_SYSCTRL_GROUP

63

char(16)

“sysctrl_group

-

System

control

authority

group

name”

on

page

788

sysmaint_group

No

No

None

SQLF_KTN_SYSMAINT_GROUP

62

char(16)

“sysmaint_group

-

System

maintenance

authority

group

name”

on

page

789

sysmon_group

No

No

None

SQLF_KTN_SYSMON

808

char(9)

“sysmon_group

-

System

monitor

authority

group

name”

on

page

790

tm_database

No

No

None

SQLF_KTN_TM_DATABASE

67

char(8)

tp_mon_name

No

No

None

SQLF_KTN_TP_MON_NAME

66

char(19)

tpname

No

No

None

SQLF_KTN_TPNAME

25

char(64)

trust_allclnts6

No

No

None

SQLF_KTN_TRUST_ALLCLNTS

301

Uint16

“trust_allclnts

-

Trust

all

clients”

on

page

790

Chapter

16.

Configuration

Parameters

773

|

|
|
||
|
||
|

Table

64.

Configurable

Database

Manager

Configuration

Parameters

(continued)

Parameter

Cfg.

Online

Auto.

Perf.

Impact

Token

Token

Value

Data

Type

Additional

Information

trust_clntauth

No

No

None

SQLF_KTN_TRUST_CLNTAUTH

302

Uint16

“trust_clntauth

-

Trusted

clients

authentication”

on

page

791

use_sna_auth

Yes

No

None

SQLF_KTN_USE_SNA_AUTH

805

Uint16

util_impact_lim

Yes

No

High

SQLF_KTN_UTIL_IMPACT_LIM

807

Uint32

Notes:

1.

Valid

values

(defined

in

sqlenv.h):

SQL_AUTHENTICATION_SERVER

(0)

SQL_AUTHENTICATION_CLIENT

(1)

SQL_AUTHENTICATION_DCS

(2)

SQL_AUTHENTICATION_DCE

(3)

SQL_AUTHENTICATION_SVR_ENCRYPT

(4)

SQL_AUTHENTICATION_DCS_ENCRYPT

(5)

SQL_AUTHENTICATION_DCE_SVR_ENC

(6)

SQL_AUTHENTICATION_KERBEROS

(7)

SQL_AUTHENTICATION_KRB_SVR_ENC

(8)

SQL_AUTHENTICATION_GSSPLUGIN

(9)

SQL_AUTHENTICATION_GSS_SVR_ENC

(10)

SQL_AUTHENTICATION_DATAENC

(11)

SQL_AUTHENTICATION_DATAENC_CMP

(12)

SQL_AUTHENTICATION_NOT_SPEC

(255)

2.

The

cpuspeed

parameter

can

have

a

significant

impact

on

performance,

but

you

should

use

the

default

value,

except

in

very

specific

circumstances,

as

documented

in

the

parameter

description.

3.

Bit

1

(xxxx

xxx1):

dft_mon_uow

Bit

2

(xxxx

xx1x):

dft_mon_stmt

Bit

3

(xxxx

x1xx):

dft_mon_table

Bit

4

(xxxx

1xxx):

dft_mon_buffpool

Bit

5

(xxx1

xxxx):

dft_mon_lock

Bit

6

(xx1x

xxxx):

dft_mon_sort

Bit

7

(x1xx

xxxx):

dft_mon_timestamp

4.

Valid

values

(defined

in

sqlutil.h):

SQLF_DSCVR_KNOWN

(1)

SQLF_DSCVR_SEARCH

(2)

5.

Valid

values

(defined

in

sqlutil.h):

SQLF_INX_REC_SYSTEM

(0)

SQLF_INX_REC_REFERENCE

(1)

6.

Valid

values

(defined

in

sqlutil.h):

SQLF_TRUST_ALLCLNTS_NO

(0)

SQLF_TRUST_ALLCLNTS_YES

(1)

SQLF_TRUST_ALLCLNTS_DRDAONLY

(2)

Table

65.

Informational

Database

Manager

Configuration

Parameters

Parameter

Token

Token

Value

Data

Type

Additional

Information

nodetype1

SQLF_KTN_NODETYPE

100

Uint16

release

SQLF_KTN_RELEASE

101

Uint16

Notes:

1.

Valid

values

(defined

in

sqlutil.h):

SQLF_NT_STANDALONE

(0)

SQLF_NT_SERVER

(1)

SQLF_NT_REQUESTOR

(2)

SQLF_NT_STAND_REQ

(3)

SQLF_NT_MPP

(4)

SQLF_NT_SATELLITE

(5)

774

Common

Criteria

Certification:

Administration

and

User

Documentation

|

|
|
||
|
||
|
|||
||||||||
|
||||||||
||||||||

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

||

||
|
|
|
||

|||||

|||||

|

|

|
|
|
|
|
|

|
|

Database

Configuration

Parameter

Summary

The

following

table

lists

the

parameters

in

the

database

configuration

file.

When

changing

the

database

configuration

parameters,

consider

the

detailed

information

for

the

parameter.

For

some

database

configuration

parameters,

changes

will

only

take

effect

when

the

database

is

reactivated.

In

these

cases,

all

applications

must

first

disconnect

from

the

database.

(If

the

database

was

activated,

then

it

must

be

deactivated

and

reactivated.)

The

changes

take

effect

at

the

next

connection

to

the

database.

Other

parameters

can

be

changed

online;

these

are

called

configurable

online

configuration

parameters.

The

column

“Auto.”

in

the

following

table

indicates

whether

the

parameter

supports

the

AUTOMATIC

keyword

on

the

UPDATE

DATABASE

MANAGER

CONFIGURATION

command.

If

you

set

a

parameter

to

automatic,

DB2

will

automatically

adjust

the

parameter

to

reflect

current

resource

requirements.

The

column

“Perf.

Impact”

provides

an

indication

of

the

relative

importance

of

each

parameter

as

it

relates

to

system

performance.

It

is

impossible

for

this

column

to

apply

accurately

to

all

environments;

you

should

view

this

information

as

a

generalization.

v

High

—

indicates

that

the

parameter

can

have

a

significant

impact

on

performance.

You

should

consciously

decide

the

values

of

these

parameters,

which,

in

some

cases,

means

that

you

will

accept

the

default

values

provided.

v

Medium

—

indicates

that

the

parameter

can

have

some

impact

on

performance.

Your

specific

environment

and

needs

will

determine

how

much

tuning

effort

should

be

focused

on

these

parameters.

v

Low

—

indicates

that

the

parameter

has

a

less

general

or

less

significant

impact

on

performance.

v

None

—

indicates

that

the

parameter

does

not

directly

impact

performance.

Although

you

do

not

have

to

tune

these

parameters

for

performance

enhancement,

they

can

be

very

important

for

other

aspects

of

your

system

configuration,

such

as

communication

support,

for

example.

The

columns

“Token”,

“Token

Value”,

and

“Data

Type”

provide

information

that

you

will

need

when

calling

the

db2CfgGet

or

the

db2CfgSet

API.

This

information

includes

configuration

parameter

identifiers,

entries

for

the

token

element

in

the

db2CfgParam

data

structure,

and

data

types

for

values

that

are

passed

to

the

structure.

Table

66.

Configurable

Database

Configuration

Parameters

Parameter

Cfg.

Online

Auto.

Perf.

Impact

Token

Token

Value

Data

Type

Additional

Information

alt_collate

No

No

None

SQLF_DBTN_ALT_COLLATE

809

Uint32

app_ctl_heap_sz

No

No

Medium

SQLF_DBTN_APP_CTL_HEAP_SZ

500

Uint16

appgroup_mem_sz

No

No

Medium

SQLF_DBTN_APPGROUP_MEM_SZ

800

Uint32

applheapsz

No

No

Medium

SQLF_DBTN_APPLHEAPSZ

51

Uint16

archretrydelay

Yes

No

None

SQLF_DBTN_ARCHRETRYDELAY

828

Uint16

Chapter

16.

Configuration

Parameters

775

|

|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|

|
|

|
|
|
|

|
|
|
|
|

||

|
|
||
|
||
|

Table

66.

Configurable

Database

Configuration

Parameters

(continued)

Parameter

Cfg.

Online

Auto.

Perf.

Impact

Token

Token

Value

Data

Type

Additional

Information

autonomic_switches

v

auto_maint

v

auto_db_backup

v

auto_tbl_maint

v

auto_runstats

v

auto_stats_prof

v

auto_prof_upd

v

auto_reorg

Yes

No

Medium

SQLF_DBTN_AUTONOMIC_SWITCHES1

v

SQLF_ENABLE_AUTO_MAINT

v

SQLF_ENABLE_AUTO_DB_BACKUP

v

SQLF_ENABLE_AUTO_TBL_MAINT

v

SQLF_ENABLE_AUTO_RUNSTATS

v

SQLF_ENABLE_AUTO_STATS_PROF

v

SQLF_ENABLE_AUTO_PROF_UPD

v

SQLF_ENABLE_AUTO_REORG

830

v

831

v

833

v

835

v

837

v

839

v

844

v

841

Uint32

autorestart

Yes

No

Low

SQLF_DBTN_AUTO_RESTART

25

Uint16

“autorestart

-

Auto

restart

enable”

on

page

795

avg_appls

Yes

No

High

SQLF_DBTN_AVG_APPLS

47

Uint16

blk_log_dsk_ful

Yes

No

None

SQLF_DBTN_BLK_LOG_DSK_FUL

804

Uint16

catalogcache_sz

Yes

No

High

SQLF_DBTN_CATALOGCACHE_SZ

56

Sint32

chngpgs_thresh

No

No

High

SQLF_DBTN_CHNGPGS_THRESH

38

Uint16

database_memory

No

Yes

Medium

SQLF_DBTN_DATABASE_MEMORY

803

Uint64

dbheap

Yes

No

Medium

SQLF_DBTN_DB_HEAP

58

Uint64

dft_degree

Yes

No

High

SQLF_DBTN_DFT_DEGREE

301

Sint32

dft_extent_sz

Yes

No

Medium

SQLF_DBTN_DFT_EXTENT_SZ

54

Uint32

dft_loadrec_ses

Yes

No

Medium

SQLF_DBTN_DFT_LOADREC_SES

42

Sint16

dft_mttb_types

No

No

None

SQLF_DBTN_DFT_MTTB_TYPES

843

Uint32

dft_prefetch_sz

Yes

Yes

Medium

SQLF_DBTN_DFT_PREFETCH_SZ

40

Sint16

dft_queryopt

Yes

No

Medium

SQLF_DBTN_DFT_QUERYOPT

57

Sint32

dft_refresh_age

No

No

Medium

SQLF_DBTN_DFT_REFRESH_AGE

702

char(22)

dft_sqlmathwarn

No

No

None

SQLF_DBTN_DFT_SQLMATHWARN

309

Sint16

discover_db

Yes

No

Medium

SQLF_DBTN_DISCOVER

308

Uint16

dl_expint

Yes

No

None

SQLF_DBTN_DL_EXPINT

350

Sint32

dl_num_copies

Yes

No

None

SQLF_DBTN_DL_NUM_COPIES

351

Uint16

dl_time_drop

Yes

No

None

SQLF_DBTN_DL_TIME_DROP

353

Uint16

dl_token

Yes

No

Low

SQLF_DBTN_DL_TOKEN

602

char(10)

dl_upper

Yes

No

None

SQLF_DBTN_DL_UPPER

603

Sint16

dl_wt_iexpint

Yes

No

None

SQLF_DBTN_DL_WT_IEXPINT

354

Sint32

dlchktime

Yes

No

Medium

SQLF_DBTN_DLCHKTIME

9

Uint32

“dlchktime

-

Time

interval

for

checking

deadlock”

on

page

792

dyn_query_mgmt

No

No

Low

SQLF_DBTN_DYN_QUERY_MGMT

604

Uint16

estore_seg_sz

No

No

Medium

SQLF_DBTN_ESTORE_SEG_SZ

303

Sint32

failarchpath

Yes

No

None

SQLF_DBTN_FAILARCHPATH

826

char(243)

groupheap_ratio

No

No

Medium

SQLF_DBTN_GROUPHEAP_RATIO

801

Uint16

hadr_local_host

No

No

None

SQLF_DBTN_HADR_LOCAL_HOST

811

char(256)

hadr_local_svc

No

No

None

SQLF_DBTN_HADR_LOCAL_SVC

812

char(41)

hadr_remote_host

No

No

None

SQLF_DBTN_HADR_REMOTE_HOST

813

char(256)

hadr_remote_inst

No

No

None

SQLF_DBTN_HADR_REMOTE_INST

815

char(9)

hadr_remote_svc

No

No

None

SQLF_DBTN_HADR_REMOTE_SVC

814

char(41)

hadr_syncmode

No

No

None

SQLF_DBTN_HADR_SYNCMODE

817

Uint32

hadr_timeout

No

No

None

SQLF_DBTN_HADR_TIMEOUT

816

Sint32

indexrec2

Yes

No

Medium

SQLF_DBTN_INDEXREC

30

Uint16

locklist

Yes

No

High

when

it

affects

escalation

SQLF_DBTN_LOCK_LIST

704

Uint64

locktimeout

No

No

Medium

SQLF_DBTN_LOCKTIMEOUT

34

Sint16

“locktimeout

-

Lock

timeout”

on

page

793

776

Common

Criteria

Certification:

Administration

and

User

Documentation

|

|
|
||
|
||
|
|||
|
|
|
|
|
|
|
|

||||
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

||

||||||||
|

||||

||||||||
|

Table

66.

Configurable

Database

Configuration

Parameters

(continued)

Parameter

Cfg.

Online

Auto.

Perf.

Impact

Token

Token

Value

Data

Type

Additional

Information

logarchmeth1

Yes

No

None

SQLF_DBTN_LOGARCHMETH1

822

Uint16

logarchmeth2

Yes

No

None

SQLF_DBTN_LOGARCHMETH2

823

Uint16

logarchopt1

Yes

No

None

SQLF_DBTN_LOGARCHOPT1

824

char(243)

logarchopt2

Yes

No

None

SQLF_DBTN_LOGARCHOPT2

825

char(243)

logbufsz

No

No

High

SQLF_DBTN_LOGBUFSZ

33

Uint16

logfilsiz

No

No

Medium

SQLF_DBTN_LOGFIL_SIZ

92

Uint32

logindexbuild

Yes

Yes

None

SQLF_DBTN_LOGINDEXBUILD

818

Uint32

logprimary

No

No

Medium

SQLF_DBTN_LOGPRIMARY

16

Uint16

logretain3

No

No

Low

SQLF_DBTN_LOG_RETAIN

23

Uint16

logsecond

Yes

No

Medium

SQLF_DBTN_LOGSECOND

17

Uint16

max_log

Yes

Yes

SQLF_DBTN_MAX_LOG

807

Uint16

maxappls

Yes

Yes

Medium

SQLF_DBTN_MAXAPPLS

6

Uint16

maxfilop

Yes

No

Medium

SQLF_DBTN_MAXFILOP

3

Uint16

maxlocks

Yes

No

High

when

it

affects

escalation

SQLF_DBTN_MAXLOCKS

15

Uint16

“maxlocks

-

Maximum

percent

of

lock

list

before

escalation”

on

page

794

min_dec_div_3

No

No

High

SQLF_DBTN_MIN_DEC_DIV_3

605

Sint32

mincommit

Yes

No

High

SQLF_DBTN_MINCOMMIT

32

Uint16

mirrorlogpath

No

No

Low

SQLF_DBTN_MIRRORLOGPATH

806

char(242)

newlogpath

No

No

Low

SQLF_DBTN_NEWLOGPATH

20

char(242)

num_db_backups

Yes

No

None

SQLF_DBTN_NUM_DB_BACKUPS

601

Uint16

num_estore_segs

No

No

Medium

SQLF_DBTN_NUM_ESTORE_SEGS

304

Sint32

num_freqvalues

Yes

No

Low

SQLF_DBTN_NUM_FREQVALUES

36

Uint16

num_iocleaners

No

No

High

SQLF_DBTN_NUM_IOCLEANERS

37

Uint16

num_ioservers

No

No

High

SQLF_DBTN_NUM_IOSERVERS

39

Uint16

num_log_span

Yes

Yes

SQLF_DBTN_NUM_LOG_SPAN

808

Uint16

num_quantiles

Yes

No

Low

SQLF_DBTN_NUM_QUANTILES

48

Uint16

numarchretry

Yes

No

None

SQLF_DBTN_NUMARCHRETRY

827

Uint16

overflowlogpath

No

No

Medium

SQLF_DBTN_OVERFLOWLOGPATH

805

char(242)

pckcachesz

Yes

No

High

SQLF_DBTN_PCKCACHE_SZ

505

Uint32

rec_his_retentn

No

No

None

SQLF_DBTN_REC_HIS_RETENTN

43

Sint16

seqdetect

Yes

No

High

SQLF_DBTN_SEQDETECT

41

Uint16

sheapthres_shr

No

No

High

SQLF_DBTN_SHEAPTHRES_SHR

802

Uint32

softmax

No

No

Medium

SQLF_DBTN_SOFTMAX

5

Uint16

sortheap

Yes

No

High

SQLF_DBTN_SORT_HEAP

52

Uint32

stat_heap_sz

No

No

Low

SQLF_DBTN_STAT_HEAP_SZ

45

Uint32

stmtheap

Yes

No

Medium

SQLF_DBTN_STMT_HEAP

821

Uint32

trackmod

No

No

Low

SQLF_DBTN_TRACKMOD

703

Uint16

tsm_mgmtclass

Yes

No

None

SQLF_DBTN_TSM_MGMTCLASS

307

char(30)

tsm_nodename

Yes

No

None

SQLF_DBTN_TSM_NODENAME

306

char(64)

tsm_owner

Yes

No

None

SQLF_DBTN_TSM_OWNER

305

char(64)

tsm_password

Yes

No

None

SQLF_DBTN_TSM_PASSWORD

501

char(64)

userexit

No

No

Low

SQLF_DBTN_USER_EXIT

24

Uint16

util_heap_sz

Yes

No

Low

SQLF_DBTN_UTIL_HEAP_SZ

55

Uint32

vendoropt

Yes

No

None

SQLF_DBTN_VENDOROPT

829

char(242)

Chapter

16.

Configuration

Parameters

777

|

|
|
||
|
||
|

||||
|
|

Table

66.

Configurable

Database

Configuration

Parameters

(continued)

Parameter

Cfg.

Online

Auto.

Perf.

Impact

Token

Token

Value

Data

Type

Additional

Information

Notes:

1.

Default

=>

Bit

1

on

(xxxx

xxxx

xxxx

xxx1):

auto_maint

Bit

2

off

(xxxx

xxxx

xxxx

xx0x):

auto_db_backup

Bit

3

on

(xxxx

xxxx

xxxx

x0xx):

auto_tbl_maint

Bit

4

on

(xxxx

xxxx

xxxx

1xxx):

auto_runstats

Bit

5

off

(xxxx

xxxx

xxx1

xxxx):

auto_stats_prof

Bit

6

off

(xxxx

xxxx

xx0x

xxxx):

auto_prof_upd

Bit

7

off

(xxxx

xxxx

x0xx

xxxx):

auto_reorg

0

0

1

9

Maximum

=>

Bit

1

on

(xxxx

xxxx

xxxx

xxx1):

auto_maint

Bit

2

off

(xxxx

xxxx

xxxx

xx1x):

auto_db_backup

Bit

3

on

(xxxx

xxxx

xxxx

x1xx):

auto_tbl_maint

Bit

4

on

(xxxx

xxxx

xxxx

1xxx):

auto_runstats

Bit

5

off

(xxxx

xxxx

xxx1

xxxx):

auto_stats_prof

Bit

6

off

(xxxx

xxxx

xx1x

xxxx):

auto_prof_upd

Bit

7

off

(xxxx

xxxx

x1xx

xxxx):

auto_reorg

0

0

7

F

2.

Valid

values

(defined

in

sqlutil.h):

SQLF_INX_REC_SYSTEM

(0)

SQLF_INX_REC_REFERENCE

(1)

SQLF_INX_REC_RESTART

(2)

3.

Valid

values

(defined

in

sqlutil.h):

SQLF_LOGRETAIN_NO

(0)

SQLF_LOGRETAIN_RECOVERY

(1)

SQLF_LOGRETAIN_CAPTURE

(2)

Table

67.

Informational

Database

Configuration

Parameters

Parameter

Token

Token

Value

Data

Type

Additional

Information

backup_pending

SQLF_DBTN_BACKUP_PENDING

112

Uint16

codepage

SQLF_DBTN_CODEPAGE

101

Uint16

codeset

SQLF_DBTN_CODESET

120

char(9)1

collate_info

SQLF_DBTN_COLLATE_INFO

44

char(260)

country

SQLF_DBTN_COUNTRY

100

Uint16

database_consistent

SQLF_DBTN_CONSISTENT

111

Uint16

“database_consistent

-

Database

is

consistent”

on

page

796

database_level

SQLF_DBTN_DATABASE_LEVEL

124

Uint16

hadr_db_role

SQLF_DBTN_HADR_DB_ROLE

810

Uint32

log_retain_status

SQLF_DBTN_LOG_RETAIN_STATUS

114

Uint16

loghead

SQLF_DBTN_LOGHEAD

105

char(12)

logpath

SQLF_DBTN_LOGPATH

103

char(242)

multipage_alloc

SQLF_DBTN_MULTIPAGE_ALLOC

506

Uint16

numsegs

SQLF_DBTN_NUMSEGS

122

Uint16

release

SQLF_DBTN_RELEASE

102

Uint16

restore_pending

SQLF_DBTN_RESTORE_PENDING

503

Uint16

rollfwd_pending

SQLF_DBTN_ROLLFWD_PENDING

113

Uint16

territory

SQLF_DBTN_TERRITORY

121

char(5)2

user_exit_status

SQLF_DBTN_USER_EXIT_STATUS

115

Uint16

778

Common

Criteria

Certification:

Administration

and

User

Documentation

|

|
|
||
|
||
|
|||

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

||

||
|
|||

|||||

|||||

|||||

|||||

|||||

|||||
|
|

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

Table

67.

Informational

Database

Configuration

Parameters

(continued)

Parameter

Token

Token

Value

Data

Type

Additional

Information

Notes:

1.

char(17)

on

HP-UX

and

Solaris

Operating

Environment.

2.

char(33)

on

HP-UX

and

Solaris

Operating

Environment.

DB2

Administration

Server

(DAS)

Configuration

Parameter

Summary

Table

68.

DAS

Configuration

Parameters

Parameter

Parameter

Type

Additional

Information

authentication

Configurable

“authentication

-

Authentication

type

DAS”

on

page

784

contact_host

Configurable

Online

das_codepage

Configurable

Online

das_territory

Configurable

Online

dasadm_group

Configurable

“dasadm_group

-

DAS

administration

authority

group

name”

on

page

785

db2system

Configurable

Online

discover

Configurable

Online

exec_exp_task

Configurable

jdk_64_path

Configurable

Online

jdk_path

Configurable

Online

sched_enable

Configurable

sched_userid

Informational

smtp_server

Configurable

Online

toolscat_db

Configurable

toolscat_inst

Configurable

toolscat_schema

Configurable

Related

concepts:

v

“Indirect

privileges

through

a

package

containing

nicknames”

on

page

48

v

“Effect

of

DYNAMICRULES

bind

option

on

dynamic

SQL”

on

page

952

Related

reference:

v

“BIND”

on

page

232

Configuring

DB2

with

configuration

parameters

Database

manager

configuration

parameters

are

stored

in

a

file

named

db2systm.

Database

configuration

parameters

are

stored

in

a

file

named

SQLDBCON.

These

files

cannot

be

directly

edited,

and

can

only

be

changed

or

viewed

via

a

supplied

API

or

by

a

tool

which

calls

that

API.

Chapter

16.

Configuration

Parameters

779

|

||
|
|||

|

|

|
|

|

|

||

|||

|||

|||

|||

|||

|||
|

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

|

|

|

|

|

Attention:

If

you

edit

db2systm

or

SQLDBCON

using

a

method

other

than

those

provided

by

DB2,

you

may

make

the

database

unusable.

We

strongly

recommend

that

you

do

not

change

these

files

using

methods

other

than

those

documented

and

supported

by

DB2.

You

may

use

one

of

the

following

methods

to

reset,

update,

and

view

configuration

parameters:

v

Using

the

Control

Center.

The

Configure

Instance

notebook

can

be

used

to

set

the

database

manager

configuration

parameters

on

either

a

client

or

a

server.

The

Configure

Database

notebook

can

be

used

to

alter

the

value

of

database

configuration

parameters.

The

DB2

Control

Center

also

provides

the

Configuration

Advisor

to

alter

the

value

of

configuration

parameters.

This

advisor

generates

values

for

parameters

based

on

the

responses

you

provide

to

a

set

of

questions,

such

as

the

workload

and

the

type

of

transactions

that

run

against

the

database.

In

a

partitioned

database

environment,

the

SQLDBCON

file

exists

for

each

database

partition.

The

Configure

Database

notebook

will

change

the

value

on

all

partitions

if

you

launch

the

notebook

from

the

database

object

in

the

tree

view

of

the

Control

Center.

If

you

launch

the

notebook

from

a

database

partition

object,

then

it

will

only

change

the

values

for

that

partition.

(We

recommend,

however,

that

the

configuration

parameter

values

be

the

same

on

all

partitions.)

Note:

The

Configuration

Advisor

is

not

available

in

the

partitioned

database

environment.

v

Using

the

command

line

processor.

Commands

to

change

the

settings

can

be

quickly

and

conveniently

entered:

For

database

manager

configuration

parameters:

–

GET

DATABASE

MANAGER

CONFIGURATION

(or

GET

DBM

CFG)

–

UPDATE

DATABASE

MANAGER

CONFIGURATION

(or

UPDATE

DBM

CFG)

–

RESET

DATABASE

MANAGER

CONFIGURATION

(or

RESET

DBM

CFG)

to

reset

all

database

manager

parameters

to

their

default

values

–

AUTOCONFIGURE.

For

database

configuration

parameters:

–

GET

DATABASE

CONFIGURATION

(or

GET

DB

CFG)

–

UPDATE

DATABASE

CONFIGURATION

(or

UPDATE

DB

CFG)

–

RESET

DATABASE

CONFIGURATION

(or

RESET

DB

CFG)

to

reset

all

database

parameters

to

their

default

values

–

AUTOCONFIGURE.
v

Using

the

application

programming

interfaces

(APIs).

The

APIs

can

easily

be

called

from

an

application

or

a

host-language

program.

v

Using

the

Configuration

Assistant

(for

database

manager

configuration

parameters).

You

can

only

use

the

Configuration

Assistant

to

set

the

database

manager

configuration

parameters

on

a

client.

For

some

database

manager

configuration

parameters,

the

database

manager

must

be

stopped

(db2stop)

and

then

restarted

(db2start)

for

the

new

parameter

values

to

take

effect.

For

some

database

parameters,

changes

will

only

take

effect

when

the

database

is

reactivated.

In

these

cases,

all

applications

must

first

disconnect

from

the

database.

780

Common

Criteria

Certification:

Administration

and

User

Documentation

(If

the

database

was

activated,

then

it

must

be

deactivated

and

reactivated.)

Then,

at

the

first

new

connect

to

the

database,

the

changes

will

take

effect.

Other

parameters

can

be

changed

online;

these

are

called

configurable

online

configuration

parameters.

If

you

change

the

setting

of

a

configurable

online

database

manager

configuration

parameter

while

you

are

attached

to

an

instance,

the

default

behavior

of

the

UPDATE

DBM

CFG

command

will

be

to

apply

the

change

immediately.

If

you

do

not

want

the

change

applied

immediately,

use

the

DEFERRED

option

on

the

UPDATE

DBM

CFG

command.

To

change

a

database

manager

configuration

parameter

online:

db2

attach

to

<instance-name>

db2

update

dbm

cfg

using

<parameter-name>

<value>

db2

detach

For

clients,

changes

to

the

database

manager

configuration

parameters

take

effect

the

next

time

the

client

connects

to

a

server.

If

you

change

a

configurable

online

database

configuration

parameter

while

connected,

the

default

behavior

is

to

apply

the

change

online,

wherever

possible.

You

should

note

that

some

parameter

changes

may

take

a

noticeable

amount

of

time

to

take

effect

due

to

the

overhead

associated

with

allocating

space.

To

change

configuration

parameters

online

from

the

command

line

processor,

a

connection

to

the

database

is

required.

To

change

a

database

configuration

parameter

online:

db2

connect

to

<dbname>

db2

update

db

cfg

using

<parameter-name>

<parameter-value>

db2

connect

reset

Each

configurable

online

configuration

parameter

has

a

propagation

class

associated

with

it.

The

propagation

class

indicates

when

you

can

expect

a

change

to

the

configuration

parameter

to

take

effect.

There

are

three

propagation

classes:

v

Immediate:

Parameters

that

change

immediately

upon

command

or

API

invocation.

For

example,

diaglevel

has

a

propagation

class

of

immediate.

v

Statement

boundary:

Parameters

that

change

on

statement

and

statement-like

boundaries.

For

example,

if

you

change

the

value

of

sortheap,

all

new

SQL

requests

will

start

using

the

new

value.

v

Transaction

boundary:

Parameters

that

change

on

transaction

boundaries.

For

example,

a

new

value

for

dl_expint

is

updated

after

a

COMMIT

statement.

Changing

some

database

configuration

parameters

can

influence

the

access

plan

chosen

by

the

SQL

optimizer.

After

changing

any

of

these

parameters,

you

should

consider

rebinding

your

applications

to

ensure

the

best

access

plan

is

being

used

for

your

SQL

statements.

Any

parameters

that

were

modified

online

(for

example,

by

using

the

UPDATE

DATABASE

CONFIGURATION

IMMEDIATE

command)

will

cause

the

SQL

optimizer

to

choose

new

access

plans

for

new

SQL

statements.

However,

the

SQL

statement

cache

will

not

be

purged

of

existing

entries.

To

clear

the

contents

of

the

SQL

cache,

use

the

FLUSH

PACKAGE

CACHE

statement.

While

new

parameter

values

may

not

be

immediately

effective,

viewing

the

parameter

settings

(using

GET

DATABASE

MANAGER

CONFIGURATION

or

GET

DATABASE

CONFIGURATION

commands)

will

always

show

the

latest

updates.

Viewing

the

parameter

settings

using

the

SHOW

DETAIL

clause

on

these

commands

will

show

both

the

latest

updates

and

the

values

in

memory.

Chapter

16.

Configuration

Parameters

781

Note:

A

number

of

configuration

parameters

(for

example,

userexit)

are

described

as

having

acceptable

values

of

either

“Yes”

or

“No”,

or

“On”

or

“Off”

in

the

help

and

other

DB2

documentation.

To

clarify

what

may

be

confusing,

“Yes”

should

be

considered

equivalent

to

“On”

and

“No”

should

be

considered

equivalent

to

“Off”.

Related

concepts:

v

“Configuration

parameters”

on

page

769

v

“Configuration

parameter

tuning”

in

the

Administration

Guide:

Performance

Related

reference:

v

“GET

DATABASE

CONFIGURATION”

on

page

275

v

“GET

DATABASE

MANAGER

CONFIGURATION”

on

page

281

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION”

on

page

381

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION”

on

page

384

v

“Configuration

parameters

summary”

in

the

Administration

Guide:

Performance

v

“FLUSH

PACKAGE

CACHE

statement”

in

the

SQL

Reference,

Volume

2

Security-Related

Configuration

Parameters

audit_buf_sz

-

Audit

buffer

size

Configuration

Type

Database

manager

Applies

To

v

Database

server

with

local

and

remote

clients

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

0

[

0

–

65

000

]

Unit

of

Measure

Pages

(4

KB)

When

Allocated

When

DB2

is

started

When

Freed

When

DB2

is

stopped

This

parameter

specifies

the

size

of

the

buffer

used

when

auditing

the

database.

The

default

value

for

this

parameter

is

zero

(0).

If

the

value

is

zero

(0),

the

audit

buffer

is

not

used.

If

the

value

is

greater

than

zero

(0),

space

is

allocated

for

the

audit

buffer

where

the

audit

records

will

be

placed

when

they

are

generated

by

the

audit

facility.

The

value

times

4

KB

pages

is

the

amount

of

space

allocated

for

the

audit

buffer.

The

audit

buffer

cannot

be

allocated

dynamically;

DB2

must

be

stopped

and

then

restarted

before

the

new

value

for

this

parameter

takes

effect.

By

changing

this

parameter

from

the

default

to

some

value

larger

than

zero

(0),

the

audit

facility

writes

records

to

disk

asynchronously

compared

to

the

execution

of

the

statements

generating

the

audit

records.

This

improves

DB2

performance

over

782

Common

Criteria

Certification:

Administration

and

User

Documentation

leaving

the

parameter

value

at

zero

(0).

The

value

of

zero

(0)

means

the

audit

facility

writes

records

to

disk

synchronously

with

(at

the

same

time

as)

the

execution

of

the

statements

generating

the

audit

records.

The

synchronous

operation

during

auditing

decreases

the

performance

of

applications

running

in

DB2.

Related

reference:

v

“GET

DATABASE

MANAGER

CONFIGURATION”

on

page

281

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION”

on

page

384

authentication

-

Authentication

type

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Client

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

SERVER

[

CLIENT;

SERVER;

SERVER_ENCRYPT;

KERBEROS;

KRB_SERVER_ENCRYPT;

GSSPLUGIN;

GSS_SERVER_ENCRYPT

]

This

parameter

specifies

and

determines

how

and

where

authentication

of

a

user

takes

place.

If

authentication

is

SERVER,

the

user

ID

and

password

are

sent

from

the

client

to

the

server

so

that

authentication

can

take

place

on

the

server.

The

value

SERVER_ENCRYPT

provides

the

same

behavior

as

SERVER,

except

that

any

passwords

sent

over

the

network

are

encrypted.

Note:

For

a

Common

Criteria

compliant

configuration,

SERVER

is

the

only

supported

value.

A

value

of

CLIENT

indicates

that

all

authentication

takes

place

at

the

client.

No

authentication

needs

to

be

performed

at

the

server.

A

value

of

KERBEROS

means

that

authentication

is

performed

at

a

Kerberos

server

using

the

Kerberos

security

protocol

for

authentication.

With

an

authentication

type

of

KRB_SERVER_ENCRYPT

at

the

server

and

clients

that

support

the

Kerberos

security

system,

the

effective

system

authentication

type

is

KERBEROS.

If

the

clients

do

not

support

the

Kerberos

security

system,

the

system

authentication

type

is

effectively

equivalent

to

SERVER_ENCRYPT.

A

value

of

GSSPLUGIN

means

that

authentication

is

performed

using

an

external

GSSAPI-based

security

mechanism.

With

an

authentication

type

of

GSS_SERVER_ENCRYPT

at

the

server

and

clients

that

support

the

GSSPLUGIN

security

mechanism,

the

effective

system

authentication

type

is

GSSPLUGIN

(that

Chapter

16.

Configuration

Parameters

783

is,

if

the

clients

support

one

of

the

server’s

plug-ins).

If

the

clients

do

not

support

the

GSSPLUGIN

security

mechanism,

the

system

authentication

type

is

effectively

equivalent

to

SERVER_ENCRYPT.

Recommendation:

Typically,

the

default

value

(SERVER)

is

adequate.

Related

reference:

v

“GET

DATABASE

MANAGER

CONFIGURATION”

on

page

281

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION”

on

page

384

authentication

-

Authentication

type

DAS

Configuration

Type

DB2

Administration

Server

Applies

to

DB2

Administration

Server

Parameter

Type

Configurable

Default

[Range]

SERVER_ENCRYPT

[

SERVER_ENCRYPT;

KERBEROS_ENCRYPT

]

This

parameter

determines

how

and

where

authentication

of

a

user

takes

place.

If

authentication

is

SERVER_ENCRYPT,

then

the

user

ID

and

password

are

sent

from

the

client

to

the

server

so

authentication

can

take

place

on

the

server.

Passwords

sent

over

the

network

are

encrypted.

A

value

of

KERBEROS_ENCRYPT

means

that

authentication

is

performed

at

a

Kerberos

server

using

the

Kerberos

security

protocol

for

authentication.

Note:

The

KERBEROS_ENCRYPT

authentication

type

is

only

supported

on

servers

running

Windows

2000.

This

parameter

can

only

be

updated

from

a

Version

8

command

line

processor

(CLP).

Related

reference:

v

“GET

ADMIN

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

ADMIN

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

ADMIN

CONFIGURATION

Command”

in

the

Command

Reference

catalog_noauth

-

Cataloging

allowed

without

authority

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Client

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Online

Propagation

Class

Immediate

784

Common

Criteria

Certification:

Administration

and

User

Documentation

Default

[Range]

Database

server

with

local

and

remote

clients

NO

[

NO

(0)

—

YES

(1)

]

Client;

Database

server

with

local

clients

YES

[

NO

(0)

—

YES

(1)

]

This

parameter

specifies

whether

users

are

able

to

catalog

and

uncatalog

databases

and

nodes,

or

DCS

and

ODBC

directories,

without

SYSADM

authority.

The

default

value

(0)

for

this

parameter

indicates

that

SYSADM

authority

is

required.

When

this

parameter

is

set

to

1

(yes),

SYSADM

authority

is

not

required.

Related

reference:

v

“GET

DATABASE

MANAGER

CONFIGURATION”

on

page

281

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION”

on

page

384

dasadm_group

-

DAS

administration

authority

group

name

Configuration

Type

DB2

Administration

Server

Applies

to

DB2

Administration

Server

Parameter

Type

Configurable

Default

[Range]

Null

[

any

valid

group

name

]

DAS

Administration

(DASADM)

authority

is

the

highest

level

of

authority

within

the

DAS.

This

parameter

defines

the

group

name

with

DASADM

authority

for

the

DAS.

DASADM

authority

is

determined

by

the

security

facilities

used

in

a

specific

operating

environment.

v

For

the

Windows

NT

and

Windows

2000

operating

systems,

this

parameter

can

be

set

to

any

local

group

that

has

a

name

of

8

characters

or

fewer,

and

is

defined

in

the

Windows

NT

and

Windows

2000

security

database.

If

“NULL”

is

specified

for

this

parameter,

all

members

of

the

Administrators

group

have

DASADM

authority.

v

For

UNIX-based

systems,

if

“NULL”

is

specified

as

the

value

of

this

parameter,

the

DASADM

group

defaults

to

the

primary

group

of

the

instance

owner.

If

the

value

is

not

“NULL”,

the

DASADM

group

can

be

any

valid

UNIX

group

name.

This

parameter

can

only

be

updated

from

a

Version

8

command

line

processor

(CLP).

Related

reference:

v

“GET

ADMIN

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

ADMIN

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

ADMIN

CONFIGURATION

Command”

in

the

Command

Reference

dftdbpath

-

Default

database

path

Configuration

Type

Database

manager

Chapter

16.

Configuration

Parameters

785

Applies

to

v

Database

server

with

local

and

remote

clients

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Online

Propagation

Class

Immediate

Default

[Range]

UNIX

Home

directory

of

instance

owner

[

any

existing

path

]

Windows

Drive

on

which

DB2

is

installed

[

any

existing

path

]

This

parameter

contains

the

default

file

path

used

to

create

databases

under

the

database

manager.

If

no

path

is

specified

when

a

database

is

created,

the

database

is

created

under

the

path

specified

by

the

dftdbpath

parameter.

In

a

partitioned

database

environment,

you

should

ensure

that

the

path

on

which

the

database

is

being

created

is

not

an

NFS-mounted

path

(on

UNIX-based

platforms),

or

a

network

drive

(in

a

Windows

environment).

The

specified

path

must

physically

exist

on

each

database

partition

server.

To

avoid

confusion,

it

is

best

to

specify

a

path

that

is

locally

mounted

on

each

database

partition

server.

The

maximum

length

of

the

path

is

205

characters.

The

system

appends

the

node

name

to

the

end

of

the

path.

Given

that

databases

can

grow

to

a

large

size

and

that

many

users

could

be

creating

databases

(depending

on

your

environment

and

intentions),

it

is

often

convenient

to

be

able

to

have

all

databases

created

and

stored

in

a

specified

location.

It

is

also

good

to

be

able

to

isolate

databases

from

other

applications

and

data

both

for

integrity

reasons

and

for

ease

of

backup

and

recovery.

For

UNIX-based

environments,

the

length

of

the

dftdbpath

name

cannot

exceed

215

characters

and

must

be

a

valid,

absolute,

path

name.

For

Windows,

the

dftdbpath

can

be

a

drive

letter,

optionally

followed

by

a

colon.

Recommendation:

If

possible,

put

high

volume

databases

on

a

different

disk

than

other

frequently

accessed

data,

such

as

the

operating

system

files

and

the

database

logs.

Related

reference:

v

“GET

DATABASE

MANAGER

CONFIGURATION”

on

page

281

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION”

on

page

384

svcename

-

TCP/IP

service

name

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Database

server

with

local

clients

786

Common

Criteria

Certification:

Administration

and

User

Documentation

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

Null

This

parameter

contains

the

name

of

the

TCP/IP

port

which

a

database

server

will

use

to

await

communications

from

remote

client

nodes.

This

name

must

be

the

first

of

two

consecutive

ports

reserved

for

use

by

the

database

manager;

the

second

port

is

used

to

handle

interrupt

requests

from

down-level

clients.

In

order

to

accept

connection

requests

from

a

database

client

using

TCP/IP,

the

database

server

must

be

listening

on

a

port

designated

to

that

server.

The

system

administrator

for

the

database

server

must

reserve

a

port

(number

n)

and

define

its

associated

TCP/IP

service

name

in

the

services

file

at

the

server.

If

the

database

server

needs

to

support

requests

from

down-level

clients,

a

second

port

(number

n+1,

for

interrupt

requests)

needs

to

be

defined

in

the

services

file

at

the

server.

The

database

server

port

(number

n)

and

its

TCP/IP

service

name

need

to

be

defined

in

the

services

file

on

the

database

client.

Down-level

clients

also

require

the

interrupt

port

(number

n+1)

to

be

defined

in

the

client’s

services

file.

On

UNIX-based

systems,

the

services

file

is

located

in:

/etc/services

The

svcename

parameter

should

be

set

to

the

service

name

associated

with

the

main

connection

port

so

that

when

the

database

server

is

started,

it

can

determine

on

which

port

to

listen

for

incoming

connection

requests.

If

you

are

supporting

or

using

a

down-level

client,

the

service

name

for

the

interrupt

port

is

not

saved

in

the

configuration

file.

The

interrupt

port

number

can

be

derived

based

on

the

main

connection

port

number

(interrupt

port

number

=

main

connection

port

+

1).

Related

reference:

v

“GET

DATABASE

MANAGER

CONFIGURATION”

on

page

281

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION”

on

page

384

sysadm_group

-

System

administration

authority

group

name

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Client

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

Null

System

administration

(SYSADM)

authority

is

the

highest

level

of

authority

within

the

database

manager

and

controls

all

database

objects.

This

parameter

defines

the

group

name

with

SYSADM

authority

for

the

database

manager

instance.

Chapter

16.

Configuration

Parameters

787

SYSADM

authority

is

determined

by

the

security

facilities

used

in

a

specific

operating

environment.

v

In

the

Windows

98

operating

system

the

SYSADM

group

must

be

NULL.

This

parameter

must

be

“NULL”

for

Windows

98

clients

when

system

security

is

used

because

the

Windows

98

operating

system

does

not

store

group

information,

thereby

providing

no

way

of

determining

if

a

user

is

a

member

of

a

designated

SYSADM

group.

When

a

group

name

is

specified,

no

user

can

be

a

member

of

it.

v

For

the

Windows

NT

and

Windows

2000

operating

system,

this

parameter

can

be

set

to

any

local

group

that

has

a

name

of

8

characters

or

fewer,

and

is

defined

in

the

Windows

NT

and

Windows

2000

security

database.

If

“NULL”

is

specified

for

this

parameter,

all

members

of

the

Administrators

group

have

SYSADM

authority.

v

For

UNIX-based

systems,

if

“NULL”

is

specified

as

the

value

of

this

parameter,

the

SYSADM

group

defaults

to

the

primary

group

of

the

instance

owner.

If

the

value

is

not

“NULL”,

the

SYSADM

group

can

be

any

valid

UNIX

group

name.

To

restore

the

parameter

to

its

default

(NULL)

value,

use

UPDATE

DBM

CFG

USING

SYSADM_GROUP

NULL.

You

must

specify

the

keyword

“NULL”

in

uppercase.

You

can

also

use

the

Configure

Instance

notebook

in

the

DB2

Control

Center.

Related

reference:

v

“sysctrl_group

-

System

control

authority

group

name”

on

page

788

v

“sysmaint_group

-

System

maintenance

authority

group

name”

on

page

789

v

“GET

DATABASE

MANAGER

CONFIGURATION”

on

page

281

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION”

on

page

384

sysctrl_group

-

System

control

authority

group

name

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Client

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

Null

This

parameter

defines

the

group

name

with

system

control

(SYSCTRL)

authority.

SYSCTRL

has

privileges

allowing

operations

affecting

system

resources,

but

does

not

allow

direct

access

to

data.

Attention:

This

parameter

must

be

NULL

for

Windows

98

clients

when

system

security

is

used

(that

is,

authentication

is

CLIENT,

SERVER,

DCS,

or

any

other

valid

authentication).

This

is

because

the

Windows

98

operating

systems

do

not

788

Common

Criteria

Certification:

Administration

and

User

Documentation

store

group

information,

thereby

providing

no

way

of

determining

if

a

user

is

a

member

of

a

designated

SYSCTRL

group.

When

a

group

name

is

specified,

no

user

can

be

a

member

of

it.

To

restore

the

parameter

to

its

default

(NULL)

value,

use

UPDATE

DBM

CFG

USING

SYSCTRL_GROUP

NULL.

You

must

specify

the

keyword

“NULL”

in

uppercase.

You

can

also

use

the

Configure

Instance

notebook

in

the

DB2

Control

Center.

Related

reference:

v

“sysadm_group

-

System

administration

authority

group

name”

on

page

787

v

“sysmaint_group

-

System

maintenance

authority

group

name”

on

page

789

v

“GET

DATABASE

MANAGER

CONFIGURATION”

on

page

281

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION”

on

page

384

sysmaint_group

-

System

maintenance

authority

group

name

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Client

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

Null

This

parameter

defines

the

group

name

with

system

maintenance

(SYSMAINT)

authority.

SYSMAINT

has

privileges

to

perform

maintenance

operations

on

all

databases

associated

with

an

instance

without

having

direct

access

to

data.

Attention:

This

parameter

must

be

NULL

for

Windows

98

clients

when

system

security

is

used

(that

is,

authentication

is

CLIENT,

SERVER,

DCS,

or

any

other

valid

authentication).

This

is

because

the

Windows

98

operating

systems

do

not

store

group

information,

thereby

providing

no

way

of

determining

if

a

user

is

a

member

of

a

designated

SYSMAINT

group.

When

a

group

name

is

specified,

no

user

can

be

a

member

of

it.

To

restore

the

parameter

to

its

default

(NULL)

value,

use

UPDATE

DBM

CFG

USING

SYSMAINT_GROUP

NULL.

You

must

specify

the

keyword

“NULL”

in

uppercase.

You

can

also

use

the

Configure

Instance

notebook

in

the

DB2

Control

Center.

Related

reference:

v

“sysadm_group

-

System

administration

authority

group

name”

on

page

787

v

“sysctrl_group

-

System

control

authority

group

name”

on

page

788

v

“GET

DATABASE

MANAGER

CONFIGURATION”

on

page

281

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

Chapter

16.

Configuration

Parameters

789

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION”

on

page

384

sysmon_group

-

System

monitor

authority

group

name

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Client

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

Null

This

parameter

defines

the

group

name

with

system

monitor

(SYSMON)

authority.

Users

having

SYSMON

authority

at

the

instance

level

have

the

ability

to

take

database

system

monitor

snapshots

of

a

database

manager

instance

or

its

databases.

SYSMON

authority

includes

the

ability

to

use

the

following

commands:

v

GET

DATABASE

MANAGER

MONITOR

SWITCHES

v

GET

MONITOR

SWITCHES

v

GET

SNAPSHOT

v

LIST

ACTIVE

DATABASES

v

LIST

APPLICATIONS

v

LIST

DCS

APPLICATIONS

v

RESET

MONITOR

v

UPDATE

MONITOR

SWITCHES

Users

with

SYSADM,

SYSCTRL,

or

SYSMAINT

authority

automatically

have

the

ability

to

take

database

system

monitor

snapshots

and

to

use

these

commands.

Attention:

This

parameter

must

be

NULL

for

Windows

98

clients

when

system

security

is

used

(that

is,

authentication

is

CLIENT,

SERVER,

DCS,

or

any

other

valid

authentication).

This

is

because

the

Windows

98

operating

systems

do

not

store

group

information,

thereby

providing

no

way

of

determining

if

a

user

is

a

member

of

a

designated

SYSMON

group.

When

a

group

name

is

specified,

no

user

can

be

a

member

of

it.

To

restore

the

parameter

to

its

default

(NULL)

value,

use

UPDATE

DBM

CFG

USING

SYSMON_GROUP

NULL.

You

must

specify

the

keyword

“NULL”

in

uppercase.

You

can

also

use

the

Configure

Instance

notebook

in

the

DB2

Control

Center.

Related

reference:

v

“GET

DATABASE

MANAGER

CONFIGURATION”

on

page

281

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION”

on

page

384

trust_allclnts

-

Trust

all

clients

Configuration

Type

Database

manager

790

Common

Criteria

Certification:

Administration

and

User

Documentation

Applies

to

v

Database

server

with

local

and

remote

clients

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

YES

[NO,

YES,

DRDAONLY]

This

parameter

is

only

active

when

the

authentication

parameter

is

set

to

CLIENT.

This

parameter

and

trust_clntauth

are

used

to

determine

where

users

are

validated

to

the

database

environment.

By

accepting

the

default

of

“YES”

for

this

parameter,

all

clients

are

treated

as

trusted

clients.

This

means

that

the

server

assumes

that

a

level

of

security

is

available

at

the

client

and

the

possibility

that

users

can

be

validated

at

the

client.

This

parameter

can

only

be

changed

to

“NO”

if

the

authentication

parameter

is

set

to

CLIENT.

If

this

parameter

is

set

to

“NO”,

the

untrusted

clients

must

provide

a

userid

and

password

combination

when

they

connect

to

the

server.

Untrusted

clients

are

operating

system

platforms

that

do

not

have

a

security

subsystem

for

authenticating

users.

Setting

this

parameter

to

“DRDAONLY”

protects

against

all

clients

except

clients

from

DB2

for

OS/390

and

z/OS,

DB2

for

VM

and

VSE,

and

DB2

for

OS/400.

Only

these

clients

can

be

trusted

to

perform

client-side

authentication.

All

other

clients

must

provide

a

user

ID

and

password

to

be

authenticated

by

the

server.

When

trust_allclnts

is

set

to

“DRDAONLY”,

the

trust_clntauth

parameter

is

used

to

determine

where

the

clients

are

authenticated.

If

trust_clntauth

is

set

to

“CLIENT”,

authentication

occurs

at

the

client.

If

trust_clntauth

is

set

to

“SERVER”,

authentication

occurs

at

the

client

if

no

password

is

provided,

and

at

the

server

if

a

password

is

provided.

Related

reference:

v

“authentication

-

Authentication

type”

on

page

783

v

“trust_clntauth

-

Trusted

clients

authentication”

on

page

791

v

“GET

DATABASE

MANAGER

CONFIGURATION”

on

page

281

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION”

on

page

384

trust_clntauth

-

Trusted

clients

authentication

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Chapter

16.

Configuration

Parameters

791

Default

[Range]

CLIENT

[CLIENT,

SERVER]

This

parameter

specifies

whether

a

trusted

client

is

authenticated

at

the

server

or

the

client

when

the

client

provides

a

userid

and

password

combination

for

a

connection.

This

parameter

(and

trust_allclnts)

is

only

active

if

the

authentication

parameter

is

set

to

CLIENT.

If

a

user

ID

and

password

are

not

provided,

the

client

is

assumed

to

have

validated

the

user,

and

no

further

validation

is

performed

at

the

server.

If

this

parameter

is

set

to

CLIENT

(the

default),

the

trusted

client

can

connect

without

providing

a

user

ID

and

password

combination,

and

the

assumption

is

that

the

operating

system

has

already

authenticated

the

user.

If

it

is

set

to

SERVER,

the

user

ID

and

password

will

be

validated

at

the

server.

The

numeric

value

for

CLIENT

is

0.

The

numeric

value

for

SERVER

is

1.

Related

reference:

v

“authentication

-

Authentication

type”

on

page

783

v

“trust_allclnts

-

Trust

all

clients”

on

page

790

v

“GET

DATABASE

MANAGER

CONFIGURATION”

on

page

281

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION”

on

page

384

Locking

Configuration

Parameters

dlchktime

-

Time

interval

for

checking

deadlock

Configuration

Type

Database

Parameter

Type

Configurable

online

Propagation

Class

Immediate

Default

[Range]

10

000

(10

seconds)

[

1

000

–

600

000

]

Unit

of

Measure

Milliseconds

A

deadlock

occurs

when

two

or

more

applications

connected

to

the

same

database

wait

indefinitely

for

a

resource.

The

waiting

is

never

resolved

because

each

application

is

holding

a

resource

that

the

other

needs

to

continue.

The

deadlock

check

interval

defines

the

frequency

at

which

the

database

manager

checks

for

deadlocks

among

all

the

applications

connected

to

a

database.

Notes:

1.

In

a

partitioned

database

environment,

this

parameter

applies

to

the

catalog

node

only.

2.

In

a

partitioned

database

environment,

a

deadlock

is

not

flagged

until

after

the

second

iteration.

Recommendation:

Increasing

this

parameter

decreases

the

frequency

of

checking

for

deadlocks,

thereby

increasing

the

time

that

application

programs

must

wait

for

the

deadlock

to

be

resolved.

792

Common

Criteria

Certification:

Administration

and

User

Documentation

Decreasing

this

parameter

increases

the

frequency

of

checking

for

deadlocks,

thereby

decreasing

the

time

that

application

programs

must

wait

for

the

deadlock

to

be

resolved

but

increasing

the

time

that

the

database

manager

takes

to

check

for

deadlocks.

If

the

deadlock

interval

is

too

small,

it

can

decrease

run-time

performance,

because

the

database

manager

is

frequently

performing

deadlock

detection.

If

this

parameter

is

set

lower

to

improve

concurrency,

you

should

ensure

that

maxlocks

and

locklist

are

set

appropriately

to

avoid

unnecessary

lock

escalation,

which

can

result

in

more

lock

contention

and

as

a

result,

more

deadlock

situations.

Related

reference:

v

“locklist

-

Maximum

storage

for

lock

list

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“maxlocks

-

Maximum

percent

of

lock

list

before

escalation”

on

page

794

v

“GET

DATABASE

CONFIGURATION”

on

page

275

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION”

on

page

381

locktimeout

-

Lock

timeout

Configuration

Type

Database

Parameter

Type

Configurable

Default

[Range]

-1

[

-1;

0

–

32

767

]

Unit

of

Measure

Seconds

This

parameter

specifies

the

number

of

seconds

that

an

application

will

wait

to

obtain

a

lock.

This

helps

avoid

global

deadlocks

for

applications.

If

you

set

this

parameter

to

0,

locks

are

not

waited

for.

In

this

situation,

if

no

lock

is

available

at

the

time

of

the

request,

the

application

immediately

receives

a

-911.

If

you

set

this

parameter

to

-1,

lock

timeout

detection

is

turned

off.

In

this

situation

a

lock

will

be

waited

for

(if

one

is

not

available

at

the

time

of

the

request)

until

either

of

the

following:

v

The

lock

is

granted

v

A

deadlock

occurs.

Recommendation:

In

a

transaction

processing

(OLTP)

environment,

you

can

use

an

initial

starting

value

of

30

seconds.

In

a

query-only

environment

you

could

start

with

a

higher

value.

In

both

cases,

you

should

use

benchmarking

techniques

to

tune

this

parameter.

When

working

with

Data

Links

Manager,

if

you

see

lock

timeouts

in

the

administration

notification

log

of

the

Data

Links

Manager

(dlfm)

instance,

then

you

should

increase

the

value

of

locktimeout.

You

should

also

consider

increasing

the

value

of

locklist.

The

value

should

be

set

to

quickly

detect

waits

that

are

occurring

because

of

an

abnormal

situation,

such

as

a

transaction

that

is

stalled

(possibly

as

a

result

of

a

user

leaving

their

workstation).

You

should

set

it

high

enough

so

valid

lock

requests

do

not

time-out

because

of

peak

workloads,

during

which

time,

there

is

more

waiting

for

locks.

Chapter

16.

Configuration

Parameters

793

You

can

use

the

database

system

monitor

to

help

you

track

the

number

of

times

an

application

(connection)

experienced

a

lock

timeout

or

that

a

database

detected

a

timeout

situation

for

all

applications

that

were

connected.

High

values

of

the

lock_timeout

(number

of

lock

timeouts)

monitor

element

can

be

caused

by:

v

Too

low

a

value

for

this

configuration

parameter.

v

An

application

(transaction)

that

is

holding

locks

for

an

extended

period.

You

can

use

the

database

system

monitor

to

further

investigate

these

applications.

v

A

concurrency

problem,

that

could

be

caused

by

lock

escalations

(from

row-level

to

a

table-level

lock).

Related

reference:

v

“locklist

-

Maximum

storage

for

lock

list

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“maxlocks

-

Maximum

percent

of

lock

list

before

escalation”

on

page

794

v

“lock_timeouts

-

Number

of

Lock

Timeouts

monitor

element”

in

the

System

Monitor

Guide

and

Reference

v

“GET

DATABASE

CONFIGURATION”

on

page

275

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION”

on

page

381

maxlocks

-

Maximum

percent

of

lock

list

before

escalation

Configuration

Type

Database

Parameter

Type

Configurable

online

Propagation

Class

Immediate

Default

[Range]

UNIX

10

[

1

–

100

]

Windows

22

[

1

–

100

]

Unit

of

Measure

Percentage

Lock

escalation

is

the

process

of

replacing

row

locks

with

table

locks,

reducing

the

number

of

locks

in

the

list.

This

parameter

defines

a

percentage

of

the

lock

list

held

by

an

application

that

must

be

filled

before

the

database

manager

performs

escalation.

When

the

number

of

locks

held

by

any

one

application

reaches

this

percentage

of

the

total

lock

list

size,

lock

escalation

will

occur

for

the

locks

held

by

that

application.

Lock

escalation

also

occurs

if

the

lock

list

runs

out

of

space.

The

database

manager

determines

which

locks

to

escalate

by

looking

through

the

lock

list

for

the

application

and

finding

the

table

with

the

most

row

locks.

If

after

replacing

these

with

a

single

table

lock,

the

maxlocks

value

is

no

longer

exceeded,

lock

escalation

will

stop.

If

not,

it

will

continue

until

the

percentage

of

the

lock

list

held

is

below

the

value

of

maxlocks.

The

maxlocks

parameter

multiplied

by

the

maxappls

parameter

cannot

be

less

than

100.

Recommendation:

The

following

formula

allows

you

to

set

maxlocks

to

allow

an

application

to

hold

twice

the

average

number

of

locks:

maxlocks

=

2

*

100

/

maxappls

794

Common

Criteria

Certification:

Administration

and

User

Documentation

Where

2

is

used

to

achieve

twice

the

average

and

100

represents

the

largest

percentage

value

allowed.

If

you

have

only

a

few

applications

that

run

concurrently,

you

could

use

the

following

formula

as

an

alternative

to

the

first

formula:

maxlocks

=

2

*

100

/

(average

number

of

applications

running

concurrently)

One

of

the

considerations

when

setting

maxlocks

is

to

use

it

in

conjunction

with

the

size

of

the

lock

list

(locklist).

The

actual

limit

of

the

number

of

locks

held

by

an

application

before

lock

escalation

occurs

is:

maxlocks

*

locklist

*

4

096

/

(100

*

36)

on

a

32-bit

system

maxlocks

*

locklist

*

4

096

/

(100

*

56)

on

a

64-bit

system

Where

4

096

is

the

number

of

bytes

in

a

page,

100

is

the

largest

percentage

value

allowed

for

maxlocks,

and

36

is

the

number

of

bytes

per

lock

on

a

32-bit

system,

and

56

is

the

number

of

bytes

per

lock

on

a

64-bit

system.

If

you

know

that

one

of

your

applications

requires

1

000

locks,

and

you

do

not

want

lock

escalation

to

occur,

then

you

should

choose

values

for

maxlocks

and

locklist

in

this

formula

so

that

the

result

is

greater

than

1

000.

(Using

10

for

maxlocks

and

100

for

locklist,

this

formula

results

in

greater

than

the

1

000

locks

needed.)

If

maxlocks

is

set

too

low,

lock

escalation

happens

when

there

is

still

enough

lock

space

for

other

concurrent

applications.

If

maxlocks

is

set

too

high,

a

few

applications

can

consume

most

of

the

lock

space,

and

other

applications

will

have

to

perform

lock

escalation.

The

need

for

lock

escalation

in

this

case

results

in

poor

concurrency.

You

can

use

the

database

system

monitor

to

help

you

track

and

tune

this

configuration

parameter.

Related

reference:

v

“locklist

-

Maximum

storage

for

lock

list

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“maxappls

-

Maximum

number

of

active

applications

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“GET

DATABASE

CONFIGURATION”

on

page

275

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION”

on

page

381

autorestart

-

Auto

restart

enable

Configuration

Type

Database

Parameter

Type

Configurable

Online

Propagation

Class

Immediate

Default

[Range]

On

[

On;

Off

]

When

this

parameter

is

set

on,

the

database

manager

automatically

calls

the

restart

database

utility,

if

needed,

when

an

application

connects

to

a

database.

Crash

recovery

is

the

operation

performed

by

the

restart

database

utility.

It

is

performed

if

the

database

terminated

abnormally

while

applications

were

connected

to

it.

An

abnormal

termination

of

the

database

could

be

caused

by

a

power

failure

or

a

Chapter

16.

Configuration

Parameters

795

system

software

failure.

It

applies

any

committed

transactions

that

were

in

the

database

buffer

pool

but

were

not

written

to

disk

at

the

time

of

the

failure.

It

also

backs

out

any

uncommitted

transactions

that

might

have

been

written

to

disk.

If

autorestart

is

not

enabled,

then

an

application

that

attempts

to

connect

to

a

database

which

needs

to

have

crash

recovery

performed

(needs

to

be

restarted)

will

receive

a

SQL1015N

error.

In

this

case,

the

application

can

call

the

restart

database

utility,

or

you

can

restart

the

database

by

selecting

the

restart

operation

of

the

recovery

tool.

Related

concepts:

v

“Crash

recovery”

on

page

803

Related

reference:

v

“GET

DATABASE

CONFIGURATION”

on

page

275

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESTART

DATABASE”

on

page

352

v

“UPDATE

DATABASE

CONFIGURATION”

on

page

381

database_consistent

-

Database

is

consistent

Configuration

Type

Database

Parameter

Type

Informational

This

parameter

indicates

whether

the

database

is

in

a

consistent

state.

YES

indicates

that

all

transactions

have

been

committed

or

rolled

back

so

that

the

data

is

consistent.

If

the

system

“crashes”

while

the

database

is

consistent,

you

do

not

need

to

take

any

special

action

to

make

the

database

usable.

NO

indicates

that

a

transaction

is

pending

or

some

other

task

is

pending

on

the

database

and

the

data

is

not

consistent

at

this

point.

If

the

system

“crashes”

while

the

database

is

not

consistent,

you

will

need

to

restart

the

database

using

the

RESTART

DATABASE

command

to

make

the

database

usable.

Related

reference:

v

“GET

DATABASE

CONFIGURATION”

on

page

275

796

Common

Criteria

Certification:

Administration

and

User

Documentation

Chapter

17.

Security-Related

Special

Registers

Special

registers

.

.

.

.

.

.

.

.

.

.

.

. 797

CURRENT

CLIENT_APPLNAME

.

.

.

.

.

. 799

CURRENT

CLIENT_USERID

.

.

.

.

.

.

.

. 800

CURRENT

CLIENT_WRKSTNNAME

.

.

.

.

. 800

CURRENT

SERVER

.

.

.

.

.

.

.

.

.

.

. 800

CURRENT

SCHEMA

.

.

.

.

.

.

.

.

.

.

. 801

USER

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 801

Special

registers

A

special

register

is

a

storage

area

that

is

defined

for

an

application

process

by

the

database

manager.

It

is

used

to

store

information

that

can

be

referenced

in

SQL

statements.

A

reference

to

a

special

register

is

a

reference

to

a

value

provided

by

the

current

server.

If

the

value

is

a

string,

its

CCSID

is

a

default

CCSID

of

the

current

server.

The

special

registers

can

be

referenced

as

follows:

©

Copyright

IBM

Corp.

1993-2004

797

��

CURRENT

CLIENT_ACCTNG

CLIENT

ACCTNG

CURRENT

CLIENT_APPLNAME

CLIENT

APPLNAME

CURRENT

CLIENT_USERID

CLIENT

USERID

CURRENT

CLIENT_WRKSTNNAME

CLIENT

WRKSTNNAME

CURRENT

DATE

(1)

CURRENT_DATE

CURRENT

DBPARTITIONNUM

CURRENT

DEFAULT

TRANSFORM

GROUP

CURRENT

DEGREE

CURRENT

EXPLAIN

MODE

CURRENT

EXPLAIN

SNAPSHOT

CURRENT

ISOLATION

CURRENT

LOCK

TIMEOUT

CURRENT

MAINTAINED

TABLE

TYPES

FOR

OPTIMIZATION

CURRENT

PACKAGE

PATH

CURRENT

PATH

(1)

CURRENT_PATH

CURRENT

QUERY

OPTIMIZATION

CURRENT

REFRESH

AGE

CURRENT

SCHEMA

(1)

CURRENT_SCHEMA

CURRENT

SERVER

(1)

CURRENT_SERVER

CURRENT

TIME

(1)

CURRENT_TIME

CURRENT

TIMESTAMP

(1)

CURRENT_TIMESTAMP

CURRENT

TIMEZONE

(1)

CURRENT_TIMEZONE

CURRENT

USER

(1)

CURRENT_USER

SESSION_USER

USER

SYSTEM_USER

��

Notes:

1 The

SQL

1999

Core

standard

uses

the

form

with

the

underscore.

Some

special

registers

can

be

updated

using

the

SET

statement.

The

following

table

shows

which

of

the

special

registers

can

be

updated.

Table

69.

Special

Registers

Special

Register

Updatable

CURRENT

CLIENT_ACCTNG

No

CURRENT

CLIENT_APPLNAME

No

Special

registers

798

Common

Criteria

Certification:

Administration

and

User

Documentation

Table

69.

Special

Registers

(continued)

Special

Register

Updatable

CURRENT

CLIENT_USERID

No

CURRENT

CLIENT_WRKSTNNAME

No

CURRENT

DATE

No

CURRENT

DBPARTITIONNUM

No

CURRENT

DEFAULT

TRANSFORM

GROUP

Yes

CURRENT

DEGREE

Yes

CURRENT

EXPLAIN

MODE

Yes

CURRENT

EXPLAIN

SNAPSHOT

Yes

CURRENT

ISOLATION

Yes

CURRENT

LOCK

TIMEOUT

Yes

CURRENT

MAINTAINED

TABLE

TYPES

FOR

OPTIMIZATION

Yes

CURRENT

PACKAGE

PATH

Yes

CURRENT

PATH

Yes

CURRENT

QUERY

OPTIMIZATION

Yes

CURRENT

REFRESH

AGE

Yes

CURRENT

SCHEMA

Yes

CURRENT

SERVER

No

CURRENT

TIME

No

CURRENT

TIMESTAMP

No

CURRENT

TIMEZONE

No

CURRENT

USER

No

SESSION_USER

Yes

SYSTEM_USER

No

USER

Yes

When

a

special

register

is

referenced

in

a

routine,

the

value

of

the

special

register

in

the

routine

depends

on

whether

the

special

register

is

updatable

or

not.

For

non-updatable

special

registers,

the

value

is

set

to

the

default

value

for

the

special

register.

For

updatable

special

registers,

the

initial

value

is

inherited

from

the

invoker

of

the

routine

and

can

be

changed

with

a

subsequent

SET

statement

inside

the

routine.

CURRENT

CLIENT_APPLNAME

The

CURRENT

CLIENT_APPLNAME

(or

CLIENT

APPLNAME)

special

register

contains

the

value

of

the

application

name

from

the

client

information

specified

for

this

connection.

The

data

type

of

the

register

is

VARCHAR(255).

The

default

value

of

this

register

is

an

empty

string.

The

value

of

the

application

name

can

be

changed

by

using

the

Set

Client

Information

(sqleseti)

API.

Note

that

the

value

provided

via

the

sqleseti

API

is

in

the

application

code

page,

and

the

special

register

value

is

stored

in

the

database

code

page.

Depending

on

Special

registers

Chapter

17.

Security-Related

Special

Registers

799

the

data

values

used

when

setting

the

client

information,

truncation

of

the

data

value

stored

in

the

special

register

may

occur

during

code

page

conversion.

Example:

Select

which

departments

are

allowed

to

use

the

application

being

used

in

this

connection.

SELECT

DEPT

FROM

DEPT_APPL_MAP

WHERE

APPL_NAME

=

CURRENT

CLIENT_APPLNAME

CURRENT

CLIENT_USERID

The

CURRENT

CLIENT_USERID

(or

CLIENT

USERID)

special

register

contains

the

value

of

the

client

user

ID

from

the

client

information

specified

for

this

connection.

The

data

type

of

the

register

is

VARCHAR(255).

The

default

value

of

this

register

is

an

empty

string.

The

value

of

the

client

user

ID

can

be

changed

by

using

the

Set

Client

Information

(sqleseti)

API.

Note

that

the

value

provided

via

the

sqleseti

API

is

in

the

application

code

page,

and

the

special

register

value

is

stored

in

the

database

code

page.

Depending

on

the

data

values

used

when

setting

the

client

information,

truncation

of

the

data

value

stored

in

the

special

register

may

occur

during

code

page

conversion.

Example:

Find

out

in

which

department

the

current

client

user

ID

works.

SELECT

DEPT

FROM

DEPT_USERID_MAP

WHERE

USER_ID

=

CURRENT

CLIENT_USERID

CURRENT

CLIENT_WRKSTNNAME

The

CURRENT

CLIENT_WRKSTNNAME

(or

CLIENT

WRKSTNNAME)

special

register

contains

the

value

of

the

workstation

name

from

the

client

information

specified

for

this

connection.

The

data

type

of

the

register

is

VARCHAR(255).

The

default

value

of

this

register

is

an

empty

string.

The

value

of

the

workstation

name

can

be

changed

by

using

the

Set

Client

Information

(sqleseti)

API.

Note

that

the

value

provided

via

the

sqleseti

API

is

in

the

application

code

page,

and

the

special

register

value

is

stored

in

the

database

code

page.

Depending

on

the

data

values

used

when

setting

the

client

information,

truncation

of

the

data

value

stored

in

the

special

register

may

occur

during

code

page

conversion.

Example:

Get

the

workstation

name

being

used

for

this

connection.

VALUES

(CURRENT

CLIENT_WRKSTNNAME)

INTO

:WS_NAME

CURRENT

SERVER

The

CURRENT

SERVER

(or

CURRENT_SERVER)

special

register

specifies

a

VARCHAR(18)

value

that

identifies

the

current

application

server.

The

register

contains

the

actual

name

of

the

application

server,

not

an

alias.

CURRENT

CLIENT_APPLNAME

800

Common

Criteria

Certification:

Administration

and

User

Documentation

CURRENT

SERVER

can

be

changed

through

the

CONNECT

statement,

but

only

under

certain

conditions.

When

used

in

an

SQL

statement

inside

a

routine,

CURRENT

SERVER

is

not

inherited

from

the

invoking

statement.

Example:

Set

the

host

variable

APPL_SERVE

(VARCHAR(18))

to

the

name

of

the

application

server

to

which

the

application

is

connected.

VALUES

CURRENT

SERVER

INTO

:APPL_SERVE

Related

reference:

v

“CONNECT

(Type

1)”

on

page

887

CURRENT

SCHEMA

The

CURRENT

SCHEMA

(or

CURRENT_SCHEMA)

special

register

specifies

a

VARCHAR(128)

value

that

identifies

the

schema

name

used

to

qualify

database

object

references,

where

applicable,

in

dynamically

prepared

SQL

statements.

For

compatibility

with

DB2

for

OS/390,

CURRENT

SQLID

(or

CURRENT_SQLID)

is

a

synonym

for

CURRENT

SCHEMA.

The

initial

value

of

CURRENT

SCHEMA

is

the

authorization

ID

of

the

current

session

user.

The

value

can

be

changed

by

invoking

the

SET

SCHEMA

statement.

The

QUALIFIER

bind

option

controls

the

schema

name

used

to

qualify

database

object

references,

where

applicable,

for

static

SQL

statements.

Example:

Set

the

schema

for

object

qualification

to

'D123'.

SET

CURRENT

SCHEMA

=

'D123'

USER

The

USER

special

register

specifies

the

run-time

authorization

ID

passed

to

the

database

manager

when

an

application

starts

on

a

database.

The

data

type

of

the

register

is

VARCHAR(128).

When

used

in

an

SQL

statement

inside

a

routine,

USER

is

not

inherited

from

the

invoking

statement.

Example:

Select

all

notes

from

the

IN_TRAY

table

that

were

placed

there

by

the

user.

SELECT

*

FROM

IN_TRAY

WHERE

SOURCE

=

USER

CURRENT

SERVER

Chapter

17.

Security-Related

Special

Registers

801

USER

802

Common

Criteria

Certification:

Administration

and

User

Documentation

Chapter

18.

Crash

Recovery

and

Database

Logs

Crash

recovery

.

.

.

.

.

.

.

.

.

.

.

.

. 803

Understanding

recovery

logs

.

.

.

.

.

.

.

. 804

Crash

recovery

Transactions

(or

units

of

work)

against

a

database

can

be

interrupted

unexpectedly.

If

a

failure

occurs

before

all

of

the

changes

that

are

part

of

the

unit

of

work

are

completed

and

committed,

the

database

is

left

in

an

inconsistent

and

unusable

state.

Crash

recovery

is

the

process

by

which

the

database

is

moved

back

to

a

consistent

and

usable

state.

This

is

done

by

rolling

back

incomplete

transactions

and

completing

committed

transactions

that

were

still

in

memory

when

the

crash

occurred

(Figure

14).

When

a

database

is

in

a

consistent

and

usable

state,

it

has

attained

what

is

known

as

a

″point

of

consistency″.

A

transaction

failure

results

from

a

severe

error

or

condition

that

causes

the

database

or

the

database

manager

to

end

abnormally.

Partially

completed

units

of

work,

or

UOW

that

have

not

been

flushed

to

disk

at

the

time

of

failure,

leave

the

database

in

an

inconsistent

state.

Following

a

transaction

failure,

the

database

must

be

recovered.

Conditions

that

can

result

in

transaction

failure

include:

v

A

power

failure

on

the

machine,

causing

the

database

manager

and

the

database

partitions

on

it

to

go

down

v

A

hardware

failure

such

as

memory

corruption,

or

disk,

CPU,

or

network

failure.

v

A

serious

operating

system

error

that

causes

DB2®

to

go

down

If

you

want

the

rollback

of

incomplete

units

of

work

to

be

done

automatically

by

the

database

manager,

enable

the

automatic

restart

(autorestart)

database

configuration

parameter

by

setting

it

to

ON.

(This

is

the

default

value.)

If

you

do

not

want

automatic

restart

behavior,

set

the

autorestart

database

configuration

parameter

to

OFF.

As

a

result,

you

will

need

to

issue

the

RESTART

DATABASE

command

when

a

database

failure

occurs.

If

the

database

I/O

was

suspended

before

the

crash

occurred,

you

must

specify

the

WRITE

RESUME

option

of

the

1

2

3

4

rollback

rollback

rollback

rollback

Units of work

Crash
All four rolled back

TIME

Figure

14.

Rolling

Back

Units

of

Work

(Crash

Recovery)

©

Copyright

IBM

Corp.

1993-2004

803

RESTART

DATABASE

command

in

order

for

the

crash

recovery

to

continue.

The

administration

notification

log

records

when

the

database

restart

operation

begins.

If

crash

recovery

is

applied

to

a

database

that

is

enabled

for

forward

recovery

(that

is,

the

logarchmeth1

configuration

parameter

is

not

set

to

OFF),

and

an

error

occurs

during

crash

recovery

that

is

attributable

to

an

individual

table

space,

that

table

space

will

be

taken

offline,

and

cannot

be

accessed

until

it

is

repaired.

Crash

recovery

continues.

At

the

completion

of

crash

recovery,

the

other

table

spaces

in

the

database

will

be

accessible,

and

connections

to

the

database

can

be

established.

However,

if

the

table

space

that

is

taken

offline

is

the

table

space

that

contains

the

system

catalogs,

it

must

be

repaired

before

any

connections

will

be

permitted.

Related

reference:

v

“autorestart

-

Auto

restart

enable”

on

page

795

v

“logarchmeth1

-

Primary

log

archive

method

configuration

parameter”

in

the

Administration

Guide:

Performance

Understanding

recovery

logs

All

databases

have

logs

associated

with

them.

These

logs

keep

records

of

database

changes.

If

a

database

needs

to

be

restored

to

a

point

beyond

the

last

full,

offline

backup,

logs

are

required

to

roll

the

data

forward

to

the

point

of

failure.

There

are

two

types

of

DB2®

logging:

circular,

and

archive,

each

provides

a

different

level

of

recovery

capability:

v

Circular

logging

is

the

default

behavior

when

a

new

database

is

created.

(The

logarchmeth1

and

logarchmeth2

database

configuration

parameters

are

set

to

OFF.)

With

this

type

of

logging,

only

full,

offline

backups

of

the

database

are

allowed.

The

database

must

be

offline

(inaccessible

to

users)

when

a

full

backup

is

taken.

As

the

name

suggests,

circular

logging

uses

a

“ring”

of

online

logs

to

provide

recovery

from

transaction

failures

and

system

crashes.

The

logs

are

used

and

retained

only

to

the

point

of

ensuring

the

integrity

of

current

transactions.

Circular

logging

does

not

allow

you

to

roll

a

database

forward

through

transactions

performed

after

the

last

full

backup

operation.

All

changes

occurring

since

the

last

backup

operation

are

lost.

Since

this

type

of

restore

operation

recovers

your

data

to

the

specific

point

in

time

at

which

a

full

backup

was

taken,

it

is

called

version

recovery.

Figure

15

on

page

805

shows

that

the

active

log

uses

a

ring

of

log

files

when

circular

logging

is

active.

804

Common

Criteria

Certification:

Administration

and

User

Documentation

Active

logs

are

used

during

crash

recovery

to

prevent

a

failure

(system

power

or

application

error)

from

leaving

a

database

in

an

inconsistent

state.

Active

logs

are

located

in

the

database

log

path

directory.

v

Archive

logging

is

used

specifically

for

rollforward

recovery.

Archived

logs

are

logs

that

were

active

but

are

no

longer

required

for

crash

recovery.

Use

the

logarchmeth1

database

configuration

parameter

to

enable

archive

logging.

The

advantage

of

choosing

archive

logging

is

that

rollforward

recovery

can

use

both

archived

logs

and

active

logs

to

rebuild

a

database

either

to

the

end

of

the

logs,

or

to

a

specific

point

in

time.

The

archived

log

files

can

be

used

to

recover

changes

made

after

the

backup

was

taken.

This

is

different

from

circular

logging

where

you

can

only

recover

to

the

time

of

the

backup,

and

all

changes

made

after

that

are

lost.

Taking

online

backups

is

only

supported

if

the

database

is

configured

for

archive

logging.

During

an

online

backup

operation,

all

activities

against

the

database

are

logged.

When

an

online

backup

image

is

restored,

the

logs

must

be

rolled

forward

at

least

to

the

point

in

time

at

which

the

backup

operation

completed.

For

this

to

happen,

the

logs

must

have

been

archived

and

made

available

when

the

database

is

restored.

After

an

online

backup

is

complete,

DB2

forces

the

currently

active

log

to

be

closed,

and

as

a

result,

it

will

be

archived.

This

ensures

that

your

online

backup

has

a

complete

set

of

archived

logs

available

for

recovery.

DB2 server

Database Log Path

Transaction

Active Log Files

Circular Logs

Active

Log File

Figure

15.

Circular

Logging

Chapter

18.

Crash

Recovery

and

Database

Logs

805

The

following

database

configuration

parameters

allow

you

to

change

where

archived

logs

are

stored:

The

newlogpath

parameter,

and

the

logarchmeth1

and

logarchmeth2

parameters.

Changing

the

newlogpath

parameter

also

affects

where

active

logs

are

stored.

To

determine

which

log

extents

in

the

database

log

path

directory

are

archived

logs,

check

the

value

of

the

loghead

database

configuration

parameter.

This

parameter

indicates

the

lowest

numbered

log

that

is

active.

Those

logs

with

sequence

numbers

less

than

loghead

are

archived

logs

and

can

be

moved.

You

can

check

the

value

of

this

parameter

by

using

the

Control

Center;

or,

by

using

the

command

line

processor

and

the

GET

DATABASE

CONFIGURATION

command

to

view

the

″First

active

log

file″.

For

more

information

about

this

configuration

parameter,

see

the

Administration

Guide:

Performance

book.

Related

concepts:

v

“Log

mirroring”

in

the

Data

Recovery

and

High

Availability

Guide

and

Reference

Related

reference:

v

“User

exit

for

database

recovery”

in

the

Data

Recovery

and

High

Availability

Guide

and

Reference

v

“loghead

-

First

active

log

file

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“Configuration

parameters

for

database

logging”

in

the

Data

Recovery

and

High

Availability

Guide

and

Reference

v

“logarchmeth1

-

Primary

log

archive

method

configuration

parameter”

in

the

Administration

Guide:

Performance

TIME

Units of work Units of work

update update

Logs are used between backups to track the changes to the databases.

BACKUP
database

n archived logs
1 active log

n archived logs
1 active log

Figure

16.

Active

and

Archived

Database

Logs

in

Rollforward

Recovery.

There

can

be

more

than

one

active

log

in

the

case

of

a

long-running

transaction.

806

Common

Criteria

Certification:

Administration

and

User

Documentation

Chapter

19.

Application

processes,

concurrency,

and

recovery

All

SQL

programs

execute

as

part

of

an

application

process

or

agent.

An

application

process

involves

the

execution

of

one

or

more

programs,

and

is

the

unit

to

which

the

database

manager

allocates

resources

and

locks.

Different

application

processes

may

involve

the

execution

of

different

programs,

or

different

executions

of

the

same

program.

More

than

one

application

process

may

request

access

to

the

same

data

at

the

same

time.

Locking

is

the

mechanism

used

to

maintain

data

integrity

under

such

conditions,

preventing,

for

example,

two

application

processes

from

updating

the

same

row

of

data

simultaneously.

The

database

manager

acquires

locks

to

prevent

uncommitted

changes

made

by

one

application

process

from

being

accidentally

perceived

by

any

other

process.

The

database

manager

releases

all

locks

it

has

acquired

and

retained

on

behalf

of

an

application

process

when

that

process

ends.

However,

an

application

process

can

explicitly

request

that

locks

be

released

sooner.

This

is

done

using

a

commit

operation,

which

releases

locks

acquired

during

the

unit

of

work

and

also

commits

database

changes

made

during

the

unit

of

work.

The

database

manager

provides

a

means

of

backing

out

uncommitted

changes

made

by

an

application

process.

This

might

be

necessary

in

the

event

of

a

failure

on

the

part

of

an

application

process,

or

in

the

case

of

a

deadlock,

or

a

lock

time-out

situation.

An

application

process

can

explicitly

request

that

its

database

changes

be

backed

out.

This

is

done

using

a

rollback

operation.

A

unit

of

work

is

a

recoverable

sequence

of

operations

within

an

application

process.

A

unit

of

work

is

initiated

when

an

application

process

is

started,

or

when

the

previous

unit

of

work

is

ended

by

something

other

than

the

termination

of

the

application

process.

A

unit

of

work

is

ended

by

a

commit

operation,

a

rollback

operation,

or

the

end

of

an

application

process.

A

commit

or

rollback

operation

affects

only

the

database

changes

made

within

the

unit

of

work

it

is

ending.

As

long

as

these

changes

remain

uncommitted,

other

application

processes

are

unable

to

perceive

them,

and

they

can

be

backed

out.

This

is

not

true,

however,

when

the

isolation

level

is

uncommitted

read

(UR).

Once

committed,

these

database

changes

are

accessible

by

other

application

processes

and

can

no

longer

be

backed

out

through

a

rollback.

Both

DB2®

call

level

interface

(CLI)

and

embedded

SQL

allow

for

a

connection

mode

called

concurrent

transactions,

which

supports

multiple

connections,

each

of

which

is

an

independent

transaction.

An

application

can

have

multiple

concurrent

connections

to

the

same

database.

Locks

acquired

by

the

database

manager

on

behalf

of

an

application

process

are

held

until

the

end

of

a

unit

of

work.

This

is

not

true,

however,

when

the

isolation

level

is

cursor

stability

(CS,

in

which

the

lock

is

released

as

the

cursor

moves

from

row

to

row)

or

uncommitted

read

(UR,

in

which

locks

are

not

obtained).

An

application

process

is

never

prevented

from

performing

operations

because

of

its

own

locks.

However,

if

an

application

uses

concurrent

transactions,

the

locks

from

one

transaction

may

affect

the

operation

of

a

concurrent

transaction.

©

Copyright

IBM

Corp.

1993-2004

807

The

initiation

and

the

termination

of

a

unit

of

work

define

points

of

consistency

within

an

application

process.

For

example,

a

banking

transaction

may

involve

the

transfer

of

funds

from

one

account

to

another.

Such

a

transaction

would

require

that

these

funds

be

subtracted

from

the

first

account,

and

then

added

to

the

second

account.

Following

the

subtraction

step,

the

data

is

inconsistent.

Only

after

the

funds

have

been

added

to

the

second

account

is

consistency

reestablished.

When

both

steps

are

complete,

the

commit

operation

can

be

used

to

end

the

unit

of

work,

thereby

making

the

changes

available

to

other

application

processes.

If

a

failure

occurs

before

the

unit

of

work

ends,

the

database

manager

will

roll

back

uncommitted

changes

to

restore

the

data

consistency

that

it

assumes

existed

when

the

unit

of

work

was

initiated.

Related

concepts:

v

“Isolation

levels”

in

the

SQL

Reference,

Volume

1

Point of
consistency

New point of
consistency

Begin unit
of work

Commit
End unit of work

one unit of work

database updatesTIME LINE

Figure

17.

Unit

of

Work

with

a

COMMIT

Statement

Point of
consistency

New point of
consistency

Begin unit
of work

Failure;
Begin rollback

Data is returned to
its initial state;

End unit of work

one unit of work

database
updates

back out
updatesTIME LINE

Figure

18.

Unit

of

Work

with

a

ROLLBACK

Statement

Application

processes,

concurrency,

and

recovery

808

Common

Criteria

Certification:

Administration

and

User

Documentation

Chapter

20.

Identifiers

An

identifier

is

a

token

that

is

used

to

form

a

name.

An

identifier

in

an

SQL

statement

is

either

an

SQL

identifier

or

a

host

identifier.

v

SQL

identifiers

There

are

two

types

of

SQL

identifiers:

ordinary

and

delimited.

–

An

ordinary

identifier

is

a

letter

followed

by

zero

or

more

characters,

each

of

which

is

an

uppercase

letter,

a

digit,

or

the

underscore

character.

An

ordinary

identifier

should

not

be

identical

to

a

reserved

word.

Examples

WKLYSAL

WKLY_SAL

–

A

delimited

identifier

is

a

sequence

of

one

or

more

characters

enclosed

by

double

quotation

marks.

Two

consecutive

quotation

marks

are

used

to

represent

one

quotation

mark

within

the

delimited

identifier.

In

this

way

an

identifier

can

include

lowercase

letters.

Examples

"WKLY_SAL"

"WKLY

SAL"

"UNION"

"wkly_sal"

Character

conversion

of

identifiers

created

on

a

double-byte

code

page,

but

used

by

an

application

or

database

on

a

multi-byte

code

page,

may

require

special

consideration:

After

conversion,

such

identifiers

may

exceed

the

length

limit

for

an

identifier.

v

Host

identifiers

A

host

identifier

is

a

name

declared

in

the

host

program.

The

rules

for

forming

a

host

identifier

are

the

rules

of

the

host

language.

A

host

identifier

should

not

be

greater

than

255

characters

in

length

and

should

not

begin

with

SQL

or

DB2

(in

uppercase

or

lowercase

characters).

Naming

conventions

and

implicit

object

name

qualifications

The

rules

for

forming

the

name

of

an

object

depend

on

the

object

type.

Database

object

names

may

be

made

up

of

a

single

identifier,

or

they

may

be

schema-qualified

objects

made

up

of

two

identifiers.

Schema-qualified

object

names

may

be

specified

without

the

schema

name;

in

such

cases,

the

schema

name

is

implicit.

In

dynamic

SQL

statements,

a

schema-qualified

object

name

implicitly

uses

the

CURRENT

SCHEMA

special

register

value

as

the

qualifier

for

unqualified

object

name

references.

By

default

it

is

set

to

the

current

authorization

ID.

If

the

dynamic

SQL

statement

is

contained

in

a

package

that

exhibits

bind,

define,

or

invoke

behaviour,

the

CURRENT

SCHEMA

special

register

is

not

used

for

qualification.

In

a

bind

behaviour

package,

the

package

default

qualifier

is

used

as

the

value

for

implicit

qualification

of

unqualified

object

references.

In

a

define

behaviour

package,

the

authorization

ID

of

the

routine

definer

is

used

as

the

value

for

implicit

qualification

of

unqualified

object

references

within

that

routine.

In

an

invoke

behaviour

package,

the

statement

authorization

ID

in

effect

when

the

routine

is

invoked

is

used

as

the

value

for

implicit

qualification

of

unqualified

object

references

within

dynamic

SQL

statements

within

that

routine.

For

more

information,

see

“Dynamic

SQL

characteristics

at

run

time”

on

page

815.

©

Copyright

IBM

Corp.

1993-2004

809

In

static

SQL

statements,

the

QUALIFIER

precompile/bind

option

implicitly

specifies

the

qualifier

for

unqualified

database

object

names.

By

default,

this

value

is

set

to

the

package

authorization

ID.

The

following

object

names,

when

used

in

the

context

of

an

SQL

procedure,

are

permitted

to

use

only

the

characters

allowed

in

an

ordinary

identifier,

even

if

the

names

are

delimited:

v

condition-name

v

label

v

parameter-name

v

procedure-name

v

SQL-variable-name

v

statement-name

The

syntax

diagrams

use

different

terms

for

different

types

of

names.

The

following

list

defines

these

terms.

alias-name

A

schema-qualified

name

that

designates

an

alias.

attribute-name

An

identifier

that

designates

an

attribute

of

a

structured

data

type.

authorization-name

An

identifier

that

designates

a

user

or

a

group:

v

Valid

characters

are

A

through

Z,

a

through

z,

0

through

9,

#,

@,

$,

and

_.

v

The

name

must

not

begin

with

the

characters

'SYS',

'IBM',

or

'SQL'.

v

The

name

must

not

be:

ADMINS,

GUESTS,

LOCAL,

PUBLIC,

or

USERS.

v

A

delimited

authorization

ID

must

not

contain

lowercase

letters.

bufferpool-name

An

identifier

that

designates

a

bufferpool.

column-name

A

qualified

or

unqualified

name

that

designates

a

column

of

a

table

or

view.

The

qualifier

is

a

table

name,

a

view

name,

a

nickname,

or

a

correlation

name.

condition-name

An

identifier

that

designates

a

condition

in

an

SQL

procedure.

constraint-name

An

identifier

that

designates

a

referential

constraint,

primary

key

constraint,

unique

constraint,

or

a

table

check

constraint.

correlation-name

An

identifier

that

designates

a

result

table.

cursor-name

An

identifier

that

designates

an

SQL

cursor.

For

host

compatibility,

a

hyphen

character

may

be

used

in

the

name.

data-source-name

An

identifier

that

designates

a

data

source.

This

identifier

is

the

first

part

of

a

three-part

remote

object

name.

descriptor-name

A

colon

followed

by

a

host

identifier

that

designates

an

SQL

descriptor

area

(SQLDA).

For

the

description

of

a

host

identifier,

see

“References

Naming

conventions

and

implicit

object

name

qualifications

810

Common

Criteria

Certification:

Administration

and

User

Documentation

to

host

variables”

on

page

823.

Note

that

a

descriptor

name

never

includes

an

indicator

variable.

distinct-type-name

A

qualified

or

unqualified

name

that

designates

a

distinct

type.

An

unqualified

distinct

type

name

in

an

SQL

statement

is

implicitly

qualified

by

the

database

manager,

depending

on

context.

event-monitor-name

An

identifier

that

designates

an

event

monitor.

function-mapping-name

An

identifier

that

designates

a

function

mapping.

function-name

A

qualified

or

unqualified

name

that

designates

a

function.

An

unqualified

function

name

in

an

SQL

statement

is

implicitly

qualified

by

the

database

manager,

depending

on

context.

group-name

An

unqualified

identifier

that

designates

a

transform

group

defined

for

a

structured

type.

host-variable

A

sequence

of

tokens

that

designates

a

host

variable.

A

host

variable

includes

at

least

one

host

identifier,

explained

in

“References

to

host

variables”

on

page

823.

index-name

A

schema-qualified

name

that

designates

an

index

or

an

index

specification.

label

An

identifier

that

designates

a

label

in

an

SQL

procedure.

method-name

An

identifier

that

designates

a

method.

The

schema

context

for

a

method

is

determined

by

the

schema

of

the

subject

type

(or

a

supertype

of

the

subject

type)

of

the

method.

nickname

A

schema-qualified

name

that

designates

a

federated

server

reference

to

a

table

or

a

view.

db-partition-group-name

An

identifier

that

designates

a

database

partition

group.

package-name

A

schema-qualified

name

that

designates

a

package.

If

a

package

has

a

version

ID

that

is

not

the

empty

string,

the

package

name

also

includes

the

version

ID

at

the

end

of

the

name,

in

the

form:

schema-id.package-id.version-id.

parameter-name

An

identifier

that

designates

a

parameter

that

can

be

referenced

in

a

procedure,

user-defined

function,

method,

or

index

extension.

procedure-name

A

qualified

or

unqualified

name

that

designates

a

procedure.

An

unqualified

procedure

name

in

an

SQL

statement

is

implicitly

qualified

by

the

database

manager,

depending

on

context.

remote-authorization-name

An

identifier

that

designates

a

data

source

user.

The

rules

for

authorization

names

vary

from

data

source

to

data

source.

remote-function-name

A

name

that

designates

a

function

registered

to

a

data

source

database.

Naming

conventions

and

implicit

object

name

qualifications

Chapter

20.

Identifiers

811

remote-object-name

A

three-part

name

that

designates

a

data

source

table

or

view,

and

that

identifies

the

data

source

in

which

the

table

or

view

resides.

The

parts

of

this

name

are

data-source-name,

remote-schema-name,

and

remote-table-name.

remote-schema-name

A

name

that

designates

the

schema

to

which

a

data

source

table

or

view

belongs.

This

name

is

the

second

part

of

a

three-part

remote

object

name.

remote-table-name

A

name

that

designates

a

table

or

view

at

a

data

source.

This

name

is

the

third

part

of

a

three-part

remote

object

name.

remote-type-name

A

data

type

supported

by

a

data

source

database.

Do

not

use

the

long

form

for

built-in

types

(use

CHAR

instead

of

CHARACTER,

for

example).

savepoint-name

An

identifier

that

designates

a

savepoint.

schema-name

An

identifier

that

provides

a

logical

grouping

for

SQL

objects.

A

schema

name

used

as

a

qualifier

for

the

name

of

an

object

may

be

implicitly

determined:

v

from

the

value

of

the

CURRENT

SCHEMA

special

register

v

from

the

value

of

the

QUALIFIER

precompile/bind

option

v

on

the

basis

of

a

resolution

algorithm

that

uses

the

CURRENT

PATH

special

register

v

on

the

basis

of

the

schema

name

for

another

object

in

the

same

SQL

statement.

To

avoid

complications,

it

is

recommended

that

the

name

SESSION

not

be

used

as

a

schema,

except

as

the

schema

for

declared

global

temporary

tables

(which

must

use

the

schema

name

SESSION).

server-name

An

identifier

that

designates

an

application

server.

In

a

federated

system,

the

server

name

also

designates

the

local

name

of

a

data

source.

specific-name

A

qualified

or

unqualified

name

that

designates

a

specific

name.

An

unqualified

specific

name

in

an

SQL

statement

is

implicitly

qualified

by

the

database

manager,

depending

on

context.

SQL-variable-name

The

name

of

a

local

variable

in

an

SQL

procedure

statement.

SQL

variable

names

can

be

used

in

other

SQL

statements

where

a

host

variable

name

is

allowed.

The

name

can

be

qualified

by

the

label

of

the

compound

statement

that

declared

the

SQL

variable.

statement-name

An

identifier

that

designates

a

prepared

SQL

statement.

supertype-name

A

qualified

or

unqualified

name

that

designates

the

supertype

of

a

type.

An

unqualified

supertype

Naming

conventions

and

implicit

object

name

qualifications

812

Common

Criteria

Certification:

Administration

and

User

Documentation

name

in

an

SQL

statement

is

implicitly

qualified

by

the

database

manager,

depending

on

context.

table-name

A

schema-qualified

name

that

designates

a

table.

tablespace-name

An

identifier

that

designates

a

table

space.

trigger-name

A

schema-qualified

name

that

designates

a

trigger.

type-mapping-name

An

identifier

that

designates

a

data

type

mapping.

type-name

A

qualified

or

unqualified

name

that

designates

a

type.

An

unqualified

type

name

in

an

SQL

statement

is

implicitly

qualified

by

the

database

manager,

depending

on

context.

typed-table-name

A

schema-qualified

name

that

designates

a

typed

table.

typed-view-name

A

schema-qualified

name

that

designates

a

typed

view.

view-name

A

schema-qualified

name

that

designates

a

view.

wrapper-name

An

identifier

that

designates

a

wrapper.

Aliases

A

table

alias

can

be

thought

of

as

an

alternative

name

for

a

table

or

a

view.

A

table

or

view,

therefore,

can

be

referred

to

in

an

SQL

statement

by

its

name

or

by

a

table

alias.

An

alias

can

be

used

wherever

a

table

or

a

view

name

can

be

used.

An

alias

can

be

created

even

if

the

object

does

not

exist

(although

it

must

exist

by

the

time

a

statement

referring

to

it

is

compiled).

It

can

refer

to

another

alias

if

no

circular

or

repetitive

references

are

made

along

the

chain

of

aliases.

An

alias

can

only

refer

to

a

table,

view,

or

alias

within

the

same

database.

An

alias

name

cannot

be

used

where

a

new

table

or

view

name

is

expected,

such

as

in

the

CREATE

TABLE

or

CREATE

VIEW

statements;

for

example,

if

the

alias

name

PERSONNEL

has

been

created,

subsequent

statements

such

as

CREATE

TABLE

PERSONNEL...

will

return

an

error.

The

option

of

referring

to

a

table

or

a

view

by

an

alias

is

not

explicitly

shown

in

the

syntax

diagrams,

or

mentioned

in

the

descriptions

of

SQL

statements.

A

new

unqualified

alias

cannot

have

the

same

fully-qualified

name

as

an

existing

table,

view,

or

alias.

The

effect

of

using

an

alias

in

an

SQL

statement

is

similar

to

that

of

text

substitution.

The

alias,

which

must

be

defined

by

the

time

that

the

SQL

statement

is

compiled,

is

replaced

at

statement

compilation

time

by

the

qualified

base

table

or

view

name.

For

example,

if

PBIRD.SALES

is

an

alias

for

DSPN014.DIST4_SALES_148,

then

at

compilation

time:

SELECT

*

FROM

PBIRD.SALES

effectively

becomes

SELECT

*

FROM

DSPN014.DIST4_SALES_148

In

a

federated

system,

the

aforementioned

uses

and

restrictions

apply,

not

only

to

table

aliases,

but

also

to

aliases

for

nicknames.

Thus,

a

nickname’s

alias

can

be

Naming

conventions

and

implicit

object

name

qualifications

Chapter

20.

Identifiers

813

used

instead

of

the

nickname

in

an

SQL

statement;

an

alias

can

be

created

for

a

nickname

that

does

not

yet

exist,

provided

that

the

nickname

is

created

before

statements

that

reference

the

alias

are

compiled;

an

alias

for

a

nickname

can

refer

to

another

alias

for

that

nickname;

and

so

on.

For

syntax

toleration

of

applications

running

under

other

relational

database

management

systems,

SYNONYM

can

be

used

in

place

of

ALIAS

in

the

CREATE

ALIAS

and

DROP

ALIAS

statements.

Authorization

IDs

and

authorization

names

An

authorization

ID

is

a

character

string

that

is

obtained

by

the

database

manager

when

a

connection

is

established

between

the

database

manager

and

either

an

application

process

or

a

program

preparation

process.

It

designates

a

set

of

privileges.

It

may

also

designate

a

user

or

a

group

of

users,

but

this

property

is

not

controlled

by

the

database

manager.

Authorization

IDs

are

used

by

the

database

manager

to

provide:

v

Authorization

checking

of

SQL

statements

v

A

default

value

for

the

QUALIFIER

precompile/bind

option

and

the

CURRENT

SCHEMA

special

register.

The

authorization

ID

is

also

included

in

the

default

CURRENT

PATH

special

register

and

the

FUNCPATH

precompile/bind

option.

An

authorization

ID

applies

to

every

SQL

statement.

The

authorization

ID

that

applies

to

a

static

SQL

statement

is

the

authorization

ID

that

is

used

during

program

binding.

The

authorization

ID

that

applies

to

a

dynamic

SQL

statement

is

based

on

the

DYNAMICRULES

option

supplied

at

bind

time,

and

on

the

current

runtime

environment

for

the

package

issuing

the

dynamic

SQL

statement:

v

In

a

package

that

has

bind

behavior,

the

authorization

ID

used

is

the

authorization

ID

of

the

package

owner.

v

In

a

package

that

has

define

behavior,

the

authorization

ID

used

is

the

authorization

ID

of

the

corresponding

routine’s

definer.

v

In

a

package

that

has

run

behavior,

the

authorization

ID

used

is

the

current

authorization

ID

of

the

user

executing

the

package.

v

In

a

package

that

has

invoke

behavior,

the

authorization

ID

used

is

the

authorization

ID

currently

in

effect

when

the

routine

is

invoked.

This

is

called

the

runtime

authorization

ID.

For

more

information,

see

“Dynamic

SQL

characteristics

at

run

time”

on

page

815.

An

authorization

name

specified

in

an

SQL

statement

should

not

be

confused

with

the

authorization

ID

of

the

statement.

An

authorization

name

is

an

identifier

that

is

used

within

various

SQL

statements.

An

authorization

name

is

used

in

the

CREATE

SCHEMA

statement

to

designate

the

owner

of

the

schema.

An

authorization

name

is

used

in

the

GRANT

and

REVOKE

statements

to

designate

a

target

of

the

grant

or

revoke

operation.

Granting

privileges

to

X

means

that

X

(or

a

member

of

the

group

X)

will

subsequently

be

the

authorization

ID

of

statements

that

require

those

privileges.

Examples:

v

Assume

that

SMITH

is

the

user

ID

and

the

authorization

ID

that

the

database

manager

obtained

when

a

connection

was

established

with

the

application

process.

The

following

statement

is

executed

interactively:

GRANT

SELECT

ON

TDEPT

TO

KEENE

Aliases

814

Common

Criteria

Certification:

Administration

and

User

Documentation

SMITH

is

the

authorization

ID

of

the

statement.

Therefore,

in

a

dynamic

SQL

statement,

the

default

value

of

the

CURRENT

SCHEMA

special

register

is

SMITH,

and

in

static

SQL,

the

default

value

of

the

QUALIFIER

precompile/bind

option

is

SMITH.

The

authority

to

execute

the

statement

is

checked

against

SMITH,

and

SMITH

is

the

table-name

implicit

qualifier

based

on

qualification

rules

described

in

“Naming

conventions

and

implicit

object

name

qualifications”

on

page

809.

KEENE

is

an

authorization

name

specified

in

the

statement.

KEENE

is

given

the

SELECT

privilege

on

SMITH.TDEPT.

v

Assume

that

SMITH

has

administrative

authority

and

is

the

authorization

ID

of

the

following

dynamic

SQL

statements,

with

no

SET

SCHEMA

statement

issued

during

the

session:

DROP

TABLE

TDEPT

Removes

the

SMITH.TDEPT

table.

DROP

TABLE

SMITH.TDEPT

Removes

the

SMITH.TDEPT

table.

DROP

TABLE

KEENE.TDEPT

Removes

the

KEENE.TDEPT

table.

Note

that

KEENE.TDEPT

and

SMITH.TDEPT

are

different

tables.

CREATE

SCHEMA

PAYROLL

AUTHORIZATION

KEENE

KEENE

is

the

authorization

name

specified

in

the

statement

that

creates

a

schema

called

PAYROLL.

KEENE

is

the

owner

of

the

schema

PAYROLL

and

is

given

CREATEIN,

ALTERIN,

and

DROPIN

privileges,

with

the

ability

to

grant

them

to

others.

Dynamic

SQL

characteristics

at

run

time

The

BIND

option

DYNAMICRULES

determines

the

authorization

ID

that

is

used

for

checking

authorization

when

dynamic

SQL

statements

are

processed.

In

addition,

the

option

also

controls

other

dynamic

SQL

attributes,

such

as

the

implicit

qualifier

that

is

used

for

unqualified

object

references,

and

whether

certain

SQL

statements

can

be

invoked

dynamically.

The

set

of

values

for

the

authorization

ID

and

other

dynamic

SQL

attributes

is

called

the

dynamic

SQL

statement

behavior.

The

four

possible

behaviors

are

run,

bind,

define,

and

invoke.

As

the

following

table

shows,

the

combination

of

the

value

of

the

DYNAMICRULES

BIND

option

and

the

runtime

environment

determines

which

of

the

behaviors

is

used.

DYNAMICRULES

RUN,

which

implies

run

behavior,

is

the

default.

Table

70.

How

DYNAMICRULES

and

the

runtime

environment

determine

dynamic

SQL

statement

behavior

DYNAMICRULES

value

Behavior

of

dynamic

SQL

statements

Standalone

program

environment

Routine

environment

BIND

Bind

behavior

Bind

behavior

RUN

Run

behavior

Run

behavior

DEFINEBIND

Bind

behavior

Define

behavior

DEFINERUN

Run

behavior

Define

behavior

INVOKEBIND

Bind

behavior

Invoke

behavior

Authorization

IDs

and

authorization

names

Chapter

20.

Identifiers

815

Table

70.

How

DYNAMICRULES

and

the

runtime

environment

determine

dynamic

SQL

statement

behavior

(continued)

DYNAMICRULES

value

Behavior

of

dynamic

SQL

statements

Standalone

program

environment

Routine

environment

INVOKERUN

Run

behavior

Invoke

behavior

Run

behavior

DB2

uses

the

authorization

ID

of

the

user

(the

ID

that

initially

connected

to

DB2)

executing

the

package

as

the

value

to

be

used

for

authorization

checking

of

dynamic

SQL

statements

and

for

the

initial

value

used

for

implicit

qualification

of

unqualified

object

references

within

dynamic

SQL

statements.

Bind

behavior

At

run

time,

DB2

uses

all

the

rules

that

apply

to

static

SQL

for

authorization

and

qualification.

It

takes

the

authorization

ID

of

the

package

owner

as

the

value

to

be

used

for

authorization

checking

of

dynamic

SQL

statements,

and

the

package

default

qualifier

for

implicit

qualification

of

unqualified

object

references

within

dynamic

SQL

statements.

Define

behavior

Define

behavior

applies

only

if

the

dynamic

SQL

statement

is

in

a

package

that

is

run

within

a

routine

context,

and

the

package

was

bound

with

DYNAMICRULES

DEFINEBIND

or

DYNAMICRULES

DEFINERUN.

DB2

uses

the

authorization

ID

of

the

routine

definer

(not

the

routine’s

package

binder)

as

the

value

to

be

used

for

authorization

checking

of

dynamic

SQL

statements,

and

for

implicit

qualification

of

unqualified

object

references

within

dynamic

SQL

statements

within

that

routine.

Invoke

behavior

Invoke

behavior

applies

only

if

the

dynamic

SQL

statement

is

in

a

package

that

is

run

within

a

routine

context,

and

the

package

was

bound

with

DYNAMICRULES

INVOKEBIND

or

DYNAMICRULES

INVOKERUN.

DB2

uses

the

statement

authorization

ID

in

effect

when

the

routine

is

invoked

as

the

value

to

be

used

for

authorization

checking

of

dynamic

SQL,

and

for

implicit

qualification

of

unqualified

object

references

within

dynamic

SQL

statements

within

that

routine.

This

is

summarized

by

the

following

table.

Invoking

Environment

ID

Used

any

static

SQL

implicit

or

explicit

value

of

the

OWNER

of

the

package

the

SQL

invoking

the

routine

came

from

used

in

definition

of

view

or

trigger

definer

of

the

view

or

trigger

dynamic

SQL

from

a

bind

behavior

package

implicit

or

explicit

value

of

the

OWNER

of

the

package

the

SQL

invoking

the

routine

came

from

dynamic

SQL

from

a

run

behavior

package

ID

used

to

make

the

initial

connection

to

DB2

Dynamic

SQL

characteristics

at

run

time

816

Common

Criteria

Certification:

Administration

and

User

Documentation

Invoking

Environment

ID

Used

dynamic

SQL

from

a

define

behavior

package

definer

of

the

routine

that

uses

the

package

that

the

SQL

invoking

the

routine

came

from

dynamic

SQL

from

an

invoke

behavior

package

the

current

authorization

ID

invoking

the

routine

Restricted

statements

when

run

behavior

does

not

apply

When

bind,

define,

or

invoke

behavior

is

in

effect,

you

cannot

use

the

following

dynamic

SQL

statements:

GRANT,

REVOKE,

ALTER,

CREATE,

DROP,

COMMENT,

RENAME,

SET

INTEGRITY,

SET

EVENT

MONITOR

STATE;

or

queries

that

reference

a

nickname.

Considerations

regarding

the

DYNAMICRULES

option

The

CURRENT

SCHEMA

special

register

cannot

be

used

to

qualify

unqualified

object

references

within

dynamic

SQL

statements

executed

from

bind,

define

or

invoke

behavior

packages.

This

is

true

even

after

you

issue

the

SET

CURRENT

SCHEMA

statement

to

change

the

CURRENT

SCHEMA

special

register;

the

register

value

is

changed

but

not

used.

In

the

event

that

multiple

packages

are

referenced

during

a

single

connection,

all

dynamic

SQL

statements

prepared

by

those

packages

will

exhibit

the

behavior

specified

by

the

DYNAMICRULES

option

for

that

specific

package

and

the

environment

in

which

they

are

used.

It

is

important

to

keep

in

mind

that

when

a

package

exhibits

bind

behavior,

the

binder

of

the

package

should

not

have

any

authorities

granted

that

the

user

of

the

package

should

not

receive,

because

a

dynamic

statement

will

be

using

the

authorization

ID

of

the

package

owner.

Similarly,

when

a

package

exhibits

define

behavior,

the

definer

of

the

routine

should

not

have

any

authorities

granted

that

the

user

of

the

package

should

not

receive.

Authorization

IDs

and

statement

preparation

If

the

VALIDATE

BIND

option

is

specified

at

bind

time,

the

privileges

required

to

manipulate

tables

and

views

must

also

exist

at

bind

time.

If

these

privileges

or

the

referenced

objects

do

not

exist,

and

the

SQLERROR

NOPACKAGE

option

is

in

effect,

the

bind

operation

will

be

unsuccessful.

If

the

SQLERROR

CONTINUE

option

is

specified,

the

bind

operation

will

be

successful,

and

any

statements

in

error

will

be

flagged.

Any

attempt

to

execute

such

a

statement

will

result

in

an

error.

If

a

package

is

bound

with

the

VALIDATE

RUN

option,

all

normal

bind

processing

is

completed,

but

the

privileges

required

to

use

the

tables

and

views

that

are

referenced

in

the

application

need

not

exist

yet.

If

a

required

privilege

does

not

exist

at

bind

time,

an

incremental

bind

operation

is

performed

whenever

the

statement

is

first

executed

in

an

application,

and

all

privileges

required

for

the

statement

must

exist.

If

a

required

privilege

does

not

exist,

execution

of

the

statement

is

unsuccessful.

Authorization

checking

at

run

time

is

performed

using

the

authorization

ID

of

the

package

owner.

Dynamic

SQL

characteristics

at

run

time

Chapter

20.

Identifiers

817

Column

names

The

meaning

of

a

column

name

depends

on

its

context.

A

column

name

can

be

used

to:

v

Declare

the

name

of

a

column,

as

in

a

CREATE

TABLE

statement.

v

Identify

a

column,

as

in

a

CREATE

INDEX

statement.

v

Specify

values

of

the

column,

as

in

the

following

contexts:

–

In

a

column

function,

a

column

name

specifies

all

values

of

the

column

in

the

group

or

intermediate

result

table

to

which

the

function

is

applied.

For

example,

MAX(SALARY)

applies

the

function

MAX

to

all

values

of

the

column

SALARY

in

a

group.

–

In

a

GROUP

BY

or

ORDER

BY

clause,

a

column

name

specifies

all

values

in

the

intermediate

result

table

to

which

the

clause

is

applied.

For

example,

ORDER

BY

DEPT

orders

an

intermediate

result

table

by

the

values

of

the

column

DEPT.

–

In

an

expression,

a

search

condition,

or

a

scalar

function,

a

column

name

specifies

a

value

for

each

row

or

group

to

which

the

construct

is

applied.

For

example,

when

the

search

condition

CODE

=

20

is

applied

to

some

row,

the

value

specified

by

the

column

name

CODE

is

the

value

of

the

column

CODE

in

that

row.
v

Temporarily

rename

a

column,

as

in

the

correlation-clause

of

a

table-reference

in

a

FROM

clause.

Qualified

column

names

A

qualifier

for

a

column

name

may

be

a

table,

view,

nickname,

alias,

or

correlation

name.

Whether

a

column

name

may

be

qualified

depends

on

its

context:

v

Depending

on

the

form

of

the

COMMENT

ON

statement,

a

single

column

name

may

need

to

be

qualified.

Multiple

column

names

must

be

unqualified.

v

Where

the

column

name

specifies

values

of

the

column,

it

may

be

qualified

at

the

user’s

option.

v

In

the

assignment-clause

of

an

UPDATE

statement,

it

may

be

qualified

at

the

user’s

option.

v

In

all

other

contexts,

a

column

name

must

not

be

qualified.

Where

a

qualifier

is

optional,

it

can

serve

two

purposes.

They

are

described

under

“Column

name

qualifiers

to

avoid

ambiguity”

on

page

820

and

“Column

name

qualifiers

in

correlated

references”

on

page

822.

Correlation

names

A

correlation

name

can

be

defined

in

the

FROM

clause

of

a

query

and

in

the

first

clause

of

an

UPDATE

or

DELETE

statement.

For

example,

the

clause

FROM

X.MYTABLE

Z

establishes

Z

as

a

correlation

name

for

X.MYTABLE.

FROM

X.MYTABLE

Z

With

Z

defined

as

a

correlation

name

for

X.MYTABLE,

only

Z

can

be

used

to

qualify

a

reference

to

a

column

of

that

instance

of

X.MYTABLE

in

that

SELECT

statement.

A

correlation

name

is

associated

with

a

table,

view,

nickname,

alias,

nested

table

expression

or

table

function

only

within

the

context

in

which

it

is

defined.

Hence,

Column

names

818

Common

Criteria

Certification:

Administration

and

User

Documentation

the

same

correlation

name

can

be

defined

for

different

purposes

in

different

statements,

or

in

different

clauses

of

the

same

statement.

As

a

qualifier,

a

correlation

name

can

be

used

to

avoid

ambiguity

or

to

establish

a

correlated

reference.

It

can

also

be

used

merely

as

a

shorter

name

for

a

table,

view,

nickname,

or

alias.

In

the

case

of

a

nested

table

expression

or

table

function,

a

correlation

name

is

required

to

identify

the

result

table.

In

the

example,

Z

might

have

been

used

merely

to

avoid

having

to

enter

X.MYTABLE

more

than

once.

If

a

correlation

name

is

specified

for

a

table,

view,

nickname,

or

alias

name,

any

qualified

reference

to

a

column

of

that

instance

of

the

table,

view,

nickname,

or

alias

must

use

the

correlation

name,

rather

than

the

table,

view,

nickname,

or

alias

name.

For

example,

the

reference

to

EMPLOYEE.PROJECT

in

the

following

example

is

incorrect,

because

a

correlation

name

has

been

specified

for

EMPLOYEE:

Example

FROM

EMPLOYEE

E

WHERE

EMPLOYEE.PROJECT=’ABC’

*

incorrect*

The

qualified

reference

to

PROJECT

should

instead

use

the

correlation

name,

″E″,

as

shown

below:

FROM

EMPLOYEE

E

WHERE

E.PROJECT=’ABC’

Names

specified

in

a

FROM

clause

are

either

exposed

or

non-exposed.

A

table,

view,

nickname,

or

alias

name

is

said

to

be

exposed

in

the

FROM

clause

if

a

correlation

name

is

not

specified.

A

correlation

name

is

always

an

exposed

name.

For

example,

in

the

following

FROM

clause,

a

correlation

name

is

specified

for

EMPLOYEE

but

not

for

DEPARTMENT,

so

DEPARTMENT

is

an

exposed

name,

and

EMPLOYEE

is

not:

FROM

EMPLOYEE

E,

DEPARTMENT

A

table,

view,

nickname,

or

alias

name

that

is

exposed

in

a

FROM

clause

may

be

the

same

as

any

other

table

name,

view

name

or

nickname

exposed

in

that

FROM

clause

or

any

correlation

name

in

the

FROM

clause.

This

may

result

in

ambiguous

column

name

references

which

returns

an

error

(SQLSTATE

42702).

The

first

two

FROM

clauses

shown

below

are

correct,

because

each

one

contains

no

more

than

one

reference

to

EMPLOYEE

that

is

exposed:

1.

Given

the

FROM

clause:

FROM

EMPLOYEE

E1,

EMPLOYEE

a

qualified

reference

such

as

EMPLOYEE.PROJECT

denotes

a

column

of

the

second

instance

of

EMPLOYEE

in

the

FROM

clause.

A

qualified

reference

to

the

first

instance

of

EMPLOYEE

must

use

the

correlation

name

“E1”

(E1.PROJECT).

2.

Given

the

FROM

clause:

FROM

EMPLOYEE,

EMPLOYEE

E2

a

qualified

reference

such

as

EMPLOYEE.PROJECT

denotes

a

column

of

the

first

instance

of

EMPLOYEE

in

the

FROM

clause.

A

qualified

reference

to

the

second

instance

of

EMPLOYEE

must

use

the

correlation

name

“E2”

(E2.PROJECT).

3.

Given

the

FROM

clause:

FROM

EMPLOYEE,

EMPLOYEE

Correlation

names

Chapter

20.

Identifiers

819

the

two

exposed

table

names

included

in

this

clause

(EMPLOYEE

and

EMPLOYEE)

are

the

same.

This

is

allowed,

but

references

to

specific

column

names

would

be

ambiguous

(SQLSTATE

42702).

4.

Given

the

following

statement:

SELECT

*

FROM

EMPLOYEE

E1,

EMPLOYEE

E2

*

incorrect

*

WHERE

EMPLOYEE.PROJECT

=

’ABC’

the

qualified

reference

EMPLOYEE.PROJECT

is

incorrect,

because

both

instances

of

EMPLOYEE

in

the

FROM

clause

have

correlation

names.

Instead,

references

to

PROJECT

must

be

qualified

with

either

correlation

name

(E1.PROJECT

or

E2.PROJECT).

5.

Given

the

FROM

clause:

FROM

EMPLOYEE,

X.EMPLOYEE

a

reference

to

a

column

in

the

second

instance

of

EMPLOYEE

must

use

X.EMPLOYEE

(X.EMPLOYEE.PROJECT).

If

X

is

the

CURRENT

SCHEMA

special

register

value

in

dynamic

SQL

or

the

QUALIFIER

precompile/bind

option

in

static

SQL,

then

the

columns

cannot

be

referenced

since

any

such

reference

would

be

ambiguous.

The

use

of

a

correlation

name

in

the

FROM

clause

also

allows

the

option

of

specifying

a

list

of

column

names

to

be

associated

with

the

columns

of

the

result

table.

As

with

a

correlation

name,

these

listed

column

names

become

the

exposed

names

of

the

columns

that

must

be

used

for

references

to

the

columns

throughout

the

query.

If

a

column

name

list

is

specified,

then

the

column

names

of

the

underlying

table

become

non-exposed.

Given

the

FROM

clause:

FROM

DEPARTMENT

D

(NUM,NAME,MGR,ANUM,LOC)

a

qualified

reference

such

as

D.NUM

denotes

the

first

column

of

the

DEPARTMENT

table

that

is

defined

in

the

table

as

DEPTNO.

A

reference

to

D.DEPTNO

using

this

FROM

clause

is

incorrect

since

the

column

name

DEPTNO

is

a

non-exposed

column

name.

Column

name

qualifiers

to

avoid

ambiguity

In

the

context

of

a

function,

a

GROUP

BY

clause,

ORDER

BY

clause,

an

expression,

or

a

search

condition,

a

column

name

refers

to

values

of

a

column

in

some

table,

view,

nickname,

nested

table

expression

or

table

function.

The

tables,

views,

nicknames,

nested

table

expressions

and

table

functions

that

might

contain

the

column

are

called

the

object

tables

of

the

context.

Two

or

more

object

tables

might

contain

columns

with

the

same

name;

one

reason

for

qualifying

a

column

name

is

to

designate

the

table

from

which

the

column

comes.

Qualifiers

for

column

names

are

also

useful

in

SQL

procedures

to

distinguish

column

names

from

SQL

variable

names

used

in

SQL

statements.

A

nested

table

expression

or

table

function

will

consider

table-references

that

precede

it

in

the

FROM

clause

as

object

tables.

The

table-references

that

follow

are

not

considered

as

object

tables.

Table

designators

A

qualifier

that

designates

a

specific

object

table

is

called

a

table

designator.

The

clause

that

identifies

the

object

tables

also

establishes

the

table

designators

for

them.

For

example,

the

object

tables

of

an

expression

in

a

SELECT

clause

are

named

in

the

FROM

clause

that

follows

it:

Correlation

names

820

Common

Criteria

Certification:

Administration

and

User

Documentation

SELECT

CORZ.COLA,

OWNY.MYTABLE.COLA

FROM

OWNX.MYTABLE

CORZ,

OWNY.MYTABLE

Table

designators

in

the

FROM

clause

are

established

as

follows:

v

A

name

that

follows

a

table,

view,

nickname,

alias,

nested

table

expression

or

table

function

is

both

a

correlation

name

and

a

table

designator.

Thus,

CORZ

is

a

table

designator.

CORZ

is

used

to

qualify

the

first

column

name

in

the

select

list.

v

An

exposed

table,

view

name,

nickname

or

alias

is

a

table

designator.

Thus,

OWNY.MYTABLE

is

a

table

designator.

OWNY.MYTABLE

is

used

to

qualify

the

second

column

name

in

the

select

list.

Each

table

designator

should

be

unique

within

a

particular

FROM

clause

to

avoid

the

possibility

of

ambiguous

references

to

columns.

Avoiding

undefined

or

ambiguous

references

When

a

column

name

refers

to

values

of

a

column,

exactly

one

object

table

must

include

a

column

with

that

name.

The

following

situations

are

considered

errors:

v

No

object

table

contains

a

column

with

the

specified

name.

The

reference

is

undefined.

v

The

column

name

is

qualified

by

a

table

designator,

but

the

table

designated

does

not

include

a

column

with

the

specified

name.

Again

the

reference

is

undefined.

v

The

name

is

unqualified,

and

more

than

one

object

table

includes

a

column

with

that

name.

The

reference

is

ambiguous.

v

The

column

name

is

qualified

by

a

table

designator,

but

the

table

designated

is

not

unique

in

the

FROM

clause

and

both

occurrences

of

the

designated

table

include

the

column.

The

reference

is

ambiguous.

v

The

column

name

is

in

a

nested

table

expression

which

is

not

preceded

by

the

TABLE

keyword

or

in

a

table

function

or

nested

table

expression

that

is

the

right

operand

of

a

right

outer

join

or

a

full

outer

join

and

the

column

name

does

not

refer

to

a

column

of

a

table-reference

within

the

nested

table

expression’s

fullselect.

The

reference

is

undefined.

Avoid

ambiguous

references

by

qualifying

a

column

name

with

a

uniquely

defined

table

designator.

If

the

column

is

contained

in

several

object

tables

with

different

names,

the

table

names

can

be

used

as

designators.

Ambiguous

references

can

also

be

avoided

without

the

use

of

the

table

designator

by

giving

unique

names

to

the

columns

of

one

of

the

object

tables

using

the

column

name

list

following

the

correlation

name.

When

qualifying

a

column

with

the

exposed

table

name

form

of

a

table

designator,

either

the

qualified

or

unqualified

form

of

the

exposed

table

name

may

be

used.

However,

the

qualifier

used

and

the

table

used

must

be

the

same

after

fully

qualifying

the

table

name,

view

name

or

nickname

and

the

table

designator.

1.

If

the

authorization

ID

of

the

statement

is

CORPDATA:

SELECT

CORPDATA.EMPLOYEE.WORKDEPT

FROM

EMPLOYEE

is

a

valid

statement.

2.

If

the

authorization

ID

of

the

statement

is

REGION:

SELECT

CORPDATA.EMPLOYEE.WORKDEPT

FROM

EMPLOYEE

*

incorrect

*

is

invalid,

because

EMPLOYEE

represents

the

table

REGION.EMPLOYEE,

but

the

qualifier

for

WORKDEPT

represents

a

different

table,

CORPDATA.EMPLOYEE.

Table

designators

Chapter

20.

Identifiers

821

Column

name

qualifiers

in

correlated

references

A

fullselect

is

a

form

of

a

query

that

may

be

used

as

a

component

of

various

SQL

statements.

A

fullselect

used

within

a

search

condition

of

any

statement

is

called

a

subquery.

A

fullselect

used

to

retrieve

a

single

value

as

an

expression

within

a

statement

is

called

a

scalar

fullselect

or

scalar

subquery.

A

fullselect

used

in

the

FROM

clause

of

a

query

is

called

a

nested

table

expression.

Subqueries

in

search

conditions,

scalar

subqueries

and

nested

table

expressions

are

referred

to

as

subqueries

through

the

remainder

of

this

topic.

A

subquery

may

include

subqueries

of

its

own,

and

these

may,

in

turn,

include

subqueries.

Thus

an

SQL

statement

may

contain

a

hierarchy

of

subqueries.

Those

elements

of

the

hierarchy

that

contain

subqueries

are

said

to

be

at

a

higher

level

than

the

subqueries

they

contain.

Every

element

of

the

hierarchy

contains

one

or

more

table

designators.

A

subquery

can

reference

not

only

the

columns

of

the

tables

identified

at

its

own

level

in

the

hierarchy,

but

also

the

columns

of

the

tables

identified

previously

in

the

hierarchy,

back

to

the

highest

level

of

the

hierarchy.

A

reference

to

a

column

of

a

table

identified

at

a

higher

level

is

called

a

correlated

reference.

For

compatibility

with

existing

standards

for

SQL,

both

qualified

and

unqualified

column

names

are

allowed

as

correlated

references.

However,

it

is

good

practice

to

qualify

all

column

references

used

in

subqueries;

otherwise,

identical

column

names

may

lead

to

unintended

results.

For

example,

if

a

table

in

a

hierarchy

is

altered

to

contain

the

same

column

name

as

the

correlated

reference

and

the

statement

is

prepared

again,

the

reference

will

apply

to

the

altered

table.

When

a

column

name

in

a

subquery

is

qualified,

each

level

of

the

hierarchy

is

searched,

starting

at

the

same

subquery

as

the

qualified

column

name

appears

and

continuing

to

the

higher

levels

of

the

hierarchy

until

a

table

designator

that

matches

the

qualifier

is

found.

Once

found,

it

is

verified

that

the

table

contains

the

given

column.

If

the

table

is

found

at

a

higher

level

than

the

level

containing

column

name,

then

it

is

a

correlated

reference

to

the

level

where

the

table

designator

was

found.

A

nested

table

expression

must

be

preceded

with

the

optional

TABLE

keyword

in

order

to

search

the

hierarchy

above

the

fullselect

of

the

nested

table

expression.

When

the

column

name

in

a

subquery

is

not

qualified,

the

tables

referenced

at

each

level

of

the

hierarchy

are

searched,

starting

at

the

same

subquery

where

the

column

name

appears

and

continuing

to

higher

levels

of

the

hierarchy,

until

a

match

for

the

column

name

is

found.

If

the

column

is

found

in

a

table

at

a

higher

level

than

the

level

containing

column

name,

then

it

is

a

correlated

reference

to

the

level

where

the

table

containing

the

column

was

found.

If

the

column

name

is

found

in

more

than

one

table

at

a

particular

level,

the

reference

is

ambiguous

and

considered

an

error.

In

either

case,

T,

used

in

the

following

example,

refers

to

the

table

designator

that

contains

column

C.

A

column

name,

T.C

(where

T

represents

either

an

implicit

or

an

explicit

qualifier),

is

a

correlated

reference

if,

and

only

if,

these

conditions

are

met:

v

T.C

is

used

in

an

expression

of

a

subquery.

v

T

does

not

designate

a

table

used

in

the

from

clause

of

the

subquery.

v

T

designates

a

table

used

at

a

higher

level

of

the

hierarchy

that

contains

the

subquery.

Column

name

qualifiers

in

correlated

references

822

Common

Criteria

Certification:

Administration

and

User

Documentation

Since

the

same

table,

view

or

nickname

can

be

identified

at

many

levels,

unique

correlation

names

are

recommended

as

table

designators.

If

T

is

used

to

designate

a

table

at

more

than

one

level

(T

is

the

table

name

itself

or

is

a

duplicate

correlation

name),

T.C

refers

to

the

level

where

T

is

used

that

most

directly

contains

the

subquery

that

includes

T.C.

If

a

correlation

to

a

higher

level

is

needed,

a

unique

correlation

name

must

be

used.

The

correlated

reference

T.C

identifies

a

value

of

C

in

a

row

or

group

of

T

to

which

two

search

conditions

are

being

applied:

condition

1

in

the

subquery,

and

condition

2

at

some

higher

level.

If

condition

2

is

used

in

a

WHERE

clause,

the

subquery

is

evaluated

for

each

row

to

which

condition

2

is

applied.

If

condition

2

is

used

in

a

HAVING

clause,

the

subquery

is

evaluated

for

each

group

to

which

condition

2

is

applied.

For

example,

in

the

following

statement,

the

correlated

reference

X.WORKDEPT

(in

the

last

line)

refers

to

the

value

of

WORKDEPT

in

table

EMPLOYEE

at

the

level

of

the

first

FROM

clause.

(That

clause

establishes

X

as

a

correlation

name

for

EMPLOYEE.)

The

statement

lists

employees

who

make

less

than

the

average

salary

for

their

department.

SELECT

EMPNO,

LASTNAME,

WORKDEPT

FROM

EMPLOYEE

X

WHERE

SALARY

<

(SELECT

AVG(SALARY)

FROM

EMPLOYEE

WHERE

WORKDEPT

=

X.WORKDEPT)

The

next

example

uses

THIS

as

a

correlation

name.

The

statement

deletes

rows

for

departments

that

have

no

employees.

DELETE

FROM

DEPARTMENT

THIS

WHERE

NOT

EXISTS(SELECT

*

FROM

EMPLOYEE

WHERE

WORKDEPT

=

THIS.DEPTNO)

References

to

host

variables

A

host

variable

is

either:

v

A

variable

in

a

host

language

such

as

a

C

variable,

a

C++

variable,

a

COBOL

data

item,

a

FORTRAN

variable,

or

a

Java

variable

or:

v

A

host

language

construct

that

was

generated

by

an

SQL

precompiler

from

a

variable

declared

using

SQL

extensions

that

is

referenced

in

an

SQL

statement.

Host

variables

are

either

directly

defined

by

statements

in

the

host

language

or

are

indirectly

defined

using

SQL

extensions.

A

host

variable

in

an

SQL

statement

must

identify

a

host

variable

described

in

the

program

according

to

the

rules

for

declaring

host

variables.

All

host

variables

used

in

an

SQL

statement

must

be

declared

in

an

SQL

DECLARE

section

in

all

host

languages

except

REXX.

No

variables

may

be

declared

outside

an

SQL

DECLARE

section

with

names

identical

to

variables

declared

inside

an

SQL

DECLARE

section.

An

SQL

DECLARE

section

begins

with

BEGIN

DECLARE

SECTION

and

ends

with

END

DECLARE

SECTION.

The

meta-variable

host-variable,

as

used

in

the

syntax

diagrams,

shows

a

reference

to

a

host

variable.

A

host-variable

in

the

VALUES

INTO

clause

or

the

INTO

clause

of

a

FETCH

or

a

SELECT

INTO

statement,

identifies

a

host

variable

to

which

a

Column

name

qualifiers

in

correlated

references

Chapter

20.

Identifiers

823

value

from

a

column

of

a

row

or

an

expression

is

assigned.

In

all

other

contexts

a

host-variable

specifies

a

value

to

be

passed

to

the

database

manager

from

the

application

program.

Host

variables

in

dynamic

SQL

In

dynamic

SQL

statements,

parameter

markers

are

used

instead

of

host

variables.

A

parameter

marker

is

a

question

mark

(?)

representing

a

position

in

a

dynamic

SQL

statement

where

the

application

will

provide

a

value;

that

is,

where

a

host

variable

would

be

found

if

the

statement

string

were

a

static

SQL

statement.

The

following

example

shows

a

static

SQL

statement

using

host

variables:

INSERT

INTO

DEPARTMENT

VALUES

(:hv_deptno,

:hv_deptname,

:hv_mgrno,

:hv_admrdept)

This

example

shows

a

dynamic

SQL

statement

using

parameter

markers:

INSERT

INTO

DEPARTMENT

VALUES

(?,

?,

?,

?)

The

meta-variable

host-variable

in

syntax

diagrams

can

generally

be

expanded

to:

��

:host-identifier

INDICATOR

:host-identifier

��

Each

host-identifier

must

be

declared

in

the

source

program.

The

variable

designated

by

the

second

host-identifier

must

have

a

data

type

of

small

integer.

The

first

host-identifier

designates

the

main

variable.

Depending

on

the

operation,

it

either

provides

a

value

to

the

database

manager

or

is

provided

a

value

from

the

database

manager.

An

input

host

variable

provides

a

value

in

the

runtime

application

code

page.

An

output

host

variable

is

provided

a

value

that,

if

necessary,

is

converted

to

the

runtime

application

code

page

when

the

data

is

copied

to

the

output

application

variable.

A

given

host

variable

can

serve

as

both

an

input

and

an

output

variable

in

the

same

program.

The

second

host-identifier

designates

its

indicator

variable.

The

purposes

of

the

indicator

variable

are

to:

v

Specify

the

null

value.

A

negative

value

of

the

indicator

variable

specifies

the

null

value.

A

value

of

-2

indicates

a

numeric

conversion

or

arithmetic

expression

error

occurred

in

deriving

the

result

v

Record

the

original

length

of

a

truncated

string

(if

the

source

of

the

value

is

not

a

large

object

type)

v

Record

the

seconds

portion

of

a

time

if

the

time

is

truncated

on

assignment

to

a

host

variable.

For

example,

if

:HV1:HV2

is

used

to

specify

an

insert

or

update

value,

and

if

HV2

is

negative,

the

value

specified

is

the

null

value.

If

HV2

is

not

negative

the

value

specified

is

the

value

of

HV1.

Similarly,

if

:HV1:HV2

is

specified

in

a

VALUES

INTO

clause

or

in

a

FETCH

or

SELECT

INTO

statement,

and

if

the

value

returned

is

null,

HV1

is

not

changed,

and

HV2

is

set

to

a

negative

value.

If

the

database

is

configured

with

DFT_SQLMATHWARN

yes

(or

was

during

binding

of

a

static

SQL

statement),

HV2

could

be

-2.

If

HV2

is

-2,

a

value

for

HV1

could

not

be

returned

because

of

an

error

converting

to

the

numeric

type

of

HV1,

or

an

error

evaluating

an

arithmetic

expression

that

is

used

to

determine

the

value

for

HV1.

When

accessing

a

database

References

to

host

variables

824

Common

Criteria

Certification:

Administration

and

User

Documentation

with

a

client

version

earlier

than

DB2

Universal

Database

Version

5,

HV2

will

be

-1

for

arithmetic

exceptions.

If

the

value

returned

is

not

null,

that

value

is

assigned

to

HV1

and

HV2

is

set

to

zero

(unless

the

assignment

to

HV1

requires

string

truncation

of

a

non-LOB

string;

in

which

case

HV2

is

set

to

the

original

length

of

the

string).

If

an

assignment

requires

truncation

of

the

seconds

part

of

a

time,

HV2

is

set

to

the

number

of

seconds.

If

the

second

host

identifier

is

omitted,

the

host-variable

does

not

have

an

indicator

variable.

The

value

specified

by

the

host-variable

reference

:HV1

is

always

the

value

of

HV1,

and

null

values

cannot

be

assigned

to

the

variable.

Thus,

this

form

should

not

be

used

in

an

INTO

clause

unless

the

corresponding

column

cannot

contain

null

values.

If

this

form

is

used

and

the

column

contains

nulls,

the

database

manager

will

generate

an

error

at

run

time.

An

SQL

statement

that

references

host

variables

must

be

within

the

scope

of

the

declaration

of

those

host

variables.

For

host

variables

referenced

in

the

SELECT

statement

of

a

cursor,

that

rule

applies

to

the

OPEN

statement

rather

than

to

the

DECLARE

CURSOR

statement.

Example

Using

the

PROJECT

table,

set

the

host

variable

PNAME

(VARCHAR(26))

to

the

project

name

(PROJNAME),

the

host

variable

STAFF

(dec(5,2))

to

the

mean

staffing

level

(PRSTAFF),

and

the

host

variable

MAJPROJ

(char(6))

to

the

major

project

(MAJPROJ)

for

project

(PROJNO)

‘IF1000’.

Columns

PRSTAFF

and

MAJPROJ

may

contain

null

values,

so

provide

indicator

variables

STAFF_IND

(smallint)

and

MAJPROJ_IND

(smallint).

SELECT

PROJNAME,

PRSTAFF,

MAJPROJ

INTO

:PNAME,

:STAFF

:STAFF_IND,

:MAJPROJ

:MAJPROJ_IND

FROM

PROJECT

WHERE

PROJNO

=

’IF1000’

MBCS

Considerations:

Whether

multi-byte

characters

can

be

used

in

a

host

variable

name

depends

on

the

host

language.

References

to

BLOB,

CLOB,

and

DBCLOB

host

variables

Regular

BLOB,

CLOB,

and

DBCLOB

variables,

LOB

locator

variables

(see

“References

to

locator

variables”

on

page

826),

and

LOB

file

reference

variables

(see

“References

to

BLOB,

CLOB,

and

DBCLOB

file

reference

variables”

on

page

826)

can

be

defined

in

all

host

languages.

Where

LOBs

are

allowed,

the

term

host-variable

in

a

syntax

diagram

can

refer

to

a

regular

host

variable,

a

locator

variable,

or

a

file

reference

variable.

Since

these

are

not

native

data

types,

SQL

extensions

are

used

and

the

precompilers

generate

the

host

language

constructs

necessary

to

represent

each

variable.

In

the

case

of

REXX,

LOBs

are

mapped

to

strings.

It

is

sometimes

possible

to

define

a

large

enough

variable

to

hold

an

entire

large

object

value.

If

this

is

true

and

if

there

is

no

performance

benefit

to

be

gained

by

deferred

transfer

of

data

from

the

server,

a

locator

is

not

needed.

However,

since

host

language

or

space

restrictions

will

often

dictate

against

storing

an

entire

large

object

in

temporary

storage

at

one

time

and/or

because

of

performance

benefit,

a

large

object

may

be

referenced

via

a

locator

and

portions

of

that

object

may

be

selected

into

or

updated

from

host

variables

that

contain

only

a

portion

of

the

large

object

at

one

time.

As

with

all

other

host

variables,

a

large

object

locator

variable

may

have

an

associated

indicator

variable.

Indicator

variables

for

large

object

locator

host

Host

variables

in

dynamic

SQL

Chapter

20.

Identifiers

825

variables

behave

in

the

same

way

as

indicator

variables

for

other

data

types.

When

a

null

value

is

returned

from

the

database,

the

indicator

variable

is

set

and

the

locator

host

variable

is

unchanged.

This

means

a

locator

can

never

point

to

a

null

value.

References

to

locator

variables

A

locator

variable

is

a

host

variable

that

contains

the

locator

representing

a

LOB

value

on

the

application

server.

A

locator

variable

in

an

SQL

statement

must

identify

a

locator

variable

described

in

the

program

according

to

the

rules

for

declaring

locator

variables.

This

is

always

indirectly

through

an

SQL

statement.

The

term

locator

variable,

as

used

in

the

syntax

diagrams,

shows

a

reference

to

a

locator

variable.

The

meta-variable

locator-variable

can

be

expanded

to

include

a

host-identifier

the

same

as

that

for

host-variable.

When

the

indicator

variable

associated

with

a

locator

is

null,

the

value

of

the

referenced

LOB

is

null.

If

a

locator-variable

that

does

not

currently

represent

any

value

is

referenced,

an

error

is

raised

(SQLSTATE

0F001).

At

transaction

commit,

or

any

transaction

termination,

all

locators

acquired

by

that

transaction

are

released.

References

to

BLOB,

CLOB,

and

DBCLOB

file

reference

variables

BLOB,

CLOB,

and

DBCLOB

file

reference

variables

are

used

for

direct

file

input

and

output

for

LOBs,

and

can

be

defined

in

all

host

languages.

Since

these

are

not

native

data

types,

SQL

extensions

are

used

and

the

precompilers

generate

the

host

language

constructs

necessary

to

represent

each

variable.

In

the

case

of

REXX,

LOBs

are

mapped

to

strings.

A

file

reference

variable

represents

(rather

than

contains)

the

file,

just

as

a

LOB

locator

represents,

rather

than

contains,

the

LOB

bytes.

Database

queries,

updates

and

inserts

may

use

file

reference

variables

to

store

or

to

retrieve

single

column

values.

A

file

reference

variable

has

the

following

properties:

Data

Type

BLOB,

CLOB,

or

DBCLOB.

This

property

is

specified

when

the

variable

is

declared.

Direction

This

must

be

specified

by

the

application

program

at

run

time

(as

part

of

the

File

Options

value).

The

direction

is

one

of:

v

Input

(used

as

a

source

of

data

on

an

EXECUTE

statement,

an

OPEN

statement,

an

UPDATE

statement,

an

INSERT

statement,

or

a

DELETE

statement).

v

Output

(used

as

the

target

of

data

on

a

FETCH

statement

or

a

SELECT

INTO

statement).

File

name

This

must

be

specified

by

the

application

program

at

run

time.

It

is

one

of:

References

to

BLOB,

CLOB,

and

DBCLOB

host

variables

826

Common

Criteria

Certification:

Administration

and

User

Documentation

v

The

complete

path

name

of

the

file

(which

is

advised).

v

A

relative

file

name.

If

a

relative

file

name

is

provided,

it

is

appended

to

the

current

path

of

the

client

process.

Within

an

application,

a

file

should

only

be

referenced

in

one

file

reference

variable.

File

Name

Length

This

must

be

specified

by

the

application

program

at

run

time.

It

is

the

length

of

the

file

name

(in

bytes).

File

Options

An

application

must

assign

one

of

a

number

of

options

to

a

file

reference

variable

before

it

makes

use

of

that

variable.

Options

are

set

by

an

INTEGER

value

in

a

field

in

the

file

reference

variable

structure.

One

of

the

following

values

must

be

specified

for

each

file

reference

variable:

v

Input

(from

client

to

server)

SQL_FILE_READ

This

is

a

regular

file

that

can

be

opened,

read

and

closed.

(The

option

is

SQL-FILE-READ

in

COBOL,

sql_file_read

in

FORTRAN,

and

READ

in

REXX.)
v

Output

(from

server

to

client)

SQL_FILE_CREATE

Create

a

new

file.

If

the

file

already

exists,

an

error

is

returned.

(The

option

is

SQL-FILE-CREATE

in

COBOL,

sql_file_create

in

FORTRAN,

and

CREATE

in

REXX.)

SQL_FILE_OVERWRITE

(Overwrite)

If

an

existing

file

with

the

specified

name

exists,

it

is

overwritten;

otherwise

a

new

file

is

created.

(The

option

is

SQL-FILE-OVERWRITE

in

COBOL,

sql_file_overwrite

in

FORTRAN,

and

OVERWRITE

in

REXX.)

SQL_FILE_APPEND

If

an

existing

file

with

the

specified

name

exists,

the

output

is

appended

to

it;

otherwise

a

new

file

is

created.

(The

option

is

SQL-FILE-APPEND

in

COBOL,

sql_file_append

in

FORTRAN,

and

APPEND

in

REXX.)

Data

Length

This

is

unused

on

input.

On

output,

the

implementation

sets

the

data

length

to

the

References

to

BLOB,

CLOB,

and

DBCLOB

file

reference

variables

Chapter

20.

Identifiers

827

length

of

the

new

data

written

to

the

file.

The

length

is

in

bytes.

As

with

all

other

host

variables,

a

file

reference

variable

may

have

an

associated

indicator

variable.

Example

of

an

output

file

reference

variable

(in

C)

Given

a

declare

section

coded

as:

EXEC

SQL

BEGIN

DECLARE

SECTION

SQL

TYPE

IS

CLOB_FILE

hv_text_file;

char

hv_patent_title[64];

EXEC

SQL

END

DECLARE

SECTION

Following

preprocessing

this

would

be:

EXEC

SQL

BEGIN

DECLARE

SECTION

/*

SQL

TYPE

IS

CLOB_FILE

hv_text_file;

*/

struct

{

unsigned

long

name_length;

//

File

Name

Length

unsigned

long

data_length;

//

Data

Length

unsigned

long

file_options;

//

File

Options

char

name[255];

//

File

Name

}

hv_text_file;

char

hv_patent_title[64];

EXEC

SQL

END

DECLARE

SECTION

Then,

the

following

code

can

be

used

to

select

from

a

CLOB

column

in

the

database

into

a

new

file

referenced

by

:hv_text_file.

strcpy(hv_text_file.name,

"/u/gainer/papers/sigmod.94");

hv_text_file.name_length

=

strlen("/u/gainer/papers/sigmod.94");

hv_text_file.file_options

=

SQL_FILE_CREATE;

EXEC

SQL

SELECT

content

INTO

:hv_text_file

from

papers

WHERE

TITLE

=

’The

Relational

Theory

behind

Juggling’;

Example

of

an

input

file

reference

variable

(in

C)

Given

the

same

declare

section

as

above,

the

following

code

can

be

used

to

insert

the

data

from

a

regular

file

referenced

by

:hv_text_file

into

a

CLOB

column.

strcpy(hv_text_file.name,

"/u/gainer/patents/chips.13");

hv_text_file.name_length

=

strlen("/u/gainer/patents/chips.13");

hv_text_file.file_options

=

SQL_FILE_READ:

strcpy(:hv_patent_title,

"A

Method

for

Pipelining

Chip

Consumption");

EXEC

SQL

INSERT

INTO

patents(

title,

text

)

VALUES(:hv_patent_title,

:hv_text_file);

References

to

structured

type

host

variables

Structured

type

variables

can

be

defined

in

all

host

languages

except

FORTRAN,

REXX,

and

Java.

Since

these

are

not

native

data

types,

SQL

extensions

are

used

and

the

precompilers

generate

the

host

language

constructs

necessary

to

represent

each

variable.

As

with

all

other

host

variables,

a

structured

type

variable

may

have

an

associated

indicator

variable.

Indicator

variables

for

structured

type

host

variables

behave

in

the

same

way

as

indicator

variables

for

other

data

types.

When

a

null

value

is

returned

from

the

database,

the

indicator

variable

is

set

and

the

structured

type

host

variable

is

unchanged.

The

actual

host

variable

for

a

structured

type

is

defined

as

a

built-in

data

type.

The

built-in

data

type

associated

with

the

structured

type

must

be

assignable:

References

to

BLOB,

CLOB,

and

DBCLOB

file

reference

variables

828

Common

Criteria

Certification:

Administration

and

User

Documentation

v

from

the

result

of

the

FROM

SQL

transform

function

for

the

structured

type

as

defined

by

the

specified

TRANSFORM

GROUP

option

of

the

precompile

command;

and

v

to

the

parameter

of

the

TO

SQL

transform

function

for

the

structured

type

as

defined

by

the

specified

TRANSFORM

GROUP

option

of

the

precompile

command.

If

using

a

parameter

marker

instead

of

a

host

variable,

the

appropriate

parameter

type

characteristics

must

be

specified

in

the

SQLDA.

This

requires

a

″doubled″

set

of

SQLVAR

structures

in

the

SQLDA,

and

the

SQLDATATYPE_NAME

field

of

the

secondary

SQLVAR

must

be

filled

with

the

schema

and

type

name

of

the

structured

type.

If

the

schema

is

omitted

in

the

SQLDA

structure,

an

error

results

(SQLSTATE

07002).

Example

Define

the

host

variables

hv_poly

and

hv_point

(of

type

POLYGON,

using

built-in

type

BLOB(1048576))

in

a

C

program.

EXEC

SQL

BEGIN

DECLARE

SECTION;

static

SQL

TYPE

IS

POLYGON

AS

BLOB(1M)

hv_poly,

hv_point;

EXEC

SQL

END

DECLARE

SECTION;

Related

reference:

v

“CREATE

ALIAS

statement”

in

the

SQL

Reference,

Volume

2

v

“PREPARE

statement”

in

the

SQL

Reference,

Volume

2

v

“SET

SCHEMA”

on

page

902

v

“SQL

limits”

in

the

SQL

Reference,

Volume

1

v

“SQLDA

(SQL

descriptor

area)”

on

page

1008

v

“Reserved

schema

names

and

reserved

words”

in

the

SQL

Reference,

Volume

1

v

“Japanese

and

traditional-Chinese

extended

UNIX

code

(EUC)

considerations”

in

the

SQL

Reference,

Volume

1

v

“SQL

queries”

in

the

SQL

Reference,

Volume

1

v

“Large

objects

(LOBs)”

in

the

SQL

Reference,

Volume

1

References

to

structured

type

host

variables

Chapter

20.

Identifiers

829

Example

830

Common

Criteria

Certification:

Administration

and

User

Documentation

Chapter

21.

Naming

Conventions

This

section

provides

information

about

the

conventions

that

apply

when

naming

database

manager

objects,

such

as

databases

and

tables,

and

authentication

IDs.

v

Character

strings

that

represent

names

of

database

manager

objects

can

contain

any

of

the

following:

a-z,

A-Z,

0-9,

@,

#,

and

$.

v

’User

IDs

and

groups

may

also

contain

any

of

the

following

additional

characters

when

supported

by

the

security

plug-in:

_,

!,

%,

(,

),

{,

},

–,

.,

^.

v

’User

IDs

and

groups

containing

any

of

the

following

characters

must

be

delimited

with

quotations

when

entered

through

the

command

line

processor:

!,

%,

(,

),

{,

},

–,

.,

^,

v

The

first

character

in

the

string

must

be

an

alphabetic

character,

@,

#,

or

$;

it

cannot

be

a

number

or

the

letter

sequences

SYS,

DBM,

or

IBM.

v

Unless

otherwise

noted,

names

can

be

entered

in

lowercase

letters;

however,

the

database

manager

processes

them

as

if

they

were

uppercase.

The

exception

to

this

is

character

strings

that

represent

names

under

the

systems

network

architecture

(SNA).

Many

values,

such

as

logical

unit

names

(partner_lu

and

local_lu),

are

case

sensitive.

The

name

must

be

entered

exactly

as

it

appears

in

the

SNA

definitions

that

correspond

to

those

terms.

v

A

database

name

or

database

alias

is

a

unique

character

string

containing

from

one

to

eight

letters,

numbers,

or

keyboard

characters

from

the

set

described

above.

Databases

are

cataloged

in

the

system

and

local

database

directories

by

their

aliases

in

one

field,

and

their

original

name

in

another.

For

most

functions,

the

database

manager

uses

the

name

entered

in

the

alias

field

of

the

database

directories.

(The

exceptions

are

CHANGE

DATABASE

COMMENT

and

CREATE

DATABASE,

where

a

directory

path

must

be

specified.)

v

The

name

or

the

alias

name

of

a

table

or

a

view

is

an

SQL

identifier

that

is

a

unique

character

string

1

to

128

characters

in

length.

Column

names

can

be

1

to

30

characters

in

length.

A

fully

qualified

table

name

consists

of

the

schema.tablename.

The

schema

is

the

unique

user

ID

under

which

the

table

was

created.

The

schema

name

for

a

declared

temporary

table

must

be

SESSION.

v

Authentication

IDs

cannot

exceed

30

characters

on

Windows

32-bit

operating

systems

and

8

characters

on

all

other

operating

systems.

v

Group

IDs

cannot

exceed

30

characters

in

length.

v

Local

aliases

for

remote

nodes

that

are

to

be

cataloged

in

the

node

directory

cannot

exceed

eight

characters

in

length.

©

Copyright

IBM

Corp.

1993-2004

831

832

Common

Criteria

Certification:

Administration

and

User

Documentation

Part

2.

User

Information

©

Copyright

IBM

Corp.

1993-2004

833

834

Common

Criteria

Certification:

Administration

and

User

Documentation

Chapter

22.

User

responsibilities

for

security

In

DB2

Universal

Database,

access

to

the

database

and

its

resources

are

typically

controlled

by

the

system

administrator

(SYSADM)

or

database

administrator

(DBADM)

through

the

use

facilities

such

as

the

GRANT

and

REVOKE

statements.

Database

users

also

have

an

important

role

in

maintaining

the

security

of

the

database,

and

the

objects

and

data

in

the

database.

At

a

minimum,

you

should

implement

the

following

guidelines

to

protect

against

unauthorized

access

to

your

workstation,

the

database,

and

data

within

the

database:

v

Lock

your

workstation

when

you

are

away

from

your

desk.

v

Ensure

that

you

use

a

user

ID

and

a

password

to

log

on

to

your

computer

and

to

log

on

to

DB2

Universal

Database.

If

you

are

working

on

an

operating

system

that

allows

for

NULL

passwords

(that

is,

you

do

not

have

to

supply

a

password

to

log

on

to

your

machine),

explicitly

define

a

password

for

your

user

ID.

Passwords

are

ordinarily

a

minimum

of

8

characters,

and

should

be

changed

regularly.

If

you

are

not

certain

about

the

practices

followed

at

your

site,

check

your

site’s

security

regulations.

v

Do

not

give

your

password

to

unauthorized

users.

Some

sites

require

that

you

provide

your

manager

with

your

password.

If

you

are

not

certain

about

the

practices

followed

at

your

site,

check

your

site’s

security

regulations.

v

If

an

unexpected

event

occurs,

or

you

suspect

that

an

unauthorized

individual

has

accessed

either

your

workstation

or

DB2

Universal

Database,

contact

your

manager

or

database

administrator

immediately.

v

When

using

the

CONNECT

statement

to

connect

to

the

database

from

the

command

line

processor

(CLP),

allow

DB2

Universal

Database

to

prompt

you

for

the

password,

rather

than

entering

it

with

the

CONNECT

statement.

This

practice

prevents

the

password

from

being

entered

into

the

command

history

of

the

operating

system.

v

Do

not

hardcode

passwords

into

applications

that

connect

to

the

database.

©

Copyright

IBM

Corp.

1993-2004

835

836

Common

Criteria

Certification:

Administration

and

User

Documentation

Chapter

23.

Utility

Considerations

Privileges,

authorities

and

authorization

required

to

use

export

.

.

.

.

.

.

.

.

.

.

.

.

. 837

Privileges,

authorities,

and

authorization

required

to

use

backup

.

.

.

.

.

.

.

.

.

.

.

.

. 837

Privileges,

authorities,

and

authorization

required

to

use

restore

.

.

.

.

.

.

.

.

.

.

.

.

. 837

Privileges,

authorities,

and

authorization

required

to

use

rollforward

.

.

.

.

.

.

.

.

.

.

.

. 838

Privileges,

authorities,

and

authorizations

required

to

use

Load

.

.

.

.

.

.

.

.

.

.

.

.

.

. 838

Privileges,

authorities

and

authorization

required

to

use

export

Privileges

enable

users

to

create

or

access

database

resources.

Authority

levels

provide

a

method

of

grouping

privileges

and

higher-level

database

manager

maintenance

and

utility

operations.

Together,

these

act

to

control

access

to

the

database

manager

and

its

database

objects.

Users

can

access

only

those

objects

for

which

they

have

the

appropriate

authorization;

that

is,

the

required

privilege

or

authority.

You

must

have

SYSADM

or

DBADM

authority,

or

CONTROL

or

SELECT

privilege

for

each

table

participating

in

the

export

operation.

Related

reference:

v

“db2Export

-

Export”

on

page

405

v

“EXPORT”

on

page

269

Privileges,

authorities,

and

authorization

required

to

use

backup

Privileges

enable

users

to

create

or

access

database

resources.

Authority

levels

provide

a

method

of

grouping

privileges

and

higher-level

database

manager

maintenance

and

utility

operations.

Together,

these

act

to

control

access

to

the

database

manager

and

its

database

objects.

Users

can

access

only

those

objects

for

which

they

have

the

appropriate

authorization;

that

is,

the

required

privilege

or

authority.

You

must

have

SYSADM,

SYSCTRL,

or

SYSMAINT

authority

to

use

the

backup

utility.

Privileges,

authorities,

and

authorization

required

to

use

restore

Privileges

enable

users

to

create

or

access

database

resources.

Authority

levels

provide

a

method

of

grouping

privileges

and

higher-level

database

manager

maintenance

and

utility

operations.

Together,

these

act

to

control

access

to

the

database

manager

and

its

database

objects.

Users

can

access

only

those

objects

for

which

they

have

the

appropriate

authorization;

that

is,

the

required

privilege

or

authority.

You

must

have

SYSADM,

SYSCTRL,

or

SYSMAINT

authority

to

restore

to

an

existing

database

from

a

full

database

backup.

To

restore

to

a

new

database,

you

must

have

SYSADM

or

SYSCTRL

authority.

©

Copyright

IBM

Corp.

1993-2004

837

Privileges,

authorities,

and

authorization

required

to

use

rollforward

Privileges

enable

users

to

create

or

access

database

resources.

Authority

levels

provide

a

method

of

grouping

privileges

and

higher-level

database

manager

maintenance

and

utility

operations.

Together,

these

act

to

control

access

to

the

database

manager

and

its

database

objects.

Users

can

access

only

those

objects

for

which

they

have

the

appropriate

authorization;

that

is,

the

required

privilege

or

authority.

You

must

have

SYSADM,

SYSCTRL,

or

SYSMAINT

authority

to

use

the

rollforward

utility.

Privileges,

authorities,

and

authorizations

required

to

use

Load

To

load

data

into

a

table,

you

must

have

one

of

the

following:

v

SYSADM

authority

v

DBADM

authority

v

LOAD

authority

on

the

database

and

–

INSERT

privilege

on

the

table

when

the

load

utility

is

invoked

in

INSERT

mode,

TERMINATE

mode

(to

terminate

a

previous

load

insert

operation),

or

RESTART

mode

(to

restart

a

previous

load

insert

operation)

–

INSERT

and

DELETE

privilege

on

the

table

when

the

load

utility

is

invoked

in

REPLACE

mode,

TERMINATE

mode

(to

terminate

a

previous

load

replace

operation),

or

RESTART

mode

(to

restart

a

previous

load

replace

operation)

–

INSERT

privilege

on

the

exception

table,

if

such

a

table

is

used

as

part

of

the

load

operation.

Since

all

load

processes

(and

all

DB2®

server

processes,

in

general),

are

owned

by

the

instance

owner,

and

all

of

these

processes

use

the

identification

of

the

instance

owner

to

access

needed

files,

the

instance

owner

must

have

read

access

to

input

data

files.

These

input

data

files

must

be

readable

by

the

instance

owner,

regardless

of

who

invokes

the

command.

On

Windows®

NT,

Windows

2000

and

Windows.NET

operating

systems

where

DB2

is

running

as

a

Windows

service,

if

you

are

loading

data

from

files

that

reside

on

a

network

drive,

you

must

configure

the

DB2

service

to

run

under

a

user

account

that

has

read

access

to

these

files.

Related

reference:

v

“LOAD”

on

page

304

v

“db2Load

-

Load”

on

page

437

838

Common

Criteria

Certification:

Administration

and

User

Documentation

Chapter

24.

Commands

for

Users

ATTACH

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 839

DETACH

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 840

GET

CONNECTION

STATE

.

.

.

.

.

.

.

. 841

PRECOMPILE

.

.

.

.

.

.

.

.

.

.

.

.

. 842

REBIND

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 866

ATTACH

Enables

an

application

to

specify

the

instance

at

which

instance-level

commands

(CREATE

DATABASE

and

FORCE

APPLICATION,

for

example)

are

to

be

executed.

This

instance

can

be

the

current

instance,

another

instance

on

the

same

workstation,

or

an

instance

on

a

remote

workstation.

Authorization:

None

Required

connection:

None.

This

command

establishes

an

instance

attachment.

Command

syntax:

��

ATTACH

TO

nodename

�

�

USER

username

USING

password

NEW

password

CONFIRM

password

CHANGE

PASSWORD

��

Command

parameters:

TO

nodename

Alias

of

the

instance

to

which

the

user

wants

to

attach.

This

instance

must

have

a

matching

entry

in

the

local

node

directory.

The

only

exception

to

this

is

the

local

instance

(as

specified

by

the

DB2INSTANCE

environment

variable)

which

can

be

specified

as

the

object

of

an

attach,

but

which

cannot

be

used

as

a

node

name

in

the

node

directory.

USER

username

Specifies

the

authentication

identifier.

When

attaching

to

a

DB2

Universal

Database

(UDB)

instance

on

a

Windows

operating

system,

the

user

name

can

be

specified

in

a

format

compatible

with

Microsoft

Windows

NT

Security

Account

Manager

(SAM),

for

example,

domainname\username.

USING

password

Specifies

the

password

for

the

user

name.

If

a

user

name

is

specified,

but

a

password

is

not

specified,

the

user

is

prompted

for

the

current

password.

The

password

is

not

displayed

at

entry.

NEW

password

Specifies

the

new

password

that

is

to

be

assigned

to

the

user

name.

Passwords

can

be

up

to

18

characters

in

length.

The

system

on

which

the

password

will

be

changed

depends

on

how

user

authentication

has

been

set

up.

©

Copyright

IBM

Corp.

1993-2004

839

CONFIRM

password

A

string

that

must

be

identical

to

the

new

password.

This

parameter

is

used

to

catch

entry

errors.

CHANGE

PASSWORD

If

this

option

is

specified,

the

user

is

prompted

for

the

current

password,

a

new

password,

and

for

confirmation

of

the

new

password.

Passwords

are

not

displayed

at

entry.

Examples:

Catalog

two

remote

nodes:

db2

catalog

tcpip

node

node1

remote

freedom

server

server1

db2

catalog

tcpip

node

node2

remote

flash

server

server1

Attach

to

the

first

node,

force

all

users,

and

then

detach:

db2

attach

to

node1

db2

force

application

all

db2

detach

Attach

to

the

second

node,

and

see

who

is

on:

db2

attach

to

node2

db2

list

applications

After

the

command

returns

agent

IDs

1,

2

and

3,

force

1

and

3,

and

then

detach:

db2

force

application

(1,

3)

db2

detach

Attach

to

the

current

instance

(not

necessary,

will

be

implicit),

force

all

users,

then

detach

(AIX

only):

db2

attach

to

$DB2INSTANCE

db2

force

application

all

db2

detach

Usage

notes:

If

nodename

is

omitted

from

the

command,

information

about

the

current

state

of

attachment

is

returned.

If

ATTACH

has

not

been

executed,

instance-level

commands

are

executed

against

the

current

instance,

specified

by

the

DB2INSTANCE

environment

variable.

Related

reference:

v

“DETACH”

on

page

840

DETACH

Removes

the

logical

DBMS

instance

attachment,

and

terminates

the

physical

communication

connection

if

there

are

no

other

logical

connections

using

this

layer.

Authorization:

None

Required

connection:

ATTACH

840

Common

Criteria

Certification:

Administration

and

User

Documentation

None.

Removes

an

existing

instance

attachment.

Command

syntax:

��

DETACH

��

Command

parameters:

None

Related

reference:

v

“ATTACH”

on

page

839

GET

CONNECTION

STATE

Displays

the

connection

state.

Possible

states

are:

v

Connectable

and

connected

v

Connectable

and

unconnected

v

Unconnectable

and

connected

v

Implicitly

connectable

(if

implicit

connect

is

available).

This

command

also

returns

information

about:

v

the

database

connection

mode

(SHARE

or

EXCLUSIVE)

v

the

alias

and

name

of

the

database

to

which

a

connection

exists

(if

one

exists)

v

the

host

name

and

service

name

of

the

connection

if

the

connection

is

using

TCP/IP

Authorization:

None

Required

connection:

None

Command

syntax:

��

GET

CONNECTION

STATE

��

Command

parameters:

None

Examples:

The

following

is

sample

output

from

GET

CONNECTION

STATE:

Usage

notes:

This

command

does

not

apply

to

type

2

connections.

Database

Connection

State

Connection

state

=

Connectable

and

Connected

Connection

mode

=

SHARE

Local

database

alias

=

SAMPLE

Database

name

=

SAMPLE

Hostname

=

montero

Service

name

=

29384

DETACH

Chapter

24.

Commands

for

Users

841

Related

reference:

v

“SET

CLIENT

Command”

in

the

Command

Reference

v

“UPDATE

ALTERNATE

SERVER

FOR

DATABASE

Command”

in

the

Command

Reference

PRECOMPILE

Processes

an

application

program

source

file

containing

embedded

SQL

statements.

A

modified

source

file

is

produced,

containing

host

language

calls

for

the

SQL

statements

and,

by

default,

a

package

is

created

in

the

database.

Scope:

This

command

can

be

issued

from

any

database

partition

in

db2nodes.cfg.

In

a

partitioned

database

environment,

it

can

be

issued

from

any

database

partition

server

defined

in

the

db2nodes.cfg

file.

It

updates

the

database

catalogs

on

the

catalog

database

partition.

Its

effects

are

visible

to

all

database

partitions.

Authorization:

One

of

the

following:

v

sysadm

or

dbadm

authority

v

BINDADD

privilege

if

a

package

does

not

exist,

and

one

of:

–

IMPLICIT_SCHEMA

authority

on

the

database

if

the

schema

name

of

the

package

does

not

exist

–

CREATEIN

privilege

on

the

schema

if

the

schema

name

of

the

package

exists
v

ALTERIN

privilege

on

the

schema

if

the

package

exists

v

BIND

privilege

on

the

package

if

it

exists.

The

user

also

needs

all

privileges

required

to

compile

any

static

SQL

statements

in

the

application.

Privileges

granted

to

groups

are

not

used

for

authorization

checking

of

static

statements.

If

the

user

has

sysadm

authority,

but

not

explicit

privileges

to

complete

the

bind,

the

database

manager

grants

explicit

dbadm

authority

automatically.

Required

connection:

Database.

If

implicit

connect

is

enabled,

a

connection

to

the

default

database

is

established.

Command

syntax:

For

DB2

for

Windows

and

UNIX

��

PRECOMPILE

PREP

filename

�

GET

CONNECTION

STATE

842

Common

Criteria

Certification:

Administration

and

User

Documentation

�

ACTION

ADD

REPLACE

RETAIN

NO

REPLVER

version-id

YES

�

�

BINDFILE

USING

bind-file

BLOCKING

UNAMBIG

ALL

NO

�

�

COLLECTION

schema-name

CALL_RESOLUTION

IMMEDIATE

DEFERRED

�

�

CONNECT

1

2

DATETIME

DEF

EUR

ISO

JIS

LOC

USA

DEFERRED_PREPARE

NO

ALL

YES

�

�

DEGREE

1

degree-of-parallelism

ANY

DISCONNECT

EXPLICIT

AUTOMATIC

CONDITIONAL

�

�

DYNAMICRULES

RUN

BIND

INVOKERUN

INVOKEBIND

DEFINERUN

DEFINEBIND

EXPLAIN

NO

ALL

REOPT

YES

�

�

EXPLSNAP

NO

ALL

REOPT

YES

FEDERATED

NO

YES

�

,

FUNCPATH

schema-name

�

�

GENERIC

string

INSERT

DEF

BUF

ISOLATION

CS

RR

RS

UR

�

�

LANGLEVEL

SAA1

MIA

SQL92E

LEVEL

consistency

token

�

PRECOMPILE

Chapter

24.

Commands

for

Users

843

�

(1)

LONGERROR

NO

YES

MESSAGES

message-file

NOLINEMACRO

�

�

OPTLEVEL

0

1

OUTPUT

filename

OWNER

authorization-id

�

�

PACKAGE

USING

package-name

�

�

PREPROCESSOR

″preprocessor-command″

’preprocessor-command’

QUALIFIER

qualifier-name

�

�

QUERYOPT

optimization-level

REOPT

NONE

REOPT

ONCE

REOPT

ALWAYS

SQLCA

NONE

SAA

�

�

(2)

SQLERROR

NOPACKAGE

CHECK

CONTINUE

SQLFLAG

SQL92E

SYNTAX

MVSDB2V23

MVSDB2V31

MVSDB2V41

�

�

SQLRULES

DB2

STD

SQLWARN

NO

YES

NO

STATICREADONLY

YES

�

�

SYNCPOINT

ONEPHASE

NONE

TWOPHASE

SYNTAX

TARGET

IBMCOB

MFCOB

ANSI_COBOL

C

CPLUSPLUS

FORTRAN

�

�

TRANSFORM

GROUP

groupname

VALIDATE

BIND

RUN

�

�

WCHARTYPE

NOCONVERT

CONVERT

VERSION

version-id

AUTO

��

Notes:

1 NO

is

the

default

for

32

bit

systems

and

for

64

bit

NT

systems

where

long

host

variables

can

be

used

as

declarations

for

INTEGER

columns.

YES

is

the

default

for

64

bit

UNIX

systems.

2 SYNTAX

is

a

synonym

for

SQLERROR(CHECK).

For

DB2

on

servers

other

than

Windows

and

UNIX

PRECOMPILE

844

Common

Criteria

Certification:

Administration

and

User

Documentation

��

PRECOMPILE

PREP

filename

�

�

ACTION

ADD

REPLACE

YES

REPLVER

version-id

RETAIN

NO

�

�

BINDFILE

USING

bind-file

UNAMBIG

BLOCKING

ALL

NO

�

�

CALL_RESOLUTION

IMMEDIATE

DEFERRED

CCSIDG

double-ccsid

�

�

CCSIDM

mixed-ccsid

CCSIDS

sbcs-ccsid

DEFAULT

CHARSUB

BIT

MIXED

SBCS

�

�

YES

CNULREQD

NO

COLLECTION

schema-name

COMPILE

PRECOMPILE

�

�

1

CONNECT

2

(1)

DATETIME

DEF

EUR

ISO

JIS

LOC

USA

DBPROTOCOL

DRDA

PRIVATE

�

�

DEC

15

31

PERIOD

DECDEL

COMMA

NO

DEFERRED_PREPARE

ALL

YES

�

�

(2)

1

DEGREE

degree-of-parallelism

ANY

EXPLICIT

DISCONNECT

AUTOMATIC

CONDITIONAL

�

�

RUN

DYNAMICRULES

BIND

INVOKERUN

INVOKEBIND

DEFINERUN

DEFINEBIND

ENCODING

ASCII

EBCDIC

UNICODE

CCSID

�

PRECOMPILE

Chapter

24.

Commands

for

Users

845

�

NO

EXPLAIN

YES

GENERIC

string

IMMEDWRITE

NO

YES

PH1

�

�

CS

ISOLATION

NC

RR

RS

UR

KEEPDYNAMIC

YES

NO

LEVEL

consistency-token

�

�

(3)

NO

LONGERROR

YES

MESSAGES

message-file

NOLINEMACRO

�

�

OPTHINT

hint-id

0

OPTLEVEL

1

OS400NAMING

SYSTEM

SQL

�

�

OWNER

authorization-id

PREPROCESSOR

″preprocessor-command″

’preprocessor-command’

�

�

QUALIFIER

qualifier-name

COMMIT

RELEASE

DEALLOCATE

REOPT

NONE

REOPT

ONCE

REOPT

ALWAYS

�

�

REOPT

VARS

NOREOPT

VARS

SQLFLAG

SQL92E

SYNTAX

MVSDB2V23

MVSDB2V31

MVSDB2V41

SORTSEQ

JOBRUN

HEX

�

�

DB2

SQLRULES

STD

NOPACKAGE

SQLERROR

CHECK

CONTINUE

APOSTROPHE

STRDEL

QUOTE

�

�

ONEPHASE

SYNCPOINT

NONE

TWOPHASE

SYNTAX

IBMCOB

TARGET

MFCOB

ANSI_COBOL

C

CPLUSPLUS

FORTRAN

BORLAND_C

BORLAND_CPLUSPLUS

�

�

TEXT

label

VERSION

version-id

AUTO

VALIDATE

BIND

RUN

�

�

NOCONVERT

WCHARTYPE

CONVERT

��

PRECOMPILE

846

Common

Criteria

Certification:

Administration

and

User

Documentation

Notes:

1 If

the

server

does

not

support

the

DATETIME

DEF

option,

it

is

mapped

to

DATETIME

ISO.

2 The

DEGREE

option

is

only

supported

by

DRDA

Level

2

Application

Servers.

3 NO

is

the

default

for

32

bit

systems

and

for

64

bit

NT

systems

where

long

host

variables

can

be

used

as

declarations

for

INTEGER

columns.

YES

is

the

default

for

64

bit

UNIX

systems.

Command

parameters:

filename

Specifies

the

source

file

to

be

precompiled.

An

extension

of:

v

.sqc

must

be

specified

for

C

applications

(generates

a

.c

file)

v

.sqx

(Windows

operating

systems),

or

.sqC

(UNIX

based

systems)

must

be

specified

for

C++

applications

(generates

a

.cxx

file

on

Windows

operating

systems,

or

a

.C

file

on

UNIX

based

systems)

v

.sqb

must

be

specified

for

COBOL

applications

(generates

a

.cbl

file)

v

.sqf

must

be

specified

for

FORTRAN

applications

(generates

a

.for

file

on

Windows

operating

systems,

or

a

.f

file

on

UNIX

based

systems).

The

preferred

extension

for

C++

applications

containing

embedded

SQL

on

UNIX

based

systems

is

sqC;

however,

the

sqx

convention,

which

was

invented

for

systems

that

are

not

case

sensitive,

is

tolerated

by

UNIX

based

systems.

ACTION

Indicates

whether

the

package

can

be

added

or

replaced.

ADD

Indicates

that

the

named

package

does

not

exist,

and

that

a

new

package

is

to

be

created.

If

the

package

already

exists,

execution

stops,

and

a

diagnostic

error

message

is

returned.

REPLACE

Indicates

that

the

existing

package

is

to

be

replaced

by

a

new

one

with

the

same

package

name

and

creator.

This

is

the

default

value

for

the

ACTION

option.

RETAIN

Indicates

whether

EXECUTE

authorities

are

to

be

preserved

when

a

package

is

replaced.

If

ownership

of

the

package

changes,

the

new

owner

grants

the

BIND

and

EXECUTE

authority

to

the

previous

package

owner.

NO

Does

not

preserve

EXECUTE

authorities

when

a

package

is

replaced.

This

value

is

not

supported

by

DB2.

YES

Preserves

EXECUTE

authorities

when

a

package

is

replaced.

This

is

the

default

value.

REPLVER

version-id

Replaces

a

specific

version

of

a

package.

The

version

identifier

specifies

which

version

of

the

package

is

to

be

replaced.

If

the

specified

version

does

not

exist,

an

error

is

returned.

If

the

REPLVER

option

of

REPLACE

is

not

specified,

and

a

package

already

exists

that

matches

the

PRECOMPILE

Chapter

24.

Commands

for

Users

847

package

name

and

version

of

the

package

being

precompiled,

that

package

will

be

replaced;

if

not,

a

new

package

will

be

added.

BINDFILE

Results

in

the

creation

of

a

bind

file.

A

package

is

not

created

unless

the

package

option

is

also

specified.

If

a

bind

file

is

requested,

but

no

package

is

to

be

created,

as

in

the

following

example:

db2

prep

sample.sqc

bindfile

object

existence

and

authentication

SQLCODEs

will

be

treated

as

warnings

instead

of

errors.

This

will

allow

a

bind

file

to

be

successfully

created,

even

if

the

database

being

used

for

precompilation

does

not

have

all

of

the

objects

referred

to

in

static

SQL

statements

within

the

application.

The

bind

file

can

be

successfully

bound,

creating

a

package,

once

the

required

objects

have

been

created.

USING

bind-file

The

name

of

the

bind

file

that

is

to

be

generated

by

the

precompiler.

The

file

name

must

have

an

extension

of

.bnd.

If

a

file

name

is

not

entered,

the

precompiler

uses

the

name

of

the

program

(entered

as

the

filename

parameter),

and

adds

the

.bnd

extension.

If

a

path

is

not

provided,

the

bind

file

is

created

in

the

current

directory.

BLOCKING

Specifies

the

type

of

row

blocking

for

cursors.

ALL

Specifies

to

block

for:

v

Read-only

cursors

v

Cursors

not

specified

as

FOR

UPDATE

OF

Ambiguous

cursors

are

treated

as

read-only.

NO

Specifies

not

to

block

any

cursors.

Ambiguous

cursors

are

treated

as

updatable.

UNAMBIG

Specifies

to

block

for:

v

Read-only

cursors

v

Cursors

not

specified

as

FOR

UPDATE

OF

Ambiguous

cursors

are

treated

as

updatable.

CALL_RESOLUTION

If

set,

the

CALL_RESOLUTION

DEFERRED

option

indicates

that

the

CALL

statement

will

be

executed

as

an

invocation

of

the

deprecated

sqleproc()

API.

If

not

set

or

if

IMMEDIATE

is

set,

the

CALL

statement

will

be

executed

as

a

normal

SQL

statement.

Note

that

SQL0204

will

be

issued

if

the

precompiler

fails

to

resolve

the

procedure

on

a

CALL

statement

with

CALL_RESOLUTION

IMMEDIATE.

CCSIDG

double-ccsid

An

integer

specifying

the

coded

character

set

identifier

(CCSID)

to

be

used

for

double

byte

characters

in

character

column

definitions

(without

a

specific

CCSID

clause)

in

CREATE

and

ALTER

TABLE

SQL

statements.

This

DRDA

precompile/bind

option

is

not

supported

by

DB2.

The

DRDA

server

will

use

a

system

defined

default

value

if

this

option

is

not

specified.

PRECOMPILE

848

Common

Criteria

Certification:

Administration

and

User

Documentation

CCSIDM

mixed-ccsid

An

integer

specifying

the

coded

character

set

identifier

(CCSID)

to

be

used

for

mixed

byte

characters

in

character

column

definitions

(without

a

specific

CCSID

clause)

in

CREATE

and

ALTER

TABLE

SQL

statements.

This

DRDA

precompile/bind

option

is

not

supported

by

DB2.

The

DRDA

server

will

use

a

system

defined

default

value

if

this

option

is

not

specified.

CCSIDS

sbcs-ccsid

An

integer

specifying

the

coded

character

set

identifier

(CCSID)

to

be

used

for

single

byte

characters

in

character

column

definitions

(without

a

specific

CCSID

clause)

in

CREATE

and

ALTER

TABLE

SQL

statements.

This

DRDA

precompile/bind

option

is

not

supported

by

DB2.

The

DRDA

server

will

use

a

system

defined

default

value

if

this

option

is

not

specified.

CHARSUB

Designates

the

default

character

sub-type

that

is

to

be

used

for

column

definitions

in

CREATE

and

ALTER

TABLE

SQL

statements.

This

DRDA

precompile/bind

option

is

not

supported

by

DB2.

BIT

Use

the

FOR

BIT

DATA

SQL

character

sub-type

in

all

new

character

columns

for

which

an

explicit

sub-type

is

not

specified.

DEFAULT

Use

the

target

system

defined

default

in

all

new

character

columns

for

which

an

explicit

sub-type

is

not

specified.

MIXED

Use

the

FOR

MIXED

DATA

SQL

character

sub-type

in

all

new

character

columns

for

which

an

explicit

sub-type

is

not

specified.

SBCS

Use

the

FOR

SBCS

DATA

SQL

character

sub-type

in

all

new

character

columns

for

which

an

explicit

sub-type

is

not

specified.

CNULREQD

This

option

is

related

to

the

langlevel

precompile

option,

which

is

not

supported

by

DRDA.

It

is

valid

only

if

the

bind

file

is

created

from

a

C

or

a

C++

application.

This

DRDA

bind

option

is

not

supported

by

DB2.

NO

The

application

was

coded

on

the

basis

of

the

langlevel

SAA1

precompile

option

with

respect

to

the

null

terminator

in

C

string

host

variables.

YES

The

application

was

coded

on

the

basis

of

the

langlevel

MIA

precompile

option

with

respect

to

the

null

terminator

in

C

string

host

variables.

COLLECTION

schema-name

Specifies

a

30-character

collection

identifier

for

the

package.

If

not

specified,

the

authorization

identifier

for

the

user

processing

the

package

is

used.

CONNECT

1

Specifies

that

a

CONNECT

statement

is

to

be

processed

as

a

type

1

CONNECT.

2

Specifies

that

a

CONNECT

statement

is

to

be

processed

as

a

type

2

CONNECT.

DATETIME

Specifies

the

date

and

time

format

to

be

used.

PRECOMPILE

Chapter

24.

Commands

for

Users

849

DEF

Use

a

date

and

time

format

associated

with

the

territory

code

of

the

database.

EUR

Use

the

IBM

standard

for

Europe

date

and

time

format.

ISO

Use

the

date

and

time

format

of

the

International

Standards

Organization.

JIS

Use

the

date

and

time

format

of

the

Japanese

Industrial

Standard.

LOC

Use

the

date

and

time

format

in

local

form

associated

with

the

territory

code

of

the

database.

USA

Use

the

IBM

standard

for

U.S.

date

and

time

format.

DBPROTOCOL

Specifies

what

protocol

to

use

when

connecting

to

a

remote

site

that

is

identified

by

a

three-part

name

statement.

Supported

by

DB2

for

OS/390

only.

For

a

list

of

supported

option

values,

refer

to

the

documentation

for

DB2

for

OS/390.

DEC

Specifies

the

maximum

precision

to

be

used

in

decimal

arithmetic

operations.

This

DRDA

precompile/bind

option

is

not

supported

by

DB2.

The

DRDA

server

will

use

a

system

defined

default

value

if

this

option

is

not

specified.

15

15-digit

precision

is

used

in

decimal

arithmetic

operations.

31

31-digit

precision

is

used

in

decimal

arithmetic

operations.

DECDEL

Designates

whether

a

period

(.)

or

a

comma

(,)

will

be

used

as

the

decimal

point

indicator

in

decimal

and

floating

point

literals.

This

DRDA

precompile/bind

option

is

not

supported

by

DB2.

The

DRDA

server

will

use

a

system

defined

default

value

if

this

option

is

not

specified.

COMMA

Use

a

comma

(,)

as

the

decimal

point

indicator.

PERIOD

Use

a

period

(.)

as

the

decimal

point

indicator.

DEFERRED_PREPARE

Provides

a

performance

enhancement

when

accessing

DB2

common

server

databases

or

DRDA

databases.

This

option

combines

the

SQL

PREPARE

statement

flow

with

the

associated

OPEN,

DESCRIBE,

or

EXECUTE

statement

flow

to

minimize

inter-process

or

network

flow.

NO

The

PREPARE

statement

will

be

executed

at

the

time

it

is

issued.

YES

Execution

of

the

PREPARE

statement

will

be

deferred

until

the

corresponding

OPEN,

DESCRIBE,

or

EXECUTE

statement

is

issued.

The

PREPARE

statement

will

not

be

deferred

if

it

uses

the

INTO

clause,

which

requires

an

SQLDA

to

be

returned

immediately.

However,

if

the

PREPARE

INTO

statement

is

issued

for

a

cursor

that

does

not

use

any

parameter

markers,

the

processing

will

be

optimized

by

pre-OPENing

the

cursor

when

the

PREPARE

is

executed.

ALL

Same

as

YES,

except

that

a

PREPARE

INTO

statement

is

also

deferred.

If

the

PREPARE

statement

uses

the

INTO

clause

to

return

PRECOMPILE

850

Common

Criteria

Certification:

Administration

and

User

Documentation

an

SQLDA,

the

application

must

not

reference

the

content

of

this

SQLDA

until

the

OPEN,

DESCRIBE,

or

EXECUTE

statement

is

issued

and

returned.

DEGREE

Specifies

the

degree

of

parallelism

for

the

execution

of

static

SQL

statements

in

an

SMP

system.

This

option

does

not

affect

CREATE

INDEX

parallelism.

1

The

execution

of

the

statement

will

not

use

parallelism.

degree-of-parallelism

Specifies

the

degree

of

parallelism

with

which

the

statement

can

be

executed,

a

value

between

2

and

32

767

(inclusive).

ANY

Specifies

that

the

execution

of

the

statement

can

involve

parallelism

using

a

degree

determined

by

the

database

manager.

DISCONNECT

AUTOMATIC

Specifies

that

all

database

connections

are

to

be

disconnected

at

commit.

CONDITIONAL

Specifies

that

the

database

connections

that

have

been

marked

RELEASE

or

have

no

open

WITH

HOLD

cursors

are

to

be

disconnected

at

commit.

EXPLICIT

Specifies

that

only

database

connections

that

have

been

explicitly

marked

for

release

by

the

RELEASE

statement

are

to

be

disconnected

at

commit.

DYNAMICRULES

Defines

which

rules

apply

to

dynamic

SQL

at

run

time

for

the

initial

setting

of

the

values

used

for

authorization

ID

and

for

the

implicit

qualification

of

unqualified

object

references.

RUN

Specifies

that

the

authorization

ID

of

the

user

executing

the

package

is

to

be

used

for

authorization

checking

of

dynamic

SQL

statements.

The

authorization

ID

will

also

be

used

as

the

default

package

qualifier

for

implicit

qualification

of

unqualified

object

references

within

dynamic

SQL

statements.

This

is

the

default

value.

BIND

Specifies

that

all

of

the

rules

that

apply

to

static

SQL

for

authorization

and

qualification

are

to

be

used

at

run

time.

That

is,

the

authorization

ID

of

the

package

owner

is

to

be

used

for

authorization

checking

of

dynamic

SQL

statements,

and

the

default

package

qualifier

is

to

be

used

for

implicit

qualification

of

unqualified

object

references

within

dynamic

SQL

statements.

DEFINERUN

If

the

package

is

used

within

a

routine

context,

the

authorization

ID

of

the

routine

definer

is

to

be

used

for

authorization

checking

and

for

implicit

qualification

of

unqualified

object

references

within

dynamic

SQL

statements

within

the

routine.

If

the

package

is

used

as

a

standalone

application,

dynamic

SQL

statements

are

processed

as

if

the

package

were

bound

with

DYNAMICRULES

RUN.

PRECOMPILE

Chapter

24.

Commands

for

Users

851

DEFINEBIND

If

the

package

is

used

within

a

routine

context,

the

authorization

ID

of

the

routine

definer

is

to

be

used

for

authorization

checking

and

for

implicit

qualification

of

unqualified

object

references

within

dynamic

SQL

statements

within

the

routine.

If

the

package

is

used

as

a

standalone

application,

dynamic

SQL

statements

are

processed

as

if

the

package

were

bound

with

DYNAMICRULES

BIND.

INVOKERUN

If

the

package

is

used

within

a

routine

context,

the

current

statement

authorization

ID

in

effect

when

the

routine

is

invoked

is

to

be

used

for

authorization

checking

of

dynamic

SQL

statements

and

for

implicit

qualification

of

unqualified

object

references

within

dynamic

SQL

statements

within

that

routine.

If

the

package

is

used

as

a

standalone

application,

dynamic

SQL

statements

are

processed

as

if

the

package

were

bound

with

DYNAMICRULES

RUN.

INVOKEBIND

If

the

package

is

used

within

a

routine

context,

the

current

statement

authorization

ID

in

effect

when

the

routine

is

invoked

is

to

be

used

for

authorization

checking

of

dynamic

SQL

statements

and

for

implicit

qualification

of

unqualified

object

references

within

dynamic

SQL

statements

within

that

routine.

If

the

package

is

used

as

a

standalone

application,

dynamic

SQL

statements

are

processed

as

if

the

package

were

bound

with

DYNAMICRULES

BIND.

Note:

Because

dynamic

SQL

statements

will

be

using

the

authorization

ID

of

the

package

owner

in

a

package

exhibiting

bind

behavior,

the

binder

of

the

package

should

not

have

any

authorities

granted

to

them

that

the

user

of

the

package

should

not

receive.

Similarly,

when

defining

a

routine

that

will

exhibit

define

behavior,

the

definer

of

the

routine

should

not

have

any

authorities

granted

to

them

that

the

user

of

the

package

should

not

receive

since

a

dynamic

statement

will

be

using

the

authorization

ID

of

the

routine’s

definer.

The

following

dynamically

prepared

SQL

statements

cannot

be

used

within

a

package

that

was

not

bound

with

DYNAMICRULES

RUN:

GRANT,

REVOKE,

ALTER,

CREATE,

DROP,

COMMENT

ON,

RENAME,

SET

INTEGRITY,

and

SET

EVENT

MONITOR

STATE.

ENCODING

Specifies

the

encoding

for

all

host

variables

in

static

statements

in

the

plan

or

package.

Supported

by

DB2

for

OS/390

only.

For

a

list

of

supported

option

values,

refer

to

the

documentation

for

DB2

for

OS/390.

EXPLAIN

Stores

information

in

the

Explain

tables

about

the

access

plans

chosen

for

each

SQL

statement

in

the

package.

DRDA

does

not

support

the

ALL

value

for

this

option.

NO

Explain

information

will

not

be

captured.

PRECOMPILE

852

Common

Criteria

Certification:

Administration

and

User

Documentation

YES

Explain

tables

will

be

populated

with

information

about

the

chosen

access

plan

at

prep/bind

time

for

static

statements

and

at

run

time

for

incremental

bind

statements.

If

the

package

is

to

be

used

for

a

routine

and

the

package

contains

incremental

bind

statements,

then

the

routine

must

be

defined

as

MODIFIES

SQL

DATA.

If

this

is

not

done,

incremental

bind

statements

in

the

package

will

cause

a

run

time

error

(SQLSTATE

42985).

REOPT

Explain

information

for

each

reoptimizable

incremental

bind

SQL

statement

will

be

placed

in

the

Explain

tables

at

run

time.

In

addition,

Explain

information

will

be

gathered

for

reoptimizable

dynamic

SQL

statements

at

run

time,

even

if

the

CURRENT

EXPLAIN

MODE

special

register

is

set

to

NO.

If

the

package

is

to

be

used

for

a

routine,

then

the

routine

must

be

defined

as

MODIFIES

SQL

DATA,

otherwise

incremental

bind

and

dynamic

statements

in

the

package

will

cause

a

run

time

error

(SQLSTATE

42985).

ALL

Explain

information

for

each

eligible

static

SQL

statement

will

be

placed

in

the

Explain

tables

at

prep/bind

time.

Explain

information

for

each

eligible

incremental

bind

SQL

statement

will

be

placed

in

the

Explain

tables

at

run

time.

In

addition,

Explain

information

will

be

gathered

for

eligible

dynamic

SQL

statements

at

run

time,

even

if

the

CURRENT

EXPLAIN

MODE

special

register

is

set

to

NO.

If

the

package

is

to

be

used

for

a

routine,

then

the

routine

must

be

defined

as

MODIFIES

SQL

DATA,

otherwise

incremental

bind

and

dynamic

statements

in

the

package

will

cause

a

run

time

error

(SQLSTATE

42985).

Note:

This

value

for

EXPLAIN

is

not

supported

by

DRDA.

EXPLSNAP

Stores

Explain

Snapshot

information

in

the

Explain

tables.

This

DB2

precompile/bind

option

is

not

supported

by

DRDA.

NO

An

Explain

Snapshot

will

not

be

captured.

YES

An

Explain

Snapshot

for

each

eligible

static

SQL

statement

will

be

placed

in

the

Explain

tables

at

prep/bind

time

for

static

statements

and

at

run

time

for

incremental

bind

statements.

If

the

package

is

to

be

used

for

a

routine

and

the

package

contains

incremental

bind

statements,

then

the

routine

must

be

defined

as

MODIFIES

SQL

DATA

or

incremental

bind

statements

in

the

package

will

cause

a

run

time

error

(SQLSTATE

42985).

REOPT

Explain

Snapshot

information

for

each

reoptimizable

incremental

bind

SQL

statement

will

be

placed

in

the

Explain

tables

at

run

time.

In

addition,

Explain

Snapshot

information

will

be

gathered

for

reoptimizable

dynamic

SQL

statements

at

run

time,

even

if

the

CURRENT

EXPLAIN

SNAPSHOT

special

register

is

set

to

NO.

PRECOMPILE

Chapter

24.

Commands

for

Users

853

If

the

package

is

to

be

used

for

a

routine,

then

the

routine

must

be

defined

as

MODIFIES

SQL

DATA,

otherwise

incremental

bind

and

dynamic

statements

in

the

package

will

cause

a

run

time

error

(SQLSTATE

42985).

ALL

An

Explain

Snapshot

for

each

eligible

static

SQL

statement

will

be

placed

in

the

Explain

tables

at

prep/bind

time.

Explain

Snapshot

information

for

each

eligible

incremental

bind

SQL

statement

will

be

placed

in

the

Explain

tables

at

run

time.

In

addition,

Explain

Snapshot

information

will

be

gathered

for

eligible

dynamic

SQL

statements

at

run

time,

even

if

the

CURRENT

EXPLAIN

SNAPSHOT

special

register

is

set

to

NO.

If

the

package

is

to

be

used

for

a

routine,

then

the

routine

must

be

defined

as

MODIFIES

SQL

DATA,

or

incremental

bind

and

dynamic

statements

in

the

package

will

cause

a

run

time

error

(SQLSTATE

42985).

FEDERATED

Specifies

whether

a

static

SQL

statement

in

a

package

references

a

nickname

or

a

federated

view.

If

this

option

is

not

specified

and

a

static

SQL

statement

in

the

package

references

a

nickname

or

a

federated

view,

a

warning

is

returned

and

the

package

is

created.

Note:

This

option

is

not

supported

by

DRDA

servers.

NO

A

nickname

or

federated

view

is

not

referenced

in

the

static

SQL

statements

of

the

package.

If

a

nickname

or

federated

view

is

encountered

in

a

static

SQL

statement

during

the

prepare

or

bind

phase

of

this

package,

an

error

is

returned

and

the

package

is

not

created.

YES

A

nickname

or

federated

view

can

be

referenced

in

the

static

SQL

statements

of

the

package.

If

no

nicknames

or

federated

views

are

encountered

in

static

SQL

statements

during

the

prepare

or

bind

of

the

package,

no

errors

or

warnings

are

returned

and

the

package

is

created.

FUNCPATH

Specifies

the

function

path

to

be

used

in

resolving

user-defined

distinct

types

and

functions

in

static

SQL.

If

this

option

is

not

specified,

the

default

function

path

is

″SYSIBM″,″SYSFUN″,USER

where

USER

is

the

value

of

the

USER

special

register.

This

DB2

precompile/bind

option

is

not

supported

by

DRDA.

schema-name

An

SQL

identifier,

either

ordinary

or

delimited,

which

identifies

a

schema

that

exists

at

the

application

server.

No

validation

that

the

schema

exists

is

made

at

precompile

or

at

bind

time.

The

same

schema

cannot

appear

more

than

once

in

the

function

path.

The

number

of

schemas

that

can

be

specified

is

limited

by

the

length

of

the

resulting

function

path,

which

cannot

exceed

254

bytes.

The

schema

SYSIBM

does

not

need

to

be

explicitly

specified;

it

is

implicitly

assumed

to

be

the

first

schema

if

it

is

not

included

in

the

function

path.

INSERT

Allows

a

program

being

precompiled

or

bound

against

a

DB2

Enterprise

Server

Edition

server

to

request

that

data

inserts

be

buffered

to

increase

performance.

PRECOMPILE

854

Common

Criteria

Certification:

Administration

and

User

Documentation

BUF

Specifies

that

inserts

from

an

application

should

be

buffered.

DEF

Specifies

that

inserts

from

an

application

should

not

be

buffered.

GENERIC

string

Supports

the

binding

of

new

options

that

are

defined

in

the

target

database,

but

are

not

supported

by

DRDA.

Do

not

use

this

option

to

pass

bind

options

that

are

defined

in

BIND

or

PRECOMPILE.

This

option

can

substantially

improve

dynamic

SQL

performance.

The

syntax

is

as

follows:

generic

"option1

value1

option2

value2

..."

Each

option

and

value

must

be

separated

by

one

or

more

blank

spaces.

For

example,

if

the

target

DRDA

database

is

DB2

Universal

Database,

Version

8,

one

could

use:

generic

"explsnap

all

queryopt

3

federated

yes"

to

bind

each

of

the

EXPLSNAP,

QUERYOPT,

and

FEDERATED

options.

The

maximum

length

of

the

string

is

1023

bytes.

IMMEDWRITE

Indicates

whether

immediate

writes

will

be

done

for

updates

made

to

group

buffer

pool

dependent

pagesets

or

partitions.

Supported

by

DB2

for

OS/390

only.

For

a

list

of

supported

option

values,

refer

to

the

documentation

for

DB2

for

OS/390.

ISOLATION

Determines

how

far

a

program

bound

to

this

package

can

be

isolated

from

the

effect

of

other

executing

programs.

CS

Specifies

Cursor

Stability

as

the

isolation

level.

NC

No

Commit.

Specifies

that

commitment

control

is

not

to

be

used.

This

isolation

level

is

not

supported

by

DB2.

RR

Specifies

Repeatable

Read

as

the

isolation

level.

RS

Specifies

Read

Stability

as

the

isolation

level.

Read

Stability

ensures

that

the

execution

of

SQL

statements

in

the

package

is

isolated

from

other

application

processes

for

rows

read

and

changed

by

the

application.

UR

Specifies

Uncommitted

Read

as

the

isolation

level.

LANGLEVEL

Specifies

the

SQL

rules

that

apply

for

both

the

syntax

and

the

semantics

for

both

static

and

dynamic

SQL

in

the

application.

This

option

is

not

supported

by

DRDA

servers.

MIA

Select

the

ISO/ANS

SQL92

rules

as

follows:

v

To

support

error

SQLCODE

or

SQLSTATE

checking,

an

SQLCA

must

be

declared

in

the

application

code.

v

C

null-terminated

strings

are

padded

with

blanks

and

always

include

a

null-terminating

character,

even

if

truncation

occurs.

v

The

FOR

UPDATE

clause

is

optional

for

all

columns

to

be

updated

in

a

positioned

UPDATE.

v

A

searched

UPDATE

or

DELETE

requires

SELECT

privilege

on

the

object

table

of

the

UPDATE

or

DELETE

statement

if

a

column

of

the

object

table

is

referenced

in

the

search

condition

or

on

the

right

hand

side

of

the

assignment

clause.

PRECOMPILE

Chapter

24.

Commands

for

Users

855

v

A

column

function

that

can

be

resolved

using

an

index

(for

example

MIN

or

MAX)

will

also

check

for

nulls

and

return

warning

SQLSTATE

01003

if

there

were

any

nulls.

v

An

error

is

returned

when

a

duplicate

unique

constraint

is

included

in

a

CREATE

or

ALTER

TABLE

statement.

v

An

error

is

returned

when

no

privilege

is

granted

and

the

grantor

has

no

privileges

on

the

object

(otherwise

a

warning

is

returned).

SAA1

Select

the

common

IBM

DB2

rules

as

follows:

v

To

support

error

SQLCODE

or

SQLSTATE

checking,

an

SQLCA

must

be

declared

in

the

application

code.

v

C

null-terminated

strings

are

not

terminated

with

a

null

character

if

truncation

occurs.

v

The

FOR

UPDATE

clause

is

required

for

all

columns

to

be

updated

in

a

positioned

UPDATE.

v

A

searched

UPDATE

or

DELETE

will

not

require

SELECT

privilege

on

the

object

table

of

the

UPDATE

or

DELETE

statement

unless

a

fullselect

in

the

statement

references

the

object

table.

v

A

column

function

that

can

be

resolved

using

an

index

(for

example

MIN

or

MAX)

will

not

check

for

nulls

and

warning

SQLSTATE

01003

is

not

returned.

v

A

warning

is

returned

and

the

duplicate

unique

constraint

is

ignored.

v

An

error

is

returned

when

no

privilege

is

granted.

SQL92E

Defines

the

ISO/ANS

SQL92

rules

as

follows:

v

To

support

checking

of

SQLCODE

or

SQLSTATE

values,

variables

by

this

name

can

be

declared

in

the

host

variable

declare

section

(if

neither

is

declared,

SQLCODE

is

assumed

during

precompilation).

v

C

null-terminated

strings

are

padded

with

blanks

and

always

include

a

null-terminating

character,

even

if

truncation

occurs.

v

The

FOR

UPDATE

clause

is

optional

for

all

columns

to

be

updated

in

a

positioned

UPDATE.

v

A

searched

UPDATE

or

DELETE

requires

SELECT

privilege

on

the

object

table

of

the

UPDATE

or

DELETE

statement

if

a

column

of

the

object

table

is

referenced

in

the

search

condition

or

on

the

right

hand

side

of

the

assignment

clause.

v

A

column

function

that

can

be

resolved

using

an

index

(for

example

MIN

or

MAX)

will

also

check

for

nulls

and

return

warning

SQLSTATE

01003

if

there

were

any

nulls.

v

An

error

is

returned

when

a

duplicate

unique

constraint

is

included

in

a

CREATE

or

ALTER

TABLE

statement.

v

An

error

is

returned

when

no

privilege

is

granted

and

the

grantor

has

no

privileges

on

the

object

(otherwise

a

warning

is

returned).

KEEPDYNAMIC

Specifies

whether

dynamic

SQL

statements

are

to

be

kept

after

commit

PRECOMPILE

856

Common

Criteria

Certification:

Administration

and

User

Documentation

points.

Supported

by

DB2

for

OS/390

only.

For

a

list

of

supported

option

values,

refer

to

the

documentation

for

DB2

for

OS/390.

LEVEL

consistency-token

Defines

the

level

of

a

module

using

the

consistency

token.

The

consistency

token

is

any

alphanumeric

value

up

to

8

characters

in

length.

The

RDB

package

consistency

token

verifies

that

the

requester’s

application

and

the

relational

database

package

are

synchronized.

Note:

This

option

is

not

recommended

for

general

use.

LONGERROR

Indicates

whether

long

host

variable

declarations

will

be

treated

as

an

error.

For

portability,

sqlint32

can

be

used

as

a

declaration

for

an

INTEGER

column

in

precompiled

C

and

C++

code.

NO

Does

not

generate

errors

for

the

use

of

long

host

variable

declarations.

This

is

the

default

for

32

bit

systems

and

for

64

bit

NT

systems

where

long

host

variables

can

be

used

as

declarations

for

INTEGER

columns.

The

use

of

this

option

on

64

bit

UNIX

platforms

will

allow

long

host

variables

to

be

used

as

declarations

for

BIGINT

columns.

YES

Generates

errors

for

the

use

of

long

host

variable

declarations.

This

is

the

default

for

64

bit

UNIX

systems.

MESSAGES

message-file

Specifies

the

destination

for

warning,

error,

and

completion

status

messages.

A

message

file

is

created

whether

the

bind

is

successful

or

not.

If

a

message

file

name

is

not

specified,

the

messages

are

written

to

standard

output.

If

the

complete

path

to

the

file

is

not

specified,

the

current

directory

is

used.

If

the

name

of

an

existing

file

is

specified,

the

contents

of

the

file

are

overwritten.

NOLINEMACRO

Suppresses

the

generation

of

the

#line

macros

in

the

output

.c

file.

Useful

when

the

file

is

used

with

development

tools

which

require

source

line

information

such

as

profiles,

cross-reference

utilities,

and

debuggers.

Note:

This

precompile

option

is

used

for

the

C/C++

programming

languages

only.

OPTHINT

Controls

whether

query

optimization

hints

are

used

for

static

SQL.

Supported

by

DB2

for

OS/390

only.

For

a

list

of

supported

option

values,

refer

to

the

documentation

for

DB2

for

OS/390.

OPTLEVEL

Indicates

whether

the

C/C++

precompiler

is

to

optimize

initialization

of

internal

SQLDAs

when

host

variables

are

used

in

SQL

statements.

Such

optimization

can

increase

performance

when

a

single

SQL

statement

(such

as

FETCH)

is

used

inside

a

tight

loop.

0

Instructs

the

precompiler

not

to

optimize

SQLDA

initialization.

1

Instructs

the

precompiler

to

optimize

SQLDA

initialization.

This

value

should

not

be

specified

if

the

application

uses:

v

pointer

host

variables,

as

in

the

following

example:

PRECOMPILE

Chapter

24.

Commands

for

Users

857

exec

sql

begin

declare

section;

char

(*name)[20];

short

*id;

exec

sql

end

declare

section;

v

C++

data

members

directly

in

SQL

statements.

OUTPUT

filename

Overrides

the

default

name

of

the

modified

source

file

produced

by

the

compiler.

It

can

include

a

path.

OS400NAMING

Specifies

which

naming

option

is

to

be

used

when

accessing

DB2

UDB

for

iSeries

data.

Supported

by

DB2

UDB

for

iSeries

only.

For

a

list

of

supported

option

values,

refer

to

the

documentation

for

DB2

for

iSeries.

Please

note

that

because

of

the

slashes

used

as

separators,

a

DB2

utility

can

still

report

a

syntax

error

at

execution

time

on

certain

SQL

statements

which

use

the

iSeries

system

naming

convention,

even

though

the

utility

might

have

been

precompiled

or

bound

with

the

OS400NAMING

SYSTEM

option.

For

example,

the

Command

Line

Processor

will

report

a

syntax

error

on

an

SQL

CALL

statement

if

the

iSeries

system

naming

convention

is

used,

whether

or

not

it

has

been

precompiled

or

bound

using

the

OS400NAMING

SYSTEM

option.

OWNER

authorization-id

Designates

a

30-character

authorization

identifier

for

the

package

owner.

The

owner

must

have

the

privileges

required

to

execute

the

SQL

statements

contained

in

the

package.

Only

a

user

with

SYSADM

or

DBADM

authority

can

specify

an

authorization

identifier

other

than

the

user

ID.

The

default

value

is

the

primary

authorization

ID

of

the

precompile/bind

process.

SYSIBM,

SYSCAT,

and

SYSSTAT

are

not

valid

values

for

this

option.

PACKAGE

Creates

a

package.

If

neither

package,

bindfile,

nor

syntax

is

specified,

a

package

is

created

in

the

database

by

default.

USING

package-name

The

name

of

the

package

that

is

to

be

generated

by

the

precompiler.

If

a

name

is

not

entered,

the

name

of

the

application

program

source

file

(minus

extension

and

folded

to

uppercase)

is

used.

Maximum

length

is

8

characters.

PREPROCESSOR

″preprocessor-command″

Specifies

the

preprocessor

command

that

can

be

executed

by

the

precompiler

before

it

processes

embedded

SQL

statements.

The

preprocessor

command

string

(maximum

length

1024

bytes)

must

be

enclosed

either

by

double

or

by

single

quotation

marks.

This

option

enables

the

use

of

macros

within

the

declare

section.

A

valid

preprocessor

command

is

one

that

can

be

issued

from

the

command

line

to

invoke

the

preprocessor

without

specifying

a

source

file.

For

example,

xlc

-P

-DMYMACRO=0

QUALIFIER

qualifier-name

Provides

an

30-character

implicit

qualifier

for

unqualified

objects

contained

in

the

package.

The

default

is

the

owner’s

authorization

ID,

whether

or

not

owner

is

explicitly

specified.

QUERYOPT

optimization-level

Indicates

the

desired

level

of

optimization

for

all

static

SQL

statements

PRECOMPILE

858

Common

Criteria

Certification:

Administration

and

User

Documentation

contained

in

the

package.

The

default

value

is

5.

The

SET

CURRENT

QUERY

OPTIMIZATION

statement

describes

the

complete

range

of

optimization

levels

available.

This

DB2

precompile/bind

option

is

not

supported

by

DRDA.

RELEASE

Indicates

whether

resources

are

released

at

each

COMMIT

point,

or

when

the

application

terminates.

This

DRDA

precompile/bind

option

is

not

supported

by

DB2.

COMMIT

Release

resources

at

each

COMMIT

point.

Used

for

dynamic

SQL

statements.

DEALLOCATE

Release

resources

only

when

the

application

terminates.

REOPT

Specifies

whether

to

have

DB2

optimize

an

access

path

using

values

for

host

variables,

parameter

markers,

and

special

registers.

Valid

values

are:

NONE

The

access

path

for

a

given

SQL

statement

containing

host

variables,

parameter

markers

or

special

registers

will

not

be

optimized

using

real

values

for

these

variables.

The

default

estimates

for

the

these

variables

will

be

used

instead,

and

this

plan

is

cached

and

used

subsequently.

This

is

the

default

behavior.

ONCE

The

access

path

for

a

given

SQL

statement

will

be

optimized

using

the

real

values

of

the

host

variables,

parameter

markers

or

special

registers

when

the

query

is

first

executed.

This

plan

is

cached

and

used

subsequently.

ALWAYS

The

access

path

for

a

given

SQL

statement

will

always

be

compiled

and

reoptimized

using

the

values

of

the

host

variables,

parameter

markers

or

special

registers

known

at

each

execution

time.

REOPT

/

NOREOPT

VARS

These

options

have

been

replaced

by

REOPT

ALWAYS

and

REOPT

NONE;

however,

they

are

still

supported

for

back-level

compatibility.

Specifies

whether

to

have

DB2

determine

an

access

path

at

run

time

using

values

for

host

variables,

parameter

markers,

and

special

registers.

Supported

by

DB2

for

OS/390

only.

For

a

list

of

supported

option

values,

refer

to

the

documentation

for

DB2

for

OS/390.

SQLCA

For

FORTRAN

applications

only.

This

option

is

ignored

if

it

is

used

with

other

languages.

NONE

Specifies

that

the

modified

source

code

is

not

consistent

with

the

SAA

definition.

SAA

Specifies

that

the

modified

source

code

is

consistent

with

the

SAA

definition.

SQLERROR

Indicates

whether

to

create

a

package

or

a

bind

file

if

an

error

is

encountered.

PRECOMPILE

Chapter

24.

Commands

for

Users

859

CHECK

Specifies

that

the

target

system

performs

all

syntax

and

semantic

checks

on

the

SQL

statements

being

bound.

A

package

will

not

be

created

as

part

of

this

process.

If,

while

binding,

an

existing

package

with

the

same

name

and

version

is

encountered,

the

existing

package

is

neither

dropped

nor

replaced

even

if

action

replace

was

specified.

CONTINUE

Creates

a

package,

even

if

errors

occur

when

binding

SQL

statements.

Those

statements

that

failed

to

bind

for

authorization

or

existence

reasons

can

be

incrementally

bound

at

execution

time

if

VALIDATE

RUN

is

also

specified.

Any

attempt

to

execute

them

at

run

time

generates

an

error

(SQLCODE

-525,

SQLSTATE

51015).

NOPACKAGE

A

package

or

a

bind

file

is

not

created

if

an

error

is

encountered.

SQLFLAG

Identifies

and

reports

on

deviations

from

the

SQL

language

syntax

specified

in

this

option.

A

bind

file

or

a

package

is

created

only

if

the

bindfile

or

the

package

option

is

specified,

in

addition

to

the

sqlflag

option.

Local

syntax

checking

is

performed

only

if

one

of

the

following

options

is

specified:

v

bindfile

v

package

v

sqlerror

check

v

syntax

If

sqlflag

is

not

specified,

the

flagger

function

is

not

invoked,

and

the

bind

file

or

the

package

is

not

affected.

SQL92E

SYNTAX

The

SQL

statements

will

be

checked

against

ANSI

or

ISO

SQL92

Entry

level

SQL

language

format

and

syntax

with

the

exception

of

syntax

rules

that

would

require

access

to

the

database

catalog.

Any

deviation

is

reported

in

the

precompiler

listing.

MVSDB2V23

SYNTAX

The

SQL

statements

will

be

checked

against

MVS

DB2

Version

2.3

SQL

language

syntax.

Any

deviation

from

the

syntax

is

reported

in

the

precompiler

listing.

MVSDB2V31

SYNTAX

The

SQL

statements

will

be

checked

against

MVS

DB2

Version

3.1

SQL

language

syntax.

Any

deviation

from

the

syntax

is

reported

in

the

precompiler

listing.

MVSDB2V41

SYNTAX

The

SQL

statements

will

be

checked

against

MVS

DB2

Version

4.1

SQL

language

syntax.

Any

deviation

from

the

syntax

is

reported

in

the

precompiler

listing.

SORTSEQ

Specifies

which

sort

sequence

table

to

use

on

the

iSeries

system.

Supported

by

DB2

UDB

for

iSeries

only.

For

a

list

of

supported

option

values,

refer

to

the

documentation

for

DB2

for

iSeries.

PRECOMPILE

860

Common

Criteria

Certification:

Administration

and

User

Documentation

SQLRULES

Specifies:

v

Whether

type

2

CONNECTs

are

to

be

processed

according

to

the

DB2

rules

or

the

Standard

(STD)

rules

based

on

ISO/ANS

SQL92.

v

How

a

user

or

application

can

specify

the

format

of

LOB

answer

set

columns.

DB2

v

Permits

the

SQL

CONNECT

statement

to

switch

the

current

connection

to

another

established

(dormant)

connection.

v

The

user

or

application

can

specify

the

format

of

a

LOB

column

only

during

the

first

fetch

request.

STD

v

Permits

the

SQL

CONNECT

statement

to

establish

a

new

connection

only.

The

SQL

SET

CONNECTION

statement

must

be

used

to

switch

to

a

dormant

connection.

v

The

user

or

application

can

change

the

format

of

a

LOB

column

with

each

fetch

request.

SQLWARN

Indicates

whether

warnings

will

be

returned

from

the

compilation

of

dynamic

SQL

statements

(via

PREPARE

or

EXECUTE

IMMEDIATE),

or

from

describe

processing

(via

PREPARE...INTO

or

DESCRIBE).

This

DB2

precompile/bind

option

is

not

supported

by

DRDA.

NO

Warnings

will

not

be

returned

from

the

SQL

compiler.

YES

Warnings

will

be

returned

from

the

SQL

compiler.

Note:

SQLCODE

+238

is

an

exception.

It

is

returned

regardless

of

the

sqlwarn

option

value.

STATICREADONLY

Determines

whether

static

cursors

will

be

treated

as

being

READ

ONLY.

This

DB2

precompile/bind

option

is

not

supported

by

DRDA.

NO

All

static

cursors

will

take

on

the

attributes

as

would

normally

be

generated

given

the

statement

text

and

the

setting

of

the

LANGLEVEL

precompile

option.

YES

Any

static

cursor

that

does

not

contain

the

FOR

UPDATE

or

FOR

READ

ONLY

clause

will

be

considered

READ

ONLY.

STRDEL

Designates

whether

an

apostrophe

(’)

or

double

quotation

marks

(")

will

be

used

as

the

string

delimiter

within

SQL

statements.

This

DRDA

precompile/bind

option

is

not

supported

by

DB2.

The

DRDA

server

will

use

a

system

defined

default

value

if

this

option

is

not

specified.

APOSTROPHE

Use

an

apostrophe

(’)

as

the

string

delimiter.

QUOTE

Use

double

quotation

marks

(")

as

the

string

delimiter.

SYNCPOINT

Specifies

how

commits

or

rollbacks

are

to

be

coordinated

among

multiple

database

connections.

PRECOMPILE

Chapter

24.

Commands

for

Users

861

NONE

Specifies

that

no

Transaction

Manager

(TM)

is

to

be

used

to

perform

a

two-phase

commit,

and

does

not

enforce

single

updater,

multiple

reader.

A

COMMIT

is

sent

to

each

participating

database.

The

application

is

responsible

for

recovery

if

any

of

the

commits

fail.

ONEPHASE

Specifies

that

no

TM

is

to

be

used

to

perform

a

two-phase

commit.

A

one-phase

commit

is

to

be

used

to

commit

the

work

done

by

each

database

in

multiple

database

transactions.

TWOPHASE

Specifies

that

the

TM

is

required

to

coordinate

two-phase

commits

among

those

databases

that

support

this

protocol.

SYNTAX

Suppresses

the

creation

of

a

package

or

a

bind

file

during

precompilation.

This

option

can

be

used

to

check

the

validity

of

the

source

file

without

modifying

or

altering

existing

packages

or

bind

files.

Syntax

is

a

synonym

for

sqlerror

check.

If

syntax

is

used

together

with

the

package

option,

package

is

ignored.

TARGET

Instructs

the

precompiler

to

produce

modified

code

tailored

to

one

of

the

supported

compilers

on

the

current

platform.

IBMCOB

On

AIX,

code

is

generated

for

the

IBM

COBOL

Set

for

AIX

compiler.

MFCOB

Code

is

generated

for

the

Micro

Focus

COBOL

compiler.

This

is

the

default

if

a

target

value

is

not

specified

with

the

COBOL

precompiler

on

all

UNIX

platforms

and

Windows

NT.

ANSI_COBOL

Code

compatible

with

the

ANS

X3.23-1985

standard

is

generated.

C

Code

compatible

with

the

C

compilers

supported

by

DB2

on

the

current

platform

is

generated.

CPLUSPLUS

Code

compatible

with

the

C++

compilers

supported

by

DB2

on

the

current

platform

is

generated.

FORTRAN

Code

compatible

with

the

FORTRAN

compilers

supported

by

DB2

on

the

current

platform

is

generated.

TEXT

label

The

description

of

a

package.

Maximum

length

is

255

characters.

The

default

value

is

blanks.

This

DRDA

precompile/bind

option

is

not

supported

by

DB2.

TRANSFORM

GROUP

Specifies

the

transform

group

name

to

be

used

by

static

SQL

statements

for

exchanging

user-defined

structured

type

values

with

host

programs.

This

transform

group

is

not

used

for

dynamic

SQL

statements

or

for

the

exchange

of

parameters

and

results

with

external

functions

or

methods.

This

option

is

not

supported

by

DRDA

servers.

PRECOMPILE

862

Common

Criteria

Certification:

Administration

and

User

Documentation

groupname

An

SQL

identifier

of

up

to

18

characters

in

length.

A

group

name

cannot

include

a

qualifier

prefix

and

cannot

begin

with

the

prefix

SYS

since

this

is

reserved

for

database

use.

In

a

static

SQL

statement

that

interacts

with

host

variables,

the

name

of

the

transform

group

to

be

used

for

exchanging

values

of

a

structured

type

is

as

follows:

v

The

group

name

in

the

TRANSFORM

GROUP

bind

option,

if

any

v

The

group

name

in

the

TRANSFORM

GROUP

prep

option

as

specified

at

the

original

precompilation

time,

if

any

v

The

DB2_PROGRAM

group,

if

a

transform

exists

for

the

given

type

whose

group

name

is

DB2_PROGRAM

v

No

transform

group

is

used

if

none

of

the

above

conditions

exist.

The

following

errors

are

possible

during

the

bind

of

a

static

SQL

statement:

v

SQLCODE

yyy,

SQLSTATE

xxxxx:

A

transform

is

needed,

but

no

static

transform

group

has

been

selected.

v

SQLCODE

yyy,

SQLSTATE

xxxxx:

The

selected

transform

group

does

not

include

a

necessary

transform

(TO

SQL

for

input

variables,

FROM

SQL

for

output

variables)

for

the

data

type

that

needs

to

be

exchanged.

v

SQLCODE

yyy,

SQLSTATE

xxxxx:

The

result

type

of

the

FROM

SQL

transform

is

not

compatible

with

the

type

of

the

output

variable,

or

the

parameter

type

of

the

TO

SQL

transform

is

not

compatible

with

the

type

of

the

input

variable.

In

these

error

messages,

yyyyy

is

replaced

by

the

SQL

error

code,

and

xxxxx

by

the

SQL

state

code.

VALIDATE

Determines

when

the

database

manager

checks

for

authorization

errors

and

object

not

found

errors.

The

package

owner

authorization

ID

is

used

for

validity

checking.

BIND

Validation

is

performed

at

precompile/bind

time.

If

all

objects

do

not

exist,

or

all

authority

is

not

held,

error

messages

are

produced.

If

sqlerror

continue

is

specified,

a

package/bind

file

is

produced

despite

the

error

message,

but

the

statements

in

error

are

not

executable.

RUN

Validation

is

attempted

at

bind

time.

If

all

objects

exist,

and

all

authority

is

held,

no

further

checking

is

performed

at

execution

time.

If

all

objects

do

not

exist,

or

all

authority

is

not

held

at

precompile/bind

time,

warning

messages

are

produced,

and

the

package

is

successfully

bound,

regardless

of

the

sqlerror

continue

option

setting.

However,

authority

checking

and

existence

checking

for

SQL

statements

that

failed

these

checks

during

the

precompile/bind

process

can

be

redone

at

execution

time.

VERSION

Defines

the

version

identifier

for

a

package.

If

this

option

is

not

specified,

the

package

version

will

be

″″

(the

empty

string).

PRECOMPILE

Chapter

24.

Commands

for

Users

863

version-id

Specifies

a

version

identifier

that

is

any

alphanumeric

value,

$,

#,

@,

_,

-,

or

.,

up

to

64

characters

in

length.

AUTO

The

version

identifier

will

be

generated

from

the

consistency

token.

If

the

consistency

token

is

a

timestamp

(it

will

be

if

the

LEVEL

option

is

not

specified),

the

timestamp

is

converted

into

ISO

character

format

and

is

used

as

the

version

identifier.

WCHARTYPE

Specifies

the

format

for

graphic

data.

CONVERT

Host

variables

declared

using

the

wchar_t

base

type

will

be

treated

as

containing

data

in

wchar_t

format.

Since

this

format

is

not

directly

compatible

with

the

format

of

graphic

data

stored

in

the

database

(DBCS

format),

input

data

in

wchar_t

host

variables

is

implicitly

converted

to

DBCS

format

on

behalf

of

the

application,

using

the

ANSI

C

function

wcstombs().

Similarly,

output

DBCS

data

is

implicitly

converted

to

wchar_t

format,

using

mbstowcs(),

before

being

stored

in

host

variables.

NOCONVERT

Host

variables

declared

using

the

wchar_t

base

type

will

be

treated

as

containing

data

in

DBCS

format.

This

is

the

format

used

within

the

database

for

graphic

data;

it

is,

however,

different

from

the

native

wchar_t

format

implemented

in

the

C

language.

Using

NOCONVERT

means

that

graphic

data

will

not

undergo

conversion

between

the

application

and

the

database,

which

can

improve

efficiency.

The

application

is,

however,

responsible

for

ensuring

that

data

in

wchar_t

format

is

not

passed

to

the

database

manager.

When

this

option

is

used,

wchar_t

host

variables

should

not

be

manipulated

with

the

C

wide

character

string

functions,

and

should

not

be

initialized

with

wide

character

literals

(L-literals).

Usage

notes:

A

modified

source

file

is

produced,

which

contains

host

language

equivalents

to

the

SQL

statements.

By

default,

a

package

is

created

in

the

database

to

which

a

connection

has

been

established.

The

name

of

the

package

is

the

same

as

the

file

name

(minus

the

extension

and

folded

to

uppercase),

up

to

a

maximum

of

8

characters.

Following

connection

to

a

database,

PREP

executes

under

the

transaction

that

was

started.

PREP

then

issues

a

COMMIT

or

a

ROLLBACK

to

terminate

the

current

transaction

and

start

another

one.

Creating

a

package

with

a

schema

name

that

does

not

already

exist

results

in

the

implicit

creation

of

that

schema.

The

schema

owner

is

SYSIBM.

The

CREATEIN

privilege

on

the

schema

is

granted

to

PUBLIC.

During

precompilation,

an

Explain

Snapshot

is

not

taken

unless

a

package

is

created

and

explsnap

has

been

specified.

The

snapshot

is

put

into

the

Explain

tables

of

the

user

creating

the

package.

Similarly,

Explain

table

information

is

only

captured

when

explain

is

specified,

and

a

package

is

created.

PRECOMPILE

864

Common

Criteria

Certification:

Administration

and

User

Documentation

Precompiling

stops

if

a

fatal

error

or

more

than

100

errors

occur.

If

a

fatal

error

occurs,

the

utility

stops

precompiling,

attempts

to

close

all

files,

and

discards

the

package.

When

a

package

exhibits

bind

behavior,

the

following

will

be

true:

1.

The

implicit

or

explicit

value

of

the

BIND

option

OWNER

will

be

used

for

authorization

checking

of

dynamic

SQL

statements.

2.

The

implicit

or

explicit

value

of

the

BIND

option

QUALIFIER

will

be

used

as

the

implicit

qualifier

for

qualification

of

unqualified

objects

within

dynamic

SQL

statements.

3.

The

value

of

the

special

register

CURRENT

SCHEMA

has

no

effect

on

qualification.

In

the

event

that

multiple

packages

are

referenced

during

a

single

connection,

all

dynamic

SQL

statements

prepared

by

those

packages

will

exhibit

the

behavior

as

specified

by

the

DYNAMICRULES

option

for

that

specific

package

and

the

environment

they

are

used

in.

If

an

SQL

statement

was

found

to

be

in

error

and

the

PRECOMPILE

option

SQLERROR

CONTINUE

was

specified,

the

statement

will

be

marked

as

invalid

and

another

PRECOMPILE

must

be

issued

in

order

to

change

the

state

of

the

SQL

statement.

Implicit

and

explicit

rebind

will

not

change

the

state

of

an

invalid

statement

in

a

package

bound

with

VALIDATE

RUN.

A

statement

can

change

from

static

to

incremental

bind

or

incremental

bind

to

static

across

implicit

and

explicit

rebinds

depending

on

whether

or

not

object

existence

or

authority

problems

exist

during

the

rebind.

Binding

a

package

with

REOPT

ONCE

or

REOPT

ALWAYS

might

change

static

and

dynamic

statement

compilation

and

performance.

Related

concepts:

v

“Authorization

Considerations

for

Dynamic

SQL”

on

page

951

v

“WCHARTYPE

Precompiler

Option

in

C

and

C++”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Effect

of

DYNAMICRULES

bind

option

on

dynamic

SQL”

on

page

952

v

“Effects

of

REOPT

on

static

SQL”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Effects

of

REOPT

on

dynamic

SQL”

in

the

Application

Development

Guide:

Programming

Client

Applications

Related

tasks:

v

“Specifying

row

blocking

to

reduce

overhead”

in

the

Administration

Guide:

Performance

Related

reference:

v

“SET

CURRENT

QUERY

OPTIMIZATION

statement”

in

the

SQL

Reference,

Volume

2

v

“BIND”

on

page

232

v

“Datetime

values”

in

the

SQL

Reference,

Volume

1

PRECOMPILE

Chapter

24.

Commands

for

Users

865

REBIND

Allows

the

user

to

recreate

a

package

stored

in

the

database

without

the

need

for

a

bind

file.

Authorization:

One

of

the

following:

v

sysadm

or

dbadm

authority

v

ALTERIN

privilege

on

the

schema

v

BIND

privilege

on

the

package.

The

authorization

ID

logged

in

the

BOUNDBY

column

of

the

SYSCAT.PACKAGES

system

catalog

table,

which

is

the

ID

of

the

most

recent

binder

of

the

package,

is

used

as

the

binder

authorization

ID

for

the

rebind,

and

for

the

default

schema

for

table

references

in

the

package.

Note

that

this

default

qualifier

can

be

different

from

the

authorization

ID

of

the

user

executing

the

rebind

request.

REBIND

will

use

the

same

bind

options

that

were

specified

when

the

package

was

created.

Required

connection:

Database.

If

no

database

connection

exists,

and

if

implicit

connect

is

enabled,

a

connection

to

the

default

database

is

made.

Command

syntax:

��

REBIND

package-name

PACKAGE

VERSION

version-name

�

�

RESOLVE

ANY

CONSERVATIVE

REOPT

NONE

REOPT

ONCE

REOPT

ALWAYS

��

Command

parameters:

PACKAGE

package-name

The

qualified

or

unqualified

name

that

designates

the

package

to

be

rebound.

VERSION

version-name

The

specific

version

of

the

package

to

be

rebound.

When

the

version

is

not

specified,

it

is

taken

to

be

″″

(the

empty

string).

RESOLVE

Specifies

whether

rebinding

of

the

package

is

to

be

performed

with

or

without

conservative

binding

semantics.

This

affects

whether

new

functions

and

data

types

are

considered

during

function

resolution

and

type

resolution

on

static

DML

statements

in

the

package.

This

option

is

not

supported

by

DRDA.

Valid

values

are:

ANY

Any

of

the

functions

and

types

in

the

SQL

path

are

considered

for

function

and

type

resolution.

Conservative

binding

semantics

are

not

used.

This

is

the

default.

CONSERVATIVE

Only

functions

and

types

in

the

SQL

path

that

were

defined

before

REBIND

866

Common

Criteria

Certification:

Administration

and

User

Documentation

the

last

explicit

bind

time

stamp

are

considered

for

function

and

type

resolution.

Conservative

binding

semantics

are

used.

This

option

is

not

supported

for

an

inoperative

package.

REOPT

Specifies

whether

to

have

DB2

optimize

an

access

path

using

values

for

host

variables,

parameter

markers,

and

special

registers.

NONE

The

access

path

for

a

given

SQL

statement

containing

host

variables,

parameter

markers

or

special

registers

will

not

be

optimized

using

real

values

for

these

variables.

The

default

estimates

for

the

these

variables

will

be

used

instead,

and

this

plan

is

cached

and

used

subsequently.

This

is

the

default

behavior.

ONCE

The

access

path

for

a

given

SQL

statement

will

be

optimized

using

the

real

values

of

the

host

variables,

parameter

markers

or

special

registers

when

the

query

is

first

executed.

This

plan

is

cached

and

used

subsequently.

ALWAYS

The

access

path

for

a

given

SQL

statement

will

always

be

compiled

and

reoptimized

using

the

values

of

the

host

variables,

parameter

markers

or

special

registers

known

at

each

execution

time.

Usage

notes:

REBIND

does

not

automatically

commit

the

transaction

following

a

successful

rebind.

The

user

must

explicitly

commit

the

transaction.

This

enables

″what

if″

analysis,

in

which

the

user

updates

certain

statistics,

and

then

tries

to

rebind

the

package

to

see

what

changes.

It

also

permits

multiple

rebinds

within

a

unit

of

work.

Note:

The

REBIND

command

will

commit

the

transaction

if

auto-commit

is

enabled.

This

command:

v

Provides

a

quick

way

to

recreate

a

package.

This

enables

the

user

to

take

advantage

of

a

change

in

the

system

without

a

need

for

the

original

bind

file.

For

example,

if

it

is

likely

that

a

particular

SQL

statement

can

take

advantage

of

a

newly

created

index,

the

REBIND

command

can

be

used

to

recreate

the

package.

REBIND

can

also

be

used

to

recreate

packages

after

RUNSTATS

has

been

executed,

thereby

taking

advantage

of

the

new

statistics.

v

Provides

a

method

to

recreate

inoperative

packages.

Inoperative

packages

must

be

explicitly

rebound

by

invoking

either

the

bind

utility

or

the

rebind

utility.

A

package

will

be

marked

inoperative

(the

VALID

column

of

the

SYSCAT.PACKAGES

system

catalog

will

be

set

to

X)

if

a

function

instance

on

which

the

package

depends

is

dropped.

v

Gives

users

control

over

the

rebinding

of

invalid

packages.

Invalid

packages

will

be

automatically

(or

implicitly)

rebound

by

the

database

manager

when

they

are

executed.

This

might

result

in

a

noticeable

delay

in

the

execution

of

the

first

SQL

request

for

the

invalid

package.

It

may

be

desirable

to

explicitly

rebind

invalid

packages,

rather

than

allow

the

system

to

automatically

rebind

them,

in

order

to

eliminate

the

initial

delay

and

to

prevent

unexpected

SQL

error

messages

which

might

be

returned

in

case

the

implicit

rebind

fails.

For

example,

following

migration,

all

packages

stored

in

the

database

will

be

invalidated

by

the

DB2

Version

8

migration

process.

Given

that

this

might

involve

a

large

number

of

REBIND

Chapter

24.

Commands

for

Users

867

packages,

it

may

be

desirable

to

explicitly

rebind

all

of

the

invalid

packages

at

one

time.

This

explicit

rebinding

can

be

accomplished

using

BIND,

REBIND,

or

the

db2rbind

tool).

If

multiple

versions

of

a

package

(many

versions

with

the

same

package

name

and

creator)

exist,

only

one

version

can

be

rebound

at

once.

If

not

specified

in

the

VERSION

option,

the

package

version

defaults

to

be

″″.

Even

if

there

exists

only

one

package

with

a

name

that

matches,

it

will

not

be

rebound

unless

its

version

matches

the

one

specified

or

the

default.

The

choice

of

whether

to

use

BIND

or

REBIND

to

explicitly

rebind

a

package

depends

on

the

circumstances.

It

is

recommended

that

REBIND

be

used

whenever

the

situation

does

not

specifically

require

the

use

of

BIND,

since

the

performance

of

REBIND

is

significantly

better

than

that

of

BIND.

BIND

must

be

used,

however:

v

When

there

have

been

modifications

to

the

program

(for

example,

when

SQL

statements

have

been

added

or

deleted,

or

when

the

package

does

not

match

the

executable

for

the

program).

v

When

the

user

wishes

to

modify

any

of

the

bind

options

as

part

of

the

rebind.

REBIND

does

not

support

any

bind

options.

For

example,

if

the

user

wishes

to

have

privileges

on

the

package

granted

as

part

of

the

bind

process,

BIND

must

be

used,

since

it

has

a

grant

option.

v

When

the

package

does

not

currently

exist

in

the

database.

v

When

detection

of

all

bind

errors

is

desired.

REBIND

only

returns

the

first

error

it

detects,

whereas

the

BIND

command

returns

the

first

100

errors

that

occur

during

binding.

REBIND

is

supported

by

DB2

Connect.

If

REBIND

is

executed

on

a

package

that

is

in

use

by

another

user,

the

rebind

will

not

occur

until

the

other

user’s

logical

unit

of

work

ends,

because

an

exclusive

lock

is

held

on

the

package’s

record

in

the

SYSCAT.PACKAGES

system

catalog

table

during

the

rebind.

When

REBIND

is

executed,

the

database

manager

recreates

the

package

from

the

SQL

statements

stored

in

the

SYSCAT.STATEMENTS

system

catalog

table.

If

REBIND

encounters

an

error,

processing

stops,

and

an

error

message

is

returned.

REBIND

will

re-explain

packages

that

were

created

with

the

explsnap

bind

option

set

to

YES

or

ALL

(indicated

in

the

EXPLAIN_SNAPSHOT

column

in

the

SYSCAT.PACKAGES

catalog

table

entry

for

the

package)

or

with

the

explain

bind

option

set

to

YES

or

ALL

(indicated

in

the

EXPLAIN_MODE

column

in

the

SYSCAT.PACKAGES

catalog

table

entry

for

the

package).

The

Explain

tables

used

are

those

of

the

REBIND

requester,

not

the

original

binder.

If

an

SQL

statement

was

found

to

be

in

error

and

the

BIND

option

SQLERROR

CONTINUE

was

specified,

the

statement

will

be

marked

as

invalid

even

if

the

problem

has

been

corrected.

REBIND

will

not

change

the

state

of

an

invalid

statement.

In

a

package

bound

with

VALIDATE

RUN,

a

statement

can

change

from

static

to

incremental

bind

or

incremental

bind

to

static

across

a

REBIND

depending

on

whether

or

not

object

existence

or

authority

problems

exist

during

the

REBIND.

Rebinding

a

package

with

REOPT

ONCE/ALWAYS

might

change

static

and

dynamic

statement

compilation

and

performance.

REBIND

868

Common

Criteria

Certification:

Administration

and

User

Documentation

If

REOPT

is

not

specified,

REBIND

will

preserve

the

existing

REOPT

value

used

at

precompile

or

bind

time.

Related

reference:

v

“BIND”

on

page

232

v

“RUNSTATS

Command”

in

the

Command

Reference

v

“db2rbind

-

Rebind

all

Packages”

on

page

263

REBIND

Chapter

24.

Commands

for

Users

869

REBIND

870

Common

Criteria

Certification:

Administration

and

User

Documentation

Chapter

25.

DB2

UDB

APIs

for

Users

sqlaprep

-

Precompile

Program

.

.

.

.

.

.

. 871

sqlarbnd

-

Rebind

.

.

.

.

.

.

.

.

.

.

.

. 873

sqleatcp

-

Attach

and

Change

Password

.

.

.

. 876

sqleatin

-

Attach

.

.

.

.

.

.

.

.

.

.

.

. 879

sqledtin

-

Detach

.

.

.

.

.

.

.

.

.

.

.

. 882

Following

are

the

application

programming

interfaces

(APIs)

that

correspond

to

the

DB2

UDB

commands

that

are

used

for

the

Common

Criteria

evaluation.

Note

that:

v

APIs

are

not

used

for

the

Common

Criteria

certification.

The

APIs

are

included

in

this

document

for

reasons

of

completeness

only.

v

Not

every

API

has

a

corresponding

command,

and

vice

versa.

sqlaprep

-

Precompile

Program

Processes

an

application

program

source

file

containing

embedded

SQL

statements.

A

modified

source

file

is

produced

containing

host

language

calls

for

the

SQL

statements

and,

by

default,

a

package

is

created

in

the

database.

Scope:

This

API

can

be

called

from

any

database

partition

server

in

db2nodes.cfg.

It

updates

the

database

catalogs

on

the

catalog

partition.

Its

effects

are

visible

to

all

database

partition

servers.

Authorization:

One

of

the

following:

v

sysadm

or

dbadm

authority

v

BINDADD

privilege

if

a

package

does

not

exist

and

one

of:

–

IMPLICIT_SCHEMA

authority

on

the

database

if

the

schema

name

of

the

package

does

not

exist

–

CREATEIN

privilege

on

the

schema

if

the

schema

name

of

the

package

exists
v

ALTERIN

privilege

on

the

schema

if

the

package

exists

v

BIND

privilege

on

the

package

if

it

exists.

The

user

also

needs

all

privileges

required

to

compile

any

static

SQL

statements

in

the

application.

Privileges

granted

to

groups

are

not

used

for

authorization

checking

of

static

statements.

If

the

user

has

sysadm

authority,

but

not

explicit

privileges

to

complete

the

bind,

the

database

manager

grants

explicit

dbadm

authority

automatically.

Required

connection:

Database

API

include

file:

sql.h

C

API

syntax:

©

Copyright

IBM

Corp.

1993-2004

871

/*

File:

sql.h

*/

/*

API:

sqlaprep

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlaprep

(

_SQLOLDCHAR

*pProgramName,

_SQLOLDCHAR

*pMsgFileName,

struct

sqlopt

*pPrepOptions,

struct

sqlca

*pSqlca);

/*

...

*/

Generic

API

syntax:

/*

File:

sql.h

*/

/*

API:

sqlgprep

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgprep

(

unsigned

short

MsgFileNameLen,

unsigned

short

ProgramNameLen,

struct

sqlca

*pSqlca,

struct

sqlopt

*pPrepOptions,

_SQLOLDCHAR

*pMsgFileName,

_SQLOLDCHAR

*pProgramName);

/*

...

*/

API

parameters:

MsgFileNameLen

Input.

A

2-byte

unsigned

integer

representing

the

length

of

the

message

file

name

in

bytes.

ProgramNameLen

Input.

A

2-byte

unsigned

integer

representing

the

length

of

the

program

name

in

bytes.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

pPrepOptions

Input.

A

structure

used

to

pass

precompile

options

to

the

API.

For

more

information

about

this

structure,

see

SQLOPT.

pMsgFileName

Input.

A

string

containing

the

destination

for

error,

warning,

and

informational

messages.

Can

be

the

path

and

the

name

of

an

operating

system

file,

or

a

standard

device.

If

a

file

already

exists,

it

is

overwritten.

If

it

does

not

exist,

a

file

is

created.

pProgramName

Input.

A

string

containing

the

name

of

the

application

to

be

precompiled.

Use

the

following

extensions:

v

.sqb

-

for

COBOL

applications

v

.sqc

-

for

C

applications

v

.sqC

-

for

UNIX

C++

applications

v

.sqf

-

for

FORTRAN

applications

v

.sqx

-

for

C++

applications

When

the

TARGET

option

is

used,

the

input

file

name

extension

does

not

have

to

be

from

this

predefined

list.

sqlaprep

-

Precompile

Program

872

Common

Criteria

Certification:

Administration

and

User

Documentation

The

preferred

extension

for

C++

applications

containing

embedded

SQL

on

UNIX

based

systems

is

sqC;

however,

the

sqx

convention,

which

was

invented

for

systems

that

are

not

case

sensitive,

is

tolerated

by

UNIX

based

systems.

REXX

API

syntax:

This

API

can

be

called

from

REXX

through

the

SQLDB2

interface.

Usage

notes:

A

modified

source

file

is

produced,

which

contains

host

language

equivalents

to

the

SQL

statements.

By

default,

a

package

is

created

in

the

database

to

which

a

connection

has

been

established.

The

name

of

the

package

is

the

same

as

the

program

file

name

(minus

the

extension

and

folded

to

uppercase),

up

to

a

maximum

of

8

characters.

Following

connection

to

a

database,

sqlaprep

executes

under

the

transaction

that

was

started.

PRECOMPILE

PROGRAM

then

issues

a

COMMIT

or

a

ROLLBACK

operation

to

terminate

the

current

transaction

and

start

another

one.

Precompiling

stops

if

a

fatal

error

or

more

than

100

errors

occur.

If

a

fatal

error

does

occur,

PRECOMPILE

PROGRAM

stops

precompiling,

attempts

to

close

all

files,

and

discards

the

package.

The

Precompile

option

types

and

values

are

defined

in

sql.h.

Related

reference:

v

“sqlabndx

-

Bind”

on

page

484

v

“SQLCA”

in

the

Administrative

API

Reference

v

“SQLOPT”

in

the

Administrative

API

Reference

Related

samples:

v

“dbpkg.sqc

--

How

to

work

with

packages

(C)”

v

“dbpkg.sqC

--

How

to

work

with

packages

(C++)”

sqlarbnd

-

Rebind

Allows

the

user

to

recreate

a

package

stored

in

the

database

without

the

need

for

a

bind

file.

Authorization:

One

of

the

following:

v

sysadm

or

dbadm

authority

v

ALTERIN

privilege

on

the

schema

v

BIND

privilege

on

the

package.

The

authorization

ID

logged

in

the

BOUNDBY

column

of

the

SYSCAT.PACKAGES

system

catalog

table,

which

is

the

ID

of

the

most

recent

binder

of

the

package,

is

used

as

the

binder

authorization

ID

for

the

rebind,

and

for

the

default

schema

for

table

references

in

the

package.

Note

that

this

default

qualifier

may

be

different

sqlaprep

-

Precompile

Program

Chapter

25.

DB2

UDB

APIs

for

Users

873

from

the

authorization

ID

of

the

user

executing

the

rebind

request.

REBIND

will

use

the

same

bind

options

that

were

specified

when

the

package

was

created.

Required

connection:

Database

API

include

file:

sql.h

C

API

syntax:

/*

File:

sql.h

*/

/*

API:

sqlarbnd

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlarbnd

(

char

*pPackageName,

struct

sqlca

*pSqlca,

struct

sqlopt

*pRebindOptions);

/*

...

*/

Generic

API

syntax:

/*

File:

sql.h

*/

/*

API:

sqlgrbnd

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgrbnd

(

unsigned

short

PackageNameLen,

char

*pPackageName,

struct

sqlca

*pSqlca,

struct

sqlopt

*pRebindOptions);

/*

...

*/

API

parameters:

PackageNameLen

Input.

A

2-byte

unsigned

integer

representing

the

length

of

the

package

name

in

bytes.

pPackageName

Input.

A

string

containing

the

qualified

or

unqualified

name

that

designates

the

package

to

be

rebound.

An

unqualified

package-name

is

implicitly

qualified

by

the

current

authorization

ID.

This

name

does

not

include

the

package

version.

When

specifying

a

package

that

has

a

version

that

is

not

the

empty

string,

then

the

version-id

must

be

specified

using

the

SQL_OPT_VERSION

rebind

option.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

pRebindOptions

Input.

A

pointer

to

the

SQLOPT

structure,

used

to

pass

rebind

options

to

the

API.

For

more

information

about

this

structure,

see

SQLOPT.

REXX

API

syntax:

This

API

can

be

called

from

REXX

through

the

SQLDB2

interface.

Usage

notes:

sqlarbnd

-

Rebind

874

Common

Criteria

Certification:

Administration

and

User

Documentation

REBIND

does

not

automatically

commit

the

transaction

following

a

successful

rebind.

The

user

must

explicitly

commit

the

transaction.

This

enables

″what

if″

analysis,

in

which

the

user

updates

certain

statistics,

and

then

tries

to

rebind

the

package

to

see

what

changes.

It

also

permits

multiple

rebinds

within

a

unit

of

work.

This

API:

v

Provides

a

quick

way

to

recreate

a

package.

This

enables

the

user

to

take

advantage

of

a

change

in

the

system

without

a

need

for

the

original

bind

file.

For

example,

if

it

is

likely

that

a

particular

SQL

statement

can

take

advantage

of

a

newly

created

index,

REBIND

can

be

used

to

recreate

the

package.

REBIND

can

also

be

used

to

recreate

packages

after

db2Runstats

has

been

executed,

thereby

taking

advantage

of

the

new

statistics.

v

Provides

a

method

to

recreate

inoperative

packages.

Inoperative

packages

must

be

explicitly

rebound

by

invoking

either

the

bind

utility

or

the

rebind

utility.

A

package

will

be

marked

inoperative

(the

VALID

column

of

the

SYSCAT.PACKAGES

system

catalog

will

be

set

to

X)

if

a

function

instance

on

which

the

package

depends

is

dropped.

The

rebind

conservative

option

is

not

supported

for

inoperative

packages.

v

Gives

users

control

over

the

rebinding

of

invalid

packages.

Invalid

packages

will

be

automatically

(or

implicitly)

rebound

by

the

database

manager

when

they

are

executed.

This

may

result

in

a

noticeable

delay

in

the

execution

of

the

first

SQL

request

for

the

invalid

package.

It

may

be

desirable

to

explicitly

rebind

invalid

packages,

rather

than

allow

the

system

to

automatically

rebind

them,

in

order

to

eliminate

the

initial

delay

and

to

prevent

unexpected

SQL

error

messages

which

may

be

returned

in

case

the

implicit

rebind

fails.

For

example,

following

migration,

all

packages

stored

in

the

database

will

be

invalidated

by

the

DB2

Version

5

migration

process.

Given

that

this

may

involve

a

large

number

of

packages,

it

may

be

desirable

to

explicitly

rebind

all

of

the

invalid

packages

at

one

time.

This

explicit

rebinding

can

be

accomplished

using

BIND,

REBIND,

or

the

db2rbind

tool.

The

choice

of

whether

to

use

BIND

or

REBIND

to

explicitly

rebind

a

package

depends

on

the

circumstances.

It

is

recommended

that

REBIND

be

used

whenever

the

situation

does

not

specifically

require

the

use

of

BIND,

since

the

performance

of

REBIND

is

significantly

better

than

that

of

BIND.

BIND

must

be

used,

however:

v

When

there

have

been

modifications

to

the

program

(for

example,

when

SQL

statements

have

been

added

or

deleted,

or

when

the

package

does

not

match

the

executable

for

the

program).

v

When

the

user

wishes

to

modify

any

of

the

bind

options

as

part

of

the

rebind.

REBIND

does

not

support

any

bind

options.

For

example,

if

the

user

wishes

to

have

privileges

on

the

package

granted

as

part

of

the

bind

process,

BIND

must

be

used,

since

it

has

an

SQL_GRANT_OPT

option.

v

When

the

package

does

not

currently

exist

in

the

database.

v

When

detection

of

all

bind

errors

is

desired.

REBIND

only

returns

the

first

error

it

detects,

and

then

ends,

whereas

the

BIND

command

returns

the

first

100

errors

that

occur

during

binding.

REBIND

is

supported

by

DB2

Connect.

If

REBIND

is

executed

on

a

package

that

is

in

use

by

another

user,

the

rebind

will

not

occur

until

the

other

user’s

logical

unit

of

work

ends,

because

an

exclusive

lock

is

held

on

the

package’s

record

in

the

SYSCAT.PACKAGES

system

catalog

table

during

the

rebind.

sqlarbnd

-

Rebind

Chapter

25.

DB2

UDB

APIs

for

Users

875

When

REBIND

is

executed,

the

database

manager

recreates

the

package

from

the

SQL

statements

stored

in

the

SYSCAT.STATEMENTS

system

catalog

table.

If

many

versions

with

the

same

package

number

and

creator

exist,

only

one

version

can

be

bound

at

once.

If

not

specified

using

the

SQL_OPT_VERSION

rebind

option,

the

VERSION

defaults

to

be

″″.

Even

if

there

is

only

one

package

with

a

name

and

creator

that

matches

the

name

and

creator

specified

in

the

rebind

request,

it

will

not

rebound

unless

its

VERSION

matches

the

VERSION

specified

explicitly

or

implicitly.

If

REBIND

encounters

an

error,

processing

stops,

and

an

error

message

is

returned.

The

Explain

tables

are

populated

during

REBIND

if

either

SQL_EXPLSNAP_OPT

or

SQL_EXPLAIN_OPT

have

been

set

to

YES

or

ALL

(check

EXPLAIN_SNAPSHOT

and

EXPLAIN_MODE

columns

in

the

catalog).

The

Explain

tables

used

are

those

of

the

REBIND

requester,

not

the

original

binder.

The

Rebind

option

types

and

values

are

defined

in

sql.h.

Related

tasks:

v

“Registering

SQLEXEC,

SQLDBS

and

SQLDB2

in

REXX”

in

the

Application

Development

Guide:

Programming

Client

Applications

Related

reference:

v

“sqlabndx

-

Bind”

on

page

484

v

“SQLCA”

in

the

Administrative

API

Reference

v

“SQLOPT”

in

the

Administrative

API

Reference

v

“REBIND”

on

page

866

v

“db2rbind

-

Rebind

all

Packages”

on

page

263

v

“db2Runstats

-

Runstats”

in

the

Administrative

API

Reference

Related

samples:

v

“dbpkg.sqc

--

How

to

work

with

packages

(C)”

v

“dbsample.sqc

--

Creates

a

sample

database

(C)”

v

“dbpkg.sqC

--

How

to

work

with

packages

(C++)”

v

“rebind.sqb

--

How

to

rebind

a

package

(IBM

COBOL)”

sqleatcp

-

Attach

and

Change

Password

Enables

an

application

to

specify

the

node

at

which

instance-level

functions

(CREATE

DATABASE

and

FORCE

APPLICATION,

for

example)

are

to

be

executed.

This

node

may

be

the

current

instance

(as

defined

by

the

value

of

the

DB2INSTANCE

environment

variable),

another

instance

on

the

same

workstation,

or

an

instance

on

a

remote

workstation.

Establishes

a

logical

instance

attachment

to

the

node

specified,

and

starts

a

physical

communications

connection

to

the

node

if

one

does

not

already

exist.

Note:

This

API

extends

the

function

of

the

sqleatin

API

by

permitting

the

optional

change

of

the

user

password

for

the

instance

being

attached.

Authorization:

None

sqlarbnd

-

Rebind

876

Common

Criteria

Certification:

Administration

and

User

Documentation

Required

connection:

This

API

establishes

an

instance

attachment.

API

include

file:

sqlenv.h

C

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqleatcp

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqleatcp

(

char

*pNodeName,

char

*pUserName,

char

*pPassword,

char

*pNewPassword,

struct

sqlca

*pSqlca);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlgatcp

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgatcp

(

unsigned

short

NewPasswordLen,

unsigned

short

PasswordLen,

unsigned

short

UserNameLen,

unsigned

short

NodeNameLen,

struct

sqlca

*pSqlca,

char

*pNewPassword,

char

*pPassword,

char

*pUserName,

char

*pNodeName);

/*

...

*/

API

parameters:

NewPasswordLen

Input.

A

2-byte

unsigned

integer

representing

the

length

of

the

new

password

in

bytes.

Set

to

zero

if

no

new

password

is

supplied.

PasswordLen

Input.

A

2-byte

unsigned

integer

representing

the

length

of

the

password

in

bytes.

Set

to

zero

if

no

password

is

supplied.

UserNameLen

Input.

A

2-byte

unsigned

integer

representing

the

length

of

the

user

name

in

bytes.

Set

to

zero

if

no

user

name

is

supplied.

NodeNameLen

Input.

A

2-byte

unsigned

integer

representing

the

length

of

the

node

name

in

bytes.

Set

to

zero

if

no

node

name

is

supplied.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

pNewPassword

Input.

A

string

containing

the

new

password

for

the

specified

user

name.

Set

to

NULL

if

a

password

change

is

not

required.

sqleatcp

-

Attach

and

Change

Password

Chapter

25.

DB2

UDB

APIs

for

Users

877

pPassword

Input.

A

string

containing

the

password

for

the

specified

user

name.

May

be

NULL.

pUserName

Input.

A

string

containing

the

user

name

under

which

the

attachment

is

to

be

authenticated.

May

be

NULL.

pNodeName

Input.

A

string

containing

the

alias

of

the

instance

to

which

the

user

wants

to

attach.

This

instance

must

have

a

matching

entry

in

the

local

node

directory.

The

only

exception

is

the

local

instance

(as

specified

by

the

DB2INSTANCE

environment

variable),

which

can

be

specified

as

the

object

of

an

attachment,

but

cannot

be

used

as

a

node

name

in

the

node

directory.

May

be

NULL.

REXX

API

syntax:

Calling

this

API

directly

from

REXX

is

not

supported.

However,

REXX

programmers

can

utilize

this

function

by

calling

the

DB2

command

line

processor

to

execute

the

ATTACH

command.

Usage

notes:

Note:

A

node

name

in

the

node

directory

can

be

regarded

as

an

alias

for

an

instance.

If

an

attach

request

succeeds,

the

sqlerrmc

field

of

the

sqlca

will

contain

9

tokens

separated

by

hexadecimal

FF

(similar

to

the

tokens

returned

when

a

CONNECT

request

is

successful):

1.

Country/region

code

of

the

application

server

2.

Code

page

of

the

application

server

3.

Authorization

ID

4.

Node

name

(as

specified

on

the

API)

5.

Identity

and

platform

type

of

the

server

6.

Agent

ID

of

the

agent

which

has

been

started

at

the

server

7.

Agent

index

8.

Node

number

of

the

server

9.

Number

of

partitions

if

the

server

is

a

partitioned

database

server.

If

the

node

name

is

a

zero-length

string

or

NULL,

information

about

the

current

state

of

attachment

is

returned.

If

no

attachment

exists,

sqlcode

1427

is

returned.

Otherwise,

information

about

the

attachment

is

returned

in

the

sqlerrmc

field

of

the

sqlca

(as

outlined

above).

If

an

attachment

has

not

been

made,

instance-level

APIs

are

executed

against

the

current

instance,

specified

by

the

DB2INSTANCE

environment

variable.

Certain

functions

(db2start,

db2stop,

and

all

directory

services,

for

example)

are

never

executed

remotely.

That

is,

they

affect

only

the

local

instance

environment,

as

defined

by

the

value

of

the

DB2INSTANCE

environment

variable.

If

an

attachment

exists,

and

the

API

is

issued

with

a

node

name,

the

current

attachment

is

dropped,

and

an

attachment

to

the

new

node

is

attempted.

sqleatcp

-

Attach

and

Change

Password

878

Common

Criteria

Certification:

Administration

and

User

Documentation

Where

the

user

name

and

password

are

authenticated,

and

where

the

password

is

changed,

depend

on

the

authentication

type

of

the

target

instance.

The

node

to

which

an

attachment

is

to

be

made

can

also

be

specified

by

a

call

to

the

sqlesetc

API.

Related

reference:

v

“sqlesetc

-

Set

Client”

in

the

Administrative

API

Reference

v

“sqleatin

-

Attach”

on

page

879

v

“sqledtin

-

Detach”

on

page

882

v

“SQLCA”

in

the

Administrative

API

Reference

v

“SQLE-CONN-SETTING”

in

the

Administrative

API

Reference

Related

samples:

v

“dbinst.cbl

--

Attach

to

and

detach

from

an

instance

(IBM

COBOL)”

v

“inattach.c

--

Attach

to

and

detach

from

an

instance

(C)”

v

“inattach.C

--

Attach

to

and

detach

from

an

instance

(C++)”

sqleatin

-

Attach

Enables

an

application

to

specify

the

node

at

which

instance-level

functions

(CREATE

DATABASE

and

FORCE

APPLICATION,

for

example)

are

to

be

executed.

This

node

may

be

the

current

instance

(as

defined

by

the

value

of

the

DB2INSTANCE

environment

variable),

another

instance

on

the

same

workstation,

or

an

instance

on

a

remote

workstation.

Establishes

a

logical

instance

attachment

to

the

node

specified,

and

starts

a

physical

communications

connection

to

the

node

if

one

does

not

already

exist.

Note:

If

a

password

change

is

required,

use

the

sqleatcp

API

instead

of

the

sqleatin

API.

Authorization:

None

Required

connection:

This

API

establishes

an

instance

attachment.

API

include

file:

sqlenv.h

C

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqleatin

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqleatin

(

char

*pNodeName,

char

*pUserName,

char

*pPassword,

struct

sqlca

*pSqlca);

/*

...

*/

sqleatcp

-

Attach

and

Change

Password

Chapter

25.

DB2

UDB

APIs

for

Users

879

Generic

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlgatin

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgatin

(

unsigned

short

PasswordLen,

unsigned

short

UserNameLen,

unsigned

short

NodeNameLen,

struct

sqlca

*pSqlca,

char

*pPassword,

char

*pUserName,

char

*pNodeName);

/*

...

*/

API

parameters:

PasswordLen

Input.

A

2-byte

unsigned

integer

representing

the

length

of

the

password

in

bytes.

Set

to

zero

if

no

password

is

supplied.

UserNameLen

Input.

A

2-byte

unsigned

integer

representing

the

length

of

the

user

name

in

bytes.

Set

to

zero

if

no

user

name

is

supplied.

NodeNameLen

Input.

A

2-byte

unsigned

integer

representing

the

length

of

the

node

name

in

bytes.

Set

to

zero

if

no

node

name

is

supplied.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

pPassword

Input.

A

string

containing

the

password

for

the

specified

user

name.

May

be

NULL.

pUserName

Input.

A

string

containing

the

user

name

under

which

the

attachment

is

to

be

authenticated.

May

be

NULL.

pNodeName

Input.

A

string

containing

the

alias

of

the

instance

to

which

the

user

wants

to

attach.

This

instance

must

have

a

matching

entry

in

the

local

node

directory.

The

only

exception

is

the

local

instance

(as

specified

by

the

DB2INSTANCE

environment

variable),

which

can

be

specified

as

the

object

of

an

attachment,

but

cannot

be

used

as

a

node

name

in

the

node

directory.

May

be

NULL.

REXX

API

syntax:

ATTACH

[TO

nodename

[USER

username

USING

password]]

REXX

API

parameters:

nodename

Alias

of

the

instance

to

which

the

user

wants

to

attach.

This

instance

must

have

a

matching

entry

in

the

local

node

directory.

The

only

exception

is

the

local

instance

(as

specified

by

the

DB2INSTANCE

environment

variable),

which

can

be

specified

as

the

object

of

an

attachment,

but

cannot

be

used

as

a

node

name

in

the

node

directory.

username

Name

under

which

the

user

attaches

to

the

instance.

sqleatin

-

Attach

880

Common

Criteria

Certification:

Administration

and

User

Documentation

password

Password

used

to

authenticate

the

user

name.

Usage

notes:

Note:

A

node

name

in

the

node

directory

can

be

regarded

as

an

alias

for

an

instance.

If

an

attach

request

succeeds,

the

sqlerrmc

field

of

the

sqlca

will

contain

9

tokens

separated

by

hexadecimal

FF

(similar

to

the

tokens

returned

when

a

CONNECT

request

is

successful):

1.

Country/region

code

of

the

application

server

2.

Code

page

of

the

application

server

3.

Authorization

ID

4.

Node

name

(as

specified

on

the

API)

5.

Identity

and

platform

type

of

the

server

6.

Agent

ID

of

the

agent

which

has

been

started

at

the

server

7.

Agent

index

8.

Node

number

of

the

server

9.

Number

of

partitions

if

the

server

is

a

partitioned

database

server.

If

the

node

name

is

a

zero-length

string

or

NULL,

information

about

the

current

state

of

attachment

is

returned.

If

no

attachment

exists,

sqlcode

1427

is

returned.

Otherwise,

information

about

the

attachment

is

returned

in

the

sqlerrmc

field

of

the

sqlca

(as

outlined

above).

If

an

attachment

has

not

been

made,

instance-level

APIs

are

executed

against

the

current

instance,

specified

by

the

DB2INSTANCE

environment

variable.

Certain

functions

(db2start,

db2stop,

and

all

directory

services,

for

example)

are

never

executed

remotely.

That

is,

they

affect

only

the

local

instance

environment,

as

defined

by

the

value

of

the

DB2INSTANCE

environment

variable.

If

an

attachment

exists,

and

the

API

is

issued

with

a

node

name,

the

current

attachment

is

dropped,

and

an

attachment

to

the

new

node

is

attempted.

Where

the

user

name

and

password

are

authenticated

depends

on

the

authentication

type

of

the

target

instance.

The

node

to

which

an

attachment

is

to

be

made

can

also

be

specified

by

a

call

to

the

sqlesetc

API.

Related

reference:

v

“sqlesetc

-

Set

Client”

in

the

Administrative

API

Reference

v

“sqledtin

-

Detach”

on

page

882

v

“sqleatcp

-

Attach

and

Change

Password”

on

page

876

v

“SQLCA”

in

the

Administrative

API

Reference

v

“SQLE-CONN-SETTING”

in

the

Administrative

API

Reference

Related

samples:

v

“dbinst.cbl

--

Attach

to

and

detach

from

an

instance

(IBM

COBOL)”

v

“inattach.c

--

Attach

to

and

detach

from

an

instance

(C)”

sqleatin

-

Attach

Chapter

25.

DB2

UDB

APIs

for

Users

881

v

“utilapi.c

--

Error-checking

utility

for

non-embedded

SQL

samples

in

C

(C)”

v

“inattach.C

--

Attach

to

and

detach

from

an

instance

(C++)”

v

“utilapi.C

--

Checks

for

and

prints

to

the

screen

SQL

warnings

and

errors

(C++)”

sqledtin

-

Detach

Removes

the

logical

instance

attachment,

and

terminates

the

physical

communication

connection

if

there

are

no

other

logical

connections

using

this

layer.

Authorization:

None

Required

connection:

None.

Removes

an

existing

instance

attachment.

API

include

file:

sqlenv.h

C

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqledtin

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqledtin

(

struct

sqlca

*pSqlca);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlgdtin

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgdtin

(

struct

sqlca

*pSqlca);

/*

...

*/

API

parameters:

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

REXX

API

syntax:

DETACH

Related

reference:

v

“sqleatin

-

Attach”

on

page

879

v

“SQLCA”

in

the

Administrative

API

Reference

Related

samples:

v

“dbinst.cbl

--

Attach

to

and

detach

from

an

instance

(IBM

COBOL)”

v

“inattach.c

--

Attach

to

and

detach

from

an

instance

(C)”

v

“utilapi.c

--

Error-checking

utility

for

non-embedded

SQL

samples

in

C

(C)”

sqleatin

-

Attach

882

Common

Criteria

Certification:

Administration

and

User

Documentation

v

“inattach.C

--

Attach

to

and

detach

from

an

instance

(C++)”

v

“utilapi.C

--

Checks

for

and

prints

to

the

screen

SQL

warnings

and

errors

(C++)”

sqledtin

-

Detach

Chapter

25.

DB2

UDB

APIs

for

Users

883

sqledtin

-

Detach

884

Common

Criteria

Certification:

Administration

and

User

Documentation

Chapter

26.

SQL

Statements

for

Users

COMMIT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 885

CONNECT

(Type

1)

.

.

.

.

.

.

.

.

.

.

. 887

CONNECT

(Type

2)

.

.

.

.

.

.

.

.

.

.

. 893

ROLLBACK

.

.

.

.

.

.

.

.

.

.

.

.

.

. 900

SELECT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 902

SET

SCHEMA

.

.

.

.

.

.

.

.

.

.

.

.

. 902

Subselect

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 904

select-clause

.

.

.

.

.

.

.

.

.

.

.

.

. 905

Select

list

notation:

.

.

.

.

.

.

.

.

. 906

Limitations

on

string

columns

.

.

.

.

.

. 906

Applying

the

select

list

.

.

.

.

.

.

.

. 906

from-clause

.

.

.

.

.

.

.

.

.

.

.

.

. 908

table-reference

.

.

.

.

.

.

.

.

.

.

.

. 909

Table

function

references

.

.

.

.

.

.

. 913

Correlated

references

in

table-references

.

. 914

Data

change

table

references

.

.

.

.

.

. 914

joined-table

.

.

.

.

.

.

.

.

.

.

.

.

. 916

Join

operations

.

.

.

.

.

.

.

.

.

.

. 917

where-clause

.

.

.

.

.

.

.

.

.

.

.

. 917

group-by-clause

.

.

.

.

.

.

.

.

.

.

. 918

grouping-sets

.

.

.

.

.

.

.

.

.

.

. 919

super-groups

.

.

.

.

.

.

.

.

.

.

. 920

Combining

grouping

sets

.

.

.

.

.

.

. 922

having-clause

.

.

.

.

.

.

.

.

.

.

.

. 924

order-by-clause

.

.

.

.

.

.

.

.

.

.

.

. 924

fetch-first-clause

.

.

.

.

.

.

.

.

.

.

. 927

Examples

of

subselects

.

.

.

.

.

.

.

.

. 927

Examples

of

joins

.

.

.

.

.

.

.

.

.

.

. 929

Examples

of

grouping

sets,

cube,

and

rollup

.

. 932

COMMIT

The

COMMIT

statement

terminates

a

unit

of

work

and

commits

the

database

changes

that

were

made

by

that

unit

of

work.

Invocation:

This

statement

can

be

embedded

in

an

application

program

or

issued

through

the

use

of

dynamic

SQL

statements.

It

is

an

executable

statement

that

can

be

dynamically

prepared.

Authorization:

None

required.

Syntax:

��

WORK

COMMIT

��

Description:

The

unit

of

work

in

which

the

COMMIT

statement

is

executed

is

terminated

and

a

new

unit

of

work

is

initiated.

All

changes

made

by

the

following

statements

executed

during

the

unit

of

work

are

committed:

ALTER,

COMMENT,

CREATE,

DROP,

GRANT,

LOCK

TABLE,

REVOKE,

SET

INTEGRITY,

SET

Variable,

and

the

data

change

statements

(INSERT,

DELETE,

MERGE,

UPDATE),

including

those

nested

in

a

query.

The

following

statements,

however,

are

not

under

transaction

control

and

changes

made

by

them

are

independent

of

the

COMMIT

statement:

v

SET

CONNECTION

v

SET

CURRENT

DEFAULT

TRANSFORM

GROUP

v

SET

CURRENT

DEGREE

v

SET

CURRENT

EXPLAIN

MODE

v

SET

CURRENT

EXPLAIN

SNAPSHOT

©

Copyright

IBM

Corp.

1993-2004

885

v

SET

CURRENT

LOCK

TIMEOUT

v

SET

CURRENT

PACKAGESET

v

SET

CURRENT

QUERY

OPTIMIZATION

v

SET

CURRENT

REFRESH

AGE

v

SET

EVENT

MONITOR

STATE

v

SET

PASSTHRU

Note:

Although

the

SET

PASSTHRU

statement

is

not

under

transaction

control,

the

passthru

session

initiated

by

the

statement

is

under

transaction

control.

v

SET

PATH

v

SET

SCHEMA

v

SET

SERVER

OPTION

All

locks

acquired

by

the

unit

of

work

subsequent

to

its

initiation

are

released,

except

necessary

locks

for

open

cursors

that

are

declared

WITH

HOLD.

All

open

cursors

not

defined

WITH

HOLD

are

closed.

Open

cursors

defined

WITH

HOLD

remain

open,

and

the

cursor

is

positioned

before

the

next

logical

row

of

the

result

table.

(A

FETCH

must

be

performed

before

a

positioned

UPDATE

or

DELETE

statement

is

issued.)

All

LOB

locators

are

freed.

Note

that

this

is

true

even

when

the

locators

are

associated

with

LOB

values

retrieved

via

a

cursor

that

has

the

WITH

HOLD

property.

All

savepoints

set

within

the

transaction

are

released.

Notes:

v

It

is

strongly

recommended

that

each

application

process

explicitly

ends

its

unit

of

work

before

terminating.

If

the

application

program

ends

normally

without

a

COMMIT

or

ROLLBACK

statement

then

the

database

manager

attempts

a

commit

or

rollback

depending

on

the

application

environment.

v

For

information

on

the

impact

of

COMMIT

on

cached

dynamic

SQL

statements,

see

“EXECUTE”.

v

For

information

on

potential

impacts

of

COMMIT

on

declared

temporary

tables,

see

“DECLARE

GLOBAL

TEMPORARY

TABLE”.

Example:

Commit

alterations

to

the

database

made

since

the

last

commit

point.

COMMIT

WORK

Related

reference:

v

“EXECUTE

statement”

in

the

SQL

Reference,

Volume

2

v

“DECLARE

GLOBAL

TEMPORARY

TABLE

statement”

in

the

SQL

Reference,

Volume

2

Related

samples:

v

“dynamic.sqb

--

How

to

update

table

data

with

cursor

dynamically

(MF

COBOL)”

v

“tbconstr.sqc

--

How

to

create,

use,

and

drop

constraints

(C)”

v

“tbsavept.sqc

--

How

to

use

external

savepoints

(C)”

v

“tut_mod.sqc

--

How

to

modify

table

data

(C)”

COMMIT

886

Common

Criteria

Certification:

Administration

and

User

Documentation

v

“tut_use.sqc

--

How

to

modify

a

database

(C)”

v

“tbconstr.sqC

--

How

to

create,

use,

and

drop

constraints

(C++)”

v

“tut_mod.sqC

--

How

to

modify

table

data

(C++)”

v

“tut_use.sqC

--

How

to

modify

a

database

(C++)”

CONNECT

(Type

1)

The

CONNECT

(Type

1)

statement

connects

an

application

process

to

the

identified

application

server

according

to

the

rules

for

remote

unit

of

work.

An

application

process

can

only

be

connected

to

one

application

server

at

a

time.

This

is

called

the

current

server.

A

default

application

server

may

be

established

when

the

application

requester

is

initialized.

If

implicit

connect

is

available

and

an

application

process

is

started,

it

is

implicitly

connected

to

the

default

application

server.

The

application

process

can

explicitly

connect

to

a

different

application

server

by

issuing

a

CONNECT

TO

statement.

A

connection

lasts

until

a

CONNECT

RESET

statement

or

a

DISCONNECT

statement

is

issued

or

until

another

CONNECT

TO

statement

changes

the

application

server.

Invocation:

Although

an

interactive

SQL

facility

might

provide

an

interface

that

gives

the

appearance

of

interactive

execution,

this

statement

can

only

be

embedded

within

an

application

program.

It

is

an

executable

statement

that

cannot

be

dynamically

prepared.

Authorization:

The

authorization

ID

of

the

statement

must

be

authorized

to

connect

to

the

identified

application

server.

Depending

on

the

authentication

setting

for

the

database,

the

authorization

check

may

be

performed

by

either

the

client

or

the

server.

For

a

partitioned

database,

the

user

and

group

definitions

must

be

identical

across

partitions.

Syntax:

��

CONNECT

�

�

TO

server-name

host-variable

lock-block

authorization

RESET

(1)

authorization

��

authorization:

USER

authorization-name

host-variable

USING

password

host-variable

�

COMMIT

Chapter

26.

SQL

Statements

for

Users

887

�

NEW

password

CONFIRM

password

host-variable

lock-block:

IN

SHARE

MODE

IN

EXCLUSIVE

MODE

ON

SINGLE

DBPARTITIONNUM

Notes:

1 This

form

is

only

valid

if

implicit

connect

is

enabled.

Description:

CONNECT

(with

no

operand)

Returns

information

about

the

current

server.

The

information

is

returned

in

the

SQLERRP

field

of

the

SQLCA

as

described

in

“Successful

Connection”.

If

a

connection

state

exists,

the

authorization

ID

and

database

alias

are

placed

in

the

SQLERRMC

field

of

the

SQLCA.

If

the

authorization

ID

is

longer

than

8

bytes,

it

will

be

truncated

to

8

bytes,

and

the

truncation

will

be

flagged

in

the

SQLWARN0

and

SQLWARN1

fields

of

the

SQLCA,

with

'W'

and

'A',

respectively.

If

the

database

configuration

parameter

DYN_QUERY_MGMT

is

enabled,

then

the

SQLWARN0

and

SQLWARN7

fields

of

the

SQLCA

will

be

flagged

with

'W'

and

'E',

respectively.

If

no

connection

exists

and

implicit

connect

is

possible,

then

an

attempt

to

make

an

implicit

connection

is

made.

If

implicit

connect

is

not

available,

this

attempt

results

in

an

error

(no

existing

connection).

If

no

connection,

then

the

SQLERRMC

field

is

blank.

The

territory

code

and

code

page

of

the

application

server

are

placed

in

the

SQLERRMC

field

(as

they

are

with

a

successful

CONNECT

TO

statement).

This

form

of

CONNECT:

v

Does

not

require

the

application

process

to

be

in

the

connectable

state.

v

If

connected,

does

not

change

the

connection

state.

v

If

unconnected

and

implicit

connect

is

available,

a

connection

to

the

default

application

server

is

made.

In

this

case,

the

country

or

region

code

and

code

page

of

the

application

server

are

placed

in

the

SQLERRMC

field,

like

a

successful

CONNECT

TO

statement.

v

If

unconnected

and

implicit

connect

is

not

available,

the

application

process

remains

unconnected.

v

Does

not

close

cursors.

TO

server-name

or

host-variable

Identifies

the

application

server

by

the

specified

server-name

or

a

host-variable

which

contains

the

server-name.

If

a

host-variable

is

specified,

it

must

be

a

character

string

variable

with

a

length

attribute

that

is

not

greater

than

8,

and

it

must

not

include

an

indicator

variable.

The

server-name

that

is

contained

within

the

host-variable

must

be

left-justified

and

must

not

be

delimited

by

quotation

marks.

Note

that

the

server-name

is

a

database

alias

identifying

the

application

server.

It

must

be

listed

in

the

application

requester’s

local

directory.

CONNECT

(Type

1)

888

Common

Criteria

Certification:

Administration

and

User

Documentation

Note:

DB2

UDB

for

OS/390

and

z/OS

supports

a

16-byte

location

name,

and

DB2

UDB

for

iSeries

supports

an

18-byte

target

database

name.

DB2

Version

8

only

supports

the

use

of

an

8-byte

database

alias

name

on

the

SQL

CONNECT

statement.

However,

the

database

alias

name

can

be

mapped

to

an

18-byte

database

name

through

the

Database

Connection

Service

Directory.

When

the

CONNECT

TO

statement

is

executed,

the

application

process

must

be

in

the

connectable

state.

Successful

Connection:

If

the

CONNECT

TO

statement

is

successful:

v

All

open

cursors

are

closed,

all

prepared

statements

are

destroyed,

and

all

locks

are

released

from

the

previous

application

server.

v

The

application

process

is

disconnected

from

its

previous

application

server,

if

any,

and

connected

to

the

identified

application

server.

v

The

actual

name

of

the

application

server

(not

an

alias)

is

placed

in

the

CURRENT

SERVER

special

register.

v

Information

about

the

application

server

is

placed

in

the

SQLERRP

field

of

the

SQLCA.

If

the

application

server

is

an

IBM

product,

the

information

has

the

form

pppvvrrm,

where:

–

ppp

identifies

the

product

as

follows:

-

DSN

for

DB2

UDB

for

OS/390

and

z/OS

-

ARI

for

DB2

Server

for

VSE

&

VM

-

QSQ

for

DB2

UDB

for

iSeries

-

SQL

for

DB2

UDB

for

UNIX

and

Windows
–

vv

is

a

two-digit

version

identifier,

such

as

'08'

–

rr

is

a

two-digit

release

identifier,

such

as

'01'

–

m

is

a

one-digit

modification

level

identifier,

such

as

'0'.

This

release

(Version

8)

of

DB2

UDB

for

UNIX

and

Windows

is

identified

as

'SQL08010'.

v

The

SQLERRMC

field

of

the

SQLCA

is

set

to

contain

the

following

values

(separated

by

X’FF’)

1.

the

country

or

region

code

of

the

application

server

(or

blanks

if

using

DB2

Connect),

2.

the

code

page

of

the

application

server

(or

CCSID

if

using

DB2

Connect),

3.

the

authorization

ID

(up

to

first

8

bytes

only),

4.

the

database

alias,

5.

the

platform

type

of

the

application

server.

Currently

identified

values

are:

Token

Server

QAS

DB2

Universal

Database

for

iSeries

QDB2

DB2

Universal

Database

for

OS/390

and

z/OS

QDB2/2

DB2

Universal

Database

for

OS/2

QDB2/6000

DB2

Universal

Database

for

AIX

CONNECT

(Type

1)

Chapter

26.

SQL

Statements

for

Users

889

QDB2/HPUX

DB2

Universal

Database

for

HP-UX

QDB2/LINUX

DB2

Universal

Database

for

Linux

QDB2/NT

DB2

Universal

Database

for

Windows

NT,

2000,

and

XP

QDB2/SUN

DB2

Universal

Database

for

Solaris

Operating

System

QSQLDS/VM

DB2

Server

for

VM

QSQLDS/VSE

DB2

Server

for

VSE

6.

The

agent

ID.

It

identifies

the

agent

executing

within

the

database

manager

on

behalf

of

the

application.

This

field

is

the

same

as

the

agent_id

element

returned

by

the

database

monitor.

7.

The

agent

index.

It

identifies

the

index

of

the

agent

and

is

used

for

service.

8.

Partition

number.

For

a

non-partitioned

database,

this

is

always

0,

if

present.

9.

The

code

page

of

the

application

client.

10.

Number

of

partitions

in

a

partitioned

database.

If

the

database

cannot

be

partitioned,

the

value

is

0

(zero).

Token

is

present

only

with

Version

5

or

later.
v

The

SQLERRD(1)

field

of

the

SQLCA

indicates

the

maximum

expected

difference

in

length

of

mixed

character

data

(CHAR

data

types)

when

converted

to

the

database

code

page

from

the

application

code

page.

A

value

of

0

or

1

indicates

no

expansion;

a

value

greater

than

1

indicates

a

possible

expansion

in

length;

a

negative

value

indicates

a

possible

contraction.

v

The

SQLERRD(2)

field

of

the

SQLCA

indicates

the

maximum

expected

difference

in

length

of

mixed

character

data

(CHAR

data

types)

when

converted

to

the

application

code

page

from

the

database

code

page.

A

value

of

0

or

1

indicates

no

expansion;

a

value

greater

than

1

indicates

a

possible

expansion

in

length;

a

negative

value

indicates

a

possible

contraction.

v

The

SQLERRD(3)

field

of

the

SQLCA

indicates

whether

or

not

the

database

on

the

connection

is

updatable.

A

database

is

initially

updatable,

but

is

changed

to

read-only

if

a

unit

of

work

determines

the

authorization

ID

cannot

perform

updates.

The

value

is

one

of:

–

1

-

updatable

–

2

-

read-only
v

The

SQLERRD(4)

field

of

the

SQLCA

returns

certain

characteristics

of

the

connection.

The

value

is

one

of:

0

N/A

(only

possible

if

running

from

a

down-level

client

that

is

one-phase

commit

and

is

an

updater).

1

one-phase

commit.

2

one-phase

commit;

read-only

(only

applicable

to

connections

to

DRDA1

databases

in

a

TP

Monitor

environment).

3

two-phase

commit.
v

The

SQLERRD(5)

field

of

the

SQLCA

returns

the

authentication

type

for

the

connection.

The

value

is

one

of:

0

Authenticated

on

the

server.

1

Authenticated

on

the

client.

CONNECT

(Type

1)

890

Common

Criteria

Certification:

Administration

and

User

Documentation

2

Authenticated

using

DB2

Connect.

4

Authenticated

on

the

server

with

encryption.

5

Authenticated

using

DB2

Connect

with

encryption.

7

Authenticated

using

an

external

Kerberos

security

mechanism.

8

Authenticated

using

an

external

Kerberos

security

mechanism

or

on

the

server

with

encryption.

9

Authenticated

using

an

external

GSS

API

plug-in

security

mechanism.

10

Authenticated

using

an

external

GSS

API

plug-in

security

mechanism

or

on

the

server

with

encryption.

255

Authentication

not

specified.
v

The

SQLERRD(6)

field

of

the

SQLCA

returns

the

partition

number

of

the

partition

to

which

the

connection

was

made

if

the

database

is

partitioned.

Otherwise,

a

value

of

0

is

returned.

v

The

SQLWARN1

field

in

the

SQLCA

will

be

set

to

'A'

if

the

authorization

ID

of

the

successful

connection

is

longer

than

8

bytes.

This

indicates

that

truncation

has

occurred.

The

SQLWARN0

field

in

the

SQLCA

will

be

set

to

'W'

to

indicate

this

warning.

v

The

SQLWARN7

field

in

the

SQLCA

will

be

set

to

'E'

if

the

database

configuration

parameter

DYN_QUERY_MGMT

for

the

database

is

enabled.

The

SQLWARN0

field

in

the

SQLCA

will

be

set

to

'W'

to

indicate

this

warning.

Unsuccessful

Connection:

If

the

CONNECT

TO

statement

is

unsuccessful:

v

The

SQLERRP

field

of

the

SQLCA

is

set

to

the

name

of

the

module

at

the

application

requester

that

detected

the

error.

The

first

three

characters

of

the

module

name

identify

the

product.

v

If

the

CONNECT

TO

statement

is

unsuccessful

because

the

application

process

is

not

in

the

connectable

state,

the

connection

state

of

the

application

process

is

unchanged.

v

If

the

CONNECT

TO

statement

is

unsuccessful

because

the

server-name

is

not

listed

in

the

local

directory,

an

error

message

(SQLSTATE

08001)

is

issued

and

the

connection

state

of

the

application

process

remains

unchanged:

–

If

the

application

requester

was

not

connected

to

an

application

server

then

the

application

process

remains

unconnected.

–

If

the

application

requester

was

already

connected

to

an

application

server,

the

application

process

remains

connected

to

that

application

server.

Any

further

statements

are

executed

at

that

application

server.
v

If

the

CONNECT

TO

statement

is

unsuccessful

for

any

other

reason,

the

application

process

is

placed

into

the

unconnected

state.

IN

SHARE

MODE

Allows

other

concurrent

connections

to

the

database

and

prevents

other

users

from

connecting

to

the

database

in

exclusive

mode.

IN

EXCLUSIVE

MODE

Prevents

concurrent

application

processes

from

executing

any

operations

at

the

application

server,

unless

they

have

the

same

authorization

ID

as

the

user

holding

the

exclusive

lock.

This

option

is

not

supported

by

DB2

Connect.

CONNECT

(Type

1)

Chapter

26.

SQL

Statements

for

Users

891

ON

SINGLE

DBPARTITIONNUM

Specifies

that

the

coordinator

database

partition

is

connected

in

exclusive

mode

and

all

other

database

partitions

are

connected

in

share

mode.

This

option

is

only

effective

in

a

partitioned

database.

RESET

Disconnects

the

application

process

from

the

current

server.

A

commit

operation

is

performed.

If

implicit

connect

is

available,

the

application

process

remains

unconnected

until

an

SQL

statement

is

issued.

USER

authorization-name/host-variable

Identifies

the

user

ID

trying

to

connect

to

the

application

server.

If

a

host-variable

is

specified,

it

must

be

a

character

string

variable

with

a

length

attribute

that

is

not

greater

than

8,

and

it

must

not

include

an

indicator

variable.

The

user

ID

that

is

contained

within

the

host-variable

must

be

left

justified

and

must

not

be

delimited

by

quotation

marks.

USING

password/host-variable

Identifies

the

password

of

the

user

ID

trying

to

connect

to

the

application

server.

Password

or

host-variable

may

be

up

to

18

characters.

If

a

host

variable

is

specified,

it

must

be

a

character

string

variable

with

a

length

attribute

not

greater

than

18

and

it

must

not

include

an

indicator

variable.

NEW

password/host-variable

CONFIRM

password

Identifies

the

new

password

that

should

be

assigned

to

the

user

ID

identified

by

the

USER

option.

Password

or

host-variable

may

be

up

to

18

characters.

If

a

host

variable

is

specified,

it

must

be

a

character

string

variable

with

a

length

attribute

not

greater

than

18

and

it

must

not

include

an

indicator

variable.

The

system

on

which

the

password

will

be

changed

depends

on

how

user

authentication

is

set

up.

Notes:

v

Compatibilities

–

For

compatibility

with

previous

versions

of

DB2:

-

NODE

can

be

specified

in

place

of

DBPARTITIONNUM
v

It

is

good

practice

for

the

first

SQL

statement

executed

by

an

application

process

to

be

the

CONNECT

TO

statement.

v

If

a

CONNECT

TO

statement

is

issued

to

the

current

application

server

with

a

different

user

ID

and

password

then

the

conversation

is

deallocated

and

reallocated.

All

cursors

are

closed

by

the

database

manager

(with

the

loss

of

the

cursor

position

if

the

WITH

HOLD

option

was

used).

v

If

a

CONNECT

TO

statement

is

issued

to

the

current

application

server

with

the

same

user

ID

and

password

then

the

conversation

is

not

deallocated

and

reallocated.

Cursors,

in

this

case,

are

not

closed.

v

To

use

a

multiple-partition

database

environment,

the

user

or

application

must

connect

to

one

of

the

partitions

listed

in

the

db2nodes.cfg

file.

You

should

try

to

ensure

that

not

all

users

use

the

same

partition

as

the

coordinator

partition.

v

The

authorization-name

SYSTEM

cannot

be

explicitly

specified

in

the

CONNECT

statement.

However,

on

Windows

operating

systems,

local

applications

running

under

the

Local

System

Account

can

implicitly

connect

to

the

database,

such

that

the

user

ID

is

SYSTEM.

v

When

connecting

to

Windows

Server

explicitly,

the

authorization-name

or

user

host-variable

can

be

specified

using

the

Microsoft

Windows

NT

Security

Account

Manager

(SAM)-compatible

name;

for

example,

’Domain\User’.

Examples:

CONNECT

(Type

1)

892

Common

Criteria

Certification:

Administration

and

User

Documentation

Example

1:

In

a

C

program,

connect

to

the

application

server

TOROLAB,

using

database

alias

TOROLAB,

user

ID

FERMAT,

and

password

THEOREM.

EXEC

SQL

CONNECT

TO

TOROLAB

USER

FERMAT

USING

THEOREM;

Example

2:

In

a

C

program,

connect

to

an

application

server

whose

database

alias

is

stored

in

the

host

variable

APP_SERVER

(varchar(8)).

Following

a

successful

connection,

copy

the

3-character

product

identifier

of

the

application

server

to

the

variable

PRODUCT

(char(3)).

EXEC

SQL

CONNECT

TO

:APP_SERVER;

if

(strncmp(SQLSTATE,’00000’,5))

strncpy(PRODUCT,sqlca.sqlerrp,3);

Related

concepts:

v

“Distributed

relational

databases”

in

the

SQL

Reference,

Volume

1

v

“Data

partitioning

across

multiple

partitions”

in

the

SQL

Reference,

Volume

1

Related

samples:

v

“advsql.sqb

--

How

to

read

table

data

using

CASE

(MF

COBOL)”

v

“dbmcon.sqc

--

How

to

use

multiple

databases

(C)”

v

“dbmcon.sqC

--

How

to

use

multiple

databases

(C++)”

CONNECT

(Type

2)

The

CONNECT

(Type

2)

statement

connects

an

application

process

to

the

identified

application

server

and

establishes

the

rules

for

application-directed

distributed

unit

of

work.

This

server

is

then

the

current

server

for

the

process.

Most

aspects

of

a

CONNECT

(Type

1)

statement

also

apply

to

a

CONNECT

(Type

2)

statement.

Rather

than

repeating

that

material

here,

this

section

describes

only

those

elements

of

Type

2

that

differ

from

Type

1.

Invocation:

Although

an

interactive

SQL

facility

might

provide

an

interface

that

gives

the

appearance

of

interactive

execution,

this

statement

can

only

be

embedded

within

an

application

program.

It

is

an

executable

statement

that

cannot

be

dynamically

prepared.

Authorization:

The

authorization

ID

of

the

statement

must

be

authorized

to

connect

to

the

identified

application

server.

Depending

on

the

authentication

setting

for

the

database,

the

authorization

check

may

be

performed

by

either

the

client

or

the

server.

For

a

partitioned

database,

the

user

and

group

definitions

must

be

identical

across

partitions.

Syntax:

The

selection

between

Type

1

and

Type

2

is

determined

by

precompiler

options.

For

an

overview

of

these

options,

see

“Distributed

relational

databases”.

��

CONNECT

�

CONNECT

(Type

1)

Chapter

26.

SQL

Statements

for

Users

893

�

TO

server-name

host-variable

lock-block

authorization

RESET

(1)

authorization

��

authorization:

USER

authorization-name

host-variable

USING

password

host-variable

�

�

NEW

password

CONFIRM

password

host-variable

lock-block:

IN

SHARE

MODE

IN

EXCLUSIVE

MODE

ON

SINGLE

DBPARTITIONNUM

Notes:

1 This

form

is

only

valid

if

implicit

connect

is

enabled.

Description:

TO

server-name/host-variable

The

rules

for

coding

the

name

of

the

server

are

the

same

as

for

Type

1.

If

the

SQLRULES(STD)

option

is

in

effect,

the

server-name

must

not

identify

an

existing

connection

of

the

application

process,

otherwise

an

error

(SQLSTATE

08002)

is

raised.

If

the

SQLRULES(DB2)

option

is

in

effect

and

the

server-name

identifies

an

existing

connection

of

the

application

process,

that

connection

is

made

current

and

the

old

connection

is

placed

into

the

dormant

state.

That

is,

the

effect

of

the

CONNECT

statement

in

this

situation

is

the

same

as

that

of

a

SET

CONNECTION

statement.

For

information

about

the

specification

of

SQLRULES,

see

“Options

that

Govern

Distributed

Unit

of

Work

Semantics”.

Successful

Connection

If

the

CONNECT

TO

statement

is

successful:

v

A

connection

to

the

application

server

is

either

created

(or

made

non-dormant)

and

placed

into

the

current

and

held

states.

v

If

the

CONNECT

TO

is

directed

to

a

different

server

than

the

current

server,

then

the

current

connection

is

placed

into

the

dormant

state.

v

The

CURRENT

SERVER

special

register

and

the

SQLCA

are

updated

in

the

same

way

as

for

CONNECT

(Type

1).

Unsuccessful

Connection

If

the

CONNECT

TO

statement

is

unsuccessful:

CONNECT

(Type

2)

894

Common

Criteria

Certification:

Administration

and

User

Documentation

v

No

matter

what

the

reason

for

failure,

the

connection

state

of

the

application

process

and

the

states

of

its

connections

are

unchanged.

v

As

with

an

unsuccessful

Type

1

CONNECT,

the

SQLERRP

field

of

the

SQLCA

is

set

to

the

name

of

the

module

at

the

application

requester

or

server

that

detected

the

error.

CONNECT

(with

no

operand),

IN

SHARE/EXCLUSIVE

MODE,

USER,

and

USING

If

a

connection

exists,

Type

2

behaves

like

a

Type

1.

The

authorization

ID

and

database

alias

are

placed

in

the

SQLERRMC

field

of

the

SQLCA.

If

a

connection

does

not

exist,

no

attempt

to

make

an

implicit

connection

is

made

and

the

SQLERRP

and

SQLERRMC

fields

return

a

blank.

(Applications

can

check

if

a

current

connection

exists

by

checking

these

fields.)

A

CONNECT

with

no

operand

that

includes

USER

and

USING

can

still

connect

an

application

process

to

a

database

using

the

DB2DBDFT

environment

variable.

This

method

is

equivalent

to

a

Type

2

CONNECT

RESET,

but

permits

the

use

of

a

user

ID

and

password.

RESET

Equivalent

to

an

explicit

connect

to

the

default

database

if

it

is

available.

If

a

default

database

is

not

available,

the

connection

state

of

the

application

process

and

the

states

of

its

connections

are

unchanged.

Availability

of

a

default

database

is

determined

by

installation

options,

environment

variables,

and

authentication

settings.

Rules:

v

As

outlined

in

“Options

that

Govern

Distributed

Unit

of

Work

Semantics”,

a

set

of

connection

options

governs

the

semantics

of

connection

management.

Default

values

are

assigned

to

every

preprocessed

source

file.

An

application

can

consist

of

multiple

source

files

precompiled

with

different

connection

options.

Unless

a

SET

CLIENT

command

or

API

has

been

executed

first,

the

connection

options

used

when

preprocessing

the

source

file

containing

the

first

SQL

statement

executed

at

run

time

become

the

effective

connection

options.

If

a

CONNECT

statement

from

a

source

file

preprocessed

with

different

connection

options

is

subsequently

executed

without

the

execution

of

any

intervening

SET

CLIENT

command

or

API,

an

error

(SQLSTATE

08001)

is

returned.

Note

that

once

a

SET

CLIENT

command

or

API

has

been

executed,

the

connection

options

used

when

preprocessing

all

source

files

in

the

application

are

ignored.

Example

1

in

the

“Examples”

section

of

this

statement

illustrates

these

rules.

v

Although

the

CONNECT

TO

statement

can

be

used

to

establish

or

switch

connections,

CONNECT

TO

with

the

USER/USING

clause

will

only

be

accepted

when

there

is

no

current

or

dormant

connection

to

the

named

server.

The

connection

must

be

released

before

issuing

a

connection

to

the

same

server

with

the

USER/USING

clause,

otherwise

it

will

be

rejected

(SQLSTATE

51022).

Release

the

connection

by

issuing

a

DISCONNECT

statement

or

a

RELEASE

statement

followed

by

a

COMMIT

statement.

Notes:

v

Implicit

connect

is

supported

for

the

first

SQL

statement

in

an

application

with

Type

2

connections.

In

order

to

execute

SQL

statements

on

the

default

database,

first

the

CONNECT

RESET

or

the

CONNECT

USER/USING

statement

must

be

used

to

establish

the

connection.

The

CONNECT

statement

with

no

operands

CONNECT

(Type

2)

Chapter

26.

SQL

Statements

for

Users

895

will

display

information

about

the

current

connection

if

there

is

one,

but

will

not

connect

to

the

default

database

if

there

is

no

current

connection.

v

The

authorization-name

SYSTEM

cannot

be

explicitly

specified

in

the

CONNECT

statement.

However,

on

Windows

operating

systems,

local

applications

running

under

the

Local

System

Account

can

implicitly

connect

to

the

database,

such

that

the

user

ID

is

SYSTEM.

v

When

connecting

to

Windows

Server

explicitly,

the

authorization-name

or

user

host-variable

can

be

specified

using

the

Microsoft

Windows

NT

Security

Account

Manager

(SAM)-compatible

name;

for

example,

’Domain\User’.

Comparing

Type

1

and

Type

2

CONNECT

Statements:

The

semantics

of

the

CONNECT

statement

are

determined

by

the

CONNECT

precompiler

option

or

the

SET

CLIENT

API

(see

“Options

that

Govern

Distributed

Unit

of

Work

Semantics”).

CONNECT

Type

1

or

CONNECT

Type

2

can

be

specified

and

the

CONNECT

statements

in

those

programs

are

known

as

Type

1

and

Type

2

CONNECT

statements,

respectively.

Their

semantics

are

described

below:

Use

of

CONNECT

TO:

Type

1

Type

2

Each

unit

of

work

can

only

establish

connection

to

one

application

server.

Each

unit

of

work

can

establish

connection

to

multiple

application

servers.

The

current

unit

of

work

must

be

committed

or

rolled

back

before

allowing

a

connection

to

another

application

server.

The

current

unit

of

work

need

not

be

committed

or

rolled

back

before

connecting

to

another

application

server.

The

CONNECT

statement

establishes

the

current

connection.

Subsequent

SQL

requests

are

forwarded

to

this

connection

until

changed

by

another

CONNECT.

Same

as

Type

1

CONNECT

if

establishing

the

first

connection.

If

switching

to

a

dormant

connection

and

SQLRULES

is

set

to

STD,

then

the

SET

CONNECTION

statement

must

be

used

instead.

Connecting

to

the

current

connection

is

valid

and

does

not

change

the

current

connection.

Same

as

Type

1

CONNECT

if

the

SQLRULES

precompiler

option

is

set

to

DB2.

If

SQLRULES

is

set

to

STD,

then

the

SET

CONNECTION

statement

must

be

used

instead.

Connecting

to

another

application

server

disconnects

the

current

connection.

The

new

connection

becomes

the

current

connection.

Only

one

connection

is

maintained

in

a

unit

of

work.

Connecting

to

another

application

server

puts

the

current

connection

into

the

dormant

state.

The

new

connection

becomes

the

current

connection.

Multiple

connections

can

be

maintained

in

a

unit

of

work.

If

the

CONNECT

is

for

an

application

server

on

a

dormant

connection,

it

becomes

the

current

connection.

Connecting

to

a

dormant

connection

using

CONNECT

is

only

allowed

if

SQLRULES(DB2)

was

specified.

If

SQLRULES(STD)

was

specified,

then

the

SET

CONNECTION

statement

must

be

used

instead.

SET

CONNECTION

statement

is

supported

for

Type

1

connections,

but

the

only

valid

target

is

the

current

connection.

SET

CONNECTION

statement

is

supported

for

Type

2

connections

to

change

the

state

of

a

connection

from

dormant

to

current.

CONNECT

(Type

2)

896

Common

Criteria

Certification:

Administration

and

User

Documentation

Use

of

CONNECT...USER...USING:

Type

1

Type

2

Connecting

with

the

USER...USING

clauses

disconnects

the

current

connection

and

establishes

a

new

connection

with

the

given

authorization

name

and

password.

Connecting

with

the

USER/USING

clause

will

only

be

accepted

when

there

is

no

current

or

dormant

connection

to

the

same

named

server.

Use

of

Implicit

CONNECT,

CONNECT

RESET,

and

Disconnecting:

Type

1

Type

2

CONNECT

RESET

can

be

used

to

disconnect

the

current

connection.

CONNECT

RESET

is

equivalent

to

connecting

to

the

default

application

server

explicitly

if

one

has

been

defined

in

the

system.

Connections

can

be

disconnected

by

the

application

at

a

successful

COMMIT.

Prior

to

the

commit,

use

the

RELEASE

statement

to

mark

a

connection

as

release-pending.

All

such

connections

will

be

disconnected

at

the

next

COMMIT.

An

alternative

is

to

use

the

precompiler

options

DISCONNECT(EXPLICIT),

DISCONNECT(CONDITIONAL),

DISCONNECT(AUTOMATIC),

or

the

DISCONNECT

statement

instead

of

the

RELEASE

statement.

After

using

CONNECT

RESET

to

disconnect

the

current

connection,

if

the

next

SQL

statement

is

not

a

CONNECT

statement,

then

it

will

perform

an

implicit

connect

to

the

default

application

server

if

one

has

been

defined

in

the

system.

CONNECT

RESET

is

equivalent

to

an

explicit

connect

to

the

default

application

server

if

one

has

been

defined

in

the

system.

It

is

an

error

to

issue

consecutive

CONNECT

RESETs.

It

is

an

error

to

issue

consecutive

CONNECT

RESETs

ONLY

if

SQLRULES(STD)

was

specified

because

this

option

disallows

the

use

of

CONNECT

to

existing

connection.

CONNECT

RESET

also

implicitly

commits

the

current

unit

of

work.

CONNECT

RESET

does

not

commit

the

current

unit

of

work.

If

an

existing

connection

is

disconnected

by

the

system

for

whatever

reasons,

then

subsequent

non-CONNECT

SQL

statements

to

this

database

will

receive

an

SQLSTATE

of

08003.

If

an

existing

connection

is

disconnected

by

the

system,

COMMIT,

ROLLBACK,

and

SET

CONNECTION

statements

are

still

permitted.

The

unit

of

work

will

be

implicitly

committed

when

the

application

process

terminates

successfully.

Same

as

Type

1.

All

connections

(only

one)

are

disconnected

when

the

application

process

terminates.

All

connections

(current,

dormant,

and

those

marked

for

release

pending)

are

disconnected

when

the

application

process

terminates.

CONNECT

(Type

2)

Chapter

26.

SQL

Statements

for

Users

897

CONNECT

Failures:

Type

1

Type

2

Regardless

of

whether

there

is

a

current

connection

when

a

CONNECT

fails

(with

an

error

other

than

server-name

not

defined

in

the

local

directory),

the

application

process

is

placed

in

the

unconnected

state.

Subsequent

non-CONNECT

statements

receive

an

SQLSTATE

of

08003.

If

there

is

a

current

connection

when

a

CONNECT

fails,

the

current

connection

is

unaffected.

If

there

was

no

current

connection

when

the

CONNECT

fails,

then

the

program

is

then

in

an

unconnected

state.

Subsequent

non-CONNECT

statements

receive

an

SQLSTATE

of

08003.

Examples:

Example

1:

This

example

illustrates

the

use

of

multiple

source

programs

(shown

in

the

boxes),

some

preprocessed

with

different

connection

options

(shown

above

the

code),

and

one

of

which

contains

a

SET

CLIENT

API

call.

PGM1:

CONNECT(2)

SQLRULES(DB2)

DISCONNECT(CONDITIONAL)

...

exec

sql

CONNECT

TO

OTTAWA;

exec

sql

SELECT

col1

INTO

:hv1

FROM

tbl1;

...

PGM2:

CONNECT(2)

SQLRULES(STD)

DISCONNECT(AUTOMATIC)

...

exec

sql

CONNECT

TO

QUEBEC;

exec

sql

SELECT

col1

INTO

:hv1

FROM

tbl2;

...

PGM3:

CONNECT(2)

SQLRULES(STD)

DISCONNECT(EXPLICIT)

...

SET

CLIENT

CONNECT

2

SQLRULES

DB2

DISCONNECT

EXPLICIT

1

exec

sql

CONNECT

TO

LONDON;

exec

sql

SELECT

col1

INTO

:hv1

FROM

tbl3;

...

1

Note:

not

the

actual

syntax

of

the

SET

CLIENT

API

PGM4:

CONNECT(2)

SQLRULES(DB2)

DISCONNECT(CONDITIONAL)

...

exec

sql

CONNECT

TO

REGINA;

exec

sql

SELECT

col1

INTO

:hv1

FROM

tbl4;

...

If

the

application

executes

PGM1

then

PGM2:

v

connect

to

OTTAWA

runs:

connect=2,

sqlrules=DB2,

disconnect=CONDITIONAL

v

connect

to

QUEBEC

fails

with

SQLSTATE

08001

because

both

SQLRULES

and

DISCONNECT

are

different.

If

the

application

executes

PGM1

then

PGM3:

CONNECT

(Type

2)

898

Common

Criteria

Certification:

Administration

and

User

Documentation

v

connect

to

OTTAWA

runs:

connect=2,

sqlrules=DB2,

disconnect=CONDITIONAL

v

connect

to

LONDON

runs:

connect=2,

sqlrules=DB2,

disconnect=EXPLICIT

This

is

OK

because

the

SET

CLIENT

API

is

run

before

the

second

CONNECT

statement.

If

the

application

executes

PGM1

then

PGM4:

v

connect

to

OTTAWA

runs:

connect=2,

sqlrules=DB2,

disconnect=CONDITIONAL

v

connect

to

REGINA

runs:

connect=2,

sqlrules=DB2,

disconnect=CONDITIONAL

This

is

OK

because

the

preprocessor

options

for

PGM1

are

the

same

as

those

for

PGM4.

Example

2:

This

example

shows

the

interrelationships

of

the

CONNECT

(Type

2),

SET

CONNECTION,

RELEASE,

and

DISCONNECT

statements.

S0,

S1,

S2,

and

S3

represent

four

servers.

Sequence

Statement

Current

Server

Dormant

Connections

Release

Pending

0

No

statement

None

None

None

1

SELECT

*

FROM

TBLA

S0

(default)

None

None

2

CONNECT

TO

S1

SELECT

*

FROM

TBLB

S1

S1

S0

S0

None

None

3

CONNECT

TO

S2

UPDATE

TBLC

SET

...

S2

S2

S0,

S1

S0,

S1

None

None

4

CONNECT

TO

S3

SELECT

*

FROM

TBLD

S3

S3

S0,

S1,

S2

S0,

S1,

S2

None

None

5

SET

CONNECTION

S2

S2

S0,

S1,

S3

None

6

RELEASE

S3

S2

S0,

S1

S3

7

COMMIT

S2

S0,

S1

None

8

SELECT

*

FROM

TBLE

S2

S0,

S1

None

9

DISCONNECT

S1

SELECT

*

FROM

TBLF

S2

S2

S0

S0

None

None

Related

concepts:

v

“Distributed

relational

databases”

in

the

SQL

Reference,

Volume

1

Related

reference:

v

“CONNECT

(Type

1)”

on

page

887

Related

samples:

v

“dbmcon.sqc

--

How

to

use

multiple

databases

(C)”

v

“dbmcon.sqC

--

How

to

use

multiple

databases

(C++)”

CONNECT

(Type

2)

Chapter

26.

SQL

Statements

for

Users

899

ROLLBACK

The

ROLLBACK

statement

is

used

to

back

out

of

the

database

changes

that

were

made

within

a

unit

of

work

or

a

savepoint.

Invocation:

This

statement

can

be

embedded

in

an

application

program

or

issued

through

the

use

of

dynamic

SQL

statements.

It

is

an

executable

statement

that

can

be

dynamically

prepared.

Authorization:

None

required.

Syntax:

��

WORK

ROLLBACK

TO

SAVEPOINT

savepoint-name

��

Description:

The

unit

of

work

in

which

the

ROLLBACK

statement

is

executed

is

terminated

and

a

new

unit

of

work

is

initiated.

All

changes

made

to

the

database

during

the

unit

of

work

are

backed

out.

The

following

statements,

however,

are

not

under

transaction

control,

and

changes

made

by

them

are

independent

of

the

ROLLBACK

statement:

v

SET

CONNECTION

v

SET

CURRENT

DEFAULT

TRANSFORM

GROUP

v

SET

CURRENT

DEGREE

v

SET

CURRENT

EXPLAIN

MODE

v

SET

CURRENT

EXPLAIN

SNAPSHOT

v

SET

CURRENT

LOCK

TIMEOUT

v

SET

CURRENT

MAINTAINED

TABLE

TYPES

FOR

OPTIMIZATION

v

SET

CURRENT

PACKAGESET

v

SET

CURRENT

QUERY

OPTIMIZATION

v

SET

CURRENT

REFRESH

AGE

v

SET

ENCRYPTION

PASSWORD

v

SET

EVENT

MONITOR

STATE

v

SET

PASSTHRU

Note:

Although

the

SET

PASSTHRU

statement

is

not

under

transaction

control,

the

passthru

session

initiated

by

the

statement

is

under

transaction

control.

v

SET

PATH

v

SET

SCHEMA

v

SET

SERVER

OPTION

ROLLBACK

900

Common

Criteria

Certification:

Administration

and

User

Documentation

The

generation

of

sequence

and

identity

values

is

not

under

transaction

control.

Values

generated

and

consumed

by

the

nextval-expression

or

by

inserting

rows

into

a

table

that

has

an

identity

column

are

independent

of

issuing

the

ROLLBACK

statement.

Also,

issuing

the

ROLLBACK

statement

does

not

affect

the

value

returned

by

the

prevval-expression,

nor

the

IDENTITY_VAL_LOCAL

function.

TO

SAVEPOINT

Specifies

that

a

partial

rollback

(ROLLBACK

TO

SAVEPOINT)

is

to

be

performed.

If

no

savepoint

is

active

in

the

current

savepoint

level

(see

the

“Rules”

section

in

the

description

of

the

SAVEPOINT

statement),

an

error

is

returned

(SQLSTATE

3B502).

After

a

successful

rollback,

the

savepoint

continues

to

exist,

but

any

nested

savepoints

are

released

and

no

longer

exist.

The

nested

savepoints,

if

any,

are

considered

to

have

been

rolled

back

and

then

released

as

part

of

the

rollback

to

the

current

savepoint.

If

a

savepoint-name

is

not

provided,

rollback

occurs

to

the

most

recently

set

savepoint

within

the

current

savepoint

level.

If

this

clause

is

omitted,

the

ROLLBACK

statement

rolls

back

the

entire

transaction.

Furthermore,

savepoints

within

the

transaction

are

released.

savepoint-name

Specifies

the

savepoint

that

is

to

be

used

in

the

rollback

operation.

The

specified

savepoint-name

cannot

begin

with

’SYS’

(SQLSTATE

42939).

After

a

successful

rollback

operation,

the

named

savepoint

continues

to

exist.

If

the

savepoint

name

does

not

exist,

an

error

(SQLSTATE

3B001)

is

returned.

Data

and

schema

changes

made

since

the

savepoint

was

set

are

undone.

Notes:

v

All

locks

held

are

released

on

a

ROLLBACK

of

the

unit

of

work.

All

open

cursors

are

closed.

All

LOB

locators

are

freed.

v

Executing

a

ROLLBACK

statement

does

not

affect

either

the

SET

statements

that

change

special

register

values

or

the

RELEASE

statement.

v

If

the

program

terminates

abnormally,

the

unit

of

work

is

implicitly

rolled

back.

v

Statement

caching

is

affected

by

the

rollback

operation.

v

The

impact

on

cursors

resulting

from

a

ROLLBACK

TO

SAVEPOINT

depends

on

the

statements

within

the

savepoint

–

If

the

savepoint

contains

DDL

on

which

a

cursor

is

dependent,

the

cursor

is

marked

invalid.

Attempts

to

use

such

a

cursor

results

in

an

error

(SQLSTATE

57007).

–

Otherwise:

-

If

the

cursor

is

referenced

in

the

savepoint,

the

cursor

remains

open

and

is

positioned

before

the

next

logical

row

of

the

result

table.

(A

FETCH

must

be

performed

before

a

positioned

UPDATE

or

DELETE

statement

is

issued.)

-

Otherwise,

the

cursor

is

not

affected

by

the

ROLLBACK

TO

SAVEPOINT

(it

remains

open

and

positioned).
v

Dynamically

prepared

statement

names

are

still

valid,

although

the

statement

may

be

implicitly

prepared

again,

as

a

result

of

DDL

operations

that

are

rolled

back

within

the

savepoint.

v

A

ROLLBACK

TO

SAVEPOINT

operation

will

drop

any

declared

temporary

tables

named

within

the

savepoint.

If

a

declared

temporary

table

is

modified

within

the

savepoint,

then

all

rows

in

the

table

are

deleted.

v

All

locks

are

retained

after

a

ROLLBACK

TO

SAVEPOINT

statement.

v

All

LOB

locators

are

preserved

following

a

ROLLBACK

TO

SAVEPOINT

operation.

ROLLBACK

Chapter

26.

SQL

Statements

for

Users

901

Example:

Delete

the

alterations

made

since

the

last

commit

point

or

rollback.

ROLLBACK

WORK

Related

reference:

v

“EXECUTE

statement”

in

the

SQL

Reference,

Volume

2

v

“SAVEPOINT

statement”

in

the

SQL

Reference,

Volume

2

Related

samples:

v

“delet.sqb

--

How

to

delete

table

data

(MF

COBOL)”

v

“spclient.sqc

--

Call

various

stored

procedures

(C)”

v

“tut_use.sqc

--

How

to

modify

a

database

(C)”

v

“spclient.sqC

--

Call

various

stored

procedures

(C++)”

v

“tut_use.sqC

--

How

to

modify

a

database

(C++)”

SELECT

The

SELECT

statement

is

a

form

of

query.

It

can

be

embedded

in

an

application

program

or

issued

interactively.

Related

reference:

v

“Subselect”

on

page

904

v

“Select-statement”

in

the

SQL

Reference,

Volume

1

Related

samples:

v

“dynamic.sqb

--

How

to

update

table

data

with

cursor

dynamically

(MF

COBOL)”

v

“static.sqb

--

Get

table

data

using

static

SQL

statement

(MF

COBOL)”

v

“tbread.c

--

How

to

read

data

from

tables”

v

“tut_read.c

--

How

to

read

data

from

tables”

v

“tbread.sqc

--

How

to

read

tables

(C)”

v

“tut_read.sqc

--

How

to

read

tables

(C)”

v

“tbread.sqC

--

How

to

read

tables

(C++)”

v

“tut_read.sqC

--

How

to

read

tables

(C++)”

v

“TbRead.java

--

How

to

read

table

data

(JDBC)”

v

“TutRead.java

--

Read

data

in

a

table

(JDBC)”

v

“TbRead.sqlj

--

How

to

read

table

data

(SQLj)”

v

“TutRead.sqlj

--

Read

data

in

a

table

(SQLj)”

SET

SCHEMA

The

SET

SCHEMA

statement

changes

the

value

of

the

CURRENT

SCHEMA

special

register.

It

is

not

under

transaction

control.

If

the

package

is

bound

with

the

DYNAMICRULES

BIND

option,

this

statement

does

not

affect

the

qualifier

used

for

unqualified

database

object

references.

Invocation:

ROLLBACK

902

Common

Criteria

Certification:

Administration

and

User

Documentation

The

statement

can

be

embedded

in

an

application

program

or

issued

interactively.

It

is

an

executable

statement

that

can

be

dynamically

prepared.

Authorization:

No

authorization

is

required

to

execute

this

statement.

Syntax:

��

CURRENT

=

SET

SCHEMA

schema-name

USER

SESSION_USER

SYSTEM_USER

CURRENT_USER

host-variable

string-constant

��

Description:

schema-name

This

one-part

name

identifies

a

schema

that

exists

at

the

application

server.

The

length

must

not

exceed

30

bytes

(SQLSTATE

42815).

No

validation

that

the

schema

exists

is

made

at

the

time

that

the

schema

is

set.

If

a

schema-name

is

misspelled,

it

will

not

be

caught,

and

it

could

affect

the

way

subsequent

SQL

operates.

USER

The

value

in

the

USER

special

register.

SESSION_USER

The

value

in

the

SESSION_USER

special

register.

SYSTEM_USER

The

value

in

the

SYSTEM_USER

special

register.

CURRENT_USER

The

value

in

the

CURRENT_USER

special

register.

host-variable

A

variable

of

type

CHAR

or

VARCHAR.

The

length

of

the

contents

of

the

host-variable

must

not

exceed

30

(SQLSTATE

42815).

It

cannot

be

set

to

null.

If

host-variable

has

an

associated

indicator

variable,

the

value

of

that

indicator

variable

must

not

indicate

a

null

value

(SQLSTATE

42815).

The

characters

of

the

host-variable

must

be

left

justified.

When

specifying

the

schema-name

with

a

host-variable,

all

characters

must

be

specified

in

the

exact

case

intended

as

there

is

no

conversion

to

uppercase

characters.

string-constant

A

character

string

constant

with

a

maximum

length

of

30.

Rules:

v

If

the

value

specified

does

not

conform

to

the

rules

for

a

schema-name,

an

error

(SQLSTATE

3F000)

is

raised.

v

The

value

of

the

CURRENT

SCHEMA

special

register

is

used

as

the

schema

name

in

all

dynamic

SQL

statements,

with

the

exception

of

the

CREATE

SCHEMA

statement,

where

an

unqualified

reference

to

a

database

object

exists.

v

The

QUALIFIER

bind

option

specifies

the

schema

name

for

use

as

the

qualifier

for

unqualified

database

object

names

in

static

SQL

statements.

SET

SCHEMA

Chapter

26.

SQL

Statements

for

Users

903

Notes:

v

The

initial

value

of

the

CURRENT

SCHEMA

special

register

is

equivalent

to

USER.

v

Setting

the

CURRENT

SCHEMA

special

register

does

not

effect

the

CURRENT

PATH

special

register.

Hence,

the

CURRENT

SCHEMA

will

not

be

included

in

the

SQL

path

and

functions,

procedures

and

user-defined

type

resolution

may

not

find

these

objects.

To

include

the

current

schema

value

in

the

SQL

path,

whenever

the

SET

SCHEMA

statement

is

issued,

also

issue

the

SET

PATH

statement

including

the

schema

name

from

the

SET

SCHEMA

statement.

v

CURRENT

SQLID

is

accepted

as

a

synonym

for

CURRENT

SCHEMA

and

the

effect

of

a

SET

CURRENT

SQLID

statement

will

be

identical

to

that

of

a

SET

CURRENT

SCHEMA

statement.

No

other

effects,

such

as

statement

authorization

changes,

will

occur.

Examples:

Example

1:

The

following

statement

sets

the

CURRENT

SCHEMA

special

register.

SET

SCHEMA

RICK

Example

2:

The

following

example

retrieves

the

current

value

of

the

CURRENT

SCHEMA

special

register

into

the

host

variable

called

CURSCHEMA.

EXEC

SQL

VALUES

(CURRENT

SCHEMA)

INTO

:CURSCHEMA;

The

value

would

be

RICK,

set

by

the

previous

example.

Subselect

��

select-clause

from-clause

where-clause

group-by-clause

�

�

having-clause

order-by-clause

fetch-first-clause

��

The

subselect

is

a

component

of

the

fullselect.

A

subselect

specifies

a

result

table

derived

from

the

tables,

views

or

nicknames

identified

in

the

FROM

clause.

The

derivation

can

be

described

as

a

sequence

of

operations

in

which

the

result

of

each

operation

is

input

for

the

next.

(This

is

only

a

way

of

describing

the

subselect.

The

method

used

to

perform

the

derivation

may

be

quite

different

from

this

description.)

The

clauses

of

the

subselect

are

processed

in

the

following

sequence:

1.

FROM

clause

2.

WHERE

clause

3.

GROUP

BY

clause

4.

HAVING

clause

5.

SELECT

clause

6.

ORDER

BY

clause

7.

FETCH

FIRST

clause

A

subselect

that

contains

an

ORDER

BY

or

FETCH

FIRST

clause

cannot

be

specified:

SET

SCHEMA

904

Common

Criteria

Certification:

Administration

and

User

Documentation

v

In

the

outermost

fullselect

of

a

view.

v

In

a

materialized

query

table.

v

Unless

the

subselect

is

enclosed

in

parenthesis.

For

example,

the

following

is

not

valid

(SQLSTATE

428FJ):

SELECT

*

FROM

T1

ORDER

BY

C1

UNION

SELECT

*

FROM

T2

ORDER

BY

C1

The

following

example

is

valid:

(SELECT

*

FROM

T1

ORDER

BY

C1)

UNION

(SELECT

*

FROM

T2

ORDER

BY

C1)

Note:

An

ORDER

BY

clause

in

a

subselect

does

not

affect

the

order

of

the

rows

returned

by

a

query.

An

ORDER

BY

clause

only

affects

the

order

of

the

rows

returned

if

it

is

specified

in

the

outermost

fullselect.

select-clause

��

SELECT

ALL

DISTINCT

�

*

,

expression

AS

new-column-name

exposed-name.*

��

The

SELECT

clause

specifies

the

columns

of

the

final

result

table.

The

column

values

are

produced

by

the

application

of

the

select

list

to

R.

The

select

list

is

the

names

or

expressions

specified

in

the

SELECT

clause,

and

R

is

the

result

of

the

previous

operation

of

the

subselect.

For

example,

if

the

only

clauses

specified

are

SELECT,

FROM,

and

WHERE,

R

is

the

result

of

that

WHERE

clause.

ALL

Retains

all

rows

of

the

final

result

table,

and

does

not

eliminate

redundant

duplicates.

This

is

the

default.

DISTINCT

Eliminates

all

but

one

of

each

set

of

duplicate

rows

of

the

final

result

table.

If

DISTINCT

is

used,

no

string

column

of

the

result

table

can

be

a

LONG

VARCHAR,

LONG

VARGRAPHIC,

DATALINK,

LOB

type,

distinct

type

on

any

of

these

types,

or

structured

type.

DISTINCT

may

be

used

more

than

once

in

a

subselect.

This

includes

SELECT

DISTINCT,

the

use

of

DISTINCT

in

a

column

function

of

the

select

list

or

HAVING

clause,

and

subqueries

of

the

subselect.

Two

rows

are

duplicates

of

one

another

only

if

each

value

in

the

first

is

equal

to

the

corresponding

value

of

the

second.

For

determining

duplicates,

two

null

values

are

considered

equal.

Subselect

Chapter

26.

SQL

Statements

for

Users

905

Select

list

notation:

*

Represents

a

list

of

names

that

identify

the

columns

of

table

R.

The

first

name

in

the

list

identifies

the

first

column

of

R,

the

second

name

identifies

the

second

column

of

R,

and

so

on.

The

list

of

names

is

established

when

the

program

containing

the

SELECT

clause

is

bound.

Hence

*

(the

asterisk)

does

not

identify

any

columns

that

have

been

added

to

a

table

after

the

statement

containing

the

table

reference

has

been

bound.

expression

Specifies

the

values

of

a

result

column.

Can

be

any

expression

that

is

a

valid

SQL

language

element,

but

commonly

includes

column

names.

Each

column

name

used

in

the

select

list

must

unambiguously

identify

a

column

of

R.

new-column-name

or

AS

new-column-name

Names

or

renames

the

result

column.

The

name

must

not

be

qualified

and

does

not

have

to

be

unique.

Subsequent

usage

of

column-name

is

limited

as

follows:

v

A

new-column-name

specified

in

the

AS

clause

can

be

used

in

the

order-by-clause,

provided

the

name

is

unique.

v

A

new-column-name

specified

in

the

AS

clause

of

the

select

list

cannot

be

used

in

any

other

clause

within

the

subselect

(where-clause,

group-by-clause

or

having-clause).

v

A

new-column-name

specified

in

the

AS

clause

cannot

be

used

in

the

update-clause.

v

A

new-column-name

specified

in

the

AS

clause

is

known

outside

the

fullselect

of

nested

table

expressions,

common

table

expressions

and

CREATE

VIEW.

name.*

Represents

the

list

of

names

that

identify

the

columns

of

the

result

table

identified

by

exposed-name.

The

exposed-name

may

be

a

table

name,

view

name,

nickname,

or

correlation

name,

and

must

designate

a

table,

view

or

nickname

named

in

the

FROM

clause.

The

first

name

in

the

list

identifies

the

first

column

of

the

table,

view

or

nickname,

the

second

name

in

the

list

identifies

the

second

column

of

the

table,

view

or

nickname,

and

so

on.

The

list

of

names

is

established

when

the

statement

containing

the

SELECT

clause

is

bound.

Therefore,

*

does

not

identify

any

columns

that

have

been

added

to

a

table

after

the

statement

has

been

bound.

The

number

of

columns

in

the

result

of

SELECT

is

the

same

as

the

number

of

expressions

in

the

operational

form

of

the

select

list

(that

is,

the

list

established

when

the

statement

is

prepared),

and

cannot

exceed

500

for

a

4K

page

size

or

1012

for

an

8K,

16K,

or

32K

page

size.

Limitations

on

string

columns

For

limitations

on

the

select

list,

see

“Restrictions

Using

Varying-Length

Character

Strings”.

Applying

the

select

list

Some

of

the

results

of

applying

the

select

list

to

R

depend

on

whether

or

not

GROUP

BY

or

HAVING

is

used.

The

results

are

described

in

two

separate

lists:

If

GROUP

BY

or

HAVING

is

used:

Select

list

notation:

906

Common

Criteria

Certification:

Administration

and

User

Documentation

v

An

expression

X

(not

a

column

function)

used

in

the

select

list

must

have

a

GROUP

BY

clause

with:

–

a

grouping-expression

in

which

each

column-name

unambiguously

identifies

a

column

of

R

(see

“group-by-clause”

on

page

918)

or

–

each

column

of

R

referenced

in

X

as

a

separate

grouping-expression.
v

The

select

list

is

applied

to

each

group

of

R,

and

the

result

contains

as

many

rows

as

there

are

groups

in

R.

When

the

select

list

is

applied

to

a

group

of

R,

that

group

is

the

source

of

the

arguments

of

the

column

functions

in

the

select

list.

If

neither

GROUP

BY

nor

HAVING

is

used:

v

Either

the

select

list

must

not

include

any

column

functions,

or

each

column-name

in

the

select

list

must

be

specified

within

a

column

function

or

must

be

a

correlated

column

reference.

v

If

the

select

does

not

include

column

functions,

then

the

select

list

is

applied

to

each

row

of

R

and

the

result

contains

as

many

rows

as

there

are

rows

in

R.

v

If

the

select

list

is

a

list

of

column

functions,

then

R

is

the

source

of

the

arguments

of

the

functions

and

the

result

of

applying

the

select

list

is

one

row.

In

either

case

the

nth

column

of

the

result

contains

the

values

specified

by

applying

the

nth

expression

in

the

operational

form

of

the

select

list.

Null

attributes

of

result

columns:

Result

columns

do

not

allow

null

values

if

they

are

derived

from:

v

A

column

that

does

not

allow

null

values

v

A

constant

v

The

COUNT

or

COUNT_BIG

function

v

A

host

variable

that

does

not

have

an

indicator

variable

v

A

scalar

function

or

expression

that

does

not

include

an

operand

that

allows

nulls.

Result

columns

allow

null

values

if

they

are

derived

from:

v

Any

column

function

except

COUNT

or

COUNT_BIG

v

A

column

that

allows

null

values

v

A

scalar

function

or

expression

that

includes

an

operand

that

allows

nulls

v

A

NULLIF

function

with

arguments

containing

equal

values.

v

A

host

variable

that

has

an

indicator

variable.

v

A

result

of

a

set

operation

if

at

least

one

of

the

corresponding

items

in

the

select

list

is

nullable.

v

An

arithmetic

expression

or

view

column

that

is

derived

from

an

arithmetic

expression

and

the

database

is

configured

with

DFT_SQLMATHWARN

set

to

yes

v

A

dereference

operation.

Names

of

result

columns:

v

If

the

AS

clause

is

specified,

the

name

of

the

result

column

is

the

name

specified

on

the

AS

clause.

v

If

the

AS

clause

is

not

specified

and

the

result

column

is

derived

from

a

column,

then

the

result

column

name

is

the

unqualified

name

of

that

column.

If

GROUP

BY

or

HAVING

is

used

Chapter

26.

SQL

Statements

for

Users

907

v

If

the

AS

clause

is

not

specified

and

the

result

column

is

derived

using

a

dereference

operation,

then

the

result

column

name

is

the

unqualified

name

of

the

target

column

of

the

dereference

operation.

v

All

other

result

column

names

are

unnamed.

The

system

assigns

temporary

numbers

(as

character

strings)

to

these

columns.

Data

types

of

result

columns:

Each

column

of

the

result

of

SELECT

acquires

a

data

type

from

the

expression

from

which

it

is

derived.

When

the

expression

is

...

The

data

type

of

the

result

column

is

...

the

name

of

any

numeric

column

the

same

as

the

data

type

of

the

column,

with

the

same

precision

and

scale

for

DECIMAL

columns.

an

integer

constant

INTEGER.

a

decimal

constant

DECIMAL,

with

the

precision

and

scale

of

the

constant.

a

floating-point

constant

DOUBLE.

the

name

of

any

numeric

variable

the

same

as

the

data

type

of

the

variable,

with

the

same

precision

and

scale

for

DECIMAL

variables.

a

hexadecimal

constant

representing

n

bytes

VARCHAR(n);

the

code

page

is

the

database

code

page.

the

name

of

any

string

column

the

same

as

the

data

type

of

the

column,

with

the

same

length

attribute.

the

name

of

any

string

variable

the

same

as

the

data

type

of

the

variable,

with

the

same

length

attribute;

if

the

data

type

of

the

variable

is

not

identical

to

an

SQL

data

type

(for

example,

a

NUL-terminated

string

in

C),

the

result

column

is

a

varying-length

string.

a

character

string

constant

of

length

n

VARCHAR(n).

a

graphic

string

constant

of

length

n

VARGRAPHIC(n).

the

name

of

a

datetime

column

the

same

as

the

data

type

of

the

column.

the

name

of

a

user-defined

type

column

the

same

as

the

data

type

of

the

column.

the

name

of

a

reference

type

column

the

same

as

the

data

type

of

the

column.

from-clause

��

�

,

FROM

table-reference

��

The

FROM

clause

specifies

an

intermediate

result

table.

If

one

table-reference

is

specified,

the

intermediate

result

table

is

simply

the

result

of

that

table-reference.

If

more

than

one

table-reference

is

specified,

the

intermediate

result

table

consists

of

all

possible

combinations

of

the

rows

of

the

specified

table-references

(the

Cartesian

product).

Each

row

of

the

result

is

a

row

from

the

first

table-reference

concatenated

with

a

row

from

the

second

table-reference,

concatenated

in

turn

with

a

row

from

the

third,

and

so

on.

The

Names

of

result

columns

908

Common

Criteria

Certification:

Administration

and

User

Documentation

number

of

rows

in

the

result

is

the

product

of

the

number

of

rows

in

all

the

individual

table-references.

For

a

description

of

table-reference,

see

“table-reference.”

table-reference

��

�

table-name

correlation-clause

tablesample-clause

nickname

view-name

correlation-clause

ONLY

(

table-name

)

OUTER

view-name

TABLE

(

function-name

(

)

)

correlation-clause

,

expression

(fullselect)

correlation-clause

TABLE

data-change-table-reference

correlation-clause

joined-table

��

data-change-table-reference:

FINAL

TABLE

(

insert-statement

)

NEW

FINAL

TABLE

(

searched-update-statement

)

NEW

OLD

OLD

TABLE

(

searched-delete-statement

)

correlation-clause:

�

AS

correlation-name

,

(

column-name

)

tablesample-clause:

TABLESAMPLE

BERNOULLI

SYSTEM

(

numeric-expression1

)

�

�

REPEATABLE

(

numeric-expression2

)

Each

table-name,

view-name

or

nickname

specified

as

a

table-reference

must

identify

an

existing

table,

view

or

nickname

at

the

application

server

or

the

table-name

of

a

common

table

expression

defined

preceding

the

fullselect

containing

the

table-reference.

If

the

table-name

references

a

typed

table,

the

name

denotes

the

UNION

ALL

of

the

table

with

all

its

subtables,

with

only

the

columns

of

the

table-name.

Similarly,

if

the

view-name

references

a

typed

view,

the

name

denotes

the

UNION

ALL

of

the

view

with

all

its

subviews,

with

only

the

columns

of

the

view-name.

from-clause

Chapter

26.

SQL

Statements

for

Users

909

The

use

of

ONLY(table-name)

or

ONLY(view-name)

means

that

the

rows

of

the

proper

subtables

or

subviews

are

not

included.

If

the

table-name

used

with

ONLY

does

not

have

subtables,

then

ONLY(table-name)

is

equivalent

to

specifying

table-name.

If

the

view-name

used

with

ONLY

does

not

have

subviews,

then

ONLY(view-name)

is

equivalent

to

specifying

view-name.

The

use

of

OUTER(table-name)

or

OUTER(view-name)

represents

a

virtual

table.

If

the

table-name

or

view-name

used

with

OUTER

does

not

have

subtables

or

subviews,

then

specifying

OUTER

is

equivalent

to

not

specifying

OUTER.

OUTER(table-name)

is

derived

from

table-name

as

follows:

v

The

columns

include

the

columns

of

table-name

followed

by

the

additional

columns

introduced

by

each

of

its

subtables

(if

any).

The

additional

columns

are

added

on

the

right,

traversing

the

subtable

hierarchy

in

depth-first

order.

Subtables

that

have

a

common

parent

are

traversed

in

creation

order

of

their

types.

v

The

rows

include

all

the

rows

of

table-name

and

all

the

rows

of

its

subtables.

Null

values

are

returned

for

columns

that

are

not

in

the

subtable

for

the

row.

The

previous

points

also

apply

to

OUTER(view-name),

substituting

view-name

for

table-name

and

subview

for

subtable.

The

use

of

ONLY

or

OUTER

requires

the

SELECT

privilege

on

every

subtable

of

table-name

or

subview

of

view-name.

Each

function-name

together

with

the

types

of

its

arguments,

specified

as

a

table

reference

must

resolve

to

an

existing

table

function

at

the

application

server.

A

fullselect

in

parentheses

followed

by

a

correlation

name

is

called

a

nested

table

expression.

A

joined-table

specifies

an

intermediate

result

set

that

is

the

result

of

one

or

more

join

operations.

For

more

information,

see

“joined-table”

on

page

916.

The

exposed

names

of

all

table

references

should

be

unique.

An

exposed

name

is:

v

A

correlation-name,

v

A

table-name

that

is

not

followed

by

a

correlation-name,

v

A

view-name

that

is

not

followed

by

a

correlation-name,

v

A

nickname

that

is

not

followed

by

a

correlation-name,

v

An

alias-name

that

is

not

followed

by

a

correlation-name.

Each

correlation-name

is

defined

as

a

designator

of

the

immediately

preceding

table-name,

view-name,

nickname,

function-name

reference

or

nested

table

expression.

Any

qualified

reference

to

a

column

for

a

table,

view,

table

function

or

nested

table

expression

must

use

the

exposed

name.

If

the

same

table

name,

view

or

nickname

name

is

specified

twice,

at

least

one

specification

should

be

followed

by

a

correlation-name.

The

correlation-name

is

used

to

qualify

references

to

the

columns

of

the

table,

view

or

nickname.

When

a

correlation-name

is

specified,

column-names

can

also

be

specified

to

give

names

to

the

columns

of

the

table-name,

view-name,

nickname,

function-name

reference

or

nested

table

expression.

In

general,

table

functions

and

nested

table

expressions

can

be

specified

on

any

from-clause.

Columns

from

the

table

functions

and

nested

table

expressions

can

be

referenced

in

the

select

list

and

in

the

rest

of

the

subselect

using

the

correlation

table-reference

910

Common

Criteria

Certification:

Administration

and

User

Documentation

name

which

must

be

specified.

The

scope

of

this

correlation

name

is

the

same

as

correlation

names

for

other

table,

view

or

nickname

in

the

FROM

clause.

A

nested

table

expression

can

be

used:

v

In

place

of

a

view

to

avoid

creating

the

view

(when

general

use

of

the

view

is

not

required)

v

When

the

desired

result

table

is

based

on

host

variables

An

expression

in

the

select

list

of

a

nested

table

expression

that

is

referenced

within,

or

is

the

target

of,

a

data

change

statement

within

a

fullselect

is

only

valid

when

it

does

not

include:

v

A

function

that

reads

or

modifies

SQL

data

v

A

function

that

is

non-deterministic

v

A

function

that

has

external

action

v

An

OLAP

function

If

a

view

is

referenced

directly

in,

or

as

the

target

of

a

nested

table

expression

in

a

data

change

statement

within

a

FROM

clause,

the

view

must

either

be

symmetric

(have

WITH

CHECK

OPTION

specified)

or

satisfy

the

restriction

for

a

WITH

CHECK

OPTION

view.

If

the

target

of

a

data

change

statement

within

a

FROM

clause

is

a

nested

table

expression,

the

modified

rows

are

not

requalified,

WHERE

clause

predicates

are

not

re-evaluated,

and

ORDER

BY

or

FETCH

FIRST

operations

are

not

redone.

The

optional

tablesample-clause

can

be

used

to

obtain

a

random

subset

(a

sample)

of

the

rows

from

the

specified

table-name,

rather

than

the

entire

contents

of

that

table-name,

for

this

query.

This

sampling

is

in

addition

to

any

predicates

that

are

specified

in

the

where-clause.

Unless

the

optional

REPEATABLE

clause

is

specified,

each

execution

of

the

query

will

usually

yield

a

different

sample,

except

in

degenerate

cases

where

the

table

is

so

small

relative

to

the

sample

size

that

any

sample

must

return

the

same

rows.

The

size

of

the

sample

is

controlled

by

the

numeric-expression1

in

parentheses,

representing

an

approximate

percentage

(P)

of

the

table

to

be

returned.

The

method

by

which

the

sample

is

obtained

is

specified

after

the

TABLESAMPLE

keyword,

and

can

be

either

BERNOULLI

or

SYSTEM.

For

both

methods,

the

exact

number

of

rows

in

the

sample

may

be

different

for

each

execution

of

the

query,

but

on

average

should

be

approximately

P

percent

of

the

table,

before

any

predicates

further

reduce

the

number

of

rows.

The

table-name

must

be

a

stored

table.

It

can

be

a

materialized

query

table

(MQT)

name,

but

not

a

subselect

or

table

expression

for

which

an

MQT

has

been

defined,

because

there

is

no

guarantee

that

the

database

manager

will

route

to

the

MQT

for

that

subselect.

Semantically,

sampling

of

a

table

occurs

before

any

other

query

processing,

such

as

applying

predicates

or

performing

joins.

Repeated

accesses

of

a

sampled

table

within

a

single

execution

of

a

query

(such

as

in

a

nested-loop

join

or

a

correlated

subquery)

will

return

the

same

sample.

More

than

one

table

may

be

sampled

in

a

query.

BERNOULLI

sampling

considers

each

row

individually.

It

includes

each

row

in

the

sample

with

probability

P/100

(where

P

is

the

value

of

numeric-expression1),

and

excludes

each

row

with

probability

1

-

P/100,

independently

of

the

other

rows.

So

table-reference

Chapter

26.

SQL

Statements

for

Users

911

if

the

numeric-expression1

evaluated

to

the

value

10,

representing

a

ten

percent

sample,

each

row

would

be

included

with

probability

0.1,

and

excluded

with

probability

0.9.

SYSTEM

sampling

permits

the

database

manager

to

determine

the

most

efficient

manner

in

which

to

perform

the

sampling.

In

most

cases,

SYSTEM

sampling

applied

to

a

table-name

means

that

each

page

of

table-name

is

included

in

the

sample

with

probability

P/100,

and

excluded

with

probability

1

-

P/100.

All

rows

on

each

page

that

is

included

qualify

for

the

sample.

SYSTEM

sampling

of

a

table-name

generally

executes

much

faster

than

BERNOULLI

sampling,

because

fewer

data

pages

need

to

be

retrieved;

however,

it

can

often

yield

less

accurate

estimates

for

aggregate

functions

(SUM(SALES),

for

example),

especially

if

the

rows

of

table-name

are

clustered

on

any

columns

referenced

in

that

query.

The

optimizer

may

in

certain

circumstances

decide

that

it

is

more

efficient

to

perform

SYSTEM

sampling

as

if

it

were

BERNOULLI

sampling,

for

example

when

a

predicate

on

table-name

can

be

applied

by

an

index

and

is

much

more

selective

than

the

sampling

rate

P.

The

numeric-expression1

specifies

the

size

of

the

sample

to

be

obtained

from

table-name,

expressed

as

a

percentage.

It

must

be

a

constant

numeric

expression

that

cannot

contain

columns,

parameter

markers,

or

host

variables.

The

expression

must

evaluate

to

a

positive

number

that

is

less

than

or

equal

to

100,

but

can

be

between

1

and

0.

For

example,

a

value

of

0.01

represents

one

one-hundredth

of

a

percent,

meaning

that

1

row

in

10

000

would

be

sampled,

on

average.

A

numeric-expression1

that

evaluates

to

100

is

handled

as

if

the

tablesample-clause

were

not

specified.

If

numeric-expression1

evaluates

to

the

null

value,

or

to

a

value

that

is

greater

than

100

or

less

than

0,

an

error

is

returned

(SQLSTATE

2202H).

It

is

sometimes

desirable

for

sampling

to

be

repeatable

from

one

execution

of

the

query

to

the

next;

for

example,

during

regression

testing

or

query

″debugging″.

This

can

be

accomplished

by

specifying

the

REPEATABLE

clause.

The

REPEATABLE

clause

requires

the

specification

of

a

numeric-expression2

in

parentheses,

which

serves

the

same

role

as

the

seed

in

a

random

number

generator.

Adding

the

REPEATABLE

clause

to

the

tablesample-clause

of

any

table-name

ensures

that

repeated

executions

of

that

query

(using

the

same

value

for

numeric-expression2)

return

the

same

sample,

assuming,

of

course,

that

the

data

itself

has

not

been

updated,

reorganized,

or

repartitioned.

To

guarantee

that

the

same

sample

of

table-name

is

used

across

multiple

queries,

use

of

a

global

temporary

table

is

recommended.

Alternatively,

the

multiple

queries

could

be

combined

into

one

query,

with

multiple

references

to

a

sample

that

is

defined

using

the

WITH

clause.

Following

are

some

examples:

Example

1:

Request

a

10%

Bernoulli

sample

of

the

Sales

table

for

auditing

purposes.

SELECT

*

FROM

Sales

TABLESAMPLE

BERNOULLI(10)

Example

2:

Compute

the

total

sales

revenue

in

the

Northeast

region

for

each

product

category,

using

a

random

1%

SYSTEM

sample

of

the

Sales

table.

The

semantics

of

SUM

are

for

the

sample

itself,

so

to

extrapolate

the

sales

to

the

entire

Sales

table,

the

query

must

divide

that

SUM

by

the

sampling

rate

(0.01).

SELECT

SUM(Sales.Revenue)

/

(0.01)

FROM

Sales

TABLESAMPLE

SYSTEM(1)

WHERE

Sales.RegionName

=

’Northeast’

GROUP

BY

Sales.ProductCategory

table-reference

912

Common

Criteria

Certification:

Administration

and

User

Documentation

Example

3:

Using

the

REPEATABLE

clause,

modify

the

previous

query

to

ensure

that

the

same

(yet

random)

result

is

obtained

each

time

the

query

is

executed.

(The

value

of

the

constant

enclosed

by

parentheses

is

arbitrary.)

SELECT

SUM(Sales.Revenue)

/

(0.01)

FROM

Sales

TABLESAMPLE

SYSTEM(1)

REPEATABLE(3578231)

WHERE

Sales.RegionName

=

’Northeast’

GROUP

BY

Sales.ProductCategory

Table

function

references

In

general,

a

table

function,

together

with

its

argument

values,

can

be

referenced

in

the

FROM

clause

of

a

SELECT

in

exactly

the

same

way

as

a

table

or

view.

There

are,

however,

some

special

considerations

which

apply.

v

Table

Function

Column

Names

Unless

alternate

column

names

are

provided

following

the

correlation-name,

the

column

names

for

the

table

function

are

those

specified

in

the

RETURNS

clause

of

the

CREATE

FUNCTION

statement.

This

is

analogous

to

the

names

of

the

columns

of

a

table,

which

are

defined

in

the

CREATE

TABLE

statement.

v

Table

Function

Resolution

The

arguments

specified

in

a

table

function

reference,

together

with

the

function

name,

are

used

by

an

algorithm

called

function

resolution

to

determine

the

exact

function

to

be

used.

This

is

no

different

from

what

happens

with

other

functions

(such

as

scalar

functions)

that

are

used

in

a

statement.

v

Table

Function

Arguments

As

with

scalar

function

arguments,

table

function

arguments

can

in

general

be

any

valid

SQL

expression.

The

following

examples

are

valid

syntax:

Example

1:

SELECT

c1

FROM

TABLE(

tf1(’Zachary’)

)

AS

z

WHERE

c2

=

’FLORIDA’;

Example

2:

SELECT

c1

FROM

TABLE(

tf2

(:hostvar1,

CURRENT

DATE)

)

AS

z;

Example

3:

SELECT

c1

FROM

t

WHERE

c2

IN

(SELECT

c3

FROM

TABLE(

tf5(t.c4)

)

AS

z

--

correlated

reference

)

--

to

previous

FROM

clause

v

Table

Functions

That

Modify

SQL

Data

Table

functions

that

are

specified

with

the

MODIFIES

SQL

DATA

option

can

only

be

used

as

the

last

table

reference

in

a

select-statement,

common-table-
expression,

or

RETURN

statement

that

is

a

subselect,

a

SELECT

INTO,

or

a

row-fullselect

in

a

SET

statement.

Only

one

table

function

is

allowed

in

one

FROM

clause,

and

the

table

function

arguments

must

be

correlated

to

all

other

table

references

in

the

subselect

(SQLSTATE

429BL).

The

following

examples

have

valid

syntax

for

a

table

function

with

the

MODIFIES

SQL

DATA

property:

Example

1:

SELECT

c1

FROM

TABLE(

tfmod(’Jones’)

)

AS

z

Example

2:

SELECT

c1

FROM

t1,

t2,

TABLE(

tfmod(t1.c1,

t2.c1)

)

AS

z

Example

3:

SET

var

=

(SELECT

c1

FROM

TABLE(

tfmod(’Jones’)

)

AS

z

Example

4:

RETURN

SELECT

c1

FROM

TABLE(

tfmod(’Jones’)

)

AS

z

table-reference

Chapter

26.

SQL

Statements

for

Users

913

Example

5:

WITH

v1(c1)

AS

(SELECT

c1

FROM

TABLE(

tfmod(:hostvar1)

)

AS

z)

SELECT

c1

FROM

v1,

t1

WHERE

v1.c1

=

t1.c1

Correlated

references

in

table-references

Correlated

references

can

be

used

in

nested

table

expressions

or

as

arguments

to

table

functions.

The

basic

rule

that

applies

for

both

these

cases

is

that

the

correlated

reference

must

be

from

a

table-reference

at

a

higher

level

in

the

hierarchy

of

subqueries.

This

hierarchy

includes

the

table-references

that

have

already

been

resolved

in

the

left-to-right

processing

of

the

FROM

clause.

For

nested

table

expressions,

the

TABLE

keyword

must

appear

before

the

fullselect.

So

the

following

examples

are

valid

syntax:

Example

1:

SELECT

t.c1,

z.c5

FROM

t,

TABLE(

tf3(t.c2)

)

AS

z

--

t

precedes

tf3

WHERE

t.c3

=

z.c4;

--

in

FROM,

so

t.c2

--

is

known

Example

2:

SELECT

t.c1,

z.c5

FROM

t,

TABLE(

tf4(2

*

t.c2)

)

AS

z

--

t

precedes

tf3

WHERE

t.c3

=

z.c4;

--

in

FROM,

so

t.c2

--

is

known

Example

3:

SELECT

d.deptno,

d.deptname,

empinfo.avgsal,

empinfo.empcount

FROM

department

d,

TABLE

(SELECT

AVG(e.salary)

AS

avgsal,

COUNT(*)

AS

empcount

FROM

employee

e

--

department

precedes

WHERE

e.workdept=d.deptno

--

and

TABLE

is

)

AS

empinfo;

--

specified,

so

--

d.deptno

is

known

But

the

following

examples

are

not

valid:

Example

4:

SELECT

t.c1,

z.c5

FROM

TABLE(

tf6(t.c2)

)

AS

z,

t

--

cannot

resolve

t

in

t.c2!

WHERE

t.c3

=

z.c4;

--

compare

to

Example

1

above.

Example

5:

SELECT

a.c1,

b.c5

FROM

TABLE(

tf7a(b.c2)

)

AS

a,

TABLE(

tf7b(a.c6)

)

AS

b

WHERE

a.c3

=

b.c4;

--

cannot

resolve

b

in

b.c2!

Example

6:

SELECT

d.deptno,

d.deptname,

empinfo.avgsal,

empinfo.empcount

FROM

department

d,

(SELECT

AVG(e.salary)

AS

avgsal,

COUNT(*)

AS

empcount

FROM

employee

e

--

department

precedes

WHERE

e.workdept=d.deptno

--

but

TABLE

is

not

)

AS

empinfo;

--

specified,

so

--

d.deptno

is

unknown

Data

change

table

references

A

data-change-table-reference

clause

specifies

an

intermediate

result

table.

This

table

is

based

on

the

rows

that

are

directly

changed

by

the

searched

UPDATE,

searched

DELETE,

or

INSERT

statement

that

is

included

in

the

clause.

A

data-change-table-reference

can

be

specified

as

the

only

table-reference

in

the

FROM

clause

of

the

outer

fullselect

that

is

used

in

a

select-statement,

a

SELECT

INTO

statement,

or

a

common

table

expression.

A

data-change-table-reference

can

be

specified

as

the

only

table

reference

in

the

only

fullselect

in

a

SET

Variable

Table

function

references

914

Common

Criteria

Certification:

Administration

and

User

Documentation

statement

(SQLSTATE

428FL).

The

target

table

or

view

of

the

data

change

statement

is

considered

to

be

a

table

or

view

that

is

referenced

in

the

query;

therefore,

the

authorization

ID

of

the

query

must

have

SELECT

privilege

on

that

target

table

or

view.

The

target

of

the

UPDATE,

DELETE,

or

INSERT

statement

cannot

be

a

temporary

view

defined

in

a

common

table

expression

(SQLSTATE

42807).

FINAL

TABLE

Specifies

that

the

rows

of

the

intermediate

result

table

represent

the

set

of

rows

that

are

changed

by

the

SQL

data

change

statement

as

they

appear

at

the

completion

of

the

data

change

statement.

If

there

are

AFTER

triggers

or

referential

constraints

that

result

in

further

operations

on

the

table

that

is

the

target

of

the

SQL

data

change

statement,

an

error

is

returned

(SQLSTATE

57058,

SQLSTATE

560C6).

If

the

target

of

the

SQL

data

change

statement

is

a

view

that

is

defined

with

an

INSTEAD

OF

trigger

for

the

type

of

data

change,

an

error

is

returned

(SQLSTATE

428G3).

NEW

TABLE

Specifies

that

the

rows

of

the

intermediate

result

table

represent

the

set

of

rows

that

are

changed

by

the

SQL

data

change

statement

prior

to

the

application

of

referential

constraints

and

AFTER

triggers.

Data

in

the

target

table

at

the

completion

of

the

statement

might

not

match

the

data

in

the

intermediate

result

table

because

of

additional

processing

for

referential

constraints

and

AFTER

triggers.

OLD

TABLE

Specifies

that

the

rows

of

the

intermediate

result

table

represent

the

set

of

rows

that

are

changed

by

the

SQL

data

change

statement

as

they

existed

prior

to

the

application

of

the

data

change

statement.

(searched-update-statement)

Specifies

a

searched

UPDATE

statement.

A

WHERE

clause

or

a

SET

clause

in

the

UPDATE

statement

cannot

contain

correlated

references

to

columns

outside

of

the

UPDATE

statement.

(searched-delete-statement)

Specifies

a

searched

DELETE

statement.

A

WHERE

clause

in

the

DELETE

statement

cannot

contain

correlated

references

to

columns

outside

of

the

DELETE

statement.

(insert-statement)

Specifies

an

INSERT

statement.

A

fullselect

in

the

INSERT

statement

cannot

contain

correlated

references

to

columns

outside

of

the

fullselect

of

the

INSERT

statement.

The

content

of

the

intermediate

result

table

for

a

data-change-table-reference

is

determined

when

the

cursor

opens.

The

intermediate

result

table

contains

all

manipulated

rows,

including

all

the

columns

in

the

specified

target

table

or

view.

All

the

columns

of

the

target

table

or

view

for

an

SQL

data

change

statement

are

accessible

using

the

column

names

from

the

target

table

or

view.

If

an

INCLUDE

clause

was

specified

within

a

data

change

statement,

the

intermediate

result

table

will

contain

these

additional

columns.

Data

change

table

references

Chapter

26.

SQL

Statements

for

Users

915

joined-table

��

INNER

table-reference

JOIN

table-reference

ON

join-condition

outer

(

joined-table

)

��

outer:

OUTER

LEFT

RIGHT

FULL

A

joined

table

specifies

an

intermediate

result

table

that

is

the

result

of

either

an

inner

join

or

an

outer

join.

The

table

is

derived

by

applying

one

of

the

join

operators:

INNER,

LEFT

OUTER,

RIGHT

OUTER,

or

FULL

OUTER

to

its

operands.

Inner

joins

can

be

thought

of

as

the

cross

product

of

the

tables

(combine

each

row

of

the

left

table

with

every

row

of

the

right

table),

keeping

only

the

rows

where

the

join

condition

is

true.

The

result

table

may

be

missing

rows

from

either

or

both

of

the

joined

tables.

Outer

joins

include

the

inner

join

and

preserve

these

missing

rows.

There

are

three

types

of

outer

joins:

v

left

outer

join

includes

rows

from

the

left

table

that

were

missing

from

the

inner

join.

v

right

outer

join

includes

rows

from

the

right

table

that

were

missing

from

the

inner

join.

v

full

outer

join

includes

rows

from

both

the

left

and

right

tables

that

were

missing

from

the

inner

join.

If

a

join-operator

is

not

specified,

INNER

is

implicit.

The

order

in

which

multiple

joins

are

performed

can

affect

the

result.

Joins

can

be

nested

within

other

joins.

The

order

of

processing

for

joins

is

generally

from

left

to

right,

but

based

on

the

position

of

the

required

join-condition.

Parentheses

are

recommended

to

make

the

order

of

nested

joins

more

readable.

For

example:

TB1

LEFT

JOIN

TB2

ON

TB1.C1=TB2.C1

RIGHT

JOIN

TB3

LEFT

JOIN

TB4

ON

TB3.C1=TB4.C1

ON

TB1.C1=TB3.C1

is

the

same

as:

(TB1

LEFT

JOIN

TB2

ON

TB1.C1=TB2.C1)

RIGHT

JOIN

(TB3

LEFT

JOIN

TB4

ON

TB3.C1=TB4.C1)

ON

TB1.C1=TB3.C1

A

joined

table

can

be

used

in

any

context

in

which

any

form

of

the

SELECT

statement

is

used.

A

view

or

a

cursor

is

read-only

if

its

SELECT

statement

includes

a

joined

table.

A

join-condition

is

a

search-condition

except

that:

v

it

cannot

contain

any

subqueries,

scalar

or

otherwise

v

it

cannot

include

any

dereference

operations

or

the

DEREF

function

where

the

reference

value

is

other

than

the

object

identifier

column.

v

it

cannot

include

an

SQL

function

joined-table

916

Common

Criteria

Certification:

Administration

and

User

Documentation

v

any

column

referenced

in

an

expression

of

the

join-condition

must

be

a

column

of

one

of

the

operand

tables

of

the

associated

join

(in

the

scope

of

the

same

joined-table

clause)

v

any

function

referenced

in

an

expression

of

the

join-condition

of

a

full

outer

join

must

be

deterministic

and

have

no

external

action.

An

error

occurs

if

the

join

condition

does

not

comply

with

these

rules

(SQLSTATE

42972).

Column

references

are

resolved

using

the

rules

for

resolution

of

column

name

qualifiers.

The

same

rules

that

apply

to

predicates

apply

to

join

conditions.

Join

operations

A

join-condition

specifies

pairings

of

T1

and

T2,

where

T1

and

T2

are

the

left

and

right

operand

tables

of

the

JOIN

operator

of

the

join-condition.

For

all

possible

combinations

of

rows

of

T1

and

T2,

a

row

of

T1

is

paired

with

a

row

of

T2

if

the

join-condition

is

true.

When

a

row

of

T1

is

joined

with

a

row

of

T2,

a

row

in

the

result

consists

of

the

values

of

that

row

of

T1

concatenated

with

the

values

of

that

row

of

T2.

The

execution

might

involve

the

generation

of

a

null

row.

The

null

row

of

a

table

consists

of

a

null

value

for

each

column

of

the

table,

regardless

of

whether

the

columns

allow

null

values.

The

following

summarizes

the

result

of

the

join

operations:

v

The

result

of

T1

INNER

JOIN

T2

consists

of

their

paired

rows

where

the

join-condition

is

true.

v

The

result

of

T1

LEFT

OUTER

JOIN

T2

consists

of

their

paired

rows

where

the

join-condition

is

true

and,

for

each

unpaired

row

of

T1,

the

concatenation

of

that

row

with

the

null

row

of

T2.

All

columns

derived

from

T2

allow

null

values.

v

The

result

of

T1

RIGHT

OUTER

JOIN

T2

consists

of

their

paired

rows

where

the

join-condition

is

true

and,

for

each

unpaired

row

of

T2,

the

concatenation

of

that

row

with

the

null

row

of

T1.

All

columns

derived

from

T1

allow

null

values.

v

The

result

of

T1

FULL

OUTER

JOIN

T2

consists

of

their

paired

rows

and,

for

each

unpaired

row

of

T2,

the

concatenation

of

that

row

with

the

null

row

of

T1

and,

for

each

unpaired

row

of

T1,

the

concatenation

of

that

row

with

the

null

row

of

T2.

All

columns

derived

from

T1

and

T2

allow

null

values.

where-clause

��

WHERE

search-condition

��

The

WHERE

clause

specifies

an

intermediate

result

table

that

consists

of

those

rows

of

R

for

which

the

search-condition

is

true.

R

is

the

result

of

the

FROM

clause

of

the

subselect.

The

search-condition

must

conform

to

the

following

rules:

v

Each

column-name

must

unambiguously

identify

a

column

of

R

or

be

a

correlated

reference.

A

column-name

is

a

correlated

reference

if

it

identifies

a

column

of

a

table-reference

in

an

outer

subselect.

v

A

column

function

must

not

be

specified

unless

the

WHERE

clause

is

specified

in

a

subquery

of

a

HAVING

clause

and

the

argument

of

the

function

is

a

correlated

reference

to

a

group.

joined-table

Chapter

26.

SQL

Statements

for

Users

917

Any

subquery

in

the

search-condition

is

effectively

executed

for

each

row

of

R,

and

the

results

are

used

in

the

application

of

the

search-condition

to

the

given

row

of

R.

A

subquery

is

actually

executed

for

each

row

of

R

only

if

it

includes

a

correlated

reference.

In

fact,

a

subquery

with

no

correlated

references

may

be

executed

just

once,

whereas

a

subquery

with

a

correlated

reference

may

have

to

be

executed

once

for

each

row.

group-by-clause

��

�

,

GROUP

BY

grouping-expression

grouping-sets

super-groups

��

The

GROUP

BY

clause

specifies

an

intermediate

result

table

that

consists

of

a

grouping

of

the

rows

of

R.

R

is

the

result

of

the

previous

clause

of

the

subselect.

In

its

simplest

form,

a

GROUP

BY

clause

contains

a

grouping

expression.

A

grouping

expression

is

an

expression

used

in

defining

the

grouping

of

R.

Each

column

name

included

in

grouping-expression

must

unambiguously

identify

a

column

of

R

(SQLSTATE

42702

or

42703).

A

grouping

expression

cannot

include

a

scalar-fullselect

(SQLSTATE

42822)

or

any

function

that

is

variant

or

has

an

external

action

(SQLSTATE

42845).

More

complex

forms

of

the

GROUP

BY

clause

include

grouping-sets

and

super-groups.

For

a

description

of

these

forms,

see

“grouping-sets”

on

page

919

and

“super-groups”

on

page

920,

respectively.

The

result

of

GROUP

BY

is

a

set

of

groups

of

rows.

Each

row

in

this

result

represents

the

set

of

rows

for

which

the

grouping-expression

is

equal.

For

grouping,

all

null

values

from

a

grouping-expression

are

considered

equal.

A

grouping-expression

can

be

used

in

a

search

condition

in

a

HAVING

clause,

in

an

expression

in

a

SELECT

clause

or

in

a

sort-key-expression

of

an

ORDER

BY

clause

(see

“order-by-clause”

on

page

924

for

details).

In

each

case,

the

reference

specifies

only

one

value

for

each

group.

For

example,

if

the

grouping-expression

is

col1+col2,

then

an

allowed

expression

in

the

select

list

would

be

col1+col2+3.

Associativity

rules

for

expressions

would

disallow

the

similar

expression,

3+col1+col2,

unless

parentheses

are

used

to

ensure

that

the

corresponding

expression

is

evaluated

in

the

same

order.

Thus,

3+(col1+col2)

would

also

be

allowed

in

the

select

list.

If

the

concatenation

operator

is

used,

the

grouping-expression

must

be

used

exactly

as

the

expression

was

specified

in

the

select

list.

If

the

grouping-expression

contains

varying-length

strings

with

trailing

blanks,

the

values

in

the

group

can

differ

in

the

number

of

trailing

blanks

and

may

not

all

have

the

same

length.

In

that

case,

a

reference

to

the

grouping-expression

still

specifies

only

one

value

for

each

group,

but

the

value

for

a

group

is

chosen

arbitrarily

from

the

available

set

of

values.

Thus,

the

actual

length

of

the

result

value

is

unpredictable.

As

noted,

there

are

some

cases

where

the

GROUP

BY

clause

cannot

refer

directly

to

a

column

that

is

specified

in

the

SELECT

clause

as

an

expression

(scalar-fullselect,

variant

or

external

action

functions).

To

group

using

such

an

expression,

use

a

nested

table

expression

or

a

common

table

expression

to

first

where-clause

918

Common

Criteria

Certification:

Administration

and

User

Documentation

provide

a

result

table

with

the

expression

as

a

column

of

the

result.

For

an

example

using

nested

table

expressions,

see

“Example

A9”

on

page

929.

grouping-sets

��

�

�

,

GROUPING

SETS

(

grouping-expression

)

super-groups

,

(

grouping-expression

)

super-groups

��

A

grouping-sets

specification

allows

multiple

grouping

clauses

to

be

specified

in

a

single

statement.

This

can

be

thought

of

as

the

union

of

two

or

more

groups

of

rows

into

a

single

result

set.

It

is

logically

equivalent

to

the

union

of

multiple

subselects

with

the

group

by

clause

in

each

subselect

corresponding

to

one

grouping

set.

A

grouping

set

can

be

a

single

element

or

can

be

a

list

of

elements

delimited

by

parentheses,

where

an

element

is

either

a

grouping-expression

or

a

super-group.

Using

grouping-sets

allows

the

groups

to

be

computed

with

a

single

pass

over

the

base

table.

The

grouping-sets

specification

allows

either

a

simple

grouping-expression

to

be

used,

or

the

more

complex

forms

of

super-groups.

For

a

description

of

super-groups,

see

“super-groups”

on

page

920.

Note

that

grouping

sets

are

the

fundamental

building

blocks

for

GROUP

BY

operations.

A

simple

GROUP

BY

with

a

single

column

can

be

considered

a

grouping

set

with

one

element.

For

example:

GROUP

BY

a

is

the

same

as

GROUP

BY

GROUPING

SETS((a))

and

GROUP

BY

a,b,c

is

the

same

as

GROUP

BY

GROUPING

SETS((a,b,c))

Non-aggregation

columns

from

the

select

list

of

the

subselect

that

are

excluded

from

a

grouping

set

will

return

a

null

for

such

columns

for

each

row

generated

for

that

grouping

set.

This

reflects

the

fact

that

aggregation

was

done

without

considering

the

values

for

those

columns.

“Example

C2”

on

page

933

through

“Example

C7”

on

page

936

illustrate

the

use

of

grouping

sets.

group-by-clause

Chapter

26.

SQL

Statements

for

Users

919

super-groups

��

(1)

ROLLUP

(

grouping-expression-list

)

(2)

CUBE

(

grouping-expression-list

)

grand-total

��

grouping-expression-list:

�

�

,

grouping-expression

,

(

grouping-expression

)

grand-total:

(

)

Notes:

1 Alternate

specification

when

used

alone

in

group-by-clause

is:

grouping-expression-list

WITH

ROLLUP.

2 Alternate

specification

when

used

alone

in

group-by-clause

is:

grouping-expression-list

WITH

CUBE.

ROLLUP

(

grouping-expression-list

)

A

ROLLUP

grouping

is

an

extension

to

the

GROUP

BY

clause

that

produces

a

result

set

containing

sub-total

rows

in

addition

to

the

“regular”

grouped

rows.

Sub-total

rows

are

“super-aggregate”

rows

that

contain

further

aggregates

whose

values

are

derived

by

applying

the

same

column

functions

that

were

used

to

obtain

the

grouped

rows.

These

rows

are

called

sub-total

rows,

because

that

is

their

most

common

use;

however,

any

column

function

can

be

used

for

the

aggregation.

For

instance,

MAX

and

AVG

are

used

in

“Example

C8”

on

page

938.

A

ROLLUP

grouping

is

a

series

of

grouping-sets.

The

general

specification

of

a

ROLLUP

with

n

elements

GROUP

BY

ROLLUP(C1,C2,...,Cn-1,Cn)

is

equivalent

to

GROUP

BY

GROUPING

SETS((C1,C2,...,Cn-1,Cn)

(C1,C2,...,Cn-1)

...

(C1,C2)

(C1)

()

)

Note

that

the

n

elements

of

the

ROLLUP

translate

to

n+1

grouping

sets.

Note

also

that

the

order

in

which

the

grouping-expressions

is

specified

is

significant

for

ROLLUP.

For

example:

GROUP

BY

ROLLUP(a,b)

is

equivalent

to

super-groups

920

Common

Criteria

Certification:

Administration

and

User

Documentation

GROUP

BY

GROUPING

SETS((a,b)

(a)

()

)

while

GROUP

BY

ROLLUP(b,a)

is

the

same

as

GROUP

BY

GROUPING

SETS((b,a)

(b)

()

)

The

ORDER

BY

clause

is

the

only

way

to

guarantee

the

order

of

the

rows

in

the

result

set.

“Example

C3”

on

page

933

illustrates

the

use

of

ROLLUP.

CUBE

(

grouping-expression-list

)

A

CUBE

grouping

is

an

extension

to

the

GROUP

BY

clause

that

produces

a

result

set

that

contains

all

the

rows

of

a

ROLLUP

aggregation

and,

in

addition,

contains

″cross-tabulation″

rows.

Cross-tabulation

rows

are

additional

″super-aggregate″

rows

that

are

not

part

of

an

aggregation

with

sub-totals.

Like

a

ROLLUP,

a

CUBE

grouping

can

also

be

thought

of

as

a

series

of

grouping-sets.

In

the

case

of

a

CUBE,

all

permutations

of

the

cubed

grouping-expression-list

are

computed

along

with

the

grand

total.

Therefore,

the

n

elements

of

a

CUBE

translate

to

2**n

(2

to

the

power

n)

grouping-sets.

For

instance,

a

specification

of

GROUP

BY

CUBE(a,b,c)

is

equivalent

to

GROUP

BY

GROUPING

SETS((a,b,c)

(a,b)

(a,c)

(b,c)

(a)

(b)

(c)

()

)

Notice

that

the

3

elements

of

the

CUBE

translate

to

8

grouping

sets.

The

order

of

specification

of

elements

does

not

matter

for

CUBE.

’CUBE

(DayOfYear,

Sales_Person)’

and

’CUBE

(Sales_Person,

DayOfYear)’

yield

the

same

result

sets.

The

use

of

the

word

’same’

applies

to

content

of

the

result

set,

not

to

its

order.

The

ORDER

BY

clause

is

the

only

way

to

guarantee

the

order

of

the

rows

in

the

result

set.

“Example

C4”

on

page

933

illustrates

the

use

of

CUBE.

grouping-expression-list

A

grouping-expression-list

is

used

within

a

CUBE

or

ROLLUP

clause

to

define

the

number

of

elements

in

the

CUBE

or

ROLLUP

operation.

This

is

controlled

by

using

parentheses

to

delimit

elements

with

multiple

grouping-expressions.

The

rules

for

a

grouping-expression

are

described

in

“group-by-clause”

on

page

918.

For

example,

suppose

that

a

query

is

to

return

the

total

expenses

for

the

ROLLUP

of

City

within

a

Province

but

not

within

a

County.

However

the

clause:

GROUP

BY

ROLLUP(Province,

County,

City)

results

in

unwanted

sub-total

rows

for

the

County.

In

the

clause

super-groups

Chapter

26.

SQL

Statements

for

Users

921

GROUP

BY

ROLLUP(Province,

(County,

City))

the

composite

(County,

City)

forms

one

element

in

the

ROLLUP

and,

therefore,

a

query

that

uses

this

clause

will

yield

the

desired

result.

In

other

words,

the

two

element

ROLLUP

GROUP

BY

ROLLUP(Province,

(County,

City))

generates

GROUP

BY

GROUPING

SETS((Province,

County,

City)

(Province)

()

)

while

the

3

element

ROLLUP

would

generate

GROUP

BY

GROUPING

SETS((Province,

County,

City)

(Province,

County)

(Province)

()

)

“Example

C2”

on

page

933

also

utilizes

composite

column

values.

grand-total

Both

CUBE

and

ROLLUP

return

a

row

which

is

the

overall

(grand

total)

aggregation.

This

may

be

separately

specified

with

empty

parentheses

within

the

GROUPING

SET

clause.

It

may

also

be

specified

directly

in

the

GROUP

BY

clause,

although

there

is

no

effect

on

the

result

of

the

query.

“Example

C4”

on

page

933

uses

the

grand-total

syntax.

Combining

grouping

sets

This

can

be

used

to

combine

any

of

the

types

of

GROUP

BY

clauses.

When

simple

grouping-expression

fields

are

combined

with

other

groups,

they

are

″appended″

to

the

beginning

of

the

resulting

grouping

sets.

When

ROLLUP

or

CUBE

expressions

are

combined,

they

operate

like

″multipliers″

on

the

remaining

expression,

forming

additional

grouping

set

entries

according

to

the

definition

of

either

ROLLUP

or

CUBE.

For

instance,

combining

grouping-expression

elements

acts

as

follows:

GROUP

BY

a,

ROLLUP(b,c)

is

equivalent

to

GROUP

BY

GROUPING

SETS((a,b,c)

(a,b)

(a)

)

Or

similarly,

GROUP

BY

a,

b,

ROLLUP(c,d)

is

equivalent

to

GROUP

BY

GROUPING

SETS((a,b,c,d)

(a,b,c)

(a,b)

)

Combining

of

ROLLUP

elements

acts

as

follows:

GROUP

BY

ROLLUP(a),

ROLLUP(b,c)

is

equivalent

to

super-groups

922

Common

Criteria

Certification:

Administration

and

User

Documentation

GROUP

BY

GROUPING

SETS((a,b,c)

(a,b)

(a)

(b,c)

(b)

()

)

Similarly,

GROUP

BY

ROLLUP(a),

CUBE(b,c)

is

equivalent

to

GROUP

BY

GROUPING

SETS((a,b,c)

(a,b)

(a,c)

(a)

(b,c)

(b)

(c)

()

)

Combining

of

CUBE

and

ROLLUP

elements

acts

as

follows:

GROUP

BY

CUBE(a,b),

ROLLUP(c,d)

is

equivalent

to

GROUP

BY

GROUPING

SETS((a,b,c,d)

(a,b,c)

(a,b)

(a,c,d)

(a,c)

(a)

(b,c,d)

(b,c)

(b)

(c,d)

(c)

()

)

Like

a

simple

grouping-expression,

combining

grouping

sets

also

eliminates

duplicates

within

each

grouping

set.

For

instance,

GROUP

BY

a,

ROLLUP(a,b)

is

equivalent

to

GROUP

BY

GROUPING

SETS((a,b)

(a)

)

A

more

complete

example

of

combining

grouping

sets

is

to

construct

a

result

set

that

eliminates

certain

rows

that

would

be

returned

for

a

full

CUBE

aggregation.

For

example,

consider

the

following

GROUP

BY

clause:

GROUP

BY

Region,

ROLLUP(Sales_Person,

WEEK(Sales_Date)),

CUBE(YEAR(Sales_Date),

MONTH

(Sales_Date))

The

column

listed

immediately

to

the

right

of

GROUP

BY

is

simply

grouped,

those

within

the

parenthesis

following

ROLLUP

are

rolled

up,

and

those

within

the

parenthesis

following

CUBE

are

cubed.

Thus,

the

above

clause

results

in

a

cube

of

MONTH

within

YEAR

which

is

then

rolled

up

within

WEEK

within

Sales_Person

Combining

grouping

sets

Chapter

26.

SQL

Statements

for

Users

923

within

the

Region

aggregation.

It

does

not

result

in

any

grand

total

row

or

any

cross-tabulation

rows

on

Region,

Sales_Person

or

WEEK(Sales_Date)

so

produces

fewer

rows

than

the

clause:

GROUP

BY

ROLLUP

(Region,

Sales_Person,

WEEK(Sales_Date),

YEAR(Sales_Date),

MONTH(Sales_Date)

)

having-clause

��

HAVING

search-condition

��

The

HAVING

clause

specifies

an

intermediate

result

table

that

consists

of

those

groups

of

R

for

which

the

search-condition

is

true.

R

is

the

result

of

the

previous

clause

of

the

subselect.

If

this

clause

is

not

GROUP

BY,

R

is

considered

to

be

a

single

group

with

no

grouping

columns.

Each

column-name

in

the

search

condition

must

do

one

of

the

following:

v

Unambiguously

identify

a

grouping

column

of

R.

v

Be

specified

within

a

column

function.

v

Be

a

correlated

reference.

A

column-name

is

a

correlated

reference

if

it

identifies

a

column

of

a

table-reference

in

an

outer

subselect.

A

group

of

R

to

which

the

search

condition

is

applied

supplies

the

argument

for

each

column

function

in

the

search

condition,

except

for

any

function

whose

argument

is

a

correlated

reference.

If

the

search

condition

contains

a

subquery,

the

subquery

can

be

thought

of

as

being

executed

each

time

the

search

condition

is

applied

to

a

group

of

R,

and

the

results

used

in

applying

the

search

condition.

In

actuality,

the

subquery

is

executed

for

each

group

only

if

it

contains

a

correlated

reference.

For

an

illustration

of

the

difference,

see

“Example

A6”

on

page

928

and

“Example

A7”

on

page

928.

A

correlated

reference

to

a

group

of

R

must

either

identify

a

grouping

column

or

be

contained

within

a

column

function.

When

HAVING

is

used

without

GROUP

BY,

the

select

list

can

only

be

a

column

name

within

a

column

function,

a

correlated

column

reference,

a

literal,

or

a

special

register.

order-by-clause

��

ORDER

BY

�

,

ASC

sort-key

DESC

ORDER

OF

table-designator

INPUT

SEQUENCE

��

sort-key:

simple-column-name

simple-integer

sort-key-expression

Combining

grouping

sets

924

Common

Criteria

Certification:

Administration

and

User

Documentation

The

ORDER

BY

clause

specifies

an

ordering

of

the

rows

of

the

result

table.

If

a

single

sort

specification

(one

sort-key

with

associated

direction)

is

identified,

the

rows

are

ordered

by

the

values

of

that

sort

specification.

If

more

than

one

sort

specification

is

identified,

the

rows

are

ordered

by

the

values

of

the

first

identified

sort

specification,

then

by

the

values

of

the

second

identified

sort

specification,

and

so

on.

Each

sort-key

cannot

have

a

data

type

of

LONG

VARCHAR,

CLOB,

LONG

VARGRAPHIC,

DBCLOB,

BLOB,

DATALINK,

distinct

type

on

any

of

these

types,

or

structured

type

(SQLSTATE

42907).

A

named

column

in

the

select

list

may

be

identified

by

a

sort-key

that

is

a

simple-integer

or

a

simple-column-name.

An

unnamed

column

in

the

select

list

must

be

identified

by

an

simple-integer

or,

in

some

cases,

by

a

sort-key-expression

that

matches

the

expression

in

the

select

list

(see

details

of

sort-key-expression).

A

column

is

unnamed

if

the

AS

clause

is

not

specified

and

it

is

derived

from

a

constant,

an

expression

with

operators,

or

a

function.

Ordering

is

performed

in

accordance

with

comparison

rules.

The

null

value

is

higher

than

all

other

values.

If

the

ORDER

BY

clause

does

not

completely

order

the

rows,

rows

with

duplicate

values

of

all

identified

columns

are

displayed

in

an

arbitrary

order.

simple-column-name

Usually

identifies

a

column

of

the

result

table.

In

this

case,

simple-column-name

must

be

the

column

name

of

a

named

column

in

the

select

list.

The

simple-column-name

may

also

identify

a

column

name

of

a

table,

view,

or

nested

table

identified

in

the

FROM

clause

if

the

query

is

a

subselect.

An

error

occurs

if

the

subselect:

v

Specifies

DISTINCT

in

the

select-clause

(SQLSTATE

42822)

v

Produces

a

grouped

result

and

the

simple-column-name

is

not

a

grouping-expression

(SQLSTATE

42803).

Determining

which

column

is

used

for

ordering

the

result

is

described

under

“Column

names

in

sort

keys”

below.

simple-integer

Must

be

greater

than

0

and

not

greater

than

the

number

of

columns

in

the

result

table

(SQLSTATE

42805).

The

integer

n

identifies

the

nth

column

of

the

result

table.

sort-key-expression

An

expression

that

is

not

simply

a

column

name

or

an

unsigned

integer

constant.

The

query

to

which

ordering

is

applied

must

be

a

subselect

to

use

this

form

of

sort-key.

The

sort-key-expression

cannot

include

a

correlated

scalar-fullselect

(SQLSTATE

42703)

or

a

function

with

an

external

action

(SQLSTATE

42845).

Any

column-name

within

a

sort-key-expression

must

conform

to

the

rules

described

under

“Column

names

in

sort

keys”

below.

There

are

a

number

of

special

cases

that

further

restrict

the

expressions

that

can

be

specified.

v

DISTINCT

is

specified

in

the

SELECT

clause

of

the

subselect

(SQLSTATE

42822).

The

sort-key-expression

must

match

exactly

with

an

expression

in

the

select

list

of

the

subselect

(scalar-fullselects

are

never

matched).

v

The

subselect

is

grouped

(SQLSTATE

42803).

order-by-clause

Chapter

26.

SQL

Statements

for

Users

925

The

sort-key-expression

can:

–

be

an

expression

in

the

select

list

of

the

subselect,

–

include

a

grouping-expression

from

the

GROUP

BY

clause

of

the

subselect

–

include

a

column

function,

constant

or

host

variable.

ASC

Uses

the

values

of

the

column

in

ascending

order.

This

is

the

default.

DESC

Uses

the

values

of

the

column

in

descending

order.

ORDER

OF

table-designator

Specifies

that

the

same

ordering

used

in

table-designator

should

be

applied

to

the

result

table

of

the

subselect.

There

must

be

a

table

reference

matching

table-designator

in

the

FROM

clause

of

the

subselect

that

specifies

this

clause

(SQLSTATE

42703).

The

subselect

(or

fullselect)

corresponding

to

the

specified

table-designator

must

include

an

ORDER

BY

clause

that

is

dependant

on

the

data

(SQLSTATE

428FI).

The

ordering

that

is

applied

is

the

same

as

if

the

columns

of

the

ORDER

BY

clause

in

the

nested

subselect

(or

fullselect)

were

included

in

the

outer

subselect

(or

fullselect),

and

these

columns

were

specified

in

place

of

the

ORDER

OF

clause.

Note

that

this

form

is

not

allowed

in

a

fullselect

(other

than

the

degenerative

form

of

a

fullselect).

For

example,

the

following

is

not

valid:

(SELECT

C1

FROM

T1

ORDER

BY

C1)

UNION

SELECT

C1

FROM

T2

ORDER

BY

ORDER

OF

T1

The

following

example

is

valid:

SELECT

C1

FROM

(SELECT

C1

FROM

T1

UNION

SELECT

C1

FROM

T2

ORDER

BY

C1

)

AS

UTABLE

ORDER

BY

ORDER

OF

UTABLE

INPUT

SEQUENCE

Specifies

that,

for

an

INSERT

statement,

the

result

table

will

reflect

the

input

order

of

ordered

data

rows.

INPUT

SEQUENCE

ordering

can

only

be

specified

if

an

INSERT

statement

is

used

in

a

FROM

clause

(SQLSTATE

428G4).

See

“table-reference”

on

page

909.

If

INPUT

SEQUENCE

is

specified

and

the

input

data

is

not

ordered,

the

INPUT

SEQUENCE

clause

is

ignored.

Notes:

v

Column

names

in

sort

keys:

–

The

column

name

is

qualified.

The

query

must

be

a

subselect

(SQLSTATE

42877).

The

column

name

must

unambiguously

identify

a

column

of

some

table,

view

or

nested

table

in

the

FROM

clause

of

the

subselect

(SQLSTATE

42702).

The

value

of

the

column

is

used

to

compute

the

value

of

the

sort

specification.

–

The

column

name

is

unqualified.

-

The

query

is

a

subselect.

If

the

column

name

is

identical

to

the

name

of

more

than

one

column

of

the

result

table,

the

column

name

must

unambiguously

identify

a

column

of

some

table,

view

or

nested

table

in

the

FROM

clause

of

the

ordering

order-by-clause

926

Common

Criteria

Certification:

Administration

and

User

Documentation

subselect

(SQLSTATE

42702).

If

the

column

name

is

identical

to

one

column,

that

column

is

used

to

compute

the

value

of

the

sort

specification.

If

the

column

name

is

not

identical

to

a

column

of

the

result

table,

then

it

must

unambiguously

identify

a

column

of

some

table,

view

or

nested

table

in

the

FROM

clause

of

the

fullselect

in

the

select-statement

(SQLSTATE

42702).

-

The

query

is

not

a

subselect

(it

includes

set

operations

such

as

union,

except

or

intersect).

The

column

name

must

not

be

identical

to

the

name

of

more

than

one

column

of

the

result

table

(SQLSTATE

42702).

The

column

name

must

be

identical

to

exactly

one

column

of

the

result

table

(SQLSTATE

42707),

and

this

column

is

used

to

compute

the

value

of

the

sort

specification.
v

Limits:

The

use

of

a

sort-key-expression

or

a

simple-column-name

where

the

column

is

not

in

the

select

list

may

result

in

the

addition

of

the

column

or

expression

to

the

temporary

table

used

for

sorting.

This

may

result

in

reaching

the

limit

of

the

number

of

columns

in

a

table

or

the

limit

on

the

size

of

a

row

in

a

table.

Exceeding

these

limits

will

result

in

an

error

if

a

temporary

table

is

required

to

perform

the

sorting

operation.

fetch-first-clause

��

1

FETCH

FIRST

integer

ROW

ROWS

ONLY

��

The

fetch-first-clause

sets

a

maximum

number

of

rows

that

can

be

retrieved.

It

lets

the

database

manager

know

that

the

application

does

not

want

to

retrieve

more

than

integer

rows,

regardless

of

how

many

rows

there

might

be

in

the

result

table

when

this

clause

is

not

specified.

An

attempt

to

fetch

beyond

integer

rows

is

handled

the

same

way

as

normal

end

of

data

(SQLSTATE

02000).

The

value

of

integer

must

be

a

positive

integer

(not

zero).

Limiting

the

result

table

to

the

first

integer

rows

can

improve

performance.

The

database

manager

will

cease

processing

the

query

once

it

has

determined

the

first

integer

rows.

If

both

the

fetch-first-clause

and

the

optimize-for-clause

are

specified,

the

lower

of

the

integer

values

from

these

clauses

is

used

to

influence

the

communications

buffer

size.

The

values

are

considered

independently

for

optimization

purposes.

If

the

fullselect

contains

an

SQL

data

change

statement

in

the

FROM

clause,

all

the

rows

are

modified

regardless

of

the

limit

on

the

number

of

rows

to

fetch.

Examples

of

subselects

Example

A1:

Select

all

columns

and

rows

from

the

EMPLOYEE

table.

SELECT

*

FROM

EMPLOYEE

Example

A2:

Join

the

EMP_ACT

and

EMPLOYEE

tables,

select

all

the

columns

from

the

EMP_ACT

table

and

add

the

employee’s

surname

(LASTNAME)

from

the

EMPLOYEE

table

to

each

row

of

the

result.

SELECT

EMP_ACT.*,

LASTNAME

FROM

EMP_ACT,

EMPLOYEE

WHERE

EMP_ACT.EMPNO

=

EMPLOYEE.EMPNO

order-by-clause

Chapter

26.

SQL

Statements

for

Users

927

Example

A3:

Join

the

EMPLOYEE

and

DEPARTMENT

tables,

select

the

employee

number

(EMPNO),

employee

surname

(LASTNAME),

department

number

(WORKDEPT

in

the

EMPLOYEE

table

and

DEPTNO

in

the

DEPARTMENT

table)

and

department

name

(DEPTNAME)

of

all

employees

who

were

born

(BIRTHDATE)

earlier

than

1930.

SELECT

EMPNO,

LASTNAME,

WORKDEPT,

DEPTNAME

FROM

EMPLOYEE,

DEPARTMENT

WHERE

WORKDEPT

=

DEPTNO

AND

YEAR(BIRTHDATE)

<

1930

Example

A4:

Select

the

job

(JOB)

and

the

minimum

and

maximum

salaries

(SALARY)

for

each

group

of

rows

with

the

same

job

code

in

the

EMPLOYEE

table,

but

only

for

groups

with

more

than

one

row

and

with

a

maximum

salary

greater

than

or

equal

to

27000.

SELECT

JOB,

MIN(SALARY),

MAX(SALARY)

FROM

EMPLOYEE

GROUP

BY

JOB

HAVING

COUNT(*)

>

1

AND

MAX(SALARY)

>=

27000

Example

A5:

Select

all

the

rows

of

EMP_ACT

table

for

employees

(EMPNO)

in

department

(WORKDEPT)

‘E11’.

(Employee

department

numbers

are

shown

in

the

EMPLOYEE

table.)

SELECT

*

FROM

EMP_ACT

WHERE

EMPNO

IN

(SELECT

EMPNO

FROM

EMPLOYEE

WHERE

WORKDEPT

=

’E11’)

Example

A6:

From

the

EMPLOYEE

table,

select

the

department

number

(WORKDEPT)

and

maximum

departmental

salary

(SALARY)

for

all

departments

whose

maximum

salary

is

less

than

the

average

salary

for

all

employees.

SELECT

WORKDEPT,

MAX(SALARY)

FROM

EMPLOYEE

GROUP

BY

WORKDEPT

HAVING

MAX(SALARY)

<

(SELECT

AVG(SALARY)

FROM

EMPLOYEE)

The

subquery

in

the

HAVING

clause

would

only

be

executed

once

in

this

example.

Example

A7:

Using

the

EMPLOYEE

table,

select

the

department

number

(WORKDEPT)

and

maximum

departmental

salary

(SALARY)

for

all

departments

whose

maximum

salary

is

less

than

the

average

salary

in

all

other

departments.

SELECT

WORKDEPT,

MAX(SALARY)

FROM

EMPLOYEE

EMP_COR

GROUP

BY

WORKDEPT

HAVING

MAX(SALARY)

<

(SELECT

AVG(SALARY)

FROM

EMPLOYEE

WHERE

NOT

WORKDEPT

=

EMP_COR.WORKDEPT)

In

contrast

to

“Example

A6,”

the

subquery

in

the

HAVING

clause

would

need

to

be

executed

for

each

group.

Example

A8:

Determine

the

employee

number

and

salary

of

sales

representatives

along

with

the

average

salary

and

head

count

of

their

departments.

Examples

of

subselects

928

Common

Criteria

Certification:

Administration

and

User

Documentation

This

query

must

first

create

a

nested

table

expression

(DINFO)

in

order

to

get

the

AVGSALARY

and

EMPCOUNT

columns,

as

well

as

the

DEPTNO

column

that

is

used

in

the

WHERE

clause.

SELECT

THIS_EMP.EMPNO,

THIS_EMP.SALARY,

DINFO.AVGSALARY,

DINFO.EMPCOUNT

FROM

EMPLOYEE

THIS_EMP,

(SELECT

OTHERS.WORKDEPT

AS

DEPTNO,

AVG(OTHERS.SALARY)

AS

AVGSALARY,

COUNT(*)

AS

EMPCOUNT

FROM

EMPLOYEE

OTHERS

GROUP

BY

OTHERS.WORKDEPT

)

AS

DINFO

WHERE

THIS_EMP.JOB

=

’SALESREP’

AND

THIS_EMP.WORKDEPT

=

DINFO.DEPTNO

Using

a

nested

table

expression

for

this

case

saves

the

overhead

of

creating

the

DINFO

view

as

a

regular

view.

During

statement

preparation,

accessing

the

catalog

for

the

view

is

avoided

and,

because

of

the

context

of

the

rest

of

the

query,

only

the

rows

for

the

department

of

the

sales

representatives

need

to

be

considered

by

the

view.

Example

A9:

Display

the

average

education

level

and

salary

for

5

random

groups

of

employees.

This

query

requires

the

use

of

a

nested

table

expression

to

set

a

random

value

for

each

employee

so

that

it

can

subsequently

be

used

in

the

GROUP

BY

clause.

SELECT

RANDID

,

AVG(EDLEVEL),

AVG(SALARY)

FROM

(

SELECT

EDLEVEL,

SALARY,

INTEGER(RAND()*5)

AS

RANDID

FROM

EMPLOYEE

)

AS

EMPRAND

GROUP

BY

RANDID

Example

A10:

Query

the

EMP_ACT

table

and

return

those

project

numbers

that

have

an

employee

whose

salary

is

in

the

top

10

of

all

employees.

SELECT

EMP_ACT.EMPNO,PROJNO

FROM

EMP_ACT

WHERE

EMP_ACT.EMPNO

IN

(SELECT

EMPLOYEE.EMPNO

FROM

EMPLOYEE

ORDER

BY

SALARY

DESC

FETCH

FIRST

10

ROWS

ONLY)

Examples

of

joins

Example

B1:

This

example

illustrates

the

results

of

the

various

joins

using

tables

J1

and

J2.

These

tables

contain

rows

as

shown.

SELECT

*

FROM

J1

W

X

A

11

B

12

C

13

SELECT

*

FROM

J2

Y

Z

A

21

C

22

D

23

Examples

of

subselects

Chapter

26.

SQL

Statements

for

Users

929

The

following

query

does

an

inner

join

of

J1

and

J2

matching

the

first

column

of

both

tables.

SELECT

*

FROM

J1

INNER

JOIN

J2

ON

W=Y

W

X

Y

Z

A

11

A

21

C

13

C

22

In

this

inner

join

example

the

row

with

column

W=’C’

from

J1

and

the

row

with

column

Y=’D’

from

J2

are

not

included

in

the

result

because

they

do

not

have

a

match

in

the

other

table.

Note

that

the

following

alternative

form

of

an

inner

join

query

produces

the

same

result.

SELECT

*

FROM

J1,

J2

WHERE

W=Y

The

following

left

outer

join

will

get

back

the

missing

row

from

J1

with

nulls

for

the

columns

of

J2.

Every

row

from

J1

is

included.

SELECT

*

FROM

J1

LEFT

OUTER

JOIN

J2

ON

W=Y

W

X

Y

Z

A

11

A

21

B

12

-

-

C

13

C

22

The

following

right

outer

join

will

get

back

the

missing

row

from

J2

with

nulls

for

the

columns

of

J1.

Every

row

from

J2

is

included.

SELECT

*

FROM

J1

RIGHT

OUTER

JOIN

J2

ON

W=Y

W

X

Y

Z

A

11

A

21

C

13

C

22

-

-

D

23

The

following

full

outer

join

will

get

back

the

missing

rows

from

both

J1

and

J2

with

nulls

where

appropriate.

Every

row

from

both

J1

and

J2

is

included.

SELECT

*

FROM

J1

FULL

OUTER

JOIN

J2

ON

W=Y

W

X

Y

Z

A

11

A

21

C

13

C

22

-

-

D

23

B

12

-

-

Example

B2:

Using

the

tables

J1

and

J2

from

the

previous

example,

examine

what

happens

when

and

additional

predicate

is

added

to

the

search

condition.

SELECT

*

FROM

J1

INNER

JOIN

J2

ON

W=Y

AND

X=13

W

X

Y

Z

C

13

C

22

The

additional

condition

caused

the

inner

join

to

select

only

1

row

compared

to

the

inner

join

in

“Example

B1”

on

page

929.

Notice

what

the

impact

of

this

is

on

the

full

outer

join.

Examples

of

joins

930

Common

Criteria

Certification:

Administration

and

User

Documentation

SELECT

*

FROM

J1

FULL

OUTER

JOIN

J2

ON

W=Y

AND

X=13

W

X

Y

Z

-

-

A

21

C

13

C

22

-

-

D

23

A

11

-

-

B

12

-

-

The

result

now

has

5

rows

(compared

to

4

without

the

additional

predicate)

since

there

was

only

1

row

in

the

inner

join

and

all

rows

of

both

tables

must

be

returned.

The

following

query

illustrates

that

placing

the

same

additional

predicate

in

WHERE

clause

has

completely

different

results.

SELECT

*

FROM

J1

FULL

OUTER

JOIN

J2

ON

W=Y

WHERE

X=13

W

X

Y

Z

C

13

C

22

The

WHERE

clause

is

applied

after

the

intermediate

result

of

the

full

outer

join.

This

intermediate

result

would

be

the

same

as

the

result

of

the

full

outer

join

query

in

“Example

B1”

on

page

929.

The

WHERE

clause

is

applied

to

this

intermediate

result

and

eliminates

all

but

the

row

that

has

X=13.

Choosing

the

location

of

a

predicate

when

performing

outer

joins

can

have

significant

impact

on

the

results.

Consider

what

happens

if

the

predicate

was

X=12

instead

of

X=13.

The

following

inner

join

returns

no

rows.

SELECT

*

FROM

J1

INNER

JOIN

J2

ON

W=Y

AND

X=12

Hence,

the

full

outer

join

would

return

6

rows,

3

from

J1

with

nulls

for

the

columns

of

J2

and

3

from

J2

with

nulls

for

the

columns

of

J1.

SELECT

*

FROM

J1

FULL

OUTER

JOIN

J2

ON

W=Y

AND

X=12

W

X

Y

Z

-

-

A

21

-

-

C

22

-

-

D

23

A

11

-

-

B

12

-

-

C

13

-

-

If

the

additional

predicate

is

in

the

WHERE

clause

instead,

1

row

is

returned.

SELECT

*

FROM

J1

FULL

OUTER

JOIN

J2

ON

W=Y

WHERE

X=12

W

X

Y

Z

B

12

-

-

Example

B3:

List

every

department

with

the

employee

number

and

last

name

of

the

manager,

including

departments

without

a

manager.

SELECT

DEPTNO,

DEPTNAME,

EMPNO,

LASTNAME

FROM

DEPARTMENT

LEFT

OUTER

JOIN

EMPLOYEE

ON

MGRNO

=

EMPNO

Examples

of

joins

Chapter

26.

SQL

Statements

for

Users

931

Example

B4:

List

every

employee

number

and

last

name

with

the

employee

number

and

last

name

of

their

manager,

including

employees

without

a

manager.

SELECT

E.EMPNO,

E.LASTNAME,

M.EMPNO,

M.LASTNAME

FROM

EMPLOYEE

E

LEFT

OUTER

JOIN

DEPARTMENT

INNER

JOIN

EMPLOYEE

M

ON

MGRNO

=

M.EMPNO

ON

E.WORKDEPT

=

DEPTNO

The

inner

join

determines

the

last

name

for

any

manager

identified

in

the

DEPARTMENT

table

and

the

left

outer

join

guarantees

that

each

employee

is

listed

even

if

a

corresponding

department

is

not

found

in

DEPARTMENT.

Examples

of

grouping

sets,

cube,

and

rollup

The

queries

in

“Example

C1”

through

“Example

C4”

on

page

933

use

a

subset

of

the

rows

in

the

SALES

tables

based

on

the

predicate

’WEEK(SALES_DATE)

=

13’.

SELECT

WEEK(SALES_DATE)

AS

WEEK,

DAYOFWEEK(SALES_DATE)

AS

DAY_WEEK,

SALES_PERSON,

SALES

AS

UNITS_SOLD

FROM

SALES

WHERE

WEEK(SALES_DATE)

=

13

which

results

in:

WEEK

DAY_WEEK

SALES_PERSON

UNITS_SOLD

13

6

LUCCHESSI

3

13

6

LUCCHESSI

1

13

6

LEE

2

13

6

LEE

2

13

6

LEE

3

13

6

LEE

5

13

6

GOUNOT

3

13

6

GOUNOT

1

13

6

GOUNOT

7

13

7

LUCCHESSI

1

13

7

LUCCHESSI

2

13

7

LUCCHESSI

1

13

7

LEE

7

13

7

LEE

3

13

7

LEE

7

13

7

LEE

4

13

7

GOUNOT

2

13

7

GOUNOT

18

13

7

GOUNOT

1

Example

C1:

Here

is

a

query

with

a

basic

GROUP

BY

clause

over

3

columns:

SELECT

WEEK(SALES_DATE)

AS

WEEK,

DAYOFWEEK(SALES_DATE)

AS

DAY_WEEK,

SALES_PERSON,

SUM(SALES)

AS

UNITS_SOLD

FROM

SALES

WHERE

WEEK(SALES_DATE)

=

13

GROUP

BY

WEEK(SALES_DATE),

DAYOFWEEK(SALES_DATE),

SALES_PERSON

ORDER

BY

WEEK,

DAY_WEEK,

SALES_PERSON

This

results

in:

WEEK

DAY_WEEK

SALES_PERSON

UNITS_SOLD

13

6

GOUNOT

11

13

6

LEE

12

13

6

LUCCHESSI

4

Examples

of

joins

932

Common

Criteria

Certification:

Administration

and

User

Documentation

13

7

GOUNOT

21

13

7

LEE

21

13

7

LUCCHESSI

4

Example

C2:

Produce

the

result

based

on

two

different

grouping

sets

of

rows

from

the

SALES

table.

SELECT

WEEK(SALES_DATE)

AS

WEEK,

DAYOFWEEK(SALES_DATE)

AS

DAY_WEEK,

SALES_PERSON,

SUM(SALES)

AS

UNITS_SOLD

FROM

SALES

WHERE

WEEK(SALES_DATE)

=

13

GROUP

BY

GROUPING

SETS

(

(WEEK(SALES_DATE),

SALES_PERSON),

(DAYOFWEEK(SALES_DATE),

SALES_PERSON))

ORDER

BY

WEEK,

DAY_WEEK,

SALES_PERSON

This

results

in:

WEEK

DAY_WEEK

SALES_PERSON

UNITS_SOLD

13

-

GOUNOT

32

13

-

LEE

33

13

-

LUCCHESSI

8

-

6

GOUNOT

11

-

6

LEE

12

-

6

LUCCHESSI

4

-

7

GOUNOT

21

-

7

LEE

21

-

7

LUCCHESSI

4

The

rows

with

WEEK

13

are

from

the

first

grouping

set

and

the

other

rows

are

from

the

second

grouping

set.

Example

C3:

If

you

use

the

3

distinct

columns

involved

in

the

grouping

sets

of

“Example

C2”

and

perform

a

ROLLUP,

you

can

see

grouping

sets

for

(WEEK,DAY_WEEK,SALES_PERSON),

(WEEK,

DAY_WEEK),

(WEEK)

and

grand

total.

SELECT

WEEK(SALES_DATE)

AS

WEEK,

DAYOFWEEK(SALES_DATE)

AS

DAY_WEEK,

SALES_PERSON,

SUM(SALES)

AS

UNITS_SOLD

FROM

SALES

WHERE

WEEK(SALES_DATE)

=

13

GROUP

BY

ROLLUP

(

WEEK(SALES_DATE),

DAYOFWEEK(SALES_DATE),

SALES_PERSON

)

ORDER

BY

WEEK,

DAY_WEEK,

SALES_PERSON

This

results

in:

WEEK

DAY_WEEK

SALES_PERSON

UNITS_SOLD

13

6

GOUNOT

11

13

6

LEE

12

13

6

LUCCHESSI

4

13

6

-

27

13

7

GOUNOT

21

13

7

LEE

21

13

7

LUCCHESSI

4

13

7

-

46

13

-

-

73

-

-

-

73

Example

C4:

If

you

run

the

same

query

as

“Example

C3”

only

replace

ROLLUP

with

CUBE,

you

can

see

additional

grouping

sets

for

(WEEK,SALES_PERSON),

(DAY_WEEK,SALES_PERSON),

(DAY_WEEK),

(SALES_PERSON)

in

the

result.

Examples

of

grouping

sets,

cube,

and

rollup

Chapter

26.

SQL

Statements

for

Users

933

SELECT

WEEK(SALES_DATE)

AS

WEEK,

DAYOFWEEK(SALES_DATE)

AS

DAY_WEEK,

SALES_PERSON,

SUM(SALES)

AS

UNITS_SOLD

FROM

SALES

WHERE

WEEK(SALES_DATE)

=

13

GROUP

BY

CUBE

(

WEEK(SALES_DATE),

DAYOFWEEK(SALES_DATE),

SALES_PERSON

)

ORDER

BY

WEEK,

DAY_WEEK,

SALES_PERSON

This

results

in:

WEEK

DAY_WEEK

SALES_PERSON

UNITS_SOLD

13

6

GOUNOT

11

13

6

LEE

12

13

6

LUCCHESSI

4

13

6

-

27

13

7

GOUNOT

21

13

7

LEE

21

13

7

LUCCHESSI

4

13

7

-

46

13

-

GOUNOT

32

13

-

LEE

33

13

-

LUCCHESSI

8

13

-

-

73

-

6

GOUNOT

11

-

6

LEE

12

-

6

LUCCHESSI

4

-

6

-

27

-

7

GOUNOT

21

-

7

LEE

21

-

7

LUCCHESSI

4

-

7

-

46

-

-

GOUNOT

32

-

-

LEE

33

-

-

LUCCHESSI

8

-

-

-

73

Example

C5:

Obtain

a

result

set

which

includes

a

grand-total

of

selected

rows

from

the

SALES

table

together

with

a

group

of

rows

aggregated

by

SALES_PERSON

and

MONTH.

SELECT

SALES_PERSON,

MONTH(SALES_DATE)

AS

MONTH,

SUM(SALES)

AS

UNITS_SOLD

FROM

SALES

GROUP

BY

GROUPING

SETS

(

(SALES_PERSON,

MONTH(SALES_DATE)),

()

)

ORDER

BY

SALES_PERSON,

MONTH

This

results

in:

SALES_PERSON

MONTH

UNITS_SOLD

GOUNOT

3

35

GOUNOT

4

14

GOUNOT

12

1

LEE

3

60

LEE

4

25

LEE

12

6

LUCCHESSI

3

9

LUCCHESSI

4

4

LUCCHESSI

12

1

-

-

155

Examples

of

grouping

sets,

cube,

and

rollup

934

Common

Criteria

Certification:

Administration

and

User

Documentation

Example

C6:

This

example

shows

two

simple

ROLLUP

queries

followed

by

a

query

which

treats

the

two

ROLLUPs

as

grouping

sets

in

a

single

result

set

and

specifies

row

ordering

for

each

column

involved

in

the

grouping

sets.

Example

C6-1:

SELECT

WEEK(SALES_DATE)

AS

WEEK,

DAYOFWEEK(SALES_DATE)

AS

DAY_WEEK,

SUM(SALES)

AS

UNITS_SOLD

FROM

SALES

GROUP

BY

ROLLUP

(

WEEK(SALES_DATE),

DAYOFWEEK(SALES_DATE)

)

ORDER

BY

WEEK,

DAY_WEEK

results

in:

WEEK

DAY_WEEK

UNITS_SOLD

13

6

27

13

7

46

13

-

73

14

1

31

14

2

43

14

-

74

53

1

8

53

-

8

-

-

155

Example

C6-2:

SELECT

MONTH(SALES_DATE)

AS

MONTH,

REGION,

SUM(SALES)

AS

UNITS_SOLD

FROM

SALES

GROUP

BY

ROLLUP

(

MONTH(SALES_DATE),

REGION

);

ORDER

BY

MONTH,

REGION

results

in:

MONTH

REGION

UNITS_SOLD

3

Manitoba

22

3

Ontario-North

8

3

Ontario-South

34

3

Quebec

40

3

-

104

4

Manitoba

17

4

Ontario-North

1

4

Ontario-South

14

4

Quebec

11

4

-

43

12

Manitoba

2

12

Ontario-South

4

12

Quebec

2

12

-

8

-

-

155

Example

C6-3:

SELECT

WEEK(SALES_DATE)

AS

WEEK,

DAYOFWEEK(SALES_DATE)

AS

DAY_WEEK,

MONTH(SALES_DATE)

AS

MONTH,

REGION,

SUM(SALES)

AS

UNITS_SOLD

FROM

SALES

GROUP

BY

GROUPING

SETS

(

ROLLUP(

WEEK(SALES_DATE),

DAYOFWEEK(SALES_DATE)

),

ROLLUP(

MONTH(SALES_DATE),

REGION

)

)

ORDER

BY

WEEK,

DAY_WEEK,

MONTH,

REGION

Examples

of

grouping

sets,

cube,

and

rollup

Chapter

26.

SQL

Statements

for

Users

935

results

in:

WEEK

DAY_WEEK

MONTH

REGION

UNITS_SOLD

13

6

-

-

27

13

7

-

-

46

13

-

-

-

73

14

1

-

-

31

14

2

-

-

43

14

-

-

-

74

53

1

-

-

8

53

-

-

-

8

-

-

3

Manitoba

22

-

-

3

Ontario-North

8

-

-

3

Ontario-South

34

-

-

3

Quebec

40

-

-

3

-

104

-

-

4

Manitoba

17

-

-

4

Ontario-North

1

-

-

4

Ontario-South

14

-

-

4

Quebec

11

-

-

4

-

43

-

-

12

Manitoba

2

-

-

12

Ontario-South

4

-

-

12

Quebec

2

-

-

12

-

8

-

-

-

-

155

-

-

-

-

155

Using

the

two

ROLLUPs

as

grouping

sets

causes

the

result

to

include

duplicate

rows.

There

are

even

two

grand

total

rows.

Observe

how

the

use

of

ORDER

BY

has

affected

the

results:

v

In

the

first

grouped

set,

week

53

has

been

repositioned

to

the

end.

v

In

the

second

grouped

set,

month

12

has

now

been

positioned

to

the

end

and

the

regions

now

appear

in

alphabetic

order.

v

Null

values

are

sorted

high.

Example

C7:

In

queries

that

perform

multiple

ROLLUPs

in

a

single

pass

(such

as

“Example

C6-3”

on

page

935)

you

may

want

to

be

able

to

indicate

which

grouping

set

produced

each

row.

The

following

steps

demonstrate

how

to

provide

a

column

(called

GROUP)

which

indicates

the

origin

of

each

row

in

the

result

set.

By

origin,

we

mean

which

one

of

the

two

grouping

sets

produced

the

row

in

the

result

set.

Step

1:

Introduce

a

way

of

″generating″

new

data

values,

using

a

query

which

selects

from

a

VALUES

clause

(which

is

an

alternate

form

of

a

fullselect).

This

query

shows

how

a

table

can

be

derived

called

″X″

having

2

columns

″R1″

and

″R2″

and

1

row

of

data.

SELECT

R1,R2

FROM

(VALUES(’GROUP

1’,’GROUP

2’))

AS

X(R1,R2);

results

in:

R1

R2

GROUP

1

GROUP

2

Step

2:

Form

the

cross

product

of

this

table

″X″

with

the

SALES

table.

This

add

columns

″R1″

and

″R2″

to

every

row.

SELECT

R1,

R2,

WEEK(SALES_DATE)

AS

WEEK,

DAYOFWEEK(SALES_DATE)

AS

DAY_WEEK,

MONTH(SALES_DATE)

AS

MONTH,

Examples

of

grouping

sets,

cube,

and

rollup

936

Common

Criteria

Certification:

Administration

and

User

Documentation

REGION,

SALES

AS

UNITS_SOLD

FROM

SALES,(VALUES(’GROUP

1’,’GROUP

2’))

AS

X(R1,R2)

This

add

columns

″R1″

and

″R2″

to

every

row.

Step

3:

Now

we

can

combine

these

columns

with

the

grouping

sets

to

include

these

columns

in

the

rollup

analysis.

SELECT

R1,

R2,

WEEK(SALES_DATE)

AS

WEEK,

DAYOFWEEK(SALES_DATE)

AS

DAY_WEEK,

MONTH(SALES_DATE)

AS

MONTH,

REGION,

SUM(SALES)

AS

UNITS_SOLD

FROM

SALES,(VALUES(’GROUP

1’,’GROUP

2’))

AS

X(R1,R2)

GROUP

BY

GROUPING

SETS

((R1,

ROLLUP(WEEK(SALES_DATE),

DAYOFWEEK(SALES_DATE))),

(R2,ROLLUP(

MONTH(SALES_DATE),

REGION

)

)

)

ORDER

BY

WEEK,

DAY_WEEK,

MONTH,

REGION

results

in:

R1

R2

WEEK

DAY_WEEK

MONTH

REGION

UNITS_SOLD

GROUP

1

-

13

6

-

-

27

GROUP

1

-

13

7

-

-

46

GROUP

1

-

13

-

-

-

73

GROUP

1

-

14

1

-

-

31

GROUP

1

-

14

2

-

-

43

GROUP

1

-

14

-

-

-

74

GROUP

1

-

53

1

-

-

8

GROUP

1

-

53

-

-

-

8

-

GROUP

2

-

-

3

Manitoba

22

-

GROUP

2

-

-

3

Ontario-North

8

-

GROUP

2

-

-

3

Ontario-South

34

-

GROUP

2

-

-

3

Quebec

40

-

GROUP

2

-

-

3

-

104

-

GROUP

2

-

-

4

Manitoba

17

-

GROUP

2

-

-

4

Ontario-North

1

-

GROUP

2

-

-

4

Ontario-South

14

-

GROUP

2

-

-

4

Quebec

11

-

GROUP

2

-

-

4

-

43

-

GROUP

2

-

-

12

Manitoba

2

-

GROUP

2

-

-

12

Ontario-South

4

-

GROUP

2

-

-

12

Quebec

2

-

GROUP

2

-

-

12

-

8

-

GROUP

2

-

-

-

-

155

GROUP

1

-

-

-

-

-

155

Step

4:

Notice

that

because

R1

and

R2

are

used

in

different

grouping

sets,

whenever

R1

is

non-null

in

the

result,

R2

is

null

and

whenever

R2

is

non-null

in

the

result,

R1

is

null.

That

means

you

can

consolidate

these

columns

into

a

single

column

using

the

COALESCE

function.

You

can

also

use

this

column

in

the

ORDER

BY

clause

to

keep

the

results

of

the

two

grouping

sets

together.

SELECT

COALESCE(R1,R2)

AS

GROUP,

WEEK(SALES_DATE)

AS

WEEK,

DAYOFWEEK(SALES_DATE)

AS

DAY_WEEK,

MONTH(SALES_DATE)

AS

MONTH,

REGION,

SUM(SALES)

AS

UNITS_SOLD

FROM

SALES,(VALUES(’GROUP

1’,’GROUP

2’))

AS

X(R1,R2)

GROUP

BY

GROUPING

SETS

((R1,

ROLLUP(WEEK(SALES_DATE),

DAYOFWEEK(SALES_DATE))),

(R2,ROLLUP(

MONTH(SALES_DATE),

REGION

)

)

)

ORDER

BY

GROUP,

WEEK,

DAY_WEEK,

MONTH,

REGION;

Examples

of

grouping

sets,

cube,

and

rollup

Chapter

26.

SQL

Statements

for

Users

937

results

in:

GROUP

WEEK

DAY_WEEK

MONTH

REGION

UNITS_SOLD

GROUP

1

13

6

-

-

27

GROUP

1

13

7

-

-

46

GROUP

1

13

-

-

-

73

GROUP

1

14

1

-

-

31

GROUP

1

14

2

-

-

43

GROUP

1

14

-

-

-

74

GROUP

1

53

1

-

-

8

GROUP

1

53

-

-

-

8

GROUP

1

-

-

-

-

155

GROUP

2

-

-

3

Manitoba

22

GROUP

2

-

-

3

Ontario-North

8

GROUP

2

-

-

3

Ontario-South

34

GROUP

2

-

-

3

Quebec

40

GROUP

2

-

-

3

-

104

GROUP

2

-

-

4

Manitoba

17

GROUP

2

-

-

4

Ontario-North

1

GROUP

2

-

-

4

Ontario-South

14

GROUP

2

-

-

4

Quebec

11

GROUP

2

-

-

4

-

43

GROUP

2

-

-

12

Manitoba

2

GROUP

2

-

-

12

Ontario-South

4

GROUP

2

-

-

12

Quebec

2

GROUP

2

-

-

12

-

8

GROUP

2

-

-

-

-

155

Example

C8:

The

following

example

illustrates

the

use

of

various

column

functions

when

performing

a

CUBE.

The

example

also

makes

use

of

cast

functions

and

rounding

to

produce

a

decimal

result

with

reasonable

precision

and

scale.

SELECT

MONTH(SALES_DATE)

AS

MONTH,

REGION,

SUM(SALES)

AS

UNITS_SOLD,

MAX(SALES)

AS

BEST_SALE,

CAST(ROUND(AVG(DECIMAL(SALES)),2)

AS

DECIMAL(5,2))

AS

AVG_UNITS_SOLD

FROM

SALES

GROUP

BY

CUBE(MONTH(SALES_DATE),REGION)

ORDER

BY

MONTH,

REGION

This

results

in:

MONTH

REGION

UNITS_SOLD

BEST_SALE

AVG_UNITS_SOLD

3

Manitoba

22

7

3.14

3

Ontario-North

8

3

2.67

3

Ontario-South

34

14

4.25

3

Quebec

40

18

5.00

3

-

104

18

4.00

4

Manitoba

17

9

5.67

4

Ontario-North

1

1

1.00

4

Ontario-South

14

8

4.67

4

Quebec

11

8

5.50

4

-

43

9

4.78

12

Manitoba

2

2

2.00

12

Ontario-South

4

3

2.00

12

Quebec

2

1

1.00

12

-

8

3

1.60

-

Manitoba

41

9

3.73

-

Ontario-North

9

3

2.25

-

Ontario-South

52

14

4.00

-

Quebec

53

18

4.42

-

-

155

18

3.87

Related

reference:

Examples

of

grouping

sets,

cube,

and

rollup

938

Common

Criteria

Certification:

Administration

and

User

Documentation

v

Chapter

20,

“Identifiers,”

on

page

809

v

“Functions”

in

the

SQL

Reference,

Volume

1

v

“GROUPING

aggregate

function”

in

the

SQL

Reference,

Volume

1

v

“Fullselect”

in

the

SQL

Reference,

Volume

1

v

“Select-statement”

in

the

SQL

Reference,

Volume

1

v

“DELETE”

on

page

670

v

“INSERT”

on

page

724

v

“UPDATE”

on

page

757

v

“CREATE

FUNCTION

(SQL

Scalar,

Table,

or

Row)

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

FUNCTION

(External

Table)

statement”

in

the

SQL

Reference,

Volume

2

v

“Character

strings”

in

the

SQL

Reference,

Volume

1

v

“Assignments

and

comparisons”

in

the

SQL

Reference,

Volume

1

v

“Predicates”

in

the

SQL

Reference,

Volume

1

Examples

of

grouping

sets,

cube,

and

rollup

Chapter

26.

SQL

Statements

for

Users

939

Examples

of

grouping

sets,

cube,

and

rollup

940

Common

Criteria

Certification:

Administration

and

User

Documentation

Chapter

27.

Application

Considerations

Security

Considerations

when

Using

SQL

in

Applications

.

.

.

.

.

.

.

.

.

.

.

.

.

. 942

Package

Creation

for

Embedded

SQL

.

.

.

. 942

Precompilation

of

Source

Files

Containing

Embedded

SQL

.

.

.

.

.

.

.

.

.

.

. 943

Source

File

Requirements

for

Embedded

SQL

Applications

.

.

.

.

.

.

.

.

.

.

.

.

. 945

Compilation

and

Linkage

of

Source

Files

Containing

Embedded

SQL

.

.

.

.

.

.

.

. 946

Package

Creation

Using

the

BIND

Command

947

Generation

of

Sequential

Values

.

.

.

.

.

. 947

Management

of

Sequence

Behavior

.

.

.

.

. 949

Sequence

Objects

Compared

to

Identity

Columns

.

.

.

.

.

.

.

.

.

.

.

.

.

. 950

Authorization

Considerations

for

Embedded

SQL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 950

Authorization

Considerations

for

Dynamic

SQL

951

Authorization

Considerations

for

Static

SQL

.

. 952

Effect

of

DYNAMICRULES

bind

option

on

dynamic

SQL

.

.

.

.

.

.

.

.

.

.

.

. 952

When

to

use

DB2

CLI

or

embedded

SQL

.

.

. 954

Units

of

work

.

.

.

.

.

.

.

.

.

.

.

.

. 956

Remote

unit

of

work

.

.

.

.

.

.

.

.

.

.

. 956

Compound

SQL

guidelines

.

.

.

.

.

.

.

.

. 958

Authorization

Considerations

for

APIs

.

.

.

.

. 959

Purpose

of

Multiple-Thread

Database

Access

.

.

. 959

Ending

a

Transaction

with

the

COMMIT

Statement

960

Ending

a

Transaction

with

the

ROLLBACK

Statement

.

.

.

.

.

.

.

.

.

.

.

.

.

. 961

Security

and

Java

Applications

.

.

.

.

.

.

. 962

SQLJ

Considerations

.

.

.

.

.

.

.

.

.

. 962

Controlling

the

execution

of

SQL

statements

in

SQLJ

.

.

.

.

.

.

.

.

.

.

.

.

. 962

SQLJ

SET-TRANSACTION-clause

.

.

.

. 963

Setting

the

isolation

level

for

an

SQLJ

transaction

.

.

.

.

.

.

.

.

.

.

.

. 964

SQLJ

context-clause

.

.

.

.

.

.

.

.

. 964

Connecting

to

a

data

source

using

SQLJ

.

. 965

SQLJ

connection-declaration-clause

.

.

.

. 969

Closing

the

connection

to

a

data

source

in

an

SQLJ

application

.

.

.

.

.

.

.

.

.

. 970

JDBC

Considerations

.

.

.

.

.

.

.

.

.

. 971

How

JDBC

applications

connect

to

a

data

source

.

.

.

.

.

.

.

.

.

.

.

.

.

. 971

Connecting

to

a

data

source

using

the

DataSource

interface

.

.

.

.

.

.

.

.

. 972

JDBC

connection

objects

.

.

.

.

.

.

.

. 974

Committing

or

rolling

back

JDBC

transactions

.

.

.

.

.

.

.

.

.

.

.

. 975

Closing

a

connection

to

a

JDBC

data

source

975

Type

2

JDBC

Driver

Considerations

.

.

.

.

. 975

Security

under

the

DB2

JDBC

Type

2

Driver

975

How

DB2

applications

connect

to

a

data

source

using

the

DriverManager

interface

with

the

DB2

JDBC

Type

2

Driver

.

.

.

. 977

Universal

JDBC

Driver

Considerations

.

.

.

. 978

User

ID

and

password

security

under

the

DB2

Universal

JDBC

Driver

.

.

.

.

.

. 978

User

ID-only

security

under

the

DB2

Universal

JDBC

Driver

.

.

.

.

.

.

.

. 980

Kerberos

security

under

the

DB2

Universal

JDBC

Driver

.

.

.

.

.

.

.

.

.

.

.

. 980

Encrypted

user

ID

security

or

encrypted

password

security

under

the

DB2

Universal

JDBC

Driver

.

.

.

.

.

.

.

.

.

.

.

. 984

Security

under

the

DB2

Universal

JDBC

Driver

.

.

.

.

.

.

.

.

.

.

.

.

.

. 985

Connecting

to

a

data

source

using

the

DriverManager

interface

with

the

DB2

Universal

JDBC

Driver

.

.

.

.

.

.

.

. 986

Security

and

Routines

.

.

.

.

.

.

.

.

.

. 988

Routines

in

application

development

.

.

.

. 988

Procedures

.

.

.

.

.

.

.

.

.

.

.

.

. 991

User-defined

scalar

functions

.

.

.

.

.

.

. 992

User-defined

scalar

functions

.

.

.

.

.

.

. 995

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 996

Security

considerations

for

routines

.

.

.

.

. 996

Connection

contexts

in

SQLJ

routines

.

.

.

. 999

Library

and

class

management

considerations

1000

Rebuilding

DB2

routine

shared

libraries

.

.

. 1002

Updating

the

database

manager

configuration

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1003

SQLCA

(SQL

communications

area)

.

.

.

.

. 1004

SQLCA

field

descriptions

.

.

.

.

.

.

.

. 1004

Error

reporting

.

.

.

.

.

.

.

.

.

.

. 1007

SQLCA

usage

in

partitioned

database

systems

1007

SQLDA

(SQL

descriptor

area)

.

.

.

.

.

.

. 1008

SQLDA

field

descriptions

.

.

.

.

.

.

.

. 1008

Fields

in

the

SQLDA

header

.

.

.

.

.

. 1009

Fields

in

an

occurrence

of

a

base

SQLVAR

1010

Fields

in

an

occurrence

of

a

secondary

SQLVAR

.

.

.

.

.

.

.

.

.

.

.

.

. 1011

Effect

of

DESCRIBE

on

the

SQLDA

.

.

.

.

. 1012

SQLTYPE

and

SQLLEN

.

.

.

.

.

.

.

. 1013

Unrecognized

and

unsupported

SQLTYPEs

1015

Packed

decimal

numbers

.

.

.

.

.

.

. 1015

SQLLEN

field

for

decimal

.

.

.

.

.

.

. 1016

SQL-AUTHORIZATIONS

.

.

.

.

.

.

.

.

. 1016

©

Copyright

IBM

Corp.

1993-2004

941

Security

Considerations

when

Using

SQL

in

Applications

Package

Creation

for

Embedded

SQL

To

run

applications

written

in

compiled

host

languages,

you

must

create

the

packages

needed

by

the

database

manager

at

execution

time.

This

involves

the

following

steps

as

shown

in

the

following

figure:

v

Precompiling

(step

2),

to

convert

embedded

SQL

source

statements

into

a

form

the

database

manager

can

use,

Source Files

With SQL

Statements

Modified

Source Files

Object

Files

Source Files

Without SQL

Statements

Libraries

Precompiler

(db2 PREP)

PACKAGE

Create a

Package

Host Language Compiler

Host Language Linker

Executable

Program

Database Manager Package (Package)

Bind

File

Binder

(db2 BIND)

BINDFILE

Create a

Bind File

1

2

3

4

6

5

Figure

19.

Preparing

Programs

Written

in

Compiled

Host

Languages

942

Common

Criteria

Certification:

Administration

and

User

Documentation

v

Compiling

and

linking

(steps

3

and

4),

to

create

the

required

object

modules,

and,

v

Binding

(step

5),

to

create

the

package

to

be

used

by

the

database

manager

when

the

program

is

run.

Related

concepts:

v

“Precompilation

of

Source

Files

Containing

Embedded

SQL”

on

page

943

v

“Source

File

Requirements

for

Embedded

SQL

Applications”

on

page

945

v

“Compilation

and

Linkage

of

Source

Files

Containing

Embedded

SQL”

on

page

946

v

“Package

Creation

Using

the

BIND

Command”

on

page

947

v

“Package

Versioning”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Effect

of

Special

Registers

on

Bound

Dynamic

SQL”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Resolution

of

Unqualified

Table

Names”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Additional

Considerations

when

Binding”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Advantages

of

Deferred

Binding”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Application,

Bind

File,

and

Package

Relationships”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Precompiler-Generated

Timestamps”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Package

Rebinding”

in

the

Application

Development

Guide:

Programming

Client

Applications

Related

reference:

v

“db2bfd

-

Bind

File

Description

Tool

Command”

in

the

Command

Reference

Precompilation

of

Source

Files

Containing

Embedded

SQL

After

you

create

the

source

files,

you

must

precompile

each

host

language

file

containing

SQL

statements

with

the

PREP

command

for

host-language

source

files.

The

precompiler

converts

SQL

statements

contained

in

the

source

file

to

comments,

and

generates

the

DB2

run-time

API

calls

for

those

statements.

Before

precompiling

an

application

you

must

connect

to

a

server,

either

implicitly

or

explicitly.

Although

you

precompile

application

programs

at

the

client

workstation

and

the

precompiler

generates

modified

source

and

messages

on

the

client,

the

precompiler

uses

the

server

connection

to

perform

some

of

the

validation.

The

precompiler

also

creates

the

information

the

database

manager

needs

to

process

the

SQL

statements

against

a

database.

This

information

is

stored

in

a

package,

in

a

bind

file,

or

in

both,

depending

on

the

precompiler

options

selected.

A

typical

example

of

using

the

precompiler

follows.

To

precompile

a

C

embedded

SQL

source

file

called

filename.sqc,

you

can

issue

the

following

command

to

create

a

C

source

file

with

the

default

name

filename.c

and

a

bind

file

with

the

default

name

filename.bnd:

Chapter

27.

Application

Considerations

943

DB2®

PREP

filename.sqc

BINDFILE

The

precompiler

generates

up

to

four

types

of

output:

Modified

Source

This

file

is

the

new

version

of

the

original

source

file

after

the

precompiler

converts

the

SQL

statements

into

DB2

run-time

API

calls.

It

is

given

the

appropriate

host

language

extension.

Package

If

you

use

the

PACKAGE

option

(the

default),

or

do

not

specify

any

of

the

BINDFILE,

SYNTAX,

or

SQLFLAG

options,

the

package

is

stored

in

the

connected

database.

The

package

contains

all

the

information

required

to

execute

the

static

SQL

statements

of

a

particular

source

file

against

this

database

only.

Unless

you

specify

a

different

name

with

the

PACKAGE

USING

option,

the

precompiler

forms

the

package

name

from

the

first

8

characters

of

the

source

file

name.

If

you

use

the

PACKAGE

option

without

SQLERROR

CONTINUE,

the

database

used

during

the

precompile

process

must

contain

all

of

the

database

objects

referenced

by

the

static

SQL

statements

in

the

source

file.

For

example,

you

cannot

precompile

a

SELECT

statement

unless

the

table

it

references

exists

in

the

database.

With

the

VERSION

option

the

bindfile,

(if

the

BINDFILE

option

is

used),

and

the

package

(either

if

bound

at

PREP

time

or

if

a

bound

separately)

will

be

designated

with

a

particular

version

identifier.

Many

versions

of

packages

with

the

same

name

and

creator

can

exit

at

once.

Bind

File

If

you

use

the

BINDFILE

option,

the

precompiler

creates

a

bind

file

(with

extension

.bnd)

that

contains

the

data

required

to

create

a

package.

This

file

can

be

used

later

with

the

BIND

command

to

bind

the

application

to

one

or

more

databases.

If

you

specify

BINDFILE

and

do

not

specify

the

PACKAGE

option,

binding

is

deferred

until

you

invoke

the

BIND

command.

Note

that

for

the

command

line

processor

(CLP),

the

default

for

PREP

does

not

specify

the

BINDFILE

option.

Thus,

if

you

are

using

the

CLP

and

want

the

binding

to

be

deferred,

you

need

to

specify

the

BINDFILE

option.

Specifying

SQLERROR

CONTINUE

creates

a

package,

even

if

errors

occur

when

binding

SQL

statements.

Those

statements

that

fail

to

bind

for

authorization

or

existence

reasons

can

be

incrementally

bound

at

execution

time

if

VALIDATE

RUN

is

also

specified.

Any

attempt

to

execute

them

at

run

time

generates

an

error.

Message

File

If

you

use

the

MESSAGES

option,

the

precompiler

redirects

messages

to

the

indicated

file.

These

messages

include

warnings

and

error

messages

that

describe

problems

encountered

during

precompilation.

If

the

source

file

does

not

precompile

successfully,

use

the

warning

and

error

messages

to

determine

the

problem,

correct

the

source

file,

and

then

attempt

to

precompile

the

source

file

again.

If

you

do

not

use

the

MESSAGES

option,

precompilation

messages

are

written

to

the

standard

output.

Related

concepts:

944

Common

Criteria

Certification:

Administration

and

User

Documentation

v

“Package

Versioning”

in

the

Application

Development

Guide:

Programming

Client

Applications

Related

reference:

v

“PRECOMPILE”

on

page

842

Source

File

Requirements

for

Embedded

SQL

Applications

You

must

always

precompile

a

source

file

against

a

specific

database,

even

if

eventually

you

do

not

use

the

database

with

the

application.

In

practice,

you

can

use

a

test

database

for

development,

and

after

you

fully

test

the

application,

you

can

bind

its

bind

file

to

one

or

more

production

databases.

This

practice

is

known

as

deferred

binding.

If

your

application

uses

a

code

page

that

is

not

the

same

as

your

database

code

page,

you

need

to

consider

which

code

page

to

use

when

precompiling.

If

your

application

uses

user-defined

functions

(UDFs)

or

user-defined

distinct

types

(UDTs),

you

may

need

to

use

the

FUNCPATH

option

when

you

precompile

your

application.

This

option

specifies

the

function

path

that

is

used

to

resolve

UDFs

and

UDTs

for

applications

containing

static

SQL.

If

FUNCPATH

is

not

specified,

the

default

function

path

is

SYSIBM,

SYSFUN,

USER,

where

USER

refers

to

the

current

user

ID.

To

precompile

an

application

program

that

accesses

more

than

one

server,

you

can

do

one

of

the

following:

v

Split

the

SQL

statements

for

each

database

into

separate

source

files.

Do

not

mix

SQL

statements

for

different

databases

in

the

same

file.

Each

source

file

can

be

precompiled

against

the

appropriate

database.

This

is

the

recommended

method.

v

Code

your

application

using

dynamic

SQL

statements

only,

and

bind

against

each

database

your

program

will

access.

v

If

all

the

databases

look

the

same,

that

is,

they

have

the

same

definition,

you

can

group

the

SQL

statements

together

into

one

source

file.

The

same

procedures

apply

if

your

application

will

access

a

host,

AS/400®

or

iSeries

application

server

through

DB2

Connect.

Precompile

it

against

the

server

to

which

it

will

be

connecting,

using

the

PREP

options

available

for

that

server.

If

you

are

precompiling

an

application

that

will

run

on

DB2

Universal

Database

for

z/OS

and

OS/390,

consider

using

the

flagger

facility

to

check

the

syntax

of

the

SQL

statements.

The

flagger

indicates

SQL

syntax

that

is

supported

by

DB2

Universal

Database,

but

not

supported

by

DB2

Universal

Database

for

z/OS

and

OS/390.

You

can

also

use

the

flagger

to

check

that

your

SQL

syntax

conforms

to

the

SQL92

Entry

Level

syntax.

You

can

use

the

SQLFLAG

option

on

the

PREP

command

to

invoke

it

and

to

specify

the

version

of

DB2

Universal

Database

for

z/OS

and

OS/390

SQL

syntax

to

be

used

for

comparison.

The

flagger

facility

will

not

enforce

any

changes

in

SQL

use;

it

only

issues

informational

and

warning

messages

regarding

syntax

incompatibilities,

and

does

not

terminate

preprocessing

abnormally.

Related

concepts:

v

“Advantages

of

Deferred

Binding”

in

the

Application

Development

Guide:

Programming

Client

Applications

Chapter

27.

Application

Considerations

945

v

“Character

conversion

between

different

code

pages”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“When

code

page

conversion

occurs”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Character

Substitutions

During

Code

Page

Conversions”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Supported

Code

Page

Conversions”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Code

Page

Conversion

Expansion

Factor”

in

the

Application

Development

Guide:

Programming

Client

Applications

Related

reference:

v

“PRECOMPILE”

on

page

842

Compilation

and

Linkage

of

Source

Files

Containing

Embedded

SQL

Compile

the

modified

source

files

and

any

additional

source

files

that

do

not

contain

SQL

statements

using

the

appropriate

host

language

compiler.

The

language

compiler

converts

each

modified

source

file

into

an

object

module.

Refer

to

the

programming

documentation

for

your

operating

platform

for

any

exceptions

to

the

default

compiler

options.

Refer

to

your

compiler’s

documentation

for

a

complete

description

of

available

compiler

options.

The

host

language

linker

creates

an

executable

application.

For

example:

v

On

Windows®

operating

systems,

the

application

can

be

an

executable

file

or

a

dynamic

link

library

(DLL).

v

On

UNIX®-based

systems,

the

application

can

be

an

executable

load

module

or

a

shared

library.

Note:

Although

applications

can

be

DLLs

on

Windows

operating

systems,

the

DLLs

are

loaded

directly

by

the

application

and

not

by

the

DB2®

database

manager.

On

Windows

operating

systems,

the

database

manager

can

load

DLLs.

Stored

procedures

are

normally

built

as

DLLs

or

shared

libraries.

To

create

the

executable

file,

link

the

following:

v

User

object

modules,

generated

by

the

language

compiler

from

the

modified

source

files

and

other

files

not

containing

SQL

statements.

v

Host

language

library

APIs,

supplied

with

the

language

compiler.

v

The

database

manager

library

containing

the

database

manager

APIs

for

your

operating

environment.

Refer

to

the

appropriate

programming

documentation

for

your

operating

platform

for

the

specific

name

of

the

database

manager

library

you

need

for

your

database

manager

APIs.

Related

concepts:

v

“DB2

Stored

Procedures”

in

the

Application

Development

Guide:

Programming

Client

Applications

Related

tasks:

v

“Building

and

Running

REXX

Applications”

in

the

Application

Development

Guide:

Programming

Client

Applications

946

Common

Criteria

Certification:

Administration

and

User

Documentation

v

“Building

JDBC

applets”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Building

JDBC

applications”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Building

SQLJ

applets”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Building

SQLJ

applications”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Building

UNIX

C

applications”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Building

UNIX

C++

applications”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Building

IBM

COBOL

applications

on

AIX”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Building

UNIX

Micro

Focus

COBOL

applications”

in

the

Application

Development

Guide:

Building

and

Running

Applications

Package

Creation

Using

the

BIND

Command

Binding

is

the

process

that

creates

the

package

the

database

manager

needs

to

access

the

database

when

the

application

is

executed.

Binding

can

be

done

implicitly

by

specifying

the

PACKAGE

option

during

precompilation,

or

explicitly

by

using

the

BIND

command

against

the

bind

file

created

during

precompilation.

A

typical

example

of

using

the

BIND

command

follows.

To

bind

a

bind

file

named

filename.bnd

to

the

database,

you

can

issue

the

following

command:

DB2®

BIND

filename.bnd

One

package

is

created

for

each

separately

precompiled

source

code

module.

If

an

application

has

five

source

files,

of

which

three

require

precompilation,

three

packages

or

bind

files

are

created.

By

default,

each

package

is

given

a

name

that

is

the

same

as

the

name

of

the

source

module

from

which

the

.bnd

file

originated,

but

truncated

to

8

characters.

To

explicitly

specify

a

different

package

name,

you

must

use

the

PACKAGE

USING

option

on

the

PREP

command.

The

version

of

a

package

is

given

by

the

VERSION

precompile

option

and

defaults

to

the

empty

string.

If

the

name

and

schema

of

this

newly

created

package

is

the

same

as

a

package

that

currently

exists

in

the

target

database,

but

the

version

identifier

differs,

a

new

package

is

created

and

the

previous

package

still

remains.

However

if

a

package

exists

that

matches

the

name,

schema

and

the

version

of

the

package

being

bound,

then

that

package

is

dropped

and

replaced

with

the

new

package

being

bound

(specifying

ACTION

ADD

on

the

bind

would

prevent

that

and

an

error

(SQL0719)

would

be

returned

instead).

Related

reference:

v

“BIND”

on

page

232

v

“PRECOMPILE”

on

page

842

Generation

of

Sequential

Values

Generating

sequential

values

is

a

common

database

application

development

problem.

The

best

solution

to

that

problem

is

to

use

sequence

objects

and

sequence

expressions

in

SQL.

Each

sequence

object

is

a

uniquely

named

database

object

that

can

be

accessed

only

by

sequence

expressions.

There

are

two

sequence

expressions:

Chapter

27.

Application

Considerations

947

the

PREVVAL

expression

and

the

NEXTVAL

expression.

The

PREVVAL

expression

returns

the

value

most

recently

generated

in

the

application

process

for

the

specified

sequence

object.

Any

NEXTVAL

expressions

occuring

in

the

same

statement

as

the

PREVVAL

expression

have

no

effect

on

the

value

generated

by

the

PREVAL

expression

in

that

statement.

The

NEXTVAL

sequence

expression

increments

the

value

of

the

sequence

object

and

returns

the

new

value

of

the

sequence

object.

To

create

a

sequence

object,

issue

the

CREATE

SEQUENCE

statement.

For

example,

to

create

a

sequence

object

called

id_values

using

the

default

attributes,

issue

the

following

statement:

CREATE

SEQUENCE

id_values

To

generate

the

first

value

in

the

application

session

for

the

sequence

object,

issue

a

VALUES

statement

using

the

NEXTVAL

expression:

VALUES

NEXTVAL

FOR

id_values

1

1

1

record(s)

selected.

To

display

the

current

value

of

the

sequence

object,

issue

a

VALUES

statement

using

the

PREVVAL

expression:

VALUES

PREVVAL

FOR

id_values

1

1

1

record(s)

selected.

You

can

repeatedly

retrieve

the

current

value

of

the

sequence

object,

and

the

value

that

the

sequence

object

returns

does

not

change

until

you

issue

a

NEXTVAL

expression.

In

the

following

example,

the

PREVVAL

expression

returns

a

value

of

1,

until

the

NEXTVAL

expression

in

the

current

connection

increments

the

value

of

the

sequence

object:

VALUES

PREVVAL

FOR

id_values

1

1

1

record(s)

selected.

VALUES

PREVVAL

FOR

id_values

1

1

1

record(s)

selected.

VALUES

NEXTVAL

FOR

id_values

1

2

1

record(s)

selected.

948

Common

Criteria

Certification:

Administration

and

User

Documentation

VALUES

PREVVAL

FOR

id_values

1

2

1

record(s)

selected.

To

update

the

value

of

a

column

with

the

next

value

of

the

sequence

object,

include

the

NEXTVAL

expression

in

the

UPDATE

statement,

as

follows:

UPDATE

staff

SET

id

=

NEXTVAL

FOR

id_values

WHERE

id

=

350

To

insert

a

new

row

into

a

table

using

the

next

value

of

the

sequence

object,

include

the

NEXTVAL

expression

in

the

INSERT

statement,

as

follows:

INSERT

INTO

staff

(id,

name,

dept,

job)

VALUES

(NEXTVAL

FOR

id_values,

‘Kandil’,

51,

‘Mgr’)

Related

reference:

v

“CREATE

SEQUENCE

statement”

in

the

SQL

Reference,

Volume

2

Related

samples:

v

“DbSeq.java

--

How

to

create,

alter

and

drop

a

sequence

in

a

database

(JDBC)”

Management

of

Sequence

Behavior

You

can

tailor

the

behavior

of

sequence

objects

to

meet

the

needs

of

your

application.

You

change

change

the

attributes

of

a

sequence

object

when

you

issue

the

CREATE

SEQUENCE

statement

to

create

a

new

sequence

object,

and

when

you

issue

the

ALTER

SEQUENCE

statement

for

an

existing

sequence

object.

Following

are

some

of

the

attributes

of

a

sequence

object

that

you

can

specify:

Data

type

The

AS

clause

of

the

CREATE

SEQUENCE

statement

specifies

the

numeric

data

type

of

the

sequence

object.

The

data

type

determines

the

possible

minimum

and

maximum

values

of

the

sequence

object

(the

minimum

and

maximum

values

for

a

data

type

are

listed

in

the

topic

describing

SQL

limits).

You

cannot

change

the

data

type

of

a

sequence

object;

instead,

you

must

drop

the

sequence

object

by

issuing

the

DROP

SEQUENCE

statement

and

issue

a

CREATE

SEQUENCE

statement

with

the

new

data

type.

Start

value

The

START

WITH

clause

of

the

CREATE

SEQUENCE

statement

sets

the

initial

value

of

the

sequence

object.

The

RESTART

WITH

clause

of

the

ALTER

SEQUENCE

statement

resets

the

value

of

the

sequence

object

to

a

specified

value.

Minimum

value

The

MINVALUE

clause

sets

the

minimum

value

of

the

sequence

object.

Maximum

value

The

MAXVALUE

clause

sets

the

maximum

value

of

the

sequence

object.

Increment

value

The

INCREMENT

BY

clause

sets

the

value

that

each

NEXTVAL

expression

adds

to

the

current

value

of

the

sequence

object.

To

decrement

the

value

of

the

sequence

object,

specify

a

negative

value.

Chapter

27.

Application

Considerations

949

Sequence

cycling

The

CYCLE

clause

causes

the

value

of

a

sequence

object

that

reaches

its

maximum

or

minimum

value

to

generate

its

respective

minimum

value

or

maximum

value

on

the

following

NEXTVAL

expression.

For

example,

to

create

a

sequence

object

called

id_values

that

starts

with

a

minimum

value

of

0,

has

a

maximum

value

of

1000,

increments

by

2

with

each

NEXTVAL

expression,

and

returns

to

its

minimum

value

when

the

maximum

value

is

reached,

issue

the

following

statement:

CREATE

SEQUENCE

id_values

START

WITH

0

INCREMENT

BY

2

MAXVALUE

1000

CYCLE

Related

reference:

v

“SQL

limits”

in

the

SQL

Reference,

Volume

1

v

“ALTER

SEQUENCE

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

SEQUENCE

statement”

in

the

SQL

Reference,

Volume

2

Sequence

Objects

Compared

to

Identity

Columns

Although

sequence

objects

and

identity

columns

appear

to

serve

similar

purposes

for

DB2®

applications,

there

is

an

important

difference.

An

identity

column

automatically

generates

values

for

a

column

in

a

single

table.

A

sequence

object

generates

sequential

values

upon

request

that

can

be

used

in

any

SQL

statement.

Authorization

Considerations

for

Embedded

SQL

An

authorization

allows

a

user

or

group

to

perform

a

general

task

such

as

connecting

to

a

database,

creating

tables,

or

administering

a

system.

A

privilege

gives

a

user

or

group

the

right

to

access

one

specific

database

object

in

a

specified

way.

DB2®

uses

a

set

of

privileges

to

provide

protection

for

the

information

that

you

store

in

it.

Most

SQL

statements

require

some

type

of

privilege

on

the

database

objects

which

the

statement

utilizes.

Most

API

calls

usually

do

not

require

any

privilege

on

the

database

objects

which

the

call

utilizes,

however,

many

APIs

require

that

you

possess

the

necessary

authority

in

order

to

invoke

them.

The

DB2

APIs

enable

you

to

perform

the

DB2

administrative

functions

from

within

your

application

program.

For

example,

to

recreate

a

package

stored

in

the

database

without

the

need

for

a

bind

file,

you

can

use

the

sqlarbnd

(or

REBIND)

API.

When

you

design

your

application,

consider

the

privileges

your

users

will

need

to

run

the

application.

The

privileges

required

by

your

users

depend

on:

v

Whether

your

application

uses

dynamic

SQL,

including

JDBC

and

DB2

CLI,

or

static

SQL.

For

information

about

the

privileges

required

to

issue

a

statement,

see

the

description

of

that

statement.

v

Which

APIs

the

application

uses.

For

information

about

the

privileges

and

authorities

required

for

an

API

call,

see

the

description

of

that

API.

Consider

two

users,

PAYROLL

and

BUDGET,

who

need

to

perform

queries

against

the

STAFF

table.

PAYROLL

is

responsible

for

paying

the

employees

of

the

company,

so

it

needs

to

issue

a

variety

of

SELECT

statements

when

issuing

paychecks.

PAYROLL

needs

to

be

able

to

access

each

employee’s

salary.

BUDGET

950

Common

Criteria

Certification:

Administration

and

User

Documentation

is

responsible

for

determining

how

much

money

is

needed

to

pay

the

salaries.

BUDGET

should

not,

however,

be

able

to

see

any

particular

employee’s

salary.

Because

PAYROLL

issues

many

different

SELECT

statements,

the

application

you

design

for

PAYROLL

could

probably

make

good

use

of

dynamic

SQL.

The

dynamic

SQL

would

require

that

PAYROLL

have

SELECT

privilege

on

the

STAFF

table.

This

requirement

is

not

a

problem

because

PAYROLL

requires

full

access

to

the

table.

BUDGET,

on

the

other

hand,

should

not

have

access

to

each

employee’s

salary.

This

means

that

you

should

not

grant

SELECT

privilege

on

the

STAFF

table

to

BUDGET.

Because

BUDGET

does

need

access

to

the

total

of

all

the

salaries

in

the

STAFF

table,

you

could

build

a

static

SQL

application

to

execute

a

SELECT

SUM(SALARY)

FROM

STAFF,

bind

the

application

and

grant

the

EXECUTE

privilege

on

your

application’s

package

to

BUDGET.

This

enables

BUDGET

to

obtain

the

required

information,

without

exposing

the

information

that

BUDGET

should

not

see.

Related

concepts:

v

“Authorization

Considerations

for

Dynamic

SQL”

on

page

951

v

“Authorization

Considerations

for

Static

SQL”

on

page

952

v

“Authorization

Considerations

for

APIs”

on

page

959

v

“Authorization”

on

page

15

Authorization

Considerations

for

Dynamic

SQL

To

use

dynamic

SQL

in

a

package

bound

with

DYNAMICRULES

RUN

(default),

the

person

who

runs

a

dynamic

SQL

application

must

have

the

privileges

necessary

to

issue

each

SQL

request

performed,

as

well

as

the

EXECUTE

privilege

on

the

package.

The

privileges

may

be

granted

to

the

user’s

authorization

ID,

to

any

group

of

which

the

user

is

a

member,

or

to

PUBLIC.

If

you

bind

the

application

with

the

DYNAMICRULES

BIND

option,

DB2

associates

your

authorization

ID

with

the

application

packages.

This

allows

any

user

who

runs

the

application

to

inherit

the

privileges

associated

with

your

authorization

ID.

If

the

program

contains

no

static

SQL,

the

person

binding

the

application

(for

embedded

dynamic

SQL

applications)

only

needs

the

BINDADD

authority

on

the

database.

Again,

this

privilege

can

be

granted

to

the

user’s

authorization

ID,

to

a

group

of

which

the

user

is

a

member,

or

to

PUBLIC.

When

a

package

exhibits

bind

or

define

behavior,

the

user

that

runs

the

application

needs

only

the

EXECUTE

privilege

on

the

package

to

run

it.

At

run-time,

the

binder

of

a

package

that

exhibits

bind

behavior

must

have

the

privileges

necessary

to

execute

all

the

dynamic

statements

generated

by

the

package,

because

all

authorization

checking

for

dynamic

statements

is

done

using

the

ID

of

the

binder

and

not

the

executors.

Similarly,

the

definer

of

a

routine

whose

package

exhibits

define

behavior

must

have

all

the

privileges

necessary

to

execute

all

the

dynamic

statements

generated

by

the

define

behavior

package.

If

you

have

SYSADM

or

DBADM

authority

and

create

a

bind

behavior

package,

consider

using

the

OWNER

BIND

option

to

designate

a

different

authorization

ID.

The

OWNER

BIND

option

prevents

a

package

from

automatically

inheriting

SYSADM

or

DBADM

privileges

within

dynamic

SQL

statements.

For

more

information

on

the

Chapter

27.

Application

Considerations

951

DYNAMICRULES

and

OWNER

bind

options,

refer

to

the

BIND

command.

For

more

information

on

package

behaviors,

see

the

description

of

DYNAMICRULES

effects

on

dynamic

SQL

statements.

Related

concepts:

v

“Authorization

Considerations

for

Embedded

SQL”

on

page

950

v

“Authorization

Considerations

for

Static

SQL”

on

page

952

v

“Authorization

Considerations

for

APIs”

on

page

959

v

“Authorizations

and

binding

of

routines

that

contain

SQL”

on

page

32

Related

reference:

v

“BIND”

on

page

232

Authorization

Considerations

for

Static

SQL

To

use

static

SQL,

the

user

running

the

application

only

needs

the

EXECUTE

privilege

on

the

package.

No

privileges

are

required

for

each

of

the

statements

that

make

up

the

package.

The

EXECUTE

privilege

may

be

granted

to

the

user’s

authorization

ID,

to

any

group

of

which

the

user

is

a

member,

or

to

PUBLIC.

Unless

you

specify

the

VALIDATE

RUN

option

when

binding

the

application,

the

authorization

ID

you

use

to

bind

the

application

must

have

the

privileges

necessary

to

perform

all

the

statements

in

the

application.

If

VALIDATE

RUN

was

specified

at

BIND

time,

all

authorization

failures

for

any

static

SQL

within

this

package

will

not

cause

the

BIND

to

fail

and

those

statements

will

be

revalidated

at

run

time.

The

person

binding

the

application

must

always

have

BINDADD

authority.

The

privileges

needed

to

execute

the

statements

must

be

granted

to

the

user’s

authorization

ID

or

to

PUBLIC.

Group

privileges

are

not

used

when

binding

static

SQL

statements.

As

with

dynamic

SQL,

the

BINDADD

privilege

can

be

granted

to

the

user

authorization

ID,

to

a

group

of

which

the

user

is

a

member,

or

to

PUBLIC.

These

properties

of

static

SQL

give

you

very

precise

control

over

access

to

information

in

DB2®.

Related

concepts:

v

“Authorization

Considerations

for

Embedded

SQL”

on

page

950

v

“Authorization

Considerations

for

Dynamic

SQL”

on

page

951

v

“Authorization

Considerations

for

APIs”

on

page

959

Related

reference:

v

“BIND”

on

page

232

Effect

of

DYNAMICRULES

bind

option

on

dynamic

SQL

The

PRECOMPILE

and

BIND

option

DYNAMICRULES

determines

what

values

apply

at

run-time

for

the

following

dynamic

SQL

attributes:

v

The

authorization

ID

that

is

used

during

authorization

checking.

v

The

qualifier

that

is

used

for

qualification

of

unqualified

objects.

v

Whether

the

package

can

be

used

to

dynamically

prepare

the

following

statements:

GRANT,

REVOKE,

ALTER,

CREATE,

DROP,

COMMENT

ON,

RENAME,

SET

INTEGRITY

and

SET

EVENT

MONITOR

STATE

statements.

952

Common

Criteria

Certification:

Administration

and

User

Documentation

In

addition

to

the

DYNAMICRULES

value,

the

run-time

environment

of

a

package

controls

how

dynamic

SQL

statements

behave

at

run-time.

The

two

possible

run-time

environments

are:

v

The

package

runs

as

part

of

a

stand-alone

program

v

The

package

runs

within

a

routine

context

The

combination

of

the

DYNAMICRULES

value

and

the

run-time

environment

determine

the

values

for

the

dynamic

SQL

attributes.

That

set

of

attribute

values

is

called

the

dynamic

SQL

statement

behavior.

The

four

behaviors

are:

Run

behavior

DB2®

uses

the

authorization

ID

of

the

user

(the

ID

that

initially

connected

to

DB2)

executing

the

package

as

the

value

to

be

used

for

authorization

checking

of

dynamic

SQL

statements

and

for

the

initial

value

used

for

implicit

qualification

of

unqualified

object

references

within

dynamic

SQL

statements.

Bind

behavior

At

run-time,

DB2

uses

all

the

rules

that

apply

to

static

SQL

for

authorization

and

qualification.

That

is,

take

the

authorization

ID

of

the

package

owner

as

the

value

to

be

used

for

authorization

checking

of

dynamic

SQL

statements

and

the

package

default

qualifier

for

implicit

qualification

of

unqualified

object

references

within

dynamic

SQL

statements.

Define

behavior

Define

behavior

applies

only

if

the

dynamic

SQL

statement

is

in

a

package

that

is

run

within

a

routine

context,

and

the

package

was

bound

with

DYNAMICRULES

DEFINEBIND

or

DYNAMICRULES

DEFINERUN.

DB2

uses

the

authorization

ID

of

the

routine

definer

(not

the

routine’s

package

binder)

as

the

value

to

be

used

for

authorization

checking

of

dynamic

SQL

statements

and

for

implicit

qualification

of

unqualified

object

references

within

dynamic

SQL

statements

within

that

routine.

Invoke

behavior

Invoke

behavior

applies

only

if

the

dynamic

SQL

statement

is

in

a

package

that

is

run

within

a

routine

context,

and

the

package

was

bound

with

DYNAMICRULES

INVOKEBIND

or

DYNAMICRULES

INVOKERUN.

DB2

uses

the

current

statement

authorization

ID

in

effect

when

the

routine

is

invoked

as

the

value

to

be

used

for

authorization

checking

of

dynamic

SQL

and

for

implicit

qualification

of

unqualified

object

references

within

dynamic

SQL

statements

within

that

routine.

This

is

summarized

by

the

following

table:

Invoking

Environment

ID

Used

Any

static

SQL

Implicit

or

explicit

value

of

the

OWNER

of

the

package

the

SQL

invoking

the

routine

came

from.

Used

in

definition

of

view

or

trigger

Definer

of

the

view

or

trigger.

Dynamic

SQL

from

a

run

behavior

package

ID

used

to

make

the

initial

connection

to

DB2.

Dynamic

SQL

from

a

define

behavior

package

Definer

of

the

routine

that

uses

the

package

that

the

SQL

invoking

the

routine

came

from.

Dynamic

SQL

from

an

invoke

behavior

package

Current®

authorization

ID

invoking

the

routine.

Chapter

27.

Application

Considerations

953

The

following

table

shows

the

combination

of

the

DYNAMICRULES

value

and

the

run-time

environment

that

yields

each

dynamic

SQL

behavior.

Table

71.

How

DYNAMICRULES

and

the

Run-Time

Environment

Determine

Dynamic

SQL

Statement

Behavior

DYNAMICRULES

Value

Behavior

of

Dynamic

SQL

Statements

in

a

Standalone

Program

Environment

Behavior

of

Dynamic

SQL

Statements

in

a

Routine

Environment

BIND

Bind

behavior

Bind

behavior

RUN

Run

behavior

Run

behavior

DEFINEBIND

Bind

behavior

Define

behavior

DEFINERUN

Run

behavior

Define

behavior

INVOKEBIND

Bind

behavior

Invoke

behavior

INVOKERUN

Run

behavior

Invoke

behavior

The

following

table

shows

the

dynamic

SQL

attribute

values

for

each

type

of

dynamic

SQL

behavior.

Table

72.

Definitions

of

Dynamic

SQL

Statement

Behaviors

Dynamic

SQL

Attribute

Setting

for

Dynamic

SQL

Attributes:

Bind

Behavior

Setting

for

Dynamic

SQL

Attributes:

Run

Behavior

Setting

for

Dynamic

SQL

Attributes:

Define

Behavior

Setting

for

Dynamic

SQL

Attributes:

Invoke

Behavior

Authorization

ID

The

implicit

or

explicit

value

of

the

OWNER

BIND

option

ID

of

User

Executing

Package

Routine

definer

(not

the

routine’s

package

owner)

Current

statement

authorization

ID

when

routine

is

invoked.

Default

qualifier

for

unqualified

objects

The

implicit

or

explicit

value

of

the

QUALIFIER

BIND

option

CURRENT

SCHEMA

Special

Register

Routine

definer

(not

the

routine’s

package

owner)

Current

statement

authorization

ID

when

routine

is

invoked.

Can

execute

GRANT,

REVOKE,

ALTER,

CREATE,

DROP,

COMMENT

ON,

RENAME,

SET

INTEGRITY

and

SET

EVENT

MONITOR

STATE

No

Yes

No

No

Related

concepts:

v

“Authorization

Considerations

for

Dynamic

SQL”

on

page

951

v

“Authorizations

and

binding

of

routines

that

contain

SQL”

on

page

32

When

to

use

DB2

CLI

or

embedded

SQL

Which

interface

you

choose

depends

on

your

application.

DB2

CLI

is

ideally

suited

for

query-based

graphical

user

interface

(GUI)

applications

that

require

portability.

The

advantages

listed

above,

may

make

using

DB2

CLI

seem

like

the

obvious

choice

for

any

application.

There

is

however,

one

954

Common

Criteria

Certification:

Administration

and

User

Documentation

factor

that

must

be

considered,

the

comparison

between

static

and

dynamic

SQL.

It

is

much

easier

to

use

static

SQL

in

embedded

applications.

Static

SQL

has

several

advantages:

v

Performance

Dynamic

SQL

is

prepared

at

run

time,

static

SQL

is

prepared

at

precompile

time.

As

well

as

requiring

more

processing,

the

preparation

step

may

incur

additional

network-traffic

at

run

time.

The

additional

network

traffic

can

be

avoided

if

the

DB2

CLI

application

makes

use

of

deferred

prepare

(which

is

the

default

behavior).

It

is

important

to

note

that

static

SQL

will

not

always

have

better

performance

than

dynamic

SQL.

Dynamic

SQL

is

prepared

at

runtime

and

uses

the

database

statistics

available

at

that

time,

whereas

static

SQL

makes

use

of

database

statistics

available

at

BIND

time.

Dynamic

SQL

can

make

use

of

changes

to

the

database,

such

as

new

indexes,

to

choose

the

optimal

access

plan,

resulting

in

potentially

better

performance

than

the

same

SQL

executed

as

static

SQL.

In

addition,

precompilation

of

dynamic

SQL

statements

can

be

avoided

if

they

are

cached.

v

Encapsulation

and

Security

In

static

SQL,

the

authorizations

to

access

objects

(such

as

a

table,

view)

are

associated

with

a

package

and

are

validated

at

package

binding

time.

This

means

that

database

administrators

need

only

to

grant

execute

on

a

particular

package

to

a

set

of

users

(thus

encapsulating

their

privileges

in

the

package)

without

having

to

grant

them

explicit

access

to

each

database

object.

In

dynamic

SQL,

the

authorizations

are

validated

at

run

time

on

a

per

statement

basis;

therefore,

users

must

be

granted

explicit

access

to

each

database

object.

This

permits

these

users

access

to

parts

of

the

object

that

they

do

not

have

a

need

to

access.

v

Embedded

SQL

is

supported

in

languages

other

than

C

or

C++.

v

For

fixed

query

selects,

embedded

SQL

is

simpler.

If

an

application

requires

the

advantages

of

both

interfaces,

it

is

possible

to

make

use

of

static

SQL

within

a

DB2

CLI

application

by

creating

a

stored

procedure

that

contains

the

static

SQL.

The

stored

procedure

is

called

from

within

a

DB2

CLI

application

and

is

executed

on

the

server.

Once

the

stored

procedure

is

created,

any

DB2

CLI

or

ODBC

application

can

call

it.

It

is

also

possible

to

write

a

mixed

application

that

uses

both

DB2

CLI

and

embedded

SQL,

taking

advantage

of

their

respective

benefits.

In

this

case,

DB2

CLI

is

used

to

provide

the

base

application,

with

key

modules

written

using

static

SQL

for

performance

or

security

reasons.

This

complicates

the

application

design,

and

should

only

be

used

if

stored

procedures

do

not

meet

the

applications

requirements.

Ultimately,

the

decision

on

when

to

use

each

interface,

will

be

based

on

individual

preferences

and

previous

experience

rather

than

on

any

one

factor.

Related

concepts:

v

“CLI/ODBC/JDBC

trace

facility”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

tasks:

v

“Preparing

and

executing

SQL

statements

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Chapter

27.

Application

Considerations

955

v

“Issuing

SQL

statements

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Creating

static

SQL

with

CLI/ODBC/JDBC

Static

Profiling”

in

the

CLI

Guide

and

Reference,

Volume

1

Units

of

work

A

transaction

is

commonly

referred

to

in

DB2®

Universal

Database

(DB2

UDB)

as

a

unit

of

work.

A

unit

of

work

is

a

recoverable

sequence

of

operations

within

an

application

process.

It

is

used

by

the

database

manager

to

ensure

that

a

database

is

in

a

consistent

state.

Any

reading

from

or

writing

to

the

database

is

done

within

a

unit

of

work.

For

example,

a

bank

transaction

might

involve

the

transfer

of

funds

from

a

savings

account

to

a

checking

account.

After

the

application

subtracts

an

amount

from

the

savings

account,

the

two

accounts

are

inconsistent,

and

remain

so

until

the

amount

is

added

to

the

checking

account.

When

both

steps

are

completed,

a

point

of

consistency

is

reached.

The

changes

can

be

committed

and

made

available

to

other

applications.

A

unit

of

work

starts

when

the

first

SQL

statement

is

issued

against

the

database.

The

application

must

end

the

unit

of

work

by

issuing

either

a

COMMIT

or

a

ROLLBACK

statement.

The

COMMIT

statement

makes

permanent

all

changes

made

within

a

unit

of

work.

The

ROLLBACK

statement

removes

these

changes

from

the

database.

If

the

application

ends

normally

without

either

of

these

statements

being

explicitly

issued,

the

unit

of

work

is

automatically

committed.

If

it

ends

abnormally

in

the

middle

of

a

unit

of

work,

the

unit

of

work

is

automatically

rolled

back.

Once

issued,

a

COMMIT

or

a

ROLLBACK

cannot

be

stopped.

With

some

multi-threaded

applications,

or

some

operating

systems

(such

as

Windows®),

if

the

application

ends

normally

without

either

of

these

statements

being

explicitly

issued,

the

unit

of

work

is

automatically

rolled

back.

It

is

recommended

that

your

applications

always

explicitly

commit

or

roll

back

complete

units

of

work.

If

part

of

a

unit

of

work

does

not

complete

successfully,

the

updates

are

rolled

back,

leaving

the

participating

tables

as

they

were

before

the

transaction

began.

This

ensures

that

requests

are

neither

lost

nor

duplicated.

Related

reference:

v

“COMMIT”

on

page

885

v

“ROLLBACK”

on

page

900

Remote

unit

of

work

A

remote

unit

of

work

lets

a

user

or

application

program

read

or

update

data

at

one

location

per

unit

of

work.

It

supports

access

to

one

database

within

a

unit

of

work.

While

an

application

program

can

update

several

remote

databases,

it

can

only

access

one

database

within

a

unit

of

work.

Remote

unit

of

work

has

the

following

characteristics:

v

Multiple

requests

(SQL

statements)

per

unit

of

work

are

supported.

v

Multiple

cursors

per

unit

of

work

are

supported.

v

Each

unit

of

work

can

update

only

one

database.

956

Common

Criteria

Certification:

Administration

and

User

Documentation

v

The

application

program

either

commits

or

rolls

back

the

unit

of

work.

In

certain

error

circumstances,

the

database

server

or

DB2

Connect

may

roll

back

the

unit

of

work.

For

example,

Figure

20

shows

a

database

client

running

a

funds

transfer

application

that

accesses

a

database

containing

checking

and

savings

account

tables,

as

well

as

a

banking

fee

schedule.

The

application

must:

v

Accept

the

amount

to

transfer

from

the

user

interface.

v

Subtract

the

amount

from

the

savings

account,

and

determine

the

new

balance.

v

Read

the

fee

schedule

to

determine

the

transaction

fee

for

a

savings

account

with

the

given

balance.

v

Subtract

the

transaction

fee

from

the

savings

account.

v

Add

the

amount

of

the

transfer

to

the

checking

account.

v

Commit

the

transaction

(unit

of

work).

To

set

up

such

an

application,

you

must:

1.

Create

the

tables

for

the

savings

account,

checking

account

and

banking

fee

schedule

in

the

same

database.

2.

If

physically

remote,

set

up

the

database

server

to

use

the

appropriate

communications

protocol.

3.

If

physically

remote,

catalog

the

node

and

the

database

to

identify

the

database

on

the

database

server.

4.

Precompile

your

application

program

to

specify

a

type

1

connection;

that

is,

specify

CONNECT(1)

on

the

PREP

command.

Related

concepts:

v

“Distributed

Relational

Database

Architecture”

in

the

DB2

Connect

User’s

Guide

v

“DB2

Connect

and

DRDA”

in

the

DB2

Connect

User’s

Guide

v

“Distributed

requests”

in

the

DB2

Connect

User’s

Guide

v

“Remote

Unit

of

Work”

in

the

Application

Development

Guide:

Programming

Client

Applications

Savings account

Checking account

Transaction fee

Database client

Update

Update

Read

Database

Figure

20.

Using

a

Single

Database

in

a

Transaction

Chapter

27.

Application

Considerations

957

Compound

SQL

guidelines

To

reduce

database

manager

overhead,

you

can

group

several

SQL

statements

into

a

single

executable

block.

Because

the

SQL

statements

in

the

block

are

substatements

that

could

be

executed

individually,

this

kind

of

code

is

called

compound

SQL.

In

addition

to

reducing

database

manager

overhead,

compound

SQL

reduces

the

number

of

requests

that

have

to

be

transmitted

across

the

network

for

remote

clients.

There

are

two

types

of

compound

SQL:

v

Atomic

The

application

receives

a

response

from

the

database

manager

when

all

substatements

have

completed

successfully

or

when

one

substatement

ends

in

an

error.

If

one

substatement

ends

in

an

error,

the

entire

block

is

considered

to

have

ended

in

an

error.

Any

changes

made

to

the

database

within

the

block

are

rolled

back.

Atomic

compound

SQL

is

not

supported

with

DB2

Connect

v

Not

Atomic

The

application

receives

a

response

from

the

database

manager

when

all

substatements

have

completed.

All

substatements

within

a

block

are

executed

regardless

of

whether

or

not

the

preceding

substatement

completed

successfully.

The

group

of

statements

can

only

be

rolled

back

if

the

unit

of

work

containing

the

NOT

ATOMIC

compound

SQL

is

rolled

back.

Compound

SQL

is

supported

in

stored

procedures,

which

are

also

known

as

DARI

routines,

and

in

the

following

application

development

processes:

v

Embedded

static

SQL

v

DB2

Call

Level

Interface

v

JDBC

Dynamic

Compound

SQL

Statements

Dynamic

compound

statements

are

compiled

by

DB2®

as

a

single

statement.

This

statement

can

be

used

effectively

for

short

scripts

that

require

little

control

flow

logic

but

significant

data

flow.

For

larger

constructs

with

nested

complex

control

flow,

consider

using

SQL

procedures.

In

a

dynamic

compound

statement

you

can

use

the

following

elements

in

declarations:

v

SQL

variables

in

variable

declarations

of

substatements

v

Conditions

in

the

substatements

based

on

the

SQLSTATE

values

of

the

condition

declaration

v

One

or

more

SQL

procedural

statements

Dynamic

compound

statements

can

also

use

several

flow

logic

statements,

such

as

the

FOR

statement,

the

IF

statement,

the

ITERATE

statement,

and

the

WHILE

statement.

If

an

error

occurs

in

a

dynamic

compound

statement,

all

prior

SQL

statements

are

rolled

back

and

the

remaining

SQL

statements

in

the

dynamic

compound

statement

are

not

processed.

958

Common

Criteria

Certification:

Administration

and

User

Documentation

A

dynamic

compound

statement

can

be

embedded

in

a

trigger,

SQL

function,

or

SQL

method,

or

issued

through

dynamic

SQL

statements.

This

executable

statement

can

be

dynamically

prepared.

No

privileges

are

required

to

invoke

the

statement

but

the

authorization

ID

associated

with

the

statement

must

have

the

necessary

privileges

to

invoke

the

SQL

statements

in

the

compound

statement.

Related

concepts:

v

“Query

tuning

guidelines”

in

the

Administration

Guide:

Performance

Authorization

Considerations

for

APIs

Most

of

the

APIs

provided

by

DB2®

do

not

require

the

use

of

privileges,

however,

many

do

require

some

kind

of

authority

to

invoke.

For

the

APIs

that

do

require

a

privilege,

the

privilege

must

be

granted

to

the

user

running

the

application.

The

privilege

may

be

granted

to

the

user’s

authorization

ID,

to

any

group

of

which

the

user

is

a

member,

or

to

PUBLIC.

For

information

on

the

required

privilege

and

authority

to

issue

each

API

call,

see

the

description

of

the

API.

Some

APIs

can

be

accessed

via

a

stored

procedure

interface.

For

information

whether

a

specific

API

can

be

accessed

via

a

stored

procedure,

see

the

description

of

that

API.

Related

concepts:

v

“Authorization

Considerations

for

Embedded

SQL”

on

page

950

v

“Authorization

Considerations

for

Dynamic

SQL”

on

page

951

v

“Authorization

Considerations

for

Static

SQL”

on

page

952

Purpose

of

Multiple-Thread

Database

Access

One

feature

of

some

operating

systems

is

the

ability

to

run

several

threads

of

execution

within

a

single

process.

The

multiple

threads

allow

an

application

to

handle

asynchronous

events,

and

makes

it

easier

to

create

event-driven

applications,

without

resorting

to

polling

schemes.

The

information

that

follows

describes

how

the

database

manager

works

with

multiple

threads,

and

lists

some

design

guidelines

that

you

should

keep

in

mind.

If

you

are

not

familiar

with

terms

relating

to

the

development

of

multithreaded

applications

(such

as

critical

section

and

semaphore),

consult

the

programming

documentation

for

your

operating

system.

A

DB2

application

can

execute

SQL

statements

from

multiple

threads

using

contexts.

A

context

is

the

environment

from

which

an

application

runs

all

SQL

statements

and

API

calls.

All

connections,

units

of

work,

and

other

database

resources

are

associated

with

a

specific

context.

Each

context

is

associated

with

one

or

more

threads

within

an

application.

For

each

executable

SQL

statement

in

a

context,

the

first

run-time

services

call

always

tries

to

obtain

a

latch.

If

it

is

successful,

it

continues

processing.

If

not

(because

an

SQL

statement

in

another

thread

of

the

same

context

already

has

the

latch),

the

call

is

blocked

on

a

signaling

semaphore

until

that

semaphore

is

posted,

at

which

point

the

call

gets

the

latch

and

continues

processing.

The

latch

is

held

until

the

SQL

statement

has

completed

processing,

at

which

time

it

is

released

by

the

last

run-time

services

call

that

was

generated

for

that

particular

SQL

statement.

Chapter

27.

Application

Considerations

959

The

net

result

is

that

each

SQL

statement

within

a

context

is

executed

as

an

atomic

unit,

even

though

other

threads

may

also

be

trying

to

execute

SQL

statements

at

the

same

time.

This

action

ensures

that

internal

data

structures

are

not

altered

by

different

threads

at

the

same

time.

APIs

also

use

the

latch

used

by

run-time

services;

therefore,

APIs

have

the

same

restrictions

as

run-time

services

routines

within

each

context.

For

DB2®

Version

8,

all

Version

8

applications

are

multithreaded

by

default,

and

are

capable

of

using

multiple

contexts.

(The

behavior

of

pre-Version

8

applications

remains

unchanged.)

If

you

want,

you

can

use

the

following

DB2

APIs

to

use

multiple

contexts.

Specifically,

your

application

can

create

a

context

for

a

thread,

attach

to

or

detach

from

a

separate

context

for

each

thread,

and

pass

contexts

between

threads.

If

your

application

does

not

call

any

of

these

APIs,

DB2

will

automatically

manage

the

multiple

contexts

for

your

application:

v

sqleBeginCtx()

v

sqleEndCtx()

v

sqleAttachToCtx()

v

sqleDetachFromCtx()

v

sqleGetCurrentCtx()

v

sqleInterruptCtx()

Contexts

may

be

exchanged

between

threads

in

a

process,

but

not

exchanged

between

processes.

One

use

of

multiple

contexts

is

to

provide

support

for

concurrent

transactions.

Related

concepts:

v

“Concurrent

Transactions”

in

the

Application

Development

Guide:

Programming

Client

Applications

Related

reference:

v

“sqleAttachToCtx

-

Attach

to

Context”

in

the

Administrative

API

Reference

v

“sqleBeginCtx

-

Create

and

Attach

to

an

Application

Context”

in

the

Administrative

API

Reference

v

“sqleDetachFromCtx

-

Detach

From

Context”

in

the

Administrative

API

Reference

v

“sqleEndCtx

-

Detach

and

Destroy

Application

Context”

in

the

Administrative

API

Reference

v

“sqleGetCurrentCtx

-

Get

Current

Context”

in

the

Administrative

API

Reference

v

“sqleInterruptCtx

-

Interrupt

Context”

in

the

Administrative

API

Reference

Related

samples:

v

“dbthrds.sqc

--

How

to

use

multiple

context

APIs

on

UNIX

(C)”

v

“dbthrds.sqC

--

How

to

use

multiple

context

APIs

on

UNIX

(C++)”

Ending

a

Transaction

with

the

COMMIT

Statement

The

COMMIT

statement

ends

the

current

transaction

and

makes

the

database

changes

performed

during

the

transaction

visible

to

other

processes.

Procedure:

Commit

changes

as

soon

as

application

requirements

permit.

In

particular,

write

your

programs

so

that

uncommitted

changes

are

not

held

while

waiting

for

input

960

Common

Criteria

Certification:

Administration

and

User

Documentation

from

a

terminal,

as

this

can

result

in

database

resources

being

held

for

a

long

time.

Holding

these

resources

prevents

other

applications

that

need

these

resources

from

running.

Your

application

programs

should

explicitly

end

any

transactions

before

terminating.

If

you

do

not

end

transactions

explicitly,

DB2

automatically

commits

all

the

changes

made

during

the

program’s

pending

transaction

when

the

program

ends

successfully,

except

on

Windows

operating

systems.

On

Windows

operating

systems,

if

you

do

not

explicitly

commit

the

transaction,

the

database

manager

always

rolls

back

the

changes.

DB2

rolls

back

the

changes

under

the

following

conditions:

v

A

log

full

condition

v

Any

other

system

condition

that

causes

database

manager

processing

to

end

The

COMMIT

statement

has

no

effect

on

the

contents

of

host

variables.

Related

concepts:

v

“Implicit

Ending

of

a

Transaction

in

a

Standalone

Application”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Return

Codes”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Error

Information

in

the

SQLCODE,

SQLSTATE,

and

SQLWARN

Fields”

in

the

Application

Development

Guide:

Programming

Client

Applications

Related

tasks:

v

“Ending

an

Application

Program”

in

the

Application

Development

Guide:

Programming

Client

Applications

Related

reference:

v

“COMMIT”

on

page

885

Ending

a

Transaction

with

the

ROLLBACK

Statement

To

ensure

the

consistency

of

data

at

the

transaction

level,

the

database

manager

ensures

that

either

all

operations

within

a

transaction

are

completed,

or

none

are

completed.

Suppose,

for

example,

that

the

program

is

supposed

to

deduct

money

from

one

account

and

add

it

to

another.

If

you

place

both

of

these

updates

in

a

single

transaction,

and

a

system

failure

occurs

while

they

are

in

progress,

when

you

restart

the

system

the

database

manager

automatically

performs

crash

recovery

to

restore

the

data

to

the

state

it

was

in

before

the

transaction

began.

If

a

program

error

occurs,

the

database

manager

restores

all

changes

made

by

the

statement

in

error.

The

database

manager

will

not

undo

work

performed

in

the

transaction

prior

to

execution

of

the

statement

in

error,

unless

you

specifically

roll

it

back.

Procedure:

To

prevent

the

changes

that

were

effected

by

the

transaction

from

being

committed

to

the

database,

issue

the

ROLLBACK

statement

to

end

the

transaction.

The

ROLLBACK

statement

returns

the

database

to

the

state

it

was

in

before

the

transaction

ran.

Chapter

27.

Application

Considerations

961

Note:

On

Windows

operating

systems,

if

you

do

not

explicitly

commit

the

transaction,

the

database

manager

always

rolls

back

the

changes.

If

you

use

a

ROLLBACK

statement

in

a

routine

that

was

entered

because

of

an

error

or

warning

and

you

use

the

SQL

WHENEVER

statement,

then

you

should

specify

WHENEVER

SQLERROR

CONTINUE

and

WHENEVER

SQLWARNING

CONTINUE

before

the

ROLLBACK.

This

avoids

a

program

loop

if

the

ROLLBACK

fails

with

an

error

or

warning.

In

the

event

of

a

severe

error,

you

will

receive

a

message

indicating

that

you

cannot

issue

a

ROLLBACK

statement.

Do

not

issue

a

ROLLBACK

statement

if

a

severe

error

occurs

such

as

the

loss

of

communications

between

the

client

and

server

applications,

or

if

the

database

gets

corrupted.

After

a

severe

error,

the

only

statement

you

can

issue

is

a

CONNECT

statement.

The

ROLLBACK

statement

has

no

effect

on

the

contents

of

host

variables.

You

can

code

one

or

more

transactions

within

a

single

application

program,

and

it

is

possible

to

access

more

than

one

database

from

within

a

single

transaction.

A

transaction

that

accesses

more

than

one

database

is

called

a

multisite

update.

Related

concepts:

v

“Implicit

Ending

of

a

Transaction

in

a

Standalone

Application”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Remote

Unit

of

Work”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Multisite

Update”

in

the

Application

Development

Guide:

Programming

Client

Applications

Related

reference:

v

“CONNECT

(Type

1)”

on

page

887

v

“CONNECT

(Type

2)”

on

page

893

v

“WHENEVER

statement”

in

the

SQL

Reference,

Volume

2

Security

and

Java

Applications

The

sections

that

follow

describe

security

considerations

for

SQLJ,

JDBC,

the

Type

2

JDBC

driver,

and

the

Universal

JDBC

driver.

SQLJ

Considerations

Controlling

the

execution

of

SQL

statements

in

SQLJ

You

can

use

selected

methods

of

the

SQLJ

ExecutionContext

class

to

control

or

monitor

the

execution

of

SQL

statements.

Selected

sqlj.runtime

classes

and

interfaces

describes

those

methods.

To

use

ExecutionContext

methods,

follow

these

steps:

1.

Acquire

an

execution

context.

There

are

two

ways

to

acquire

an

execution

context:

v

Acquire

the

default

execution

context

from

the

connection

context.

For

example:

ExecutionContext

execCtx

=

connCtx.getExecutionContext();

962

Common

Criteria

Certification:

Administration

and

User

Documentation

v

Create

a

new

execution

context

by

invoking

the

constructor

for

ExecutionContext.

For

example:

ExecutionContext

execCtx=new

ExecutionContext();

2.

Associate

the

execution

context

with

an

SQL

statement.

To

do

that,

specify

an

execution

context

after

the

connection

context

in

the

execution

clause

that

contains

the

SQL

statement.

For

example:

#sql

[connCtx,

execCtx]

{DELETE

FROM

EMPLOYEE

WHERE

SALARY

>

10000};

3.

Invoke

ExecutionContext

methods.

Some

ExecutionContext

methods

are

applicable

before

the

associated

SQL

statement

is

executed,

and

some

are

applicable

only

after

their

associated

SQL

statement

is

executed.

For

example,

you

can

use

method

getUpdateCount

to

count

the

number

of

rows

that

are

deleted

by

a

DELETE

statement

after

you

execute

the

DELETE

statement:

#sql

[connCtx,

execCtx]

{DELETE

FROM

EMPLOYEE

WHERE

SALARY

>

10000};

System.out.println("Deleted

"

+

execCtx.getUpdateCount()

+

"

rows");

Related

reference:

v

“Selected

sqlj.runtime

classes

and

interfaces”

in

the

Application

Development

Guide:

Programming

Client

Applications

SQLJ

SET-TRANSACTION-clause

The

SET

TRANSACTION

clause

sets

the

isolation

level

for

the

current

unit

of

work.

Syntax:

��

SET

TRANSACTION

ISOLATION

LEVEL

READ

COMMITTED

READ

UNCOMMITTED

REPEATABLE

READ

SERIALIZABLE

��

Description:

ISOLATION

LEVEL

Specifies

one

of

the

following

isolation

levels:

READ

COMMITTED

Specifies

that

the

current

DB2

isolation

level

is

cursor

stability.

READ

UNCOMMITTED

Specifies

that

the

current

DB2

isolation

level

is

uncommitted

read.

REPEATABLE

READ

Specifies

that

the

current

DB2

isolation

level

is

read

stability.

SERIALIZABLE

Specifies

that

the

current

DB2

isolation

level

is

repeatable

read.

Usage

notes:

You

can

execute

SET

TRANSACTION

only

at

the

beginning

of

a

transaction.

Chapter

27.

Application

Considerations

963

Setting

the

isolation

level

for

an

SQLJ

transaction

To

set

the

isolation

level

for

a

unit

of

work

within

an

SQLJ

program,

use

the

SET

TRANSACTION

ISOLATION

LEVEL

clause.

Table

73

shows

the

values

that

you

can

specify

in

the

SET

TRANSACTION

ISOLATION

LEVEL

clause

and

their

DB2®

equivalents.

Table

73.

Equivalent

SQLJ

and

DB2

isolation

levels

SET

TRANSACTION

value

DB2

isolation

level

SERIALIZABLE

Repeatable

read

REPEATABLE

READ

Read

stability

READ

COMMITTED

Cursor

stability

READ

UNCOMMITTED

Uncommitted

read

The

isolation

level

affects

the

underlying

JDBC

connection

as

well

as

the

SQLJ

connection.

You

can

change

the

isolation

level

only

at

the

beginning

of

a

transaction.

Related

concepts:

v

“Isolation

levels”

in

the

SQL

Reference,

Volume

1

SQLJ

context-clause

A

context

clause

specifies

a

connection

context,

an

execution

context,

or

both.

You

use

a

connection

context

to

connect

to

a

data

source.

You

use

an

execution

context

to

monitor

and

modify

SQL

statement

execution.

Syntax:

��

[

connection-context

]

execution-context

connection-context

,

execution

context

��

Description:

connection-context

Specifies

a

valid

Java

identifier

that

is

declared

earlier

in

the

SQLJ

program.

That

identifier

must

be

declared

as

an

instance

of

the

connection

context

class

that

SQLJ

generates

for

a

connection

declaration

clause.

execution-context

Specifies

a

valid

Java

identifier

that

is

declared

earlier

in

the

SQLJ

program.

That

identifier

must

be

declared

as

an

instance

of

class

sqlj.runtime.ExecutionContext.

Usage

notes:

v

If

you

do

not

specify

a

connection

context

in

an

executable

clause,

SQLJ

uses

the

default

connection

context.

v

If

you

do

not

specify

an

execution

context,

SQLJ

obtains

the

execution

context

from

the

connection

context

of

the

statement.

Related

tasks:

964

Common

Criteria

Certification:

Administration

and

User

Documentation

v

“Connecting

to

a

data

source

using

SQLJ”

on

page

965

v

“Controlling

the

execution

of

SQL

statements

in

SQLJ”

on

page

962

Connecting

to

a

data

source

using

SQLJ

In

an

SQLJ

application,

as

in

any

other

DB2®

application,

you

must

be

connected

to

a

database

server

before

you

can

execute

SQL

statements.

In

SQLJ,

as

in

JDBC,

a

database

server

is

called

a

data

source.

You

can

use

one

of

five

techniques

to

connect

to

a

data

source:

v

Explicitly

create

a

connection

using

the

JDBC

DriverManager

interface.

There

are

two

techniques

for

doing

this.

v

Explicitly

create

a

connection

using

the

JDBC

DataSource

interface.

There

are

two

techniques

for

doing

this.

v

Implicitly

create

a

connection.

Connection

technique

1:

This

technique

uses

the

JDBC

DriverManager

as

the

underlying

means

for

creating

the

connection.

Use

it

with

any

level

of

the

JDBC

driver.

1.

Execute

an

SQLJ

connection

declaration

clause.

Doing

this

generates

a

connection

context

class.

The

simplest

form

of

the

connection

declaration

clause

is:

#sql

context

context-class-name;

The

name

of

the

generated

connection

context

class

is

context-class-name.

2.

Load

a

JDBC

driver

by

invoking

the

Class.forName

method:

v

For

the

DB2

Universal

JDBC

Driver,

invoke

Class.forName

this

way:

Class.forName("com.ibm.db2.jcc.DB2Driver");

v

For

the

DB2

JDBC

Type

2

Driver,

invoke

Class.forName

this

way:

Class.forName("COM.ibm.db2.jdbc.app.DB2Driver");

3.

Invoke

the

constructor

for

the

connection

context

class

that

you

created

in

step

1.

Doing

this

creates

a

connection

context

object

that

you

specify

in

each

SQL

statement

that

you

execute

at

the

associated

data

source.

The

constructor

invocation

statement

needs

to

be

in

one

of

the

following

forms:

connection-context-class

connection-context-object=

new

connection-context-class(String

url,

boolean

autocommit);

connection-context-class

connection-context-object=

new

connection-context-class(String

url,

String

user,

String

password,

boolean

autocommit);

connection-context-class

connection-context-object=

new

connection-context-class(String

url,

Properties

info,

boolean

autocommit);

The

meanings

of

the

parameters

are:

url

A

string

that

specifies

the

location

name

that

is

associated

with

the

data

source.

That

argument

has

one

of

the

forms

that

are

specified

in

Connect

to

a

data

source

using

the

DriverManager

interface

with

the

JDBC

Universal

Driver.

The

form

depends

on

which

JDBC

driver

you

are

using.

user

and

password

Specify

a

user

ID

and

password

for

connection

to

the

data

source,

if

the

data

source

to

which

you

are

connecting

requires

them.

Chapter

27.

Application

Considerations

965

info

Specifies

an

object

of

type

java.util.Properties

that

contains

a

set

of

driver

properties

for

the

connection.

For

the

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX®

and

Windows®

(DB2

JDBC

Type

2

Driver),

you

should

specify

only

the

user

and

password

properties.

For

the

DB2

Universal

JDBC

Driver,

you

can

specify

any

of

the

properties

listed

in

Properties

for

the

DB2

Universal

JDBC

Driver.

autocommit

Specifies

whether

you

want

the

database

manager

to

issue

a

COMMIT

after

every

statement.

Possible

values

are

true

or

false.

If

you

specify

false,

you

need

to

do

explicit

commit

operations.

The

following

code

uses

connection

technique

1

to

create

a

connection

to

location

NEWYORK.

The

connection

requires

a

user

ID

and

password,

and

does

not

require

autocommit.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

Connection

technique

2:

This

technique

uses

the

JDBC

DriverManager

interface

for

creating

the

connection.

Use

it

with

any

level

of

the

JDBC

driver.

1.

Execute

an

SQLJ

connection

declaration

clause.

This

is

the

same

as

step

1

on

page

965

in

connection

technique

1.

2.

Load

the

driver.

This

is

the

same

as

step

2

on

page

965

in

connection

technique

1.

3.

Invoke

the

JDBC

DriverManager.getConnection

method.

Doing

this

creates

a

JDBC

connection

object

for

the

connection

to

the

data

source.

You

can

use

any

of

the

forms

of

getConnection

that

are

specified

in

Connect

to

a

data

source

using

the

DriverManager

interface

with

the

JDBC

Universal

Driver.

The

meanings

of

the

url,

user,

and

password

parameters

are

the

same

as

the

meanings

of

the

parameters

in

step

3

on

page

965

of

connection

technique

1.

4.

Invoke

the

constructor

for

the

connection

context

class

that

you

created

in

step

1.

Doing

this

creates

a

connection

context

object

that

you

specify

in

each

SQL

statement

that

you

execute

at

the

associated

data

source.

The

constructor

invocation

statement

needs

to

be

in

the

following

form:

#sql

context

Ctx;

//

Create

connection

context

class

Ctx

�1�

String

userid="dbadm";

//

Declare

variables

for

user

ID

and

password

String

password="dbadm";

String

empname;

//

Declare

a

host

variable

...

try

{

//

Load

the

JDBC

driver

Class.forName("com.ibm.db2.jcc.DB2Driver");

�2�

}

catch

(ClassNotFoundException

e)

{

e.printStackTrace();

}

Ctx

myConnCtx=

�3�

new

Ctx("jdbc:db2://sysmvs1.stl.ibm.com:5021/NEWYORK",

userid,password,false);

//

Create

connection

context

object

myConnCtx

//

for

the

connection

to

NEWYORK

#sql

[myConnCtx]

{SELECT

LASTNAME

INTO

:empname

FROM

EMPLOYEE

WHERE

EMPNO='000010'};

//

Use

myConnCtx

for

executing

an

SQL

statement

Figure

21.

Using

connection

technique

1

to

connect

to

a

data

source

966

Common

Criteria

Certification:

Administration

and

User

Documentation

connection-context-class

connection-context-object=

new

connection-context-class(Connection

JDBC-connection-object);

The

JDBC-connection-object

parameter

is

the

Connection

object

that

you

created

in

step

3

on

page

966.

The

following

code

uses

connection

technique

2

to

create

a

connection

to

location

NEWYORK.

The

connection

requires

a

user

ID

and

password,

and

does

not

require

autocommit.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

Connection

technique

3:

This

technique

uses

the

JDBC

DataSource

interface

for

creating

the

connection.

1.

Execute

an

SQLJ

connection

declaration

clause.

This

is

the

same

as

step

1

on

page

965

in

connection

technique

1.

2.

If

your

system

administrator

created

a

DataSource

object

in

a

different

program:

a.

Obtain

the

logical

name

of

the

data

source

to

which

you

need

to

connect.

b.

Create

a

context

to

use

in

the

next

step.

c.

In

your

application

program,

use

the

Java™

Naming

and

Directory

Interface

(JNDI)

to

get

the

DataSource

object

that

is

associated

with

the

logical

data

source

name.

Otherwise,

create

a

DataSource

object

and

assign

properties

to

it,

as

shown

in

″Creating

and

using

a

DataSource

object

in

the

same

application″

in

Connect

to

a

data

source

using

the

DataSource

interface.

3.

Invoke

the

JDBC

DataSource.getConnection

method.

Doing

this

creates

a

JDBC

connection

object

for

the

connection

to

the

data

source.

You

can

use

one

of

the

following

forms

of

getConnection:

getConnection();

getConnection(user,

password);

The

meanings

of

user

and

password

parameters

are

the

same

as

the

meanings

of

the

parameters

in

step

3

on

page

965

of

connection

technique

1.

#sql

context

Ctx;

//

Create

connection

context

class

Ctx

�1�

String

userid="dbadm";

//

Declare

variables

for

user

ID

and

password

String

password="dbadm";

String

empname;

//

Declare

a

host

variable

...

try

{

//

Load

the

JDBC

driver

Class.forName("com.ibm.db2.jcc.DB2Driver");

�2�

}

catch

(ClassNotFoundException

e)

{

e.printStackTrace();

}

Connection

jdbccon=

�3�

DriverManager.getConnection("jdbc:db2://sysmvs1.stl.ibm.com:5021/NEWYORK",

userid,password);

//

Create

JDBC

connection

object

jdbccon

jdbccon.setAutoCommit(false);

//

Do

not

autocommit

�4�

Ctx

myConnCtx=new

Ctx(jdbccon);

�5�

//

Create

connection

context

object

myConnCtx

//

for

the

connection

to

NEWYORK

#sql

[myConnCtx]

{SELECT

LASTNAME

INTO

:empname

FROM

EMPLOYEE

WHERE

EMPNO='000010'};

//

Use

myConnCtx

for

executing

an

SQL

statement

Figure

22.

Using

connection

technique

2

to

connect

to

a

data

source

Chapter

27.

Application

Considerations

967

4.

If

the

default

autocommit

mode

is

not

appropriate,

invoke

the

JDBC

Connection.setAutoCommit

method.

Doing

this

indicates

whether

you

want

the

database

manager

to

issue

a

COMMIT

after

every

statement.

The

form

of

this

method

is:

setAutoCommit(boolean

autocommit);

5.

Invoke

the

constructor

for

the

connection

context

class

that

you

created

in

step

1

on

page

967.

Doing

this

creates

a

connection

context

object

that

you

specify

in

each

SQL

statement

that

you

execute

at

the

associated

data

source.

The

constructor

invocation

statement

needs

to

be

in

the

following

form:

connection-context-class

connection-context-object=

new

connection-context-class(Connection

JDBC-connection-object);

The

JDBC-connection-object

parameter

is

the

Connection

object

that

you

created

in

step

3

on

page

967.

The

following

code

uses

connection

technique

3

to

create

a

connection

to

a

location

with

logical

name

jdbc/sampledb.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

Connection

technique

4

(DB2

Universal

JDBC

Driver

only):

This

technique

uses

the

JDBC

DataSource

interface

for

creating

the

connection.

This

technique

requires

that

the

DataSource

is

registered

with

JNDI.

1.

From

your

system

administrator,

obtain

the

logical

name

of

the

data

source

to

which

you

need

to

connect.

2.

Execute

an

SQLJ

connection

declaration

clause.

For

this

type

of

connection,

the

connection

declaration

clause

needs

to

be

of

this

form:

#sql

public

static

context

context-class-name

with

(dataSource="logical-name");

The

connection

context

must

be

declared

as

public

and

static.

logical-name

is

the

data

source

name

that

you

obtained

in

step

1.

3.

Invoke

the

constructor

for

the

connection

context

class

that

you

created

in

step

2.

Doing

this

creates

a

connection

context

object

that

you

specify

in

each

SQL

statement

that

you

execute

at

the

associated

data

source.

The

constructor

invocation

statement

needs

to

be

in

one

of

the

following

forms:

import

java.sql.*;

import

javax.naming.*;

import

javax.sql.*;

...

#sql

context

CtxSqlj;

//

Create

connection

context

class

CtxSqlj

�1�

Context

ctx=new

InitialContext();

�2b�

DataSource

ds=(DataSource)ctx.lookup("jdbc/sampledb");

�2c�

Connection

con=ds.getConnection();

�3�

String

empname;

//

Declare

a

host

variable

...

con.setAutoCommit(false);

//

Do

not

autocommit

�4�

CtxSqlj

myConnCtx=new

CtxSqlj(con);

�5�

//

Create

connection

context

object

myConnCtx

#sql

[myConnCtx]

{SELECT

LASTNAME

INTO

:empname

FROM

EMPLOYEE

WHERE

EMPNO='000010'};

//

Use

myConnCtx

for

executing

an

SQL

statement

Figure

23.

Using

connection

technique

3

to

connect

to

a

data

source

968

Common

Criteria

Certification:

Administration

and

User

Documentation

connection-context-class

connection-context-object=

new

connection-context-class();

connection-context-class

connection-context-object=

new

connection-context-class

(String

user,

String

password);

The

meanings

of

the

user

and

password

parameters

are

the

same

as

the

meanings

of

the

parameters

in

step

3

on

page

965

of

connection

technique

1.

The

following

code

uses

connection

technique

4

to

create

a

connection

to

a

location

with

logical

name

jdbc/sampledb.

The

connection

requires

a

user

ID

and

password.

Connection

technique

5:

This

technique

uses

the

default

connection

to

connect

to

the

data

source.

You

use

the

default

connection

by

specifying

your

SQL

statements

without

a

connection

context

object.

When

you

use

this

technique,

you

do

not

need

to

load

a

JDBC

driver

unless

you

explicitly

use

JDBC

interfaces

in

your

program.

For

example:

#sql

{SELECT

LASTNAME

INTO

:empname

FROM

EMPLOYEE

WHERE

EMPNO='000010'};

//

Use

default

connection

for

//

executing

an

SQL

statement

To

create

a

default

connection

context,

SQLJ

does

a

JNDI

lookup

for

jdbc/defaultDataSource.

If

nothing

is

registered,

a

null

context

exception

is

issued

when

SQLJ

attempts

to

access

the

context.

Related

concepts:

v

“How

JDBC

applications

connect

to

a

data

source”

on

page

971

Related

tasks:

v

“Connecting

to

a

data

source

using

the

DriverManager

interface

with

the

DB2

Universal

JDBC

Driver”

on

page

986

v

“Connecting

to

a

data

source

using

the

DataSource

interface”

on

page

972

Related

reference:

v

“Properties

for

the

DB2

Universal

JDBC

Driver”

in

the

Application

Development

Guide:

Programming

Client

Applications

SQLJ

connection-declaration-clause

The

connection

declaration

clause

declares

a

connection

to

a

data

source

in

an

SQLJ

application

program.

#sql

public

static

context

Ctx

with

(dataSource="jdbc/sampledb");

�2�

//

Create

connection

context

class

Ctx

String

userid="dbadm";

//

Declare

variables

for

user

ID

and

password

String

password="dbadm";

String

empname;

//

Declare

a

host

variable

...

Ctx

myConnCtx=new

Ctx(userid,

password);

�3�

//

Create

connection

context

object

myConnCtx

//

for

the

connection

to

jdbc/sampledb

#sql

[myConnCtx]

{SELECT

LASTNAME

INTO

:empname

FROM

EMPLOYEE

WHERE

EMPNO='000010'};

//

Use

myConnCtx

for

executing

an

SQL

statement

Figure

24.

Using

connection

technique

4

to

connect

to

a

data

source

Chapter

27.

Application

Considerations

969

Syntax:

��

Java-modifiers

context

Java-class-name

implements-clause

with-clause

��

Description:

Java-modifiers

Specifies

modifiers

that

are

valid

for

Java

class

declarations,

such

as

static,

public,

private,

or

protected.

Java-class-name

Specifies

a

valid

Java

identifier.

During

the

program

preparation

process,

SQLJ

generates

a

connection

context

class

whose

name

is

this

identifier.

implements-clause

See

SQLJ

implements-clause

for

a

description

of

this

clause.

In

a

connection

declaration

clause,

the

interface

class

to

which

the

implements

clause

refers

must

be

a

user-defined

interface

class.

with-clause

See

SQLJ

with-clause

for

a

description

of

this

clause.

Usage

notes:

v

SQLJ

generates

a

connection

class

declaration

for

each

connection

declaration

clause

you

specify.

SQLJ

data

source

connections

are

objects

of

those

generated

connection

classes.

v

You

can

specify

a

connection

declaration

clause

anywhere

that

a

Java

class

definition

can

appear

in

a

Java

program.

Related

tasks:

v

“Connecting

to

a

data

source

using

SQLJ”

on

page

965

Related

reference:

v

“SQLJ

implements-clause”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“SQLJ

with-clause”

in

the

Application

Development

Guide:

Programming

Client

Applications

Closing

the

connection

to

a

data

source

in

an

SQLJ

application

When

you

have

finished

with

a

connection

to

a

data

source,

you

need

to

close

the

connection

to

the

data

source.

Doing

so

releases

the

connection

context

object’s

DB2®

and

SQLJ

resources

immediately.

To

close

the

connection

to

the

data

source,

use

the

ConnectionContext.close()

method.

This

closes

the

connection

context,

as

well

as

the

connection

to

the

data

source.

For

example:

...

ctx

=

new

EzSqljctx(con0);

//

Create

a

connection

context

object

//

from

JDBC

connection

con0

...

//

Perform

various

SQL

operations

EzSqljctx.close();

//

Close

the

connection

context

and

//

connection

to

the

data

source

970

Common

Criteria

Certification:

Administration

and

User

Documentation

Related

tasks:

v

“Connecting

to

a

data

source

using

SQLJ”

on

page

965

JDBC

Considerations

How

JDBC

applications

connect

to

a

data

source

Before

you

can

execute

SQL

statements

in

any

SQL

program,

you

must

connect

to

a

database

server.

In

JDBC,

a

database

server

is

known

as

a

data

source.

Figure

25

shows

how

a

Java™

application

connects

to

a

data

source

for

a

type

2

driver

or

DB2

Universal

JDBC

Driver

type

2

connectivity.

Figure

26

on

page

972

shows

how

a

Java

application

connects

to

a

data

source

for

DB2

Universal

JDBC

Driver

type

4

connectivity.

Java application

DriverManager
or

DataSource

Local database
or DB2

subsystem

JDBC driver

Database
server

Figure

25.

Java

application

flow

for

a

type

2

driver

or

DB2

Universal

JDBC

Driver

type

2

connectivity

Chapter

27.

Application

Considerations

971

The

way

that

you

connect

to

a

data

source

depends

on

the

version

of

JDBC

that

you

use.

Connecting

using

the

DriverManager

interface

is

available

for

all

levels

of

JDBC.

Connecting

using

the

DataSource

interface

is

available

with

JDBC

2.0

and

above.

Related

concepts:

v

“How

DB2

applications

connect

to

a

data

source

using

the

DriverManager

interface

with

the

DB2

JDBC

Type

2

Driver”

on

page

977

Related

tasks:

v

“Connecting

to

a

data

source

using

the

DataSource

interface”

on

page

972

v

“Connecting

to

a

data

source

using

the

DriverManager

interface

with

the

DB2

Universal

JDBC

Driver”

on

page

986

Connecting

to

a

data

source

using

the

DataSource

interface

Using

DriverManager

to

connect

to

a

data

source

reduces

portability

because

the

application

must

identify

a

specific

JDBC

driver

class

name

and

driver

URL.

The

driver

class

name

and

driver

URL

are

specific

to

a

JDBC

vendor,

driver

implementation,

and

data

source.

If

your

applications

need

to

be

portable

among

data

sources,

you

should

use

the

DataSource

interface.

When

you

connect

to

a

data

source

using

the

DataSource

interface,

you

use

a

DataSource

object.

It

is

possible

to

create

and

use

the

DataSource

object

in

the

same

application,

as

you

do

with

the

DriverManager

interface.

Figure

27

shows

an

example

for

the

DB2

Universal

JDBC

Driver:

import

java.sql.*;

//

JDBC

base

import

javax.sql.*;

//

JDBC

2.0

standard

extension

APIs

import

com.ibm.db2.jcc.*;

//

DB2®

Universal

JDBC

Driver

�1�

//

interfaces

DB2SimpleDataSource

db2ds=new

DB2SimpleDataSource();

�2�

Java application

DriverManager
or

DataSource

JDBC driver*

Database
server

*Java byte code executed under JVM

DRDA

Figure

26.

Java

application

flow

for

DB2

Universal

JDBC

Driver

type

4

connectivity

Figure

27.

Creating

and

using

a

DataSource

object

in

the

same

application

972

Common

Criteria

Certification:

Administration

and

User

Documentation

db2ds.setDatabaseName("db2loc1");

�3�

//

Assign

the

location

name

db2ds.setDescription("Our

Sample

Database");

//

Description

for

documentation

db2ds.setUser("john");

//

Assign

the

user

ID

db2ds.setPassword("db2");

//

Assign

the

password

Connection

con=db2ds.getConnection();

�4�

//

Create

a

Connection

object

�1�

Import

the

package

that

contains

the

implementation

of

the

DataSource

interface.

�2�

Creates

a

DB2DataSource

object.

DB2DataSource

is

one

of

the

DB2

implementations

of

the

DataSource

interface.

See

Create

and

deploy

DataSource

objects

for

information

on

DB2’s

DataSource

implementations.

�3�

The

setDatabaseName,

setDescription,

setUser,

and

setPassword

methods

assign

attributes

to

the

DB2DataSource

object.

See

Properties

for

the

DB2

Universal

JDBC

Driver

for

information

about

the

attributes

that

you

can

set

for

a

DB2DataSource

object

under

the

DB2

Universal

JDBC

Driver.

�4�

Establishes

a

connection

to

the

data

source

that

DB2DataSource

object

db2ds

represents.

However,

a

more

flexible

way

to

use

a

DataSource

object

is

for

your

system

administrator

to

create

and

manage

it

separately,

using

WebSphere®

or

some

other

tool.

The

program

that

creates

and

manages

a

DataSource

object

also

uses

the

Java™

Naming

and

Directory

Interface

(JNDI)

to

assign

a

logical

name

to

the

DataSource

object.

The

JDBC

application

that

uses

the

DataSource

object

can

then

refer

to

the

object

by

its

logical

name,

and

does

not

need

any

information

about

the

underlying

data

source.

In

addition,

your

system

administrator

can

modify

the

data

source

attributes,

and

you

do

not

need

to

change

your

application

program.

To

learn

more

about

using

WebSphere

to

deploy

DataSource

objects,

go

to

this

URL

on

the

Web:

http://www.ibm.com/software/webservers/appserv/

To

learn

about

deploying

DataSource

objects

yourself,

see

Create

and

deploy

DataSource

objects.

You

can

use

the

DataSource

interface

and

the

DriverManager

interface

in

the

same

application,

but

for

maximum

portability,

it

is

recommended

that

you

use

only

the

DataSource

interface

to

obtain

connections.

The

remainder

of

this

topic

explains

how

to

create

a

connection

using

a

DataSource

object,

given

that

the

system

administrator

has

already

created

the

object

and

assigned

a

logical

name

to

it.

To

obtain

a

connection

using

a

DataSource

object,

you

need

to

follow

these

steps:

1.

From

your

system

administrator,

obtain

the

logical

name

of

the

data

source

to

which

you

need

to

connect.

2.

Create

a

Context

object

to

use

in

the

next

step.

The

Context

interface

is

part

of

the

Java

Naming

and

Directory

Interface

(JNDI),

not

JDBC.

3.

In

your

application

program,

use

JNDI

to

get

the

DataSource

object

that

is

associated

with

the

logical

data

source

name.

4.

Use

the

DataSource.getConnection

method

to

obtain

the

connection.

You

can

use

one

of

the

following

forms

of

the

getConnection

method:

getConnection();

getConnection(String

user,

String

password);

Chapter

27.

Application

Considerations

973

Use

the

second

form

if

you

need

to

specify

a

user

ID

and

password

for

the

connection

that

are

different

from

the

ones

that

were

specified

when

the

DataSource

was

deployed.

Figure

28

shows

an

example

of

the

code

that

you

need

in

your

application

program

to

obtain

a

connection

using

a

DataSource

object,

given

that

the

logical

name

of

the

data

source

that

you

need

to

connect

to

is

jdbc/sampledb.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

import

java.sql.*;

import

javax.naming.*;

import

javax.sql.*;

...

Context

ctx=new

InitialContext();

�2�

DataSource

ds=(DataSource)ctx.lookup("jdbc/sampledb");

�3�

Connection

con=ds.getConnection();

�4�

Related

tasks:

v

“Creating

and

deploying

DataSource

objects”

in

the

Application

Development

Guide:

Programming

Client

Applications

Related

reference:

v

“Properties

for

the

DB2

Universal

JDBC

Driver”

in

the

Application

Development

Guide:

Programming

Client

Applications

JDBC

connection

objects

When

you

connect

to

a

data

source

by

either

connection

method,

you

create

a

Connection

object,

which

represents

the

connection

to

the

data

source.

You

use

this

Connection

object

to

do

the

following

things:

v

Create

Statement,

PreparedStatement,

and

CallableStatement

objects

for

executing

SQL

statements.

These

are

discussed

in

Execute

SQL

in

a

JDBC

application.

v

Gather

information

about

the

data

source

to

which

you

are

connected.

This

process

is

discussed

in

Use

DatabaseMetaData

to

learn

about

a

data

source.

v

Commit

or

roll

back

transactions.

You

can

commit

transactions

manually

or

automatically.

These

operations

are

discussed

in

Commit

or

roll

back

a

JDBC

transaction.

v

Close

the

connection

to

the

data

source.

This

operation

is

discussed

in

Close

a

connection

to

a

JDBC

data

source.

Related

concepts:

v

“JDBC

interfaces

for

executing

SQL”

in

the

Application

Development

Guide:

Programming

Client

Applications

Related

tasks:

v

“Closing

a

connection

to

a

JDBC

data

source”

on

page

975

v

“Committing

or

rolling

back

JDBC

transactions”

on

page

975

v

“Learning

about

a

data

source

using

DatabaseMetaData

methods”

in

the

Application

Development

Guide:

Programming

Client

Applications

Figure

28.

Obtaining

a

connection

using

a

DataSource

object

974

Common

Criteria

Certification:

Administration

and

User

Documentation

Committing

or

rolling

back

JDBC

transactions

In

JDBC,

to

commit

or

roll

back

transactions

explicitly,

use

the

commit

or

rollback

methods.

For

example:

Connection

con;

...

con.commit();

If

autocommit

mode

is

on,

DB2®

performs

a

commit

operation

after

every

SQL

statement

completes.

To

determine

whether

autocommit

mode

is

on,

invoke

the

Connection.getAutoCommit

method.

To

set

autocommit

mode

on,

invoke

the

Connection.setAutoCommit(true)

method.

To

set

autocommit

mode

off,

invoke

the

Connection.setAutoCommit(false)

method.

Related

concepts:

v

“Savepoints

in

JDBC

applications”

in

the

Application

Development

Guide:

Programming

Client

Applications

Related

tasks:

v

“Making

batch

updates

in

JDBC

applications”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Closing

a

connection

to

a

JDBC

data

source”

on

page

975

Closing

a

connection

to

a

JDBC

data

source

When

you

have

finished

with

a

connection

to

a

data

source,

it

is

essential

that

you

close

the

connection

to

the

data

source.

Doing

this

releases

the

Connection

object’s

DB2®

and

JDBC

resources

immediately.

To

close

the

connection

to

the

data

source,

use

the

close

method.

For

example:

Connection

con;

...

con.close();

If

autocommit

mode

is

not

on,

the

connection

needs

to

be

on

a

unit-of-work

boundary

before

you

close

the

connection.

Related

concepts:

v

“How

JDBC

applications

connect

to

a

data

source”

on

page

971

Type

2

JDBC

Driver

Considerations

Security

under

the

DB2

JDBC

Type

2

Driver

The

DB2®

JDBC

Type

2

Driver

for

Linux,

UNIX®

and

Windows®

(DB2

JDBC

Type

2

Driver)

supports

user

ID

and

password

security.

You

must

set

the

user

ID

and

the

password,

or

set

neither.

If

you

do

not

set

a

user

ID

and

password,

the

driver

uses

the

user

ID

and

password

of

the

user

who

is

currently

logged

on

to

the

operating

system.

To

specify

user

ID

and

password

security

for

a

JDBC

connection,

use

one

of

the

following

techniques.

For

the

DriverManager

interface:

you

can

specify

the

user

ID

and

password

directly

in

the

DriverManager.getConnection

invocation.

For

example:

Chapter

27.

Application

Considerations

975

import

java.sql.*;

//

JDBC

base

...

String

id

=

"db2adm";

//

Set

user

ID

Sring

pw

=

"db2adm";

//

Set

password

String

url

=

"jdbc:db2:toronto";

//

Set

URL

for

the

data

source

Connection

con

=

DriverManager.getConnection(url,

id,

pw);

//

Create

connection

Alternatively,

you

can

set

the

user

ID

and

password

by

setting

the

user

and

password

properties

in

a

Properties

object,

and

then

invoking

the

form

of

the

getConnection

method

that

includes

the

Properties

object

as

a

parameter.

For

example:

import

java.sql.*;

//

JDBC

base

import

COM.ibm.db2.jdbc.*;

//

DB2

implementation

of

JDBC

2.0

...

Properties

properties

=

new

java.util.Properties();

//

Create

Properties

object

properties.put("user",

"db2adm");

//

Set

user

ID

for

the

connection

properties.put("password",

"db2adm");

//

Set

password

for

the

connection

String

url

=

"jdbc:db2:toronto";

//

Set

URL

for

the

data

source

Connection

con

=

DriverManager.getConnection(url,

properties);

//

Create

connection

For

the

DataSource

interface:

you

can

specify

the

user

ID

and

password

directly

in

the

DataSource.getConnection

invocation.

For

example:

import

java.sql.*;

//

JDBC

base

import

COM.ibm.db2.jdbc.*;

//

DB2

implementation

of

JDBC

2.0

...

Context

ctx=new

InitialContext();

//

Create

context

for

JNDI

DataSource

ds=(DataSource)ctx.lookup("jdbc/sampledb");

//

Get

DataSource

object

String

id

=

"db2adm";

//

Set

user

ID

Sring

pw

=

"db2adm";

//

Set

password

Connection

con

=

ds.getConnection(id,

pw);

//

Create

connection

Alternatively,

if

you

create

and

deploy

the

DataSource

object,

you

can

set

the

user

ID

and

password

by

invoking

the

DataSource.setUser

and

DataSource.setPassword

methods

after

you

create

the

DataSource

object.

For

example:

import

java.sql.*;

//

JDBC

base

import

COM.ibm.db2.jdbc.*;

//

DB2

implementation

of

JDBC

2.0

...

DB2DataSource

db2ds

=

new

DB2DataSource();

//

Create

DataSource

object

db2ds.setDatabaseName("toronto");

//

Set

location

db2ds.setUser("db2adm");

//

Set

user

ID

db2ds.setPassword("db2adm");

//

Set

password

Related

concepts:

v

“How

DB2

applications

connect

to

a

data

source

using

the

DriverManager

interface

with

the

DB2

JDBC

Type

2

Driver”

on

page

977

Related

tasks:

v

“Connecting

to

a

data

source

using

the

DataSource

interface”

on

page

972

v

“Creating

and

deploying

DataSource

objects”

in

the

Application

Development

Guide:

Programming

Client

Applications

976

Common

Criteria

Certification:

Administration

and

User

Documentation

How

DB2

applications

connect

to

a

data

source

using

the

DriverManager

interface

with

the

DB2

JDBC

Type

2

Driver

A

JDBC

application

can

establish

a

connection

to

a

data

source

using

the

JDBC

DriverManager

interface,

which

is

part

of

the

java.sql

package.

The

Java™

application

first

loads

the

JDBC

driver

by

invoking

the

Class.forName

method.

After

the

application

loads

the

driver,

it

connects

to

a

database

server

by

invoking

the

DriverManager.getConnection

method.

For

the

DB2®

JDBC

Type

2

Driver

for

Linux,

UNIX®

and

Windows®

(DB2

JDBC

Type

2

Driver),

you

load

the

driver

by

invoking

the

Class.forName

method

with

the

following

argument:

COM.ibm.db2.jdbc.app.DB2Driver

The

following

code

demonstrates

loading

the

DB2

JDBC

Type

2

Driver:

try

{

//

Load

the

DB2

JDBC

Type

2

Driver

with

DriverManager

Class.forName("COM.ibm.db2.jdbc.app.DB2Driver");

}

catch

(ClassNotFoundException

e)

{

e.printStackTrace();

}

The

catch

block

is

used

to

print

an

error

if

the

driver

is

not

found.

After

you

load

the

driver,

you

connect

to

the

data

source

by

invoking

the

DriverManager.getConnection

method.

You

can

use

one

of

the

following

forms

of

getConnection:

getConnection(String

url);

getConnection(String

url,

user,

password);

getConnection(String

url,

java.util.Properties

info);

The

url

argument

represents

a

data

source.

For

the

DB2

JDBC

Type

2

Driver,

specify

a

URL

of

the

following

form:

Syntax

for

a

URL

for

the

DB2

JDBC

Type

2

Driver:

��

jdbc:db2:database

��

The

parts

of

the

URL

have

the

following

meanings:

jdbc:db2:

jdbc:db2:

indicates

that

the

connection

is

to

a

DB2

UDB

server.

database

A

database

alias.

The

alias

refers

to

the

DB2

database

catalog

entry

on

the

DB2

client.

The

info

argument

is

an

object

of

type

java.util.Properties

that

contains

a

set

of

driver

properties

for

the

connection.

Specifying

the

info

argument

is

an

alternative

to

specifying

property=value

strings

in

the

URL.

Specifying

a

user

ID

and

password

for

a

connection:

There

are

several

ways

to

specify

a

user

ID

and

password

for

a

connection:

v

Use

the

form

of

the

getConnection

method

that

specifies

user

and

password.

Chapter

27.

Application

Considerations

977

v

Use

the

form

of

the

getConnection

method

that

specifies

info,

after

setting

the

user

and

password

properties

in

a

java.util.Properties

object.

Example:

Setting

the

user

ID

and

password

in

user

and

password

parameters:

String

url

=

"jdbc:db2:toronto";

//

Set

URL

for

data

source

String

user

=

"db2adm";

String

password

=

"db2adm";

Connection

con

=

DriverManager.getConnection(url,

user,

password);

//

Create

connection

Example:

Setting

the

user

ID

and

password

in

a

java.util.Properties

object:

Properties

properties

=

new

Properties();

//

Create

Properties

object

properties.put("user",

"db2adm");

//

Set

user

ID

for

connection

properties.put("password",

"db2adm");

//

Set

password

for

connection

String

url

=

"jdbc:db2:toronto";

//

Set

URL

for

data

source

Connection

con

=

DriverManager.getConnection(url,

properties);

//

Create

connection

Related

concepts:

v

“Security

under

the

DB2

JDBC

Type

2

Driver”

on

page

975

Universal

JDBC

Driver

Considerations

User

ID

and

password

security

under

the

DB2

Universal

JDBC

Driver

To

specify

user

ID

and

password

security

for

a

JDBC

connection,

use

one

of

the

following

techniques.

For

the

DriverManager

interface:

You

can

specify

the

user

ID

and

password

directly

in

the

DriverManager.getConnection

invocation.

For

example:

import

java.sql.*;

//

JDBC

base

...

String

id

=

"db2adm";

//

Set

user

ID

String

pw

=

"db2adm";

//

Set

password

String

url

=

"jdbc:db2://mvs1.sj.ibm.com:5021/san_jose";

//

Set

URL

for

the

data

source

Connection

con

=

DriverManager.getConnection(url,

id,

pw);

//

Create

connection

Another

method

is

to

set

the

user

ID

and

password

directly

in

the

URL

string.

For

example:

import

java.sql.*;

//

JDBC

base

...

String

url

=

"jdbc:db2://mvs1.sj.ibm.com:5021/san_jose:user=db2adm;password=db2adm;";

//

Set

URL

for

the

data

source

Connection

con

=

DriverManager.getConnection(url);

//

Create

connection

Alternatively,

you

can

set

the

user

ID

and

password

by

setting

the

user

and

password

properties

in

a

Properties

object,

and

then

invoking

the

form

of

the

getConnection

method

that

includes

the

Properties

object

as

a

parameter.

Optionally,

you

can

set

the

securityMechanism

property

to

indicate

that

you

are

using

user

ID

and

password

security.

For

example:

978

Common

Criteria

Certification:

Administration

and

User

Documentation

import

java.sql.*;

//

JDBC

base

import

com.ibm.db2.jcc.*;

//

DB2®

implementation

of

JDBC

2.0

...

Properties

properties

=

new

java.util.Properties();

//

Create

Properties

object

properties.put("user",

"db2adm");

//

Set

user

ID

for

the

connection

properties.put("password",

"db2adm");

//

Set

password

for

the

connection

properties.put("securityMechanism",

new

String(""

+

com.ibm.db2.jcc.DB2BaseDataSource.CLEAR_TEXT_PASSWORD_SECURITY

+

""));

//

Set

security

mechanism

to

//

user

ID

and

password

String

url

=

"jdbc:db2://mvs1.sj.ibm.com:5021/san_jose";

//

Set

URL

for

the

data

source

Connection

con

=

DriverManager.getConnection(url,

properties);

//

Create

connection

For

the

DataSource

interface:

you

can

specify

the

user

ID

and

password

directly

in

the

DataSource.getConnection

invocation.

For

example:

import

java.sql.*;

//

JDBC

base

import

com.ibm.db2.jcc.*;

//

DB2

implementation

of

JDBC

2.0

...

Context

ctx=new

InitialContext();

//

Create

context

for

JNDI

DataSource

ds=(DataSource)ctx.lookup("jdbc/sampledb");

//

Get

DataSource

object

String

id

=

"db2adm";

//

Set

user

ID

String

pw

=

"db2adm";

//

Set

password

Connection

con

=

ds.getConnection(id,

pw);

//

Create

connection

Alternatively,

if

you

create

and

deploy

the

DataSource

object,

you

can

set

the

user

ID

and

password

by

invoking

the

DataSource.setUser

and

DataSource.setPassword

methods

after

you

create

the

DataSource

object.

Optionally,

you

can

invoke

the

DataSource.setSecurityMechanism

method

property

to

indicate

that

you

are

using

user

ID

and

password

security.

For

example:

...

com.ibm.db2.jcc.DB2SimpleDataSource

db2ds

=

//

Create

DB2SimpleDataSource

object

new

com.ibm.db2.jcc.DB2SimpleDataSource();

db2ds.setDriverType(4);

//

Set

driver

type

db2ds.setDatabaseName("san_jose");

//

Set

location

db2ds.setServerName("mvs1.sj.ibm.com");

//

Set

server

name

db2ds.setPortNumber(5021);

//

Set

port

number

db2ds.setUser("db2adm");

//

Set

user

ID

db2ds.setPassword("db2adm");

//

Set

password

db2ds.setSecurityMechanism(

com.ibm.db2.jcc.DB2BaseDataSource.CLEAR_TEXT_PASSWORD_SECURITY);

//

Set

security

mechanism

to

//

user

ID

and

password

Related

tasks:

v

“Connecting

to

a

data

source

using

the

DataSource

interface”

on

page

972

v

“Creating

and

deploying

DataSource

objects”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Connecting

to

a

data

source

using

the

DriverManager

interface

with

the

DB2

Universal

JDBC

Driver”

on

page

986

Related

reference:

v

“Properties

for

the

DB2

Universal

JDBC

Driver”

in

the

Application

Development

Guide:

Programming

Client

Applications

Chapter

27.

Application

Considerations

979

User

ID-only

security

under

the

DB2

Universal

JDBC

Driver

To

specify

user

ID

security

for

a

JDBC

connection,

use

one

of

the

following

techniques.

For

the

DriverManager

interface:

Set

the

user

ID

and

security

mechanism

by

setting

the

user

and

securityMechanism

properties

in

a

Properties

object,

and

then

invoking

the

form

of

the

getConnection

method

that

includes

the

Properties

object

as

a

parameter.

For

example:

import

java.sql.*;

//

JDBC

base

import

com.ibm.db2.jcc.*;

//

DB2®

implementation

of

JDBC

2.0

...

Properties

properties

=

new

Properties();

//

Create

a

Properties

object

properties.put("user",

"db2adm");

//

Set

user

ID

for

the

connection

properties.put("securityMechanism",

new

String(""

+

com.ibm.db2.jcc.DB2BaseDataSource.USER_ONLY_SECURITY

+

""));

//

Set

security

mechanism

to

//

user

ID

only

String

url

=

"jdbc:db2://mvs1.sj.ibm.com:5021/san_jose";

//

Set

URL

for

the

data

source

Connection

con

=

DriverManager.getConnection(url,

properties);

//

Create

the

connection

For

the

DataSource

interface:

If

you

create

and

deploy

the

DataSource

object,

you

can

set

the

user

ID

and

security

mechanism

by

invoking

the

DataSource.setUser

and

DataSource.setSecurityMechanism

methods

after

you

create

the

DataSource

object.

For

example:

import

java.sql.*;

//

JDBC

base

import

com.ibm.db2.jcc.*;

//

DB2

implementation

of

JDBC

2.0

...

com.ibm.db2.jcc.DB2SimpleDataSource

db2ds

=

new

com.ibm.db2.jcc.DB2SimpleDataSource();

//

Create

DB2SimpleDataSource

object

db2ds.setDriverType(4);

//

Set

the

driver

type

db2ds.setDatabaseName("san_jose");

//

Set

the

location

db2ds.setServerName("mvs1.sj.ibm.com");

//

Set

the

server

name

db2ds.setPortNumber(5021);

//

Set

the

port

number

db2ds.setUser("db2adm");

//

Set

the

user

ID

db2ds.setSecurityMechanism(

com.ibm.db2.jcc.DB2BaseDataSource.USER_ONLY_SECURITY);

//

Set

security

mechanism

to

//

user

ID

only

Kerberos

security

under

the

DB2

Universal

JDBC

Driver

Kerberos

security

is

available

for

Universal

Type

4

Connectivity

only.

If

you

use

Kerberos

security

when

you

access

a

DB2®

for

z/OS™

server,

you

need

to

install

and

configure

the

following

products,

or

their

equivalents:

v

The

SecureWay®

Security

Server

for

z/OS

and

OS/390®

v

OS/390

SecureWay

Security

Server

Network

Authentication

and

Privacy

Service,

which

is

a

component

of

the

OS/390

SecureWay

Security

Server

This

is

the

IBM®

OS/390

implementation

of

Kerberos

Version

5.

For

more

information,

see

OS/390

SecureWay

Server

Network

Authentication

and

Privacy

Service

Administration.

You

also

need

to

enable

the

following

components

of

the

IBM

Developer

Kit

for

OS/390,

Java™

2

Technology

Edition,

or

the

IBM

Developer

Kit

for

z/OS,

Java

2

Technology

Edition:

980

Common

Criteria

Certification:

Administration

and

User

Documentation

v

Java

Cryptography

Extension

(IBMJCE)

for

OS/390

v

IBM

Java

Generic

Security

Service

(IBMJGSS)

v

Java

Authentication

and

Authorization

Service

(JAAS)

for

OS/390

For

information

on

how

to

enable

these

components,

go

to

this

URL

on

the

Web:

http://www.ibm.com/servers/eserver/zseries/software/java/aboutj2.html

There

are

three

ways

to

specify

Kerberos

security

for

a

connection:

v

With

a

user

ID

and

password

v

Without

a

user

ID

or

password

v

With

a

delegated

credential

Using

Kerberos

security

with

a

user

ID

and

password:

For

this

case,

Kerberos

uses

the

specified

user

ID

and

password

to

obtain

a

ticket-granting

ticket

(TGT)

that

lets

you

authenticate

to

the

DB2

server.

You

need

to

set

the

user,

password,

kerberosServerPrincipal,

and

securityMechanism

properties.

The

kerberosServerPrincipal

property

specifies

the

address

of

the

Kerberos

server

for

the

realm

in

which

the

client

is

registered.

For

the

DriverManager

interface:

Set

the

user

ID,

password,

Kerberos

server,

and

security

mechanism

by

setting

the

user,

password,

kerberosServerPrincipal,

and

securityMechanism

properties

in

a

Properties

object,

and

then

invoking

the

form

of

the

getConnection

method

that

includes

the

Properties

object

as

a

parameter.

For

example,

use

code

like

this

to

set

the

Kerberos

security

mechanism

with

a

user

ID

and

password:

import

java.sql.*;

//

JDBC

base

import

com.ibm.db2.jcc.*;

//

DB2

implementation

of

JDBC

2.0

...

Properties

properties

=

new

Properties();

//

Create

a

Properties

object

properties.put("user",

"db2adm");

//

Set

user

ID

for

the

connection

properties.put("password",

"db2adm");

//

Set

password

for

the

connection

properties.put("kerberosServerPrincipal",

"kdcsrv1.sj.ibm.com");

//

Set

the

Kerberos

server

properties.put("securityMechanism",

new

String(""

+

com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY

+

""));

//

Set

security

mechanism

to

//

Kerberos

String

url

=

"jdbc:db2://mvs1.sj.ibm.com:5021/san_jose";

//

Set

URL

for

the

data

source

Connection

con

=

DriverManager.getConnection(url,

properties);

//

Create

the

connection

For

the

DataSource

interface:

If

you

create

and

deploy

the

DataSource

object,

set

the

Kerberos

server

and

security

mechanism

by

invoking

the

DataSource.setKerberosServerPrincipal

and

DataSource.setSecurityMechanism

methods

after

you

create

the

DataSource

object.

For

example:

import

java.sql.*;

//

JDBC

base

import

com.ibm.db2.jcc.*;

//

DB2

implementation

of

JDBC

2.0

...

com.ibm.db2.jcc.DB2SimpleDataSource

db2ds

=

new

com.ibm.db2.jcc.DB2SimpleDataSource();

//

Create

the

DataSource

object

db2ds.setDriverType(4);

//

Set

the

driver

type

db2ds.setDatabaseName("san_jose");

//

Set

the

location

db2ds.setUser("db2adm");

//

Set

the

user

db2ds.setPassword("db2adm");

//

Set

the

password

db2ds.setServerName("mvs1.sj.ibm.com");

//

Set

the

server

name

Chapter

27.

Application

Considerations

981

db2ds.setPortNumber(5021);

//

Set

the

port

number

db2ds.setKerberosServerPrincipal("kdcsrv1.sj.ibm.com");

//

Set

the

Kerberos

server

db2ds.setSecurityMechanism(

com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY);

//

Set

security

mechanism

to

//

Kerberos

Using

Kerberos

security

with

no

user

ID

or

password:

For

this

case,

the

Kerberos

default

credentials

cache

must

contain

a

ticket-granting

ticket

(TGT)

that

lets

you

authenticate

to

the

DB2

server.

You

need

to

set

the

kerberosServerPrincipal

and

securityMechanism

properties.

For

the

DriverManager

interface:

Set

the

Kerberos

server

and

security

mechanism

by

setting

the

kerberosServerPrincipal

and

securityMechanism

properties

in

a

Properties

object,

and

then

invoking

the

form

of

the

getConnection

method

that

includes

the

Properties

object

as

a

parameter.

For

example,

use

code

like

this

to

set

the

Kerberos

security

mechanism

without

a

user

ID

and

password:

import

java.sql.*;

//

JDBC

base

import

com.ibm.db2.jcc.*;

//

DB2

implementation

of

JDBC

2.0

...

Properties

properties

=

new

Properties();

//

Create

a

Properties

object

properties.put("kerberosServerPrincipal",

"kdcsrv1.sj.ibm.com");

//

Set

the

Kerberos

server

properties.put("securityMechanism",

new

String(""

+

com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY

+

""));

//

Set

security

mechanism

to

//

Kerberos

String

url

=

"jdbc:db2://mvs1.sj.ibm.com:5021/san_jose";

//

Set

URL

for

the

data

source

Connection

con

=

DriverManager.getConnection(url,

properties);

//

Create

the

connection

For

the

DataSource

interface:

If

you

create

and

deploy

the

DataSource

object,

set

the

Kerberos

server

and

security

mechanism

by

invoking

the

DataSource.setKerberosServerPrincipal

and

DataSource.setSecurityMechanism

methods

after

you

create

the

DataSource

object.

For

example:

import

java.sql.*;

//

JDBC

base

import

com.ibm.db2.jcc.*;

//

DB2

implementation

of

JDBC

2.0

...

DB2DataSource

db2ds

=

new

com.ibm.db2.jcc.DB2SimpleDataSource();

//

Create

the

DataSource

object

db2ds.setDriverType(4);

//

Set

the

driver

type

db2ds.setDatabaseName("san_jose");

//

Set

the

location

db2ds.setServerName("mvs1.sj.ibm.com");

//

Set

the

server

name

db2ds.setPortNumber(5021);

//

Set

the

port

number

db2ds.setKerberosServerPrincipal("kdcsrv1.sj.ibm.com");

//

Set

the

Kerberos

server

db2ds.setSecurityMechanism(

com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY);

//

Set

security

mechanism

to

//

Kerberos

Using

Kerberos

security

with

a

delegated

credential

from

another

principal:

For

this

case,

you

authenticate

to

the

DB2

server

using

a

delegated

credential

that

another

principal

passes

to

you.

982

Common

Criteria

Certification:

Administration

and

User

Documentation

You

need

to

set

the

kerberosServerPrincipal,

gssCredential,

and

securityMechanism

properties.

For

the

DriverManager

interface:

Set

the

Kerberos

server,

delegated

credential,

and

security

mechanism

by

setting

the

kerberosServerPrincipal,

and

securityMechanism

properties

in

a

Properties

object.

Because

the

gssCredential

property

is

not

a

string,

you

cannot

use

the

Properties.put

method

to

set

it.

Instead,

use

the

DB2BaseDataSource.setGSSCredential

method.

Then

invoke

the

form

of

the

getConnection

method

that

includes

the

Properties

object

as

a

parameter.

For

example,

use

code

like

this

to

set

the

Kerberos

security

mechanism

without

a

user

ID

and

password:

import

java.sql.*;

//

JDBC

base

import

com.ibm.db2.jcc.*;

//

DB2

implementation

of

JDBC

2.0

...

Properties

properties

=

new

Properties();

//

Create

a

Properties

object

properties.put("kerberosServerPrincipal",

"kdcsrv1.sj.ibm.com");

//

Set

the

Kerberos

server

properties.put("gssCredential",delegatedCredential);

//

Set

the

delegated

credential

properties.put("securityMechanism",

new

String(""

+

com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY

+

""));

//

Set

security

mechanism

to

//

Kerberos

String

url

=

"jdbc:db2://mvs1.sj.ibm.com:5021/san_jose";

//

Set

URL

for

the

data

source

Connection

con

=

DriverManager.getConnection(url,

properties);

//

Create

the

connection

For

the

DataSource

interface:

If

you

create

and

deploy

the

DataSource

object,

set

the

Kerberos

server,

delegated

credential,

and

security

mechanism

by

invoking

the

DataSource.setKerberosServerPrincipal,

DataSource.setGssCredential,

and

DataSource.setSecurityMechanism

methods

after

you

create

the

DataSource

object.

For

example:

DB2DataSource

db2ds

=

new

com.ibm.db2.jcc.DB2SimpleDataSource();

//

Create

the

DataSource

object

db2ds.setDriverType(4);

//

Set

the

driver

type

db2ds.setDatabaseName("san_jose");

//

Set

the

location

db2ds.setServerName("mvs1.sj.ibm.com");

//

Set

the

server

name

db2ds.setPortNumber(5021);

//

Set

the

port

number

db2ds.setKerberosServerPrincipal("kdcsrv1.sj.ibm.com");

//

Set

the

Kerberos

server

db2ds.setGssCredential(delegatedCredential);

//

Set

the

delegated

credential

db2ds.setSecurityMechanism(

com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY);

//

Set

security

mechanism

to

//

Kerberos

Related

tasks:

v

“Connecting

to

a

data

source

using

the

DataSource

interface”

on

page

972

v

“Creating

and

deploying

DataSource

objects”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Connecting

to

a

data

source

using

the

DriverManager

interface

with

the

DB2

Universal

JDBC

Driver”

on

page

986

Related

reference:

v

“Properties

for

the

DB2

Universal

JDBC

Driver”

in

the

Application

Development

Guide:

Programming

Client

Applications

Chapter

27.

Application

Considerations

983

Encrypted

user

ID

security

or

encrypted

password

security

under

the

DB2

Universal

JDBC

Driver

If

you

use

encrypted

user

ID

security

or

encrypted

password

security

when

you

access

a

DB2®

for

z/OS™

server,

the

Java™

Cryptography

Extension,

IBMJCE

for

z/OS

needs

to

be

enabled

on

the

server.

The

Java

Cryptography

Extension

is

part

of

the

IBM®

Developer

Kit

for

OS/390®,

Java

2

Technology

Edition,

or

the

IBM

Developer

Kit

for

z/OS,

Java

2

Technology

Edition.

For

information

on

how

to

enable

IBMJCE,

go

to

this

URL

on

the

Web:

http://www.ibm.com/servers/eserver/zseries/software/java/aboutj2.html

To

specify

encrypted

user

ID

or

encrypted

password

security

for

a

JDBC

connection,

use

one

of

the

following

techniques.

For

the

DriverManager

interface:

Set

the

user

ID,

password,

and

security

mechanism

by

setting

the

user,

password,

and

securityMechanism

properties

in

a

Properties

object,

and

then

invoking

the

form

of

the

getConnection

method

that

includes

the

Properties

object

as

a

parameter.

For

example,

use

code

like

this

to

set

the

user

ID

and

encrypted

password

security

mechanism:

import

java.sql.*;

//

JDBC

base

import

com.ibm.db2.jcc.*;

//

DB2

implementation

of

JDBC

2.0

...

Properties

properties

=

new

Properties();

//

Create

a

Properties

object

properties.put("user",

"db2adm");

//

Set

user

ID

for

the

connection

properties.put("password",

"db2adm");

//

Set

password

for

the

connection

properties.put("securityMechanism",

new

String(""

+

com.ibm.db2.jcc.DB2BaseDataSource.ENCRYPTED_PASSWORD_SECURITY

+

""));

//

Set

security

mechanism

to

//

user

ID

and

encrypted

password

String

url

=

"jdbc:db2://mvs1.sj.ibm.com:5021/san_jose";

//

Set

URL

for

the

data

source

Connection

con

=

DriverManager.getConnection(url,

properties);

//

Create

the

connection

For

the

DataSource

interface:

If

you

create

and

deploy

the

DataSource

object,

you

can

set

the

user

ID,

password,

and

security

mechanism

by

invoking

the

DataSource.setUser,

DataSource.setPassword,

and

DataSource.setSecurityMechanism

methods

after

you

create

the

DataSource

object.

For

example,

use

code

like

this

to

set

the

encrypted

user

ID

and

encrypted

password

security

mechanism:

import

java.sql.*;

//

JDBC

base

import

com.ibm.db2.jcc.*;

//

DB2

implementation

of

JDBC

2.0

...

com.ibm.db2.jcc.DB2SimpleDataSource

db2ds

=

new

com.ibm.db2.jcc.DB2SimpleDataSource();

//

Create

the

DataSource

object

db2ds.setDriverType(4);

//

Set

the

driver

type

db2ds.setDatabaseName("san_jose");

//

Set

the

location

db2ds.setServerName("mvs1.sj.ibm.com");

//

Set

the

server

name

db2ds.setPortNumber(5021);

//

Set

the

port

number

db2ds.setUser("db2adm");

//

Set

the

user

ID

db2ds.setPassword("db2adm");

//

Set

the

password

db2ds.setSecurityMechanism(

com.ibm.db2.jcc.DB2BaseDataSource.ENCRYPTED_PASSWORD_SECURITY);

//

Set

security

mechanism

to

//

encrypted

user

ID

and

password

Related

tasks:

984

Common

Criteria

Certification:

Administration

and

User

Documentation

v

“Connecting

to

a

data

source

using

the

DataSource

interface”

on

page

972

v

“Creating

and

deploying

DataSource

objects”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Connecting

to

a

data

source

using

the

DriverManager

interface

with

the

DB2

Universal

JDBC

Driver”

on

page

986

Related

reference:

v

“Properties

for

the

DB2

Universal

JDBC

Driver”

in

the

Application

Development

Guide:

Programming

Client

Applications

Security

under

the

DB2

Universal

JDBC

Driver

When

you

use

the

DB2

Universal

JDBC

Driver,

you

choose

a

security

mechanism

by

specifying

a

value

for

the

securityMechanism

property.

You

can

set

this

property

in

one

of

the

following

ways:

v

If

you

use

the

DriverManager

interface,

set

securityMechanism

in

a

java.util.Properties

object

before

you

invoke

the

form

of

the

getConnection

method

that

includes

the

java.util.Properties

parameter.

v

If

you

use

the

DataSource

interface,

and

you

are

creating

and

deploying

your

own

DataSource

objects,

invoke

the

DataSource.setSecurityMechanism

method

after

you

create

a

DataSource

object.

Table

74

lists

the

security

mechanisms

that

the

DB2

Universal

JDBC

Driver

supports,

and

the

value

that

you

need

to

specify

for

the

securityMechanism

property

to

specify

each

security

mechanism.

The

default

security

mechanism

is

the

user

ID

and

password

mechanism.

Table

74.

Security

mechanisms

supported

by

the

DB2

Universal

JDBC

Driver

Security

mechanism

securityMechanism

property

value

User

ID

and

password

DB2BaseDataSource.CLEAR_TEXT_PASSWORD_SECURITY

User

ID

only

DB2BaseDataSource.USER_ONLY_SECURITY

User

ID

and

encrypted

password

DB2BaseDataSource.ENCRYPTED_PASSWORD_SECURITY

Encrypted

user

ID

and

encrypted

password

DB2BaseDataSource.ENCRYPTED_USER_AND_PASSWORD_SECURITY

Kerberos1

DB2BaseDataSource.KERBEROS_SECURITY

Note:

1.

Available

for

Universal

Type

4

Connectivity

only.

Related

concepts:

v

“Encrypted

user

ID

security

or

encrypted

password

security

under

the

DB2

Universal

JDBC

Driver”

on

page

984

v

“Kerberos

security

under

the

DB2

Universal

JDBC

Driver”

on

page

980

v

“User

ID-only

security

under

the

DB2

Universal

JDBC

Driver”

on

page

980

v

“User

ID

and

password

security

under

the

DB2

Universal

JDBC

Driver”

on

page

978

Related

reference:

v

“Properties

for

the

DB2

Universal

JDBC

Driver”

in

the

Application

Development

Guide:

Programming

Client

Applications

Chapter

27.

Application

Considerations

985

Connecting

to

a

data

source

using

the

DriverManager

interface

with

the

DB2

Universal

JDBC

Driver

A

JDBC

application

can

establish

a

connection

to

a

data

source

using

the

JDBC

DriverManager

interface,

which

is

part

of

the

java.sql

package.

The

Java™

application

first

loads

the

JDBC

driver

by

invoking

the

Class.forName

method.

After

the

application

loads

the

driver,

it

connects

to

a

database

server

by

invoking

the

DriverManager.getConnection

method.

For

the

DB2

Universal

JDBC

Driver,

you

load

the

driver

by

invoking

the

Class.forName

method

with

the

following

argument:

com.ibm.db2.jcc.DB2Driver

For

compatibility

with

previous

JDBC

drivers,

you

can

use

the

following

argument

instead:

COM.ibm.db2os390.sqlj.jdbc.DB2SQLJDriver

The

following

code

demonstrates

loading

the

DB2

Universal

JDBC

Driver:

try

{

//

Load

the

DB2®

Universal

JDBC

Driver

with

DriverManager

Class.forName("com.ibm.db2.jcc.DB2Driver");

}

catch

(ClassNotFoundException

e)

{

e.printStackTrace();

}

The

catch

block

is

used

to

print

an

error

if

the

driver

is

not

found.

After

you

load

the

driver,

you

connect

to

the

data

source

by

invoking

the

DriverManager.getConnection

method.

You

can

use

one

of

the

following

forms

of

getConnection:

getConnection(String

url);

getConnection(String

url,

user,

password);

getConnection(String

url,

java.util.Properties

info);

The

url

argument

represents

a

data

source,

and

indicates

what

type

of

JDBC

connectivity

you

are

using.

For

DB2

Universal

JDBC

Driver

type

4

connectivity,

specify

a

URL

of

the

following

form:

Syntax

for

a

URL

for

Universal

Type

4

Connectivity:

��

jdbc:db2:

//server

jdbc:db2j:net:

:port

/database

�

:

property

=

value

;

��

For

DB2

Universal

JDBC

Driver

type

2

connectivity,

specify

a

URL

of

one

of

the

following

forms:

Syntax

for

a

URL

for

Universal

Type

2

Connectivity:

986

Common

Criteria

Certification:

Administration

and

User

Documentation

��

�

�

jdbc:db2:database

jdbc:db2os390:database

jdbc:db2os390sqlj:database

jdbc:default:connection

:

property

=

value

;

jdbc:db2os390:

jdbc:db2os390sqlj:

property

=

value

;

��

The

parts

of

the

URL

have

the

following

meanings:

jdbc:db2:

or

jdbc:db2j:net:

The

meanings

of

the

initial

portion

of

the

URL

are:

jdbc:db2:

Indicates

that

the

connection

is

to

a

server

in

the

DB2

UDB

family.

jdbc:db2j:net:

Indicates

that

the

connection

is

to

a

remote

IBM®

Cloudscape™

server.

server

The

domain

name

or

IP

address

of

the

database

server.

port

The

TCP/IP

server

port

number

that

is

assigned

to

the

database

server.

This

is

an

integer

between

0

and

65535.

The

default

is

446.

database

A

name

for

the

database

server.

This

name

depends

on

whether

Universal

Type

4

Connectivity

or

Universal

Type

2

Connectivity

is

used.

For

Universal

Type

4

Connectivity:

v

If

the

connection

is

to

a

DB2

UDB

for

z/OS

server,

database

is

the

DB2

location

name

that

is

defined

during

installation.

All

characters

in

this

value

must

be

uppercase

characters.

You

can

determine

the

location

name

by

executing

the

following

SQL

statement

on

the

server:

SELECT

CURRENT

SERVER

FROM

SYSIBM.SYSDUMMY1;

v

If

the

connection

is

to

a

DB2

UDB

for

z/OS

server

or

a

DB2

UDB

for

iSeries

server,

all

characters

in

database

must

be

uppercase

characters.

v

If

the

connection

is

to

a

DB2

UDB

for

Linux,

UNIX

and

Windows

server,

database

is

the

database

name

that

is

defined

during

installation.

v

If

the

connection

is

to

an

IBM

Cloudscape

server,

the

database

is

the

fully-qualified

name

of

the

file

that

contains

the

database.

This

name

must

be

enclosed

in

double

quotation

marks

(").

For

example:

"c:/databases/testdb"

For

Universal

Type

2

Connectivity:

v

database

is

the

database

name

that

is

defined

during

installation,

if

the

value

of

the

serverName

connection

property

is

null.

If

the

value

of

serverName

property

is

not

null,

database

is

a

database

alias.

v

If

the

connection

is

to

a

DB2

UDB

for

z/OS

server

or

a

DB2

UDB

for

iSeries

server,

all

characters

in

database

must

be

uppercase

characters.

property=value;

A

property

for

the

JDBC

connection.

For

the

definitions

of

these

properties,

see

Properties

for

the

DB2

Universal

JDBC

Driver.

Chapter

27.

Application

Considerations

987

The

info

argument

is

an

object

of

type

java.util.Properties

that

contains

a

set

of

driver

properties

for

the

connection.

Specifying

the

info

argument

is

an

alternative

to

specifying

property=value

strings

in

the

URL.

See

Properties

for

the

DB2

Universal

JDBC

Driver

for

the

properties

that

you

can

specify.

Specifying

a

user

ID

and

password

for

a

connection:

There

are

several

ways

to

specify

a

user

ID

and

password

for

a

connection:

v

Use

the

form

of

the

getConnection

method

that

specifies

url

with

property=value;

clauses,

and

include

the

user

and

password

properties

in

the

URL.

v

Use

the

form

of

the

getConnection

method

that

specifies

user

and

password.

v

Use

the

form

of

the

getConnection

method

that

specifies

info,

after

setting

the

user

and

password

properties

in

a

java.util.Properties

object.

Example:

Setting

the

user

ID

and

password

in

a

URL:

String

url

=

"jdbc:db2://sysmvs1.stl.ibm.com:5021/san_jose:"

+

"user=db2adm;password=db2adm;";

//

Set

URL

for

data

source

Connection

con

=

DriverManager.getConnection(url);

//

Create

connection

Example:

Setting

the

user

ID

and

password

in

user

and

password

parameters:

String

url

=

"jdbc:db2://sysmvs1.stl.ibm.com:5021/san_jose";

//

Set

URL

for

data

source

String

user

=

"db2adm";

String

password

=

"db2adm";

Connection

con

=

DriverManager.getConnection(url,

user,

password);

//

Create

connection

Example:

Setting

the

user

ID

and

password

in

a

java.util.Properties

object:

Properties

properties

=

new

Properties();

//

Create

Properties

object

properties.put("user",

"db2adm");

//

Set

user

ID

for

connection

properties.put("password",

"db2adm");

//

Set

password

for

connection

String

url

=

"jdbc:db2://sysmvs1.stl.ibm.com:5021/san_jose";

//

Set

URL

for

data

source

Connection

con

=

DriverManager.getConnection(url,

properties);

//

Create

connection

Related

concepts:

v

“Security

under

the

DB2

Universal

JDBC

Driver”

on

page

985

Related

reference:

v

“Properties

for

the

DB2

Universal

JDBC

Driver”

in

the

Application

Development

Guide:

Programming

Client

Applications

Security

and

Routines

Routines

in

application

development

A

routine

is

a

database

object

that

can

encapsulates

programming

and

database

logic

related

to

a

specific

task.

There

are

three

types

of

routines:

procedures,

functions,

and

methods.

Each

type

of

routine

provides

a

different

interface

for

containing

logic

and

database

operations

that

can

be

used

to

extend

the

functionality

of

an

SQL

statement

or

a

client

application.

You

should

consider

the

many

benefits

of

creating

and

using

routines

when

you

are

developing

or

updating

a

database

application.

988

Common

Criteria

Certification:

Administration

and

User

Documentation

When

faced

with

the

task

of

developing

new

functionality

that

will

interact

with

a

database,

there

are

two

approaches

you

can

choose

from.

You

can

add

the

new

logic

to

a

client

application,

or

you

can

develop

a

routine,

where

the

new

logic

will

reside

on

the

database

server.

There

are

a

number

of

benefits

in

choosing

the

latter

approach.

Benefits

of

using

routines:

The

following

benefits

can

be

gained

by

moving

application

logic

into

routines:

Encapsulate

application

logic

In

an

environment

with

numerous

client

computers,

each

running

a

variety

of

database

applications,

the

effective

use

of

routines

can

simplify

code

reuse,

code

standardization,

and

code

maintenance.

For

example,

if

a

particular

aspect

of

application

behavior

needs

to

be

changed

in

an

environment

where

routines

are

used,

only

the

affected

routine

that

encapsulates

that

behavior,

will

require

modification.

If

routines

had

not

been

used

in

this

instance,

application

logic

changes

would

have

been

required

in

each

client

application.

Enable

controlled

access

to

database

objects

You

can

use

routines

to

control

access

to

database

objects.

A

user

might

not

have

permission

to

generally

issue

a

particular

SQL

statement,

however

the

user

can

be

given

permission

to

invoke

routines

that

contain

specific

implementations

of

these

statements.

Reduce

network

traffic

When

an

application

is

running

on

a

client

computer,

each

SQL

statement

is

sent

separately

from

the

client

computer

to

the

server

computer

and

each

result

is

returned

separately.

This

can

result

in

a

high

degree

of

network

traffic.

If

a

piece

of

work

can

be

identified

that

involves

heavy

database

activity

and

little

user

interaction,

it

makes

sense

to

install

this

piece

of

work

on

the

server.

With

this

work

running

on

the

server,

the

quantity

of

network

traffic

between

the

client

computer

and

the

server

computer

is

reduced.

DB2

routines

run

on

the

database

server

in

this

manner.

Using

routines

is

an

effective

way

of

reducing

network

traffic

and

improving

overall

client

application

performance.

Alleviate

the

processing

load

on

the

client

In

environments

where

the

performance

of

a

client

computer

is

a

concern,

routines

are

a

practical

means

of

reducing

the

dependence

on

the

client

computer.

After

an

application

invokes

a

routine,

the

processing

of

the

routine

is

done

on

the

database

server,

thus

allowing

the

application

to

exploit

the

power

of

the

database

server

while

relieving

the

client

computer

of

the

processing

load.

Allow

faster,

more

efficient

execution

Routines

are

database

objects

and

therefore

have

a

closer

relationship

with

the

database

manager

than

client

applications

do.

For

some

types

of

routines

the

performance

of

SQL

statements

can

be

much

better

than

the

performance

of

SQL

statements

that

are

executed

from

a

client

application.

For

example,

NOT

FENCED

routines

run

in

the

same

process

as

the

database

manager

using

shared

memory

for

communication.

This

makes

the

routines

more

proficient

in

transmitting

SQL

requests

and

data,

than

a

client

application

could

ever

be

that

communicates

using

TCP/IP

protocols.

Interoperability

of

logic

implementations

Because

code

modules

are

often

implemented

by

different

programmers,

Chapter

27.

Application

Considerations

989

each

with

programming

expertise

in

different

programming

languages,

and

because

it

is

generally

desirable

to

reuse

code

wherever

possible

to

save

on

development

time

and

costs,

DB2®

routines

are

highly

interoperable.

v

A

client

application

in

one

programming

language

can

invoke

routines

that

are

implemented

in

a

different

programming

language.

For

example,

C

client

applications

can

invoke

.NET

common

language

runtime

routines.

v

A

routine

can

invoke

another

routine

regardless

of

the

routine

type

or

the

implementation

language

of

the

routine.

For

example

a

Java™

procedure

(one

type

of

routine)

can

invoke

an

SQL

scalar

function

(another

type

of

routine

with

a

different

implementation

language).

v

A

routine

created

in

a

database

server

on

one

operating

system

can

be

invoked

from

a

DB2

client

running

on

a

different

operating

system.

There

are

various

kinds

of

routines

that

address

particular

functional

needs

and

various

routine

implementations.

The

choice

of

routine

type

and

implementation

can

impact

the

degree

to

which

the

above

benefits

are

exhibited.

In

general,

routines

are

a

powerful

way

of

encapsulating

logic

so

that

you

can

extend

your

SQL,

and

improve

the

structure,

maintenance,

and

potentially

the

performance

of

your

applications.

Related

concepts:

v

“Procedures”

on

page

991

v

“Routine

invocation”

in

the

Application

Development

Guide:

Programming

Server

Applications

v

“Supported

routine

programming

languages”

in

the

Application

Development

Guide:

Programming

Server

Applications

v

“User-defined

scalar

functions”

on

page

992

v

“Methods”

on

page

996

v

“User-defined

scalar

functions”

on

page

995

Related

tasks:

v

“Building

JDBC

routines”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Building

SQLJ

routines”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Building

UNIX

C

routines”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Building

UNIX

C++

routines”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Building

IBM

COBOL

routines

on

AIX”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Building

UNIX

Micro

Focus

COBOL

routines”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Building

C/C++

routines

on

Windows”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Building

IBM

COBOL

routines

on

Windows”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Building

Micro

Focus

COBOL

routines

on

Windows”

in

the

Application

Development

Guide:

Building

and

Running

Applications

990

Common

Criteria

Certification:

Administration

and

User

Documentation

v

“Writing

routines”

in

the

Application

Development

Guide:

Programming

Server

Applications

v

“Creating

routines”

in

the

Application

Development

Guide:

Programming

Server

Applications

v

“Debugging

routines”

in

the

Application

Development

Guide:

Programming

Server

Applications

Procedures

A

procedure,

also

called

a

stored

procedure,

is

a

database

object

created

by

executing

the

CREATE

PROCEDURE

statement

that

can

encapsulates

logic

and

SQL

statements.

Procedures

are

used

as

subroutine

extensions

to

applications,

and

other

database

objects

that

can

contain

logic.

Features

v

Enables

the

encapsulation

of

SQL

statements,

function

invocations,

and

logic

elements

that

formulate

a

particular

subroutine

module

that

can

be

reused.

v

Procedures

can

be

called

from

client

applications,

other

routines,

triggers

and

dynamic

compound

statements.

Procedures

are

called

using

the

CALL

statement.

v

Procedures

can

return

multiple

result

sets.

v

Procedures

can

contain

SQL

statements

that

read

or

modify

table

data

in

both

single

and

multiple

partition

databases.

v

When

a

procedure

is

invoked

the

SQL

and

logic

within

a

procedure

is

executed

on

the

server.

Data

is

only

transferred

between

the

client

and

the

database

server

in

the

procedure

call

and

in

the

procedure

return.

If

you

have

a

series

of

SQL

statements

to

execute

within

a

client

application,

and

the

application

does

not

need

to

do

any

processing

in

between

the

statements,

then

this

series

of

statements

would

benefit

from

being

included

in

a

procedure.

Note:

If

only

one

SQL

statement

is

invoked

in

a

procedure,

the

overhead

of

setting

up

this

invocation

outweighs

the

benefit

in

network

traffic

savings.

Limitations

v

Procedures

are

not

intended

to

be

called

from

within

elements

of

an

SQL

query.

Procedures

can

only

be

invoked

by

using

the

CALL

statement

where

it

is

supported.

Functions

can

be

used

to

express

logic

that

transforms

column

values.

Although

procedures

can

return

result

sets,

table

functions

can

be

used

to

return

a

table

within

the

FROM

clause

of

an

SQL

query.

v

Output

arguments

of

procedure

calls

cannot

be

directly

used

by

another

SQL

statement.

v

Procedures

cannot

preserve

state

between

invocations.

Common

uses

v

To

implement

application

sub-routines

that

specifically

encapsulate

the

database

logic

associated

with

a

particular

task.

For

example,

a

business

application

for

managing

employee

information

could

use

a

procedure

to

encapsulate

the

database

operations

involved

in

hiring

an

employee.

Such

a

procedure

could

insert

employee

information

into

an

employee

table,

a

department

table,

and

a

benefits

table,

calculate

the

employee’s

Chapter

27.

Application

Considerations

991

weekly

pay

amount

based

on

an

input

parameter,

and

return

the

weekly

pay

value

as

one

of

the

output

parameters.

Another

procedure

could

contain

a

statistical

analysis

of

data

in

the

employee

table

and

return

result

sets

that

contain

the

results

of

the

analysis.

This

use

of

procedures

effectively

isolates

database

tasks

from

non-database

tasks

within

an

application.

v

Standardize

application

logic.

If

multiple

applications

must

similarly

access

or

modify

the

database,

a

procedure

can

provide

a

single

interface

for

that

access

or

modification.

The

procedure

is

available

to

be

used

by

all

of

the

applications.

If

the

interface

must

change

to

accommodate

a

change

in

business

logic,

only

the

single

procedure

must

be

modified.

Supported

languages

v

SQL

v

C/C++

v

Java™

v

OLE

v

COBOL

v

.NET

common

language

runtime

languages

Note:

SQL

procedures

are

supported

natively

and

do

not

require

the

installation

of

a

compiler.

Related

concepts:

v

“Routines

in

application

development”

on

page

988

v

“Procedure

parameter

modes”

in

the

Application

Development

Guide:

Programming

Server

Applications

v

“Procedure

result

sets”

in

the

Application

Development

Guide:

Programming

Server

Applications

v

“SQL

Procedural

Language

(SQL

PL)

in

DB2”

in

the

Application

Development

Guide:

Programming

Server

Applications

Related

tasks:

v

“Setting

up

the

application

development

environment”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Creating

SQL

procedures

from

the

command

line”

in

the

Application

Development

Guide:

Programming

Server

Applications

v

“Calling

procedures

from

triggers

or

SQL

routines”

in

the

Application

Development

Guide:

Programming

Server

Applications

v

“Calling

procedures

from

applications

or

external

routines”

in

the

Application

Development

Guide:

Programming

Server

Applications

Related

reference:

v

“CALL

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

PROCEDURE”

on

page

588

v

“DB2

supported

development

software”

in

the

Application

Development

Guide:

Building

and

Running

Applications

User-defined

scalar

functions

Scalar

user-defined

functions

(UDFs)

enable

you

to

extend

and

customize

SQL

statements.

They

can

be

invoked

in

the

same

manner

as

DB2®

built-in

functions

992

Common

Criteria

Certification:

Administration

and

User

Documentation

such

as

LENGTH

and

COUNT.

That

is,

they

can

be

referenced

in

SQL

statements

wherever

an

expression

is

valid.

Scalar

UDFs

accept

zero

or

more

typed

values

as

input

arguments

and

return

a

single

value

upon

each

invocation.

SQL

scalar

user-defined

functions:

SQL

scalar

UDFs

enable

you

to

encapsulate

SQL

statements,

built-in

functions

and

other

routine

references,

and

a

subset

of

SQL

PL

statements

that

can

be

used

to

implement

some

basic

database

logic.

SQL

scalar

functions

can

read

and

modify

SQL

data.

SQL

functions

give

the

best

performance

when

they

make

use

of

built-in

functions

and

do

not

contain

extremely

complex

logic.

For

extremely

complex

logic,

consider

implementing

an

external

scalar

UDF.

External

scalar

user-defined

functions:

External

scalar

UDFs

have

their

logic

implemented

in

an

external

programming

language.

The

logic

of

the

function

can

access

the

filesystem,

perform

system

calls

or

access

a

network.

The

execution

of

the

external

scalar

UDF

routine

logic,

like

that

of

SQL

scalar

UDFs

takes

place

on

the

server.

External

scalar

UDFs

can

read

SQL

data,

but

cannot

modify

SQL

data.

An

external

scalar

UDF

can

be

repeatedly

invoked

for

a

single

reference

of

the

function

and

can

maintain

state

between

these

invocations

by

using

a

scratchpad,

which

is

a

memory

buffer.

This

can

be

powerful

if

a

function

requires

some

initial,

but

expensive,

setup

logic.

The

setup

logic

can

be

done

on

a

first

invocation

that

may

make

use

of

the

scratchpad

to

store

some

values

that

can

be

accessed

or

updated

in

subsequent

invocations

of

the

scalar

function.

Features

of

SQL

and

external

scalar

UDFs

v

Can

be

referenced

as

part

of

an

SQL

statement

anywhere

an

expression

is

supported.

v

The

output

of

a

scalar

UDF

can

be

used

directly

by

the

invoking

SQL

statement.

v

For

external

scalar

user-defined

functions,

state

can

be

maintained

between

the

iterative

invocations

of

the

function

by

using

a

scratchpad.

v

Can

provide

a

performance

advantage

when

used

in

predicates,

because

they

are

executed

at

the

server.

If

a

function

can

be

applied

to

a

candidate

row

at

the

server,

it

can

often

eliminate

the

row

from

consideration

before

transmitting

it

to

the

client

machine,

reducing

the

amount

of

data

that

must

be

passed

from

server

to

client.

v

An

excellent

way

to

build

scalar

functions

out

of

existing

built-in

functions.

For

example,

you

can

create

a

complex

mathematical

formula

by

re-using

the

built-in

scalar

functions

along

with

other

logic.

Limitations

v

Cannot

do

transaction

management

within

a

scalar

UDF.

That

is,

you

cannot

issue

a

COMMIT

or

a

ROLLBACK

within

a

scalar

UDF.

v

Cannot

return

result

sets.

v

Scalar

UDF’s

are

intended

to

return

a

single

scalar

value

per

set

of

inputs.

v

External

scalar

UDF’s

are

not

intended

to

be

used

for

a

single

invocation.

They

are

designed

such

that

for

a

single

reference

to

the

UDF

and

a

given

set

of

inputs,

that

the

UDF

be

invoked

once

per

input,

and

return

a

single

scalar

value.

On

the

first

invocation,

scalar

UDFs

can

be

designed

to

do

some

setup

work,

or

store

some

information

that

can

be

Chapter

27.

Application

Considerations

993

accessed

in

subsequent

invocations.

SQl

scalar

UDFs

are

better

suited

to

functionality

that

requires

a

single

invocation.

v

In

a

single

partition

database

external

scalar

UDFs

can

contain

SQL

statements.

These

statements

can

read

data

from

tables,

but

cannot

modify

data

in

tables.

If

the

database

has

more

than

one

partition

then

there

must

be

no

SQL

statements

in

an

external

scalar

UDF.

In

serial

and

in

partitioned

databases

SQL

scalar

UDFs

can

contain

SQL

statements

that

read

data

from

database

tables

Common

uses

v

Extend

the

set

of

DB2

built-in

functions.

v

Perform

logic

inside

an

SQL

statement

that

SQL

cannot

natively

perform.

v

Encapsulate

a

scalar

query

that

is

commonly

reused

as

a

subquery

in

SQL

statements.

For

example,

given

a

postal

code,

search

a

table

for

the

city

where

the

postal

code

is

found.

Supported

languages

v

SQL

v

C/C++

v

Java™

v

OLE

v

.NET

common

language

runtime

languages

Notes:

1.

There

is

a

limited

capability

for

creating

aggregate

functions.

Also

known

as

column

functions,

these

functions

receive

a

set

of

like

values

(a

column

of

data)

and

return

a

single

answer.

A

user-defined

aggregate

function

can

only

be

created

if

it

is

sourced

upon

a

built-in

aggregate

function.

For

example,

if

a

distinct

type

SHOESIZE

exists

that

is

defined

with

base

type

INTEGER,

you

could

define

a

UDF,

AVG(SHOESIZE),

as

an

aggregate

function

sourced

on

the

existing

built-in

aggregate

function,

AVG(INTEGER).

2.

You

can

also

create

UDFs

that

return

a

row.

These

are

known

as

row

UDFs

and

can

only

be

used

as

a

transform

function

for

structured

types.

The

output

of

a

row

UDF

is

a

single

row.

Related

concepts:

v

“Routines

in

application

development”

on

page

988

v

“Scratchpads

for

UDFs

and

methods”

in

the

Application

Development

Guide:

Programming

Server

Applications

Related

tasks:

v

“Invoking

scalar

functions

or

methods”

in

the

Application

Development

Guide:

Programming

Server

Applications

Related

reference:

v

“CREATE

FUNCTION”

on

page

574

994

Common

Criteria

Certification:

Administration

and

User

Documentation

User-defined

scalar

functions

Like

scalar

UDFs,

a

table

UDF

enables

you

to

extend

and

customize

SQL,

but

for

the

purpose

of

generating

a

table.

Table

UDFs

can

only

be

invoked

in

the

FROM

clause

of

an

SQL

statement.

Table

UDFs

accept

zero

or

more

typed

values

as

input

arguments

and

return

a

table.

Table

functions

are

powerful

because

they

enable

you

to

make

almost

any

source

of

data

appear

as

a

DB2®

table.

A

table

function

can

be

easily

created

by

writing

a

program

that

collects

the

desired

data,

filters

it

according

to

some

input

parameters

if

so

desired,

and

returns

it

to

the

DB2

one

row

at

a

time.

Features

v

Can

be

referenced

as

part

of

an

SQL

statement

FROM

clause.

v

External

table-functions

can

make

operating

system

calls,

read

data

from

files

or

even

access

data

across

a

network

in

a

single

partitioned

database.

v

Results

can

be

directly

processed

by

the

SQL

statement

that

references

the

table

function.

v

SQL

table

functions

can

encapsulate

SQL

statements

that

modify

SQL

table

data.

(

Only

SQL

table

functions

have

this

property)

v

For

a

single

table

function

reference,

a

table

function

can

be

invoked

multiple

times

and

maintain

state

between

invocations

by

using

a

scratchpad.

v

Provides

a

set

of

data

for

processing.

Limitations

v

Cannot

do

transaction

management.

This

means

that

you

cannot

execute

COMMIT

or

ROLLBACK

statements

from

within

a

table

function.

v

Cannot

return

result

sets.

v

Not

designed

for

single

invocations.

v

Can

only

be

used

in

a

FROM

clause.

v

External

table

functions

can

read

SQL

data,

but

cannot

modify

SQL

data.

SQL

table

functions

can

be

used

to

contain

statements

that

modify

SQL

data.

Common

uses

v

Encapsulate

a

complex,

but

commonly

used

subquery.

v

Provide

a

tabular

interface

to

non-relational

data.

For

example,

read

a

spreadsheet

and

produce

a

table,

which

could

then

be

inserted

into

a

DB2®

table.

Supported

languages

v

SQL

v

C/C++

v

Java™

v

OLE

v

OLE

DB

v

.NET

common

language

runtime

languages

Related

concepts:

v

“Routines

in

application

development”

on

page

988

Chapter

27.

Application

Considerations

995

v

“Scratchpads

for

UDFs

and

methods”

in

the

Application

Development

Guide:

Programming

Server

Applications

v

“Table

function

processing

model”

in

the

Application

Development

Guide:

Programming

Server

Applications

Related

reference:

v

“CREATE

FUNCTION”

on

page

574

Methods

Methods

enable

you

to

define

behaviors

for

structured

types.

They

are

like

scalar

UDFs,

but

can

only

be

defined

for

structured

types.

Methods

share

all

the

features

of

scalar

UDFs,

in

addition

to

the

following

features:

Features

v

Strongly

associated

with

the

structured

type.

v

Can

be

sensitive

to

the

dynamic

type

of

the

subject

type.

Limitations

v

Can

only

return

a

scalar

value.

v

Can

only

be

used

with

structured

types.

v

Cannot

be

invoked

against

typed

tables.

Common

uses

v

Providing

operations

on

structured

types.

v

Encapsulating

the

structured

type.

Supported

languages

v

SQL

v

C/C++

v

Java™

v

OLE

Related

concepts:

v

“Routines

in

application

development”

on

page

988

v

“Scratchpads

for

UDFs

and

methods”

in

the

Application

Development

Guide:

Programming

Server

Applications

Related

tasks:

v

“Defining

behavior

for

structured

types”

in

the

Application

Development

Guide:

Programming

Server

Applications

Related

reference:

v

“CREATE

TYPE

(Structured)

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

METHOD”

on

page

583

Security

considerations

for

routines

Developing

and

deploying

routines

provides

you

with

an

opportunity

to

greatly

improve

the

performance

and

effectiveness

of

your

database

applications.

There

can,

however,

be

security

risks

if

the

deployment

of

routines

is

not

managed

correctly

by

the

database

administrator.

The

following

sections

describe

security

996

Common

Criteria

Certification:

Administration

and

User

Documentation

risks

and

means

by

which

you

can

mitigate

these

risks.

The

security

risks

are

followed

by

a

section

on

how

to

safely

deploy

routines

whose

security

is

unknown.

Security

risks:

NOT

FENCED

routines

can

access

database

manager

resources

NOT

FENCED

routines

run

in

the

same

process

as

the

database

manager.

Because

of

their

close

proximity

to

the

database

engine,

NOT

FENCED

routines

can

accidentally

or

maliciously

corrupt

the

database

manager’s

shared

memory,

or

damage

the

database

control

structures.

Either

form

of

damage

will

cause

the

database

manager

to

fail.

NOT

FENCED

routines

can

also

corrupt

databases

and

their

tables.

To

ensure

the

integrity

of

the

database

manager

and

its

databases,

you

must

thoroughly

screen

routines

you

intend

to

register

as

NOT

FENCED.

These

routines

must

be

fully

tested,

debugged,

and

exhibit

no

unexpected

side-effects.

In

the

examination

of

the

routine,

pay

close

attention

to

memory

management

and

the

use

of

static

variables.

The

greatest

potential

for

corruption

arises

when

code

does

not

properly

manage

memory

or

incorrectly

uses

static

variables.

These

problems

are

prevalent

in

languages

other

than

Java™

and

.NET

programming

langauges.

In

order

to

register

a

NOT

FENCED

routine,

the

CREATE_NOT_FENCED_ROUTINE

authority

is

required.

When

granting

the

CREATE_NOT_FENCED_ROUTINE

authority,

be

aware

that

the

recipient

can

potentially

gain

unrestricted

access

to

the

database

manager

and

all

its

resources.

Note:

NOT

FENCED

routines

are

not

supported

in

Common

Criteria

compliant

configurations.

FENCED

THREADSAFE

routines

can

access

memory

in

other

FENCED

THREADSAFE

routines

FENCED

THREADSAFE

routines

run

as

threads

inside

a

shared

process.

Each

of

these

routines

are

able

to

read

the

memory

used

by

other

routine

threads

in

the

same

process.

Therefore,

it

is

possible

for

one

threaded

routine

to

collect

sensitive

data

from

other

routines

in

the

threaded

process.

Another

risk

inherent

in

the

sharing

of

a

single

process,

is

that

one

routine

thread

with

flawed

memory

management

can

corrupt

other

routine

threads,

or

cause

the

entire

threaded

process

to

crash.

To

ensure

the

integrity

of

other

FENCED

THREADSAFE

routines,

you

must

thoroughly

screen

routines

you

intend

to

register

as

FENCED

THREADSAFE.

These

routines

must

be

fully

tested,

debugged,

and

exhibit

no

unexpected

side-effects.

In

the

examination

of

the

routine,

pay

close

attention

to

memory

management

and

the

use

of

static

variables.

This

is

where

the

greatest

potential

for

corruption

lies,

particularly

in

languages

other

than

Java.

In

order

to

register

a

FENCED

THREADSAFE

routine,

the

CREATE_EXTERNAL_ROUTINE

authority

is

required.

When

granting

the

CREATE_EXTERNAL_ROUTINE

authority,

be

aware

that

the

recipient

can

potentially

monitor

or

corrupt

the

memory

of

other

FENCED

THREADSAFE

routines.

Write

access

to

the

database

server

by

the

owner

of

fenced

processes

can

result

in

database

manager

corruption

The

user

ID

under

which

fenced

processes

run

is

defined

by

the

db2icrt

Chapter

27.

Application

Considerations

997

(create

instance)

or

db2iupdt

(update

instance)

system

commands.

This

user

ID

must

not

have

write

access

to

the

directory

where

routine

libraries

and

classes

are

stored

(in

UNIX®

environments,

sqllib/function;

in

Windows®

environments,

sqllib\function).

This

user

ID

must

also

not

have

read

or

write

access

to

any

database,

operating

system,

or

otherwise

critical

files

and

directories

on

the

database

server.

If

the

owner

of

fenced

processes

does

have

write

access

to

various

critical

resources

on

the

database

server,

the

potential

for

system

corruption

exists.

For

example,

a

database

administrator

registers

a

routine

received

from

an

unknown

source

as

FENCED

NOT

THREADSAFE,

thinking

that

any

potential

harm

can

be

averted

by

isolating

the

routine

in

its

own

process.

However,

the

user

ID

that

owns

fenced

processes

has

write

access

to

the

sqllib/function

directory.

Users

invoke

this

routine,

and

unbeknownst

to

them,

it

overwrites

a

library

in

sqllib/function

with

an

alternate

version

of

a

routine

body

that

is

registered

as

NOT

FENCED.

This

second

routine

has

unrestricted

access

to

the

entire

database

manager,

and

can

thereby

distribute

sensitive

information

from

database

tables,

corrupt

the

databases,

collect

authentication

information,

or

crash

the

database

manager.

Ensure

the

user

ID

that

owns

fenced

processes

does

not

have

write

access

to

critical

files

or

directories

on

the

database

server

(especially

sqllib/function

and

the

database

data

directories).

Vulnerability

of

routine

libraries

and

classes

If

access

to

the

directory

where

routine

libraries

and

classes

are

stored

is

not

controlled,

routine

libraries

and

classes

can

be

deleted

or

overwritten.

As

discussed

in

the

previous

item,

the

replacement

of

a

NOT

FENCED

routine

body

with

a

malicious

(or

poorly

coded)

routine

can

severely

compromise

the

stability,

integrity,

and

privacy

of

the

database

server

and

its

resources.

To

protect

the

integrity

of

routines,

you

must

manage

access

to

the

directory

containing

the

routine

libraries

and

classes.

Ensure

that

the

fewest

possible

number

of

users

can

access

this

directory

and

its

files.

When

assigning

write

access

to

this

directory,

be

aware

that

this

privilege

can

provide

the

owner

of

the

user

ID

unrestricted

access

to

the

database

manager

and

all

its

resources.

Deploying

potentially

insecure

routines:

If

you

happen

to

acquire

a

routine

from

an

unknown

source,

be

sure

you

know

exactly

what

it

does

before

you

build,

register,

and

invoke

it.

It

is

recommend

that

you

register

it

as

FENCED

and

NOT

THREADSAFE

unless

you

have

tested

it

thoroughly,

and

it

exhibits

no

unexpected

side-effects.

If

you

need

to

deploy

a

routine

that

does

not

meet

the

criteria

for

secure

routines,

register

the

routine

as

FENCED

and

NOT

THREADSAFE.

To

ensure

that

database

integrity

is

maintained,

FENCED

and

NOT

THREADSAFE

routines:

v

Run

in

a

separate

DB2®

process,

shared

with

no

other

routines.

If

they

abnormally

terminate,

the

database

manager

will

be

unaffected.

v

Use

memory

that

is

distinct

from

memory

used

by

the

database.

An

inadvertent

mistake

in

a

value

assignment

will

not

affect

the

database

manager.

Related

concepts:

v

“Routines

in

application

development”

on

page

988

998

Common

Criteria

Certification:

Administration

and

User

Documentation

v

“Performance

considerations

for

developing

routines”

in

the

Application

Development

Guide:

Programming

Server

Applications

v

“Restrictions

on

using

routines”

in

the

Application

Development

Guide:

Programming

Server

Applications

v

“Library

and

class

management

considerations”

on

page

1000

Related

reference:

v

“CREATE

FUNCTION”

on

page

574

v

“CREATE

PROCEDURE”

on

page

588

v

“GRANT

(Routine

Privileges)”

on

page

708

v

“REVOKE

(Routine

Privileges)”

on

page

742

Connection

contexts

in

SQLJ

routines

With

the

introduction

of

multithreaded

routines

in

DB2®

Universal

Database,

Version

8,

it

is

important

that

SQLJ

routines

avoid

the

use

of

the

default

connection

context.

That

is,

each

SQL

statement

must

explicitly

indicate

the

ConnectionContext

object,

and

that

context

must

be

explicitly

instantiated

in

the

Java™

method.

For

instance,

in

previous

releases

of

DB2,

a

SQLJ

routine

could

be

written

as

follows:

class

myClass

{

public

static

void

myRoutine(

short

myInput

)

{

DefaultContext

ctx

=

DefaultContext.getDefaultContext();

#sql

{

some

SQL

statement

};

}

}

This

use

of

the

default

context

causes

all

threads

in

a

multithreaded

environment

to

use

the

same

connection

context,

which,

in

turn,

will

result

in

unexpected

failures.

The

SQLJ

routine

above

must

be

changed

as

follows:

#context

MyContext;

class

myClass

{

public

static

void

myRoutine(

short

myInput

)

{

MyContext

ctx

=

new

MyContext(

"jdbc:default:connection",

false

);

#sql

[ctx]

{

some

SQL

statement

};

ctx.close();

}

}

This

way,

each

invocation

of

the

routine

will

create

its

own

unique

ConnectionContext

(and

underlying

JDBC

connection),

which

avoids

unexpected

interference

by

concurrent

threads.

Related

concepts:

v

“Java

routines”

in

the

Application

Development

Guide:

Programming

Server

Applications

v

“Basic

steps

in

writing

an

SQLJ

application”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“SQL

statements

in

an

SQLJ

application”

in

the

Application

Development

Guide:

Programming

Client

Applications

Chapter

27.

Application

Considerations

999

Library

and

class

management

considerations

When

developing

routines

for

DB2®,

you

have

the

option

of

using

a

variety

of

different

programming

languages,

including

SQL,

Java™,

C,

C++,

and

.NET

compatible

languages.

If

you

develop

routines

in

a

language

other

than

SQL,

they

are

known

as

external

routines.

The

compiled

source

code

for

an

external

routine

is

referred

to

as

a

routine

body.

Protecting

routine

bodies

The

bodies

of

external

routines

reside

in

libraries

and

classes

stored

on

the

database

server.

These

files

are

not

backed

up

or

protected

in

any

way

by

DB2.

The

CREATE

statement

used

to

create

a

routine

in

the

database

adds

routine

definition

information

to

the

database

catalogs

including

information

about

where

the

external

code

librarary

associated

with

the

routine

resides.

This

is

specified

in

the

EXTERNAL

clause

in

the

CREATE

statement.

The

routine

library

or

class

specified

in

the

EXTERNAL

clause

is

not

stored

in

the

database,

but

resides

in

the

file

system

of

the

server.

It

is

imperative

for

the

successful

invocation

of

your

external

routines

that

the

library

associated

with

a

given

routine

exist

in

the

location

specified

in

the

EXTERNAL

clause.

It

is

possible

that

the

library

can

be

moved

or

deleted.

If

this

happens

the

routine

can

no

longer

be

invoked

successfully.

To

preserve

the

integrity

of

the

invoking

clients

and

routines

that

depend

on

the

routine,

you

must

prevent

the

routine

body

from

being

inadvertently

or

intentionally

deleted

or

replaced.

This

can

be

done

by

managing

access

to

the

directory

containing

the

routine

and

by

protecting

the

routine

body

itself.

Note:

The

bodies

of

SQL

routines

are

considered

to

be

part

of

the

database,

and

as

such,

will

be

backed

up

with

other

database

objects.

However,

like

external

routines,

their

bodies

are

prone

to

being

altered,

and

therefore

require

the

same

protection.

The

scope

of

routine

bodies

For

routines

to

be

used

in

a

database,

they

must

be

cataloged

with

that

same

database.

If

there

are

multiple

databases

in

an

instance,

you

can

catalog

external

routines

in

one

database

using

routine

bodies

that

are

already

being

used

in

another

database.

Hence,

the

scope

of

routine

bodies

is

instance

wide.

While

this

affords

the

possibility

of

reusing

code,

library

or

class

name

conflicts

can

arise

in

situations

where

code

is

not

being

reused.

Specifically,

library

or

class

name

conflicts

can

manifest

themselves

in

a

situation

such

as

the

following:

there

are

multiple

databases

in

a

single

instance

and

the

routines

in

each

database

use

their

own

libraries

and

classes

of

routine

bodies.

A

conflict

arises

when

the

name

of

a

library

or

class

used

by

a

routine

in

one

database

is

identical

to

the

name

of

a

library

or

class

used

by

a

routine

in

another

database

(in

the

same

instance).

This

is

because

routine

bodies

are

normally

stored

in

the

sqllib/function

directory,

which

is

used

by

all

the

databases

of

an

instance.

For

non-Java

routines

library

name

conflicts

can

be

resolved

with

the

following

steps:

1.

Store

the

libraries

with

routine

bodies

in

separate

directories

for

each

database.

2.

Catalog

the

routines

with

the

EXTERNAL

NAME

clause,

specifying

the

full

path

of

the

given

library.

1000

Common

Criteria

Certification:

Administration

and

User

Documentation

For

Java

routines

class

name

conflicts

are

not

solved

by

moving

the

files

in

question

into

different

directories,

because

the

CLASSPATH

environment

variable

is

instance-wide.

The

first

class

encountered

in

the

CLASSPATH

is

the

one

that

is

used.

Therefore,

if

you

have

two

different

Java

routines

that

reference

a

class

with

the

same

name,

one

of

the

routines

will

use

the

incorrect

class.

There

are

two

possible

solutions:

either

rename

the

affected

classes,

or

create

a

separate

instance

for

each

database.

Updating

a

routine

body

If

you

need

to

change

the

body

of

a

routine,

do

not

recompile

and

relink

the

routine

to

the

same

file

(for

example,

sqllib/function/foo.a)

the

current

routine

is

using

while

the

database

manager

is

running.

If

a

current

routine

invocation

is

accessing

a

cached

version

of

the

routine

process

and

the

underlying

library

is

replaced,

this

can

cause

the

rotine

invocation

to

fail.

If

it

is

necessary

to

change

the

body

of

a

routine

without

stopping

and

restarting

DB2,

complete

the

following

steps:

1.

Create

the

new

body

for

the

routine

with

a

different

library

or

class

name.

2.

Bind

the

new

routine

body

(if

it

contains

embedded

SQL)

with

the

database.

3.

Use

the

ALTER

statement

to

change

the

routine’s

EXTERNAL

NAME

to

reference

the

updated

routine

body.

Once

the

ALTER

updates

the

routine’s

catalog

entries,

all

subsequent

invocations

of

the

updated

routine

will

point

to

the

new

routine

body.

For

updating

Java

routines

that

are

built

into

JAR

files,

you

must

issue

a

CALL

SQLJ.REFRESH_CLASSES()

statement

to

force

DB2

to

load

the

new

classes.

If

you

do

not

issue

the

CALL

SQLJ.REFRESH_CLASSES()

statement

after

you

update

Java

routine

classes,

DB2

continues

to

use

the

previous

versions

of

the

classes.

DB2

refreshes

the

classes

when

a

COMMIT

or

ROLLBACK

occurs.

Note:

If

the

routine

body

to

be

updated

is

used

by

routines

cataloged

in

multiple

databases,

the

actions

prescribed

in

this

section

must

be

completed

for

each

affected

database.

Library

management-related

performance

considerations

The

DB2

library

manager

dynamically

adjusts

its

library

caching

according

to

your

workload.

For

optimal

performance

consider

the

following:

v

Keep

the

number

of

routines

in

your

libraries

as

small

as

possible.

If

you

are

including

multiple

routines

in

the

same

library,

ensure

that

you

group

them

based

on

whether

they

are

invoked

in

the

same

time

frame.

Consider

a

scenario

where

in

a

number

of

applications

a

call

to

the

procedure

ProcA

is

followed

by

a

call

to

the

procedure

ProcB.

In

this

situation,

it

might

be

appropriate

to

include

ProcA

and

ProcB

in

the

same

library.

With

a

library

caching

scheme,

it

is

better

to

have

numerous

smaller

libraries

than

a

few

large

libraries.

v

The

load

cost

for

a

library

in

the

C

process

is

paid

only

once

for

libraries

that

are

consistently

in

use

by

C

routines.

After

the

routine’s

first

invocation,

all

subsequent

invocations,

from

the

same

thread

in

the

process,

do

not

need

to

load

the

routine’s

library.

Routine

bodies

in

partitioned

databases

When

using

external

routines

in

partitioned

databases,

the

library

or

class

must

be

available

on

all

partitions

of

the

database.

Chapter

27.

Application

Considerations

1001

On

UNIX®,

sqllib/function

is

a

good

location

for

routine

bodies,

because

the

sqllib

directory

is

cross-mounted

between

all

partitions

of

the

database.

On

Windows®,

a

good

approach

would

be

to

create

a

shared

directory

accessible

to

all

the

partitions,

and

put

the

libraries

or

classes

in

this

directory.

Related

concepts:

v

“Performance

considerations

for

developing

routines”

in

the

Application

Development

Guide:

Programming

Server

Applications

v

“Security

considerations

for

routines”

on

page

996

v

“Restrictions

on

using

routines”

in

the

Application

Development

Guide:

Programming

Server

Applications

Related

reference:

v

“CREATE

FUNCTION”

on

page

574

v

“CREATE

PROCEDURE”

on

page

588

v

“CREATE

METHOD”

on

page

583

v

“ALTER

FUNCTION”

on

page

519

v

“ALTER

METHOD”

on

page

521

v

“ALTER

PROCEDURE”

on

page

522

Rebuilding

DB2

routine

shared

libraries

DB2®

will

cache

the

shared

libraries

used

for

stored

procedures

and

user-defined

functions

once

loaded.

If

you

are

developing

a

routine,

you

might

want

to

test

loading

the

same

shared

library

a

number

of

times,

and

this

caching

can

prevent

you

from

picking

up

the

latest

version

of

a

shared

library.

The

way

to

avoid

caching

problems

depends

on

the

type

of

routine:

1.

Fenced,

not

threadsafe

routines.

The

database

manager

configuration

keyword

KEEPFENCED

has

a

default

value

of

YES.

This

keeps

the

fenced

mode

process

alive.

This

default

setting

can

interfere

with

reloading

the

library.

It

is

best

to

change

the

value

of

this

keyword

to

NO

while

developing

fenced,

not

threadsafe

routines,

and

then

change

it

back

to

YES

when

you

are

ready

to

load

the

final

version

of

your

shared

library.

For

more

information,

see

“Updating

the

database

manager

configuration

file”

on

page

1003.

2.

Trusted

or

threadsafe

routines.

Except

for

SQL

routines

(including

SQL

procedures),

the

only

way

to

ensure

that

an

updated

version

of

a

DB2

routine

library

is

picked

up

when

that

library

is

used

for

trusted,

or

threadsafe

routines,

is

to

recycle

the

DB2

instance

by

entering

db2stop

followed

by

db2start

on

the

command

line.

This

is

not

needed

for

an

SQL

routine

because

when

it

is

recreated,

the

compiler

uses

a

new

unique

library

name

to

prevent

possible

conflicts.

For

routines

other

than

SQL

routines,

you

can

also

avoid

caching

problems

by

creating

the

new

version

of

the

routine

with

a

differently

named

library

(for

example

foo.a

becomes

foo.1.a),

and

then

using

either

the

ALTER

PROCEDURE

or

ALTER

FUNCTION

SQL

statement

with

the

new

library.

Related

tasks:

v

“Updating

the

database

manager

configuration

file”

on

page

1003

Related

reference:

1002

Common

Criteria

Certification:

Administration

and

User

Documentation

v

“ALTER

FUNCTION”

on

page

519

v

“ALTER

PROCEDURE”

on

page

522

Updating

the

database

manager

configuration

file

This

file

contains

important

settings

for

application

development.

The

keyword

KEEPFENCED

has

the

default

value

YES.

For

fenced,

not

threadsafe

routines

(stored

procedures

and

UDFs),

this

keeps

the

routine

process

alive.

It

is

best

to

change

the

value

of

this

keyword

to

NO

while

developing

these

routines,

and

then

change

it

back

to

YES

when

you

are

ready

to

load

the

final

version

of

your

shared

library.

For

more

information,

see

“Rebuilding

DB2

routine

shared

libraries”

on

page

1002.

Note:

KEEPFENCED

was

known

as

KEEPDARI

in

previous

versions

of

DB2.

For

Java

application

development,

you

need

to

update

the

JDK_PATH

keyword

with

the

path

where

the

Java

Development

Kit

is

installed.

Note:

JDK_PATH

was

known

as

JDK11_PATH

in

previous

versions

of

DB2.

Procedure:

To

change

these

settings

enter:

db2

update

dbm

cfg

using

<keyword>

<value>

For

example,

to

set

the

keyword

KEEPFENCED

to

NO:

db2

update

dbm

cfg

using

KEEPFENCED

NO

To

set

the

JDK_PATH

keyword

to

the

directory

/home/db2inst/jdk13:

db2

update

dbm

cfg

using

JDK_PATH

/home/db2inst/jdk13

To

view

the

current

settings

in

the

database

manager

configuration

file,

enter:

db2

get

dbm

cfg

Note:

On

Windows,

you

need

to

enter

these

commands

in

a

DB2

command

window.

Related

concepts:

v

“Rebuilding

DB2

routine

shared

libraries”

on

page

1002

v

“Database

manager

instances”

in

the

Application

Development

Guide:

Building

and

Running

Applications

Related

tasks:

v

“Setting

up

the

Java

environment”

in

the

Application

Development

Guide:

Building

and

Running

Applications

Related

reference:

v

“CREATE

FUNCTION”

on

page

574

v

“CREATE

PROCEDURE”

on

page

588

v

“GET

DATABASE

MANAGER

CONFIGURATION”

on

page

281

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

Chapter

27.

Application

Considerations

1003

SQLCA

(SQL

communications

area)

An

SQLCA

is

a

collection

of

variables

that

is

updated

at

the

end

of

the

execution

of

every

SQL

statement.

A

program

that

contains

executable

SQL

statements

and

is

precompiled

with

option

LANGLEVEL

SAA1

(the

default)

or

MIA

must

provide

exactly

one

SQLCA,

though

more

than

one

SQLCA

is

possible

by

having

one

SQLCA

per

thread

in

a

multi-threaded

application.

When

a

program

is

precompiled

with

option

LANGLEVEL

SQL92E,

an

SQLCODE

or

SQLSTATE

variable

may

be

declared

in

the

SQL

declare

section

or

an

SQLCODE

variable

can

be

declared

somewhere

in

the

program.

An

SQLCA

should

not

be

provided

when

using

LANGLEVEL

SQL92E.

The

SQL

INCLUDE

statement

can

be

used

to

provide

the

declaration

of

the

SQLCA

in

all

languages

but

REXX.

The

SQLCA

is

automatically

provided

in

REXX.

To

display

the

SQLCA

after

each

command

executed

through

the

command

line

processor,

issue

the

command

db2

-a.

The

SQLCA

is

then

provided

as

part

of

the

output

for

subsequent

commands.

The

SQLCA

is

also

dumped

in

the

db2diag.log

file.

SQLCA

field

descriptions

Table

75.

Fields

of

the

SQLCA.

The

field

names

shown

are

those

present

in

an

SQLCA

that

is

obtained

via

an

INCLUDE

statement.

Name

Data

Type

Field

Values

sqlcaid

CHAR(8)

An

"eye

catcher"

for

storage

dumps

containing

'SQLCA'.

The

sixth

byte

is

'L'

if

line

number

information

is

returned

from

parsing

an

SQL

procedure

body.

sqlcabc

INTEGER

Contains

the

length

of

the

SQLCA,

136.

sqlcode

INTEGER

Contains

the

SQL

return

code.

Code

Means

0

Successful

execution

(although

one

or

more

SQLWARN

indicators

may

be

set).

positive

Successful

execution,

but

with

a

warning

condition.

negative

Error

condition.

sqlerrml

SMALLINT

Length

indicator

for

sqlerrmc,

in

the

range

0

through

70.

0

means

that

the

value

of

sqlerrmc

is

not

relevant.

sqlerrmc

VARCHAR

(70)

Contains

one

or

more

tokens,

separated

by

X'FF',

which

are

substituted

for

variables

in

the

descriptions

of

error

conditions.

This

field

is

also

used

when

a

successful

connection

is

completed.

When

a

NOT

ATOMIC

compound

SQL

statement

is

issued,

it

may

contain

information

on

up

to

seven

errors.

The

last

token

might

be

followed

by

X'FF'.

The

sqlerrml

value

will

include

any

trailing

X'FF'.

SQLCA

(SQL

communications

area)

1004

Common

Criteria

Certification:

Administration

and

User

Documentation

Table

75.

Fields

of

the

SQLCA

(continued).

The

field

names

shown

are

those

present

in

an

SQLCA

that

is

obtained

via

an

INCLUDE

statement.

Name

Data

Type

Field

Values

sqlerrp

CHAR(8)

Begins

with

a

three-letter

identifier

indicating

the

product,

followed

by

five

digits

indicating

the

version,

release,

and

modification

level

of

the

product.

For

example,

SQL08010

means

DB2

Universal

Database

Version

8

Release

1

Modification

level

0.

If

SQLCODE

indicates

an

error

condition,

this

field

identifies

the

module

that

returned

the

error.

This

field

is

also

used

when

a

successful

connection

is

completed.

sqlerrd

ARRAY

Six

INTEGER

variables

that

provide

diagnostic

information.

These

values

are

generally

empty

if

there

are

no

errors,

except

for

sqlerrd(6)

from

a

partitioned

database.

sqlerrd(1)

INTEGER

If

connection

is

invoked

and

successful,

contains

the

maximum

expected

difference

in

length

of

mixed

character

data

(CHAR

data

types)

when

converted

to

the

database

code

page

from

the

application

code

page.

A

value

of

0

or

1

indicates

no

expansion;

a

value

greater

than

1

indicates

a

possible

expansion

in

length;

a

negative

value

indicates

a

possible

contraction.

On

successful

return

from

an

SQL

procedure,

contains

the

return

status

value

from

the

SQL

procedure.

sqlerrd(2)

INTEGER

If

connection

is

invoked

and

successful,

contains

the

maximum

expected

difference

in

length

of

mixed

character

data

(CHAR

data

types)

when

converted

to

the

application

code

page

from

the

database

code

page.

A

value

of

0

or

1

indicates

no

expansion;

a

value

greater

than

1

indicates

a

possible

expansion

in

length;

a

negative

value

indicates

a

possible

contraction.

If

the

SQLCA

results

from

a

NOT

ATOMIC

compound

SQL

statement

that

encountered

one

or

more

errors,

the

value

is

set

to

the

number

of

statements

that

failed.

sqlerrd(3)

INTEGER

If

PREPARE

is

invoked

and

successful,

contains

an

estimate

of

the

number

of

rows

that

will

be

returned.

After

INSERT,

UPDATE,

DELETE,

or

MERGE,

contains

the

actual

number

of

rows

that

qualified

for

the

operation.

If

compound

SQL

is

invoked,

contains

an

accumulation

of

all

sub-statement

rows.

If

CONNECT

is

invoked,

contains

1

if

the

database

can

be

updated,

or

2

if

the

database

is

read

only.

If

the

OPEN

statement

is

invoked,

and

the

cursor

contains

SQL

data

change

statements,

this

field

contains

the

sum

of

the

number

of

rows

that

qualified

for

the

embedded

insert,

update,

delete,

or

merge

operations.

If

CREATE

PROCEDURE

for

an

SQL

procedure

is

invoked,

and

an

error

is

encountered

when

parsing

the

SQL

procedure

body,

contains

the

line

number

where

the

error

was

encountered.

The

sixth

byte

of

sqlcaid

must

be

’L’

for

this

to

be

a

valid

line

number.

SQLCA

field

descriptions

Chapter

27.

Application

Considerations

1005

Table

75.

Fields

of

the

SQLCA

(continued).

The

field

names

shown

are

those

present

in

an

SQLCA

that

is

obtained

via

an

INCLUDE

statement.

Name

Data

Type

Field

Values

sqlerrd(4)

INTEGER

If

PREPARE

is

invoked

and

successful,

contains

a

relative

cost

estimate

of

the

resources

required

to

process

the

statement.

If

compound

SQL

is

invoked,

contains

a

count

of

the

number

of

successful

sub-statements.

If

CONNECT

is

invoked,

contains

0

for

a

one-phase

commit

from

a

down-level

client;

1

for

a

one-phase

commit;

2

for

a

one-phase,

read-only

commit;

and

3

for

a

two-phase

commit.

sqlerrd(5)

INTEGER

Contains

the

total

number

of

rows

deleted,

inserted,

or

updated

as

a

result

of

both:

v

The

enforcement

of

constraints

after

a

successful

delete

operation

v

The

processing

of

triggered

SQL

statements

from

activated

triggers

If

compound

SQL

is

invoked,

contains

an

accumulation

of

the

number

of

such

rows

for

all

sub-statements.

In

some

cases,

when

an

error

is

encountered,

this

field

contains

a

negative

value

that

is

an

internal

error

pointer.

If

CONNECT

is

invoked,

contains

an

authentication

type

value

of

0

for

server

authentication;

1

for

client

authentication;

2

for

authentication

using

DB2

Connect;

4

for

SERVER_ENCRYPT

authentication;

5

for

authentication

using

DB2

Connect

with

encryption;

7

for

KERBEROS

authentication;

8

for

KRB_SERVER_ENCRYPT

authentication;

9

for

GSSPLUGIN

authentication;

10

for

GSS_SERVER_ENCRYPT

authentication;

and

255

for

unspecified

authentication.

sqlerrd(6)

INTEGER

For

a

partitioned

database,

contains

the

partition

number

of

the

partition

that

encountered

the

error

or

warning.

If

no

errors

or

warnings

were

encountered,

this

field

contains

the

partition

number

of

the

coordinator

node.

The

number

in

this

field

is

the

same

as

that

specified

for

the

partition

in

the

db2nodes.cfg

file.

sqlwarn

Array

A

set

of

warning

indicators,

each

containing

a

blank

or

W.

If

compound

SQL

is

invoked,

contains

an

accumulation

of

the

warning

indicators

set

for

all

sub-statements.

sqlwarn0

CHAR(1)

Blank

if

all

other

indicators

are

blank;

contains

W

if

at

least

one

other

indicator

is

not

blank.

sqlwarn1

CHAR(1)

Contains

W

if

the

value

of

a

string

column

was

truncated

when

assigned

to

a

host

variable.

Contains

N

if

the

null

terminator

was

truncated.

Contains

A

if

the

CONNECT

or

ATTACH

is

successful,

and

the

authorization

name

for

the

connection

is

longer

than

8

bytes.

Contains

P

if

the

PREPARE

statement

relative

cost

estimate

stored

in

sqlerrd(4)

exceeded

the

value

that

could

be

stored

in

an

INTEGER

or

was

less

than

1,

and

either

the

CURRENT

EXPLAIN

MODE

or

the

CURRENT

EXPLAIN

SNAPSHOT

special

register

is

set

to

a

value

other

than

NO.

sqlwarn2

CHAR(1)

Contains

W

if

null

values

were

eliminated

from

the

argument

of

a

function.

a

SQLCA

field

descriptions

1006

Common

Criteria

Certification:

Administration

and

User

Documentation

Table

75.

Fields

of

the

SQLCA

(continued).

The

field

names

shown

are

those

present

in

an

SQLCA

that

is

obtained

via

an

INCLUDE

statement.

Name

Data

Type

Field

Values

sqlwarn3

CHAR(1)

Contains

W

if

the

number

of

columns

is

not

equal

to

the

number

of

host

variables.

Contains

Z

if

the

number

of

result

set

locators

specified

on

the

ASSOCIATE

LOCATORS

statement

is

less

than

the

number

of

result

sets

returned

by

a

procedure.

sqlwarn4

CHAR(1)

Contains

W

if

a

prepared

UPDATE

or

DELETE

statement

does

not

include

a

WHERE

clause.

sqlwarn5

CHAR(1)

Reserved

for

future

use.

sqlwarn6

CHAR(1)

Contains

W

if

the

result

of

a

date

calculation

was

adjusted

to

avoid

an

impossible

date.

sqlwarn7

CHAR(1)

Reserved

for

future

use.

If

CONNECT

is

invoked

and

successful,

contains

’E’

if

the

DYN_QUERY_MGMT

database

configuration

parameter

is

enabled.

sqlwarn8

CHAR(1)

Contains

W

if

a

character

that

could

not

be

converted

was

replaced

with

a

substitution

character.

sqlwarn9

CHAR(1)

Contains

W

if

arithmetic

expressions

with

errors

were

ignored

during

column

function

processing.

sqlwarn10

CHAR(1)

Contains

W

if

there

was

a

conversion

error

when

converting

a

character

data

value

in

one

of

the

fields

in

the

SQLCA.

sqlstate

CHAR(5)

A

return

code

that

indicates

the

outcome

of

the

most

recently

executed

SQL

statement.

a

Some

functions

may

not

set

SQLWARN2

to

W,

even

though

null

values

were

eliminated,

because

the

result

was

not

dependent

on

the

elimination

of

null

values.

Error

reporting

The

order

of

error

reporting

is

as

follows:

1.

Severe

error

conditions

are

always

reported.

When

a

severe

error

is

reported,

there

are

no

additions

to

the

SQLCA.

2.

If

no

severe

error

occurs,

a

deadlock

error

takes

precedence

over

other

errors.

3.

For

all

other

errors,

the

SQLCA

for

the

first

negative

SQL

code

is

returned.

4.

If

no

negative

SQL

codes

are

detected,

the

SQLCA

for

the

first

warning

(that

is,

positive

SQL

code)

is

returned.

In

a

partitioned

database

system,

the

exception

to

this

rule

occurs

if

a

data

manipulation

operation

is

invoked

against

a

table

that

is

empty

on

one

partition,

but

has

data

on

other

partitions.

SQLCODE

+100

is

only

returned

to

the

application

if

agents

from

all

partitions

return

SQL0100W,

either

because

the

table

is

empty

on

all

partitions,

or

there

are

no

more

rows

that

satisfy

the

WHERE

clause

in

an

UPDATE

statement.

SQLCA

usage

in

partitioned

database

systems

In

partitioned

database

systems,

one

SQL

statement

may

be

executed

by

a

number

of

agents

on

different

partitions,

and

each

agent

may

return

a

different

SQLCA

for

different

errors

or

warnings.

The

coordinator

agent

also

has

its

own

SQLCA.

SQLCA

field

descriptions

Chapter

27.

Application

Considerations

1007

To

provide

a

consistent

view

for

applications,

all

SQLCA

values

are

merged

into

one

structure,

and

SQLCA

fields

indicate

global

counts,

such

that:

v

For

all

errors

and

warnings,

the

sqlwarn

field

contains

the

warning

flags

received

from

all

agents.

v

Values

in

the

sqlerrd

fields

indicating

row

counts

are

accumulations

from

all

agents.

Note

that

SQLSTATE

09000

may

not

be

returned

every

time

an

error

occurs

during

the

processing

of

a

triggered

SQL

statement.

SQLDA

(SQL

descriptor

area)

An

SQLDA

is

a

collection

of

variables

that

is

required

for

execution

of

the

SQL

DESCRIBE

statement.

The

SQLDA

variables

are

options

that

can

be

used

by

the

PREPARE,

OPEN,

FETCH,

and

EXECUTE

statements.

An

SQLDA

communicates

with

dynamic

SQL;

it

can

be

used

in

a

DESCRIBE

statement,

modified

with

the

addresses

of

host

variables,

and

then

reused

in

a

FETCH

or

EXECUTE

statement.

SQLDAs

are

supported

for

all

languages,

but

predefined

declarations

are

provided

only

for

C,

REXX,

FORTRAN,

and

COBOL.

The

meaning

of

the

information

in

an

SQLDA

depends

on

its

use.

In

PREPARE

and

DESCRIBE,

an

SQLDA

provides

information

to

an

application

program

about

a

prepared

statement.

In

OPEN,

EXECUTE,

and

FETCH,

an

SQLDA

describes

host

variables.

In

DESCRIBE

and

PREPARE,

if

any

one

of

the

columns

being

described

is

either

a

LOB

type

(LOB

locators

and

file

reference

variables

do

not

require

doubled

SQLDAs),

reference

type,

or

a

user-defined

type,

the

number

of

SQLVAR

entries

for

the

entire

SQLDA

will

be

doubled.

For

example:

v

When

describing

a

table

with

3

VARCHAR

columns

and

1

INTEGER

column,

there

will

be

4

SQLVAR

entries

v

When

describing

a

table

with

2

VARCHAR

columns,

1

CLOB

column,

and

1

integer

column,

there

will

be

8

SQLVAR

entries

In

EXECUTE,

FETCH,

and

OPEN,

if

any

one

of

the

variables

being

described

is

a

LOB

type

(LOB

locators

and

file

reference

variables

do

not

require

doubled

SQLDAs)

or

a

structured

type,

the

number

of

SQLVAR

entries

for

the

entire

SQLDA

must

be

doubled.

(Distinct

types

and

reference

types

are

not

relevant

in

these

cases,

because

the

additional

information

in

the

double

entries

is

not

required

by

the

database.)

SQLDA

field

descriptions

An

SQLDA

consists

of

four

variables

followed

by

an

arbitrary

number

of

occurrences

of

a

sequence

of

variables

collectively

named

SQLVAR.

In

OPEN,

FETCH,

and

EXECUTE,

each

occurrence

of

SQLVAR

describes

a

host

variable.

In

DESCRIBE

and

PREPARE,

each

occurrence

of

SQLVAR

describes

a

column

of

a

result

table

or

a

parameter

marker.

There

are

two

types

of

SQLVAR

entries:

v

Base

SQLVARs:

These

entries

are

always

present.

They

contain

the

base

information

about

the

column,

parameter

marker,

or

host

variable

such

as

data

type

code,

length

attribute,

column

name,

host

variable

address,

and

indicator

variable

address.

SQLCA

usage

in

partitioned

database

systems

1008

Common

Criteria

Certification:

Administration

and

User

Documentation

v

Secondary

SQLVARs:

These

entries

are

only

present

if

the

number

of

SQLVAR

entries

is

doubled

as

per

the

rules

outlined

above.

For

user-defined

types

(distinct

or

structured),

they

contain

the

user-defined

type

name.

For

reference

types,

they

contain

the

target

type

of

the

reference.

For

LOBs,

they

contain

the

length

attribute

of

the

host

variable

and

a

pointer

to

the

buffer

that

contains

the

actual

length.

(The

distinct

type

and

LOB

information

does

not

overlap,

so

distinct

types

can

be

based

on

LOBs

without

forcing

the

number

of

SQLVAR

entries

on

a

DESCRIBE

to

be

tripled.)

If

locators

or

file

reference

variables

are

used

to

represent

LOBs,

these

entries

are

not

necessary.

In

SQLDAs

that

contain

both

types

of

entries,

the

base

SQLVARs

are

in

a

block

before

the

block

of

secondary

SQLVARs.

In

each,

the

number

of

entries

is

equal

to

the

value

in

SQLD

(even

though

many

of

the

secondary

SQLVAR

entries

may

be

unused).

The

circumstances

under

which

the

SQLVAR

entries

are

set

by

DESCRIBE

is

detailed

in

“Effect

of

DESCRIBE

on

the

SQLDA”

on

page

1012.

Fields

in

the

SQLDA

header

Table

76.

Fields

in

the

SQLDA

Header

C

Name

SQL

Data

Type

Usage

in

DESCRIBE

and

PREPARE

(set

by

the

database

manager

except

for

SQLN)

Usage

in

FETCH,

OPEN,

and

EXECUTE

(set

by

the

application

prior

to

executing

the

statement)

sqldaid

CHAR(8)

The

seventh

byte

of

this

field

is

a

flag

byte

named

SQLDOUBLED.

The

database

manager

sets

SQLDOUBLED

to

the

character

’2’

if

two

SQLVAR

entries

have

been

created

for

each

column;

otherwise

it

is

set

to

a

blank

(X'20'

in

ASCII,

X'40'

in

EBCDIC).

See

“Effect

of

DESCRIBE

on

the

SQLDA”

on

page

1012

for

details

on

when

SQLDOUBLED

is

set.

The

seventh

byte

of

this

field

is

used

when

the

number

of

SQLVARs

is

doubled.

It

is

named

SQLDOUBLED.

If

any

of

the

host

variables

being

described

is

a

structured

type,

BLOB,

CLOB,

or

DBCLOB,

the

seventh

byte

must

be

set

to

the

character

’2’;

otherwise

it

can

be

set

to

any

character

but

the

use

of

a

blank

is

recommended.

sqldabc

INTEGER

For

32

bit,

the

length

of

the

SQLDA,

equal

to

SQLN*44+16.

For

64

bit,

the

length

of

the

SQLDA,

equal

to

SQLN*56+16

For

32

bit,

the

length

of

the

SQLDA,

>=

to

SQLN*44+16.

For

64

bit,

the

length

of

the

SQLDA,

>=

to

SQLN*56+16.

sqln

SMALLINT

Unchanged

by

the

database

manager.

Must

be

set

to

a

value

greater

than

or

equal

to

zero

before

the

DESCRIBE

statement

is

executed.

Indicates

the

total

number

of

occurrences

of

SQLVAR.

Total

number

of

occurrences

of

SQLVAR

provided

in

the

SQLDA.

SQLN

must

be

set

to

a

value

greater

than

or

equal

to

zero.

sqld

SMALLINT

Set

by

the

database

manager

to

the

number

of

columns

in

the

result

table

or

to

the

number

of

parameter

markers.

The

number

of

host

variables

described

by

occurrences

of

SQLVAR.

SQLDA

field

descriptions

Chapter

27.

Application

Considerations

1009

Fields

in

an

occurrence

of

a

base

SQLVAR

Table

77.

Fields

in

a

Base

SQLVAR

Name

Data

Type

Usage

in

DESCRIBE

and

PREPARE

Usage

in

FETCH,

OPEN,

and

EXECUTE

sqltype

SMALLINT

Indicates

the

data

type

of

the

column

or

parameter

marker,

and

whether

it

can

contain

nulls.

(Parameter

markers

are

always

considered

nullable.)

Table

79

on

page

1014

lists

the

allowable

values

and

their

meanings.

Note

that

for

a

distinct

or

reference

type,

the

data

type

of

the

base

type

is

placed

into

this

field.

For

a

structured

type,

the

data

type

of

the

result

of

the

FROM

SQL

transform

function

of

the

transform

group

(based

on

the

CURRENT

DEFAULT

TRANSFORM

GROUP

special

register)

for

the

type

is

placed

into

this

field.

There

is

no

indication

in

the

base

SQLVAR

that

it

is

part

of

the

description

of

a

user-defined

type

or

reference

type.

Same

for

host

variable.

Host

variables

for

datetime

values

must

be

character

string

variables.

For

FETCH,

a

datetime

type

code

means

a

fixed-length

character

string.

If

sqltype

is

an

even

number

value,

the

sqlind

field

is

ignored.

sqllen

SMALLINT

The

length

attribute

of

the

column

or

parameter

marker.

For

datetime

columns

and

parameter

markers,

the

length

of

the

string

representation

of

the

values.

See

Table

79

on

page

1014.

Note

that

the

value

is

set

to

0

for

large

object

strings

(even

for

those

whose

length

attribute

is

small

enough

to

fit

into

a

two

byte

integer).

The

length

attribute

of

the

host

variable.

See

Table

79

on

page

1014.

Note

that

the

value

is

ignored

by

the

database

manager

for

CLOB,

DBCLOB,

and

BLOB

columns.

The

len.sqllonglen

field

in

the

Secondary

SQLVAR

is

used

instead.

sqldata

pointer

For

string

SQLVARS,

sqldata

contains

the

code

page.

For

character-string

SQLVARs

where

the

column

is

defined

with

the

FOR

BIT

DATA

attribute,

sqldata

contains

0.

For

other

character-string

SQLVARS,

sqldata

contains

either

the

SBCS

code

page

for

SBCS

data,

or

the

SBCS

code

page

associated

with

the

composite

MBCS

code

page

for

MBCS

data.

For

Japanese

EUC,

Traditional

Chinese

EUC,

and

Unicode

UTF-8

character-string

SQLVARS,

sqldata

contains

954,

964,

and

1208

respectively.

For

all

other

column

types,

sqldata

is

undefined.

Contains

the

address

of

the

host

variable

(where

the

fetched

data

will

be

stored).

sqlind

pointer

For

character-string

SQLVARS,

sqlind

contains

0,

except

for

MBCS

data,

when

sqlind

contains

the

DBCS

code

page

associated

with

the

composite

MBCS

code

page.

For

all

other

types,

sqlind

is

undefined.

Contains

the

address

of

an

associated

indicator

variable,

if

there

is

one;

otherwise,

not

used.

If

sqltype

is

an

even

number

value,

the

sqlind

field

is

ignored.

Fields

in

an

occurrence

of

a

base

SQLVAR

1010

Common

Criteria

Certification:

Administration

and

User

Documentation

Table

77.

Fields

in

a

Base

SQLVAR

(continued)

Name

Data

Type

Usage

in

DESCRIBE

and

PREPARE

Usage

in

FETCH,

OPEN,

and

EXECUTE

sqlname

VARCHAR

(30)

Contains

the

unqualified

name

of

the

column

or

parameter

marker.

For

columns

and

parameter

markers

that

have

a

system-generated

name,

the

thirtieth

byte

is

set

to

X'FF'.

For

column

names

specified

by

the

AS

clause,

this

byte

is

X'00'.

When

using

DB2

Connect

to

access

the

server,

sqlname

can

be

set

to

indicate

a

FOR

BIT

DATA

string

as

follows:

v

the

length

of

sqlname

is

8

v

the

first

four

bytes

of

sqlname

are

X'00000000'

v

the

remaining

four

bytes

of

sqlname

are

reserved

(and

currently

ignored).

Fields

in

an

occurrence

of

a

secondary

SQLVAR

Table

78.

Fields

in

a

Secondary

SQLVAR

Name

Data

Type

Usage

in

DESCRIBE

and

PREPARE

Usage

in

FETCH,

OPEN,

and

EXECUTE

len.sqllonglen

INTEGER

The

length

attribute

of

a

BLOB,

CLOB,

or

DBCLOB

column

or

parameter

marker.

The

length

attribute

of

a

BLOB,

CLOB,

or

DBCLOB

host

variable.

The

database

manager

ignores

the

SQLLEN

field

in

the

Base

SQLVAR

for

the

data

types.

The

length

attribute

stores

the

number

of

bytes

for

a

BLOB

or

CLOB,

and

the

number

of

characters

for

a

DBCLOB.

reserve2

CHAR(3)

for

32

bit,

and

CHAR(11)

for

64

bit.

Not

used.

Not

used.

sqlflag4

CHAR(1)

The

value

is

X’01’

if

the

SQLVAR

represents

a

reference

type

with

a

target

type

named

in

sqldatatype_name.

The

value

is

X’12’

if

the

SQLVAR

represents

a

structured

type,

with

the

user-defined

type

name

in

sqldatatype_name.

Otherwise,

the

value

is

X’00’.

Set

to

X’01’

if

the

SQLVAR

represents

a

reference

type

with

a

target

type

named

in

sqldatatype_name.

Set

to

X’12’

if

the

SQLVAR

represents

a

structured

type,

with

the

user-defined

type

name

in

sqldatatype_name.

Otherwise,

the

value

is

X’00’.

Fields

in

an

occurrence

of

a

base

SQLVAR

Chapter

27.

Application

Considerations

1011

Table

78.

Fields

in

a

Secondary

SQLVAR

(continued)

Name

Data

Type

Usage

in

DESCRIBE

and

PREPARE

Usage

in

FETCH,

OPEN,

and

EXECUTE

sqldatalen

pointer

Not

used.

Used

for

BLOB,

CLOB,

and

DBCLOB

host

variables

only.

If

this

field

is

NULL,

then

the

actual

length

(in

characters)

should

be

stored

in

the

4

bytes

immediately

before

the

start

of

the

data

and

SQLDATA

should

point

to

the

first

byte

of

the

field

length.

If

this

field

is

not

NULL,

it

contains

a

pointer

to

a

4

byte

long

buffer

that

contains

the

actual

length

in

bytes

(even

for

DBCLOB)

of

the

data

in

the

buffer

pointed

to

from

the

SQLDATA

field

in

the

matching

base

SQLVAR.

Note

that,

whether

or

not

this

field

is

used,

the

len.sqllonglen

field

must

be

set.

sqldatatype_name

VARCHAR(27)

For

a

user-defined

type,

the

database

manager

sets

this

to

the

fully

qualified

user-defined

type

name.1

For

a

reference

type,

the

database

manager

sets

this

to

the

fully

qualified

type

name

of

the

target

type

of

the

reference.

For

structured

types,

set

to

the

fully

qualified

user-defined

type

name

in

the

format

indicated

in

the

table

note.1

reserved

CHAR(3)

Not

used.

Not

used.

1

The

first

8

bytes

contain

the

schema

name

of

the

type

(extended

to

the

right

with

spaces,

if

necessary).

Byte

9

contains

a

dot

(.).

Bytes

10

to

27

contain

the

low

order

portion

of

the

type

name,

which

is

not

extended

to

the

right

with

spaces.

Note

that,

although

the

prime

purpose

of

this

field

is

for

the

name

of

user-defined

types,

the

field

is

also

set

for

IBM

predefined

data

types.

In

this

case,

the

schema

name

is

SYSIBM,

and

the

low

order

portion

of

the

name

is

the

name

stored

in

the

TYPENAME

column

of

the

DATATYPES

catalog

view.

For

example:

type

name

length

sqldatatype_name

A.B

10

A

.B

INTEGER

16

SYSIBM

.INTEGER

"Frank’s".SMINT

13

Frank’s

.SMINT

MY."type

"

15

MY

.type

Effect

of

DESCRIBE

on

the

SQLDA

For

a

DESCRIBE

OUTPUT

or

PREPARE

OUTPUT

INTO

statement,

the

database

manager

always

sets

SQLD

to

the

number

of

columns

in

the

result

set,

or

the

number

of

output

parameter

markers.

For

a

DESCRIBE

INPUT

or

PREPARE

INPUT

INTO

statement,

the

database

manager

always

sets

SQLD

to

the

number

of

input

parameter

markers

in

the

statement.

Note

that

a

parameter

marker

that

corresponds

to

an

INOUT

parameter

in

a

CALL

statement

is

described

in

both

the

input

and

output

descriptors.

The

SQLVARs

in

the

SQLDA

are

set

in

the

following

cases:

Fields

in

an

occurrence

of

a

secondary

SQLVAR

1012

Common

Criteria

Certification:

Administration

and

User

Documentation

v

SQLN

>=

SQLD

and

no

entry

is

either

a

LOB,

user-defined

type

or

reference

type

The

first

SQLD

SQLVAR

entries

are

set

and

SQLDOUBLED

is

set

to

blank.

v

SQLN

>=

2*SQLD

and

at

least

one

entry

is

a

LOB,

user-defined

type

or

reference

type

Two

times

SQLD

SQLVAR

entries

are

set,

and

SQLDOUBLED

is

set

to

’2’.

v

SQLD

<=

SQLN

<

2*SQLD

and

at

least

one

entry

is

a

distinct

type

or

reference

type,

but

there

are

no

LOB

entries

or

structured

type

entries

The

first

SQLD

SQLVAR

entries

are

set

and

SQLDOUBLED

is

set

to

blank.

If

the

SQLWARN

bind

option

is

YES,

a

warning

SQLCODE

+237

(SQLSTATE

01594)

is

issued.

The

SQLVARs

in

the

SQLDA

are

NOT

set

(requiring

allocation

of

additional

space

and

another

DESCRIBE)

in

the

following

cases:

v

SQLN

<

SQLD

and

no

entry

is

either

a

LOB,

user-defined

type

or

reference

type

No

SQLVAR

entries

are

set

and

SQLDOUBLED

is

set

to

blank.

If

the

SQLWARN

bind

option

is

YES,

a

warning

SQLCODE

+236

(SQLSTATE

01005)

is

issued.

Allocate

SQLD

SQLVARs

for

a

successful

DESCRIBE.

v

SQLN

<

SQLD

and

at

least

one

entry

is

a

distinct

type

or

reference

type,

but

there

are

no

LOB

entries

or

structured

type

entries

No

SQLVAR

entries

are

set

and

SQLDOUBLED

is

set

to

blank.

If

the

SQLWARN

bind

option

is

YES,

a

warning

SQLCODE

+239

(SQLSTATE

01005)

is

issued.

Allocate

2*SQLD

SQLVARs

for

a

successful

DESCRIBE

including

the

names

of

the

distinct

types

and

target

types

of

reference

types.

v

SQLN

<

2*SQLD

and

at

least

one

entry

is

a

LOB

or

a

structured

type

No

SQLVAR

entries

are

set

and

SQLDOUBLED

is

set

to

blank.

A

warning

SQLCODE

+238

(SQLSTATE

01005)

is

issued

(regardless

of

the

setting

of

the

SQLWARN

bind

option).

Allocate

2*SQLD

SQLVARs

for

a

successful

DESCRIBE.

References

in

the

above

lists

to

LOB

entries

include

distinct

type

entries

whose

source

type

is

a

LOB

type.

The

SQLWARN

option

of

the

BIND

or

PREP

command

is

used

to

control

whether

the

DESCRIBE

(or

PREPARE

INTO)

will

return

the

warning

SQLCODEs

+236,

+237,

+239.

It

is

recommended

that

your

application

code

always

consider

that

these

SQLCODEs

could

be

returned.

The

warning

SQLCODE

+238

is

always

returned

when

there

are

LOB

or

structured

type

entries

in

the

select

list

and

there

are

insufficient

SQLVARs

in

the

SQLDA.

This

is

the

only

way

the

application

can

know

that

the

number

of

SQLVARs

must

be

doubled

because

of

a

LOB

or

structured

type

entry

in

the

result

set.

If

a

structured

type

entry

is

being

described,

but

no

FROM

SQL

transform

is

defined

(either

because

no

TRANSFORM

GROUP

was

specified

using

the

CURRENT

DEFAULT

TRANSFORM

GROUP

special

register

(SQLSTATE

42741),

or

because

the

name

group

does

not

have

a

FROM

SQL

transform

function

defined

(SQLSTATE

42744),

the

DESCRIBE

will

return

an

error.

This

error

is

the

same

error

returned

for

a

DESCRIBE

of

a

table

with

a

structured

type

entry.

SQLTYPE

and

SQLLEN

Table

79

on

page

1014

shows

the

values

that

may

appear

in

the

SQLTYPE

and

SQLLEN

fields

of

the

SQLDA.

In

DESCRIBE

and

PREPARE

INTO,

an

even

value

Effect

of

DESCRIBE

on

the

SQLDA

Chapter

27.

Application

Considerations

1013

of

SQLTYPE

means

that

the

column

does

not

allow

nulls,

and

an

odd

value

means

the

column

does

allow

nulls.

In

FETCH,

OPEN,

and

EXECUTE,

an

even

value

of

SQLTYPE

means

that

no

indicator

variable

is

provided,

and

an

odd

value

means

that

SQLIND

contains

the

address

of

an

indicator

variable.

Table

79.

SQLTYPE

and

SQLLEN

values

for

DESCRIBE,

FETCH,

OPEN,

and

EXECUTE

For

DESCRIBE

and

PREPARE

INTO

For

FETCH,

OPEN,

and

EXECUTE

SQLTYPE

Column

Data

Type

SQLLEN

Host

Variable

Data

Type

SQLLEN

384/385

date

10

fixed-length

character

string

representation

of

a

date

length

attribute

of

the

host

variable

388/389

time

8

fixed-length

character

string

representation

of

a

time

length

attribute

of

the

host

variable

392/393

timestamp

26

fixed-length

character

string

representation

of

a

timestamp

length

attribute

of

the

host

variable

396/397

DATALINK

length

attribute

of

the

column

DATALINK

length

attribute

of

the

host

variable

400/401

N/A

N/A

NUL-terminated

graphic

string

length

attribute

of

the

host

variable

404/405

BLOB

0

*

BLOB

Not

used.

*

408/409

CLOB

0

*

CLOB

Not

used.

*

412/413

DBCLOB

0

*

DBCLOB

Not

used.

*

448/449

varying-length

character

string

length

attribute

of

the

column

varying-length

character

string

length

attribute

of

the

host

variable

452/453

fixed-length

character

string

length

attribute

of

the

column

fixed-length

character

string

length

attribute

of

the

host

variable

456/457

long

varying-length

character

string

length

attribute

of

the

column

long

varying-length

character

string

length

attribute

of

the

host

variable

460/461

N/A

N/A

NUL-terminated

character

string

length

attribute

of

the

host

variable

464/465

varying-length

graphic

string

length

attribute

of

the

column

varying-length

graphic

string

length

attribute

of

the

host

variable

468/469

fixed-length

graphic

string

length

attribute

of

the

column

fixed-length

graphic

string

length

attribute

of

the

host

variable

472/473

long

varying-length

graphic

string

length

attribute

of

the

column

long

graphic

string

length

attribute

of

the

host

variable

480/481

floating

point

8

for

double

precision,

4

for

single

precision

floating

point

8

for

double

precision,

4

for

single

precision

484/485

packed

decimal

precision

in

byte

1;

scale

in

byte

2

packed

decimal

precision

in

byte

1;

scale

in

byte

2

492/493

big

integer

8

big

integer

8

496/497

large

integer

4

large

integer

4

500/501

small

integer

2

small

integer

2

916/917

Not

applicable

Not

applicable

BLOB

file

reference

variable.

267

SQLTYPE

and

SQLLEN

1014

Common

Criteria

Certification:

Administration

and

User

Documentation

Table

79.

SQLTYPE

and

SQLLEN

values

for

DESCRIBE,

FETCH,

OPEN,

and

EXECUTE

(continued)

For

DESCRIBE

and

PREPARE

INTO

For

FETCH,

OPEN,

and

EXECUTE

SQLTYPE

Column

Data

Type

SQLLEN

Host

Variable

Data

Type

SQLLEN

920/921

Not

applicable

Not

applicable

CLOB

file

reference

variable.

267

924/925

Not

applicable

Not

applicable

DBCLOB

file

reference

variable.

267

960/961

Not

applicable

Not

applicable

BLOB

locator

4

964/965

Not

applicable

Not

applicable

CLOB

locator

4

968/969

Not

applicable

Not

applicable

DBCLOB

locator

4

Note:

v

The

len.sqllonglen

field

in

the

secondary

SQLVAR

contains

the

length

attribute

of

the

column.

v

The

SQLTYPE

has

changed

from

the

previous

version

for

portability

in

DB2.

The

values

from

the

previous

version

(see

previous

version

SQL

Reference)

will

continue

to

be

supported.

Unrecognized

and

unsupported

SQLTYPEs

The

values

that

appear

in

the

SQLTYPE

field

of

the

SQLDA

are

dependent

on

the

level

of

data

type

support

available

at

the

sender

as

well

as

at

the

receiver

of

the

data.

This

is

particularly

important

as

new

data

types

are

added

to

the

product.

New

data

types

may

or

may

not

be

supported

by

the

sender

or

receiver

of

the

data

and

may

or

may

not

even

be

recognized

by

the

sender

or

receiver

of

the

data.

Depending

on

the

situation,

the

new

data

type

may

be

returned,

or

a

compatible

data

type

agreed

upon

by

both

the

sender

and

receiver

of

the

data

may

be

returned

or

an

error

may

result.

When

the

sender

and

receiver

agree

to

use

a

compatible

data

type,

the

following

indicates

the

mapping

that

will

take

place.

This

mapping

will

take

place

when

at

least

one

of

the

sender

or

the

receiver

does

not

support

the

data

type

provided.

The

unsupported

data

type

can

be

provided

by

either

the

application

or

the

database

manager.

Data

Type

Compatible

Data

Type

BIGINT

DECIMAL(19,

0)

ROWID1

VARCHAR(40)

FOR

BIT

DATA

1

ROWID

is

supported

by

DB2

Universal

Database

for

z/OS

and

OS/390

Version

6.

Note

that

no

indication

is

given

in

the

SQLDA

that

the

data

type

is

substituted.

Packed

decimal

numbers

Packed

decimal

numbers

are

stored

in

a

variation

of

Binary

Coded

Decimal

(BCD)

notation.

In

BCD,

each

nybble

(four

bits)

represents

one

decimal

digit.

For

example,

0001

0111

1001

represents

179.

Therefore,

read

a

packed

decimal

value

nybble

by

nybble.

Store

the

value

in

bytes

and

then

read

those

bytes

in

hexadecimal

representation

to

return

to

decimal.

For

example,

0001

0111

1001

becomes

00000001

01111001

in

binary

representation.

By

reading

this

number

as

hexadecimal,

it

becomes

0179.

The

decimal

point

is

determined

by

the

scale.

In

the

case

of

a

DEC(12,5)

column,

for

example,

the

rightmost

5

digits

are

to

the

right

of

the

decimal

point.

SQLTYPE

and

SQLLEN

Chapter

27.

Application

Considerations

1015

Sign

is

indicated

by

a

nybble

to

the

right

of

the

nybbles

representing

the

digits.

A

positive

or

negative

sign

is

indicated

as

follows:

Table

80.

Values

for

Sign

Indicator

of

a

Packed

Decimal

Number

Sign

Representation

Binary

Decimal

Hexadecimal

Positive

(+)

1100

12

C

Negative

(-)

1101

13

D

In

summary:

v

To

store

any

value,

allocate

p/2+1

bytes,

where

p

is

precision.

v

Assign

the

nybbles

from

left

to

right

to

represent

the

value.

If

a

number

has

an

even

precision,

a

leading

zero

nybble

is

added.

This

assignment

includes

leading

(insignificant)

and

trailing

(significant)

zero

digits.

v

The

sign

nybble

will

be

the

second

nybble

of

the

last

byte.

For

example:

Column

Value

Nybbles

in

Hexadecimal

Grouped

by

Bytes

DEC(8,3)

6574.23

00

65

74

23

0C

DEC(6,2)

-334.02

00

33

40

2D

DEC(7,5)

5.2323

05

23

23

0C

DEC(5,2)

-23.5

02

35

0D

SQLLEN

field

for

decimal

The

SQLLEN

field

contains

the

precision

(first

byte)

and

scale

(second

byte)

of

the

decimal

column.

If

writing

a

portable

application,

the

precision

and

scale

bytes

should

be

set

individually,

versus

setting

them

together

as

a

short

integer.

This

will

avoid

integer

byte

reversal

problems.

For

example,

in

C:

((char

*)&(sqlda->sqlvar[i].sqllen))[0]

=

precision;

((char

*)&(sqlda->sqlvar[i].sqllen))[1]

=

scale;

Related

reference:

v

“CHAR

scalar

function”

in

the

SQL

Reference,

Volume

1

SQL-AUTHORIZATIONS

This

structure

is

used

to

return

information

after

a

call

to

the

sqluadau

API.

The

data

type

of

all

fields

is

SMALLINT.

The

first

half

of

the

following

table

contains

authorities

granted

directly

to

a

user.

The

second

half

of

the

table

contains

authorities

granted

to

the

groups

to

which

a

user

belongs.

Table

81.

Fields

in

the

SQL-AUTHORIZATIONS

Structure

Field

Name

Description

SQL_AUTHORIZATIONS_LEN

Size

of

structure.

SQL_SYSADM_AUTH

SYSADM

authority.

SQL_SYSCTRL_AUTH

SYSCTRL

authority.

SQL_SYSMAINT_AUTH

SYSMAINT

authority.

Packed

decimal

numbers

1016

Common

Criteria

Certification:

Administration

and

User

Documentation

Table

81.

Fields

in

the

SQL-AUTHORIZATIONS

Structure

(continued)

Field

Name

Description

SQL_DBADM_AUTH

DBADM

authority.

SQL_CREATETAB_AUTH

CREATETAB

authority.

SQL_CREATET_NOT_FENC_AUTH

CREATE_NOT_FENCED

authority.

SQL_BINDADD_AUTH

BINDADD

authority.

SQL_CONNECT_AUTH

CONNECT

authority.

SQL_IMPLICIT_SCHEMA_AUTH

IMPLICIT_SCHEMA

authority.

SQL_LOAD_AUTH

LOAD

authority.

SQL_SYSADM_GRP_AUTH

User

belongs

to

a

group

which

holds

SYSADM

authority.

SQL_SYSCTRL_GRP_AUTH

User

belongs

to

a

group

which

holds

SYSCTRL

authority.

SQL_SYSMAINT_GRP_AUTH

User

belongs

to

a

group

which

holds

SYSMAINT

authority.

SQL_DBADM_GRP_AUTH

User

belongs

to

a

group

which

holds

DBADM

authority.

SQL_CREATETAB_GRP_AUTH

User

belongs

to

a

group

which

holds

CREATETAB

authority.

SQL_CREATE_NON_FENC_GRP_AUTH

User

belongs

to

a

group

which

holds

CREATE_NOT_FENCED

authority.

SQL_BINDADD_GRP_AUTH

User

belongs

to

a

group

which

holds

BINDADD

authority.

SQL_CONNECT_GRP_AUTH

User

belongs

to

a

group

which

holds

CONNECT

authority.

SQL_IMPLICIT_SCHEMA_GRP_AUTH

User

belongs

to

a

group

which

holds

IMPLICIT_SCHEMA

authority.

SQL_LOAD_GRP_AUTH

User

belongs

to

a

group

which

holds

LOAD

authority.

Note:

SYSADM,

SYSMAINT,

and

SYSCTRL

are

only

indirect

authorities

and

cannot

be

granted

directly

to

the

user.

They

are

available

only

through

the

groups

to

which

the

user

belongs.

Language

syntax:

C

Structure

/*

File:

sqlutil.h

*/

/*

Structure:

SQL-AUTHORIZATIONS

*/

/*

...

*/

SQL_STRUCTURE

sql_authorizations

{

short

sql_authorizations_len;

short

sql_sysadm_auth;

short

sql_dbadm_auth;

short

sql_createtab_auth;

short

sql_bindadd_auth;

short

sql_connect_auth;

short

sql_sysadm_grp_auth;

short

sql_dbadm_grp_auth;

short

sql_createtab_grp_auth;

short

sql_bindadd_grp_auth;

short

sql_connect_grp_auth;

short

sql_sysctrl_auth;

short

sql_sysctrl_grp_auth;

short

sql_sysmaint_auth;

short

sql_sysmaint_grp_auth;

short

sql_create_not_fenc_auth;

short

sql_create_not_fenc_grp_auth;

SQL-AUTHORIZATIONS

Chapter

27.

Application

Considerations

1017

short

sql_implicit_schema_auth;

short

sql_implicit_schema_grp_auth;

short

sql_load_auth;

short

sql_load_grp_auth;

};

/*

...

*/

COBOL

Structure

*

File:

sqlutil.cbl

01

SQL-AUTHORIZATIONS.

05

SQL-AUTHORIZATIONS-LEN

PIC

S9(4)

COMP-5.

05

SQL-SYSADM-AUTH

PIC

S9(4)

COMP-5.

05

SQL-DBADM-AUTH

PIC

S9(4)

COMP-5.

05

SQL-CREATETAB-AUTH

PIC

S9(4)

COMP-5.

05

SQL-BINDADD-AUTH

PIC

S9(4)

COMP-5.

05

SQL-CONNECT-AUTH

PIC

S9(4)

COMP-5.

05

SQL-SYSADM-GRP-AUTH

PIC

S9(4)

COMP-5.

05

SQL-DBADM-GRP-AUTH

PIC

S9(4)

COMP-5.

05

SQL-CREATETAB-GRP-AUTH

PIC

S9(4)

COMP-5.

05

SQL-BINDADD-GRP-AUTH

PIC

S9(4)

COMP-5.

05

SQL-CONNECT-GRP-AUTH

PIC

S9(4)

COMP-5.

05

SQL-SYSCTRL-AUTH

PIC

S9(4)

COMP-5.

05

SQL-SYSCTRL-GRP-AUTH

PIC

S9(4)

COMP-5.

05

SQL-SYSMAINT-AUTH

PIC

S9(4)

COMP-5.

05

SQL-SYSMAINT-GRP-AUTH

PIC

S9(4)

COMP-5.

05

SQL-CREATE-NOT-FENC-AUTH

PIC

S9(4)

COMP-5.

05

SQL-CREATE-NOT-FENC-GRP-AUTH

PIC

S9(4)

COMP-5.

05

SQL-IMPLICIT-SCHEMA-AUTH

PIC

S9(4)

COMP-5.

05

SQL-IMPLICIT-SCHEMA-GRP-AUTH

PIC

S9(4)

COMP-5.

05

SQL-LOAD-AUTH

PIC

S9(4)

COMP-5.

05

SQL-LOAD-GRP-AUTH

PIC

S9(4)

COMP-5.

*

Related

reference:

v

“sqluadau

-

Get

Authorizations”

on

page

510

SQL-AUTHORIZATIONS

1018

Common

Criteria

Certification:

Administration

and

User

Documentation

Part

3.

Security

Plug-Ins

Only

the

default

IBM-supplied

operating-system

based

authentication

and

group

plug-ins

are

supported

in

Common

Criteria

compliant

environments.

User-written

or

third-party

plug-ins

are

not

supported.

In

addition,

Kerberos-based

authorization

is

not

supported.

The

sections

that

follow

are

for

informational

purposes

only.

©

Copyright

IBM

Corp.

1993-2004

1019

1020

Common

Criteria

Certification:

Administration

and

User

Documentation

Chapter

28.

Security

plug-ins

Security

plug-ins

.

.

.

.

.

.

.

.

.

.

.

. 1021

Security

plug-in

library

locations

.

.

.

.

.

. 1024

Security

plug-in

naming

conventions

.

.

.

.

. 1025

Security

plug-in

support

for

two-part

user

IDs

1026

32-bit

and

64-bit

considerations

for

security

plug-ins

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1028

Security

plug-in

problem

determination

.

.

.

. 1029

Deploying

a

group

retrieval

plug-in

.

.

.

.

. 1030

Deploying

a

user

ID/password

plug-in

.

.

.

. 1031

Deploying

a

GSS-API

plug-in

.

.

.

.

.

.

. 1033

Deploying

a

Kerberos

plug-in

.

.

.

.

.

.

. 1034

Security

plug-ins

Authentication

in

DB2®

is

done

using

security

plug-ins.

A

security

plug-in

is

a

dynamically-loadable

library

that

DB2

loads

to

provide

the

following

functionality:

v

Group

retrieval

plug-in:

retrieves

group

membership

information

for

a

given

user

v

Client

authentication

plug-in:

manages

authentication

on

a

DB2

client.

v

Server

authentication

plug-in:

manages

authentication

on

a

DB2

server.

DB2

supports

two

mechanisms

for

plug-in

authentication:

v

Authentication

using

a

user

ID

and

password,

which

is

known

as

user

ID/password

authentication.

The

authentication

types

CLIENT,

SERVER,

SERVER_ENCRYPT,

DATA_ENCRYPT,

and

DATA_ENCRYPT_CMP

determine

how

and

where

authentication

of

a

user

occurs.

The

authentication

type

used

depends

on

the

authentication

type

specified

by

the

authentication

database

manager

configuration

parameter.

These

authentication

types

are

all

implemented

using

user

ID/password

authentication

plug-ins.

v

Authentication

using

GSS-API,

formally

known

as

Generic

Security

Service

Application

Program

Interface,

Version

2

(IETF

RFC2743)

and

Generic

Security

Service

API

Version

2:

C-Bindings

(IETF

RFC2744).

Kerberos

authentication

is

also

implemented

using

GSS-API.

The

authentication

types

KERBEROS,

GSSPLUGIN,

KRB_SERVER_ENCRYPT,

and

GSS_SERVER_ENCRYPT

use

GSS-API

authentication

plug-ins.

KRB_SERVER_ENCRYPT

and

GSS_SERVER_ENCRYPT

support

both

GSS-API

authentication

and

user

ID/password

authentication;

however,

GSS-API

authentication

is

the

preferred

authentication

type.

Each

of

the

plug-ins

can

be

used

independently

or

in

conjunction

with

one

or

more

of

the

other

plug-ins.

For

example,

you

might

only

use

a

server

authentication

plug-in

and

assume

the

DB2

defaults

for

client

and

group

authentication.

Alternatively,

you

might

have

only

a

group

or

client

authentication

plug-in.

The

only

situation

where

both

a

client

and

server

plug-in

are

required

is

for

GSS-API

authentication

plug-ins.

In

DB2

Universal

Database

for

Linux,

UNIX,

and

Windows

version

8.2,

the

default

behavior

is

to

use

a

user

ID/password

plug-in

that

implements

an

operating-system-level

mechanism

for

authentication.

In

all

previous

releases

of

DB2,

the

default

behavior

is

to

directly

use

operating-system-level

authentication

without

a

plug-in

implementation.

In

DB2

Universal

Database

for

Linux,

UNIX,

and

Windows

version

8.2,

client-side

Kerberos

support

is

available

on

Solaris,

AIX®,

Windows®,

and

IA32

Linux

operating

systems;

however,

it

is

only

enabled

by

default

on

Windows.

©

Copyright

IBM

Corp.

1993-2004

1021

DB2

includes

sets

of

plug-ins

for

group

retrieval,

user

ID/password

authentication,

and

for

Kerberos

authentication.

With

the

security

plug-in

architecture

you

can

customize

DB2’s

authentication

behavior

by

either

developing

your

own

plug-ins,

or

buying

plug-ins

from

a

third

party.

Deployment

of

security

plug-ins

on

DB2

clients:

DB2

clients

can

support

one

group

plug-in,

one

user

ID/password

authentication

plug-in,

and

will

negotiate

with

the

DB2

server

for

a

particular

GSS-API

plug-in.

This

negotiation

consists

of

a

scan

by

the

client

of

the

DB2

server’s

list

of

implemented

GSS-API

plug-ins

for

the

first

authentication

plug-in

name

that

matches

an

authentication

plug-in

implemented

on

the

client.

The

server’s

list

of

plug-ins

is

a

user-specified

database

manager

configuration

parameter

value

that

contains

the

names

of

all

of

the

plug-ins

that

are

implemented

on

the

server.

The

following

figure

portrays

the

security

plug-in

infrastructure

on

a

DB2

client.

User ID/password
client plug-in

Kerberos
client plug-in

GSS-API
client plug-in

Group plug-in

DB2 Client

Security layer

Plug-in interface

Deployment

of

security

plug-ins

on

DB2

servers:

DB2

servers

can

support

one

group

plug-in,

one

user

ID/password

authentication

plug-in,

and

multiple

GSS-API

plug-ins.

The

multiple

GSS-API

plug-ins

are

named

in

a

database

manager

configuration

parameter

value

as

a

list.

Only

one

GSS-API

plug-in

in

this

list

can

be

a

Kerberos

plug-in.

In

addition

to

server-side

security

plug-ins,

you

might

also

need

to

deploy

client

authorization

plug-ins

on

your

database

server.

When

you

run

instance-level

operations

like

db2start

and

db2trc,

DB2

performs

authorization

checking

for

the

operation

using

client

authentication

plug-ins.

Therefore,

you

should

install

the

client

authentication

plug-in

that

corresponds

to

the

server

plug-in

that

is

specified

by

the

authentication

database

manager

configuration

parameter.

If

you

do

not

use

client

authentication

plug-ins

on

the

database

server,

instance

level

operations

such

as

db2start

will

fail.

For

example,

if

the

authentication

type

is

SERVER

and

no

user-supplied

client

plug-in

is

used,

DB2

will

use

the

IBM-shipped

default

client

operating-system

plug-in.

The

following

figure

portrays

the

security

plug-in

1022

Common

Criteria

Certification:

Administration

and

User

Documentation

infrastructure

on

a

DB2

server.

User ID/password
client plug-in

Kerberos
client plug-in

GSS-API
client plug-in

Group plug-in

DB2 Server

Security layer

Plug-in interface

User ID/password
server plug-in

Kerberos
server plug-in

GSS-API
server plug-in

Enabling

security

plug-ins:

The

system

administrator

can

specify

the

names

of

the

plug-ins

to

use

for

each

authentication

mechanism

by

updating

certain

plug-in-related

database

manager

configuration

parameters.

If

these

parameters

are

null,

they

will

default

to

the

DB2-supplied

plug-ins

for

group

retrieval,

user

ID/password

management,

or

Kerberos

(if

authentication

is

set

to

Kerberos

--

on

the

server).

However,

DB2

does

not

provide

a

default

GSS-API

plug-in.

Therefore,

if

the

system

administrator

specifies

an

authentication

type

of

GSSPLUGIN

in

authentication,

she

must

also

specify

a

GSS-API

authentication

plug-in

in

srvcon_gssplugin_list.

How

DB2

loads

security

plug-ins:

All

of

the

supported

plug-ins

identified

by

the

database

manager

configuration

parameters

are

loaded

when

the

database

manager

starts.

The

DB2

client

will

load

an

appropriate

plug-in

based

on

the

security

mechanism

negotiated

with

the

server

during

connect

or

attach

operations.

It

is

possible

that

a

client

application

can

cause

multiple

security

plug-ins

to

be

concurrently

loaded

and

used.

This

situation

can

occur,

for

example,

in

a

threaded

program

that

has

concurrent

connections

to

different

databases

from

different

instances.

For

other

actions

that

require

authorization

(such

as

updating

the

database

manager

configuration,

starting

and

stopping

the

database

manager,

turning

DB2

trace

on

and

off),

the

DB2

client

program

will

load

a

plug-in

specified

in

another

database

manager

configuration

parameter.

If

authentication

is

set

to

GSSPLUGIN,

DB2

will

use

the

plug-in

specified

by

local_gssplugin.

If

authentication

is

set

to

KERBEROS,

DB2

will

use

the

plug-in

specified

by

clnt_krb_plugin.

Otherwise,

DB2

will

use

the

plug-in

specified

by

clnt_pw_plugin.

Developing

security

plug-ins:

If

you

are

developing

a

security

plug-in,

you

need

to

implement

the

standard

authentication

functions

that

DB2

will

invoke.

For

the

available

types

of

plug-ins,

the

functionality

you

will

need

to

implement

is

as

follows:

Chapter

28.

Security

plug-ins

1023

Group

retrieval

Gets

the

list

of

groups

to

which

a

user

belongs.

User

ID/password

authentication

Identifies

the

default

security

context

(client

only),

validates

and

optionally

changes

a

password,

determines

if

a

given

string

represents

a

valid

user

(server

only),

modifies

the

user

ID

or

password

provided

on

the

client

before

it

is

sent

to

the

server

(client

only),

returns

the

DB2

authorization

ID

associated

with

a

given

user.

GSS-API

authentication

Implements

the

required

GSS-API

functions,

identifies

the

default

security

context

(client

only),

generates

initial

credentials

based

on

a

user

ID

and

password

and

optionally

changes

password

(client

only),

creates

and

accepts

security

tickets,

and

returns

the

DB2

authorization

ID

associated

with

a

given

GSS-API

security

context.

Related

concepts:

v

“Authentication

methods

for

your

server”

on

page

38

v

“Security

plug-in

library

locations”

on

page

1024

v

“How

DB2

loads

security

plug-ins”

on

page

1037

v

“Security

plug-in

APIs”

on

page

1047

Related

reference:

v

“authentication

-

Authentication

type”

on

page

783

v

“srvcon_auth

-

Authentication

type

for

incoming

connections

at

the

server”

on

page

1087

v

“Security

plug-in

samples”

in

the

Application

Development

Guide:

Building

and

Running

Applications

Security

plug-in

library

locations

After

you

acquire

your

security

plug-ins

(by

developing

them

yourself,

or

purchasing

them

from

a

third

party),

copy

them

to

specific

locations

on

your

database

server.

DB2®

looks

for

client-side

user

authentication

plug-ins

in

the

following

directory:

v

UNIX®

32-bit:

$DB2PATH/security32/plugin/client

v

UNIX

64-bit:

$DB2PATH/security64/plugin/client

v

WINDOWS

32-bit

and

64-bit:

$DB2PATH\security\plugin\instance

name\client

Note:

On

Windows®-based

platforms,

the

subdirectories

instance

name

and

client

are

not

created

automatically.

The

instance

owner

has

to

manually

create

them.

DB2

will

look

for

server-side

user

authentication

plug-ins

in

the

following

directory:

v

UNIX

32-bit:

$DB2PATH/security32/plugin/server

v

UNIX

64-bit:

$DB2PATH/security64/plugin/server

v

WINDOWS

32-bit

and

64-bit:

$DB2PATH\security\plugin\instance

name\server

1024

Common

Criteria

Certification:

Administration

and

User

Documentation

Note:

On

Windows-based

platforms,

the

subdirectories

instance

name

and

server

are

not

created

automatically.

The

instance

owner

has

to

manually

create

them.

DB2

will

look

for

group

plug-ins

in

the

following

directory:

v

UNIX

32-bit:

$DB2PATH/security32/plugin/group

v

UNIX

64-bit:

$DB2PATH/security64/plugin/group

v

WINDOWS

32-bit

and

64-bit:

$DB2PATH\security\plugin\instance

name\group

Note:

On

Windows-based

platforms,

the

subdirectories

instance

name

and

group

are

not

created

automatically.

The

instance

owner

has

to

manually

create

them.

Related

concepts:

v

“Security

plug-ins”

on

page

1021

v

“How

DB2

loads

security

plug-ins”

on

page

1037

Related

tasks:

v

“Deploying

a

group

retrieval

plug-in”

on

page

1030

v

“Deploying

a

user

ID/password

plug-in”

on

page

1031

v

“Deploying

a

GSS-API

plug-in”

on

page

1033

v

“Deploying

a

Kerberos

plug-in”

on

page

1034

Related

reference:

v

“Restrictions

on

security

plug-in

libraries”

on

page

1038

Security

plug-in

naming

conventions

The

security

plug-in

libraries

must

have

the

appropriate

file

name

extension

for

each

individual

platform.

By

operating

system

these

extensions

are

as

follows:

v

Windows®:

.DLL

v

AIX®:

.a

v

Linux,

HP

IPF

and

Solaris

Operating

Environment:

.so

v

HPUX

on

PA-RISC:

.sl

For

example,

assume

you

have

a

security

plug-in

library

called

MyPlugin.

For

each

supported

operating

system,

the

appropriate

library

file

name

follows:

v

Windows

32-bit:

MyPlugin.dll

v

Windows

64-bit:

MyPlugin64.dll

v

AIX

32

or

64-bit:

MyPlugin.a

v

SUN

32

or

64-bit,

Linux

32

or

64

bit,

HP

32

or

64

bit

on

IPF:

MyPlugin.so

v

HP-UX

32

or

64-bit

on

PA-RISC:

MyPlugin.sl

Note:

The

suffix

″64″

is

only

required

on

the

library

name

for

64-bit

Windows

security

plug-ins.

When

you

update

the

database

manager

configuration

with

the

name

of

a

security

plug-in,

use

the

full

name

of

the

library

without

the

″64″

suffix

and

omit

both

the

file

extension

and

any

qualified

path

portion

of

the

name.

Regardless

of

the

operating

system,

the

security

plug-in

library

called

MyPlugin

would

be

registered

as

follows:

UPDATE

DBM

CFG

USING

CLNT_PW_PLUGIN

MyPlugin

Chapter

28.

Security

plug-ins

1025

The

security

plug-in

name

is

case

sensitive,

and

must

exactly

match

the

library

name.

DB2®

uses

the

value

from

the

relevant

database

manager

configuration

parameter

to

assemble

the

library

path,

and

then

uses

the

library

path

to

load

the

security

plug-in

library.

To

avoid

security

plug-in

name

conflicts,

you

should

name

the

plug-in

using

the

authentication

method

used,

and

an

identifying

symbol

of

the

firm

that

wrote

the

plug-in.

For

instance,

if

the

company

Foo,

Inc.

wrote

a

plug-in

implementing

the

authentication

method

somemethod,

the

plug-in

could

have

a

name

like

FOOsomemethod.DLL.

The

maximum

length

of

a

plug-in

name

(not

including

the

file

extension

and

the

″64″

suffix)

is

limited

to

32

bytes.

There

is

no

maximum

number

of

plug-ins

supported

by

the

database

server,

but

the

maximum

length

of

the

comma-separated

list

of

plug-ins

in

the

database

manager

configuration

is

255

bytes.

Two

defines

located

in

the

include

file

sqlenv.h

establish

these

two

limits:

#define

SQL_PLUGIN_NAME_SZ

32

/*

plug-in

name

*/

#define

SQL_SRVCON_GSSPLUGIN_LIST_SZ

255

/*

GSS

API

plug-in

list

*/

The

security

plug-in

library

files

must

have

the

following

file

permissions:

v

Owned

by

the

instance

owner.

v

Readable

by

all

users

on

the

system.

v

Executable

by

all

users

on

the

system.

Related

concepts:

v

“Configuration

parameters”

on

page

769

v

“Security

plug-ins”

on

page

1021

v

“Security

plug-in

library

locations”

on

page

1024

Related

tasks:

v

“Configuring

DB2

with

configuration

parameters”

on

page

779

v

“Deploying

a

group

retrieval

plug-in”

on

page

1030

v

“Deploying

a

user

ID/password

plug-in”

on

page

1031

v

“Deploying

a

GSS-API

plug-in”

on

page

1033

v

“Deploying

a

Kerberos

plug-in”

on

page

1034

Related

reference:

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION”

on

page

384

v

“clnt_krb_plugin

-

Client

Kerberos

plug-in”

on

page

1085

v

“clnt_pw_plugin

-

Client

userid-password

plug-in”

on

page

1085

Security

plug-in

support

for

two-part

user

IDs

DB2®

UDB

for

Linux,

UNIX®,

and

Windows®

supports

the

use

of

two-part

user

IDs,

and

the

mapping

of

two-part

user

IDs

to

two-part

authorization

IDs.

For

example,

consider

a

Windows

operating

system

two-part

user

ID

composed

of

a

domain

and

user

ID

such

as:

MEDWAY\pieter.

In

this

example,

MEDWAY

is

a

domain

and

pieter

is

the

user

name.

In

DB2,

you

can

specify

whether

this

two-part

user

ID

should

be

mapped

to

either

a

one-part

authorization

ID

or

a

two-part

authorization

ID.

1026

Common

Criteria

Certification:

Administration

and

User

Documentation

In

DB2,

prior

to

version

8.2,

you

could

only

have

a

one-part

user

ID

that

mapped

to

a

one-part

authorization

ID.

In

DB2

Version

8.2,

by

default,

one-part

user

IDs

map

to

one-part

authorization

IDs

and

two-part

user

IDs

map

to

one-part

authorization

IDs.

The

mapping

of

a

two-part

user

ID

to

a

two-part

authorization

ID

is

supported,

but

is

not

the

default

behavior.

The

default

mapping

of

a

two-part

user

ID

to

a

one-part

user

ID

allows

a

user

to

connect

to

the

database

using:

db2

connect

to

db

user

MEDWAY\pieter

using

pw

In

this

situation,

if

the

default

behavior

is

used,

the

user

ID

MEDWAY\pieter

is

resolved

to

the

authorization

ID

PETER.

If

the

support

for

mapping

a

two-part

user

ID

to

a

two-part

authorization

ID

is

enabled,

the

authorization

ID

would

be

MEDWAY\PETER.

To

enable

DB2

to

map

two-part

user

IDs

to

two-part

authorization

IDs,

specify

the

appropriate

plug-in

when

updating

the

database

manager

configuration.

(The

relevant

database

manager

configuration

parameters

are

described

below.)

DB2

supplies

two

sets

of

authentication

plug-ins.

One

set

is

exclusively

for

mapping

user

IDs

to

one-part

authorization

IDs;

that

is

for

mapping

a

one-part

user

ID

to

a

one-part

authorization

ID

and

mapping

a

two-part

user

ID

to

a

one-part

authorization

ID.

The

second

set

maps

a

one-part

user

ID

to

a

one-part

authorization

ID,

and

a

two-part

user

ID

to

a

two-part

authorization

ID.

If

a

user

name

in

your

work

environment

can

be

mapped

to

multiple

accounts

defined

in

different

locations

(such

as

local

account,

domain

account,

and

trusted

domain

accounts),

you

may

want

to

specify

the

plug-ins

that

enable

two-part

authorization

ID

mapping.

It

is

important

to

note

that

a

one-part

authorization

ID,

such

as,

PETER

and

a

two-part

authorization

ID

that

combines

a

domain

and

a

user

ID

like

MEDWAY\peter

are

functionally

distinct

authorization

IDs.

The

set

of

privileges

associated

with

one

of

these

authorization

IDs

is

completely

distinct

from

the

set

of

privileges

associated

with

the

other

authorization

ID.

Care

should

be

taken

when

working

with

one-part

and

two-part

authorization

IDs.

The

following

table

identifies

the

kinds

of

plug-ins

supplied

by

DB2,

and

the

plug-in

names

for

the

specific

authentication

implementations.

Table

82.

DB2

security

plug-ins

Authentication

type

Name

of

one-part

user

ID

plug-in

Name

of

two-part

user

ID

plug-in

User

ID/password

(client)

IBMOSauthclient

IBMOSauthclientTwoPart

User

ID/password

(server)

IBMOSauthserver

IBMOSauthserverTwoPart

Kerberos

IBMkrb5

IBMkrb5TwoPart

Note:

On

Windows

64-bit

platforms,

the

characters

″64″

are

appended

to

the

plug-in

names

listed

here.

To

map

a

two-part

user

ID

to

a

two-part

authorization

ID,

you

must

specify

that

the

two-part

plug-in,

which

is

the

non-default

plug-in,

be

used.

Security

plug-ins

are

specified

at

the

instance

level

by

setting

the

security

related

database

manager

configuration

parameters

as

follows:

Chapter

28.

Security

plug-ins

1027

For

server

authentication

that

maps

two-part

user

IDs

to

two-part

authorization

IDs,

you

must

set:

v

srvcon_pw_plugin

to

IBMOSauthserverTwoPart

v

clnt_pw_plugin

to

IBMOSauthclientTwoPart

For

client

authentication

that

maps

two-part

user

IDs

to

two-part

authorization

IDs,

you

must

set:

v

srvcon_pw_plugin

to

IBMOSauthserverTwoPart

v

clnt_pw_plugin

to

IBMOSauthclientTwoPart

For

Kerberos

authentication

that

maps

two-part

user

IDs

to

two-part

authorization

IDs,

you

must

set:

v

srvcon_gssplugin_list

to

IBMOSkrb5TwoPart

v

clnt_krb_plugin

to

IBMkrb5TwoPart

The

security

plug-in

libraries

accept

two-part

user

IDs

specified

in

a

Microsoft®

Windows

Security

Account

Manager

compatible

format.

For

example,

in

the

format:

domain\user

ID.

Both

the

domain

and

user

ID

information

will

be

used

by

the

DB2

authentication

and

authorization

processes

at

connection

time.

When

you

specify

an

authentication

type

that

requires

a

user

ID/password

or

Kerberos

plug-in,

the

plug-ins

that

are

listed

in

the

″Name

of

one-part

user

ID

plug-in″

column

in

the

previous

table

are

used

by

default.

You

should

consider

implementing

the

two-part

plug-ins

when

creating

new

databases

to

avoid

conflicts

with

one-part

authorization

IDs

in

existing

databases.

New

databases

that

use

two-part

authorization

IDs

authentication

must

be

created

in

a

separate

instance

from

databases

that

use

single-part

authorization

IDs.

Related

concepts:

v

“DB2

for

Windows

NT

and

Windows

NT

security

introduction”

in

the

Administration

Guide:

Implementation

Related

tasks:

v

“DB2

for

Windows

NT

authentication

with

groups

and

domain

security”

in

the

Administration

Guide:

Implementation

Related

reference:

v

“clnt_pw_plugin

-

Client

userid-password

plug-in”

on

page

1085

v

“srvcon_pw_plugin

-

Userid-password

plug-in

for

incoming

connections

at

the

server”

on

page

1088

32-bit

and

64-bit

considerations

for

security

plug-ins

In

general,

a

32-bit

DB2®

instance

will

use

the

32-bit

security

plug-in

and

64-bit

DB2

instance

will

use

the

64-bit

security

plug-in.

However,

on

a

64-bit

instance,

DB2

supports

32-bit

applications,

which

will

require

the

32-bit

plug-in

library.

A

database

instance

where

both

the

32-bit

and

the

64-bit

applications

can

run

is

known

as

a

hybrid

instance.

If

you

have

a

hybrid

instance

and

intend

to

run

32-bit

applications,

ensure

that

the

required

32-bit

security

plug-ins

are

available

in

the

32-bit

plug-in

directory.

For

hybrid

DB2

instances

on

a

UNIX®

operating

system,

the

directories

security32

and

security64

appear.

For

a

Windows®

64-bit

hybrid

1028

Common

Criteria

Certification:

Administration

and

User

Documentation

instance,

both

32-bit

and

64-bit

security

plug-ins

are

located

in

the

same

directory,

but

64-bit

plug-in

names

have

a

suffix,

″64″.

If

you

want

to

migrate

from

a

32-bit

instance

to

a

64-bit

instance,

you

should

obtain

versions

of

your

security

plug-ins

that

are

recompiled

for

64-bit.

If

you

acquired

your

security

plug-ins

from

a

vendor

that

does

not

supply

64-bit

plug-in

libraries,

you

can

implement

a

64-bit

stub

that

executes

a

32-bit

application.

In

this

situation,

the

security

plug-in

is

an

external

program

rather

than

a

library.

Related

concepts:

v

“Security

plug-ins”

on

page

1021

v

“Security

plug-in

library

locations”

on

page

1024

Related

tasks:

v

“Migrating

applications

from

32-bit

to

64-bit

environments”

in

the

Application

Development

Guide:

Building

and

Running

Applications

Security

plug-in

problem

determination

Problems

with

security

plug-ins

are

reported

in

two

ways:

through

SQL

errors

and

through

the

administrative

log.

Following

are

the

SQLCODE

values

related

to

security

plug-ins:

v

SQLCODE

-1365

is

returned

when

a

plug-in

error

occurs

during

db2start

or

db2stop.

v

SQLCODE

-1366

is

returned

whenever

there

is

a

local

authorization

problem.

v

SQLCODE

-30082

is

returned

for

all

connection-related

plug-in

errors.

The

administrative

log

is

a

good

resource

for

debugging

and

administrating

security

plug-ins.

To

see

the

administrative

log

on

UNIX®,

check

sqllib/db2dump/instance

name.nfy.

To

see

the

administrative

log

on

Windows

operating

systems,

use

the

Event

Viewer

tool.

The

Event

Viewer

tool

can

be

found

by

navigating

from

the

Windows

operating

system

″Start″

button

to

Settings

->

Control

Panel

->

Administrative

Tools

-l>

Event

Viewer.

Following

are

the

administration

log

values

related

to

security

plug-ins:

v

13000

indicates

that

a

call

to

a

GSS-API

security

plug-in

API

failed

with

an

error,

and

returned

an

optional

error

message.

SQLT_ADMIN_GSS_API_ERROR

(13000)

Plug-in

"plug-in

name"

received

error

code

"error

code"

from

GSS

API

"gss

api

name"

with

the

error

message

"error

message"

v

13001

indicates

that

a

call

to

a

DB2®

security

plug-in

API

failed

with

an

error,

and

returned

an

optional

error

message.

SQLT_ADMIN_PLUGIN_API_ERROR(13001)

Plug-in

"plug-in

name"

received

error

code

"error

code"

from

DB2

security

plug-in

API

"gss

api

name"

with

the

error

message

"error

message"

v

13002

indicates

that

DB2

failed

to

unload

a

plug-in.

SQLT_ADMIN_PLUGIN_UNLOAD_ERROR

(13002)

Unable

to

unload

plug-in

"plug-in

name".

No

further

action

required.

v

13003

indicates

a

bad

principal

name.

Chapter

28.

Security

plug-ins

1029

SQLT_ADMIN_INVALID_PRIN_NAME

(13003)

The

principal

name

"principal

name"

used

for

"plug-in

name"

is

invalid.

Fix

the

principal

name.

v

13004

indicates

that

the

plug-in

name

is

not

valid.

Path

separators

(On

UNIX

″/″

and

on

Windows®

″\″)

are

not

allowed

in

the

plug-in

name.

SQLT_ADMIN_INVALID_PLGN_NAME

(13004)

The

plug-in

name

"plug-in

name"

is

invalid.

Fix

the

plug-in

name.

v

13005

indicates

that

the

security

plug-in

failed

to

load.

Ensure

the

plug-in

is

in

the

correct

directory

and

that

the

appropriate

database

manager

configuration

parameters

are

updated.

SQLT_ADMIN_PLUGIN_LOAD_ERROR

(13005)

Unable

to

load

plug-in

"plug-in

name".

Verify

the

plug-in

existence

and

directory

where

it

is

located

is

correct.

v

13006

indicates

that

an

unexpected

error

was

encountered

by

a

security

plug-in.

Gather

all

the

db2support

information,

if

possible

capture

a

db2trc,

and

then

call

IBM®

support

for

further

assistance.

SQLT_ADMIN_PLUGIN_UNEXP_ERROR

(13006)

Plug-in

encountered

unexpected

error.

Contact

IBM

Support

for

further

assistance.

Note:

If

you

are

using

security

plug-ins

on

a

Windows

64-bit

database

server

and

are

seeing

a

load

error

for

a

security

plug-in,

see

the

topics

″32-bit

and

64-bit

considerations

for

security

plug-ins″

and

″Security

plug-in

naming

conventions″.

The

64-bit

plug-in

library

requires

the

suffix

″64″

on

the

library

name,

but

the

entry

in

the

security

plug-in

database

manager

configuration

parameters

should

not

indicate

this

suffix.

Related

concepts:

v

“Event

monitors”

in

the

System

Monitor

Guide

and

Reference

v

“Error

Information

in

the

SQLCODE,

SQLSTATE,

and

SQLWARN

Fields”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“SQLSTATE

and

SQLCODE

Variables

in

C

and

C++”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“SQLCODE

and

SQLSTATE

Differences

among

IBM

Relational

Database

Systems”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“DB2

trace

(db2trc)”

in

the

Troubleshooting

Guide

v

“Security

plug-ins”

on

page

1021

v

“32-bit

and

64-bit

considerations

for

security

plug-ins”

on

page

1028

v

“Security

plug-in

APIs”

on

page

1047

Related

reference:

v

“CREATE

EVENT

MONITOR

statement”

in

the

SQL

Reference,

Volume

2

v

“db2trc

-

Trace

Command”

in

the

Command

Reference

v

“Error

messages

for

security

plug-ins”

on

page

1042

v

“Required

APIs

and

Definitions

for

GSS-API

authentication

plug-ins”

on

page

1080

v

“APIs

for

group

retrieval

plug-ins”

on

page

1048

v

“APIs

for

user

ID/password

authentication

plug-ins”

on

page

1057

Deploying

a

group

retrieval

plug-in

If

you

want

to

customize

the

DB2

security

system’s

group

retrieval

behavior,

you

can

develop

your

own

group

retrieval

plug-in

or

buy

one

from

a

third

party.

1030

Common

Criteria

Certification:

Administration

and

User

Documentation

After

you

acquire

a

group

retrieval

plug-in

that

is

suitable

for

your

database

management

system,

you

can

deploy

it.

Procedure:

To

deploy

a

group

retrieval

plug-in

on

the

database

server,

perform

the

following

steps:

1.

Place

the

group

retrieval

plug-in

library

in

the

server’s

group

plug-in

directory.

2.

Update

the

database

manager

configuration

parameter

group_plugin

with

the

name

of

the

plug-in.

To

deploy

a

group

retrieval

plug-in

on

database

clients,

perform

the

following

steps:

1.

Place

the

group

retrieval

plug-in

library

in

the

client’s

group

plug-in

directory.

2.

On

the

database

client,

update

the

database

manager

configuration

parameter

group_plugin

with

the

name

of

the

plug-in.

Related

concepts:

v

“Security

plug-ins”

on

page

1021

v

“Security

plug-in

library

locations”

on

page

1024

v

“Security

plug-in

naming

conventions”

on

page

1025

Related

tasks:

v

“Deploying

a

user

ID/password

plug-in”

on

page

1031

v

“Deploying

a

GSS-API

plug-in”

on

page

1033

v

“Deploying

a

Kerberos

plug-in”

on

page

1034

Related

reference:

v

“group_plugin

-

Group

plug-in”

on

page

1086

Deploying

a

user

ID/password

plug-in

If

you

want

to

customize

the

DB2

security

system’s

user

ID/password

authentication

behavior,

you

can

develop

your

own

user

ID/password

authentication

plug-ins

or

buy

one

from

a

third

party.

After

you

acquire

user

ID/password

authentication

plug-ins

that

are

suitable

for

your

database

management

system,

you

can

deploy

them.

Depending

on

their

intended

usage,

all

user

ID-password

based

authentication

plug-ins

must

be

placed

in

either

the

client

plug-in

directory

or

the

server

plug-in

directory.

If

a

plug-in

is

placed

in

the

client

plug-in

directory,

it

will

be

used

both

for

local

authorization

checking

and

for

validating

the

client

when

it

attempts

to

connect

with

the

server.

If

the

plug-in

is

placed

in

the

server

plug-in

directory,

it

will

be

used

for

handling

incoming

connections

to

the

server

and

for

checking

whether

an

authid

exists

and

is

valid

whenever

the

GRANT

statement

is

issued

without

specifying

either

the

keyword

USER

or

GROUP.

In

most

situations,

user

ID/password

authentication

requires

only

a

server-side

plug-in.

It

is

possible,

though

generally

deemed

less

useful,

to

have

only

a

client

user

ID/password

plug-in.

It

is

possible,

though

quite

unusual

to

require

matching

user

ID/password

plug-ins

on

both

the

client

and

the

server.

Chapter

28.

Security

plug-ins

1031

Procedure:

To

deploy

a

user

ID/password

authentication

plug-in

on

the

database

server,

perform

the

following

steps:

1.

Place

the

user

ID/password

authentication

plug-in

library

in

the

server’s

plug-in

directory.

2.

Update

the

database

manager

configuration

parameter

srvcon_pw_plugin

with

the

name

of

the

server

plug-in.

This

plug-in

is

used

by

the

server

when

it

is

handling

CONNECT

and

ATTACH

requests.

3.

Either:

v

Set

the

database

manager

configuration

parameter

srvcon_auth

to

the

CLIENT,

SERVER,

SERVER_ENCRYPT,

DATA_ENCRYPT,

or

DATA_ENCRYPT_CMP

authentication

type.

Or:

v

Set

the

database

manager

configuration

parameter

srvcon_auth

to

NOT_SPECIFIED

and

set

authentication

to

CLIENT,

SERVER,

SERVER_ENCRYPT,

DATA_ENCRYPT,

or

DATA_ENCRYPT_CMP

authentication

type.

To

deploy

a

user

ID/password

authentication

plug-in

on

database

clients,

perform

the

following

steps:

1.

Place

the

user

ID/password

authentication

plug-in

library

in

the

client

plug-in

directory

on

the

client.

2.

Update

the

database

manager

configuration

parameter

clnt_pw_plugin

with

the

name

of

the

client

plug-in.

This

plug-in

is

loaded

and

called

regardless

of

where

the

authentication

is

being

done,

that

is,

not

only

when

the

database

configuration

parameter,

authentication

is

set

to

CLIENT.

For

local

authorization

on

a

client,

server,

or

gateway,

using

a

user

ID/password

authentication

plug-in,

perform

the

following

steps:

1.

Place

the

user

ID/password

authentication

plug-in

library

in

the

client

plug-in

directory

on

the

client,

server,

or

gateway.

2.

Update

the

database

manager

configuration

parameter

clnt_pw_plugin

with

the

name

of

the

plug-in.

3.

Set

the

authentication

database

manager

configuration

parameter

to

CLIENT,

SERVER,

SERVER_ENCRYPT,

DATA_ENCRYPT,

or

DATA_ENCRYPT_CMP.

Related

concepts:

v

“Security

plug-ins”

on

page

1021

v

“Security

plug-in

library

locations”

on

page

1024

Related

tasks:

v

“Deploying

a

group

retrieval

plug-in”

on

page

1030

v

“Deploying

a

GSS-API

plug-in”

on

page

1033

Related

reference:

v

“authentication

-

Authentication

type”

on

page

783

v

“GRANT

(Database

Authorities)”

on

page

700

v

“clnt_pw_plugin

-

Client

userid-password

plug-in”

on

page

1085

1032

Common

Criteria

Certification:

Administration

and

User

Documentation

v

“srvcon_auth

-

Authentication

type

for

incoming

connections

at

the

server”

on

page

1087

v

“srvcon_pw_plugin

-

Userid-password

plug-in

for

incoming

connections

at

the

server”

on

page

1088

Deploying

a

GSS-API

plug-in

If

you

want

to

customize

the

DB2

security

system’s

authentication

behavior,

you

can

develop

your

own

authentication

plug-ins

using

the

GSS-API,

or

buy

one

from

a

third

party.

After

you

acquire

GSS-API

authentication

plug-ins

that

are

suitable

for

your

database

management

system,

you

can

deploy

them.

When

using

GSS-API

or

Kerberos

plug-ins,

you

must

have

matching

plug-in

types

on

the

client

and

the

server.

The

plug-ins

on

the

client

and

server

need

not

be

from

the

same

vendor,

but

they

must

generate

and

consume

compatible

GSS-API

tokens.

For

example,

any

combination

of

Kerberos

plug-ins

deployed

on

the

client

and

the

server

is

supported

because

Kerberos

plug-ins

are

standardized;

however,

different

implementations

of

less

standardized

GSS-API

mechanisms,

such

as

x.509

certificates

might

not

be

completely

compatible.

Depending

on

the

intended

usage,

all

GSS-API

authentication

plug-ins

must

be

placed

in

either

the

client

plug-in

directory

or

the

server

plug-in

directory.

If

a

plug-in

is

placed

in

the

client

plug-in

directory,

it

will

be

used

for

local

authorization

checking

and

when

a

client

attempts

to

connect

with

the

server.

If

the

plug-in

is

placed

in

the

server

plug-in

directory,

it

will

be

used

for

handling

incoming

connections

to

the

server

and

for

checking

whether

an

authid

exists

and

is

valid

whenever

the

GRANT

statement

is

issued

without

specifying

either

the

keyword

USER

or

GROUP.

Procedure:

To

deploy

a

GSS-API

authentication

plug-in

on

the

database

server,

perform

the

following

steps:

1.

Place

the

GSS-API

authentication

plug-in

library

in

the

server

plug-in

directory

on

the

server.

You

can

copy

numerous

GSS-API

plug-ins

into

this

directory.

2.

Update

the

database

manager

configuration

parameter

srvcon_gssplugin_list

with

an

ordered,

comma-delimited

list

of

the

names

of

the

plug-ins

installed

in

the

GSS-API

plug-in

directory.

3.

Either:

v

Set

the

database

manager

configuration

parameter

srvcon_auth

to

GSSPLUGIN.

Or:

v

Set

the

database

manager

configuration

parameter

srvcon_auth

to

NOT_SPECIFIED

and

set

authentication

to

GSSPLUGIN.

To

deploy

a

GSS-API

authentication

plug-in

on

database

clients,

perform

the

following

steps:

1.

Place

the

GSS-API

authentication

plug-in

library

in

the

client

plug-in

directory

on

the

client.

You

can

copy

numerous

GSS-API

plug-ins

into

this

directory.

The

client

selects

the

appropriate

GSS-API

plug-in

for

authentication

during

a

CONNECT

or

ATTACH

operation

by

picking

the

first

GSS-API

plug-in

contained

in

the

server’s

plug-in

list

that

is

available

on

the

client.

Chapter

28.

Security

plug-ins

1033

2.

Optional:

Catalog

the

databases

that

the

client

will

access,

indicating

that

the

client

will

only

accept

a

GSS-API

authentication

plug-in

as

the

authentication

mechanism.

For

example:

CATALOG

DB

testdb

AT

NODE

testnode

AUTHENTICATION

GSSPLUGIN

For

local

authorization

on

a

client,

server,

or

gateway

using

a

GSS-API

authentication

plug-in,

perform

the

following

steps:

1.

Place

the

GSS-API

authentication

plug-in

library

in

the

client

plug-in

directory

on

the

client,

server,

or

gateway.

2.

Update

the

database

manager

configuration

parameter

local_gssplugin

with

the

name

of

the

plug-in.

3.

Set

the

authentication

database

manager

configuration

parameter

to

GSSPLUGIN,

or

GSS_SERVER_ENCRYPT.

Related

concepts:

v

“Security

plug-ins”

on

page

1021

v

“Security

plug-in

library

locations”

on

page

1024

Related

reference:

v

“authentication

-

Authentication

type”

on

page

783

v

“CATALOG

DATABASE”

on

page

249

v

“local_gssplugin

-

GSS

API

plug-in

used

for

local

instance

level

authorization”

on

page

1086

v

“srvcon_auth

-

Authentication

type

for

incoming

connections

at

the

server”

on

page

1087

v

“srvcon_gssplugin_list

-

List

of

GSS

API

plug-ins

for

incoming

connections

at

the

server”

on

page

1087

v

“Security

plug-in

samples”

in

the

Application

Development

Guide:

Building

and

Running

Applications

Deploying

a

Kerberos

plug-in

If

you

want

to

customize

the

DB2

security

system’s

Kerberos

authentication

behavior,

you

can

develop

your

own

Kerberos

authentication

plug-ins

or

buy

one

from

a

third

party.

After

you

acquire

Kerberos

authentication

plug-ins

that

are

suitable

for

your

database

management

system,

you

can

deploy

them.

Procedure:

To

deploy

a

Kerberos

authentication

plug-in

on

the

database

server,

perform

the

following

steps:

1.

Place

the

Kerberos

authentication

plug-in

library

in

the

plug-in

directory

on

the

server.

2.

Update

the

database

manager

configuration

parameter

srvcon_gssplugin_list,

which

is

presented

as

an

ordered,

comma

delimited

list,

to

include

the

Kerberos

server

plug-in

name.

Only

one

plug-in

in

this

list

can

be

a

Kerberos

plug-in.

If

this

list

is

blank

and

authentication

is

set

to

KERBEROS

or

KRB_SVR_ENCRYPT,

the

default

DB2

Kerberos

plug-in:

IBMkrb5

will

be

used.

3.

Either:

1034

Common

Criteria

Certification:

Administration

and

User

Documentation

v

Set

the

database

manager

configuration

parameter

srvcon_auth

to

the

KERBEROS

or

KRB_SERVER_ENCRYPT

authentication

type.

Or:

v

Set

the

database

manager

configuration

parameter

srvcon_auth

to

NOT_SPECIFIED

and

set

authentication

to

KERBEROS

or

KRB_SERVER_ENCRYPT

authentication

type.

To

deploy

a

Kerberos

authentication

plug-in

on

database

clients,

perform

the

following

steps:

1.

Place

the

Kerberos

authentication

plug-in

library

in

the

client

plug-in

directory

on

the

client.

2.

Update

the

database

manager

configuration

parameter

clnt_krb_plugin

with

the

name

of

the

Kerberos

plug-in.

If

clnt_krb_plugin

is

blank,

DB2

assumes

that

the

client

cannot

use

Kerberos

authentication.

This

setting

is

only

appropriate

when

the

server

cannot

support

plug-ins.

See

the

limitations

on

the

use

of

security

plug-ins

for

more

information.

If

both

the

server

and

the

client

support

security

plug-ins,

the

client

will

not

use

the

value

of

clnt_krb_plugin

because

the

server

has

a

GSS-API

plug-in

with

the

name

IBMkrb5

listed.

For

local

authorization

on

a

client,

server,

or

gateway

using

a

Kerberos

authentication

plug-in,

perform

the

following

steps:

a.

Place

the

Kerberos

authentication

plug-in

library

in

the

client

plug-in

directory

on

the

client,

server,

or

gateway.

b.

Update

the

database

manager

configuration

parameter

clnt_krb_plugin

with

the

name

of

the

plug-in.

c.

Set

the

authentication

database

manager

configuration

parameter

to

KERBEROS,

or

KRB_SERVER_ENCRYPT.

The

Kerberos

plug-in

provided

by

DB2

is

named

IBMkrb5.

3.

Optional:

Catalog

the

databases

that

the

client

will

access,

indicating

that

the

client

will

only

use

a

Kerberos

authentication

plug-in.

For

example:

CATALOG

DB

testdb

AT

NODE

testnode

AUTHENTICATION

KERBEROS

TARGET

PRINCIPAL

service/host@REALM

Note:

For

platforms

supporting

Kerberos,

the

IBMkrb5

library

will

be

present

in

the

client

plug-in

directory.

DB2

will

recognize

this

library

as

a

valid

GSS-API

plug-in,

because

Kerberos

plug-ins

are

implemented

using

GSS-API

plug-in.

Related

concepts:

v

“Security

plug-ins”

on

page

1021

v

“Security

plug-in

library

locations”

on

page

1024

Related

tasks:

v

“Deploying

a

group

retrieval

plug-in”

on

page

1030

v

“Deploying

a

user

ID/password

plug-in”

on

page

1031

v

“Deploying

a

GSS-API

plug-in”

on

page

1033

Related

reference:

v

“authentication

-

Authentication

type”

on

page

783

v

“CATALOG

DATABASE”

on

page

249

v

“clnt_krb_plugin

-

Client

Kerberos

plug-in”

on

page

1085

v

“srvcon_auth

-

Authentication

type

for

incoming

connections

at

the

server”

on

page

1087

Chapter

28.

Security

plug-ins

1035

v

“srvcon_gssplugin_list

-

List

of

GSS

API

plug-ins

for

incoming

connections

at

the

server”

on

page

1087

1036

Common

Criteria

Certification:

Administration

and

User

Documentation

Chapter

29.

Developing

security

plug-ins

How

DB2

loads

security

plug-ins

.

.

.

.

.

. 1037

Restrictions

on

security

plug-in

libraries

.

.

.

. 1038

Return

codes

for

security

plug-ins

.

.

.

.

.

. 1040

Error

messages

for

security

plug-ins

.

.

.

.

. 1042

Calling

sequences

for

the

security

plug-in

APIs

1043

How

DB2

loads

security

plug-ins

Each

plug-in

library

must

contain

an

initialization

function

with

a

specific

name

determined

by

the

plug-in

type:

v

Server

side

authentication

plug-in:

db2secServerAuthPluginInit()

v

Client

side

authentication

plug-in:

db2secClientAuthPluginInit()

v

Group

plug-in:

db2secGroupPluginInit()

This

function

is

known

as

the

plug-in

initialization

function.

The

plug-in

initialization

function

initializes

the

specified

plug-in

and

provides

DB2®

with

information

that

it

requires

to

call

the

plug-in’s

functions.

The

plug-in

initialization

function

accepts

the

following

parameters:

v

The

highest

version

number

of

the

functions

pointer

structure

that

DB2

can

support

v

A

pointer

to

a

structure

containing

pointers

to

all

the

APIs

requiring

implementation

v

A

pointer

to

a

function

that

adds

log

messages

to

the

db2diag.log

file

v

A

pointer

to

an

error

message

string

v

The

Length

of

the

error

message

The

following

is

a

function

signature

for

the

initialization

function

of

a

group

retrieval

plug-in:

SQL_API_RC

SQL_API_FN

db2secGroupPluginInit(

db2int32

version,

void

*group_fns,

db2secLogMessage

*logMessage_fn,

char

**errormsg,

db2int32

*errormsglen);

Note:

Plug-in

libraries

can

only

be

implemented

in

C

or

C++.

If

the

plug-in

library

is

compiled

as

C++,

all

functions

must

be

declared

with:

extern

"C".

DB2

relies

on

the

underlying

operating

system

dynamic

loader

to

handle

the

C++

constructors

and

destructors

used

inside

of

a

C++

user-written

plug-in

library.

The

initialization

function

is

the

only

function

in

the

plug-in

library

that

uses

a

prescribed

function

name.

The

other

plug-in

functions

are

referenced

through

function

pointers

returned

from

the

initialization

function.

Server

plug-ins

are

loaded

when

the

DB2

server

starts.

Client

plug-ins

are

loaded

when

required

on

the

client.

Immediately

after

DB2

loads

the

plug-in

library,

it

will

resolve

the

location

of

this

function

and

call

it.

The

specific

task

of

this

function

is

as

follows:

v

Cast

the

functions

pointer

to

a

pointer

to

an

appropriate

functions

structure

v

Fill

in

the

pointers

to

the

other

functions

in

the

library

v

Fill

in

the

version

number

of

the

function

pointer

structure

being

returned

©

Copyright

IBM

Corp.

1993-2004

1037

DB2

can

potentially

call

the

plug-in

initialization

function

more

than

once.

This

situation

can

occur

when

an

application

dynamically

loads

the

DB2

client

library,

unloads

it,

and

reloads

it

again,

then

performs

authentication

functions

from

a

plug-in

both

before

and

after

reloading.

In

this

situation,

the

plug-in

library

might

not

be

unloaded

and

then

re-loaded;

however,

this

behavior

varies

depending

on

the

operating

system.

Another

example

of

DB2

issuing

multiple

calls

to

a

plug-in

initialization

function

occurs

during

the

execution

of

stored

procedures

or

federated

system

calls,

where

the

database

server

can

itself

act

as

a

client.

If

the

client

and

server

plug-ins

on

the

database

server

are

in

the

same

file,

DB2

could

call

the

plug-in

initialization

function

twice.

If

the

plug-in

detects

that

db2secGroupPluginInit

is

called

more

than

once,

it

should

handle

this

event

as

if

it

was

directed

to

terminate

and

reinitialize

the

plug-in

library.

As

such,

the

plug-in

initialization

function

should

do

the

entire

cleanup

that

a

call

to

db2secPluginTerm

would

do

before

returning

the

set

of

function

pointers

again.

On

a

DB2

server

running

on

a

UNIX®-based

operating

system,

DB2

can

potentially

load

and

initialize

plug-in

libraries

more

than

once

in

different

processes.

Related

concepts:

v

“Security

plug-ins”

on

page

1021

v

“Security

plug-in

library

locations”

on

page

1024

Related

reference:

v

“Restrictions

on

security

plug-in

libraries”

on

page

1038

v

“Return

codes

for

security

plug-ins”

on

page

1040

v

“Calling

sequences

for

the

security

plug-in

APIs”

on

page

1043

v

“db2secGroupPluginInit

-

Initialize

group

plug-in

function”

on

page

1050

v

“db2secPluginTerm

-

Clean

up

group

plug-in

resources

function”

on

page

1051

v

“db2secClientAuthPluginInit

-

Initialize

client

authentication

plug-in”

on

page

1064

v

“db2secServerAuthPluginInit

-

Initialize

server

authentication

plug-in

function”

on

page

1075

Restrictions

on

security

plug-in

libraries

Following

are

restrictions

for

developing

plug-in

libraries.

C-linkage

Plug-in

libraries

must

be

linked

with

C-linkage.

Header

files

providing

the

prototypes,

data

structures

needed

to

implement

the

plug-ins,

and

error

code

definitions

are

provided

for

C/C++

only.

Functions

that

DB2

will

resolve

at

load

time

must

be

declared

with

extern

″C″

if

the

plug-in

library

is

compiled

as

C++.

.NET

common

language

runtime

is

not

supported

The

.NET

common

language

runtime

(CLR)

is

not

supported

for

compiling

and

linking

source

code

for

plug-in

libraries.

Signal

handlers

The

plug-in

libraries

must

not

install

signal

handlers

or

change

the

signal

mask,

because

this

will

interfere

with

DB2’s

signal

handlers.

Interfering

1038

Common

Criteria

Certification:

Administration

and

User

Documentation

with

the

DB2

signal

handlers

could

seriously

interfere

with

DB2’s

ability

to

report

and

recover

from

errors,

including

traps

in

the

plug-in

code

itself.

Plug-in

libraries

should

also

never

throw

C++

exceptions,

as

this

can

also

interfere

with

DB2’s

error

handling.

Thread-safe

Plug-in

libraries

must

be

thread-safe

and

re-entrant.

The

plug-in

initialization

function

is

the

only

API

that

is

not

required

to

be

re-entrant.

The

plug-in

initialization

function

could

potentially

be

called

multiple

times

from

different

processes;

in

which

case,

the

plug-in

will

cleanup

all

used

resources

and

reinitialize

itself.

Exit

handlers

and

overriding

standard

C

library

and

operating

system

calls

Plug-in

libraries

should

not

override

standard

C

library

or

operating

system

calls.

Plug-in

libraries

should

also

not

install

exit

handlers

or

pthread_atfork

handlers.

The

use

of

exit

handlers

is

not

recommended

because

they

may

be

unloaded

before

the

program

exits.

Library

dependencies

On

Linux

or

UNIX

the

processes

that

load

the

plug-in

libraries

can

be

setuid

or

setgid,

which

means

that

they

will

not

be

able

to

rely

on

the

$LD_LIBRARY_PATH,

$SHLIB_PATH,

or

$LIBPATH

environment

variables

to

find

dependent

libraries.

Therefore,

plug-in

libraries

should

not

depend

on

other

libraries,

unless

any

dependant

libraries

are

accessible

through

other

methods,

such

as

the

following:

v

By

being

in

/lib

or

/usr/lib

v

By

having

the

directories

they

reside

in

being

specified

OS-wide

(such

as

in

the

ld.so.conf

file

on

Linux)

v

By

being

specified

in

the

RPATH

in

the

plug-in

library

itself

This

restriction

is

not

applicable

to

Windows

operating

systems.

Symbol

collisions

When

possible,

plug-in

libraries

should

be

compiled

and

linked

with

any

available

options

that

reduce

the

likelihood

of

symbol

collisions,

such

as

those

that

reduce

unbound

external

symbolic

references.

For

example,

use

of

the

″-Bsymbolic″

linker

option

on

HP,

Sun

Solaris,

and

Linux

can

help

prevent

problems

related

to

symbol

collisions.

However,

for

a

plug-in

written

on

AIX

platform,

do

not

use

"-brtl"

linker

option

explicitly

or

implicitly.

32-bit

and

64-bit

applications

32-bit

applications

must

use

32-bit

plug-ins.

64-bit

applications

must

use

64-bit

plug-ins.

Please

refer

to

the

topic

32-bit

and

64-bit

considerations

for

security

plug-ins

for

more

details.

Text

strings

Input

text

strings

are

not

guaranteed

to

be

null-terminated,

and

output

strings

are

not

required

to

be

null-terminated.

Instead,

integer

lengths

are

given

for

all

input

strings,

and

pointers

to

integers

are

given

for

lengths

to

be

returned.

Passing

authid

parameters

An

authid

parameter

that

DB2

passes

into

a

plug-in

(an

input

authid

parameter)

will

contain

an

upper-case

authid,

with

padded

blanks

removed.

An

authid

parameter

that

a

plug-in

returns

to

DB2

(an

output

authid

parameter)

does

not

require

any

special

treatment,

but

DB2

will

take

the

authid

and

fold

it

to

upper-case,

and

pad

it

with

blanks

according

to

the

internal

DB2

standard.

Chapter

29.

Developing

security

plug-ins

1039

Size

limits

for

parameters

The

plug-in

APIs

use

the

following

as

length

limits

for

parameters:

#define

DB2SEC_MAX_AUTHID_LENGTH

255

#define

DB2SEC_MAX_USERID_LENGTH

255

#define

DB2SEC_MAX_USERNAMESPACE_LENGTH

255

#define

DB2SEC_MAX_PASSWORD_LENGTH

255

#define

DB2SEC_MAX_DBNAME_LENGTH

128

A

particular

plug-in

implementation

may

require

or

enforce

smaller

maximum

lengths

for

the

authorization

IDs,

user

IDs,

and

passwords.

In

particular,

the

operating

system

authentication

plug-ins

supplied

with

DB2

UDB

are

restricted

to

the

maximum

user,

group

and

namespace

length

limits

enforced

by

the

operating

system

for

cases

where

the

operating

system

limits

are

lower

than

those

stated

above.

Related

concepts:

v

“Security

plug-ins”

on

page

1021

v

“Security

plug-in

library

locations”

on

page

1024

Return

codes

for

security

plug-ins

All

security

plug-in

APIs

must

return

an

integer

value

to

indicate

the

success

or

failure

of

the

execution

of

the

API.

A

return

code

value

of

0

indicates

that

the

API

ran

successfully.

All

negative

return

codes,

with

the

exception

of

-3,

-4,

and

-5,

indicate

that

the

API

encountered

an

error.

All

negative

return

codes

returned

from

the

security-plug-in

APIs

are

mapped

to

SQLCODE

-1365,

SQLCODE

-1366,

or

SQLCODE

-30082,

with

the

exception

of

return

codes

with

the

-3,

-4,

or

-5.

The

values

-3,

-4,

and

-5

are

used

to

indicate

whether

or

not

an

AUTHID

represents

a

valid

user

or

group.

All

the

security

plug-in

API

return

codes

are

defined

in

db2secPlugin.h,

which

can

be

found

in

DB2’s

include

directory:

SQLLIB/include.

Details

regarding

all

of

the

security

plug-in

return

codes

are

presented

in

the

following

table:

Table

83.

Security

plug-in

return

codes

Return

code

Define

value

Meaning

Applicable

APIs

0

DB2SEC_PLUGIN_OK

The

plug-in

API

executed

successfully.

All

-1

DB2SEC_PLUGIN

_UNKNOWNERROR

The

plug-in

API

encountered

an

unexpected

error.

All

-2

DB2SEC_PLUGIN_BADUSER

The

user

ID

passed

in

as

input

is

not

defined.

db2secGenerateInitialCred

db2secValidatePassword

db2secRemapUserid

db2secGetGroupsForUser

-3

DB2SEC_PLUGIN

_INVALIDUSERORGROUP

No

such

user

or

group.

db2secDoesAuthIDExist

db2secDoesGroupExist

-4

DB2SEC_PLUGIN

_USERSTATUSNOTKNOWN

Unknown

user

status.

This

is

not

treated

as

an

error

by

DB2;

it

is

used

by

a

GRANT

statement

to

determine

if

an

authid

represents

a

user

or

an

operating

system

group.

db2secDoesAuthIDExist

1040

Common

Criteria

Certification:

Administration

and

User

Documentation

Table

83.

Security

plug-in

return

codes

(continued)

Return

code

Define

value

Meaning

Applicable

APIs

-5

DB2SEC_PLUGIN

_GROUPSTATUSNOTKNOWN

Unknown

group

status.

This

is

not

treated

as

an

error

by

DB2;

it

is

used

by

a

GRANT

statement

to

determine

if

an

authid

represents

a

user

or

an

operating

system

group.

db2secDoesGroupExist

-6

DB2SEC_PLUGIN_UID_EXPIRED

User

ID

expired.

db2secValidatePassword

db2GetGroupsForUser

db2secGenerateInitialCred

-7

DB2SEC_PLUGIN_PWD_EXPIRED

Password

expired.

db2secValidatePassword

db2GetGroupsForUser

db2secGenerateInitialCred

-8

DB2SEC_PLUGIN_USER_REVOKED

User

revoked.

db2secValidatePassword

db2GetGroupsForUser

-9

DB2SEC_PLUGIN

_USER_SUSPENDED

User

suspended.

db2secValidatePassword

db2GetGroupsForUser

-10

DB2SEC_PLUGIN_BADPWD

Bad

password.

db2secValidatePassword

db2secRemapUserid

db2secGenerateInitialCred

-11

DB2SEC_PLUGIN

_BAD_NEWPASSWORD

Bad

new

password.

db2secValidatePassword

db2secRemapUserid

-12

DB2SEC_PLUGIN

_CHANGEPASSWORD

_NOTSUPPORTED

Change

password

not

supported.

db2secValidatePassword

db2secRemapUserid

db2secGenerateInitialCred

-13

DB2SEC_PLUGIN_NOMEM

Plug-in

attempt

to

allocate

memory

failed

due

to

insufficient

memory.

All

-14

DB2SEC_PLUGIN_DISKERROR

Plug-in

encountered

a

disk

error.

All

-15

DB2SEC_PLUGIN_NOPERM

Plug-in

attempt

to

access

a

file

failed

because

of

wrong

permissions

on

the

file.

All

-16

DB2SEC_PLUGIN_NETWORKERROR

Plug-in

encountered

a

network

error.

All

-17

DB2SEC_PLUGIN

_CANTLOADLIBRARY

Plug-in

is

unable

to

load

a

required

library.

db2secGroupPluginInit

db2secClientAuthPluginInit

db2secServerAuthPluginInit

-18

DB2SEC_PLUGIN_CANT

_OPEN_FILE

Plug-in

is

unable

to

open

and

read

a

file

for

a

reason

other

than

missing

file

or

inadequate

file

permissions.

All

-19

DB2SEC_PLUGIN_FILENOTFOUND

Plug-in

is

unable

to

open

and

read

a

file,

because

the

file

is

missing

from

the

file

system.

All

-20

DB2SEC_PLUGIN

_CONNECTION_DISALLOWED

The

plug-in

is

refusing

the

connection

because

of

the

restriction

on

which

database

is

allowed

to

connect,

or

the

TCP/IP

address

cannot

connect

to

a

specific

database.

All

server-side

plug-in

APIs.

-21

DB2SEC_PLUGIN_NO_CRED

GSS

API

plug-in

only:

initial

client

credential

is

missing.

db2secGetDefaultLoginContext

db2secServerAuthPluginInit

-22

DB2SEC_PLUGIN_CRED_EXPIRED

GSS

API

plug-in

only:

client

credential

has

expired.

db2secGetDefaultLoginContext

db2secServerAuthPluginInit

-23

DB2SEC_PLUGIN

_BAD_PRINCIPAL_NAME

GSS

API

plug-in

only:

the

principal

name

is

invalid.

db2secProcessServerPrincipalName

-24

DB2SEC_PLUGIN

_NO_CON_DETAILS

This

return

code

is

returned

by

the

db2secGetConDetails

callback

(for

example,

from

DB2

to

the

plug-in)

to

indicate

that

DB2

is

unable

to

determine

the

client’s

TCP/IP

address.

db2secGetConDetails

Chapter

29.

Developing

security

plug-ins

1041

Table

83.

Security

plug-in

return

codes

(continued)

Return

code

Define

value

Meaning

Applicable

APIs

-25

DB2SEC_PLUGIN

_BAD_INPUT_PARAMETERS

Some

parameters

are

not

valid

or

are

missing

when

plug-in

API

is

called.

All

-26

DB2SEC_PLUGIN

_INCOMPATIBLE_VER

The

version

of

the

APIs

reported

by

the

plug-in

is

not

compatible

with

DB2.

db2secGroupPluginInit

db2secClientAuthPluginInit

db2secServerAuthPluginInit

-27

DB2SEC_PLUGIN_PROCESS_LIMIT

Insufficient

resources

are

available

for

the

plug-in

to

create

a

new

process.

All

-28

DB2SEC_PLUGIN_NO_LICENSES

The

plug-in

encountered

a

user

license

problem.

A

possibility

exists

that

the

underlying

mechanism

license

has

reached

the

limit.

All

Related

concepts:

v

“Security

plug-ins”

on

page

1021

v

“Security

plug-in

problem

determination”

on

page

1029

Error

messages

for

security

plug-ins

When

an

error

occurs

in

a

security

plug-in

API,

the

API

can

return

an

ASCII

text

string

in

the

errormsg

field

to

provide

a

more

specific

description

of

the

problem

than

the

return

code.

For

instance,

the

errormsg

string

can

contain

"File

/home/db2inst1/mypasswd.txt

does

not

exist."

DB2

will

write

this

entire

string

into

the

DB2

administration

notification

log,

and

will

also

include

a

truncated

version

as

a

token

in

some

SQL

messages.

Because

tokens

in

SQL

messages

can

only

be

of

limited

length,

these

messages

should

be

kept

short,

and

important

variable

portions

of

these

messages

should

appear

at

the

front

of

the

string.

To

aid

in

debugging,

consider

adding

the

name

of

the

security

plug-in

to

the

error

message.

For

non-urgent

errors,

such

as

password

expired

errors,

the

errormsg

string

will

only

be

dumped

when

the

DIAGLEVEL

database

manager

configuration

parameter

is

set

at

4.

The

memory

for

these

error

messages

must

be

allocated

by

the

security

plug-in.

Therefore,

the

plug-ins

must

also

provide

an

API

to

free

this

memory:

db2secFreeErrormsg.

The

errormsg

field

will

only

be

checked

by

DB2

if

an

API

returns

a

non-zero

value.

Therefore,

the

plug-in

should

not

allocate

memory

for

this

returned

error

message

if

there

is

no

error.

At

initialization

time

a

message

logging

function

pointer,

logMessage_fn,

is

passed

to

the

group,

client,

and

server

plug-ins.

The

plug-ins

can

use

the

function

to

log

any

debugging

information

to

db2diag.log.

For

example:

//

Log

an

message

indicate

init

successful

(*(logMessage_fn))(DB2SEC_LOG_CRITICAL,

"db2secGroupPluginInit

successful",

strlen("db2secGroupPluginInit

successful"));

For

more

details

about

each

parameter

for

the

db2secLogMessage

function,

please

refer

to

the

initialization

API

for

each

of

the

plug-in

types.

Related

concepts:

1042

Common

Criteria

Certification:

Administration

and

User

Documentation

v

“Security

plug-ins”

on

page

1021

v

“Security

plug-in

problem

determination”

on

page

1029

v

“Security

plug-in

APIs”

on

page

1047

v

“Security

plug-in

support

for

two-part

user

IDs”

on

page

1026

Related

reference:

v

“Return

codes

for

security

plug-ins”

on

page

1040

Calling

sequences

for

the

security

plug-in

APIs

There

are

five

main

scenarios

in

which

DB2

will

call

security

plug-in

APIs:

v

On

a

client

for

a

database

connection

v

On

a

client,

server,

or

gateway

for

local

authorization

v

On

a

server

for

a

database

connection

v

On

a

server

for

a

grant

statement

v

On

a

server

to

get

a

list

of

groups

that

an

authid

belongs

to

Note:

The

DB2

server

treats

database

actions

requiring

local

authorizations,

such

as

db2start,

db2stop,

and

db2trc,

like

client

applications.

For

each

of

these

operations,

the

sequence

with

which

DB2

calls

security

plug-in

APIs

is

appropriately

different.

Following

are

the

sequences

of

APIs

called

by

DB2

for

each

of

these

scenarios.

On

a

client

for

a

database

connection

When

the

user-configured

authentication

type

is

CLIENT,

the

DB2

client

application

will

call

the

following

security

plug-in

APIs:

v

db2secGetDefaultLoginContext();

v

db2secValidatePassword();

v

db2secFreetoken();

For

an

implicit

authentication,

that

is,

when

you

connect

without

specifying

a

particular

user

ID

or

password,

the

db2secValidatePassword

API

is

called

if

you

are

using

a

user

ID/password

plug-in.

This

API

permits

plug-in

developers

to

prohibit

implicit

authentication

if

necessary.

On

an

implicit

authentication,

if

the

authentication

database

manager

configuration

parameter

is

set

to

anything

other

than

CLIENT

(implying

authentication

at

the

server),

the

application

will

call

the

following

security

plug-in

APIs

for

the

user

ID/password

authentication

mechanism:

v

db2secGetDefaultLoginContext();

v

db2secFreeToken();

On

an

implicit

authentication,

if

authentication

is

set

to

anything

other

than

CLIENT

(implying

authentication

at

the

server),

the

application

will

call

the

following

security

plug-in

APIs

for

GSS-API

plug-ins.

(The

call

to

gss_init_sec_context()

will

use

GSS_C_NO_CREDENTIAL

as

the

input

credential.)

v

db2secGetDefaultLoginContext();

v

db2secProcessServerPrincipalName();

v

gss_init_sec_context();

v

gss_release_buffer();

Chapter

29.

Developing

security

plug-ins

1043

v

gss_release_name();

v

gss_delete_sec_context();

v

db2secFreeToken();

The

API

gss_init_sec_context()

may

be

called

twice

if

a

mutual

authentication

token

is

returned

from

the

server.

On

an

explicit

authentication,

if

authentication

is

set

to

CLIENT

the

DB2

client

application

will

call

the

following

security

plug-in

APIs:

v

db2secRemapUserid();

v

db2secValidatePassword();

v

db2secFreeToken();

On

an

explicit

authentication,

if

authentication

is

set

to

anything

other

than

CLIENT,

the

application

will

call

the

following

security

plug-in

APIs

for

the

user

ID/password

authentication

mechanism:

v

db2secRemapUserid();

If

the

negotiated

authentication

type

is

GSS-API

or

Kerberos,

the

client

application

will

call

the

following

security

plug-in

APIs

for

GSS-API

plug-ins

in

the

following

sequence.

These

APIs

are

used

for

both

implicit

and

explicit

authentication

(a

connection

to

a

database

in

which

both

the

user

ID

and

password

are

specified)

unless

otherwise

stated.

v

db2secProcessServerPrincipalName();

v

db2secGenerateInitialCred();

(For

explicit

authentication

only)

v

gss_init_sec_context();

v

gss_release_buffer

();

v

gss_release_name();

v

gss_release_cred();

v

db2secFreeInitInfo();

v

gss_delete_sec_context();

v

db2secFreeToken();

The

API

gss_init_sec_context()

may

be

called

twice

if

a

mutual

authentication

token

is

returned

from

the

server.

On

a

client,

server,

or

gateway

for

local

authorization

For

a

local

authorization,

the

DB2

command

being

used

will

call

the

following

security

plug-in

APIs:

v

db2secGetDefaultLoginContext();

v

db2secGetGroupsForUser();

v

db2secFreeToken();

v

db2secFreeGroupList();

These

APIs

will

be

called

for

both

user

ID/password

and

GSS-API

authentication

mechanisms.

On

a

server

for

a

database

connection

For

a

database

connection

on

the

database

server,

the

DB2

agent

process

or

thread

will

call

the

following

security

plug-in

APIs

for

the

user

ID/password

authentication

mechanism:

1044

Common

Criteria

Certification:

Administration

and

User

Documentation

v

db2secValidatePassword();

Only

if

the

authentication

database

configuration

parameter

is

not

CLIENT

v

db2secGetAuthIDs();

v

db2secGetGroupsForUser();

v

db2secFreeToken();

v

db2secFreeGroupList();

For

a

CONNECT

to

a

database,

the

DB2

agent

process

or

thread

will

call

the

following

security

plug-in

APIs

for

the

GSS-API

authentication

mechanism:

v

gss_accept_sec_context();

v

gss_release_buffer();

v

db2secGetAuthIDs();

v

db2secGetGroupsForUser();

v

gss_delete_sec_context();

v

db2secFreeToken();

v

db2secFreeGroupList();

On

a

server

for

a

GRANT

statement

For

a

GRANT

statement

that

does

not

specify

the

USER

or

GROUP

keyword,

(for

example,

″GRANT

CONNECT

ON

DATABASE

TO

user1″),

DB2

must

be

able

to

determine

if

user1

is

a

user,

a

group,

or

both.

Therefore,

DB2

will

call

the

following

security

plug-in

APIs:

v

db2secDoesGroupExist();

v

db2secDoesAuthIDExist();

On

a

server

to

get

a

list

of

groups

to

which

an

authid

belongs

From

your

database

server,

when

you

need

to

get

a

list

of

groups

to

which

an

authid

belongs,

DB2

will

call

the

following

security

plug-in

API

with

only

the

authid

as

input:

v

db2secGetGroupsForUser();

There

will

be

no

token

from

other

security

plug-ins.

Related

concepts:

v

“Security

plug-ins”

on

page

1021

v

“Security

plug-in

APIs”

on

page

1047

Chapter

29.

Developing

security

plug-ins

1045

1046

Common

Criteria

Certification:

Administration

and

User

Documentation

Chapter

30.

Security

plug-in

APIs

Security

plug-in

APIs

.

.

.

.

.

.

.

.

.

. 1047

Group

plug-in

APIs

.

.

.

.

.

.

.

.

.

.

. 1048

APIs

for

group

retrieval

plug-ins

.

.

.

.

. 1048

db2secGroupPluginInit

-

Initialize

group

plug-in

function

.

.

.

.

.

.

.

.

.

.

. 1050

db2secPluginTerm

-

Clean

up

group

plug-in

resources

function

.

.

.

.

.

.

.

.

.

. 1051

db2secGetGroupsForUser

-

Get

list

of

groups

for

user

function

.

.

.

.

.

.

.

.

.

.

. 1052

db2secDoesGroupExist

-

Check

if

group

exists

function

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1055

db2secFreeGroupListMemory

-

Free

group

list

memory

function

.

.

.

.

.

.

.

.

.

.

. 1056

db2secFreeErrormsg

-

Free

error

message

memory

function

.

.

.

.

.

.

.

.

.

.

. 1057

User

authentication

plug-in

APIs

.

.

.

.

.

. 1057

APIs

for

user

ID/password

authentication

plug-ins

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1057

db2secClientAuthPluginInit

-

Initialize

client

authentication

plug-in

.

.

.

.

.

.

.

.

. 1064

db2secClientAuthPluginTerm

-

Clean

up

client

authentication

plug-in

resources

function

.

.

. 1065

db2secRemapUserid

-

Remap

user

ID

and

password

function

.

.

.

.

.

.

.

.

.

. 1065

db2secGetDefaultLoginContext

-

Get

default

login

context

function

.

.

.

.

.

.

.

.

. 1067

db2secGenerateInitialCred

-

Generate

initial

credentials

function

.

.

.

.

.

.

.

.

.

. 1069

db2secValidatePassword

-

Validate

password

function

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1070

db2secProcessServerPrincipalName

-

Process

service

principal

name

returned

from

server

function

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1073

db2secFreeToken

-

Free

memory

held

by

token

function

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1073

db2secFreeInitInfo

-

Clean

up

resources

held

by

db2secGenerateInitialCred()

function

.

.

. 1074

db2secServerAuthPluginInit

-

Initialize

server

authentication

plug-in

function

.

.

.

.

.

. 1075

db2secServerAuthPluginTerm

-

Clean

up

server

authentication

plug-in

resources

function

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1077

db2secGetAuthIDs

-

Get

authentication

IDs

function

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1077

db2secDoesAuthIDExist

-

Check

if

authentication

ID

exists

function

.

.

.

.

. 1079

GSS-API

plug-in

APIs

.

.

.

.

.

.

.

.

.

. 1080

Required

APIs

and

Definitions

for

GSS-API

authentication

plug-ins

.

.

.

.

.

.

.

.

. 1080

Restrictions

for

GSS-API

authentication

plug-ins

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1081

Security

plug-in

API

versioning

.

.

.

.

.

.

. 1081

Security

plug-in

APIs

To

enable

you

to

customize

DB2®’s

authorization

behavior,

DB2

provides

APIs

that

you

can

use

to

modify

existing

plug-ins

or

build

new

security

plug-ins.

When

you

develop

a

security

plug-in,

you

need

to

implement

the

standard

authentication

functions

that

DB2

will

invoke.

For

the

three

available

types

of

plug-ins,

the

functionality

you

need

to

implement

is

as

follows:

Group

retrieval

Retrieves

group

membership

information

for

a

given

user

and

determines

if

a

given

string

represents

a

valid

group

name.

User

ID/password

authentication

Authentication

that

identifies

the

default

security

context

(client

only),

validates

and

optionally

changes

a

password,

determines

if

a

given

string

represents

a

valid

user

(server

only),

modifies

the

user

ID

or

password

provided

on

the

client

before

it

is

sent

to

the

server

(client

only),

returns

the

DB2

authorization

ID

associated

with

a

given

user.

GSS-API

authentication

Authentication

that

implements

the

required

GSS-API

functions,

identifies

the

default

security

context

(client

side

only),

generates

initial

credentials

based

on

user

ID

and

password,

and

optionally

changes

password

(client

side

only),

creates

and

accepts

security

tickets,

and

returns

the

DB2

authorization

ID

associated

with

a

given

GSS-API

security

context.

©

Copyright

IBM

Corp.

1993-2004

1047

The

following

are

definitions

for

terminology

used

in

the

descriptions

of

the

plug-in

APIs.

Plug-in

A

dynamically

loadable

library

that

DB2

will

load

to

access

user-written

authentication

functions.

Implicit

authentication

A

connection

to

a

database

without

specifying

a

user

ID

or

a

password.

Explicit

authentication

A

connection

to

a

database

in

which

both

the

user

ID

and

password

are

specified.

Authid

An

internal

ID

representing

an

individual

or

group

to

which

authorities

and

privileges

within

the

database

are

granted.

Internally,

a

DB2

authid

is

folded

to

upper-case

and

is

a

minimum

of

8

characters

(blank

padded

to

8

characters).

Currently,

DB2

requires

authids,

user

IDs,

passwords,

group

names,

namespaces,

and

domain

names

that

can

be

represented

in

7-bit

ASCII.

The

maximum

length

of

an

authid

is

30

characters.

Local

authorization

Authorization

that

is

local

to

the

server

or

client

that

implements

it,

that

checks

if

a

user

is

authorized

to

perform

an

action

(other

than

connecting

to

the

database),

such

as

starting

and

stopping

the

database

manager,

turning

DB2

trace

on

and

off,

or

updating

the

database

manager

configuration.

Namespace

A

collection

or

grouping

of

users

within

which

individual

user

identifiers

must

be

unique.

Common

examples

include

Windows®

domains

and

Kerberos

Realms.

For

example,

within

the

Windows

domain

″usa.company.com″

all

user

names

must

be

unique.

For

example,

″user1@usa.company.com″.

The

same

user

ID

in

another

domain,

as

in

the

case

of

″user1@canada.company.com″,

however

refers

to

a

different

person.

A

fully

qualified

user

identifier

includes

a

user

ID

and

namespace

pair;

for

example,

″user@domain.name″

or

″domain\user″.

Related

concepts:

v

“Security

plug-ins”

on

page

1021

Group

plug-in

APIs

APIs

for

group

retrieval

plug-ins

For

the

group

retrieval

plug-in

library,

you

will

need

to

implement

the

following

APIs:

SQL_API_RC

SQL_API_FN

db2secGroupPluginInit(

db2int32

version,

void

*group_fns,

db2secLogMessage

*logMessage_fn,

char

**errormsg,

db2int32

*errormsglen);

Note:

The

above

function

takes

as

input

a

pointer

to

a

function,

*logMessage_fn,

with

the

following

prototype:

1048

Common

Criteria

Certification:

Administration

and

User

Documentation

SQL_API_RC

(SQL_API_FN

db2secLogMessage)

(

db2int32

level,

void

*data,

db2int32

length);

SQL_API_RC

SQL_API_FN

db2secPluginTerm(char

**errormsg,

db2int32

*errormsglen);

SQL_API_RC

SQL_API_FN

db2secGetGroupsForUser(

const

char

*authid,

db2int32

authidlen,

const

char

*userid,

db2int32

useridlen,

const

char

*usernamespace,

db2int32

usernamespacelen,

db2int32

usernamespacetype,

const

char

*dbname,

db2int32

dbnamelen,

const

void

*token,

db2int32

tokentype,

db2int32

location,

const

char

*authpluginname,

db2int32

authpluginname,

char

**grouplist,

db2int32

*numgroups,

char

**errormsg,

db2int32

*errormsglen);

SQL_API_RC

SQL_API_FN

db2secDoesGroupExist(

const

char

*groupname,

db2int32

groupnamelen

char

**errormsg,

db2int32

*errormsglen);

SQL_API_RC

SQL_API_FN

db2secFreeGroupListMemory(

char

*ptr,

char

**errormsg,

db2int32

*errormsglen);

SQL_API_RC

SQL_API_FN

db2secFreeErrormsg(char

*msgtobefree);

The

only

API

that

must

be

resolvable

externally

is

db2secGroupPluginInit().

This

function

will

take

a

void

*

parameter,

which

should

be

cast

to

the

type:

typedef

struct

db2secGroupFunctions_1

{

db2int32

version;

db2int32

plugintype;

SQL_API_RC

(SQL_API_FN

*

db2secGetGroupsForUser)

(

const

char

*authid,

db2int32

authidlen,

const

char

*userid,

db2int32

useridlen,

const

char

*usernamespace,

db2int32

usernamespacelen,

db2int32

usernamespacetype,

const

char

*dbname,

db2int32

dbnamelen,

const

void

*token,

db2int32

tokentype,

db2int32

location,

const

char

*authpluginname,

db2int32

authpluginnamelen,

void

**grouplist,

db2int32

*numgroups,

char

**errormsg,

db2int32

*errormsglen);

SQL_API_RC

(SQL_API_FN

*

db2secDoesGroupExist)(

const

char

*groupname,

Chapter

30.

Security

plug-in

APIs

1049

db2int32

groupnamelen,

char

**errormsg,

db2int32

*errormsglen);

SQL_API_RC

(SQL_API_FN

*

db2secFreeGroupListMemory)(

void

*ptr,

char

**errormsg,

db2int32

*errormsglen);

SQL_API_RC

(SQL_API_FN

*

db2secFreeErrormsg)(

char

*msgtobefree);

SQL_API_RC

(SQL_API_FN

*

db2secPluginTerm)(

char

**errormsg,

db2int32

*errormsglen);

}

db2secGroupFunctions_1;

db2secGroupPluginInit()

will

assign

the

addresses

for

the

rest

of

the

externally

available

functions.

Note:

The

_1

indicates

that

this

is

the

structure

corresponding

to

version

1

of

the

API.

Subsequent

interface

versions

will

have

the

extension

_2,

_3,

and

so

on.

Related

concepts:

v

“Security

plug-ins”

on

page

1021

v

“Security

plug-in

APIs”

on

page

1047

Related

tasks:

v

“Deploying

a

group

retrieval

plug-in”

on

page

1030

Related

reference:

v

“db2secGroupPluginInit

-

Initialize

group

plug-in

function”

on

page

1050

v

“db2secPluginTerm

-

Clean

up

group

plug-in

resources

function”

on

page

1051

v

“db2secGetGroupsForUser

-

Get

list

of

groups

for

user

function”

on

page

1052

v

“db2secDoesGroupExist

-

Check

if

group

exists

function”

on

page

1055

v

“db2secFreeGroupListMemory

-

Free

group

list

memory

function”

on

page

1056

v

“db2secFreeErrormsg

-

Free

error

message

memory

function”

on

page

1057

db2secGroupPluginInit

-

Initialize

group

plug-in

function

The

initialization

function

for

the

library

that

DB2

will

call

immediately

after

loading

the

plug-in

library.

The

functions

pointer

should

be

cast

to

the

appropriate

group_functions

structure

for

the

interface

version.

C

API

syntax:

SQL_API_RC

SQL_API_FN

db2secGroupPluginInit(

db2int32

version,

void

*group_fns,

db2secLogMessage

*logMessage_fn,

char

**errormsg,

db2int32

*errormsglen);

Input:

db2int32

version

The

highest

version

number

of

the

API

that

DB2

will

currently

support.

1050

Common

Criteria

Certification:

Administration

and

User

Documentation

db2secLogMessage

*logMessage_fn

A

pointer

to

a

function

provided

by

DB2.

The

plug-in

can

call

this

function

to

log

additional

error

strings

to

db2diag.log

for

either

debugging

or

informational

purposes.

The

first

parameter

should

use

the

define

in

db2secPlugin.h,

and

the

last

two

parameters

are

the

message

string

and

its

length.

The

defines

to

be

used

in

the

first

parameter

are:

#define

DB2SEC_LOG_NONE

0

-

No

logging

#define

DB2SEC_LOG_CRITICAL

1

-

Severe

Error

encountered

#define

DB2SEC_LOG_ERROR

2

-

Error

encountered

#define

DB2SEC_LOG_WARNING

3

-

Warning

#define

DB2SEC_LOG_INFO

4

-

Informational

If

you

use

the

DB2SEC_LOG_INFO

define,

the

message

text

is

only

written

to

the

db2diag.log

if

the

diaglevel

database

manager

configuration

parameter

is

set

to

4.

Output:

void

*group_fns

A

pointer

to

memory

provided

by

DB2

for

a

db2secGroupFunction_1

structure.

In

future

versions

of

DB2,

there

may

be

different

versions

of

the

APIs,

so

this

should

be

cast

to

a

pointer

to

the

db2secGroupFunction_1

structure

corresponding

to

the

version

of

the

API

that

the

plug-in

uses.

char

**errormsg

A

pointer

to

the

address

of

an

ASCII

string

allocated

by

the

plug-in

that

can

be

returned

in

this

parameter

if

the

API

is

not

successful.

db2int32

*errormsglen

A

pointer

to

an

integer

that

indicates

the

length

of

the

error

message

string

in

char

**errormsg.

Related

concepts:

v

“Security

plug-ins”

on

page

1021

v

“Security

plug-in

APIs”

on

page

1047

Related

reference:

v

“APIs

for

group

retrieval

plug-ins”

on

page

1048

db2secPluginTerm

-

Clean

up

group

plug-in

resources

function

This

function

is

called

by

DB2

just

before

DB2

unloads

the

plug-in.

The

function

should

do

a

proper

cleanup

of

any

resources

the

plug-in

library

holds,

for

instance,

free

any

memory

allocated

by

the

plug-in,

close

files

that

are

still

open,

and

close

network

connections.

The

plug-in

is

responsible

for

keeping

track

of

these

resources

so

that

they

can

later

be

freed.

C

API

syntax:

SQL_API_RC

SQL_API_FN

db2secPluginTerm(char

**errormsg,

db2int32

*errormsglen);

Output:

char

**errormsg

A

pointer

to

the

address

of

an

ASCII

string

allocated

by

the

plug-in

that

can

be

returned

in

this

parameter

if

the

API

is

not

successful.

Chapter

30.

Security

plug-in

APIs

1051

db2int32

*errormsglen

A

pointer

to

an

integer

that

indicates

the

length

of

the

error

message

string

in

char

**errormsg.

Related

concepts:

v

“Security

plug-ins”

on

page

1021

v

“Security

plug-in

APIs”

on

page

1047

Related

reference:

v

“diaglevel

-

Diagnostic

error

capture

level

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“APIs

for

group

retrieval

plug-ins”

on

page

1048

db2secGetGroupsForUser

-

Get

list

of

groups

for

user

function

This

function

will

be

called

by

DB2

to

get

the

list

of

groups

to

which

a

user

belongs.

C

API

syntax:

SQL_API_RC

SQL_API_FN

db2secGetGroupsForUser(

const

char

*authid,

db2int32

authidlen,

const

char

*userid,

db2int32

useridlen,

const

char

*usernamespace,

db2int32

usernamespacelen,

db2int32

usernamespacetype,

const

char

*dbname,

db2inst32

dbnamelen,

const

void

*token,

db2int32

tokentype,

db2int32

location,

const

char

*authpluginname,

db2int32

authpluginnamelen,

void

**grouplist,

db2int32

*numgroups,

char

**errormsg,

db2int32

*errormsglen);

Input:

const

char

*authid

The

only

input

field

that

is

provided

by

DB2.

This

field

value

is

an

SQL

authid,

which

means

that

DB2

folds

it

to

an

uppercase

character

string

with

no

trailing

blanks.

The

plug-in

must

be

able

to

return

a

list

of

groups

to

which

the

authid

belongs

without

depending

on

the

other

input

parameters.

It

is

permissible

to

return

a

shortened

or

empty

list

if

group

membership

cannot

be

determined.

If

a

user

does

not

exist,

the

function

should

return

DB2SEC_PLUGIN_BADUSER.

DB2

does

not

treat

the

case

of

a

user

not

existing

as

an

error,

because

it

is

permissible

for

an

authid

to

not

have

any

groups

associated

with

it.

For

example,

the

db2secGetAuthids

function

can

return

an

authid

that

does

not

exist

on

the

operating

system.

The

authid

is

not

associated

with

any

groups;

however,

it

can

still

be

directly

assigned

privileges.

If

the

plug-in

cannot

return

a

complete

list

of

groups

from

only

the

authid,

some

restrictions

apply

to

the

SQL

functions

related

to

group

support.

1052

Common

Criteria

Certification:

Administration

and

User

Documentation

Refer

to

the

note

in

this

topic,

titled

″Problems

that

may

occur

if

an

incomplete

group

list

is

returned″

for

more

information.

db2int32

authidlen

Length

of

the

authid.

const

char

*userid

The

user

ID

corresponding

to

the

authid.

When

this

API

is

called

on

the

server

in

a

non-connect

scenario,

this

will

not

be

filled.

db2int32

useridlen

Length

of

the

user

ID.

const

void

*token

A

pointer

to

data

provided

by

the

authentication

plug-in.

It

is

not

seen

by

DB2.

It

provides

the

ability

to

the

plug-in

writer

for

coordinating

user

and

group

information,

if

desired.

This

may

not

be

given

in

all

cases,

in

which

case

it

will

be

NULL.

If

the

authentication

plug-in

used

is

GSS-API

based,

the

token

will

be

set

to

the

GSS-API

context

handle

(gss_ctx_id_t).

db2int32

tokentype

Indicates

the

type

of

data

provided

by

the

authentication

plug-in.

If

the

authentication

plug-in

used

is

GSS-API

based,

the

token

will

be

set

to

the

GSS-API

context

handle

(gss_ctx_id_t).

If

the

authentication

plug-in

used

is

user

ID/password

based,

it

will

be

a

generic

type.

See

the

following

defines

in

db2secPlugin.h:

v

#define

DB2SEC_GENERIC

0

--

Indicates

that

the

token

is

from

a

user

ID/password

based

plug-in.

v

#define

DB2SEC_GSSAPI_CTX_HANDLE

1

--

Indicates

that

the

token

is

from

a

GSS-API

(including

Kerberos)

based

plug-in.

db2int32

location

Indicates

whether

DB2

is

to

call

the

plug-in

on

the

client

side

or

server

side.

See

the

following

defines

in

db2secPlugin.h:

v

#define

DB2SEC_SERVER_SIDE

0

--

The

group

plug-in

is

being

called

on

the

database

server.

v

#define

DB2SEC_CLIENT_SIDE

1

--

The

group

plug-in

is

being

called

on

a

client.

const

char

*usernamespace

The

namespace

from

which

the

user

ID

was

obtained.

When

the

user

ID

is

not

available,

this

will

not

be

filled.

db2int32

usernamespacelen

Length

of

the

namespace

field.

db2int32

usernamespacetype

The

type

of

namespace.

Possible

values

are:

DB2SEC_NAMESPACE_SAM_COMPATIBLE

(corresponding

to

a

username

style

like

torolab\myname″),

or

DB2SEC_NAMESPACE_USER_PRINCIPAL

(corresponding

to

a

username

style

like

myname@torolab.ibm.com).

Currently

DB2

only

supports

DB2SEC_NAMESPACE_SAM_COMPATIBLE.

When

the

user

ID

is

not

available,

this

will

be

filled

with

DB2SEC_USER_NAMESPACE_UNDEFINED.

All

the

defines

are

located

in

db2secPlugin.h.

const

char

*dbname

The

name

of

the

database

being

connected

to.

Chapter

30.

Security

plug-in

APIs

1053

db2int32

dbnamelen

Length

of

the

database

name

specified

by

dbname.

const

char

*authpluginname

The

name

of

the

authentication

plug-in

that

provided

the

data

in

the

token.

The

plug-in

may

use

this

information

in

determining

the

correct

group

memberships.

This

may

not

be

given

if

the

authid

is

not

authenticated

(for

instance,

if

the

authid

does

not

match

the

current

connected

user).

db2int32

authpluginnamelen

Length

of

the

authpluginname.

Output:

void

**grouplist

The

list

of

groups

must

be

returned

as

a

pointer

to

a

section

of

memory

allocated

by

the

plug-in

containing

concatenated

varchars

(a

varchar

is

a

character

array

in

which

the

first

byte

indicates

the

number

of

bytes

following

it).

The

length

is

an

unsigned

char

and

that

limits

the

maximum

length

of

a

groupname

to

255

characters.

In

other

words,

because

an

unsigned

char

(1

byte)

indicates

the

length

of

the

group

name,

the

maximum

length

is

255.

For

example:

"\006GROUP1\007MYGROUP\008MYGROUP3"

Each

group

name

should

be

a

valid

DB2

authid.

The

memory

for

this

array

must

be

allocated

by

the

plug-in.

The

plug-in

must

therefore

provide

a

function,

such

as

the

db2secFreeGroupListMemory()

plug-in

function

that

DB2

will

call

to

free

the

memory.

db2int32

*numgroups

The

number

of

groups

contained

in

the

grouplist.

char

**errormsg

A

pointer

to

the

address

of

an

ASCII

string

allocated

by

the

plug-in

that

can

be

returned

in

this

parameter

if

the

API

is

not

successful.

db2int32

*errormsglen

A

pointer

to

an

integer

that

indicates

the

length

of

the

error

message

string

in

char

**errormsg.

Problems

that

may

occur

if

an

incomplete

group

list

is

returned

from

the

API:

The

following

problems

can

occur

if

an

incomplete

group

list

is

returned

from

this

API

to

DB2

UDB:

v

Embedded

SQL

application

with

DYNAMICRULES

BIND

(or

DEFINEDBIND

or

INVOKEDBIND

if

the

packages

are

running

as

a

standalone

application).

DB2

checks

for

SYSADM

membership

and

the

application

will

fail

if

it

is

dependent

on

the

implicit

DBADM

authority

granted

by

being

a

member

of

the

SYSADM

group.

v

Alternate

authorization

is

provided

in

CREATE

SCHEMA

statement.

Group

lookup

will

be

performed

against

the

AUTHORIZATION

NAME

parameter

if

there

are

nested

CREATE

statements

in

the

CREATE

SCHEMA

statement.

v

Embedded

SQL

applications

with

DYNAMICRULES

DEFINERUN/DEFINEBIND

and

the

packages

are

running

in

a

routine

context.

DB2

checks

for

SYSADM

membership

of

the

routine

definer

and

the

application

will

fail

if

it

is

dependent

on

the

implicit

DBADM

authority

granted

by

being

a

member

of

the

SYSADM

group.

1054

Common

Criteria

Certification:

Administration

and

User

Documentation

v

Processing

a

jar

file

in

a

partitioned

database

environment.

In

a

partitioned

database

environment,

the

jar

processing

request

is

sent

from

the

coordinator

partition

with

the

session

authid.

The

catalog

partition

received

the

requests

and

process

the

jar

files

based

on

the

privilege

of

the

session

authid

(the

user

executing

the

jar

processing

requests).

–

Install

jar

file.

The

session

authid

needs

to

have

one

of

the

following

rights:

SYSADM,

DBADM,

or

CREATEIN

(implicit

or

explicit

on

the

jar

schema).

The

operation

will

fail

if

the

above

rights

are

granted

to

a

group

containing

the

session

authid,

but

not

explicitly

to

the

session

authid

or

if

only

SYSADM

is

held,

because

SYSADM

membership

is

determined

by

membership

in

the

group

defined

by

a

database

configuration

parameter.

–

Remove

jar

file.

The

session

authid

needs

to

have

one

of

the

following

rights:

SYSADM,

DBADM,

or

DROPIN

(implicit

or

explicit

on

the

jar

schema),

or

is

the

definer

of

the

jar

file.

The

operation

will

fail

if

the

above

rights

are

granted

to

a

group

containing

the

session

authid,

but

not

explicitly

to

the

session

authid,

and

if

the

session

authid

is

not

the

definer

of

the

jar

file

or

if

only

SYSADM

is

held,

because

SYSADM

membership

is

determined

by

membership

in

the

group

defined

by

a

database

configuration

parameter.

–

Replace

jar

file.

This

is

same

as

removing

the

jar

file,

followed

by

installing

the

jar

file.

Both

of

the

above

apply.
v

Regenerate

views.

This

is

triggered

by

the

ALTER

TABLE,

ALTER

COLUMN,

SET

DATA

TYPE

VARCHAR/VARGRAPHIC

statements,

or

during

migration.

DB2

checks

for

SYSADM

membership

of

the

view

definer.

The

application

will

fail

if

it

is

dependent

on

the

implicit

DBADM

authority

granted

by

being

a

member

of

the

SYSADM

group.

v

When

SET

SESSION_USER

statement

is

issued.

Subsequent

DB2

operations

are

run

under

the

context

of

the

authid

specified

by

this

statement.

These

operations

will

fail

if

the

privileges

required

are

owned

by

one

of

the

SESSION_USER’s

groups,

but

are

not

explicitly

granted

to

the

SESSION_USER

authid.

Related

concepts:

v

“Security

plug-ins”

on

page

1021

v

“Security

plug-in

APIs”

on

page

1047

Related

reference:

v

“APIs

for

group

retrieval

plug-ins”

on

page

1048

db2secDoesGroupExist

-

Check

if

group

exists

function

This

function

will

be

used

to

determine

if

an

authid

represents

a

group.

If

the

groupname

exists,

The

function

should

return

DB2SEC_PLUGIN_OK,

to

indicate

success.

It

should

return

DB2SEC_PLUGIN_INVALIDUSERORGROUP

if

the

group

name

is

not

valid.

It

is

also

permissible

for

the

API

to

return

DB2SEC_PLUGIN_GROUPSTATUSNOTKNOWN

if

it

is

impossible

to

determine

if

the

input

is

a

valid

group.

If

an

invalid

group

or

group

not

known

value

is

returned,

DB2

might

not

be

able

to

determine

whether

the

authid

is

a

group

or

user

when

issuing

the

GRANT

statement

without

the

keywords

USER

and

GROUP,

which

would

result

in

the

error

SQLCODE

-569,

SQLSTATE

56092

being

returned

to

the

user.

C

API

syntax:

Chapter

30.

Security

plug-in

APIs

1055

SQL_API_RC

SQL_API_FN

db2secDoesGroupExist(

const

char

*groupname,

db2int32

groupnamelen,

char

**errormsg,

db2int32

*errormsglen

);

Input:

const

char

*groupname

An

authid,

upper-cased,

with

no

trailing

blanks.

db2int32

groupnamelen

Length

of

the

groupname.

Output:

char

**errormsg

A

pointer

to

the

address

of

an

ASCII

string

allocated

by

the

plug-in

that

can

be

returned

in

this

parameter

if

the

API

is

not

successful.

db2int32

*errormsglen

A

pointer

to

an

integer

that

indicates

the

length

of

the

error

message

string

in

char

**errormsg.

Related

concepts:

v

“Security

plug-ins”

on

page

1021

v

“Security

plug-in

APIs”

on

page

1047

Related

reference:

v

“APIs

for

group

retrieval

plug-ins”

on

page

1048

db2secFreeGroupListMemory

-

Free

group

list

memory

function

This

function

tells

the

plug-in

library

that

the

memory

pointed

to

by

ptr

is

no

longer

needed

by

DB2.

The

plug-in

needs

to

free

this

memory.

C

API

syntax:

SQL_API_RC

SQL_API_FN

db2secFreeGroupListMemory(

void

*ptr

char

**errormsg,

db2int32

*errormsglen);

Input:

void

*ptr

Pointer

to

the

memory

to

be

freed.

Output:

char

**errormsg

A

pointer

to

the

address

of

an

ASCII

string

allocated

by

the

plug-in

that

can

be

returned

in

this

parameter

if

the

API

is

not

successful.

db2int32

*errormsglen

A

pointer

to

an

integer

that

indicates

the

length

of

the

error

message

string

in

char

**errormsg.

1056

Common

Criteria

Certification:

Administration

and

User

Documentation

Related

concepts:

v

“Security

plug-ins”

on

page

1021

v

“Security

plug-in

APIs”

on

page

1047

Related

reference:

v

“APIs

for

group

retrieval

plug-ins”

on

page

1048

db2secFreeErrormsg

-

Free

error

message

memory

function

This

function

will

be

called

by

DB2

to

free

the

memory

used

to

hold

an

error

message

from

a

previous

call

to

a

plug-in

API.

This

is

the

only

API

that

does

not

also

return

an

error

message.

If

this

function

returns

an

error,

DB2

will

log

it

and

continue.

C

API

syntax:

SQL_API_RC

SQL_API_FN

db2secFreeErrormsg(char

*msgtobefree);

Input:

char

*msgtobefree

A

pointer

to

the

error

message

allocated

from

a

previous

API

call.

Related

concepts:

v

“Security

plug-ins”

on

page

1021

v

“Security

plug-in

APIs”

on

page

1047

Related

reference:

v

“APIs

for

group

retrieval

plug-ins”

on

page

1048

User

authentication

plug-in

APIs

APIs

for

user

ID/password

authentication

plug-ins

For

the

user

ID/password

plug-in

library,

you

will

need

to

implement

the

following

client-side

APIs:

SQL_API_RC

SQL_API_FN

db2secClientAuthPluginInit(

db2int32

version,

void

*client_fns,

db2secLogMessage

*logMessage_fn,

char

**errormsg,

db2int32

*errormsglen);

Note:

The

above

function

takes

as

input

a

pointer

to

a

function,

*logMessage_fn,

with

the

following

prototype:

SQL_API_RC

(SQL_API_FN

db2secLogMessage)

(

db2int32

level,

void

*data,

db2int32

length);

SQL_API_RC

SQL_API_FN

db2secClientAuthPluginTerm(

char

**errormsg,

db2int32

*errormsglen);

Chapter

30.

Security

plug-in

APIs

1057

/*

Only

used

for

gssapi:

*/

db2secGenerateInitialCred(

const

char

*userid,

db2int32

useridlen,

const

char

*usernamespace,

db2int32

usernamespacelen,

db2int32

usernamespacetype,

const

char

*password,

db2int32

passwordlen,

const

char

*newpassword,

db2int32

newpasswordlen,

const

char

*dbname,

db2int32

dbnamelen,

gss_cred_id_t

*pGSSCredHandle,

void

**initInfo,

char

**errormsg,

db2int32

*errormsglen);

/*

Optional

*/

SQL_API_RC

SQL_API_FN

db2secRemapUserid(

char

userid[DB2SEC_MAX_USERID_LENGTH],

db2int32

*useridlen,

db2int32

useridtype,

char

usernamespace[DB2SEC_MAX_USERNAMESPACE_LENGTH],

db2int32

*usernamespacelen,

db2int32

*usernamespacetype,

char

password[DB2SEC_MAX_PASSWORD_LENGTH],

db2int32

*passwordlen,

char

newpassword[DB2SEC_MAX_PASSWORD_LENGTH],

db2int32

*newpasswordlen,

const

char

*dbname,

db2int32

dbnamelen,

char

**errormsg,

db2int32

*errormsglen);

SQL_API_RC

SQL_API_FN

db2secGetDefaultLoginContext(

char

authid[DB2SEC_MAX_AUTHID_LENGTH],

db2int32

*authidlen,

char

userid[DB2SEC_MAX_USERID_LENGTH],

db2int32

*useridlen,

db2int32

useridtype,

char

usernamespace[DB2SEC_MAX_USERNAMESPACE_LENGTH],

db2int32

*usernamespacelen,

db2int32

*usernamespacetype,

const

char

*dbname,

db2int32

dbnamelen,

void

**token,

char

**errormsg,

db2int32

*errormsglen);

SQL_API_RC

SQL_API_FN

db2secValidatePassword(

const

char

*userid,

db2int32

useridlen,

const

char

*usernamespace,

db2int32

usernamespacelen,

db2int32

usernamespacetype,

const

char

*password,

db2int32

passwordlen,

const

char

*newpassword,

db2int32

newpasswordlen,

const

char

*dbname,

db2int32

dbnamelen,

db2Uint32

connection_details,

void

**token,

char

**errormsg,

db2int32

*errormsglen);

1058

Common

Criteria

Certification:

Administration

and

User

Documentation

/*

This

is

only

for

GSS-API

*/

SQL_API_RC

SQL_API_FN

db2secProcessServerPrincipalName(

const

void

*name,

db2int32

nameLen,

gss_name_t

*gssName,

char

**errormsg,

db2int32

*errormsglen);

/*

Functions

to

free

memory

held

by

the

DLL

*/

SQL_API_RC

SQL_API_FN

db2secFreeToken(

void

*token,

char

**errormsg,

db2int32

*errormsglen);

SQL_API_RC

SQL_API_FN

db2secFreeErrormsg(char

*errormsg);

SQL_API_RC

SQL_API_FN

db2secFreeInitInfo(

void

*initInfo,

char

**errormsg,

db2int32

*errormsglen);

The

only

API

that

must

be

resolvable

externally

is

db2secClientAuthPluginInit().

This

function

will

take

a

void

*

parameter,

which

should

be

cast

to

either:

typedef

struct

db2secUseridPasswordClientAuthFunctions_1

{

db2int32

version;

db2int32

plugintype;

SQL_API_RC

(SQL_API_FN

*

db2secGetDefaultLoginContext)(

char

authid[DB2SEC_MAX_AUTHID_LENGTH],

db2int32

*authidlen,

char

userid[DB2SEC_MAX_USERID_LENGTH],

db2int32

*useridlen,

db2int32

useridtype,

char

usernamespace[DB2SEC_MAX_USERNAMESPACE_LENGTH],

db2int32

*usernamespacelen,

db2int32

*usernamespacetype,

const

char

*dbname,

db2int32

dbnamelen,

void

**token,

char

**errormsg,

db2int32

*errormsglen);

SQL_API_RC

(SQL_API_FN

*

db2secRemapUserid)(

//

Optional

char

userid[DB2SEC_MAX_USERID_LENGTH],

db2int32

*useridlen,

char

usernamespace[DB2SEC_MAX_USERNAMESPACE_LENGTH],

db2int32

*usernamespacelen,

db2int32

*usernamespacetype,

char

password[DB2SEC_MAX_PASSWORD_LENGTH],

db2int32

*passwordlen,

char

newpassword[DB2SEC_MAX_PASSWORD_LENGTH],

db2int32

*newpasswordlen,

const

char

*dbname,

db2int32

dbnamelen,

char

**errormsg,

db2int32

*errormsglen);

SQL_API_RC

(SQL_API_FN

*

db2secValidatePassword)(

const

char

*userid,

db2int32

useridlen,

const

char

*usernamespace,

db2int32

usernamespacelen,

db2int32

usernamespacetype,

const

char

*password,

db2int32

passwordlen,

const

char

*newpassword,

db2int32

newpasswordlen,

Chapter

30.

Security

plug-in

APIs

1059

const

char

*dbname,

db2int32

dbnamelen,

db2Uint32

connection_details,

void

**token,

char

**errormsg,

db2int32

*errormsglen);

SQL_API_RC

(SQL_API_FN

*

db2secFreeToken)(

void

**token,

char

**errormsg,

db2int32

*errormsglen);

SQL_API_RC

(SQL_API_FN

*

db2secFreeErrormsg)(char

*errormsg);

SQL_API_RC

(SQL_API_FN

*

db2secClientAuthPluginTerm)(

char

**errormsg,

db2int32

*errormsglen);

}

or

typedef

struct

db2secGssapiClientAuthFunctions_1

{

db2int32

version;

db2int32

plugintype;

SQL_API_RC

(SQL_API_FN

*

db2secGetDefaultLoginContext)

(

char

authid[DB2SEC_MAX_AUTHID_LENGTH],

db2int32

*authidlen,

char

userid[DB2SEC_MAX_USERID_LENGTH],

db2int32

*useridlen,

db2int32

useridtype,

char

usernamespace[DB2SEC_MAX_USERNAMESPACE_LENGTH],

db2int32

*usernamespacelen,

db2int32

*usernamespacetype,

const

char

*dbname,

db2int32

dbnamelen,

void

**token,

char

**errormsg,

db2int32

*errormsglen);

SQL_API_RC

(SQL_API_FN

*

db2secProcessServerPrincipalName)

(

const

void

*data,

gss_name_t

*gssName,

char

**errormsg,

db2int32

*errormsglen);

SQL_API_RC

(SQL_API_FN

*

db2secGenerateInitialCred)

(

const

char

*userid,

db2int32

useridlen,

const

char

*usernamespace,

db2int32

usernamespacelen,

db2int32

usernamespacetype,

const

char

*password,

db2int32

passwordlen,

const

char

*newpassword,

db2int32

newpasswordlen,

const

char

*dbname,

db2int32

dbnamelen,

gss_cred_id_t

*pGSSCredHandle,

void

**initInfo,

char

**errormsg,

db2int32

*errormsglen);

SQL_API_RC

(SQL_API_FN

*

db2secFreeToken)(

void

*token,

1060

Common

Criteria

Certification:

Administration

and

User

Documentation

char

**errormsg,

db2int32

*errormsglen);

SQL_API_RC

(SQL_API_FN

*

db2secFreeErrormsg)(char

*errormsg);

SQL_API_RC

(SQL_API_FN

*

db2secFreeInitInfo)

(

void

*initInfo,

char

**errormsg,

db2int32

*errormsglen);

SQL_API_RC

(SQL_API_FN

*

db2secClientAuthPluginTerm)

(

char

**errormsg,

db2int32

*errormsglen);

/*

GSS-API

specific

functions

--

refer

to

db2secPlugin.h

for

parameter

list*/

OM_uint32

(SQL_API_FN

*

gss_init_sec_context

)(<parameter

list>);

OM_uint32

(SQL_API_FN

*

gss_delete_sec_context

)(<parameter

list>);

OM_uint32

(SQL_API_FN

*

gss_display_status

)(<parameter

list>);

OM_uint32

(SQL_API_FN

*

gss_release_buffer

)(<parameter

list>);

OM_uint32

(SQL_API_FN

*

gss_release_cred

)(<parameter

list>);

OM_uint32

(SQL_API_FN

*

gss_release_name

)(<parameter

list>);

}

You

should

use

db2secUseridPasswordClientAuthFunctions_1

if

you

are

writing

an

user

ID/password

plug-in.

If

you

are

writing

a

GSS-API

(including

Kerberos)

plug-in,

you

should

use

db2secGssapiClientAuthFunctions_1.

For

the

user

ID/password

plug-in

library,

you

will

need

to

implement

the

following

server-side

APIs:

db2secServerAuthPluginInit(

db2int32

version,

void

*server_fns,

db2secGetConDetails

*getConDetails_fn,

db2secLogMessage

*logMessage_fn,

char

**errormsg,

db2int32

*errormsglen);

The

above

function

takes

as

input

a

pointer

to

a

function,

*logMessage_fn,

and

a

function,

*getConDetails_fn,

with

the

following

prototypes:

SQL_API_RC

(SQL_API_FN

db2secLogMessage)

(

db2int32

level,

void

*data,

db2int32

length);

SQL_API_RC

(SQL_API_FN

db2secGetConDetails)(

db2int32

conDetailsVersion,

const

void

*pConDetails);

This

function

in

turn,

takes

as

its

second

parameter,

pConDetails,

a

pointer

to

a

structure

defined

as

follows:

typedef

struct

db2sec_con_details_1

{

db2int32

clientProtocol;

db2Uint32

clientIPAddress;

db2Uint32

connect_info_bitmap;

db2int32

dbnameLen;

char

dbname[DB2SEC_MAX_DBNAME_LENGTH

+

1];

}

db2sec_con_details_1;

Chapter

30.

Security

plug-in

APIs

1061

See

the

detailed

description

section

for

an

explanation

of

this

function

and

structure.

db2secServerAuthPluginTerm(

char

**errormsg,

db2int32

*errormsglen);

SQL_API_RC

SQL_API_FN

db2secValidatePassword(

const

char

*userid,

db2int32

useridlen,

const

char

*usernamespace,

db2int32

usernamespacelen,

db2int32

usernamespacetype,

const

char

*password,

db2int32

passwordlen,

const

char

*newpasswd,

db2int32

newpasswdlen,

const

char

*dbname,

db2int32

dbnamelen,

db2Uint32

connection_details,

void

**token,

char

**errormsg,

db2int32

*errormsglen);

SQL_API_RC

SQL_API_FN

db2secGetAuthIDs(

const

char

*userid,

db2int32

useridlen,

const

char

*usernamespace,

db2int32

usernamespacelen,

db2int32

usernamespacetype,

const

char

*dbname,

db2int32

dbnamelen,

void

**token,

char

SystemAuthid[DB2SEC_MAX_AUTHID_LENGTH],

db2int32

SystemAuthidlen,

char

InitialSessionAuthID[DB2SEC_MAX_AUTHID_LENGTH],

db2int32

*InitialSessionAuthIdlen,

char

username[DB2SEC_MAX_USERID_LENGTH],

db2int32

*usernamelen,

db2int32

*initsessionidtype,

char

**errormsg,

db2int32

*errormsglen);

SQL_API_RC

SQL_API_FN

db2secDoesAuthIDExist(

const

char

*authid,

db2int32

authidlen,

const

char

*errormsg,

db2int32

*errormsglen);

SQL_API_RC

SQL_API_FN

db2secFreeToken(

void

*token,

char

**errormsg,

db2int32

*errormsglen);

SQL_API_RC

SQL_API_FN

db2secFreeErrormsg(char

*errormsg);

The

only

API

that

must

be

resolvable

externally

is

db2secServerAuthPluginInit().

This

function

will

take

a

void

*

parameter,

which

should

be

cast

to

either:

typedef

struct

db2secUseridPasswordServerAuthFunctions_1

{

db2int32

version;

db2int32

plugintype;

/*

parameter

lists

left

blank

for

readability

see

above

for

parameters

*/

SQL_API_RC

(SQL_API_FN

*

db2secValidatePassword)(<parameter

list>);

SQL_API_RC

(SQL_API_FN

*

db2secGetAuthIDs)(<parameter

list);

SQL_API_RC

(SQL_API_FN

*

db2secDoesAuthIDExist)(<parameter

list>);

1062

Common

Criteria

Certification:

Administration

and

User

Documentation

SQL_API_RC

(SQL_API_FN

*

db2secFreeToken)(<parameter

list>);

SQL_API_RC

(SQL_API_FN

*

db2secFreeErrormsg)(<parameter

list>);

SQL_API_RC

(SQL_API_FN

*

db2secServerAuthPluginTerm)();

}

userid_password_server_auth_functions;

or

typedef

struct

db2secGssapiServerAuthFunctions_1

{

db2int32

version;

db2int32

plugintype;

gss_buffer_desc

serverPrincipalName;

gss_cred_id_t

ServerCredHandle;

SQL_API_RC

(SQL_API_FN

*

db2secGetAuthIDs)(<parameter

list);

SQL_API_RC

(SQL_API_FN

*

db2secDoesAuthIDExist)(<parameter

list>);

SQL_API_RC

(SQL_API_FN

*

db2secFreeToken)(<parameter

list>);

SQL_API_RC

(SQL_API_FN

*

db2secFreeErrormsg)(<parameter

list>);

SQL_API_RC

(SQL_API_FN

*

db2secServerAuthPluginTerm)();

/*

GSS-API

specific

functions

refer

to

db2secPlugin.h

for

parameter

list*/

OM_uint32

(SQL_API_FN

*

gss_accept_sec_context

)(<parameter

list>);

OM_uint32

(SQL_API_FN

*

gss_display_name

)(<parameter

list>);

OM_uint32

(SQL_API_FN

*

gss_delete_sec_context

)(<parameter

list>);

OM_uint32

(SQL_API_FN

*

gss_display_status

)(<parameter

list>);

OM_uint32

(SQL_API_FN

*

gss_release_buffer

)(<parameter

list>);

OM_uint32

(SQL_API_FN

*

gss_release_cred

)(<parameter

list>);

OM_uint32

(SQL_API_FN

*

gss_release_name

)(<parameter

list>);

}

gssapi_server_auth_functions;

You

should

use

db2secUseridPasswordServerAuthFunctions_1

if

you

are

writing

an

user

ID/password

plug-in.

If

you

are

writing

a

GSS-API

(including

Kerberos)

plug-in,

you

should

use

db2secGssapiServerAuthFunctions_1.

Related

concepts:

v

“Security

plug-ins”

on

page

1021

v

“Security

plug-in

APIs”

on

page

1047

Related

tasks:

v

“Deploying

a

user

ID/password

plug-in”

on

page

1031

Related

reference:

v

“db2secGetGroupsForUser

-

Get

list

of

groups

for

user

function”

on

page

1052

v

“db2secClientAuthPluginInit

-

Initialize

client

authentication

plug-in”

on

page

1064

v

“db2secClientAuthPluginTerm

-

Clean

up

client

authentication

plug-in

resources

function”

on

page

1065

v

“db2secRemapUserid

-

Remap

user

ID

and

password

function”

on

page

1065

v

“db2secGetDefaultLoginContext

-

Get

default

login

context

function”

on

page

1067

v

“db2secGenerateInitialCred

-

Generate

initial

credentials

function”

on

page

1069

v

“db2secValidatePassword

-

Validate

password

function”

on

page

1070

v

“db2secProcessServerPrincipalName

-

Process

service

principal

name

returned

from

server

function”

on

page

1073

v

“db2secFreeToken

-

Free

memory

held

by

token

function”

on

page

1073

v

“db2secFreeInitInfo

-

Clean

up

resources

held

by

db2secGenerateInitialCred()

function”

on

page

1074

Chapter

30.

Security

plug-in

APIs

1063

v

“db2secServerAuthPluginInit

-

Initialize

server

authentication

plug-in

function”

on

page

1075

v

“db2secServerAuthPluginTerm

-

Clean

up

server

authentication

plug-in

resources

function”

on

page

1077

v

“db2secGetAuthIDs

-

Get

authentication

IDs

function”

on

page

1077

v

“db2secDoesAuthIDExist

-

Check

if

authentication

ID

exists

function”

on

page

1079

db2secClientAuthPluginInit

-

Initialize

client

authentication

plug-in

This

is

the

initialization

function

for

the

plug-in

library

that

DB2

calls

immediately

after

loading

the

library.

The

functions

pointer

should

be

cast

to

the

appropriate

client_auth_functions

structure

for

the

interface

version.

C

API

syntax:

SQL_API_RC

SQL_API_FN

db2secClientAuthPluginInit(

db2int32

version,

void

*client_fns,

db2secLogMessage

*logMessage_fn,

char

**errormsg,

db2int32

*errormsglen);

Input:

db2int32

version

The

highest

version

number

of

the

API

that

DB2

will

currently

support.

db2secLogMessage

*logMessage_fn

A

pointer

to

a

function

provided

by

DB2.

The

plug-in

can

call

this

function

to

log

additional

error

strings

to

db2diag.log

for

debugging

or

informational

purposes.

The

first

parameter

should

use

the

define

in

db2secPlugin.h

and

the

last

two

parameters

are

the

message

string

and

its

length.

The

defines

to

be

used

in

the

first

parameter

are:

#define

DB2SEC_LOG_NONE

0

-

No

logging

#define

DB2SEC_LOG_CRITICAL

1

-

Severe

Error

encountered

#define

DB2SEC_LOG_ERROR

2

-

Error

encountered

#define

DB2SEC_LOG_WARNING

3

-

Warning

#define

DB2SEC_LOG_INFO

4

-

Informational

If

you

use

the

DB2SEC_LOG_INFO

define,

the

message

text

is

only

written

to

the

db2diag.log

if

the

diaglevel

database

manager

configuration

parameter

is

set

to

4.

Output:

void

*client_fns

A

pointer

to

memory

provided

by

DB2

for

a

client_auth_functions

structure.

In

future

versions

of

DB2,

there

can

be

different

versions

of

the

APIs,

so

this

should

be

cast

to

a

pointer

to

the

client_auth_functions

structure

corresponding

to

the

version

of

the

API

that

the

plug-in

implements.

char

**errormsg

A

pointer

to

the

address

of

an

ASCII

string

allocated

by

the

plug-in

that

can

be

returned

in

this

parameter

if

the

API

is

not

successful.

1064

Common

Criteria

Certification:

Administration

and

User

Documentation

db2int32

*errormsglen

A

pointer

to

an

integer

that

indicates

the

length

of

the

error

message

string

in

char

**errormsg.

Related

concepts:

v

“Security

plug-ins”

on

page

1021

v

“Security

plug-in

APIs”

on

page

1047

Related

reference:

v

“diaglevel

-

Diagnostic

error

capture

level

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“APIs

for

user

ID/password

authentication

plug-ins”

on

page

1057

db2secClientAuthPluginTerm

-

Clean

up

client

authentication

plug-in

resources

function

This

function

will

be

called

by

DB2

just

before

DB2

unloads

the

plug-in.

This

function

should

do

a

proper

cleanup

of

any

resources

the

plug-in

library

holds,

for

instance,

free

any

memory

allocated

by

the

plug-in,

close

files

that

are

still

open,

and

close

network

connections.

The

plug-in

is

responsible

for

keeping

track

of

these

resources

so

that

they

can

later

be

freed.

C

API

syntax:

SQL_API_RC

SQL_API_FN

db2secClientAuthPluginTerm(

char

**errormsg

db2int32

*errormsglen);

Output:

char

**errormsg

A

pointer

to

the

address

of

an

ASCII

string

allocated

by

the

plug-in

that

can

be

returned

in

this

parameter

if

the

API

is

not

successful.

db2int32

*errormsglen

A

pointer

to

an

integer

that

indicates

the

length

of

the

error

message

string

in

char

**errormsg.

Related

concepts:

v

“Security

plug-ins”

on

page

1021

v

“Security

plug-in

APIs”

on

page

1047

Related

reference:

v

“APIs

for

user

ID/password

authentication

plug-ins”

on

page

1057

db2secRemapUserid

-

Remap

user

ID

and

password

function

This

function

will

be

called

on

the

client

side

to

provide

the

ability

to

remap

a

given

user

ID

and

password

(and

possibly

new

password

and

usernamespace)

to

different

values

from

those

given

at

connect

time.

DB2

will

only

call

this

function

if

both

a

user

ID

and

a

password

are

supplied

at

connect

time.

The

user

ID

and

password

are

both

required

to

prevent

a

plug-in

from

remapping

a

user

ID

by

itself

to

a

user

ID/password

pair.

This

function

is

optional

and

is

not

called

if

it

is

not

provided.

Chapter

30.

Security

plug-in

APIs

1065

C

API

syntax:

SQL_API_RC

SQL_API_FN

db2secRemapUserid(

char

userid[DB2SEC_MAX_USERID_LENGTH],

db2int32

*useridlen,

char

usernamespace[DB2SEC_MAX_USERNAMESPACE_LENGTH],

db2int32

*usernamespacelen,

db2int32

*usernamespacetype,

char

password[DB2SEC_MAX_PASSWORD_LENGTH],

db2int32

*passwordlen,

char

newpassword[DB2SEC_MAX_PASSWORD_LENGTH],

db2int32

*newpasswordlen,

const

char

*dbname,

db2int32

dbnamelen,

char

**errormsg,

db2int32

*errormsglen);

Input:

const

char

*dbname

The

name

of

the

database

to

which

the

client

is

connecting.

db2int32

dbnamelen

Length

of

the

dbname.

Input/output:

char

userid[DB2SEC_MAX_USERID_LENGTH]

The

user

ID

to

be

remapped.

If

there

is

an

input

user

ID

value,

then

there

must

be

an

output

user

ID

value

that

can

be

the

same

or

different

from

the

input

user

ID

value.

If

there

is

no

input

user

ID

value,

the

plug-in

should

not

return

an

output

user

ID

value.

db2int32

*useridlen

Length

of

the

user

ID

returned

in

the

userid

parameter.

char

usernamespace[DB2SEC_MAX_USERNAMESPACE_LENGTH]

The

namespace

the

user

ID

came

from.

It

is

optional

to

remap

this.

If

usernamespace

was

not

provided

as

input

to

this

function,

and

it

does

provide

a

value

as

output,

the

usernamespace

will

only

be

used

by

DB2

for

CLIENT

authentication

and

disregarded

for

other

authentication

types.

db2int32

*usernamespacelen

Old

and

new

length

of

the

usernamespace.

Under

the

limitation

that

the

usernamespacetype

must

be

DB2SEC_NAMESPACE_SAM_COMPATIBLE,

the

maximum

length

supported

is

15

bytes.

db2int32

*usernamespacetype

Old

and

new

new

namespacetype.

The

only

supported

namespace

type

is

DB2SEC_NAMESPACE_SAM_COMPATIBLE.

char

password[DB2SEC_MAX_PASSWORD_LENGTH]

The

password

to

be

remapped.

If

a

password

was

passed

as

input,

there

must

an

output

password

and

can

be

a

different

password.

If

there

is

no

password

passed

in

as

input,

the

plug-in

should

not

return

an

output

password.

db2int32

*passwordlen

Length

of

the

password.

char

newpassword[DB2SEC_MAX_PASSWORD_LENGTH]

A

new

password

if

the

password

is

to

be

changed.

1066

Common

Criteria

Certification:

Administration

and

User

Documentation

Note:

This

is

the

new

password

that

will

be

passed

by

DB2

into

the

newpassword

field

of

the

db2secValidatePassword

function

on

the

client

or

the

server

(depending

on

the

value

of

the

authentication

database

manager

configuration

parameter).

If

a

new

password

was

passed

as

input,

there

must

an

output

new

password

and

can

be

a

different

new

password.

If

there

is

no

new

password

passed

in

as

input,

the

plug-in

should

not

return

a

new

output

password.

db2int32

*newpasswordlen

Length

of

the

new

password.

Output:

char

**errormsg

A

pointer

to

the

address

of

an

ASCII

string

allocated

by

the

plug-in

that

can

be

returned

in

this

parameter

if

the

API

is

not

successful.

db2int32

*errormsglen

A

pointer

to

an

integer

that

indicates

the

length

of

the

error

message

string

in

char

**errormsg.

Related

concepts:

v

“Security

plug-ins”

on

page

1021

v

“Security

plug-in

APIs”

on

page

1047

Related

reference:

v

“APIs

for

user

ID/password

authentication

plug-ins”

on

page

1057

db2secGetDefaultLoginContext

-

Get

default

login

context

function

This

function

is

called

by

DB2

to

determine

the

user

associated

with

the

default

login

context,

in

other

words,

to

determine

the

DB2

authid

of

the

user

invoking

a

DB2

command

without

explicitly

specifying

a

user

ID

(either

an

implicit

authentication

to

a

database,

or

a

local

authorization).

This

function

must

return

both

an

authid

and

a

user

ID.

C

API

syntax:

db2secGetDefaultLoginContext(

char

authid[DB2SEC_MAX_AUTHID_LENGTH],

db2int32

*authidlen,

char

userid[DB2SEC_MAX_USERID_LENGTH],

db2int32

*useridlen,

db2int32

useridtype,

char

usernamespace[DB2SEC_MAX_USERNAMESPACE_LENGTH],

db2int32

*usernamespacelen,

db2int32

*usernamespacetype,

const

char

*dbname,

db2int32

dbnamelen,

void

**token,

char

**errormsg,

db2int32

*errormsglen);

Input:

const

char

*dbname

This

contains

the

name

of

the

database

being

connected

to

if

this

call

is

being

used

in

the

context

of

a

database

connection.

For

local

authorization

actions

or

instance

attachments,

this

parameter

is

NULL.

Chapter

30.

Security

plug-in

APIs

1067

db2int32

dbnamelen

Length

of

the

dbname.

db2int32

useridtype

Specifies

if

DB2

wants

the

real

or

effective

user

of

the

process.

Output:

char

authid[DB2SEC_MAX_AUTHID_LENGTH]

The

field

in

which

the

authid

should

be

returned.

The

returned

value

must

conform

to

DB2

authid

naming

questions,

or

the

user

will

not

be

authorized

to

perform

the

requested

action.

db2int32

*authidlen

Length

of

the

authid

returned.

char

userid[DB2SEC_MAX_USERID_LENGTH]

The

field

in

which

the

user

ID

should

be

returned.

db2int32

*useridlen

Length

of

the

user

ID

returned.

void

**token

A

pointer

to

data

allocated

by

the

plug-in

that

the

plug-in

will

later

want

to

pass

to

subsequent

authentication

calls

in

the

plug-in,

or

possibly

to

the

group

retrieval

plug-in.

The

structure

of

this

data

is

determined

by

the

plug-in

writer.

char

usernamespace[DB2SEC_MAX_USERNAMESPACE_LENGTH]

Length

of

the

returned

namespace.

Under

the

limitation

that

the

usernamespacetype

must

be

DB2SEC_NAMESPACE_SAM_COMPATIBLE,

the

maximum

length

supported

is

15

bytes.

db2int32

*usernamespacelen

Length

of

the

namespace

returned.

Under

the

limitation

that

the

usernamespacetype

must

be

DB2SEC_NAMESPACE_SAM_COMPATIBLE,

the

maximum

length

supported

is

15

bytes.

db2int32

*usernamespacetype

As

specified

above.

The

only

supported

namespace

type

is

DB2SEC_NAMESPACE_SAM_COMPATIBLE.

char

**errormsg

A

pointer

to

the

address

of

an

ASCII

string

allocated

by

the

plug-in

that

can

be

returned

in

this

parameter

if

the

API

is

not

successful.

db2int32

*errormsglen

A

pointer

to

an

integer

that

indicates

the

length

of

the

error

message

string

in

char

**errormsg.

Related

concepts:

v

“Security

plug-ins”

on

page

1021

v

“Security

plug-in

APIs”

on

page

1047

Related

reference:

v

“authentication

-

Authentication

type”

on

page

783

v

“APIs

for

user

ID/password

authentication

plug-ins”

on

page

1057

1068

Common

Criteria

Certification:

Administration

and

User

Documentation

db2secGenerateInitialCred

-

Generate

initial

credentials

function

This

function

obtains

the

initial

GSS-API

credentials

based

on

the

user

ID

and

password

that

are

passed

in.

For

Kerberos

this

will

be

the

TGT.

The

credential

handle

that

is

returned

in

pGSSCredHandle

is

the

handle

that

is

used

with

gss_init_sec_context(),

and

must

be

either

an

INITIATE

or

BOTH

credential.

This

function

is

only

called

when

a

user

ID,

and

possibly

a

password

are

supplied.

Otherwise,

DB2

will

specify

GSS_C_NO_CREDENTIAL

when

calling

gss_init_sec_context()

to

signify

that

the

default

credential

obtained

from

the

current

login

context

is

to

be

used.

C

API

syntax:

db2secGenerateInitialCred(

const

char

*userid,

db2int32

useridlen,

const

char

*usernamespace,

db2int32

usernamspacelen,

db2int32

usernamespacetype,

const

char

*password,

db2int32

passwordlen,

const

char

*newpassword,

db2int32

newpasswordlen,

const

char

*dbname,

db2int32

dbnamelen,

gss_cred_id_t

*pGSSCredHandle,

void

**initInfo,

char

**errormsg,

db2int32

*errormsglen);

Input:

const

char

*userid

The

user

ID

whose

password

is

to

be

verified.

db2int32

useridlen

Length

of

the

user

ID.

const

char

*usernamespace

The

namespace

from

which

the

user

ID

was

obtained.

db2int32

usernamespacelen

Length

of

the

namespace

field.

db2int32

usernamespacetype

The

type

of

namespace.

const

char

*password

The

password

to

be

verified.

This

will

be

unencrypted

by

DB2

before

being

passed

to

the

plug-in.

db2int32

passwordlen

Length

of

the

newpassword.

const

char

*newpassword

A

new

password

if

the

password

is

to

be

changed.

If

no

change

is

requested,

this

is

NULL.

If

this

is

non-NULL,

the

function

should

validate

the

old

password

before

changing

to

the

new

password.

The

plug-in

does

not

have

to

honour

a

request

to

change

the

password,

but

if

it

does

not,

it

should

immediately

return

DB2SEC_PLUGIN_CHANGEPASSWORD_NOTSUPPORTED

without

validating

the

old

password.

Chapter

30.

Security

plug-in

APIs

1069

db2int32

newpasswordlen

Length

of

the

newpassword.

const

char

*dbname

The

name

of

the

database

being

connected

to.

This

function

is

free

to

ignore

this,

or

this

function

can

return

DB2SEC_PLUGIN_CONNECTION_DISALLOWED

if

the

plug-in

writer

wants

to

restrict

access

to

certain

databases

to

users

who

otherwise

have

valid

passwords.

db2int32

dbnamelen

Length

of

the

dbname.

Output:

gss_cred_id_t

*pGSSCredHandle

Pointer

to

the

GSS-API

credential

handle.

void

**initInfo

A

pointer

to

data

that

is

not

known

to

DB2.

The

plug-in

can

use

this

memory

to

maintain

a

list

of

resources

that

are

allocated

in

the

process

of

generating

the

credential

handle.

DB2

will

call

db2secFreeInitInfo()

at

the

end

of

authentication,

at

which

point

the

plug-in

can

then

free

these

resources.

If

the

plug-in

does

not

need

to

maintain

such

a

list,

it

should

return

NULL.

char

**errormsg

A

pointer

to

the

address

of

an

ASCII

string

allocated

by

the

plug-in

that

can

be

returned

in

this

parameter

if

the

API

is

not

successful.

Note:

For

this

API,

error

messages

should

not

be

created

if

the

return

value

indicates

a

bad

user

ID

or

password.

An

error

message

should

only

be

returned

if

there

is

an

internal

error

in

the

API

that

prevented

it

from

completing

properly.

db2int32

*errormsglen

A

pointer

to

an

integer

that

indicates

the

length

of

the

error

message

string

in

char

**errormsg.

Related

concepts:

v

“Security

plug-ins”

on

page

1021

v

“Security

plug-in

APIs”

on

page

1047

Related

reference:

v

“APIs

for

user

ID/password

authentication

plug-ins”

on

page

1057

db2secValidatePassword

-

Validate

password

function

This

function

provides

a

user

ID-and-password-style

authentication

method

during

a

database

connect

operation.

Note:

The

plug-in

code

is

run

with

the

privileges

of

the

client

application.

The

plug-in

writer

should

take

this

into

consideration

if

authentication

of

the

user

requires

special

privileges

(such

as

root).

This

API

should

return

DB2SEC_PLUGIN_OK

(success)

if

the

password

is

valid,

or

an

error

code

such

as

DB2SEC_PLUGIN_BADPWD

if

the

password

is

invalid.

This

API

is

only

called

on

the

client

side

if

authentication

is

set

to

CLIENT.

1070

Common

Criteria

Certification:

Administration

and

User

Documentation

C

API

syntax:

SQL_API_RC

SQL_API_FN

db2secValidatePassword(

const

char

*userid,

db2int32

useridlen,

const

char

*usernamespace,

db2int32

usernamespacelen,

db2int32

usernamespacetype,

const

char

*password,

db2int32

passwordlen,

const

char

*newpassword,

db2int32

newpasswordlen,

const

char

*dbname,

db2int32

dbnamelen,

db2Uint32

connection_details,

void

**token,

char

**errormsg,

db2int32

*errormsglen);

Input:

const

char

*userid

The

user

ID

whose

password

is

to

be

verified.

db2int32

useridlen

Length

of

the

user

ID.

const

char

*password

The

password

to

be

verified.

This

will

be

unencrypted

by

DB2

before

being

passed

in.

db2int32

passwordlen

Length

of

the

password

given.

const

char

*newpassword

A

new

password,

if

the

password

is

to

be

changed.

If

no

change

is

requested,

this

parameter

is

NULL.

If

this

parameter

is

not

NULL,

the

function

should

validate

the

old

password

before

changing

to

the

new

password.

The

plug-in

does

not

have

to

fulfill

a

request

to

change

the

password,

but

if

it

does

not,

it

should

immediately

return

DB2SEC_PLUGIN_CHANGEPASSWORD_NOTSUPPORTED

without

validating

the

old

password.

db2int32

newpasswordlen

Length

of

the

newpassword.

const

char

*dbname

The

name

of

the

database

being

connected

to.

The

function

is

free

to

ignore

this,

or

it

can

return

DB2SEC_PLUGIN_CONNECTIONREFUSED

if

the

plug-in

writer

wants

to

restrict

access

to

certain

databases

to

users

who

otherwise

have

valid

passwords.

db2int32

dbnamelen

Length

of

the

dbname.

db2int32

usernamespace

The

namespace

from

which

the

user

ID

was

obtained.

db2int32

usernamespacelen

Length

of

the

namespace

field.

db2int32

usernamespacetype

The

type

of

namespace.

Possible

values

are:

DB2SEC_NAMESPACE_SAM_COMPATIBLE

(corresponding

to

a

username

style

like

torolab\myname″),

or

DB2SEC_NAMESPACE_USER_PRINCIPAL

Chapter

30.

Security

plug-in

APIs

1071

(corresponding

to

a

username

style

like

myname@torolab.ibm.com).

Currently

DB2

only

supports

DB2SEC_NAMESPACE_SAM_COMPATIBLE.

When

the

user

ID

is

not

available,

this

will

be

filled

with

DB2SEC_USER_NAMESPACE_UNDEFINED.

All

the

defines

are

located

in

db2secPlugin.h.

db2Uint32

connection_details

A

bit

field

consisting

of

2

fields:

v

1

bit

indicates

whether

the

connection

is

local

(using

IPC

or

connect

from

one

of

the

nodes

in

the

db2nodes.cfg

in

the

partitioned

database

environment),

or

remote

(through

network

or

loopback).

This

gives

the

plug-in

the

ability

to

decide

whether

clients

on

the

same

machine

can

connect

to

the

DB2

server

without

a

password.

Currently,

DB2

always

allows

local

connections

without

a

password

from

clients

on

the

same

machine

(assuming

the

client

has

CONNECT

authority

to

the

database).

v

1

bit

indicates

whether

the

source

of

the

user

ID

is

the

default

from

db2secGetDefaultLoginContext,

or

was

explicitly

provided

during

the

connect.

The

bit

values

are

defined

in

db2secPlugin.h:

#define

DB2SEC_USERID_FROM_OS

0x00000001

DB2SEC_USERID_FROM_OS

indicates

user

ID

is

obtained

from

the

operating

system

and

is

not

explicitly

given

on

the

connect

statement.

#define

DB2SEC_CONNECTION_ISLOCAL

0x00000002

DB2SEC_CONNECTION_ISLOCAL

indicates

a

local

connection.

#define

DB2SEC_VALIDATING_ON_SERVER_SIDE

0x0000004

DB2SEC_VALIDATING_ON_SERVER_SIDE

indicates

whether

DB2

is

calling

from

the

server

side

for

validating

the

password.

DB2’s

default

behavior

for

an

implicit

authentication

is

to

allow

the

connection

without

any

password

validation.

However,

plug-in

writers

can

disallow

implicit

authentication

by

returning

a

DB2SEC_PLUGIN_BADPASSWORD

error.

void

**token

A

pointer

to

data

that

can

be

passed

into

subsequent

plug-in

API

calls

(db2secGetAuthIDs,

db2secGetGroupsForUser)

during

this

connection.

Output:

char

**errormsg

A

pointer

to

the

address

of

an

ASCII

string

allocated

by

the

plug-in

that

can

be

returned

in

this

parameter

if

the

API

is

not

successful.

db2int32

*errormsglen

A

pointer

to

an

integer

that

indicates

the

length

of

the

error

message

string

in

char

**errormsg.

Related

concepts:

v

“Security

plug-ins”

on

page

1021

v

“Security

plug-in

APIs”

on

page

1047

Related

reference:

v

“APIs

for

user

ID/password

authentication

plug-ins”

on

page

1057

1072

Common

Criteria

Certification:

Administration

and

User

Documentation

db2secProcessServerPrincipalName

-

Process

service

principal

name

returned

from

server

function

This

function

processes

the

service

principal

name

returned

from

the

server

and

returns

the

principal

name

in

the

gss_name_t

internal

format

to

be

used

with

gss_init_sec_context().

This

function

is

also

called

to

process

the

service

principal

name

cataloged

with

the

database

directory

when

Kerberos

authentication

is

used.

Ordinarily,

this

conversion

uses

the

gss_import_name()

API.

After

the

context

is

established,

the

gss_name_t

object

is

freed

through

the

call

to

gss_release_name().

The

function

returns

DB2SEC_PLUGIN_OK

if

gssName

points

to

a

valid

GSS

name;

a

DB2SEC_PLUGIN_BAD_PRINCIPAL_NAME

error

code

is

returned

if

the

principal

name

is

invalid.

C

API

syntax:

SQL_API_RC

SQL_API_FN

db2secProcessServerPrincipalName(

const

void

*name,

db2int32

nameLen,

gss_name_t

*gssName,

char

**errormsg,

db2int32

*errormsglen);

Input:

const

void

*name

Text

name

of

the

service

principal

in

GSS_C_NT_USER_NAME

format,

for

example,

service/host@REALM.

db2int32

nameLen

Length

of

the

text

service

principal

name.

Output:

gss_name_t

*gssName

Pointer

to

the

output

service

principal

name

in

the

GSS-API

internal

format

char

**errormsg

A

pointer

to

the

address

of

an

ASCII

string

allocated

by

the

plug-in

that

can

be

returned

in

this

parameter

if

the

API

is

not

successful.

db2int32

*errormsglen

A

pointer

to

an

integer

that

indicates

the

length

of

the

error

message

string

in

char

**errormsg.

Related

concepts:

v

“Security

plug-ins”

on

page

1021

v

“Security

plug-in

APIs”

on

page

1047

Related

reference:

v

“APIs

for

user

ID/password

authentication

plug-ins”

on

page

1057

db2secFreeToken

-

Free

memory

held

by

token

function

This

function

is

called

by

DB2

when

DB2

no

longer

needs

the

memory

held

by

token.

The

plug-in

must

free

the

memory.

C

API

syntax:

Chapter

30.

Security

plug-in

APIs

1073

SQL_API_RC

SQL_API_FN

db2secFreeToken(

void

*token

char

**errormsg,

db2int32

*errormsglen);

Input:

void

*token

Pointer

to

the

memory

to

be

freed.

Output:

char

**errormsg

A

pointer

to

the

address

of

an

ASCII

string

allocated

by

the

plug-in

that

can

be

returned

in

this

parameter

if

the

API

is

not

successful.

db2int32

*errormsglen

A

pointer

to

an

integer

that

indicates

the

length

of

the

error

message

string

in

char

**errormsg.

Related

concepts:

v

“Security

plug-ins”

on

page

1021

v

“Security

plug-in

APIs”

on

page

1047

Related

reference:

v

“APIs

for

user

ID/password

authentication

plug-ins”

on

page

1057

db2secFreeInitInfo

-

Clean

up

resources

held

by

db2secGenerateInitialCred()

function

This

function

frees

all

resources

allocated

by

db2secGenerateInitialCred().

Resources

include,

for

example,

handles

to

underlying

mechanism

contexts

or

a

credential

cache

created

for

the

GSS-API

credential

cache.

C

API

syntax:

SQL_API_RC

SQL_API_FN

db2secFreeInitInfo(

void

*initinfo,

char

**errormsg,

db2int32

*errormsglen);

Input:

void

*initinfo

A

pointer

to

data

that

is

not

known

to

DB2.

The

plug-in

can

use

this

memory

to

maintain

a

list

of

resources

that

are

allocated

in

the

process

of

generating

the

credential

handle.

These

resources

are

freed

by

calling

this

API.

Output:

char

**errormsg

A

pointer

to

the

address

of

an

ASCII

string

allocated

by

the

plug-in

that

can

be

returned

in

this

parameter

if

the

API

is

not

successful.

db2int32

*errormsglen

A

pointer

to

an

integer

that

indicates

the

length

of

the

error

message

string

in

char

**errormsg.

1074

Common

Criteria

Certification:

Administration

and

User

Documentation

Related

concepts:

v

“Security

plug-ins”

on

page

1021

v

“Security

plug-in

APIs”

on

page

1047

Related

reference:

v

“APIs

for

user

ID/password

authentication

plug-ins”

on

page

1057

db2secServerAuthPluginInit

-

Initialize

server

authentication

plug-in

function

This

is

the

initialization

function

for

the

library

that

DB2

calls

immediately

after

loading

the

library.

The

functions

pointer

should

be

cast

to

the

appropriate

server_auth_functions

structure

for

the

interface

version.

For

GSS-API,

the

plug-in

is

responsible

for

filling

in

the

server’s

principal

name

in

the

serverPrincipalName

variable

inside

the

gssapi_server_auth_functions

structure

at

initialization

time,

and

for

providing

the

server’s

credential

handle

in

the

serverCredHandle

variable.

The

freeing

of

the

memory

that

is

allocated

to

hold

the

principal

name

and

the

credential

handle

must

be

done

by

the

db2secServerAuthPluginTerm()

cleanup

function.

C

API

syntax:

SQL_API_RC

SQL_API_FN

db2secServerAuthPluginInit(

db2int32

version,

void

*server_fns,

db2secGetConDetails

*getConDetails_fn,

db2secLogMessage

*logMessage_fn,

char

**errormsg,

db2int32

*errormsglen);

Input:

db2int32

version

The

highest

version

number

of

the

API

that

DB2

currently

supports.

db2secGetConDetails

*getConDetails_fn

A

pointer

to

a

function

provided

by

DB2.

The

plug-in

can

call

this

function

in

any

one

of

the

other

authentication

APIs

to

obtain

details

related

to

the

database

connection.

These

details

will

include

information

about

the

communication

mechanism

associated

with

the

connection

(such

as

the

IP

address,

if

TCP/IP

is

used),

which

the

plug-in

writer

might

need

to

reference

when

making

authentication

decisions.

For

instance,

the

plug-in

could

disallow

a

connection

for

a

particular

user

unless

that

user

is

connecting

from

a

particular

IP

address.

The

use

of

this

callback

is

optional.

If

the

callback

is

called

in

a

situation

not

involving

a

database

connection,

this

function

returns

DB2SEC_PLUGIN_NO_CON_DETAILS;

otherwise,

this

function

returns

0

on

success.

The

parameter

getConDetails_fn

takes

two

input

parameters,

a

pointer

to

the

db2sec_con_details

structure,

and

a

version

number

indicating

which

db2sec_con_details

structure

to

use.

The

current

version

number

is

1.

Upon

a

successful

return,

the

db2sec_con_details

structure

is

filled

out

with

the

following

information:

v

The

protocol

used

for

the

connection

to

the

server.

The

listing

of

protocol

definitions

can

be

found

in

file

sqlenv.h

(SQL_PROTOCOL_*).

Chapter

30.

Security

plug-in

APIs

1075

v

The

TCP/IP

address

of

the

inbound

connect

to

the

server

if

the

protocol

is

TCP/IP.

v

The

database

name

the

client

is

attempting

to

connect

to.

The

database

name

is

not

set

for

instance

attachments.

v

A

connection

information

bit-map

that

contains

the

same

details

as

documented

in

the

connection_details

parameter

of

the

db2secValidatePassword()

API.

db2secLogMessage

*logMessage_fn

A

pointer

to

a

function

provided

by

DB2.

The

plug-in

can

call

this

function

to

log

additional

error

strings

to

db2diag.log

for

debugging

or

informational

purposes.

The

first

parameter

should

use

the

define

in

db2secPlugin.h

and

the

last

two

parameters

are

the

message

string

and

its

length.

The

defines

to

be

used

in

the

first

parameter

are:

#define

DB2SEC_LOG_NONE

0

-

No

logging

#define

DB2SEC_LOG_CRITICAL

1

-

Severe

Error

encountered

#define

DB2SEC_LOG_ERROR

2

-

Error

encountered

#define

DB2SEC_LOG_WARNING

3

-

Warning

#define

DB2SEC_LOG_INFO

4

-

Informational

If

you

use

the

DB2SEC_LOG_INFO

define,

the

message

text

is

only

written

to

the

db2diag.log

if

the

diaglevel

database

manager

configuration

parameter

is

set

to

4.

Output:

void

*server_fns

A

pointer

to

memory

provided

by

DB2

for

a

server_auth_functions

structure.

In

future

versions

of

DB2,

there

can

be

different

versions

of

the

APIs,

so

this

should

be

cast

to

a

pointer

to

the

server_auth_functions

structure

corresponding

to

the

version

of

the

API

that

the

plug-in

implements.

Inside

the

server_auth_functions,

the

plugintype

variable

should

be

set

to

one

of

DB2SEC_PLUGIN_TYPE_USERID_PASSWORD,

DB2SEC_PLUGIN_TYPE_GSSAPI,

or

DB2SEC_PLUGIN_TYPE_KERBEROS.

Other

values

can

be

defined

in

future

versions

of

the

API.

char

**errormsg

A

pointer

to

the

address

of

an

ASCII

string

allocated

by

the

plug-in

that

can

be

returned

in

this

parameter

if

the

API

is

not

successful.

db2int32

*errormsglen

A

pointer

to

an

integer

that

indicates

the

length

of

the

error

message

string

in

char

**errormsg.

Related

concepts:

v

“Security

plug-ins”

on

page

1021

v

“Security

plug-in

APIs”

on

page

1047

Related

reference:

v

“diaglevel

-

Diagnostic

error

capture

level

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“APIs

for

user

ID/password

authentication

plug-ins”

on

page

1057

1076

Common

Criteria

Certification:

Administration

and

User

Documentation

db2secServerAuthPluginTerm

-

Clean

up

server

authentication

plug-in

resources

function

This

function

is

called

by

DB2

just

before

DB2

unloads

the

plug-in.

This

function

should

do

a

proper

cleanup

of

any

resources

the

plug-in

library

holds,

for

instance,

free

any

memory

allocated

by

the

plug-in,

close

files

that

are

still

open,

and

close

network

connections.

The

plug-in

is

responsible

for

keeping

track

of

these

resources

so

that

they

can

later

be

freed.

C

API

syntax:

SQL_API_RC

SQL_API_FN

db2secServerAuthPluginTerm(char

**errormsg,

db2int32

*errormsglen);

Output:

char

**errormsg

A

pointer

to

the

address

of

an

ASCII

string

allocated

by

the

plug-in

that

can

be

returned

in

this

parameter

if

the

API

is

not

successful.

db2int32

*errormsglen

A

pointer

to

an

integer

that

indicates

the

length

of

the

error

message

string

in

char

**errormsg.

Related

concepts:

v

“Security

plug-ins”

on

page

1021

v

“Security

plug-in

APIs”

on

page

1047

Related

reference:

v

“APIs

for

user

ID/password

authentication

plug-ins”

on

page

1057

db2secGetAuthIDs

-

Get

authentication

IDs

function

This

function

returns

an

SQL

authid

for

an

authenticated

user.

This

function

will

be

called

during

database

connections

for

both

user

ID/password

and

GSS-API

authentication

methods.

C

API

syntax:

SQL_API_RC

SQL_API_FN

db2secGetAuthIDs(

const

char

*userid,

db2int32

useridlen,

const

char

*usernamespace,

db2int32

usernamespacelen,

db2int32

usernamespacetype,

const

char

*dbname,

db2int32

dbnamelen,

void

**token,

char

SystemAuthID[DB2SEC_MAX_AUTHID_LENGTH],

db2int32

*SystemAuthIDlen,

char

InitialSessionAuthID[DB2SEC_MAX_AUTHID_LENGTH],

db2int32

*InitialSessionAuthIDlen,

char

username[DB2SEC_MAX_USERID_LENGTH],

db2int32

*usernamelen,

db2int32

*initsessionidtype,

char

**errormsg,

db2int32

*errormsglen);

Input:

Chapter

30.

Security

plug-in

APIs

1077

const

char

*

userid

The

authenticated

user.

This

is

blank

for

GSS-API.

db2int32

useridlen

Length

of

the

user

ID.

void

**token

Data

that

the

plug-in

might

pass

to

the

db2secGetGroupsForUser

call.

For

GSS-API,

this

is

a

context

handle

(gss_ctx_id_t).

Ordinarily,

this

is

an

input-only

parameter

and

its

value

is

taken

from

db2secValidatePassword.

This

value

can

also

be

an

output

parameter

when

authentication

is

done

on

the

client

(and

db2secValidatePassword)

is

not

called.

const

char

*dbname

The

name

of

the

database

being

connected

to.

The

plug-in

can

ignore

this,

or

it

can

return

differing

authids

when

the

same

user

connects

to

different

databases.

db2int32

dbnamelen

Length

of

the

dbname.

const

char

*usernamespace

The

namespace

from

which

the

user

ID

was

obtained.

db2int32

usernamespacelen

Length

of

the

namespace

field.

db2int32

usernamespacetype

As

specified

above.

The

only

supported

namespace

type

is

DB2SEC_NAMESPACE_SAM_COMPATIBLE.

Output:

char

SystemAuthID[DB2SEC_MAX_AUTHID_LENGTH]

The

system

authid

corresponds

to

the

ID

of

the

authenticated

user.

The

size

is

255,

but

DB2

uses

up

to

30.

db2int32

*SystemAuthiIDlen

Length

of

the

SystemAuthId

returned.

char

InitialSessionAuthid[DB2SEC_MAX_AUTHID_LENGTH]

This

is

the

authid

used

for

this

connection

session.

The

authid

is

usually

the

same

as

the

SystemAuthID,

but

can

be

different

in

some

situations,

for

instance,

when

issuing

a

SET

SESSION

AUTHORIZATION

statement.

Size

is

255,

but

DB2

only

uses

up

to

30.

db2int32

*InitialSessionAuthidlen

Length

of

the

InitialSessionAuthID

returned.

char

username[DB2SEC_MAX_USERID_LENGTH]

A

username

corresponding

to

the

authenticated

user

and

authid.

This

will

only

be

used

for

auditing

and

is

logged

in

the

″User

ID″

field.

If

the

plug-in

does

not

fill

in

this

field,

DB2

copies

it

from

the

userid.

db2int32

*usernamelen

Length

of

the

user

ID

returned.

db2int32

*initsessionidtype

Session

authid

type

indicating

whether

or

not

the

InitialSessionAuthid

is

a

role

or

an

authid.

The

plug-in

should

return

the

one

of

the

following

(defined

in

db2secPlugin.h):

DB2SEC_ID_TYPE_AUTHID

(0)

or

DB2SEC_ID_TYPE_ROLE

(1).

Currently,

DB2

only

supports

authid

(DB2SEC_ID_TYPE_AUTHID).

1078

Common

Criteria

Certification:

Administration

and

User

Documentation

char

**errormsg

A

pointer

to

the

address

of

an

ASCII

string

allocated

by

the

plug-in

that

can

be

returned

in

this

parameter

if

the

API

is

not

successful.

db2int32

*errormsglen

A

pointer

to

an

integer

that

indicates

the

length

of

the

error

message

string

in

char

**errormsg.

Related

concepts:

v

“Security

plug-ins”

on

page

1021

v

“Security

plug-in

APIs”

on

page

1047

Related

reference:

v

“APIs

for

user

ID/password

authentication

plug-ins”

on

page

1057

db2secDoesAuthIDExist

-

Check

if

authentication

ID

exists

function

This

function

determines

if

the

authid

represents

an

individual

user

(for

instance,

whether

the

function

can

map

the

authid

to

an

external

user

id).

This

function

should

return

DB2SEC_PLUGIN_OK

if

it

is

successful

-

the

authid

is

valid,

DB2SEC_PLUGIN_INVALID_USERORGROUP

if

it

is

not

valid,

or

DB2SEC_PLUGIN_USERSTATUSNOTKNOWN

if

the

authid

cannot

be

determined

to

exist.

C

API

syntax:

SQL_API_RC

SQL_API_FN

db2secDoesAuthIDExist(

const

char

*authid,

db2int32

authidlen,

const

char

*errormsg,

db2int32

*errormsglen);

Input:

const

char

*authid

The

authid

to

validate.

This

value

is

folded

to

upper

case,

with

no

trailing

blanks.

db2int32

authidlen

Length

of

the

authid.

Output:

char

**errormsg

A

pointer

to

the

address

of

an

ASCII

string

allocated

by

the

plug-in

that

can

be

returned

in

this

parameter

if

the

API

is

not

successful.

db2int32

*errormsglen

A

pointer

to

an

integer

that

indicates

the

length

of

the

error

message

string

in

char

**errormsg.

Related

concepts:

v

“Security

plug-ins”

on

page

1021

v

“Security

plug-in

APIs”

on

page

1047

Related

reference:

v

“APIs

for

user

ID/password

authentication

plug-ins”

on

page

1057

Chapter

30.

Security

plug-in

APIs

1079

GSS-API

plug-in

APIs

Required

APIs

and

Definitions

for

GSS-API

authentication

plug-ins

Following

is

a

complete

list

of

GSS-APIs

required

for

the

DB2

security

plug-in

interface.

The

supported

APIs

follow

these

specifications:

Generic

Security

Service

Application

Program

Interface,

Version

2

(IETF

RFC2743)

and

Generic

Security

Service

API

Version

2:

C-Bindings

(IETF

RFC2744).

Before

implementing

a

GSS-API

based

plug-in,

you

should

have

a

complete

understanding

of

these

specifications.

Table

84.

Required

APIs

and

Definitions

for

GSS-API

authentication

plug-ins

Name

Description

Client-side

APIs

gss_init_sec_context

Initiate

a

security

context

with

a

peer

application.

Server-side

APIs

gss_accept_sec_context

Accept

a

security

context

initiated

by

a

peer

application.

gss_display_name

Convert

an

internal

format

name

to

text.

Common

APIs

gss_delete_sec_context

Delete

an

established

security

context.

gss_display_status

Obtain

the

text

error

message

associated

with

a

GSS-API

status

code.

gss_release_buffer

Delete

a

buffer.

gss_release_cred

Release

local

data

structures

associated

with

a

GSS-API

credential.

gss_release_name

Delete

internal

format

name.

Required

definitions

GSS_C_DELEG_FLAG

Requests

delegation.

GSS_C_EMPTY_BUFFER

Signifies

that

the

gss_buffer_desc

does

not

contain

any

data.

GSS_C_GSS_CODE

Indicates

a

GSS

major

status

code.

GSS_C_INDEFINITE

Indicates

that

the

mechanism

does

not

support

context

expiration.

GSS_C_MECH_CODE

Indicates

a

GSS

minor

status

code.

GSS_C_MUTUAL_FLAG

Mutual

authentication

requested.

GSS_C_NO_BUFFER

Signifies

that

the

gss_buffer_t

variable

does

not

point

to

a

valid

gss_buffer_desc

structure.

GSS_C_NO_CHANNEL_BINDINGS

No

communication

channel

bindings.

GSS_C_NO_CONTEXT

Signifies

that

the

gss_ctx_id_t

variable

does

not

point

to

a

valid

context.

GSS_C_NO_CREDENTIAL

Signifies

that

gss_cred_id_t

variable

does

not

point

to

a

valid

credential

handle.

GSS_C_NO_NAME

Signifies

that

the

gss_name_t

variable

does

not

point

to

a

valid

internal

name.

GSS_C_NO_OID

Use

default

authentication

mechanism.

GSS_C_NULL_OID_SET

Use

default

mechanism.

1080

Common

Criteria

Certification:

Administration

and

User

Documentation

Table

84.

Required

APIs

and

Definitions

for

GSS-API

authentication

plug-ins

(continued)

Name

Description

GSS_S_COMPLETE

API

completed

successfully.

GSS_S_CONTINUE_NEEDED

Processing

is

not

complete

and

the

API

must

be

called

again

with

the

reply

token

received

from

the

peer.

Related

concepts:

v

“Security

plug-ins”

on

page

1021

v

“Security

plug-in

APIs”

on

page

1047

Related

reference:

v

“Restrictions

for

GSS-API

authentication

plug-ins”

on

page

1081

Restrictions

for

GSS-API

authentication

plug-ins

The

following

is

a

list

of

restrictions

for

GSS-API

authentication

plug-ins.

v

The

default

security

mechanism

is

always

assumed;

therefore,

there

is

no

OID

consideration.

v

The

only

GSS

services

requested

in

gss_init_sec_context()

are

mutual

authentication

and

delegation.

DB2

always

requests

a

ticket

for

delegation,

but

does

not

use

that

ticket

to

generate

a

new

ticket.

v

Only

the

default

context

time

is

requested.

v

Context

tokens

from

gss_delete_sec_context()

are

not

sent

from

the

client

to

the

server

and

vice-versa.

v

Anonymity

is

not

supported.

v

Channel

binding

is

not

supported

v

If

the

initial

credentials

expire,

DB2

does

not

automatically

renew

them.

v

The

GSS-API

specification

stipulates

that

even

if

gss_init_sec_context()

or

gss_accept_sec_context()

fail,

either

function

must

return

a

token

to

send

to

the

peer.

However,

because

of

DRDA

limitations,

DB2

only

sends

a

token

if

gss_init_sec_context()

fails

and

generates

a

token

on

the

first

call.

Related

concepts:

v

“Security

plug-ins”

on

page

1021

v

“Security

plug-in

APIs”

on

page

1047

Related

reference:

v

“Required

APIs

and

Definitions

for

GSS-API

authentication

plug-ins”

on

page

1080

Security

plug-in

API

versioning

Because

it

is

possible

that

future

releases

of

DB2®

will

need

different

versions

of

the

security

plug-in

APIs,

DB2

supports

version

numbering

of

the

APIs.

These

version

numbers

are

integers

starting

with

1

for

DB2

UDB

version

8.2.

The

version

number

that

DB2

passes

to

the

security

plug-in

APIs

are

the

highest

version

number

of

the

API

that

DB2

can

support,

and

correspond

to

the

version

number

of

the

structure.

If

the

plug-in

can

support

a

higher

API

version,

it

must

return

function

pointers

for

the

version

that

DB2

has

requested.

If

the

plug-in

only

supports

a

lower

version

of

the

API,

the

plug-in

should

fill

in

function

pointers

for

Chapter

30.

Security

plug-in

APIs

1081

the

lower

version.

In

either

situation,

the

security

plug-in

APIs

should

return

the

version

number

for

the

API

it

is

supporting

in

the

version

field

of

the

functions

structure.

For

DB2,

the

version

numbers

of

the

security

plug-ins

will

only

change

when

necessary

(for

example,

when

there

are

changes

to

the

parameters

of

the

APIs).

Version

numbers

will

not

automatically

change

with

DB2

release

numbers.

Related

concepts:

v

“Security

plug-ins”

on

page

1021

v

“Security

plug-in

APIs”

on

page

1047

1082

Common

Criteria

Certification:

Administration

and

User

Documentation

Chapter

31.

Security

plug-in

deployment

limitations

The

following

are

limitations

on

the

use

of

security

plug-ins:

DB2

Universal

JDBC

Driver

support

limitations:

The

DB2®

Universal

JDBC

Driver

does

not

support

the

client

side

plug-in

authentication

model.

You

cannot

use

a

GSS-API

authentication

plug-in

to

connect

to

a

DB2

Universal

Database

(DB2

UDB)

for

Linux,

UNIX®,

and

Windows®

server

from

a

DB2

Universal

JDBC

Driver

client.

A

DB2

Universal

JDBC

Driver

client

can

only

use

the

supported

operating

system

level

authentication

mechanism

or

the

Kerberos

authentication

method.

This

limitation

applies

to

both

Type

2

and

Type

4

connectivity.

Specifically,

the

server’s

database

manager

configuration

parameter

srvcon_auth

cannot

be

set

to

GSSPLUGIN

if

the

database

manager

configuration

parameter

srvcon_gssplugin_list

value

does

not

contain

the

name

of

a

Kerberos

based

GSS-API

plug-in.

The

srvcon_auth

parameter

can

however

be

set

to

any

of:

CLIENT,

SERVER,

SERVER_ENCRYPT,

KERBEROS,

KRB_SERVER_ENCRYPT,

GSS_SERVER_ENCRYPT,

DATA_ENCRYPT,

or

DATA_ENCRYPT_CMP.

DB2

UDB

family

support

limitations:

You

cannot

use

a

GSS-API

plug-in

to

authenticate

connections

between

DB2

UDB

clients

on

Linux,

UNIX,

and

Windows

and

another

DB2

UDB

family

server.

You

also

cannot

authenticate

connections

from

another

DB2

UDB

family

server,

acting

as

a

client,

to

a

DB2

UDB

server

on

Linux,

UNIX,

or

Windows.

If

you

use

a

DB2

UDB

client

on

Linux,

UNIX,

or

Windows

to

connect

to

other

DB2

UDB

family

servers,

you

can

use

client-side

user

ID/password

plug-ins

(such

as

the

IBM®-shipped

operating

system

authentication

plug-in),

or

you

can

write

your

own

user

ID/password

plug-in.

You

can

also

use

the

built-in

Kerberos

plug-ins,

or

implement

your

own.

With

a

DB2

UDB

client

on

Linux,

UNIX,

or

Windows,

you

should

not

catalog

a

database

using

the

GSSPLUGIN

authentication

type.

DB2

Information

Integrator

support

limitations:

DB2

II

does

not

support

the

use

of

delegated

credentials

from

a

GSS_API

plug-in

to

establish

outbound

connections

to

data

sources.

Connections

to

data

sources

must

continue

to

use

the

CREATE

USER

MAPPING

command.

Database

Administration

Server

support

limitations:

The

DB2

Administration

Server

(DAS)

does

not

support

security

plug-ins.

The

DAS

only

supports

the

operating

system

authentication

mechanism.

©

Copyright

IBM

Corp.

1993-2004

1083

1084

Common

Criteria

Certification:

Administration

and

User

Documentation

Chapter

32.

Security

Plug-In

Configuration

Parameters

clnt_krb_plugin

-

Client

Kerberos

plug-in

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Client

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

Null

or

IBMkrb5

[

any

valid

string

]

This

parameter

specifies

the

name

of

the

default

Kerberos

plug-in

library

to

be

used

for

client-side

authentication

and

local

authorization.

By

default,

the

value

is

null

on

UNIX-based

systems,

and

IBMkrb5

on

Windows

operating

systems.

This

plug-in

is

used

when

the

client

is

authenticated

using

KERBEROS

authentication.

Related

reference:

v

“GET

DATABASE

MANAGER

CONFIGURATION”

on

page

281

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION”

on

page

384

clnt_pw_plugin

-

Client

userid-password

plug-in

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Client

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

Null

[

any

valid

string

]

This

parameter

specifies

the

name

of

the

userid-password

plug-in

library

to

be

used

for

client-side

authentication

and

local

authorization.

By

default,

the

value

is

null

and

the

DB2-supplied

userid-password

plug-in

library

is

used.

The

plug-in

is

used

when

the

client

is

authenticated

using

CLIENT,

SERVER,

or

SERVER_ENCRYPT

authentication.

Related

reference:

v

“GET

DATABASE

MANAGER

CONFIGURATION”

on

page

281

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

©

Copyright

IBM

Corp.

1993-2004

1085

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION”

on

page

384

group_plugin

-

Group

plug-in

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Client

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

Null

[

any

valid

string

]

This

parameter

specifies

the

name

of

the

group

plug-in

library.

By

default,

this

value

is

null,

and

DB2

uses

the

operating

system

group

lookup.

The

plug-in

will

be

used

for

all

group

lookups.

Related

reference:

v

“GET

DATABASE

MANAGER

CONFIGURATION”

on

page

281

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION”

on

page

384

local_gssplugin

-

GSS

API

plug-in

used

for

local

instance

level

authorization

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Client

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

Null

[

any

valid

string

]

This

parameter

specifies

the

name

of

the

default

GSS

API

plug-in

library

to

be

used

for

instance

level

local

authorization

when

the

value

of

the

authentication

database

manager

configuration

parameter

is

set

to

GSSPLUGIN

or

GSS_SERVER_ENCRYPT.

Related

reference:

v

“GET

DATABASE

MANAGER

CONFIGURATION”

on

page

281

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION”

on

page

384

1086

Common

Criteria

Certification:

Administration

and

User

Documentation

srvcon_auth

-

Authentication

type

for

incoming

connections

at

the

server

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

Null

[

CLIENT;

SERVER;

SERVER_ENCRYPT;

KERBEROS;

KRB_SERVER_ENCRYPT;

GSSPLUGIN;

GSS_SERVER_ENCRYPT

]

This

parameter

specifies

how

and

where

user

authentication

is

to

take

place

when

handling

incoming

connections

at

the

server;

it

is

used

to

override

the

current

authentication

type.

If

a

value

is

not

specified,

DB2

uses

the

value

of

the

authentication

database

manager

configuration

parameter.

For

a

description

of

each

authentication

type,

see

“authentication

-

Authentication

type”

on

page

783

.

Related

reference:

v

“GET

DATABASE

MANAGER

CONFIGURATION”

on

page

281

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION”

on

page

384

srvcon_gssplugin_list

-

List

of

GSS

API

plug-ins

for

incoming

connections

at

the

server

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

Null

[

any

valid

string

]

This

parameter

specifies

the

GSS

API

plug-in

libraries

that

are

supported

by

the

database

server.

By

default,

the

value

is

null.

If

the

authentication

type

is

GSSPLUGIN

and

this

parameter

is

NULL,

an

error

is

returned.

If

the

authentication

type

is

KERBEROS

and

this

parameter

is

NULL,

the

DB2-supplied

kerberos

module

or

library

is

used.

This

parameter

is

not

used

if

another

authentication

type

is

used.

When

the

authentication

type

is

KERBEROS

and

the

value

of

this

parameter

is

not

NULL,

the

list

must

contain

exactly

one

Kerberos

plug-in,

and

that

plug-in

is

used

Chapter

32.

Security

Plug-In

Configuration

Parameters

1087

for

authentication

(all

other

GSS

plug-ins

in

the

list

are

ignored).

If

there

is

more

than

one

Kerberos

plug-in,

an

error

is

returned.

Each

GSS

API

plug-in

name

must

be

separated

by

a

comma

(,)

with

no

space

either

before

or

after

the

comma.

Plug-in

names

should

be

listed

in

the

order

of

preference.

This

parameter

handles

incoming

connections

at

the

server

when

the

srvcon_auth

parameter

is

specified

as

KERBEROS,

KRB_SERVER_ENCRYPT,

GSSPLUGIN

or

GSS_SERVER_ENCRYPT,

or

when

srvcon_auth

is

not

specified,

and

authentication

is

specified

as

KERBEROS,

KRB_SERVER_ENCRYPT,

GSSPLUGIN

or

GSS_SERVER_ENCRYPT.

Related

reference:

v

“GET

DATABASE

MANAGER

CONFIGURATION”

on

page

281

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION”

on

page

384

srvcon_pw_plugin

-

Userid-password

plug-in

for

incoming

connections

at

the

server

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

Null

[

any

valid

string

]

This

parameter

specifies

the

name

of

the

default

userid-password

plug-in

library

to

be

used

for

server-side

authentication.

By

default,

the

value

is

null

and

the

DB2-supplied

userid-password

plug-in

library

is

used.

The

parameter

handles

incoming

connections

at

the

server

when

the

srvcon_auth

parameter

is

specified

as

SERVER

or

SERVER_ENCRYPT,

or

when

srvcon_auth

is

not

specified,

and

authentication

is

specified

as

CLIENT,

SERVER,

or

SERVER_ENCRYPT.

Related

reference:

v

“GET

DATABASE

MANAGER

CONFIGURATION”

on

page

281

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION”

on

page

384

srv_plugin_mode

-

Server

plug-in

mode

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Database

server

with

local

clients

1088

Common

Criteria

Certification:

Administration

and

User

Documentation

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

UNFENCED

This

parameter

specifies

whether

plug-ins

are

to

run

in

fenced

mode

or

unfenced

mode.

Unfenced

mode

is

the

only

supported

mode.

Related

reference:

v

“GET

DATABASE

MANAGER

CONFIGURATION”

on

page

281

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION”

on

page

384

Chapter

32.

Security

Plug-In

Configuration

Parameters

1089

1090

Common

Criteria

Certification:

Administration

and

User

Documentation

Part

4.

Appendixes

©

Copyright

IBM

Corp.

1993-2004

1091

1092

Common

Criteria

Certification:

Administration

and

User

Documentation

Index

Special

characters
!

shell

command

213

(asterisk)
in

select

column

names

904

in

subselect

column

names

904

A
abnormal

termination
restart

API

400

restart

command

352

access

control
authentication

38

database

manager

43

database

objects

43

view

to

table

49

access

plans
effect

on

locks

184

access

token

54

action

precompile/bind

option

232,

842

active

logs

804

ADD

clause

on

ALTER

TABLE

statement

525

ADD

COLUMN

clause,

order

of

processing

525

administration

notification

log

803

agents
described

9

worker

agent

types

9

ALIAS

clause
COMMENT

statement

565

DROP

statement

676

alias

name,

definition

809

aliases
adding

comments

to

catalog

565

deleting

using

DROP

statement

676

description

809

ALL

clause
SELECT

statement

904

ALL

PRIVILEGES

clause
GRANT

statement

(Table,

View

or

Nickname)

718

REVOKE

table,

view

or

nickname

privileges

752

ALTER

clause
GRANT

statement

(Table,

View

or

Nickname)

718

REVOKE

statement,

removing

privilege

752

ALTER

FUNCTION

statement

519

ALTER

METHOD

statement

521

ALTER

privilege

28

ALTER

PROCEDURE

statement

522

ALTER

TABLE

statement
authorization

required

525

examples

525

syntax

diagram

525

ALTER

TABLESPACE

statement
description

557

ALTER

VIEW

statement
authorization

563

description

563

syntax

diagram

563

ambiguous

reference

errors

809

anyorder

file

type

modifier

304,

437

APIs
db2Backup

387

db2CfgGet

394

db2CfgSet

397

db2DatabaseQuiesce

402

db2DatabaseRestart

400

db2DatabaseUnquiesce

404

db2Inspect

423

db2InstanceStart

428

db2InstanceStop

433

db2Load

437

db2Reorg

458

db2Restore

463

db2Rollforward

474

db2SetWriteForDB

483

plug-in

APIs

1048,

1057

security

plug-in

API

1050

security

plug-in

APIs

1047,

1051,

1052,

1055,

1056,

1057,

1064,

1065,

1067,

1069,

1070,

1073,

1075,

1077,

1079

sqlabndx

484

sqlaprep

871

sqlarbnd

873

sqlbftpq

487

sqlbmtsq

489

sqlbotcq

491

sqlbstpq

493

sqleatcp

876

sqleatin

879

sqlecadb

494

sqlecrea

500

sqledrpd

506

sqledtin

882

sqlemgdb

508

sqluadau

510

sqluexpr

405

sqluimpr

412

sqlurcon

512

sqluvqdp

514

application

design
setting

collating

sequence

500

application

development
routines

in

988

application

performance
comparison

of

sequence

objects

and

identity

columns

950

application

process
definition

807

effect

on

locks

183

application

programming

interfaces

(API)
authorization

considerations

959

for

setting

contexts

between

threads
sqleAttachToCtx()

959

sqleBeginCtx()

959

application

programming

interfaces

(API)

(continued)
for

setting

contexts

between

threads

(continued)
sqleDetachFromCtx()

959

sqleEndCtx()

959

sqleGetCurrentCtx()

959

sqleInterruptCtx()

959

sqleSetTypeCtx()

959

application

programs
sequences,

controlling

949

applications
access

through

database

manager

484

archive

logging

804

archived

logs
offline

804

online

804

AS

clause
CREATE

VIEW

statement

656

in

SELECT

clause

904

ORDER

BY

clause

904

ASC

clause
CREATE

INDEX

statement

575

SELECT

statement

904

ASC

import

file

type

285

asterisk

(*)
in

select

column

names

904

in

subselect

column

names

904

asynchronous

events

959

Attach

and

Change

Password

API

876

Attach

API

879

ATTACH

command

839

attribute

name
definition

809

audit

activities

57

audit

facility
actions

57

asynchronous

record

writing

59

audit

data

in

tables
creating

audit

data

files

67

creating

tables

for

audit

data

64

loading

tables

with

audit

data

69

overview

64

selecting

data

from

tables

71

audit

events

table

73

authorities/privileges

57

behavior

59

CHECKING

access

approval

reasons

76

CHECKING

access

attempted

types

77

checking

events

table

74

CONTEXT

audit

events

87

CONTEXT

events

table

87

controlling

activities

89

error

handling

59

ERRORTYPE

parameter

59

events

57

examples

89

messages

72

©

Copyright

IBM

Corp.

1993-2004

1093

audit

facility

(continued)
monitoring

access

to

data

51

OBJMAINT

events

table

79

parameter

descriptions

60

record

layouts

72

SECMAINT

events

table

80

SECMAINT

privileges

or

authorities

81

synchronous

record

writing

59

syntax

60

SYSADMIN

audit

events

84

SYSADMIN

events

table

84

tips

and

techniques

88

usage

scenarios

60

VALIDATE

events

table

85

Audit

Facility

Administrator

Tool

command

260

audit

record
object

types

75

audit

trail

57

audit_buf_sz

configuration

parameter

59,

782

authentication
definition

of

38

description

13

plug-ins
API

for

checking

if

authentication

ID

exists

1079

API

for

cleaning

client

authentication

resources

1065

API

for

initializing

a

client

authentication

plug-in

1064

API

for

validating

passwords

1070

for

initializing

a

client

authentication

plug-in

1064

Library

locations

1024

user

ID/

password

authentication

1057

remote

client

43

security

plug-in

authentication

1021

trust

all

clients

configuration

parameter

790

trusted

clients

authentication

configuration

parameter

791

types
CLIENT

38

KERBEROS

38

KRB_SERVER_ENCRYPT

38

SERVER

38

SERVER_ENCRYPT

38

authentication

configuration

parameter

783

configuring

DB2

to

be

Common

Criteria

compliant

187

authentication

DAS

configuration

parameter

784

authorities
defining

group

names
system

administration

authority

group

name

configuration

parameter

787

system

control

authority

group

name

configuration

parameter

788

authorities

(continued)
defining

group

names

(continued)
system

maintenance

authority

group

name

configuration

parameter

789

authority

levels
database

administration

(DBADM)

25,

26

removing

DBADM

from

SYSADM

21

removing

DBADM

from

SYSCTRL

21

retrieving

for

user

510

See

privileges

15

system

administration

(SYSADM)

21

system

control

(SYSCTRL)

21

system

maintenance

(SYSMAINT)

22

system

monitor

authority

(SYSMON)

23

authorization
description

15

for

external

routines

32

granting

control

on

database

operations

700

granting

control

on

index

704

granting

create

on

schema

711

public

control

on

index

704

public

create

on

schema

711

revoking

733

trusted

client

38

authorization

ID

809

authorization

names
create

view

for

privileges

information

192

definition

809

description

809

restrictions

governing

809

retrieving

for

privileges

information

190

retrieving

names

with

DBADM

authority

190

retrieving

names

with

table

access

authority

191

retrieving

privileges

granted

to

191

auto

restart

enable

configuration

parameter

795

automatic

restart

803

B
Backup

database

API

387

BACKUP

DATABASE

command

227

Backup

Services

APIs

(XBSA)

227

backup

utility
authorities

and

privileges

required

to

use

837

BIGINT

SQL

data

type
in

CREATE

TABLE

statement

591

BINARY

LARGE

OBJECT

data

type

591

binarynumerics

file

type

modifier

304,

437

Bind

API
creating

packages

947

sqlabndx

484

bind

behavior,

DYNAMICRULES

952

BIND

command
creating

packages

947

BIND

command

(continued)
OWNER

option

47

syntax

232

bind

files
precompile

options

943

BIND

privilege
definition

30

BINDADD

database

authority
definition

24

BINDADD

parameter
grant

privilege

700

bindfile

precompile

option

842

binding
application

programs

to

databases

484

changing

configuration

parameters

779

database

utilities

137

defaults

484

errors

252,

500

GRANT

statement

705

implicitly

created

schema

232,

842

isolation

level

160

options

947

overview

947

rebinding

invalid

packages

45

revoking

all

privileges

740

routines

32

BLOB

data

type
in

CREATE

TABLE

statement

591

block-structured

devices

137

blocking

precompile/bind

option

232,

842

buffer

insert

724

buffer

pool

name

809

buffer

pools
deleting

using

DROP

statement

676

IBMDEFAULTBP

118

BUFFERPOOL

clause
ALTER

TABLESPACE

statement

557

CREATE

TABLESPACE

statement

648

DROP

statement

676

C
C/C++

applications
multiple

thread

database

access

959

call

level

interface

(CLI)
binding

to

a

database

137

compared

with

embedded

SQL

954

canceling
a

unit

of

work

900

CASCADE

delete

rule

591

case

sensitivity
commands

221

in

naming

conventions

831

catalog

database

API

494

CATALOG

DATABASE

command
syntax

249

catalog

table

spaces

111,

119

catalog

views
COLAUTH

193

DBAUTH

194

INDEXAUTH

195

PACKAGEAUTH

195

PACKAGEDEP

196

1094

Common

Criteria

Certification:

Administration

and

User

Documentation

catalog

views

(continued)
PASSTHRUAUTH

197

SCHEMAAUTH

198

SCHEMATA

198

SEQUENCEAUTH

198

SEQUENCES

199

TABAUTH

206

TABCONST

200

TABLES

201

TABLESPACES

205

TBSPACEAUTH

206

USEROPTIONS

206

catalog_noauth

configuration

parameter

784

cataloging
databases

249

catalogs
adding

comments

on

tables,

views,

columns

565

COMMENT

statement,

detailed

syntax

565

CCSID

(coded

character

set

identifier)
in

CREATE

TABLE

statement

591

CCSIDG

precompile/bind

option

232,

842

CCSIDM

precompile/bind

option

232,

842

CCSIDS

precompile/bind

option

232,

842

CHAR

VARYING

data

type

591

CHARACTER

data

type

591

character

serial

devices

137

character

strings
data

type

142

CHARACTER

VARYING

data

type

591

chardel

file

type

modifier
export

269,

405

import

285,

412

load

304,

437

charsub

precompile/bind

option

232,

842

CHECK

clause

in

CREATE

VIEW

statement

656

check

constraints
ALTER

TABLE

statement

525

CREATE

TABLE

statement

591

INSERT

statement

724

choosing
table

spaces

111

circular

logging

804

CLIENT

APPLNAME

special

register

799

CLIENT

authentication

type
client-level

security

38

client

support
TCP/IP

service

name

configuration

parameter

786

CLIENT

USERID

special

register

800

CLIENT

WRKSTNNAME

special

register

800

CLIPKG

precompile/bind

option

232

clnt_krb_plugin

configuration

parameter

1085

clnt_pw_plugin

configuration

parameter

1085

CLOB

(character

large

object)
data

type
creating

columns

591

CLOSE

in

CREATE

INDEX

statement

575

closing

connection
JDBC

data

source

975

SQLJ

data

source

970

CLP

(command

line

processor)
command

syntax

213

CLUSTER

clause,

CREATE

INDEX

statement

575

cnulreqd

precompile/bind

option

232,

842

code

page

file

type

modifier

304,

437

code

pages
Export

API

405

EXPORT

command

269

Import

API

412

IMPORT

command

285

coldel

file

type

modifier
export

269,

405

import

285,

412

load

304,

437

collating

sequences
user-defined

500

collection

precompile/bind

option

232,

842

COLUMN

clause,

in

COMMENT

statement

565

column

options
CREATE

TABLE

statement

591

columns
adding

comments

to

catalog

565

adding

to

a

table,

ALTER

TABLE

525

adding

with

ALTER

TABLE

statement

525

ambiguous

name

reference

errors

809

column

name
definition

809

qualification

in

COMMENT

ON

statement

809

uses

809

constraint

name,

FOREIGN

KEY,

rules

591

creating

index

keys

575

defining

142

grant

add

privileges

718

GROUP

BY,

use

in

limiting

in

SELECT

clause

904

grouping

column

names

in

GROUP

BY

904

HAVING

clause,

search

names,

rules

904

HAVING,

use

in

limiting

in

SELECT

clause

904

inserting

values,

INSERT

statement

724

names
in

ORDER

BY

clause

904

INSERT

statement

724

qualified

conditions

809

unqualified

conditions

809

naming

conventions

809

nested

table

expression

809

columns

(continued)
null

values
in

ALTER

TABLE

statement,

prevention

525

in

result

columns

904

qualified

column

name

rules

809

result

data

904

scalar

fullselect

809

searching

using

WHERE

clause

904

SELECT

clause

syntax

diagram

904

specifying

for

import

412

subquery

809

undefined

name

reference

errors

809

updating

row

values,

UPDATE

statement

757

combining

grouping

sets

904

command

line

processor

(CLP)
accessing

databases

through

213

accessing

help

213

batch

mode

213

binding

to

a

database

137

command

mode

213

description

213

interactive

input

mode

213

invoking

213

line

continuation

character

221

options

214

quitting

213

return

codes

220

shell

command

213

terminating

213

using

221

command

line

processor

invocation

command

213

command

syntax,

CLP

commands

213

commands
ATTACH

839

BACKUP

DATABASE

227

BIND

232

CATALOG

DATABASE

249

CREATE

DATABASE

252

db2

213

db2audit

260

db2icrt

260

db2rbind

263

db2set

265

db2undgp

267

DETACH

840

DROP

DATABASE

268

EXPORT

269

GET

AUTHORIZATIONS

274

GET

CONNECTION

STATE

841

GET

DATABASE

CONFIGURATION

275

GET

DATABASE

MANAGER

CONFIGURATION

281

IMPORT

285

INSPECT

298

LIST

APPLICATIONS

302

LOAD

304

MIGRATE

DATABASE

336

PRECOMPILE

842

QUIESCE

338

QUIESCE

TABLESPACES

FOR

TABLE

340

REBIND

866

RECONCILE

342

Index

1095

commands

(continued)
redirecting

output

221

REORG

INDEXES/TABLE

346

RESTART

DATABASE

352

RESTORE

DATABASE

354

ROLLFORWARD

DATABASE

363

SET

WRITE

371

START

DATABASE

MANAGER

373

STOP

DATABASE

MANAGER

378

UNQUIESCE

380

UPDATE

DATABASE

CONFIGURATION

381

UPDATE

DATABASE

MANAGER

CONFIGURATION

384

COMMENT

statement

565

comments
in

catalog

table

565

commit
release

of

locks

807

transaction,

JDBC

975

COMMIT

statement
description

885

ending

transaction

960

committing

changes
tables

960

Common

Criteria
configuring

DB2

to

be

Common

Criteria

compliant

187

compiled

applications,

creating

packages

942

compiling
overview

946

composite

column

values

904

compound

file

type

modifier

285,

412

compound

SQL
how

used

958

concurrency
factors

affecting

locking

182

concurrency

control
for

federated

databases

156

general

issues

for

156

condition

name,

in

SQL

procedure

809

configuration

files
description

769

location

769

configuration

parameters
audit_buf_sz

782

authentication

783

authentication

(DAS)

784

autorestart

795

catalog_noauth

784

clnt_krb_plugin

1085

clnt_pw_plugin

1085

dasadm_group

785

database_consistent

796

description

769

dftdbpath

785

dlchktime

792

group_plugin

1086

keepfenced

5

local_gssplugin

1086

locktimeout

793

maxlocks

794

srv_plugin_mode

1088

srvcon_auth

1087

srvcon_gssplugin_list

1087

srvcon_pw_plugin

1088

configuration

parameters

(continued)
svcename

786

sysadm_group

787

sysctrl_group

788

sysmaint_group

789

sysmon_group

790

trust_allclnts

790

trust_clntauth

791

configurations
changing

database

parameters

779

database
sample

275

updating

381

database

manager,

sample

281

CONNECT

database

authority

24

CONNECT

parameter,

GRANT...ON

DATABASE

statement

700

connect

precompile

option

842

CONNECT

statement
application

server

information

887

disconnecting

from

current

server

887

implicit

connection

887

new

password

information

887

Type

2

893

with

no

operand,

returning

information

887

CONNECT

TO

statement
successful

connection

887,

893

unsuccessful

connection

887,

893

connecting
to

a

data

source

using

DataSource

972

to

a

data

source

using

DriverManager
DB2

JDBC

Type

2

Driver

977

DB2

Universal

JDBC

Driver

986

to

a

data

source

using

SQLJ

965

connection-declaration-clause,

SQLJ

969

connections
using

in

JDBC

974

consistency
points

of

807

CONSTRAINT

clause

565

constraints
adding

comments

to

catalog

565

adding

with

ALTER

TABLE

525

dropping
with

ALTER

TABLE

525

names,

definition

809

container-clause,

CREATE

TABLESPACE

statement

648

containers
CREATE

TABLESPACE

statement

648

context-clause,

SQLJ

964

contexts
setting

in

multithreaded

DB2

applications
described

959

SQLJ

routines

999

continuation

character,

command

line

processor

(CLP)

221

CONTROL

clause
GRANT

statement

(Table,

View

or

Nickname)

718

revoking

752

CONTROL

parameter,

revoking

privileges

for

packages

740

CONTROL

privilege
described

28

implicit

issuance

47

package

privileges

30

controlling

statement

execution
SQLJ

962

cooked

devices

137

coordinator

agent
description

5

COPY,

in

CREATE

INDEX

statement

575

correlated

reference
in

nested

table

expression

809

in

scalar

fullselect

809

in

subquery

809

in

subselect

904

correlation

name
definition

809

FROM

clause,

subselect

rules

904

in

SELECT

clause,

syntax

diagram

904

qualified

reference

809

rules

809

crash

recovery

803

create

database

API
description

500

CREATE

DATABASE

command
description

252

example

of

133

CREATE

FUNCTION

statement
description

574

CREATE

INDEX

statement
column-names

in

index

keys

575

description

575

examples

150

online

reorganization

150

restrict

access

150

unique

index

150

create

instance

command

260

CREATE

METHOD

statement
description

583

CREATE

PROCEDURE

statement
description

588

CREATE

SCHEMA

statement

588

CREATE

SEQUENCE

statement
to

create

sequence

objects

947

CREATE

TABLE

statement
example

of

142

syntax

diagram

591

CREATE

TABLESPACE

statement
description

648

example

of

137

CREATE

VIEW

statement
changing

column

names

146

CHECK

OPTION

clause

146

description

656

example

of

146

CREATE_EXTERNAL_ROUTINE

database

authority

24

CREATE_NOT_FENCED_ROUTINE

database

authority

24

CREATETAB

database

authority

24

CREATETAB

parameter,

GRANT...ON

DATABASE

statement

700

1096

Common

Criteria

Certification:

Administration

and

User

Documentation

creating
databases,

granting

authority

700

indexes
overview

148

instances
UNIX

128

Windows

129

packages

for

compiled

applications

942

schemas

140

table

spaces

137

tables

142

views

146

cross-tabulation

rows

904

CUBE

grouping
examples

904

query

description

904

CURRENT

CLIENT_APPLNAME

special

register

799

CURRENT

CLIENT_USERID

special

register

800

CURRENT

CLIENT_WRKSTNNAME

special

register

800

CURRENT

SCHEMA

special

register

122,

141,

801

CURRENT

SERVER

special

register

800

CURRENT

SQLID

special

register

801

cursor

name
definition

809

cursors
deleting,

search

condition

details

670

terminating

for

unit

of

work,

ROLLBACK

900

WITH

HOLD
lock

clause,

COMMIT

statement,

effect

885

CURVAL

expression

947

D
DAS

configuration

parameters
authentication

784

dasadm_group

785

dasadm_group

configuration

parameter

785

data
audit

creating

audit

data

files

67

creating

tables

for

64

loading

audit

data

into

tables

69

selecting

audit

data

from

tables

71

working

with,

overview

64

committing

changes

960

fragmentation,

eliminating,

by

table

reorganization

346

inconsistent

961

large

object

(LOB)

107

long

field

106

monitoring

access

51

securing

system

catalog

192

undoing

changes

with

ROLLBACK

statement

961

data

encryption
description

52

data

source

name

809

data

sources
connecting

to
JDBC

971

data

structures
packed

decimal

1008

SQL-AUTHORIZATIONS

1016

data

types
column

definition

142

multibyte

character

set

142

result

columns

904

database
access

granting

authority

700

privileges

through

package

with

SQL

47,

771

database

administration

(DBADM)

authority
definition

25

database

authorities
BINDADD

24

CONNECT

24

CREATE_EXTERNAL_ROUTINE

24

CREATE_NOT_FENCED

24

CREATETAB

24

database

manager

24

granting

24

IMPLICIT_SCHEMA

24

LOAD

24

PUBLIC

24

QUIESCE_CONNECT

24

revoking

24

database

configuration
network

parameter

values

381

sample

275

updating

381

database

configuration

parameters
autorestart

803

database

directories
structure

described

101

database

logs

804

database

management
database

loading

authority,

granting

700

DBADM

creation

authority,

granting

700

granting

authority

700

saving

changes,

COMMIT

statement

885

switching

tasks,

COMMIT

statement

885

database

manager
access

control

43

binding

utilities

137

index

148

starting

373

starting

on

UNIX

121

starting

on

Windows

122

stopping

378

stopping

on

UNIX

123

stopping

on

Windows

124

database

manager

configuration
GET

DATABASE

MANAGER

CONFIGURATION

command

281

sample

file

281

database

objects
access

control

43

creation

and

privileges

19

database

objects

(continued)
naming

rules
NLS

99

Unicode

100

ownership

and

privileges

19

DATABASE

PARTITION

GROUP

clause
COMMENT

statement

565

DROP

statement

676

database

partition

groups
adding

comments

to

catalog

565

IBMCATGROUP

111

IBMDEFAULTGROUP

111

IBMTEMPGROUP

111

database

partition

servers
in

multiple-partition

processing

5

Database

Quiesce

API

402

database

recovery

log
defining

136

Database

Unquiesce

API

404

database_consistent

configuration

parameter

796

database-managed

space

(DMS)
description

116

databases
accessing

multiple

threads

959

autorestart

configuration

parameter

795

binding

application

programs

484

cataloging

249

checking

authorizations

274

CREATE

TABLESPACE

statement

648

creating

500

deleting

506

deleting,

ensuring

recovery

with

log

files

268,

506

distributed

956

dropping

268,

506

estimating

size

requirements

103

exporting

table

to

a

file

269,

405

importing

file

to

table

285,

412

loading

file

to

table

304

migrating

336

recovering

363

restarting

352

restoring

(rebuilding)

354

rollforward

recovery

363

using

different

contexts

959

DATALINK

data

type
CREATE

TABLE

statement

591

DELETE

statement

670

DROP

statement

676

INSERT

statement

724

UPDATE

statement

757

DataSource

interface
SQLJ

967

DATE

data

type
creating

tables

591

dateformat

file

type

modifier

285,

304,

412,

437

datesiso

file

type

modifier

269,

285,

304,

405,

412,

437

DATETIME

precompile/bind

option

232,

842

db2
CMD

description

213

Index

1097

DB2

architecture

overview

3

db2

command

213

DB2

environment
automatically

set
UNIX

127

manually

set
UNIX

128

DB2

JDBC

Type

2

Driver
connecting

to

data

source
DriverManager

interface

977

security

975

DB2

objects
naming

rules

95

DB2

Profile

Registry

command

265

DB2

Universal

Database
configuring

to

be

Common

Criteria

compliant

187

DB2

Universal

JDBC

Driver
connecting

to

a

data

source
DriverManager

interface

986

encrypted

user

ID

or

encrypted

password

security

984

Kerberos

security

980

security

985

user

ID

and

password

security

978

user

ID-only

security

980

DB2_NO_MPFA_FOR

_NEW_DB

114

db2audit

60

db2audit

command

260

db2audit.log

57

db2Backup

API

387

db2CfgGet

API

394

db2CfgSet

API

397

db2DatabaseQuiesce

API

402

db2DatabaseRestart

API

400

db2DatabaseUnquiesce

API

404

db2empfa

utility

114

db2icrt

command

260

db2Inspect

API

423

db2InstanceStart

API

428

db2InstanceStop

API

433

db2Load

API

437

db2nodes.cfg

file
CONNECT

(Type

1)

887

DB2OPTIONS

registry

variable

214

db2rbind

command

263

db2Reorg

API

458

db2Restore

API

463

db2Rollforward

API

474

db2set

command

265

db2SetWriteForDB

API

483

db2start

command

121,

122,

373

db2stop

command

123,

124,

378

db2undgp

command

267

DBADM

authority
granting

700

retrieving

names

190

DBCLOB

data

type
in

CREATE

TABLE

statement

591

DBCS

(double-byte

character

set)
naming

rules

99

deadlocks
checking

for

792

described

155

detector

155

dlchktime

configuration

parameter

792

deadlocks

(continued)
effects

on

performance

166

dec

precompile/bind

option

232,

842

decdel

precompile/bind

option

232,

842

decplusblank

file

type

modifier

269,

285,

304,

405,

412,

437

decpt

file

type

modifier

269,

285,

304,

405,

412,

437

default

attribute

specification

142

default

database

path

configuration

parameter

785

default

values
column

ALTER

TABLE

statement

525

CREATE

TABLE

statement

591

DEFER
in

CREATE

INDEX

statement

575

deferred_prepare

precompile

option

842

define

behavior,

DYNAMICRULES

952

degree

precompile/bind

option

232,

842

deletable

views

656

DELETE

clause
GRANT

statement

(Table,

View

or

Nickname)

718

REVOKE

statement,

revoking

privileges

752

DELETE

privilege

28

DELETE

statement
authorization,

searched

or

positioned

format

670

description

670

deleting
SQL

objects

676

delprioritychar

file

type

modifier

285,

304,

412,

437

dependency
of

objects

on

each

other

676

DESC

clause
CREATE

INDEX

statement

575

of

select

statement

904

descriptor-name
definition

809

designing
tables

spaces

111

Detach

API

882

DETACH

command

840

dftdbpath

configuration

parameter

785

directories
system

database,

cataloging

494

disconnect

precompile

option

842

DISTINCT

keyword
subselect

statement

904

DISTINCT

TYPE

clause
COMMENT

statement

565

DROP

statement

676

distinct

types
DROP

statement

676

names

809

distributed

relational

databases
units

of

work

956

dlchktime

configuration

parameter

792

dldel

file

type

modifier

269,

285,

304,

405,

412,

437

DMS

(database

managed

space)

116

DMS

table

spaces
compared

to

SMS

table

spaces

117

DMS

table

spaces

(continued)
CREATE

TABLESPACE

statement

648

creating

137

DOUBLE

data

type

591

DOUBLE-PRECISION

data

type

591

double-precision

float

data

type

591

DriverManager

interface
SQLJ

965

DROP

CHECK

clause

of

ALTER

TABLE

statement

525

DROP

CONSTRAINT

clause

of

ALTER

TABLE

statement

525

Drop

Database

API

506

DROP

DATABASE

command
syntax

268

DROP

FOREIGN

KEY

clause
ALTER

TABLE

statement

525

DROP

PARTITIONING

KEY

clause

of

ALTER

TABLE

statement

525

DROP

PRIMARY

KEY

clause
ALTER

TABLE

statement

525

DROP

statement
description

676

transforms

676

DROP

UNIQUE

clause
ALTER

TABLE

statement

525

dumpfile

file

type

modifier

304,

437

dynamic

SQL
authorization

considerations

951

effects

of

DYNAMICRULES

952

EXECUTE

privilege

for

database

access

47,

771

SQLDA

used

with

1008

DYNAMICRULES

precompile/bind

option
BIND

command

232

effects

on

dynamic

SQL

952

PRECOMPILE

command

842

E
embedded

SQL
authorization

950

compared

to

DB2

CLI

954

generating
sequential

values

947

encrypting

data

52

engine

dispatchable

unit

(EDU)
agents

9

error

handling
during

precompilation

943

error

messages
database

configuration

file

275

database

description

block

structure

500

dropping

remote

database

506

dropping

remote

databases

268

during

binding

484

during

rollforward

474

invalid

checksum
database

configuration

file

381

SQLCA

definitions

1004

UPDATE

statement

757

estimating

size

requirements
index

space

108

large

object

(LOB)

data

107

1098

Common

Criteria

Certification:

Administration

and

User

Documentation

estimating

size

requirements

(continued)
log

file

space

110

long

field

data

106

event

monitors
DROP

statement

676

name

809

EXCLUSIVE

MODE

connection

887

EXECUTE

privilege
database

access

with

dynamic

SQL

47,

771

database

access

with

static

SQL

47,

771

definition

30,

31

routines

32

executing
revoking

package

privileges

740

execution
package

privileges

705

execution

context
SQLJ

962

exit

codes,

CLP

220

explain

bind

option

232,

842

explicit

schema

use

122

explsnap

precompile/bind

option

232,

842

Export

API

405

EXPORT

command

269

EXPORT

utility
authorities

and

privileges

required

to

use

837

exporting
database

tables

files

269,

405

DB2

Data

Links

Manager

considerations

269

file

type

modifiers

for

269,

405

specifying

column

names

405

exposed

correlation-name

in

FROM

clause

809

expressions
grouping-expressions

in

GROUP

BY

904

in

a

subselect

904

in

ORDER

BY

clause

904

in

SELECT

clause,

syntax

diagram

904

EXTEND

USING

clause
CREATE

INDEX

statement

575

extent

size
description

111

F
failure

transaction

803

fastparse

file

type

modifier

304,

437

federated

databases
concurrency

control

for

156

federated

precompile/bind

option

232,

842

Fetch

Table

Space

Query

API

487

FIELDPROC

clause
in

ALTER

TABLE

statement

525

file

formats
exporting

table

to

file

269

importing

file

to

table

285

file

reference

variables
BLOB

809

CLOB

809

file

reference

variables

(continued)
DBCLOB

809

file

type

modifiers
Export

API

405

EXPORT

utility

269

Import

API

412

IMPORT

command

285

Load

API

437

LOAD

command

304

firewalls
application

proxy

210

circuit

level

210

description

209

screening

router

209

stateful

multi-layer

inspection

(SMLI)

210

first-fit

order

105

flagger

utility

for

precompiling

945

FLOAT

data

type

591

flushing

logs

804

FOR

BIT

DATA

clause,

CREATE

TABLE

statement

591

FOR

clause,

CREATE

TABLE

statement

591

forcein

file

type

modifier

285,

304,

412,

437

FOREIGN

KEY

clause

591

foreign

keys
adding

with

ALTER

TABLE

525

constraint

name

conventions

591

dropping

with

ALTER

TABLE

525

FREEPAGE

in

CREATE

INDEX

statement

575

FROM

clause
correlation-name

example

809

DELETE

statement

670

exposed

names

explained

809

non-exposed

names

explained

809

subselect

syntax

904

use

of

correlation

names

809

fullselect
CREATE

VIEW

statement

656

ORDER

BY

clause

904

subquery

role,

search

condition

809

table

reference

904

funcpath

precompile/bind

option

232,

842

FUNCTION

clause

in

COMMENT

ON

statement

565

function

mapping

name

809

function

name

809

function

privileges

31

functions
adding

comments

to

catalog

565

DECRYPT

52

ENCRYPT

52

GETHINT

52

G
GBPCACHE

in

CREATE

INDEX

statement

575

generated

columns
CREATE

TABLE

statement

591

generatedignore

file

type

modifier

285,

304,

412,

437

generatedmissing

file

type

modifier

285,

304,

412,

437

generatedoverride

file

type

modifier

304,

437

generic

precompile/bind

option

232,

842

Get

Authorizations

API

510

GET

AUTHORIZATIONS

command

274

Get

Configuration

Parameters

API

394

GET

CONNECTION

STATE

command

841

GET

DATABASE

CONFIGURATION

command

275

GET

DATABASE

MANAGER

CONFIGURATION

command

281

grand

total

row

904

GRANT

(Routine

Privileges)

statement
description

708

GRANT

(Schema

Privileges)

statement
description

711

GRANT

(Sequence

Privileges)

statement
description

713

GRANT

(Server

Privileges)

statement
description

715

GRANT

(Table

Space

Privileges)

statement
description

716

grant

bind

option

232

GRANT

statement
CONTROL

ON

INDEX
description

704

CREATE

ON

SCHEMA

711

database

authority
description

700

example

44

implicit

issuance

47

Nickname

Privileges

718

Package

Privileges
description

705

Table

Privileges

718

Table,

View

or

Nickname

Privileges
description

718

use

of

44

View

Privileges

718

grantgroup

bind

option

232

grantuser

bind

option

232

GRAPHIC

data

type
for

CREATE

TABLE

591

GROUP

BY

clause
subselect

results

904

subselect

rules

and

syntax

904

group

information
access

token

54

group

name
definition

809

group_plugin

configuration

parameter

1086

grouping

sets

904

grouping-expression

904

groups
naming

rules

97

selecting

36

GSS-APIs
GSS-API

authentication

plug-ins

1080

Restrictions

1080

Index

1099

H
hashing

on

partition

keys

591

HAVING

clause
search

conditions

with

subselect

904

subselect

results

904

host

identifiers

in

host

variable

809

host

variables
BLOB

809

CLOB

809

DBCLOB

809

definition

809

indicator

variables

809

inserting

in

rows,

INSERT

statement

724

syntax

diagram

809

I
IBMCATGROUP

111

IBMDEFAULTGROUP

111

IBMTEMPGROUP

111

identifiers
delimited

809

host

809

ordinary

809

SQL

809

identity

columns
comparison

with

sequence

objects

950

IDENTITY

columns
CREATE

TABLE

statement

591

identityignore

285

identityignore

file

type

modifier

304,

412,

437

identitymissing

file

type

modifier

285,

304,

412,

437

identityoverride

file

type

modifier

304,

437

implicit

authorization
managing

47

implicit

connection

221

implicit

connections
CONNECT

statement

887

implicit

schema

authority

(IMPLICIT_SCHEMA)

26

implicit

schema

use

122

implicit

schemas
GRANT

(Database

Authorities)

statement

700

REVOKE

(Database

Authorities)

statement

733

IMPLICIT_SCHEMA
authority

140

database

authority

24

IMPLICITSCHEMA

authority

20

implieddecimal

file

type

modifier

285,

304,

412,

437

Import

API

412

IMPORT

command

285

importing
code

page

considerations

412

data

285

database

access

through

DB2

Connect

412

DB2

Data

Links

Manager

considerations

412

importing

(continued)
file

to

database

table

412

file

type

modifiers

for

412

PC/IXF,

multiple-part

files

412

restrictions

412

to

a

remote

database

412

to

a

table

or

hierarchy

that

does

not

exist

412

to

typed

tables

412

IN
in

CREATE

TABLE

statement

591

INCLUDE

clause
CREATE

INDEX

statement

575

inconsistent
data

961

states

961

INDEX

clause
COMMENT

statement

565

CREATE

INDEX

statement

575

GRANT

statement

(Table,

View

or

Nickname)

718

REVOKE

statement,

removing

privileges

752

INDEX

keyword
DROP

statement

676

index

name
definition

809

primary

key

constraint

591

unique

constraint

591

index

privilege

31

INDEX

privilege

28

index

space
estimating

size

requirements

for

108

indexes
block

scan

lock

mode

180

catalog

specification

comments,

adding

565

correspondence

to

inserted

row

values

724

CREATE

INDEX

statement

150

CREATE

UNIQUE

INDEX

statement

150

creating
overview

148

deleting
using

the

DROP

statement

676

effect

of

type

on

next-key

locking

185

grant

control

704,

718

nonunique

150

online

reorganization

150

performance

tips

for

149

primary

key,

use

in

matching

525

privileges
description

31

revoking

738

renaming

736

unique

150

unique

key,

use

in

matching

525

indexfreespace

file

type

modifier

304,

437

indexixf

file

type

modifier

285,

412

indexschema

file

type

modifier

285,

412

indicator

variables
description

809

host

variable,

uses

in

declaring

809

inoperative

views

656

INSERT
inserting

values

724

restrictions

leading

to

failure

724

INSERT

clause
GRANT

statement

(Table,

View

or

Nickname)

718

REVOKE

statement,

removing

privileges

752

insert

precompile/bind

option

232,

842

INSERT

privilege

28

INSERT

statement
description

724

insertable

views

656

INSPECT

command

298

Inspect

database

API

423

Instance

Start

API

428

Instance

Stop

API

433

instance

user
setting

the

environment

125

instances
creating

125

UNIX

128

Windows

129

default

125

definition

125

directory

125

disadvantages

125

reasons

for

using

125

starting

on

UNIX

121

starting

on

Windows

122

stopping

on

UNIX

123

stopping

on

Windows

124

INTEGER

data

type

591

integers
in

ORDER

BY

clause

904

integrity

constraints
adding

comments

to

catalog

565

intermediate

result

tables

904

INTO

clause
FETCH

statement,

use

in

host

variable

809

INSERT

statement,

naming

table

or

view

724

restrictions

on

using

724

SELECT

INTO

statement,

use

in

host

variable

809

values

from

applications

programs

809

invoke

behavior,

DYNAMICRULES

952

IS

(intent

share)

mode

164

IS

clause
COMMENT

statement

565

isolation

level
setting

for

SQLJ

application

964

isolation

levels
effect

on

performance

157

in

DELETE

statement

670,

724,

757

locks

for

concurrency

control

163

specifying

160

statement-level

160

isolation

precompile/bind

option

232,

842

1100

Common

Criteria

Certification:

Administration

and

User

Documentation

J
JDBC

closing

connection

to

a

data

source

975

connecting

to

a

data

source,

DataSource

interface

972

transaction,

committing

975

transaction,

rolling

back

975

using

a

connection

974

JDBC

application
connecting

to

a

data

source

971

JDK_PATH,

Database

Manager

configuration

keyword

1003

joined

tables
subselect

clause

904

table

reference

904

joins
examples

904

partitioning

key

considerations

591

subselect

examples

904

types
full

outer

904

inner

904

left

outer

904

right

outer

904

K
keepblanks

file

type

modifier

285,

304,

412,

437

KEEPFENCED

Database

Manager

configuration

keyword

1003

Kerberos
authentication

type

38

security

protocols
third

party

authentication

38

KRB_SERVER_ENCRYPT

authentication

type

38

L
labels

object

names

in

SQL

procedures

809

LANGLEVEL

precompile

option

842

SQL92E

842

large

object

(LOB)

data

types
column

considerations

144

estimating

data

size

requirements

107

latches,

status

with

multiple

threads

959

level

precompile

option

842

LEVEL2

PCTFREE

clause

150

libraries
security

plug-in

libraries

1037

restrictions

on

1038

libraries,

shared
rebuilding

routine

1002

License

Center
managing

licenses

130

line

continuation

character
command

line

processor

(CLP)

221

linking
description

946

LIST

APPLICATIONS

command

302

Load

API

437

LOAD

command

304

LOAD

database

authority

24

LOAD

parameter,

GRANT...ON

DATABASE

statement

700

LOAD

privilege

25

load

utility
authorities

and

privileges

required

to

use

838

file

type

modifiers

for

437

temporary

files

304

loading
database,

granting

authority

for

700

file

to

database

table

304

file

type

modifiers

for

304

LOB

(large

object)

data

types
column

considerations

144

estimating

size

requirements

107

lobsinfile
Export

API

405

lobsinfile

file

type

modifier

269,

285,

304,

412,

437

local_gssplugin

configuration

parameter

1086

locators
variable

description

809

lock

compatibility
effects

on

performance

166

lock

conversion
effects

on

performance

166

lock

escalation

166

LOCK

TABLE

statement
minimizing

lock

escalations

172

when

using

CREATE

INDEX

150

lock

waits
effects

on

performance

166

locking
COMMIT

statement,

effect

on

885

definition

807

maximum

percent

of

lock

list

before

escalation

794

time

interval

for

checking

deadlock

configuration

parameter

792

tuning

for

170

locks
block

index-scan

modes

180

deadlocks

155

during

UPDATE

757

effect

of

application

type

183

effect

of

data-access

plan

184

escalation
correcting

172

defined

163

preventing

172

exclusive

(X)

mode

164

INSERT

statement,

default

rules

for

724

intent

exclusive

(IX)

mode

164

intent

none

(IN)

mode

164

intent

share

(IS)

mode

164

lock

modes

for

table

and

RID

index

scans

for

MDC

tables

177

modes

and

access

paths

for

standard

tables

174

next-key

locking

185

performance

factors

166

share

(S)

mode

164

share

with

intent

exclusive

(SIX)

mode

164

locks

(continued)
superexclusive

(Z)

mode

164

terminating

for

unit

of

work,

ROLLBACK

900

type-compatibility

tables

173

types

164

update

(U)

mode

164

LOCKSIZE

clause

163

locktimeout

configuration

parameter

793

log

file

space
estimating

size

requirements

110

logging
archive

804

circular

804

creating

table

without

initial

logging

591

logical

nodes;

see

database

partition

servers

5

logical

partitions
multiple

5

logs
active

804

audit

57

database

804

flushing

804

listing

during

roll

forward

363

offline

archived

804

online

archived

804

recovery,

allocating

500

long

fields
estimating

data

size

requirements

for

106

LONG

VARCHAR

data

type
for

CREATE

TABLE

591

longerror

precompile

option

842

M
MANAGED

BY

clause,

CREATE

TABLESPACE

statement

648

mapping
table

spaces

to

buffer

pools

118

materialized

query

tables

(MQTs)
definition

591

maximum

percent

of

lock

list

before

escalation

configuration

parameter

794

maxlocks

configuration

parameter

794

message

files
definition

943

messages
accessing

help

213

audit

facility

72

messages

precompile/bind

option

232,

842

METHOD

clause
DROP

statement

676

method

name

809

method

privileges

31

methods
overview

996

Migrate

Database

API

508

MIGRATE

DATABASE

command

336

MINPCTUSED

clause

150

modifiers
file

type
EXPORT

command

269

Index

1101

modifiers

(continued)
file

type

(continued)
IMPORT

command

285

LOAD

command

304

modifiers

file

type
export

utility

405

for

import

utility

412

Load

API

437

moving

data
between

databases

285,

412

MQTs

(materialized

query

tables)
definition

591

multi-threaded

applications
SQLJ

routines

999

N
names

identifying

columns

in

subselect

904

using

to

delete

rows

670

naming

conventions
database

manager

objects

831

identifiers

809

qualified

column

rules

809

restrictions
general

95

naming

rules
DB2

objects

95

general

95

national

languages

99

restrictions

95

Unicode

100

users,

user

IDs

and

groups

97

workstations

98

nested

table

expressions

904

next-key

locks
index

type,

effects

185

NEXTVAL

expression

947

NICKNAME

clause

in

DROP

statements

676

nicknames
definition

809

FROM

clause

904

exposed

names

in

809

nonexposed

names

in

809

privileges
grant

718

grant

control

718

indirect

through

packages

48

revoking

752

qualifying

a

column

name

809

SELECT

clause,

syntax

diagram

904

NO

ACTION

delete

rule

591

nochecklengths

file

type

modifier

285,

304,

412,

437

nodefaults

file

type

modifier

285,

412

nodoubledel

file

type

modifier

269,

285,

304,

405,

412,

437

noeofchar

file

type

modifier

285,

304,

412,

437

noheader

file

type

modifier

304,

437

NOLINEMACRO

precompile

option

842

nonexposed

correlation-name

in

FROM

clause

809

norowwarnings

file

type

modifier

304,

437

NOT

FENCED

routines

996

NOT

NULL

clause
in

the

CREATE

TABLE

statement

591

notypeid

file

type

modifier

285,

412

null
column

definition

142

NULL

string

221

NULL

value
command

line

processor

representation

221

null

value,

SQL
grouping-expressions,

allowable

uses

904

occurrences

in

duplicate

rows

904

result

columns

904

specified

by

indicator

variable

809

nullindchar

file

type

modifier

285,

304,

412,

437

numbers
precision

1008

scale

1008

NW

(next

key

weak

exclusive)

mode

164

O
object

identifier

(OID)

591

CREATE

TABLE

statement

591

CREATE

VIEW

statement

656

object

table

809

objects
schemas

for

grouping

122

OF

clause
CREATE

VIEW

statement

656

offline

archived

logs

804

OID

column

591

ON

clause
CREATE

INDEX

statement

575

ON

TABLE

clause
GRANT

statement

718

REVOKE

statement

752

ON

UPDATE

clause

591

on-db-partitions-clause
CREATE

TABLESPACE

statement

648

online
archived

logs

804

ONLY

clause
DELETE

statement

670

UPDATE

statement

757

Open

Table

Space

Container

Query

API

491

optimization
REORG

INDEXES/TABLE

command

346

OPTION

clause
CREATE

VIEW

statement

656

optlevel

precompile

option

842

ORDER

BY

clause
select

statement

904

outer

join
joined

table

904

output

precompile

option

842

owner

precompile/bind

option

232,

842

P
PACKAGE

clause
COMMENT

statement

565

DROP

statement

676

package

names
definition

809

packages
access

privileges

with

SQL

47,

771

adding

comments

to

catalog

565

authority

to

create,

granting

700

authorization

IDs
and

binding

809

in

dynamic

statements

809

COMMIT

statement,

effect

on

cursor

885

creating

484,

942,

947

deleting

using

DROP

statement

676

DROP

FOREIGN

KEY,

effect

on

dependencies

525

DROP

PRIMARY

KEY,

effect

on

dependencies

525

DROP

UNIQUE

key,

effect

on

dependencies

525

grant

privileges

705

owner

47

privileges

30

recreating

866,

873

revoking

privileges

45,

740

rules

when

revoking

privileges

752

packages

precompile

option

842

packeddecimal

file

type

modifier

304,

437

PAGE

SPLIT

clause

150

pagefreespace

file

type

modifier

304,

437

parameter

markers
host

variables

in

dynamic

SQL

809

parameter

name
definition

809

partitioning

keys
adding

with

ALTER

TABLE

525

ALTER

TABLE

statement

525

considerations

591

defining

when

creating

table

591

dropping

with

ALTER

TABLE

525

passing

contexts

between

threads

959

passwords
changing

with

ATTACH

876

changing

with

ATTACH

command

839

PCTFREE

clause
CREATE

INDEX

statement

575

performance
applications

improvement

using

routines

988

partitioning

key

recommendation

591

sequences,

controlling

949

tuning
by

reorganizing

tables

346,

458

phantom

quiesce

340

PIECESIZE,

in

CREATE

INDEX

statement

575

plug-ins
security

names,

naming

conventions

1025

1102

Common

Criteria

Certification:

Administration

and

User

Documentation

plug-ins

(continued)
security

plug-ins
APIs

1047

calling

sequence,

order

plug-ins

are

called

1043

deploying

security

plug-ins

1031,

1033,

1034

error

messages

1042

limitations

on

deployment

1083

restrictions

on

GSS-API

plug-ins

1081

return

codes

1040

versions

of,

versioning

1081

Plug-ins
autentication,

security,

group

retrieval

plug-ins

1057

authentication,

security,

group

retrieval

plug-ins

1048

authentication,security,

group

retrieval

plug-ins

1080

point

of

consistency,

database

803,

807

positional

updating

of

columns

by

row

757

precision
numbers,

determined

by

SQLLEN

variable

1008

PRECOMPILE

command

842

OWNER

option

47

Precompile

Program

API

871

precompiler
options

943

output

types

943

precompiling

945

accessing

host

or

AS/400

application

server

through

DB2

Connect

945

accessing

multiple

servers

945

example

943

flagger

utility

945

isolation

level

160

overview

943

PREP

command

842

PREP

command

(PRECOMPILE)
description

943

example

943

preprocessor

precompile

option

842

PRIMARY

KEY

clause
ALTER

TABLE

statement

525

CREATE

TABLE

statement

591

primary

keys
adding

with

ALTER

TABLE

525

creating

591

dropping
using

ALTER

TABLE

525

grant

add

privileges

718

grant

drop

privileges

718

privileges
ALTER

28

backup

837

CONTROL

28

create

view

for

information

192

database
effects

of

revoking

745

granted

when

creating

252,

500

DELETE

28

description

15

direct

274,

510

EXECUTE

31

privileges

(continued)
export

837

GRANT

statement

44

hierarchy

15

implicit

for

packages

15

INDEX
description

28,

31

effects

of

revoking

738

indirect

48,

274,

510

individual

15

INSERT

28

LOAD

838

object

ownership

19

ownership

(CONTROL)

15

package
creating

30

effects

of

revoking

740

packages
rules

752

planning

15

REFERENCES

28

report

274

restore

utility

837

retrieving
authorization

names

with

190

for

names

191

retrieving

for

a

user

510

REVOKE

statement

45

revoking

752

roll-forward

utility

838

schema

27

SELECT

28

system

catalog

listing

189

table

28

table

or

view,

effects

of

revoking

752

table

space

28

tasks

and

required

authorities

53

UPDATE

28

USAGE

31

view

28

views,

cascading

effects

of

revoking

752

PROCEDURE

clause,

COMMENT

statement

565

procedure

name
definition

809

procedure

privileges

31

process

model
overview

5

PROGRAM,

in

DROP

statement

676

protocols
TCP/IP

service

name

configuration

parameter

786

PUBLIC

AT

ALL

LOCATIONS
GRANT

statement

718

PUBLIC

clause
database

authorities,

figure

24

GRANT

statement

700,

704,

705,

711,

718

REVOKE

statement
database

authorities

740

index

privileges

738

maintenance

in

Date

Warehouse

Center

752

package

privileges

733

schema

privileges

745

Q
qualified

column

names

809

qualified

object

names

122

qualifier

precompile/bind

option

232,

842

qualifiers
object

name

809

queryopt

precompile/bind

option
BIND

command

232

PRECOMPILE

command

842

QUIESCE

command

338

Quiesce

Table

Spaces

for

Table

API

514

QUIESCE

TABLESPACES

FOR

TABLE

command

340

QUIESCE_CONNECT

database

authority

24

quiesce,

phantom

340

R
raw

devices

137

read-only

views

656

REAL

SQL

data

type
in

the

CREATE

TABLE

statement

591

Rebind

all

Packages

command

263

Rebind

API

873

REBIND

command

866

reclen

file

type

modifier

285

importing

412

Load

API

437

loading

304

Reconcile

API

512

RECONCILE

command
syntax

342

records
audit

57

locks

to

row

data

724

recovery
allocating

log

during

database

creation

136

auto

restart

enable

configuration

parameter

795

crash

803

database

354

with

roll

forward

363

without

roll

forward

354

REFERENCES

clause
GRANT

statement

(Table,

View

or

Nickname)

718

REVOKE

statement,

removing

privileges

752

REFERENCES

privilege

28

referential

constraints
adding

comments

to

catalog

565

registry

variables
DB2_NO_MPFA_FOR

_NEW_DB

114

DB2OPTIONS

214

release

precompile/bind

option

232,

842

releasing
connections,

CMS

applications

960

remote
function

name

809

type

name

809

Index

1103

remote

access
CONNECT

statement
EXCLUSIVE

MODE,

dedicated

connection

887

ON

SINGLE

DBPARTITIONNUM,

dedicated

connection

887

server

information

only,

no

operand

887

SHARE

MODE,

read-only

for

non-connector

887

successful

connections

887

unsuccessful

connections

887

remote

authorization

name

809

remote

unit

of

work
characteristics

956

example

956

overview

956

remote-object-name

809

remote-schema-name

809

remote-table-name

809

RENAME

statement

736

REORG

TABLE

command

346

reorganization

utility
binding

to

a

database

137

Reorganize

API

458

Restart

Database

API

400

RESTART

DATABASE

command

352,

803

Restore

database

API

463

RESTORE

DATABASE

command

354

restore

utility
authorities

and

privileges

required

to

use

837

restoring
earlier

versions

of

DB2

databases

354

RESTRICT

delete

rule

591

result

columns
subselect

904

return

codes
command

line

processor

(CLP)

220

Revoke

Execute

Privilege

command

267

REVOKE

statement
database

authorities

733

example

45

implicit

issuance

47

index

privileges

738

nickname

privileges

752

package

privileges

740

routine

privileges

742

schema

privileges

745

server

privileges

749

table

privileges

752

table

space

privileges

750

use

45

view

privileges

752

REXX

language
isolation

level,

specifying

160

rollback
definition

807

transaction,

JDBC

975

ROLLBACK

statement
backing

out

changes

961

description

900

rolling

back

changes

961

syntax

900

ROLLBACK

TO

SAVEPOINT

statement
description

900

Rollforward

Database

API

474

ROLLFORWARD

DATABASE

command

363

rollforward

utility
authorities

and

privileges

required

to

use

838

rolling

back

changes

961

ROLLUP

grouping

of

GROUP

BY

clause

904

routines
altering

1000

benefits

of

988

classes

1000

description

988

EXECUTE

privilege

32

external
authorizations

for

32

libraries

1000

methods

996

NOT

FENCED
security

996

rebuilding

shared

libraries

1002

scalar

UDFs
overview

992

security

996

stored

procedures

991

THREADSAFE
security

996

user-defined

table

functions

995

row

fullselect
UPDATE

statement

757

rows
deleting

670

grant

privilege

718

GROUP

BY

clause

904

HAVING

clause

904

index

keys

with

UNIQUE

clause

575

indexes

575

inserting

724

lock

types

164

locks

to

row

data,

INSERT

statement

724

restrictions

leading

to

failure

724

SELECT

clause,

syntax

diagram

904

updating

column

values,

UPDATE

statement

757

run

behavior,

DYNAMICRULES

952

run-time

authorization

ID

809

run-time

services
multiple

threads
effect

on

latches

959

S
savepoints

names

809

ROLLBACK

TO

SAVEPOINT

900

scalar

functions
overview

992

scale
of

data
determined

by

SQLLEN

variable

1008

of

numbers
determined

by

SQLLEN

variable

1008

SCHEMA

clause
COMMENT

statement

565

DROP

statement

676

schema

names
definition

809

schemas
adding

comments

to

catalog

565

controlling

use

20

CREATE

SCHEMA

statement

588

creating

140

definition

20

description

122

implicit
granting

authority

700

revoking

authority

733

in

new

databases

252,

500

privileges

20

setting

141

scope
adding

with

ALTER

TABLE

statement

525

adding

with

ALTER

VIEW

statement

563

CREATE

VIEW

statement

656

defining

with

added

column

525

defining

with

CREATE

TABLE

statement

591

SCOPE

clause
ALTER

TABLE

statement

525

ALTER

VIEW

statement

563

CREATE

TABLE

statement

591

CREATE

VIEW

statement

656

search

conditions
HAVING

clause
arguments

and

rules

904

WHERE

clause

904

with

DELETE
row

selection

670

with

UPDATE
arguments

and

rules

757

security
authentication

13

CLIENT

level

38

CONNECT

statement

887

DB2

JDBC

Type

2

Driver

975

DB2

Universal

JDBC

Driver

985

description

13

encrypted

user

ID

or

encrypted

password
DB2

Universal

JDBC

Driver

984

Kerberos
DB2

Universal

JDBC

Driver

980

plug-in
APIs

1055

APIs,

versions

of

APIs

1081

debugging,

problem

determination

1029

error

messages

1042

SQLCODES,

SQLSTATES

related

to

1029

two-part

user

ID

support

1026

plug-ins

1021

32

bit

considerations

1028

64

bit

considerations

1028

API

for

validating

passwords

1070

1104

Common

Criteria

Certification:

Administration

and

User

Documentation

security

(continued)
plug-ins

(continued)
APIs

1047,

1050,

1051,

1052,

1056,

1057,

1064,

1065,

1067,

1069,

1073,

1074,

1075,

1077,

1079

APIs

for

group

retrieval

plug-ins

1048

APIs

for

GSS-API

plug-ins

1080

APIs

for

user

ID/password

plug-ins

1057

calling

sequence

of,

order

in

which

called

1043

configuration

parameters

for

enabling

783

configuration

parameters

for

enabling

plug-ins

1085,

1087,

1088

deploying

plug-ins

1030,

1031

deploying

security

plug-ins

1033,

1034

deployment

1083

group

retrieval

plug-ins

1030

libraries;

location

of

security

plug-in

1024

limitations

on

deployment

of

plug-ins

1083

loading

of

1037

naming

1025

Overview

of

security

plug-in

infrastructure

1021

restrictions

1081

restrictions

on

security

plug-in

libraries

1038

return

codes

1040

UNIX

considerations

56

user

ID

and

password
DB2

Universal

JDBC

Driver

978

user

ID-only
DB2

Universal

JDBC

Driver

980

Windows

NT
users

56

SELECT

clause
GRANT

statement

(Table,

View

or

Nickname)

718

list

notation,

column

reference

904

REVOKE

statement,

removing

privileges

752

used

in

a

view

146

with

DISTINCT

keyword

904

select

list
application

rules

and

syntax

904

description

904

notation

rules

and

conventions

904

SELECT

privilege

28

SELECT

statement
in

EXPORT

command

269

subselects

904

SEQUENCE

clause,

COMMENT

statement

565

sequences
comparison

with

identity

columns

950

DROP

statement

676

privileges

31

purpose

947

sequential

values,

see

sequences

947

serialization
SQL

statement

execution

959

SERVER

authentication

type

38

SERVER_ENCRYPT

authentication

type

38

server-name

809

servers
granting

privileges

715

SET

clause,

UPDATE

statement,

column

names

and

values

757

Set

Configuration

Parameters

API

397

SET

CURRENT

SQLID

statement

902

SET

ENCRYPTION

PASSWORD

statement

52

SET

NULL

delete

rule

591

SET

PASSTHRU

statement
independence

from

COMMIT

statement

885

independence

from

ROLLBACK

statement

900

SET

SCHEMA

statement

902

SET

SERVER

OPTION

statement
independence

from

COMMIT

statement

885

independence

from

ROLLBACK

statement

900

SET

WRITE

command

371

SET-TRANSACTION-clause,

SQLJ

963

settings
schema

141

SHARE

MODE

connection

887

shared

libraries
rebuilding

routine

1002

SIGALRM

signal
starting

database

manager

373

SIGINT

signal
starting

database

manager

373

single

precision

float

data

type

591

Single

Table

Space

Query

API

493

SIX

(share

with

intent

exclusive)

mode

164

size

requirements
estimating

103

SMALLINT

data

type
static

SQL

591

SMS

(system

managed

space)
table

spaces
compared

to

DMS

table

spaces

117

CREATE

TABLESPACE

statement

648

creating

137

descriptions

114

sources
embedded

SQL

applications

945

file

name

extensions

943

modified

source

files

943

sparse

file

allocation

144

special

characters
in

commands

221

special

registers
CURRENT

CLIENT_APPLNAME

799

CURRENT

CLIENT_USERID

800

CURRENT

CLIENT_WRKSTNNAME

800

CURRENT

SCHEMA

801

special

registers

(continued)
CURRENT

SERVER

800

CURRENT

SQLID

801

SQL

language

element

797

updatable

797

USER

801

SPECIFIC

FUNCTION

clause
COMMENT

statement

565

specific

name
definition

809

SPECIFIC

PROCEDURE

clause
COMMENT

statement

565

SQL

(Structured

Query

Language)
authorization

APIs

959

dynamic

SQL

951

embedded

SQL

950

static

SQL

952

SQL

statements
accessing

help

213

ALTER

FUNCTION

519

ALTER

METHOD

521

ALTER

PROCEDURE

522

ALTER

TABLE

525

ALTER

TABLESPACE

557

ALTER

VIEW

563

COMMENT

565

COMMIT

885

CONNECT

(Type

1)

887

CONNECT

(Type

2)

893

CREATE

FUNCTION,

overview

574

CREATE

INDEX

575

CREATE

METHOD

583

CREATE

PROCEDURE

588

CREATE

SCHEMA

588

CREATE

TABLE

591

CREATE

TABLESPACE

648

CREATE

VIEW

656

DELETE

670

DROP

676

DROP

TRANSFORM

676

GRANT

(Database

Authorities

700

GRANT

(Index

Privileges)

704

GRANT

(Nickname

Privileges)

718

GRANT

(Package

Privileges)

705

GRANT

(Routine

Privileges)

708

GRANT

(Schema

Privileges)

711

GRANT

(Sequence

Privileges)

713

GRANT

(Server

Privileges)

715

GRANT

(Table

Privileges)

718

GRANT

(Table

Space

Privileges)

716

GRANT

(View

Privileges)

718

INSERT

724

RENAME

736

REVOKE

(Database

Authorities)

733

REVOKE

(Index

Privileges)

738

REVOKE

(Nickname

Privileges)

752

REVOKE

(Package

Privileges)

740

REVOKE

(Routine

Privileges)

742

REVOKE

(Schema

Privileges)

745

REVOKE

(Server

Privileges)

749

REVOKE

(Table

Privileges)

752

REVOKE

(Table

Space

Privileges)

750

REVOKE

(View

Privileges)

752

ROLLBACK

900

ROLLBACK

TO

SAVEPOINT

900

Index

1105

SQL

statements

(continued)
serializing

execution

959

SET

SCHEMA

902

UPDATE

757

SQL

subquery,

WHERE

clause

904

SQL

syntax
GROUP

BY

clause,

use

in

subselect

904

SELECT

clause

description

904

WHERE

clause

search

conditions

904

SQL

variable

name

809

SQL-AUTHORIZATIONS

structure

1016

SQL92

standard
rules

for

dynamic

SQL

902

sqlabndx

API

484

sqlaprep

API

871

sqlarbnd

API

873

sqlbftpq

API

487

sqlbmtsq

API

489

sqlbotcq

API

491

sqlbstpq

API

493

SQLCA

(SQL

communication

area)
description

1004

entry

changed

by

UPDATE

757

error

reporting

1004

partitioned

database

systems

1004

viewing

interactively

1004

sqlca

precompile

option

842

SQLD

field

in

SQLDA

1008

SQLDA

(SQL

descriptor

area)
contents

1008

SQLDABC

field

in

SQLDA

1008

SQLDAID

field

in

SQLDA

1008

SQLDATA

field

in

SQLDA

1008

SQLDATALEN

field

in

SQLDA

1008

SQLDATATYPE_NAME

field

in

SQLDA

1008

SQLDBCON

configuration

file

769

sqleatcp

API

876

sqleatin

API

879

sqleAttachToCtx

API

959

sqleBeginCtx

API

959

sqlecadb

API

494

sqlecrea

API

500

sqleDetachFromCtx

API

959

sqledrpd

API

506

sqledtin

API

882

sqleEndCtx

API

959

sqleGetCurrentCtx

API

959

sqleInterruptCtx

API

959

sqlemgdb

API

508

sqlerror

precompile/bind

option

232,

842

sqleSetTypeCtx

API

959

sqlflag

precompile

option

842

SQLIND

field

in

SQLDA

1008

SQLJ
closing

connection

to

a

data

source

970

connecting

to

a

data

source

965

execution

context

962

using

DataSource

interface

967

using

default

connection

969

using

DriverManager

interface

965

SQLJ

(embedded

SQL

for

Java)
routines

connection

contexts

999

SQLJ

application
controlling

statement

execution

962

setting

isolation

level

for

964

SQLJ

connection-declaration-clause

969

SQLJ

context-clause

964

SQLJ

SET-TRANSACTION-clause

963

SQLLEN

field

in

SQLDA

1008

SQLLONGLEN

field

in

SQLDA

1008

SQLN

field

in

SQLDA

1008

SQLNAME

field

in

SQLDA

1008

sqlrules

precompile

option

842

SQLTYPE

field

in

SQLDA

1008

sqluadau

API

510

sqluexpr

API

405

sqluimpr

API

412

sqlurcon

API

512

sqluvqdp

API

514

SQLVAR

field

in

SQLDA

1008

sqlwarn

precompile/bind

option

232,

842

srv_plugin_mode

configuration

parameter

1088

srvcon_auth

configuration

parameter

1087

srvcon_gssplugin_list

configuration

parameter

1087

srvcon_pw_plugin

configuration

parameter

1088

standards,

setting

rules

for

dynamic

SQL

902

START

DATABASE

MANAGER

command

373

starting
DB2

UNIX

121

Windows

122

statement-level

isolation,

specifying

160

statements
COMMIT

960

CREATE

SEQUENCE

947

names

809

ROLLBACK
ending

transactions

961

static

SQL
authorization

952

EXECUTE

privilege

for

database

access

47,

771

STOP

DATABASE

MANAGER

command

378

stopping
DB2

UNIX

123

Windows

124

storage
backing

out,

unit

of

work,

ROLLBACK

900

physical

346

storage

structures
ALTER

TABLESPACE

statement

557

CREATE

TABLESPACE

statement

648

stored

procedures
CREATE

PROCEDURE

statement

588

how

used

210

overview

991

strdel

precompile/bind

option

232,

842

striptblanks

file

type

modifier

285,

304,

412,

437

striptnulls

file

type

modifier

285,

304,

412,

437

structured

types
DROP

statement

676

host

variables

809

sub-total

rows

904

subqueries
HAVING

clause

904

using

fullselect

as

search

condition

809

WHERE

clause

904

subselect
description

904

example

sequence

of

operations

904

examples

904

FROM

clause,

relation

to

subselect

904

subtableconvert

file

type

modifier

304

summary

tables
definition

591

super-aggregate

rows

904

super-groups

904

supertypes
identifier

names

809

svcename

configuration

parameter

786

configuring

DB2

to

be

Common

Criteria

compliant

187

symmetric

super-aggregate

rows

904

syncpoint

precompile

option

842

SYNONYM,

in

DROP

statement

676

synonyms
DROP

ALIAS

statement

676

qualifying

a

column

name

809

sysadm_group

configuration

parameter

787

SYSCAT

catalog

views
for

security

issues

189

SYSCATSPACE

table

spaces

111,

134

sysctrl_group

configuration

parameter

788

sysmaint_group

configuration

parameter

789

sysmon_group

configuration

parameter

790

system

administration

(SYSADM)

authority
description

21

privileges

21

system

catalog

tables
description

136

estimating

initial

size

104

system

catalogs
privileges

listing

189

retrieving
authorization

names

with

privileges

190

names

with

DBADM

authority

190

names

with

table

access

authority

191

privileges

granted

to

names

191

security

192

system

control

authority

(SYSCTRL)

21

system

database

directory
cataloging

494

1106

Common

Criteria

Certification:

Administration

and

User

Documentation

system

maintenance

authority

(SYSMAINT)

22

system

managed

space

(SMS)

114

system

monitor

authority

(SYSMON)

23

system

temporary

table

spaces

111

system-containers,

CREATE

TABLESPACE

statement

648

T
TABLE

clause
COMMENT

statement

565

DROP

statement

676

table

reference

904

TABLE

HIERARCHY

clause,

DROP

statement

676

table

reference
alias

904

nested

table

expressions

904

nickname

904

table

name

904

view

name

904

Table

Space

Query

API

489

table

spaces
adding

comments

to

catalog

565

catalogs

111,

119

choice

by

optimizer

111

containers
file

example

137

file

system

example

137

creating
CREATE

TABLESPACE

statement

648

description

137

database

managed

space

(DMS)

116

deleting

using

DROP

statement

676

design
description

111

device

container

example

137

dropping
DROP

statement

676

grant

privileges

716

identification,

CREATE

TABLE

statement

591

index,

CREATE

TABLE

statement

591

initial

134

lock

types

164

mapping

to

buffer

pools

118

name

809

page

size

648

privileges

28

revoking

privileges

750

SYSCATSPACE

111

system

managed

space

(SMS)

114

temporary

111

TEMPSPACE1

111

types
SMS

or

DMS

117

user

111

USERSPACE1

111

table-name,

in

CREATE

TABLE

statement

591

tables
access

paths

174

tables

(continued)
adding

columns,

ALTER

TABLE

525

comments

to

catalog

565

alias

676

altering

525

authorization

for

creating

591

committing

changes

960

correlation

name

809

CREATE

TABLE

statement

142

creating
granting

authority

700

SQL

statement

instructions

591

deleting
using

DROP

statement

676

designator

to

avoid

ambiguity

809

estimating

size

requirements

103

exporting

to

files

269,

405

exposed

names

in

FROM

clause

809

FROM

clause,

subselect

naming

conventions

904

generated

columns

525

grant

privileges

718

importing

files

285,

412

indexes

575

inserting

rows

724

joining
partitioning

key

considerations

591

loading

files

to

304

lock

modes
for

RID

and

table

scans

of

MDC

tables

177

for

standard

tables

174

lock

types

164

names
description

809

in

ALTER

TABLE

statement

525

in

FROM

clause

904

in

SELECT

clause,

syntax

diagram

904

naming

142

nested

table

expression

809

non-exposed

names

in

FROM

clause

809

qualified

column

name

809

renaming

736

reorganization
REORG

INDEXES/TABLE

command

346

retrieving

names

with

access

to

191

revoking

privileges

45,

752

scalar

fullselect

809

schemas

588

subquery

809

system

catalog

104

tablereference

904

unique

correlation

names

809

updating

by

row

and

column,

UPDATE

statement

757

user

105

TABLESPACE

clause,

COMMENT

statement

565

tape

backup

227

target

precompile

option

842

tasks
authorizations

53

TCP/IP

service

name

configuration

parameter

786

temporary

files
LOAD

command

304

temporary

table

spaces
design

111

TEMPSPACE1

table

space

111,

134

termination
abnormal

352,

400

normal

378

unit

of

work

885,

900

text

precompile/bind

option

232,

842

threads
description

5

multiple
using

in

DB2

applications

959

THREADSAFE

routines

996

time
deadlock

configuration

parameter,

interval

for

checking

792

TIME

data

type
in

CREATE

TABLE

statement

591

timeformat

file

type

modifier

285,

304,

412,

437

TIMESTAMP

data

type
in

CREATE

TABLE

statement

591

timestampformat

file

type

modifier

285,

304,

412,

437

TO

clause
GRANT

statement

700,

704,

705,

711,

718

totalfreespace

file

type

modifier

304,

437

trail,

audit

57

transactions
committing

work

960

description

956

failure

recovery
reducing

the

impact

of

failure

803

undoing

changes

with

ROLLBACK

statement

961

transform

group

precompile/bind

option

232,

842

transformations
DROP

statement

676

TRIGGER

clause,

COMMENT

statement

565

triggers
adding

comments

to

catalog

565

dropping

676

INSERT

statement

724

names

809

updates
UPDATE

statement

757

true

type

font
requirement

for

command

line

processor

221

trust_allclnts

configuration

parameter

790

trust_clntauth

configuration

parameter

791

trusted

clients
CLIENT

level

security

38

type

2

indexes

575

next-key

locking

in

185

TYPE

clause
COMMENT

statement

565

DROP

statement

676

Index

1107

type

mapping
name

809

type

name

809

typed

tables
names

809

typed

views
defining

subviews

656

names

809

U
undefined

reference

errors

809

UNDER

clause,

CREATE

VIEW

statement

656

Unicode

(UCS-2)
identifiers

100

naming

rules

100

UNIQUE

clause
ALTER

TABLE

statement

525

CREATE

INDEX

statement

575

CREATE

TABLE

statement

591

unique

constraints
adding

with

ALTER

TABLE

525

ALTER

TABLE

statement

525

CREATE

TABLE

statement

591

dropping

with

ALTER

TABLE

525

unique

correlation

names
table

designators

809

unique

keys
ALTER

TABLE

statement

525

CREATE

TABLE

statement

591

units

of

work

(UOW)

956

COMMIT

statement

885

definition

807

remote

956

ROLLBACK

statement,

effect

900

terminating

885

terminating

without

saving

changes

900

UNQUIESCE

command

380

updatable

special

registers

797

updatable

views

656

UPDATE

clause
GRANT

statement

(Table,

View

or

Nickname)

718

REVOKE

statement,

removing

privileges

752

UPDATE

DATABASE

CONFIGURATION

command

381

UPDATE

DATABASE

MANAGER

CONFIGURATION

command

384

UPDATE

privilege

28

UPDATE

statement
description

757

row

fullselect

757

USAGE

privilege

31

usedefaults

file

type

modifier

285,

304,

412,

437

user

IDs
authorization

274

naming

rules

97

selecting

36

two-part

user

IDs

1026

USER

special

register

801

user

table

page

limits

105

user

table

spaces

111

user

temporary

table

spaces
designing

111

user-defined

functions

(UDFs)
CREATE

FUNCTION

statement

574

database

authority

to

create

non-fenced

24

DROP

statement

676

REVOKE

(Database

Authorities)

statement

733

table
overview

995

user-defined

types

(UDTs)
adding

comments

to

catalog

565

distinct

data

types,

CREATE

TABLE

statement

591

structured

types

591

USERSPACE1

table

space

111,

134

USING

clause
CREATE

INDEX

statement

575

V
validate

precompile/bind

option

232,

842

VALIDPROC
in

ALTER

TABLE

statement

525

VALUES

clause
INSERT

statement,

loading

one

row

724

number

of

values,

rules

724

VARCHAR

data

type
CREATE

TABLE

statement

591

version

precompile

option

842

VIEW

clause
CREATE

VIEW

statement

656

DROP

statement

676

VIEW

HIERARCHY

clause,

DROP

statement

676

view

name
definition

809

in

ALTER

VIEW

statement

563

views
access

control

to

table

49

access

privileges,

examples

of

49

adding

comments

to

catalog

565

alias

676

column

access

49

column

names

656

control

privilege
granting

718

limitations

on

718

creating

146,

656

data

integrity

146

data

security

146

deletable

656

deleting

using

DROP

statement

676

exposed

names

in

FROM

clause

809

for

privileges

information

192

FROM

clause,

subselect

naming

conventions

904

grant

privileges

718

inoperative

656

insertable

656

inserting

rows

in

viewed

table

724

names

in

FROM

clause

904

names

in

SELECT

clause,

syntax

diagram

904

views

(continued)
non-exposed

names

in

FROM

clause

809

preventing

view

definition

loss,

WITH

CHECK

OPTION

757

qualifying

a

column

name

809

read-only

656

revoking

privileges

752

row

access

49

rules,

revoking

privilege

752

schemas

588

updatable

656

updating

rows

by

columns,

UPDATE

statement

757

WITH

CHECK

OPTION,

effect

on

UPDATE

757

W
W

(Weak

Exclusive)

lock

mode

164

WCHARTYPE

precompiler

option
with

Precompile

command

842

WHERE

clause
DELETE

statement

670

search

function,

subselect

904

UPDATE

statement,

conditional

search

757

WHERE

CURRENT

OF

clause
DELETE

statement,

use

of

DECLARE

CURSOR

670

UPDATE

statement

757

Windows

user

group
access

token

54

WITH

CHECK

OPTION

clause,

CREATE

VIEW

statement

656

WITH

clause
CREATE

VIEW

statement

656

INSERT

statement

724

WITH

DEFAULT

clause,

ALTER

TABLE

statement

525

WITH

GRANT

OPTION

clause,

GRANT

statement

718

WITH

OPTIONS

clause
CREATE

VIEW

statement

656

WORK

keyword,

COMMIT

statement

885

workstations
(nname),

naming

rules

98

remote
cataloging

databases

249

wrappers
names

809

X
X

(Exclusive)

mode

164

XBSA

(Backup

Services

APIs)

227

Z
zoned

decimal

file

type

modifier

304,

437

1108

Common

Criteria

Certification:

Administration

and

User

Documentation

Notices

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

all

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

For

license

inquiries

regarding

double-byte

(DBCS)

information,

contact

the

IBM

Intellectual

Property

Department

in

your

country/region

or

send

inquiries,

in

writing,

to:

IBM

World

Trade

Asia

Corporation

Licensing

2-31

Roppongi

3-chome,

Minato-ku

Tokyo

106,

Japan

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country/region

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

“AS

IS”

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY,

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions;

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product,

and

use

of

those

Web

sites

is

at

your

own

risk.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

IBM

Corp.

1993-2004

1109

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

that

has

been

exchanged,

should

contact:

IBM

Canada

Limited

Office

of

the

Lab

Director

8200

Warden

Avenue

Markham,

Ontario

L6G

1C7

CANADA

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases

payment

of

a

fee.

The

licensed

program

described

in

this

document

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement,

or

any

equivalent

agreement

between

us.

Any

performance

data

contained

herein

was

determined

in

a

controlled

environment.

Therefore,

the

results

obtained

in

other

operating

environments

may

vary

significantly.

Some

measurements

may

have

been

made

on

development-level

systems,

and

there

is

no

guarantee

that

these

measurements

will

be

the

same

on

generally

available

systems.

Furthermore,

some

measurements

may

have

been

estimated

through

extrapolation.

Actual

results

may

vary.

Users

of

this

document

should

verify

the

applicable

data

for

their

specific

environment.

Information

concerning

non-IBM

products

was

obtained

from

the

suppliers

of

those

products,

their

published

announcements,

or

other

publicly

available

sources.

IBM

has

not

tested

those

products

and

cannot

confirm

the

accuracy

of

performance,

compatibility,

or

any

other

claims

related

to

non-IBM

products.

Questions

on

the

capabilities

of

non-IBM

products

should

be

addressed

to

the

suppliers

of

those

products.

All

statements

regarding

IBM’s

future

direction

or

intent

are

subject

to

change

or

withdrawal

without

notice,

and

represent

goals

and

objectives

only.

This

information

may

contain

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious,

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

COPYRIGHT

LICENSE:

This

information

may

contain

sample

application

programs,

in

source

language,

which

illustrate

programming

techniques

on

various

operating

platforms.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM

for

the

purposes

of

developing,

using,

marketing,

or

distributing

application

programs

conforming

to

the

application

programming

interface

for

the

operating

platform

for

which

the

sample

programs

are

written.

These

examples

have

not

been

thoroughly

tested

under

all

conditions.

IBM,

therefore,

cannot

guarantee

or

imply

reliability,

serviceability,

or

function

of

these

programs.

Each

copy

or

any

portion

of

these

sample

programs

or

any

derivative

work

must

include

a

copyright

notice

as

follows:

1110

Common

Criteria

Certification:

Administration

and

User

Documentation

©

(your

company

name)

(year).

Portions

of

this

code

are

derived

from

IBM

Corp.

Sample

Programs.

©

Copyright

IBM

Corp.

_enter

the

year

or

years_.

All

rights

reserved.

Trademarks

The

following

terms

are

trademarks

of

International

Business

Machines

Corporation

in

the

United

States,

other

countries,

or

both,

and

have

been

used

in

at

least

one

of

the

documents

in

the

DB2

UDB

documentation

library.

ACF/VTAM

AISPO

AIX

AIXwindows

AnyNet

APPN

AS/400

BookManager

C

Set++

C/370

CICS

Database

2

DataHub

DataJoiner

DataPropagator

DataRefresher

DB2

DB2

Connect

DB2

Extenders

DB2

OLAP

Server

DB2

Information

Integrator

DB2

Query

Patroller

DB2

Universal

Database

Distributed

Relational

Database

Architecture

DRDA

eServer

Extended

Services

FFST

First

Failure

Support

Technology

IBM

IMS

IMS/ESA

iSeries

LAN

Distance

MVS

MVS/ESA

MVS/XA

Net.Data

NetView

OS/390

OS/400

PowerPC

pSeries

QBIC

QMF

RACF

RISC

System/6000

RS/6000

S/370

SP

SQL/400

SQL/DS

System/370

System/390

SystemView

Tivoli

VisualAge

VM/ESA

VSE/ESA

VTAM

WebExplorer

WebSphere

WIN-OS/2

z/OS

zSeries

The

following

terms

are

trademarks

or

registered

trademarks

of

other

companies

and

have

been

used

in

at

least

one

of

the

documents

in

the

DB2

UDB

documentation

library:

Microsoft,

Windows,

Windows

NT,

and

the

Windows

logo

are

trademarks

of

Microsoft

Corporation

in

the

United

States,

other

countries,

or

both.

Intel

and

Pentium

are

trademarks

of

Intel

Corporation

in

the

United

States,

other

countries,

or

both.

Java

and

all

Java-based

trademarks

are

trademarks

of

Sun

Microsystems,

Inc.

in

the

United

States,

other

countries,

or

both.

Notices

1111

UNIX

is

a

registered

trademark

of

The

Open

Group

in

the

United

States

and

other

countries.

Other

company,

product,

or

service

names

may

be

trademarks

or

service

marks

of

others.

1112

Common

Criteria

Certification:

Administration

and

User

Documentation

Contacting

IBM

In

the

United

States,

call

one

of

the

following

numbers

to

contact

IBM:

v

1-800-IBM-SERV

(1-800-426-7378)

for

customer

service

v

1-888-426-4343

to

learn

about

available

service

options

v

1-800-IBM-4YOU

(426-4968)

for

DB2

marketing

and

sales

In

Canada,

call

one

of

the

following

numbers

to

contact

IBM:

v

1-800-IBM-SERV

(1-800-426-7378)

for

customer

service

v

1-800-465-9600

to

learn

about

available

service

options

v

1-800-IBM-4YOU

(1-800-426-4968)

for

DB2

marketing

and

sales

To

locate

an

IBM

office

in

your

country

or

region,

check

IBM’s

Directory

of

Worldwide

Contacts

on

the

web

at

http://www.ibm.com/planetwide

Product

information

Information

regarding

DB2

Universal

Database

products

is

available

by

telephone

or

by

the

World

Wide

Web

at

http://www.ibm.com/software/data/db2/udb

This

site

contains

the

latest

information

on

the

technical

library,

ordering

books,

product

downloads,

newsgroups,

FixPaks,

news,

and

links

to

web

resources.

If

you

live

in

the

U.S.A.,

then

you

can

call

one

of

the

following

numbers:

v

1-800-IBM-CALL

(1-800-426-2255)

to

order

products

or

to

obtain

general

information.

v

1-800-879-2755

to

order

publications.

For

information

on

how

to

contact

IBM

outside

of

the

United

States,

go

to

the

IBM

Worldwide

page

at

www.ibm.com/planetwide

©

Copyright

IBM

Corp.

1993-2004

1113

http://www.ibm.com/planetwide
http://www.ibm.com/planetwide

1114

Common

Criteria

Certification:

Administration

and

User

Documentation

����

Printed

in

USA

SC09-7981-00

	Contents
	Common Criteria certification of DB2 Universal Database products
	Supported interfaces for a Common Criteria evaluated configuration
	About This Book
	Part 1. Administration
	Chapter 1. Process Overview
	DB2 architecture and process overview
	Client-server processing model
	Database agents

	Chapter 2. Security
	Authentications, authorizations, privileges, and authorities
	Security
	Authentication
	Authorization
	Privileges, authority levels, and database authorities
	Object creation, ownership, and privileges
	Schemas
	Details on privileges, authorities, and authorization
	System administration authority (SYSADM)
	System control authority (SYSCTRL)
	System maintenance authority (SYSMAINT)
	System monitor authority (SYSMON)
	Database authorities
	Database administration authority (DBADM)
	LOAD authority
	Implicit schema authority (IMPLICIT_SCHEMA) considerations
	Schema privileges
	Table space privileges
	Table and view privileges
	Package privileges
	Index privileges
	Sequence privileges
	Routine privileges
	Authorizations and binding of routines that contain SQL
	Routines that are migrated from version previous to version 8

	Controlling Database Access
	Security issues when installing DB2 Universal Database
	Authentication methods for your server
	Authentication considerations for remote clients
	Controlling access to database objects
	Details on controlling access to database objects
	Granting privileges
	Revoking privileges
	Managing implicit authorizations by creating and dropping objects
	Establishing ownership of a package
	Indirect privileges through a package
	Indirect privileges through a package containing nicknames
	Controlling access to data with views
	Monitoring access to data using the audit facility
	Data encryption

	Tasks and required authorizations
	Acquiring Windows users' group information using an access token
	Details on security based on operating system
	Windows NT platform security considerations for users
	UNIX platform security considerations for users

	Chapter 3. Auditing DB2 Universal Database™ (DB2 UDB) activities
	Introduction to the DB2 Universal Database (DB2 UDB) audit facility
	Audit facility behavior
	Audit facility usage
	Working with DB2 audit data in DB2 tables
	Working with DB2 audit data in DB2 tables
	Creating tables to hold the DB2 audit data
	Creating DB2 audit data files
	Loading DB2 audit data into tables
	Selecting DB2 audit data from tables

	Audit facility messages
	Audit facility record layouts (introduction)
	Details on audit facility record layouts
	Audit record layout for AUDIT events
	Audit record layout for CHECKING events
	Audit record object types
	List of possible CHECKING access approval reasons
	List of possible CHECKING access attempted types
	Audit record layout for OBJMAINT events
	Audit record layout for SECMAINT events
	List of possible SECMAINT privileges or authorities
	Audit record layout for SYSADMIN events
	List of possible SYSADMIN audit events
	Audit record layout for VALIDATE events
	Audit record layout for CONTEXT events
	List of possible CONTEXT audit events

	Audit facility tips and techniques
	Controlling DB2 UDB audit facility activities

	Chapter 4. Naming rules
	General naming rules
	DB2 UDB object naming rules
	User, user ID and group naming rules
	Workstation naming rules
	Naming rules in an NLS environment
	Naming rules in a Unicode environment

	Chapter 5. Considerations for Creating a Database System
	Database directories and files
	Space requirements for database objects
	Space requirements for system catalog tables
	Space requirements for user table data
	Space requirements for long field data
	Space requirements for large object data
	Space requirements for indexes
	Space requirements for log files
	Table space design
	System managed space
	Database managed space
	Comparison of SMS and DMS table spaces
	Relationship between table spaces and buffer pools
	Catalog table space design

	Chapter 6. Before Creating the Database
	Starting DB2 UDB on UNIX
	Starting DB2 UDB on Windows
	Grouping objects by schema
	Stopping an instance on UNIX
	Stopping an instance on Windows
	Instance creation
	Setting the DB2 UDB environment automatically on UNIX
	Setting the DB2 UDB environment manually on UNIX
	UNIX details when creating instances
	Windows details when creating instances
	License management

	Chapter 7. Creating a Database and Database Objects
	Creating a database
	Defining initial table spaces
	Definition of system catalog tables
	Definition of the database recovery log
	Binding utilities to the database
	Creating a table space
	Creating a schema
	Setting a schema
	Creating and populating a table
	Large object (LOB) column considerations
	Creating a view
	Creating an index
	Using an index
	Options on the CREATE INDEX statement

	Chapter 8. Concurrency, Isolation Levels, and Locking
	Deadlocks between applications
	Concurrency Control and Isolation Levels
	Concurrency issues
	Performance impact of isolation levels
	Specifying the isolation level

	Concurrency Control and Locking
	Locks and concurrency control
	Lock attributes
	Locks and performance
	Guidelines for locking
	Correcting lock escalation problems
	Lock type compatibility
	Lock modes and access paths for standard tables
	Lock modes for table and RID index scans of MDC tables
	Locking for block index scans for MDC tables

	Factors that affect locking
	Factors That Affect Locking
	Locks and types of application processing
	Locks and data-access methods
	Index types and next-key locking

	Chapter 9. Configuring DB2 to be Common Criteria compliant
	Configuring DB2 to be Common Criteria compliant

	Chapter 10. System catalogs and security maintenance
	Using the system catalog for security issues
	Details on using the system catalog for security issues
	Retrieving authorization names with granted privileges
	Retrieving all names with DBADM authority
	Retrieving names authorized to access a table
	Retrieving all privileges granted to users
	Securing the system catalog view

	System Catalog Views
	SYSCAT.COLAUTH
	SYSCAT.DBAUTH
	SYSCAT.INDEXAUTH
	SYSCAT.PACKAGEAUTH
	SYSCAT.PACKAGEDEP
	SYSCAT.PASSTHRUAUTH
	SYSCAT.SCHEMAAUTH
	SYSCAT.SCHEMATA
	SYSCAT.SEQUENCEAUTH
	SYSCAT.SEQUENCES
	SYSCAT.TABCONST
	SYSCAT.TABLES
	SYSCAT.TABLESPACES
	SYSCAT.TBSPACEAUTH
	SYSCAT.USEROPTIONS
	SYSCAT.TABAUTH

	Chapter 11. Other security considerations
	Introduction to firewall support
	Screening router firewalls
	Application proxy firewalls
	Circuit level firewalls
	Stateful multi-layer inspection (SMLI) firewalls
	Guidelines for stored procedures

	Chapter 12. Command Line Processor (CLP)
	db2 - Command Line Processor Invocation
	Command line processor options
	Command Line Processor Return Codes
	Command Line Processor (CLP)

	Chapter 13. DB2 UDB Commands for Administrators
	BACKUP DATABASE
	BIND
	CATALOG DATABASE
	CREATE DATABASE
	db2audit - Audit Facility Administrator Tool
	db2icrt - Create Instance
	db2rbind - Rebind all Packages
	db2secv82 - Set permissions for DB2 objects
	db2set - DB2 Profile Registry
	db2undgp - Revoke Execute Privilege
	DROP DATABASE
	EXPORT
	GET AUTHORIZATIONS
	GET DATABASE CONFIGURATION
	GET DATABASE MANAGER CONFIGURATION
	IMPORT
	INSPECT
	LIST APPLICATIONS
	LOAD
	File type modifiers for load
	MIGRATE DATABASE
	QUIESCE
	QUIESCE TABLESPACES FOR TABLE
	RECONCILE
	REORG INDEXES/TABLE
	RESTART DATABASE
	RESTORE DATABASE
	ROLLFORWARD DATABASE
	SET WRITE
	START DATABASE MANAGER
	STOP DATABASE MANAGER
	UNQUIESCE
	UPDATE DATABASE CONFIGURATION
	UPDATE DATABASE MANAGER CONFIGURATION

	Chapter 14. DB2 UDB APIs for Administrators
	db2Backup - Backup database
	db2CfgGet - Get Configuration Parameters
	db2CfgSet - Set Configuration Parameters
	db2DatabaseRestart - Restart Database
	db2DatabaseQuiesce - Database Quiesce
	db2DatabaseUnquiesce - Database Unquiesce
	db2Export - Export
	db2Import - Import
	db2Inspect - Inspect database
	db2InstanceStart - Instance Start
	db2InstanceStop - Instance Stop
	db2Load - Load
	db2Reorg - Reorganize
	db2Restore - Restore database
	db2Rollforward - Rollforward Database
	db2SetWriteForDB - Set or Resume I/O
	sqlabndx - Bind
	sqlbftpq - Fetch Table Space Query
	sqlbmtsq - Table Space Query
	sqlbotcq - Open Table Space Container Query
	sqlbstpq - Single Table Space Query
	sqlecadb - Catalog Database
	sqlecrea - Create Database
	sqledrpd - Drop Database
	sqlemgdb - Migrate Database
	sqluadau - Get Authorizations
	sqlurcon - Reconcile
	sqluvqdp - Quiesce Table Spaces for Table

	Chapter 15. SQL Statements for Administrators
	ALTER FUNCTION
	ALTER METHOD
	ALTER PROCEDURE
	ALTER TABLE
	ALTER TABLESPACE
	ALTER VIEW
	COMMENT
	CREATE FUNCTION
	CREATE INDEX
	CREATE METHOD
	CREATE PROCEDURE
	CREATE SCHEMA
	CREATE TABLE
	CREATE TABLESPACE
	CREATE VIEW
	DELETE
	DROP
	GRANT (Database Authorities)
	GRANT (Index Privileges)
	GRANT (Package Privileges)
	GRANT (Routine Privileges)
	GRANT (Schema Privileges)
	GRANT (Sequence Privileges)
	GRANT (Server Privileges)
	GRANT (Table Space Privileges)
	GRANT (Table, View, or Nickname Privileges)
	INSERT
	REVOKE (Database Authorities)
	RENAME
	REVOKE (Index Privileges)
	REVOKE (Package Privileges)
	REVOKE (Routine Privileges)
	REVOKE (Schema Privileges)
	REVOKE (Sequence Privileges)
	REVOKE (Server Privileges)
	REVOKE (Table Space Privileges)
	REVOKE (Table, View, or Nickname Privileges)
	UPDATE

	Chapter 16. Configuration Parameters
	Configuration parameters
	Configuration parameters summary
	Database Manager Configuration Parameter Summary
	Database Configuration Parameter Summary
	DB2 Administration Server (DAS) Configuration Parameter Summary

	Configuring DB2 with configuration parameters
	Security-Related Configuration Parameters
	audit_buf_sz - Audit buffer size
	authentication - Authentication type
	authentication - Authentication type DAS
	catalog_noauth - Cataloging allowed without authority
	dasadm_group - DAS administration authority group name
	dftdbpath - Default database path
	svcename - TCP/IP service name
	sysadm_group - System administration authority group name
	sysctrl_group - System control authority group name
	sysmaint_group - System maintenance authority group name
	sysmon_group - System monitor authority group name
	trust_allclnts - Trust all clients
	trust_clntauth - Trusted clients authentication

	Locking Configuration Parameters
	dlchktime - Time interval for checking deadlock
	locktimeout - Lock timeout
	maxlocks - Maximum percent of lock list before escalation

	autorestart - Auto restart enable
	database_consistent - Database is consistent

	Chapter 17. Security-Related Special Registers
	Special registers
	CURRENT CLIENT_APPLNAME
	CURRENT CLIENT_USERID
	CURRENT CLIENT_WRKSTNNAME
	CURRENT SERVER
	CURRENT SCHEMA
	USER

	Chapter 18. Crash Recovery and Database Logs
	Crash recovery
	Understanding recovery logs

	Chapter 19. Application processes, concurrency, and recovery
	Chapter 20. Identifiers
	Naming conventions and implicit object name qualifications
	Aliases
	Authorization IDs and authorization names
	Dynamic SQL characteristics at run time
	Authorization IDs and statement preparation

	Column names
	Qualified column names
	Correlation names
	Column name qualifiers to avoid ambiguity
	Table designators
	Avoiding undefined or ambiguous references

	Column name qualifiers in correlated references

	References to host variables
	Host variables in dynamic SQL
	Example

	References to BLOB, CLOB, and DBCLOB host variables
	References to locator variables
	References to BLOB, CLOB, and DBCLOB file reference variables
	Example of an output file reference variable (in C)
	Example of an input file reference variable (in C)

	References to structured type host variables
	Example

	Chapter 21. Naming Conventions
	Part 2. User Information
	Chapter 22. User responsibilities for security
	Chapter 23. Utility Considerations
	Privileges, authorities and authorization required to use export
	Privileges, authorities, and authorization required to use backup
	Privileges, authorities, and authorization required to use restore
	Privileges, authorities, and authorization required to use rollforward
	Privileges, authorities, and authorizations required to use Load

	Chapter 24. Commands for Users
	ATTACH
	DETACH
	GET CONNECTION STATE
	PRECOMPILE
	REBIND

	Chapter 25. DB2 UDB APIs for Users
	sqlaprep - Precompile Program
	sqlarbnd - Rebind
	sqleatcp - Attach and Change Password
	sqleatin - Attach
	sqledtin - Detach

	Chapter 26. SQL Statements for Users
	COMMIT
	CONNECT (Type 1)
	CONNECT (Type 2)
	ROLLBACK
	SELECT
	SET SCHEMA
	Subselect
	select-clause
	Select list notation:
	Limitations on string columns
	Applying the select list

	from-clause
	table-reference
	Table function references
	Correlated references in table-references
	Data change table references

	joined-table
	Join operations

	where-clause
	group-by-clause
	grouping-sets
	super-groups
	Combining grouping sets

	having-clause
	order-by-clause
	fetch-first-clause
	Examples of subselects
	Examples of joins
	Examples of grouping sets, cube, and rollup

	Chapter 27. Application Considerations
	Security Considerations when Using SQL in Applications
	Package Creation for Embedded SQL
	Precompilation of Source Files Containing Embedded SQL
	Source File Requirements for Embedded SQL Applications
	Compilation and Linkage of Source Files Containing Embedded SQL
	Package Creation Using the BIND Command
	Generation of Sequential Values
	Management of Sequence Behavior
	Sequence Objects Compared to Identity Columns
	Authorization Considerations for Embedded SQL
	Authorization Considerations for Dynamic SQL
	Authorization Considerations for Static SQL
	Effect of DYNAMICRULES bind option on dynamic SQL
	When to use DB2 CLI or embedded SQL

	Units of work
	Remote unit of work
	Compound SQL guidelines
	Authorization Considerations for APIs
	Purpose of Multiple-Thread Database Access
	Ending a Transaction with the COMMIT Statement
	Ending a Transaction with the ROLLBACK Statement
	Security and Java Applications
	SQLJ Considerations
	Controlling the execution of SQL statements in SQLJ
	SQLJ SET-TRANSACTION-clause
	Setting the isolation level for an SQLJ transaction
	SQLJ context-clause
	Connecting to a data source using SQLJ
	SQLJ connection-declaration-clause
	Closing the connection to a data source in an SQLJ application

	JDBC Considerations
	How JDBC applications connect to a data source
	Connecting to a data source using the DataSource interface
	JDBC connection objects
	Committing or rolling back JDBC transactions
	Closing a connection to a JDBC data source

	Type 2 JDBC Driver Considerations
	Security under the DB2 JDBC Type 2 Driver
	How DB2 applications connect to a data source using the DriverManager interface with the DB2 JDBC Type 2 Driver

	Universal JDBC Driver Considerations
	User ID and password security under the DB2 Universal JDBC Driver
	User ID-only security under the DB2 Universal JDBC Driver
	Kerberos security under the DB2 Universal JDBC Driver
	Encrypted user ID security or encrypted password security under the DB2 Universal JDBC Driver
	Security under the DB2 Universal JDBC Driver
	Connecting to a data source using the DriverManager interface with the DB2 Universal JDBC Driver

	Security and Routines
	Routines in application development
	Procedures
	User-defined scalar functions
	User-defined scalar functions
	Methods
	Security considerations for routines
	Connection contexts in SQLJ routines
	Library and class management considerations
	Rebuilding DB2 routine shared libraries
	Updating the database manager configuration file

	SQLCA (SQL communications area)
	SQLCA field descriptions
	Error reporting
	SQLCA usage in partitioned database systems

	SQLDA (SQL descriptor area)
	SQLDA field descriptions
	Fields in the SQLDA header
	Fields in an occurrence of a base SQLVAR
	Fields in an occurrence of a secondary SQLVAR

	Effect of DESCRIBE on the SQLDA
	SQLTYPE and SQLLEN
	Unrecognized and unsupported SQLTYPEs
	Packed decimal numbers
	SQLLEN field for decimal

	SQL-AUTHORIZATIONS

	Part 3. Security Plug-Ins
	Chapter 28. Security plug-ins
	Security plug-ins
	Security plug-in library locations
	Security plug-in naming conventions
	Security plug-in support for two-part user IDs
	32-bit and 64-bit considerations for security plug-ins
	Security plug-in problem determination
	Deploying a group retrieval plug-in
	Deploying a user ID/password plug-in
	Deploying a GSS-API plug-in
	Deploying a Kerberos plug-in

	Chapter 29. Developing security plug-ins
	How DB2 loads security plug-ins
	Restrictions on security plug-in libraries
	Return codes for security plug-ins
	Error messages for security plug-ins
	Calling sequences for the security plug-in APIs

	Chapter 30. Security plug-in APIs
	Security plug-in APIs
	Group plug-in APIs
	APIs for group retrieval plug-ins
	db2secGroupPluginInit - Initialize group plug-in function
	db2secPluginTerm - Clean up group plug-in resources function
	db2secGetGroupsForUser - Get list of groups for user function
	db2secDoesGroupExist - Check if group exists function
	db2secFreeGroupListMemory - Free group list memory function
	db2secFreeErrormsg - Free error message memory function

	User authentication plug-in APIs
	APIs for user ID/password authentication plug-ins
	db2secClientAuthPluginInit - Initialize client authentication plug-in
	db2secClientAuthPluginTerm - Clean up client authentication plug-in resources function
	db2secRemapUserid - Remap user ID and password function
	db2secGetDefaultLoginContext - Get default login context function
	db2secGenerateInitialCred - Generate initial credentials function
	db2secValidatePassword - Validate password function
	db2secProcessServerPrincipalName - Process service principal name returned from server function
	db2secFreeToken - Free memory held by token function
	db2secFreeInitInfo - Clean up resources held by db2secGenerateInitialCred() function
	db2secServerAuthPluginInit - Initialize server authentication plug-in function
	db2secServerAuthPluginTerm - Clean up server authentication plug-in resources function
	db2secGetAuthIDs - Get authentication IDs function
	db2secDoesAuthIDExist - Check if authentication ID exists function

	GSS-API plug-in APIs
	Required APIs and Definitions for GSS-API authentication plug-ins
	Restrictions for GSS-API authentication plug-ins

	Security plug-in API versioning

	Chapter 31. Security plug-in deployment limitations
	Chapter 32. Security Plug-In Configuration Parameters
	clnt_krb_plugin - Client Kerberos plug-in
	clnt_pw_plugin - Client userid-password plug-in
	group_plugin - Group plug-in
	local_gssplugin - GSS API plug-in used for local instance level authorization
	srvcon_auth - Authentication type for incoming connections at the server
	srvcon_gssplugin_list - List of GSS API plug-ins for incoming connections at the server
	srvcon_pw_plugin - Userid-password plug-in for incoming connections at the server
	srv_plugin_mode - Server plug-in mode

	Part 4. Appendixes
	Index
	Notices
	Trademarks

	Contacting IBM
	Product information

