
IBM
®

DB2

Universal

Database
™

Application

Development

Guide:

Programming

Server

Applications

Version

8.2

SC09-4827-01

���

IBM
®

DB2

Universal

Database
™

Application

Development

Guide:

Programming

Server

Applications

Version

8.2

SC09-4827-01

���

Before

using

this

information

and

the

product

it

supports,

be

sure

to

read

the

general

information

under

Notices.

This

document

contains

proprietary

information

of

IBM.

It

is

provided

under

a

license

agreement

and

is

protected

by

copyright

law.

The

information

contained

in

this

publication

does

not

include

any

product

warranties,

and

any

statements

provided

in

this

manual

should

not

be

interpreted

as

such.

You

can

order

IBM

publications

online

or

through

your

local

IBM

representative.

v

To

order

publications

online,

go

to

the

IBM

Publications

Center

at

www.ibm.com/shop/publications/order

v

To

find

your

local

IBM

representative,

go

to

the

IBM

Directory

of

Worldwide

Contacts

at

www.ibm.com/planetwide

To

order

DB2

publications

from

DB2

Marketing

and

Sales

in

the

United

States

or

Canada,

call

1-800-IBM-4YOU

(426-4968).

When

you

send

information

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

the

information

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

International

Business

Machines

Corporation

1993

-

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide

Contents

About

this

book

.

.

.

.

.

.

.

.

.

.

. vii

Part

1.

Routines

.

.

.

.

.

.

.

.

.

. 1

Chapter

1.

Introduction

to

routines

.

.

. 3

Routines

in

application

development

.

.

.

.

.

. 3

Types

of

routines

(procedures,

functions,

methods)

. 5

User-defined

routines

.

.

.

.

.

.

.

.

.

.

. 9

Comparison

of

procedures,

functions,

and

methods

11

Procedures

.

.

.

.

.

.

.

.

.

.

.

.

.

. 11

User-defined

scalar

functions

.

.

.

.

.

.

. 13

User-defined

scalar

functions

.

.

.

.

.

.

. 15

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 16

Chapter

2.

Developing

routines

.

.

.

. 19

Supported

routine

programming

languages

.

.

.

. 19

Best

practices

for

developing

routines

.

.

.

.

. 21

Performance

considerations

for

developing

routines

.

.

.

.

.

.

.

.

.

.

.

.

.

. 22

Security

considerations

for

routines

.

.

.

.

. 24

Library

and

class

management

considerations

.

. 27

Restrictions

on

using

routines

.

.

.

.

.

.

. 29

Creating

routines

in

the

database

.

.

.

.

.

.

. 31

Writing

routines

.

.

.

.

.

.

.

.

.

.

.

.

. 33

Authorizations

and

binding

of

routines

that

contain

SQL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

Debugging

routines

.

.

.

.

.

.

.

.

.

.

.

. 38

Data

conflicts

when

procedures

read

from

or

write

to

tables

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 40

Procedure

features

.

.

.

.

.

.

.

.

.

.

.

. 42

Procedure

parameter

modes

.

.

.

.

.

.

.

. 42

Procedure

result

sets

.

.

.

.

.

.

.

.

.

. 42

Parameter

handling

in

PROGRAM

TYPE

MAIN

or

PROGRAM

TYPE

SUB

procedures

.

.

.

.

. 51

UDF

and

method

features

.

.

.

.

.

.

.

.

. 52

Scratchpads

for

UDFs

and

methods

.

.

.

.

. 52

Scratchpads

on

32-bit

and

64-bit

operating

systems

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 55

Method

and

scalar

function

processing

model

.

. 56

User-defined

table

functions

.

.

.

.

.

.

.

.

. 56

User-defined

table

functions

.

.

.

.

.

.

.

. 57

Table

function

processing

model

.

.

.

.

.

. 57

Table

function

execution

model

for

Java

.

.

.

. 59

Chapter

3.

SQL

routines

.

.

.

.

.

.

. 61

SQL

Procedural

Language

(SQL

PL)

in

DB2

.

.

. 61

CREATE

statements

for

SQL

routines

.

.

.

.

.

. 62

SQL

access

levels

in

SQL

routines

.

.

.

.

.

.

. 63

Dynamic

SQL

in

SQL

routines

.

.

.

.

.

.

.

. 63

SQL/

SQL

PL

procedures

.

.

.

.

.

.

.

.

.

. 65

Design

considerations

for

SQL

procedures

.

.

. 65

Creating

SQL

procedures

from

the

command

line

66

Parameters

in

SQL

procedures

.

.

.

.

.

.

. 67

Variables

in

SQL

procedures

(DECLARE,

DEFAULT,

SET

statements)

.

.

.

.

.

.

.

. 68

Compound

blocks

and

scope

of

variables

in

SQL

procedures

.

.

.

.

.

.

.

.

.

.

.

.

. 69

Returning

error

messages

from

SQL

procedures

70

Condition

handlers

in

SQL

procedures

.

.

.

. 71

Improving

the

performance

of

SQL

procedures

75

SQL

table

functions

.

.

.

.

.

.

.

.

.

.

.

. 80

SQL

table

functions

that

modify

SQL

data

.

.

. 80

Auditing

using

SQL

table

functions

.

.

.

.

. 83

Chapter

4.

External

routines

.

.

.

.

. 87

Parameter

styles

for

external

routines

.

.

.

.

.

. 87

Syntax

for

passing

arguments

to

routines

written

in

C/C++,

OLE,

or

COBOL

.

.

.

.

.

.

.

.

.

. 89

SQL

in

external

routines

.

.

.

.

.

.

.

.

.

. 101

Effect

of

DYNAMICRULES

bind

option

on

dynamic

SQL

.

.

.

.

.

.

.

.

.

.

.

.

. 104

.NET

common

language

runtime

routines

.

.

.

. 106

Common

language

runtime

(CLR)

routines

.

. 106

Creating

CLR

routines

.

.

.

.

.

.

.

.

. 107

Supported

SQL

data

types

for

the

DB2

.NET

Data

Provider

.

.

.

.

.

.

.

.

.

.

.

. 110

Parameters

in

CLR

routines

.

.

.

.

.

.

.

. 111

Returning

result

sets

from

CLR

procedures

.

. 114

Restrictions

on

CLR

routines

.

.

.

.

.

.

. 116

Errors

related

to

CLR

routines

.

.

.

.

.

.

. 117

Examples

of

CLR

procedures

in

C#

.

.

.

.

. 119

Examples

of

CLR

procedures

in

Visual

Basic

130

Examples

of

CLR

user-defined

functions

in

C#

139

Examples

of

CLR

user-defined

functions

in

Visual

Basic

.

.

.

.

.

.

.

.

.

.

.

.

. 145

C/C++

routines

.

.

.

.

.

.

.

.

.

.

.

. 151

C/C++

routines

.

.

.

.

.

.

.

.

.

.

. 151

Include

file

for

C/C++

routines

(sqludf.h)

.

.

. 154

Supported

SQL

data

types

in

C/C++

.

.

.

. 155

SQL

data

type

handling

in

C/C++

routines

.

. 158

Graphic

host

variables

in

C/C++

routines

.

.

. 165

C++

type

decoration

.

.

.

.

.

.

.

.

.

. 165

Java

routines

.

.

.

.

.

.

.

.

.

.

.

.

. 167

Java

routines

.

.

.

.

.

.

.

.

.

.

.

. 167

Supported

SQL

data

types

in

Java

.

.

.

.

. 170

Where

to

put

Java

classes

.

.

.

.

.

.

.

. 172

Updating

Java

routines

(stored

procedures,

UDFs,

and

methods)

for

runtime

.

.

.

.

.

. 173

JAR

file

administration

on

the

database

server

173

Connection

contexts

in

SQLJ

routines

.

.

.

. 174

Debugging

stored

procedures

in

Java

.

.

.

. 175

OLE

automation

routines

.

.

.

.

.

.

.

.

. 179

OLE

automation

routine

design

.

.

.

.

.

. 179

Creating

OLE

automation

routines

.

.

.

.

. 180

Object

instance

and

scratchpad

considerations

and

OLE

routines

.

.

.

.

.

.

.

.

.

.

. 181

Supported

SQL

data

types

in

OLE

automation

182

OLE

automation

routines

in

BASIC

and

C++

183

©

Copyright

IBM

Corp.

1993

-

2004

iii

||
||
||

||

||

||

||

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

OLE

DB

user-defined

table

functions

.

.

.

.

. 186

OLE

DB

user-defined

table

functions

.

.

.

. 186

Creating

an

OLE

DB

table

UDF

.

.

.

.

.

. 187

Fully

qualified

rowset

names

.

.

.

.

.

.

. 189

Supported

SQL

data

types

in

OLE

DB

.

.

.

. 190

Chapter

5.

Invoking

routines

.

.

.

.

. 193

Routine

invocation

.

.

.

.

.

.

.

.

.

.

. 193

Routine

names

and

paths

.

.

.

.

.

.

.

.

. 195

Nested

routine

invocations

.

.

.

.

.

.

.

.

. 196

Invoking

32-bit

routines

on

a

64-bit

database

server

197

Routine

code

page

considerations

.

.

.

.

.

. 197

Procedure

invocation

.

.

.

.

.

.

.

.

.

.

. 199

References

to

procedures

.

.

.

.

.

.

.

. 199

Procedure

selection

.

.

.

.

.

.

.

.

.

. 200

Calling

procedures

from

applications

or

external

routines

.

.

.

.

.

.

.

.

.

.

.

.

.

. 200

Calling

procedures

from

triggers

or

SQL

routines

.

.

.

.

.

.

.

.

.

.

.

.

.

. 202

Calling

procedures

from

the

Command

Line

Processor

(CLP)

.

.

.

.

.

.

.

.

.

.

. 204

Function

and

method

invocation

.

.

.

.

.

.

. 206

References

to

functions

.

.

.

.

.

.

.

.

. 206

Function

selection

.

.

.

.

.

.

.

.

.

.

. 208

Distinct

types

as

UDF

or

method

parameters

209

LOB

values

as

UDF

parameters

.

.

.

.

.

. 210

Invoking

scalar

functions

or

methods

.

.

.

. 211

Invoking

user-defined

table

functions

.

.

.

. 212

Part

2.

Large

objects,

user-defined

distinct

types,

and

triggers

.

.

.

. 215

Chapter

6.

Large

objects

.

.

.

.

.

. 217

Large

object

usage

.

.

.

.

.

.

.

.

.

.

.

. 217

Large

object

locators

.

.

.

.

.

.

.

.

.

.

. 218

Retrieving

a

LOB

value

with

a

LOB

locator

.

.

. 220

Deferring

the

evaluation

of

LOB

expressions

.

.

. 221

Large

object

file

reference

variables

.

.

.

.

.

. 223

Writing

data

from

a

CLOB

column

to

a

text

file

225

Inserting

data

from

a

text

file

into

a

CLOB

column

226

Chapter

7.

User-defined

distinct

types

229

User-defined

types

.

.

.

.

.

.

.

.

.

.

. 229

User-defined

distinct

types

.

.

.

.

.

.

.

.

. 229

Strong

typing

in

user-defined

distinct

types

.

.

. 231

Creating

distinct

types

.

.

.

.

.

.

.

.

.

. 231

Creating

tables

with

columns

based

on

distinct

types

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 233

Dropping

user-defined

types

.

.

.

.

.

.

.

. 234

Creating

currency-based

distinct

types

.

.

.

.

. 235

Creating

a

distinct

type

for

completed

job

application

forms

.

.

.

.

.

.

.

.

.

.

.

. 235

Creating

tables

to

track

international

sales

.

.

.

. 236

Creating

a

table

to

store

completed

job

application

forms

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 237

Manipulating

distinct

types

.

.

.

.

.

.

.

.

. 237

Manipulating

distinct

types

.

.

.

.

.

.

.

. 237

Casting

between

distinct

types

.

.

.

.

.

. 238

Performing

comparisons

involving

distinct

types

239

Performing

comparisons

between

distinct

types

and

constants

.

.

.

.

.

.

.

.

.

.

.

. 240

Performing

assignments

involving

distinct

types

in

embedded

SQL

.

.

.

.

.

.

.

.

.

.

. 240

Performing

assignments

involving

distinct

types

in

dynamic

SQL

.

.

.

.

.

.

.

.

.

.

. 241

Performing

assignments

involving

different

distinct

types

.

.

.

.

.

.

.

.

.

.

.

. 241

Performing

UNION

operations

on

distinctly

typed

columns

.

.

.

.

.

.

.

.

.

.

.

. 242

Defining

sourced

UDFs

for

distinct

types

.

.

. 243

Chapter

8.

User-defined

structured

types

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 245

User-defined

structured

types

.

.

.

.

.

.

.

. 245

Creating

structured

types

.

.

.

.

.

.

.

.

. 246

Storing

instances

of

structured

types

.

.

.

.

. 247

Instantiability

in

structured

types

.

.

.

.

.

.

. 248

Structured

type

hierarchies

.

.

.

.

.

.

.

.

. 248

Creating

a

structured

type

hierarchy

.

.

.

.

.

. 249

Defining

behavior

for

structured

types

.

.

.

.

. 251

Dynamic

dispatch

of

methods

.

.

.

.

.

.

.

. 251

System-generated

routines

for

structured

types

.

. 253

Comparison

and

casting

functions

for

structured

types

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 253

Constructor

functions

for

structured

types

.

.

. 254

Mutator

methods

for

structured

types

.

.

.

. 254

Observer

methods

for

structured

types

.

.

.

. 254

Typed

tables

.

.

.

.

.

.

.

.

.

.

.

.

.

. 255

Typed

tables

.

.

.

.

.

.

.

.

.

.

.

.

. 255

Creating

typed

tables

.

.

.

.

.

.

.

.

.

. 255

Dropping

typed

tables

.

.

.

.

.

.

.

.

. 258

Substitutability

in

typed

tables

.

.

.

.

.

. 259

Storing

objects

in

typed

table

rows

.

.

.

.

. 260

Defining

system-generated

object

identifiers

.

. 261

Defining

constraints

on

object

identifier

columns

263

Reference

types

.

.

.

.

.

.

.

.

.

.

.

. 264

Typed

views

.

.

.

.

.

.

.

.

.

.

.

.

.

. 269

Typed

views

.

.

.

.

.

.

.

.

.

.

.

.

. 269

Creating

typed

views

.

.

.

.

.

.

.

.

.

. 269

Altering

typed

views

.

.

.

.

.

.

.

.

.

. 271

Dropping

typed

views

.

.

.

.

.

.

.

.

. 272

Querying

typed

tables

and

typed

views

.

.

.

. 272

Issuing

queries

to

dereference

references

.

.

. 272

Returning

objects

of

a

particular

type

using

ONLY

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 274

Restricting

returned

types

using

a

TYPE

predicate

.

.

.

.

.

.

.

.

.

.

.

.

.

. 275

Returning

all

possible

types

using

OUTER

.

. 275

Structured

types

as

column

types

.

.

.

.

.

.

. 276

Storing

structured

type

objects

in

table

columns

276

Inserting

structured

type

attributes

into

columns

278

Defining

and

altering

tables

with

structured

type

columns

.

.

.

.

.

.

.

.

.

.

.

. 279

Defining

types

with

structured

type

attributes

279

Inserting

rows

that

contain

structured

type

values

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 280

Modifying

structured

type

values

in

columns

281

Transform

functions

and

transform

groups

.

.

. 284

Transform

functions

and

transform

groups

.

. 284

Recommendations

for

naming

transform

groups

285

iv

Programming

Server

Applications

||

|
||
|
||

||

Specification

of

transform

groups

.

.

.

.

.

. 286

Creating

the

mapping

to

the

host

language

program

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 288

Host

language

program

mappings

with

transform

functions

.

.

.

.

.

.

.

.

.

. 288

Function

transforms

.

.

.

.

.

.

.

.

.

. 289

Implementing

function

transforms

using

SQL-bodied

routines

.

.

.

.

.

.

.

.

.

. 291

Passing

structured

type

parameters

to

external

routines

.

.

.

.

.

.

.

.

.

.

.

.

.

. 292

Client

transforms

.

.

.

.

.

.

.

.

.

.

. 294

Implementing

client

transforms

using

external

UDFs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 296

Implementing

client

transforms

for

binding

in

from

a

client

using

external

UDFs

.

.

.

.

. 296

Data

conversion

considerations

.

.

.

.

.

. 297

Transform

function

requirements

.

.

.

.

.

. 298

Retrieving

subtype

data

from

DB2

.

.

.

.

. 299

Returning

subtype

data

to

DB2

.

.

.

.

.

. 302

Structured

type

host

Variables

.

.

.

.

.

.

.

. 305

Declaring

structured

type

host

variables

.

.

. 305

Describing

a

structured

type

.

.

.

.

.

.

. 305

Chapter

9.

Triggers

.

.

.

.

.

.

.

.

. 307

Triggers

in

application

development

.

.

.

.

.

. 307

INSERT,

UPDATE,

and

DELETE

triggers

.

.

.

. 310

Trigger

interactions

with

referential

constraints

.

. 311

INSTEAD

OF

triggers

.

.

.

.

.

.

.

.

.

. 311

Trigger

creation

guidelines

.

.

.

.

.

.

.

.

. 313

Creating

triggers

.

.

.

.

.

.

.

.

.

.

.

. 314

Trigger

granularity

.

.

.

.

.

.

.

.

.

.

. 314

Trigger

activation

time

.

.

.

.

.

.

.

.

.

. 315

Transition

variables

.

.

.

.

.

.

.

.

.

.

. 318

Transition

tables

.

.

.

.

.

.

.

.

.

.

.

. 319

Triggered

action

.

.

.

.

.

.

.

.

.

.

.

. 320

Triggered

action

.

.

.

.

.

.

.

.

.

.

. 320

Triggered

actions

qualified

by

conditions

.

.

. 321

Triggered

action

composed

of

SQL

statements

321

Triggered

action

containing

a

procedure

or

function

reference

.

.

.

.

.

.

.

.

.

.

. 322

Multiple

triggers

.

.

.

.

.

.

.

.

.

.

.

. 324

Synergy

between

triggers,

constraints,

and

routines

325

Extracting

information

from

UDTs,

UDFs,

and

LOBs

with

triggers

.

.

.

.

.

.

.

.

.

. 325

Preventing

operations

on

tables

using

triggers

326

Defining

business

rules

using

triggers

.

.

.

. 327

Defining

actions

using

triggers

.

.

.

.

.

. 328

Part

3.

Appendixes

.

.

.

.

.

.

.

. 331

Appendix

A.

DB2GENERAL

routines

333

DB2GENERAL

routines

.

.

.

.

.

.

.

.

.

. 333

DB2GENERAL

UDFs

.

.

.

.

.

.

.

.

.

.

. 334

Supported

SQL

data

types

in

DB2GENERAL

routines

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 336

Java

classes

for

DB2GENERAL

routines

.

.

.

. 337

Java

classes

for

DB2GENERAL

routines

.

.

. 337

DB2GENERAL

Java

class:

COM.IBM.db2.app.StoredProc

.

.

.

.

.

.

. 338

DB2GENERAL

Java

class:

COM.IBM.db2.app.UDF

.

.

.

.

.

.

.

.

. 339

DB2GENERAL

Java

class:

COM.IBM.db2.app.Lob

.

.

.

.

.

.

.

.

. 342

DB2GENERAL

Java

class:

COM.IBM.db2.app.Blob

.

.

.

.

.

.

.

.

. 342

DB2GENERAL

Java

class:

COM.IBM.db2.app.Clob

.

.

.

.

.

.

.

.

. 343

Appendix

B.

COBOL

procedures

.

.

. 345

COBOL

procedures

.

.

.

.

.

.

.

.

.

.

. 345

Supported

SQL

Data

Types

in

COBOL

.

.

.

.

. 347

Appendix

C.

DB2

Universal

Database

technical

information

.

.

.

.

.

.

.

. 351

DB2

documentation

and

help

.

.

.

.

.

.

.

. 351

DB2

documentation

updates

.

.

.

.

.

.

. 351

DB2

Information

Center

.

.

.

.

.

.

.

.

.

. 352

DB2

Information

Center

installation

scenarios

.

. 353

Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(UNIX)

.

.

.

.

.

.

.

.

. 356

Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(Windows)

.

.

.

.

.

.

.

. 358

Invoking

the

DB2

Information

Center

.

.

.

.

. 360

Updating

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server

.

.

.

.

.

.

. 361

Displaying

topics

in

your

preferred

language

in

the

DB2

Information

Center

.

.

.

.

.

.

.

.

.

. 362

DB2

PDF

and

printed

documentation

.

.

.

.

. 363

Core

DB2

information

.

.

.

.

.

.

.

.

. 363

Administration

information

.

.

.

.

.

.

. 363

Application

development

information

.

.

.

. 364

Business

intelligence

information

.

.

.

.

.

. 365

DB2

Connect

information

.

.

.

.

.

.

.

. 365

Getting

started

information

.

.

.

.

.

.

.

. 365

Tutorial

information

.

.

.

.

.

.

.

.

.

. 366

Optional

component

information

.

.

.

.

.

. 366

Release

notes

.

.

.

.

.

.

.

.

.

.

.

. 367

Printing

DB2

books

from

PDF

files

.

.

.

.

.

. 368

Ordering

printed

DB2

books

.

.

.

.

.

.

.

. 368

Invoking

contextual

help

from

a

DB2

tool

.

.

.

. 369

Invoking

message

help

from

the

command

line

processor

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 370

Invoking

command

help

from

the

command

line

processor

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 370

Invoking

SQL

state

help

from

the

command

line

processor

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 371

DB2

tutorials

.

.

.

.

.

.

.

.

.

.

.

.

. 371

DB2

troubleshooting

information

.

.

.

.

.

.

. 372

Accessibility

.

.

.

.

.

.

.

.

.

.

.

.

.

. 373

Keyboard

input

and

navigation

.

.

.

.

.

. 373

Accessible

display

.

.

.

.

.

.

.

.

.

.

. 373

Compatibility

with

assistive

technologies

.

.

. 374

Accessible

documentation

.

.

.

.

.

.

.

. 374

Dotted

decimal

syntax

diagrams

.

.

.

.

.

.

. 374

Common

Criteria

certification

of

DB2

Universal

Database

products

.

.

.

.

.

.

.

.

.

.

.

. 376

Appendix

D.

Notices

.

.

.

.

.

.

.

. 377

Trademarks

.

.

.

.

.

.

.

.

.

.

.

.

.

. 379

Contents

v

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 381

Contacting

IBM

.

.

.

.

.

.

.

.

.

. 389

Product

information

.

.

.

.

.

.

.

.

.

.

. 389

vi

Programming

Server

Applications

About

this

book

The

Application

Development

Guide

is

a

three-volume

book

that

describes

what

you

need

to

know

about

coding,

debugging,

building,

and

running

DB2

applications:

v

Application

Development

Guide:

Programming

Client

Applications

contains

what

you

need

to

know

to

code

standalone

DB2

applications

that

run

on

DB2

clients.

It

includes

information

on:

–

Programming

interfaces

that

are

supported

by

DB2.

High-level

descriptions

are

provided

for

DB2

Developer’s

Edition,

supported

programming

interfaces,

facilities

for

creating

Web

applications,

and

DB2-provided

programming

features,

such

as

routines

and

triggers.

–

The

general

structure

that

a

DB2

application

should

follow.

Recommendations

are

provided

on

how

to

maintain

data

values

and

relationships

in

the

database,

authorization

considerations

are

described,

and

information

is

provided

on

how

to

test

and

debug

your

application.

–

Embedded

SQL,

both

dynamic

and

static.

The

general

considerations

for

embedded

SQL

are

described,

as

well

as

the

specific

issues

that

apply

to

the

usage

of

static

and

dynamic

SQL

in

DB2

applications.

–

Supported

host

and

interpreted

languages,

such

as

C/C++,

COBOL,

Perl,

and

REXX,

and

how

to

use

embedded

SQL

in

applications

that

are

written

in

these

languages.

–

The

DB2

.NET

Data

Provider,

and

the

OLE

DB

.NET

and

ODBC

.NET

data

providers.

–

Java

(both

JDBC

and

SQLJ)

and

considerations

for

building

Java

applications

for

use

on

WebSphere

Application

Servers.

–

The

IBM

OLE

DB

Provider

for

DB2

Servers.

General

information

is

provided

about

IBM

OLE

DB

Provider

support

for

OLE

DB

services,

components,

and

properties.

Specific

information

is

also

provided

about

Visual

Basic

and

Visual

C++

applications

that

use

the

OLE

DB

interface

for

ActiveX

Data

Objects

(ADO).

–

National

language

support

issues.

General

topics,

such

as

collating

sequences,

the

derivation

of

code

pages

and

locales,

and

character

conversions

are

described.

More

specific

issues

such

as

DBCS

code

pages,

EUC

character

sets,

and

issues

that

apply

in

Japanese

and

Traditional

Chinese

EUC

and

UCS-2

environments

are

also

described.

–

Transaction

management.

Issues

that

apply

to

applications

that

perform

multisite

updates,

and

to

applications

that

perform

concurrent

transactions,

are

described.

–

Applications

in

partitioned

database

environments.

Directed

DSS,

local

bypass,

buffered

inserts,

and

troubleshooting

applications

in

partitioned

database

environments

are

described.

–

Commonly

used

application

techniques.

Information

is

provided

on

how

to

use

generated

and

identity

columns,

declared

temporary

tables,

and

how

to

use

savepoints

to

manage

transactions.

–

The

SQL

statements

that

are

supported

for

use

in

embedded

SQL

applications.

–

Applications

that

access

host

and

iSeries

environments.

The

issues

that

pertain

to

embedded

SQL

applications

that

access

host

and

iSeries

envirionments

are

described.

©

Copyright

IBM

Corp.

1993

-

2004

vii

|
|

–

The

simulation

of

EBCDIC

binary

collation.
v

Application

Development

Guide:

Programming

Server

Applications

contains

what

you

need

to

know

about

programming

using

server-side

objects,

including

routines,

large

objects,

user-defined

types,

and

triggers.

It

includes

information

on:

–

Routines

(stored

procedures,

user-defined

functions,

and

methods),

including:

-

Routine

performance,

security,

library

management

considerations,

and

restrictions.

-

Creating

routines,

including

external

routines,

and

the

CREATE

statement.

-

Procedure

parameter

modes

and

parameter

handling.

-

Procedure

result

sets.

-

SQL

procedures

including

debugging

and

condition

handling.

-

User-defined

scalar

and

table

functions.

-

User-defined

scalar

and

table

function

calls

(FIRST

call,

FINAL

call,...)

and

scratchpads.

-

Methods.

-

Authorizations

and

binding

of

external

routines.

-

Language-specific

considerations

for

C,

Java,

.NET

common

language

runtime,

and

OLE

automation

routines.

-

Invoking

routines.

-

Function

selection.

-

Passing

distinct

types

and

LOBs

to

functions.

-

Code

pages

and

routines.
–

Large

objects,

including

LOB

usage

and

locators,

reference

variables,

and

CLOB

data.

–

User-defined

distinct

types,

including

strong

typing,

defining

and

dropping

UDTs,

creating

tables

with

structured

types,

using

distinct

types

and

typed

tables

for

specific

applications,

manipulating

distinct

types

and

casting

between

them,

and

performing

comparisons

and

assignments

with

distinct

types,

including

UNION

operations

on

distinctly

typed

columns.

–

User-defined

structured

types,

including

storing

instances

and

instantiation,

structured

type

hierarchies,

defining

structured

type

behavior,

the

dynamic

dispatch

of

methods,

the

comparison,

casting,

and

constructor

functions,

and

mutator

and

observer

methods

for

structured

types.

–

Typed

tables,

including

creating,

dropping,

substituting,

storing

objects,

defining

system-generated

object

identifiers,

and

constraints

on

object

identifier

columns.

–

Reference

types,

including

relationships

between

objects

in

typed

tables,

semantic

relationships

with

references,

and

referential

integrity

versus

scoped

references.

–

Typed

tables

and

typed

views,

including

structured

types

as

column

types,

transform

functions

and

transform

groups,

host

language

program

mappings,

and

structured

type

host

variables.

–

Triggers,

including

INSERT,

UPDATE,

and

DELETE

triggers,

interactions

with

referential

constraints,

creation

guidelines,

granularity,

activation

time,

transition

variables

and

tables,

triggered

actions,

multiple

triggers,

and

synergy

between

triggers,

constraints,

and

routines.
v

Application

Development

Guide:

Building

and

Running

Applications

contains

what

you

need

to

know

to

build

and

run

DB2

applications

on

the

operating

systems

supported

by

DB2:

–

AIX

viii

Programming

Server

Applications

|
|

–

HP-UX

–

Linux

–

Solaris

–

Windows

It

includes

information

on:

–

DB2

supported

servers

and

software

to

build

applications,

including

supported

compilers

and

interpreters.

–

The

DB2

sample

program

files,

makefiles,

build

files,

and

error-checking

utility

files.

–

How

to

set

up

your

application

development

environment,

including

specific

instructions

for

Java

and

WebSphere

MQ

functions.

–

How

to

set

up

the

sample

database

–

How

to

migrate

your

applications

from

previous

versions

of

DB2.

–

How

to

build

and

run

Java

applets,

applications,

and

routines.

–

How

to

build

and

run

SQL

procedures.

–

How

to

build

and

run

C/C++

applications

and

routines.

–

How

to

build

and

run

IBM

and

Micro

Focus

COBOL

applications

and

routines.

–

How

to

build

and

run

REXX

applications

on

AIX

and

Windows.

–

How

to

build

and

run

C#

and

Visual

Basic

.NET

appllcations

and

CLR

.NET

routines

on

Windows.

–

How

to

build

and

run

applications

with

ActiveX

Data

Objects

(ADO)

using

Visual

Basic

and

Visual

C++

on

Windows.

–

How

to

build

and

run

applications

with

remote

data

objects

using

Visual

C++

on

Windows.

About

this

book

ix

|
|

x

Programming

Server

Applications

Part

1.

Routines

©

Copyright

IBM

Corp.

1993

-

2004

1

2

Programming

Server

Applications

Chapter

1.

Introduction

to

routines

Routines

in

application

development

.

.

.

.

.

. 3

Types

of

routines

(procedures,

functions,

methods)

. 5

User-defined

routines

.

.

.

.

.

.

.

.

.

.

. 9

Comparison

of

procedures,

functions,

and

methods

11

Procedures

.

.

.

.

.

.

.

.

.

.

.

.

.

. 11

User-defined

scalar

functions

.

.

.

.

.

.

. 13

User-defined

scalar

functions

.

.

.

.

.

.

. 15

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 16

Routines

in

application

development

A

routine

is

a

database

object

that

can

encapsulates

programming

and

database

logic

related

to

a

specific

task.

There

are

three

types

of

routines:

procedures,

functions,

and

methods.

Each

type

of

routine

provides

a

different

interface

for

containing

logic

and

database

operations

that

can

be

used

to

extend

the

functionality

of

an

SQL

statement

or

a

client

application.

You

should

consider

the

many

benefits

of

creating

and

using

routines

when

you

are

developing

or

updating

a

database

application.

When

faced

with

the

task

of

developing

new

functionality

that

will

interact

with

a

database,

there

are

two

approaches

you

can

choose

from.

You

can

add

the

new

logic

to

a

client

application,

or

you

can

develop

a

routine,

where

the

new

logic

will

reside

on

the

database

server.

There

are

a

number

of

benefits

in

choosing

the

latter

approach.

Benefits

of

using

routines:

The

following

benefits

can

be

gained

by

moving

application

logic

into

routines:

Encapsulate

application

logic

In

an

environment

with

numerous

client

computers,

each

running

a

variety

of

database

applications,

the

effective

use

of

routines

can

simplify

code

reuse,

code

standardization,

and

code

maintenance.

For

example,

if

a

particular

aspect

of

application

behavior

needs

to

be

changed

in

an

environment

where

routines

are

used,

only

the

affected

routine

that

encapsulates

that

behavior,

will

require

modification.

If

routines

had

not

been

used

in

this

instance,

application

logic

changes

would

have

been

required

in

each

client

application.

Enable

controlled

access

to

database

objects

You

can

use

routines

to

control

access

to

database

objects.

A

user

might

not

have

permission

to

generally

issue

a

particular

SQL

statement,

however

the

user

can

be

given

permission

to

invoke

routines

that

contain

specific

implementations

of

these

statements.

Reduce

network

traffic

When

an

application

is

running

on

a

client

computer,

each

SQL

statement

is

sent

separately

from

the

client

computer

to

the

server

computer

and

each

result

is

returned

separately.

This

can

result

in

a

high

degree

of

network

traffic.

If

a

piece

of

work

can

be

identified

that

involves

heavy

database

activity

and

little

user

interaction,

it

makes

sense

to

install

this

piece

of

work

on

the

server.

With

this

work

running

on

the

server,

the

quantity

of

network

traffic

between

the

client

computer

and

the

server

computer

is

reduced.

DB2

routines

run

on

the

database

server

in

this

manner.

Using

routines

is

an

effective

way

of

reducing

network

traffic

and

improving

overall

client

application

performance.

©

Copyright

IBM

Corp.

1993

-

2004

3

||
||
||

|

|

|

|
|
|
|
|
|
|

|
|
|
|
|

|

|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

Alleviate

the

processing

load

on

the

client

In

environments

where

the

performance

of

a

client

computer

is

a

concern,

routines

are

a

practical

means

of

reducing

the

dependence

on

the

client

computer.

After

an

application

invokes

a

routine,

the

processing

of

the

routine

is

done

on

the

database

server,

thus

allowing

the

application

to

exploit

the

power

of

the

database

server

while

relieving

the

client

computer

of

the

processing

load.

Allow

faster,

more

efficient

execution

Routines

are

database

objects

and

therefore

have

a

closer

relationship

with

the

database

manager

than

client

applications

do.

For

some

types

of

routines

the

performance

of

SQL

statements

can

be

much

better

than

the

performance

of

SQL

statements

that

are

executed

from

a

client

application.

For

example,

NOT

FENCED

routines

run

in

the

same

process

as

the

database

manager

using

shared

memory

for

communication.

This

makes

the

routines

more

proficient

in

transmitting

SQL

requests

and

data,

than

a

client

application

could

ever

be

that

communicates

using

TCP/IP

protocols.

Interoperability

of

logic

implementations

Because

code

modules

are

often

implemented

by

different

programmers,

each

with

programming

expertise

in

different

programming

languages,

and

because

it

is

generally

desirable

to

reuse

code

wherever

possible

to

save

on

development

time

and

costs,

DB2®

routines

are

highly

interoperable.

v

A

client

application

in

one

programming

language

can

invoke

routines

that

are

implemented

in

a

different

programming

language.

For

example,

C

client

applications

can

invoke

.NET

common

language

runtime

routines.

v

A

routine

can

invoke

another

routine

regardless

of

the

routine

type

or

the

implementation

language

of

the

routine.

For

example

a

Java™

procedure

(one

type

of

routine)

can

invoke

an

SQL

scalar

function

(another

type

of

routine

with

a

different

implementation

language).

v

A

routine

created

in

a

database

server

on

one

operating

system

can

be

invoked

from

a

DB2

client

running

on

a

different

operating

system.

There

are

various

kinds

of

routines

that

address

particular

functional

needs

and

various

routine

implementations.

The

choice

of

routine

type

and

implementation

can

impact

the

degree

to

which

the

above

benefits

are

exhibited.

In

general,

routines

are

a

powerful

way

of

encapsulating

logic

so

that

you

can

extend

your

SQL,

and

improve

the

structure,

maintenance,

and

potentially

the

performance

of

your

applications.

Related

concepts:

v

“Procedures”

on

page

11

v

“Routine

invocation”

on

page

193

v

“Supported

routine

programming

languages”

on

page

19

v

“User-defined

scalar

functions”

on

page

13

v

“Methods”

on

page

16

v

“User-defined

scalar

functions”

on

page

15

Related

tasks:

v

“Building

JDBC

routines”

in

the

Application

Development

Guide:

Building

and

Running

Applications

4

Programming

Server

Applications

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|

|

|

|

|

|

|

|

|

|
|

v

“Building

SQLJ

routines”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Building

UNIX

C

routines”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Building

UNIX

C++

routines”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Building

IBM

COBOL

routines

on

AIX”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Building

UNIX

Micro

Focus

COBOL

routines”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Building

C/C++

routines

on

Windows”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Building

IBM

COBOL

routines

on

Windows”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Building

Micro

Focus

COBOL

routines

on

Windows”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Writing

routines”

on

page

33

v

“Creating

routines

in

the

database”

on

page

31

v

“Debugging

routines”

on

page

38

Types

of

routines

(procedures,

functions,

methods)

Routines

are

grouped

primarily

by

their

functionality

however

they

can

also

be

grouped

by

their

implementation.

There

are

three

main

functional

types

of

routines:

procedures

(also

called

stored

procedures),

functions,

and

methods.

There

are

a

few

possible

implementations

for

routines

including:

built-in,

sourced,

SQL,

and

external.

The

functional

types

of

routines

are

discussed

first

and

explanations

of

the

possible

implementations

follows.

Functional

types

of

routines:

Procedures

Procedures,

also

called

stored

procedures,

serve

as

sub-routine

extensions

to

client

applications,

routines,

triggers,

and

dynamic

compound

statements.

Procedures

are

invoked

by

executing

the

CALL

statement

with

a

reference

to

a

procedure.

Functions

A

function

is

a

relationship

between

a

set

of

input

data

values

and

a

set

of

result

values.

Functions

enable

you

to

extend

and

customize

SQL.

Functions

are

invoked

from

within

elements

of

SQL

statements

such

as

a

select-list

or

a

FROM

clause.

There

are

four

types

of

functions:

aggregate

functions,

scalar

functions,

row

functions,

and

table

functions.

Aggregate

functions

Also

called

a

column

function,

this

type

of

function

returns

a

scalar

value

that

is

the

result

of

an

evaluation

over

a

set

of

like

input

values.

The

similar

input

values

can,

for

example,

be

specified

by

a

column

within

a

table,

or

by

tuples

in

a

VALUES

clause.

This

set

of

values

is

called

the

argument

set.

For

example,

the

following

query

finds

the

total

quantity

of

bolts

that

are

in

stock

or

on

order

including

all

kinds

of

bolts

by

using

the

aggregate

function

SUM:

Chapter

1.

Introduction

to

routines

5

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

|

|

|

|
|
|
|
|
|

|

|
|
|
|
|

|
|
|
|
|
|

|

|
|
|
|
|
|
|

SELECT

SUM(qinstock

+

qonorder)

FROM

inventory

WHERE

description

LIKE

’%Bolt%’

An

aggregate

function

cannot

be

implemented

as

an

external

function;

only

as

a

sourced

function

that

has

been

sourced

off

of

a

built-in

aggregate

function.

Scalar

functions

A

scalar

function

is

a

function

that,

for

each

set

of

one

or

more

scalar

parameters,

returns

a

single

scalar

value.

Examples

of

scalar

functions

include

length,

and

substr.

A

scalar

function

can

also

be

created

that

does

a

complex

mathematical

calculation

on

the

input

parameters.

Scalar

functions

can

be

referenced

anywhere

that

an

expression

is

valid

within

an

SQL

statement,

such

as

in

a

select-list,

or

in

a

FROM

clause.

Scalar

functions

can

be

implemented

as

either

external

or

sourced

functions.

Row

functions

A

row

function

is

a

function,

that

for

each

set

of

one

or

more

scalar

parameters,

returns

a

single

row.

Row

functions

can

only

be

used

as

a

transform

function

mapping

attributes

of

a

structured

type

into

built-in

data

type

values

in

a

row.

A

row

function

can

only

be

implemented

as

an

SQL

function.

Table

functions

Table

functions

are

functions,

that

for

a

group

of

sets

of

one

or

more

parameters,

returns

a

table

to

the

SQL

statement

that

references

it.

Table

functions

can

only

be

referenced

in

the

FROM

clause

of

a

SELECT

statement.

The

table

that

is

returned

by

a

table

function

can

participate

in

joins,

grouping

operations,

set

operation

such

as

UNION,

and

any

operation

that

could

be

applied

to

a

read-only

view.

Table

functions

can

be

implemented

in

SQL,

or

in

an

external

programming

language.

Methods

An

encapsulation

of

logic

that

provides

behavior

for

structured

types.

A

structured

type

is

a

user-defined

data

type

containing

one

or

more

named

attributes,

each

of

which

has

a

data

type.

Attributes

are

properties

that

describe

an

instance

of

a

type.

A

geometric

shape,

for

example,

might

have

attributes

such

as

its

list

of

Cartesian

coordinates.

A

method

is

generally

implemented

for

a

structured

type

to

represent

an

operation

on

the

attributes

of

the

structured

type.

For

a

geometric

shape

a

method

might

calculate

the

volume

of

the

shape.

Methods

can

be

implemented

as

an

SQL

or

external

method.

The

following

diagram

illustrates

the

classification

hierarchy

of

routines:

6

Programming

Server

Applications

|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|

Types

of

routine

implementations:

There

are

a

few

possible

implementations

for

routines:

built-in,

sourced,

SQL,

and

external.

Built-in

Some

routines

are

built

into

the

code

of

the

DB2

system.

These

routines

are

strongly

typed

and

perform

well

because

their

logic

is

native

to

the

Built-in
aggregate
functions

Built-in
scalar
functions

Sourced
scalar
functions

External
table
functions

External
scalar
functions

Sourced
aggregate
functions

Routines

Aggregate
functions

Functions

Methods

Procedures
Scalar
functions

SQL scalar
functions

Row
functions

SQL row
functions

Table
functions

Scalar
methods

SQL table
functions

SQL
s
methods
calar

External
scalar
methods

SQL
procedures

External
procedures

Figure

1.

Classifications

of

routines

Chapter

1.

Introduction

to

routines

7

|

|
|

|

|
|

database

code.

These

routines

are

found

in

the

SYSIBM

schema.

Some

examples

of

built-in

scalar

and

aggregate

functions

include:

Built-in

scalar

functions

+,

−,

*,

⁄,

\,

substr,

concat,

length,

char,

decimal

days

Built-in

aggregate

functions

avg,

count,

min,

max,

stdev,

sum,

variance

Built-in

functions

comprise

most

of

the

commonly

required

casting,

string

manipulation,

and

arithmetic

functionality.

You

can

immediately

use

these

functions

in

your

SQL

statements.

For

a

complete

list

of

available

built-in

functions,

see

the

SQL

Reference.

The

other

implementations

are

user

motivated

implementations.

These

implementations,

unlike

built-in

functions,

require

that

the

user

explicitly

create

the

routine

using

the

appropriate

CREATE

statement

for

the

routine

type.

User

created

functions

and

procedures

are

located

in

the

SYSTOOLS

schema.

Sourced

A

sourced

function

is

a

function

that

duplicates

the

semantics

of

another

function,

called

its

source

function.

Currently

only

scalar

and

aggregate

functions

can

be

sourced

functions.

Sourced

functions

are

particularly

useful

for

allowing

a

distinct

type

to

selectively

inherit

the

semantics

of

its

source

type.

Essentially,

sourced

functions

are

a

special

form

of

an

SQL

implementation

for

a

function.

SQL

An

SQL

routine

is

composed

entirely

of

SQL

statements.

You

specify

these

statements

in

the

CREATE

statement

that

you

use

to

create

the

routine

in

the

database.

SQL

Procedural

Language

(SQL

PL)

is

a

language

extension

of

basic

SQL

that

consists

of

statements

and

language

elements

that

can

be

used

to

implement

programming

logic

in

SQL.

SQL

PL

includes

a

set

of

statements

for

declaring

varables

and

condition

handlers

(DECLARE

statement),

assigning

values

to

variables

(assignment-statement),

and

for

implementing

procedural

logic

(control-statements:

IF,

WHILE,

FOR,

GOTO,

LOOP,

SIGNAL,

and

others).

SQL

including

SQL

PL,

or

where

restricted

a

subset

of

SQL

PL,

can

be

used

to

create

SQL

procedures,

functions,

and

methods.

External

A

routine

that

is

created

in

the

database

using

the

routine

type-specific

CREATE

statement,

but

that

has

its

routine

logic

implemented

in

an

external

host

programming

language

application.

The

association

of

the

routine

with

the

external

code

application

is

asserted

by

the

specification

of

the

EXTERNAL

clause

in

the

CREATE

statement.

External

routines

can

be

written

in

C,

C++,

Java™,

OLE,

and

.NET

common

language

runtime

supported

programming

languages.

External

procedures

can

additionally

be

written

in

COBOL.

DB2

provided

routines:

DB2

additionally

provides

some

procedures

and

functions

in

the

SYSPROC,

SYSFUN,

and

SYSTOOLS

schemas

that

you

can

use.

Although

these

additional

routines

are

shipped

with

DB2,

they

are

not

built-in

routines.

Instead

they

are

implemented

as

pre-installed

user-defined

routines.

These

routines

typically

encapsulate

a

utility

function.

Some

examples

of

these

include:

SNAPSHOT_TABLE,

HEALTH_DB_HI,

SNAPSHOT_FILEW,

REBIND_ROUTINE_PACKAGE.

You

can

immediately

use

8

Programming

Server

Applications

|
|

|
|

|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|

these

functions

and

procedures

provided

that

you

have

the

SYSPROC

schema

and

SYSFUN

schema

in

your

CURRENT

PATH.

These

schemas

are

included

in

the

CURRENT

PATH

by

default.

Related

concepts:

v

“Routines

in

application

development”

on

page

3

v

“Performance

considerations

for

developing

routines”

on

page

22

v

“Security

considerations

for

routines”

on

page

24

User-defined

routines

DB2®

provides

built-in

routines

that

capture

the

functionality

of

most

commonly

used

arithmetic,

string,

and

casting

functions,

however

to

encapsulate

logic

of

your

own,

DB2

allows

you

to

create

your

own

routines.

These

routines

are

said

to

be

user-defined.

You

can

create

your

own

procedures,

functions

and

methods

in

any

of

the

supported

implementation

styles

for

the

routine

type.

Generally

the

prefix

’user-defined’

is

not

used

when

referring

to

procedures

and

methods,

however

user-defined

functions

are

commonly

called

UDFs.

Routine

CREATE

statements:

User-defined

procedures,

functions

and

methods

are

created

in

the

database

by

executing

the

appropriate

CREATE

statement

for

the

routine

class.

These

routine

creation

statements

include:

CREATE

PROCEDURE,

CREATE

FUNCTION,

and

CREATE

METHOD.

The

clauses

specific

to

each

of

the

CREATE

statements

define

characteristics

of

the

routine,

such

as

the

routine

name,

the

number

and

type

of

routine

arguments,

and

details

about

the

routine

logic.

DB2

uses

the

information

provided

by

the

clauses

to

identify

and

run

the

routine

when

it

is

invoked.

Upon

successful

execution

of

the

CREATE

statement

for

a

routine,

the

routine

is

created

in

the

database.

The

characteristics

of

the

routine

are

stored

in

DB2’s

system

tables

that

users

can

query.

Executing

the

CREATE

statement

to

create

a

routine

is

also

referred

to

as

defining

a

routine

or

registering

a

routine.

Routine

logic

implementation:

There

are

a

three

implementation

styles

that

can

be

used

to

specify

the

logic

of

a

routine:

SQL,

external,

and

sourced.

These

implementations

are

compared

below

so

that

you

can

see

the

benefits

and

utility

of

each

implementation:

SQL

An

SQL

routine’s

logic

is

written

entirely

in

SQL

that

is

specified

within

the

body

of

the

CREATE

statement

of

the

routine.

An

SQL-procedure-body,

SQL-function

body,

or

SQL-method

body

can

be

composed

of

SQL

and

SQL

PL

statements.

SQL

routines

are

quick

and

easy

to

implement

because

of

their

simple

syntax

and

perform

well

due

to

their

close

relationship

with

DB2

for

implementations

that

contain

mostly

SQL

statements

and

less

complex

uses

of

SQL

PL

logic.

In

the

case

of

SQL

procedures

they

also

provide

easy

to

use

error

handling

support.

SQL

routine

are

however

limited

in

that

they

cannot

directly

effect

system

calls,

cannot

perform

operations

on

entities

that

reside

outside

of

the

database,

and

depending

of

the

functional

type

of

the

routine

may

not

support

the

execution

of

all

SQL

statements.

External

Chapter

1.

Introduction

to

routines

9

|
|
|

|

|

|

|

|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

|

|
|
|
|

|
|
|
|
|
|
|
|

|
|

External

routines

are

routines

that

have

their

logic

implemented

in

a

user-created

library

or

class

that

resides

on

the

filesystem

of

the

database

server

-

external

to

the

database

itself.

The

library

or

class

can

be

compiled

from

a

source

application

written

in

one

of

the

following

host

programming

languages:

C,

C++,

Java™,

OLE,

or

any

.NET

compatible

language.

External

procedures

can

also

be

written

in

COBOL.

All

external

routines

can

contain

SQL,

except

OLE

routines.

External

routines

are

generally

a

bit

more

complex

to

implement

than

SQL

routines,

however

they

are

extremely

powerful

because

with

an

external

routine

you

can

harness

the

full

functionality

and

performance

of

the

chosen

implementation

programming

language.

External

functions

also

have

the

advantage

of

being

able

to

access

and

manipulate

entities

that

reside

outside

of

the

database

such

as

a

network

or

filesystem.

For

routines

that

require

a

smaller

degree

of

interaction

with

the

DB2

database,

but

that

must

contain

a

lot

of

logic

or

more

complex

logic,

an

external

routine

implementation

is

preferable.

As

an

example,

external

routines

are

ideal

to

use

to

implement

new

functions

that

operate

on

and

enhance

the

utility

of

built-in

data

types,

such

as

a

new

string

function

that

operates

on

a

VARCHAR

datatype

or

a

complicated

mathematical

function

that

operates

on

a

DOUBLE

datatype.

They

are

also

ideal

for

logic

that

might

involve

an

external

action,

such

as

sending

an

email.

If

you

are

already

comfortable

programming

in

one

of

the

supported

programming

languages

and

need

to

encapsulate

logic

with

a

greater

emphasis

on

programming

logic

than

on

database

accesses,

then

once

you

learn

the

simple

steps

involved

in

creating

these

routines,

you

will

soon

discover

just

how

powerful

they

can

be.

Sourced

The

sourced

implementation

style

is

only

applicable

to

functions.

The

function

logic

of

a

sourced

function

is

derived

from

an

existing

source

function.

The

source

function

is

identified

by

simply

specifying

the

SOURCE

clause

in

the

special

CREATE

FUNCTION

(Sourced

or

template)

statement.

There

is

no

language

particularly

associated

with

this

implementation.

The

most

common

use

of

sourced

functions

is

to

allow

a

distinct

type

to

selectively

inherit

some

of

the

functions

and

operators

that

apply

to

its

source

type.

Sourced

functions

are

simple

to

implement

and

are

useful

if

you

want

to

rename

an

existing

function.

Overview

of

the

development

of

user-defined

routines:

For

assistance

in

developing

routines,

you

can

use

the

DB2

Development

Center.

It

provides

simple

interfaces

and

a

set

of

wizards

that

help

make

it

easy

to

perform

your

development

tasks.

You

can

also

integrate

the

DB2

Development

Center

with

popular

application

development

tools,

such

as

Microsoft®

Visual

Studio.

Alternatively,

you

can

also

develop

user-defined

routines

through

the

DB2

command

line

processor.

The

development

of

user-defined

routines

involves

the

following

tasks:

1.

Create

the

routine

in

the

database.

This

task,

also

known

as

defining

or

registering

a

routine,

can

occur

at

any

time

before

you

invoke

the

routine,

except

in

the

following

circumstances:

v

For

Java

routines

that

reference

an

external

JAR

file

or

files,

the

external

code

and

JAR

files

must

be

coded

and

compiled

before

the

routine

is

created

in

the

database

using

the

routine

type

specific

CREATE

statement.

10

Programming

Server

Applications

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|

|

|
|
|

|
|
|

v

Routines

that

execute

SQL

statements

and

refer

to

themselves

directly

must

be

created

in

the

database

by

issuing

the

CREATE

statement

before

the

external

code

associated

with

the

routine

is

precompiled

and

bound.

This

also

applies

to

situations

where

there

is

a

cycle

of

references,

for

example,

Routine

A

references

Routine

B,

which

references

Routine

A.
2.

For

external

routines,

code

the

routine

logic.

The

logic

of

SQL

routines

is

contained

within

the

CREATE

statement

of

the

SQL

routine.

3.

For

external

routines,

build

(precompile

--

for

routines

with

embedded

SQL,

compile,

and

link)

the

routine.

(See

the

related

links

for

operating

system

and

language-specific

build

information.)

4.

Debug

and

test

the

routine.

5.

Grant

the

EXECUTE

privilege

on

the

routine

to

the

routine

invoker

or

invokers

6.

Invoke

the

routine.

Related

concepts:

v

“Procedures”

on

page

11

v

“SQL

in

external

routines”

on

page

101

v

“Types

of

routines

(procedures,

functions,

methods)”

on

page

5

v

“User-defined

table

functions”

on

page

57

v

“User-defined

scalar

functions”

on

page

13

v

“Methods”

on

page

16

v

“SQL

access

levels

in

SQL

routines”

on

page

63

v

“SQL

Procedural

Language

(SQL

PL)

in

DB2”

on

page

61

Comparison

of

procedures,

functions,

and

methods

There

are

three

types

of

routines

you

can

develop:

procedures,

user-defined

functions

(UDFs),

and

methods.

While

the

details

involved

in

creating

and

implementing

them

are

similar,

they

each

serve

different

purposes.

The

following

sections

present

the

features

of

each

routine

type

in

a

format

that

facilitates

comparison.

Note

that

there

are

two

sections

for

UDFs:

user-defined

scalar

functions

and

user-defined

table

functions.

They

are

sufficiently

distinct

to

warrant

individual

attention.

Procedures

A

procedure,

also

called

a

stored

procedure,

is

a

database

object

created

by

executing

the

CREATE

PROCEDURE

statement

that

can

encapsulates

logic

and

SQL

statements.

Procedures

are

used

as

subroutine

extensions

to

applications,

and

other

database

objects

that

can

contain

logic.

Features

v

Enables

the

encapsulation

of

SQL

statements,

function

invocations,

and

logic

elements

that

formulate

a

particular

subroutine

module

that

can

be

reused.

v

Procedures

can

be

called

from

client

applications,

other

routines,

triggers

and

dynamic

compound

statements.

Procedures

are

called

using

the

CALL

statement.

v

Procedures

can

return

multiple

result

sets.

v

Procedures

can

contain

SQL

statements

that

read

or

modify

table

data

in

both

single

and

multiple

partition

databases.

Chapter

1.

Introduction

to

routines

11

|
|
|
|
|

|
|

|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|

|
|
|
|

|

|
|
|

|
|
|

|

|
|

v

When

a

procedure

is

invoked

the

SQL

and

logic

within

a

procedure

is

executed

on

the

server.

Data

is

only

transferred

between

the

client

and

the

database

server

in

the

procedure

call

and

in

the

procedure

return.

If

you

have

a

series

of

SQL

statements

to

execute

within

a

client

application,

and

the

application

does

not

need

to

do

any

processing

in

between

the

statements,

then

this

series

of

statements

would

benefit

from

being

included

in

a

procedure.

Note:

If

only

one

SQL

statement

is

invoked

in

a

procedure,

the

overhead

of

setting

up

this

invocation

outweighs

the

benefit

in

network

traffic

savings.

Limitations

v

Procedures

are

not

intended

to

be

called

from

within

elements

of

an

SQL

query.

Procedures

can

only

be

invoked

by

using

the

CALL

statement

where

it

is

supported.

Functions

can

be

used

to

express

logic

that

transforms

column

values.

Although

procedures

can

return

result

sets,

table

functions

can

be

used

to

return

a

table

within

the

FROM

clause

of

an

SQL

query.

v

Output

arguments

of

procedure

calls

cannot

be

directly

used

by

another

SQL

statement.

v

Procedures

cannot

preserve

state

between

invocations.

Common

uses

v

To

implement

application

sub-routines

that

specifically

encapsulate

the

database

logic

associated

with

a

particular

task.

For

example,

a

business

application

for

managing

employee

information

could

use

a

procedure

to

encapsulate

the

database

operations

involved

in

hiring

an

employee.

Such

a

procedure

could

insert

employee

information

into

an

employee

table,

a

department

table,

and

a

benefits

table,

calculate

the

employee’s

weekly

pay

amount

based

on

an

input

parameter,

and

return

the

weekly

pay

value

as

one

of

the

output

parameters.

Another

procedure

could

contain

a

statistical

analysis

of

data

in

the

employee

table

and

return

result

sets

that

contain

the

results

of

the

analysis.

This

use

of

procedures

effectively

isolates

database

tasks

from

non-database

tasks

within

an

application.

v

Standardize

application

logic.

If

multiple

applications

must

similarly

access

or

modify

the

database,

a

procedure

can

provide

a

single

interface

for

that

access

or

modification.

The

procedure

is

available

to

be

used

by

all

of

the

applications.

If

the

interface

must

change

to

accommodate

a

change

in

business

logic,

only

the

single

procedure

must

be

modified.

Supported

languages

v

SQL

v

C/C++

v

Java™

v

OLE

v

COBOL

v

.NET

common

language

runtime

languages

Note:

SQL

procedures

are

supported

natively

and

do

not

require

the

installation

of

a

compiler.

Related

concepts:

12

Programming

Server

Applications

|
|
|
|
|
|
|

|
|
|

|

|
|
|
|
|
|

|
|

|

|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

|

|

|

|

|

|

|

|
|

|

v

“Routines

in

application

development”

on

page

3

v

“Procedure

parameter

modes”

on

page

42

v

“Procedure

result

sets”

on

page

42

v

“SQL

Procedural

Language

(SQL

PL)

in

DB2”

on

page

61

Related

tasks:

v

“Setting

up

the

application

development

environment”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Creating

SQL

procedures

from

the

command

line”

on

page

66

v

“Calling

procedures

from

triggers

or

SQL

routines”

on

page

202

v

“Calling

procedures

from

applications

or

external

routines”

on

page

200

Related

reference:

v

“CALL

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

PROCEDURE

statement”

in

the

SQL

Reference,

Volume

2

v

“DB2

supported

development

software”

in

the

Application

Development

Guide:

Building

and

Running

Applications

User-defined

scalar

functions

Scalar

user-defined

functions

(UDFs)

enable

you

to

extend

and

customize

SQL

statements.

They

can

be

invoked

in

the

same

manner

as

DB2®

built-in

functions

such

as

LENGTH

and

COUNT.

That

is,

they

can

be

referenced

in

SQL

statements

wherever

an

expression

is

valid.

Scalar

UDFs

accept

zero

or

more

typed

values

as

input

arguments

and

return

a

single

value

upon

each

invocation.

SQL

scalar

user-defined

functions:

SQL

scalar

UDFs

enable

you

to

encapsulate

SQL

statements,

built-in

functions

and

other

routine

references,

and

a

subset

of

SQL

PL

statements

that

can

be

used

to

implement

some

basic

database

logic.

SQL

scalar

functions

can

read

and

modify

SQL

data.

SQL

functions

give

the

best

performance

when

they

make

use

of

built-in

functions

and

do

not

contain

extremely

complex

logic.

For

extremely

complex

logic,

consider

implementing

an

external

scalar

UDF.

External

scalar

user-defined

functions:

External

scalar

UDFs

have

their

logic

implemented

in

an

external

programming

language.

The

logic

of

the

function

can

access

the

filesystem,

perform

system

calls

or

access

a

network.

The

execution

of

the

external

scalar

UDF

routine

logic,

like

that

of

SQL

scalar

UDFs

takes

place

on

the

server.

External

scalar

UDFs

can

read

SQL

data,

but

cannot

modify

SQL

data.

An

external

scalar

UDF

can

be

repeatedly

invoked

for

a

single

reference

of

the

function

and

can

maintain

state

between

these

invocations

by

using

a

scratchpad,

which

is

a

memory

buffer.

This

can

be

powerful

if

a

function

requires

some

initial,

but

expensive,

setup

logic.

The

setup

logic

can

be

done

on

a

first

invocation

that

may

make

use

of

the

scratchpad

to

store

some

values

that

can

be

accessed

or

updated

in

subsequent

invocations

of

the

scalar

function.

Features

of

SQL

and

external

scalar

UDFs

v

Can

be

referenced

as

part

of

an

SQL

statement

anywhere

an

expression

is

supported.

Chapter

1.

Introduction

to

routines

13

|

|
|
|
|
|

|

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

|

|
|

v

The

output

of

a

scalar

UDF

can

be

used

directly

by

the

invoking

SQL

statement.

v

For

external

scalar

user-defined

functions,

state

can

be

maintained

between

the

iterative

invocations

of

the

function

by

using

a

scratchpad.

v

Can

provide

a

performance

advantage

when

used

in

predicates,

because

they

are

executed

at

the

server.

If

a

function

can

be

applied

to

a

candidate

row

at

the

server,

it

can

often

eliminate

the

row

from

consideration

before

transmitting

it

to

the

client

machine,

reducing

the

amount

of

data

that

must

be

passed

from

server

to

client.

v

An

excellent

way

to

build

scalar

functions

out

of

existing

built-in

functions.

For

example,

you

can

create

a

complex

mathematical

formula

by

re-using

the

built-in

scalar

functions

along

with

other

logic.

Limitations

v

Cannot

do

transaction

management

within

a

scalar

UDF.

That

is,

you

cannot

issue

a

COMMIT

or

a

ROLLBACK

within

a

scalar

UDF.

v

Cannot

return

result

sets.

v

Scalar

UDF’s

are

intended

to

return

a

single

scalar

value

per

set

of

inputs.

v

External

scalar

UDF’s

are

not

intended

to

be

used

for

a

single

invocation.

They

are

designed

such

that

for

a

single

reference

to

the

UDF

and

a

given

set

of

inputs,

that

the

UDF

be

invoked

once

per

input,

and

return

a

single

scalar

value.

On

the

first

invocation,

scalar

UDFs

can

be

designed

to

do

some

setup

work,

or

store

some

information

that

can

be

accessed

in

subsequent

invocations.

SQl

scalar

UDFs

are

better

suited

to

functionality

that

requires

a

single

invocation.

v

In

a

single

partition

database

external

scalar

UDFs

can

contain

SQL

statements.

These

statements

can

read

data

from

tables,

but

cannot

modify

data

in

tables.

If

the

database

has

more

than

one

partition

then

there

must

be

no

SQL

statements

in

an

external

scalar

UDF.

In

serial

and

in

partitioned

databases

SQL

scalar

UDFs

can

contain

SQL

statements

that

read

data

from

database

tables

Common

uses

v

Extend

the

set

of

DB2

built-in

functions.

v

Perform

logic

inside

an

SQL

statement

that

SQL

cannot

natively

perform.

v

Encapsulate

a

scalar

query

that

is

commonly

reused

as

a

subquery

in

SQL

statements.

For

example,

given

a

postal

code,

search

a

table

for

the

city

where

the

postal

code

is

found.

Supported

languages

v

SQL

v

C/C++

v

Java™

v

OLE

v

.NET

common

language

runtime

languages

Notes:

1.

There

is

a

limited

capability

for

creating

aggregate

functions.

Also

known

as

column

functions,

these

functions

receive

a

set

of

like

values

(a

column

of

data)

and

return

a

single

answer.

A

user-defined

aggregate

function

can

only

be

created

if

it

is

sourced

upon

a

built-in

aggregate

function.

For

example,

if

a

14

Programming

Server

Applications

|
|

|
|

|
|
|
|
|

|
|
|

|

|
|

|

|
|

|
|
|
|
|
|
|

|
|
|
|

|
|

|

|

|
|

|
|
|

|

|

|

|

|

|

|

|
|
|
|

distinct

type

SHOESIZE

exists

that

is

defined

with

base

type

INTEGER,

you

could

define

a

UDF,

AVG(SHOESIZE),

as

an

aggregate

function

sourced

on

the

existing

built-in

aggregate

function,

AVG(INTEGER).

2.

You

can

also

create

UDFs

that

return

a

row.

These

are

known

as

row

UDFs

and

can

only

be

used

as

a

transform

function

for

structured

types.

The

output

of

a

row

UDF

is

a

single

row.

Related

concepts:

v

“Routines

in

application

development”

on

page

3

v

“Scratchpads

for

UDFs

and

methods”

on

page

52

Related

tasks:

v

“Invoking

scalar

functions

or

methods”

on

page

211

Related

reference:

v

“CREATE

FUNCTION

statement”

in

the

SQL

Reference,

Volume

2

User-defined

scalar

functions

Like

scalar

UDFs,

a

table

UDF

enables

you

to

extend

and

customize

SQL,

but

for

the

purpose

of

generating

a

table.

Table

UDFs

can

only

be

invoked

in

the

FROM

clause

of

an

SQL

statement.

Table

UDFs

accept

zero

or

more

typed

values

as

input

arguments

and

return

a

table.

Table

functions

are

powerful

because

they

enable

you

to

make

almost

any

source

of

data

appear

as

a

DB2®

table.

A

table

function

can

be

easily

created

by

writing

a

program

that

collects

the

desired

data,

filters

it

according

to

some

input

parameters

if

so

desired,

and

returns

it

to

the

DB2

one

row

at

a

time.

Features

v

Can

be

referenced

as

part

of

an

SQL

statement

FROM

clause.

v

External

table-functions

can

make

operating

system

calls,

read

data

from

files

or

even

access

data

across

a

network

in

a

single

partitioned

database.

v

Results

can

be

directly

processed

by

the

SQL

statement

that

references

the

table

function.

v

SQL

table

functions

can

encapsulate

SQL

statements

that

modify

SQL

table

data.

(

Only

SQL

table

functions

have

this

property)

v

For

a

single

table

function

reference,

a

table

function

can

be

invoked

multiple

times

and

maintain

state

between

invocations

by

using

a

scratchpad.

v

Provides

a

set

of

data

for

processing.

Limitations

v

Cannot

do

transaction

management.

This

means

that

you

cannot

execute

COMMIT

or

ROLLBACK

statements

from

within

a

table

function.

v

Cannot

return

result

sets.

v

Not

designed

for

single

invocations.

v

Can

only

be

used

in

a

FROM

clause.

v

External

table

functions

can

read

SQL

data,

but

cannot

modify

SQL

data.

SQL

table

functions

can

be

used

to

contain

statements

that

modify

SQL

data.

Chapter

1.

Introduction

to

routines

15

|
|
|

|
|
|

|

|

|

|

|

|

|

|

|
|
|

|
|

|
|

|
|
|

Common

uses

v

Encapsulate

a

complex,

but

commonly

used

subquery.

v

Provide

a

tabular

interface

to

non-relational

data.

For

example,

read

a

spreadsheet

and

produce

a

table,

which

could

then

be

inserted

into

a

DB2®

table.

Supported

languages

v

SQL

v

C/C++

v

Java™

v

OLE

v

OLE

DB

v

.NET

common

language

runtime

languages

Related

concepts:

v

“Routines

in

application

development”

on

page

3

v

“Scratchpads

for

UDFs

and

methods”

on

page

52

v

“Table

function

processing

model”

on

page

57

Related

reference:

v

“CREATE

FUNCTION

statement”

in

the

SQL

Reference,

Volume

2

Methods

Methods

enable

you

to

define

behaviors

for

structured

types.

They

are

like

scalar

UDFs,

but

can

only

be

defined

for

structured

types.

Methods

share

all

the

features

of

scalar

UDFs,

in

addition

to

the

following

features:

Features

v

Strongly

associated

with

the

structured

type.

v

Can

be

sensitive

to

the

dynamic

type

of

the

subject

type.

Limitations

v

Can

only

return

a

scalar

value.

v

Can

only

be

used

with

structured

types.

v

Cannot

be

invoked

against

typed

tables.

Common

uses

v

Providing

operations

on

structured

types.

v

Encapsulating

the

structured

type.

Supported

languages

v

SQL

v

C/C++

v

Java™

v

OLE

Related

concepts:

v

“Routines

in

application

development”

on

page

3

v

“Scratchpads

for

UDFs

and

methods”

on

page

52

Related

tasks:

16

Programming

Server

Applications

|

v

“Defining

behavior

for

structured

types”

on

page

251

Related

reference:

v

“CREATE

TYPE

(Structured)

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

METHOD

statement”

in

the

SQL

Reference,

Volume

2

Chapter

1.

Introduction

to

routines

17

18

Programming

Server

Applications

Chapter

2.

Developing

routines

Supported

routine

programming

languages

.

.

.

. 19

Best

practices

for

developing

routines

.

.

.

.

. 21

Performance

considerations

for

developing

routines

.

.

.

.

.

.

.

.

.

.

.

.

.

. 22

Security

considerations

for

routines

.

.

.

.

. 24

Library

and

class

management

considerations

.

. 27

Restrictions

on

using

routines

.

.

.

.

.

.

. 29

Creating

routines

in

the

database

.

.

.

.

.

.

. 31

Writing

routines

.

.

.

.

.

.

.

.

.

.

.

.

. 33

Authorizations

and

binding

of

routines

that

contain

SQL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

Debugging

routines

.

.

.

.

.

.

.

.

.

.

.

. 38

Data

conflicts

when

procedures

read

from

or

write

to

tables

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 40

Procedure

features

.

.

.

.

.

.

.

.

.

.

.

. 42

Procedure

parameter

modes

.

.

.

.

.

.

.

. 42

Procedure

result

sets

.

.

.

.

.

.

.

.

.

. 42

Procedure

result

sets

.

.

.

.

.

.

.

.

. 42

Returning

result

sets

from

SQL

and

embedded

SQL

procedures

.

.

.

.

.

.

.

.

.

.

. 44

Returning

result

sets

from

SQLJ

procedures

. 45

Returning

result

sets

from

JDBC

procedures

46

Receiving

procedure

result

sets

in

SQL

routines

.

.

.

.

.

.

.

.

.

.

.

.

. 47

Receiving

procedure

result

sets

in

SQLJ

applications

and

routines

.

.

.

.

.

.

.

. 48

Receiving

procedure

result

sets

in

JDBC

applications

and

routines

.

.

.

.

.

.

.

. 49

Parameter

handling

in

PROGRAM

TYPE

MAIN

or

PROGRAM

TYPE

SUB

procedures

.

.

.

.

. 51

UDF

and

method

features

.

.

.

.

.

.

.

.

. 52

Scratchpads

for

UDFs

and

methods

.

.

.

.

. 52

Scratchpads

on

32-bit

and

64-bit

operating

systems

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 55

Method

and

scalar

function

processing

model

.

. 56

User-defined

table

functions

.

.

.

.

.

.

.

.

. 56

User-defined

table

functions

.

.

.

.

.

.

.

. 57

Table

function

processing

model

.

.

.

.

.

. 57

Table

function

execution

model

for

Java

.

.

.

. 59

Supported

routine

programming

languages

In

general,

routines

are

used

to

improve

overall

performance

of

the

database

management

system

by

enabling

application

functionality

to

be

performed

on

the

database

server.

The

amount

of

gain

realized

by

these

efforts

is

limited,

to

some

degree,

by

the

language

chosen

to

write

a

routine.

Some

of

the

issues

you

should

consider

before

implementing

routines

in

a

certain

language

are:

v

The

available

skills

for

developing

a

routine

in

a

particular

language

and

environment.

v

The

reliability

and

safety

of

a

language’s

implemented

code.

v

The

scalability

of

routines

written

in

a

particular

language.

To

help

assess

the

preceding

criteria,

here

are

some

characteristics

of

various

supported

languages:

SQL

v

SQL

routines

are

faster

than

Java™

routines,

and

roughly

equivalent

in

performance

to

NOT

FENCED

C/C++

routines.

v

SQL

routines

are

written

completely

in

SQL,

and

can

include

SQL

Procedural

Language

(SQL

PL)

elements

which

is

a

high

level,

easy

to

use

languge

which

makes

them

quick

to

implement.

v

SQL

routines

are

considered

’safe’

by

DB2®

as

they

consist

entirely

of

SQL

statements.

SQL

routines

always

run

directly

in

the

database

engine,

giving

them

good

performance,

and

scalability.

C/C++

v

Both

C/C++

embedded

SQL

and

DB2

CLI

routines

are

faster

than

Java

routines.

They

are

roughly

equivalent

in

performance

to

SQL

routines

when

run

in

NOT

FENCED

mode.

©

Copyright

IBM

Corp.

1993

-

2004

19

|
|

v

C/C++

routines

are

prone

to

error.

It

is

recommended

that

you

register

C/C++

routines

as

FENCED

NOT

THREADSAFE,

because

routines

in

these

languages

are

the

most

likely

to

disrupt

the

functionning

of

DB2’s

database

engine

by

causing

memory

corruption.

Running

in

FENCED

NOT

THREADSAFE

mode,

while

safer,

incurs

performance

overhead.

For

information

on

assessing

and

mitigating

the

risks

of

registering

C/C++

routines

as

NOT

FENCED

or

FENCED

THREADSAFE,

see

the

topic,

″Security

considerations

for

routines″.

v

By

default,

C/C++

routines

run

in

FENCED

NOT

THREADSAFE

mode

to

isolate

them

from

damaging

the

execution

of

other

routines.

Because

of

this,

you

will

have

one

db2fmp

process

per

concurrently

executing

C/C++

routine

on

the

database

server.

This

can

result

in

scalability

problems

on

some

systems.

Java

v

Java

routines

are

slower

than

C/C++

or

SQL

routines.

v

Java

routines

are

safer

than

C/C++

routines

because

control

of

dangerous

operations

is

handled

by

the

JVM.

Because

of

this,

reliability

is

increased,

as

it

is

difficult

for

a

Java

routine

to

damage

another

routine

running

in

the

same

process.

Note:

To

avoid

potentially

dangerous

operations,

Java

Native

Interface

(JNI)

calls

from

Java

routines

are

not

permitted.

If

you

need

to

invoke

C/C++

code

from

a

Java

routine,

you

can

do

so

by

invoking

a

separately

cataloged

C/C++

routine.

v

When

run

in

FENCED

THREADSAFE

mode

(the

default),

Java

routines

scale

well.

All

FENCED

Java

routines

will

share

a

few

JVMs

(more

than

one

JVM

might

be

in

use

on

the

system

if

the

Java

heap

of

a

particular

db2fmp

process

is

approaching

exhaustion).

v

NOT

FENCED

Java

routines

are

currently

not

supported.

A

Java

routine

defined

as

NOT

FENCED

will

be

invoked

as

if

it

had

been

defined

as

FENCED

THREADSAFE.

.NET

common

language

runtime

languages

v

.NET

common

language

runtime

(CLR)

routines

are

routines

that

are

compiled

into

intermediate

language

(IL)

byte

code

that

can

be

interpreted

by

the

CLR

of

the

.NET

Framework.

The

source

code

for

a

CLR

routine

can

be

written

in

any

.NET

Framework

supported

language.

v

Working

with

.NET

CLR

routines

allows

the

user

the

flexibility

to

code

in

the

.NET

CLR

supported

programming

language

of

their

choice.

v

CLR

assemblies

can

be

built

up

from

sub-assemblies

that

were

compiled

from

different

.NET

programming

language

source

code,

which

allows

the

user

to

re-use

and

integrate

code

modules

written

in

various

languages.

v

CLR

routines

can

only

be

created

as

FENCED

NOT

THREADSAFE

routines.

This

minimizes

the

possibility

of

engine

corruption,

but

also

means

that

these

routines

cannot

benefit

from

the

performance

opportunity

that

can

be

had

with

NOT

FENCED

routines.

OLE

v

OLE

routines

can

be

implemented

in

Visual

C++,

Visual

Basic

and

other

languages

supported

by

OLE.

20

Programming

Server

Applications

|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|

|

|
|
|
|
|

|
|

|
|
|
|

|
|
|
|

v

The

speed

of

OLE

automated

routines

depends

on

the

language

used

to

implement

them.

In

general,

they

are

slower

than

non-OLE

C/C++

routines.

v

OLE

routines

can

only

run

in

FENCED

NOT

THREADSAFE

mode.

This

minimizes

the

chance

of

engine

corruption.

This

also

means

that

OLE

automated

routines

do

not

scale

well.

OLE

DB

v

OLE

DB

can

only

be

used

to

define

table

functions.

v

OLE

DB

table

functions

connect

to

a

external

OLE

DB

data

source.

v

Depending

on

the

OLE

DB

provider,

OLE

DB

table

functions

are

generally

faster

than

Java

table

functions,

but

slower

than

C/C++

or

SQL-bodied

table

functions.

However,

some

predicates

from

the

query

where

the

function

is

invoked

might

be

evaluated

at

the

OLE

DB

provider,

therefore

reducing

the

number

of

rows

that

DB2

has

to

process.

This

frequently

results

in

improved

performance.

v

OLE

DB

routines

can

only

run

in

FENCED

NOT

THREADSAFE

mode.

This

minimizes

the

chance

of

engine

corruption.

This

also

means

that

OLE

DB

automated

table

functions

do

not

scale

well.

Related

concepts:

v

“Performance

considerations

for

developing

routines”

on

page

22

v

“Security

considerations

for

routines”

on

page

24

v

“C/C++

routines”

on

page

151

v

“Java

routines”

on

page

167

v

“SQL

Procedural

Language

(SQL

PL)

in

DB2”

on

page

61

Related

tasks:

v

“Building

JDBC

routines”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Building

SQLJ

routines”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Creating

SQL

procedures”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Building

CLI

routines

on

UNIX”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Building

UNIX

C

routines”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Building

UNIX

C++

routines”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Building

CLI

routines

on

Windows”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Building

C/C++

routines

on

Windows”

in

the

Application

Development

Guide:

Building

and

Running

Applications

Best

practices

for

developing

routines

The

sections

that

follow

feature

recommended

practices

for

developing

secure

routines

that

perform

well.

Chapter

2.

Developing

routines

21

|

|
|
|

Performance

considerations

for

developing

routines

One

of

the

most

significant

benefits

of

developing

routines,

instead

of

expanding

client

applications,

is

performance.

Consider

the

following

performance

impacts

when

choosing

an

approach

for

routine

implementation.

NOT

FENCED

mode

A

NOT

FENCED

routine

runs

in

the

same

process

as

the

database

manager.

In

general,

running

your

routine

as

NOT

FENCED

results

in

better

performance

as

compared

with

running

it

in

FENCED

mode,

because

FENCED

routines

run

in

a

special

DB2®

process

outside

of

the

engine’s

address

space.

While

you

can

expect

improved

routine

performance

when

running

routines

in

NOT

FENCED

mode,

user

code

can

accidentally

or

maliciously

corrupt

the

database

or

damage

the

database

control

structures.

You

should

only

use

NOT

FENCED

routines

when

you

need

to

maximize

the

performance

benefits,

and

if

you

deem

the

routine

to

be

secure.

(For

information

on

assessing

and

mitigating

the

risks

of

registering

C/C++

routines

as

NOT

FENCED,

see

the

topic,

″Security

considerations

for

routines″.)

If

the

routine

is

not

safe

enough

to

run

in

the

database

manager’s

process,

use

the

FENCED

clause

when

registering

the

routine.

To

limit

the

creation

and

running

of

potentially

unsafe

code,

DB2

requires

that

a

user

have

a

special

privilege,

CREATE_NOT_FENCED_ROUTINE

in

order

to

create

NOT

FENCED

routines.

If

an

abnormal

termination

occurs

while

you

are

running

a

NOT

FENCED

routine,

the

database

manager

will

attempt

an

appropriate

recovery

if

the

routine

is

registered

as

NO

SQL.

However,

for

routines

not

defined

as

NO

SQL,

the

database

manager

will

fail.

NOT

FENCED

routines

must

be

precompiled

with

the

WCHARTYPE

NOCONVERT

option

if

the

routine

uses

GRAPHIC

or

DBCLOB

data.

FENCED

THREADSAFE

mode

FENCED

THREADSAFE

routines

run

in

the

same

process

as

other

routines.

More

specifically,

non-Java

routines

share

one

process,

while

Java™

routines

share

another

process,

separate

from

routines

written

in

other

languages.

This

separation

protects

Java

routines

from

the

potentially

more

error

prone

routines

written

in

other

languages.

Also,

the

process

for

Java

routines

contains

a

JVM,

which

incurs

a

high

memory

cost

and

is

not

used

by

other

routine

types.

Multiple

invocations

of

FENCED

THREADSAFE

routines

share

resources,

and

therefore

incur

less

system

overhead

than

FENCED

NOT

THREADSAFE

routines,

which

each

run

in

their

own

dedicated

process.

If

you

feel

your

routine

is

safe

enough

to

run

in

the

same

process

as

other

routines,

use

the

THREADSAFE

clause

when

registering

it.

As

with

NOT

FENCED

routines,

information

on

assessing

and

mitigating

the

risks

of

registering

C/C++

routines

as

FENCED

THREADSAFE

is

in

the

topic,

″Security

considerations

for

routines″.

If

a

FENCED

THREADSAFE

routine

abends,

only

the

thread

running

this

routine

is

terminated.

Other

routines

in

the

process

continue

running.

However,

the

failure

that

caused

this

thread

to

abend

can

adversely

affect

other

routine

threads

in

the

process,

causing

them

to

trap,

hang,

or

have

damaged

data.

After

one

thread

abends,

the

process

is

no

longer

used

for

new

routine

invocations.

Once

all

the

active

users

complete

their

jobs

in

this

process,

it

is

terminated.

22

Programming

Server

Applications

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

When

you

register

Java

routines,

they

are

deemed

THREADSAFE

unless

you

indicate

otherwise.

All

other

LANGUAGE

types

are

NOT

THREADSAFE

by

default.

Routines

using

LANGUAGE

OLE

and

OLE

DB

cannot

be

specified

as

THREADSAFE.

NOT

FENCED

routines

must

be

THREADSAFE.

It

is

not

possible

to

register

a

routine

as

NOT

FENCED

NOT

THREADSAFE

(SQLCODE

-104).

Users

on

UNIX®

can

see

their

Java

and

C

THREADSAFE

processes

by

looking

for

db2fmp

(Java)

or

db2fmp

(C).

FENCED

NOT

THREADSAFE

mode

FENCED

NOT

THREADSAFE

routines

each

run

in

their

own

dedicated

process.

If

you

are

running

numerous

routines,

this

can

have

a

detrimental

effect

on

database

system

performance.

If

the

routine

is

not

safe

enough

to

run

in

the

same

process

as

other

routines,

use

the

NOT

THREADSAFE

clause

when

registering

the

routine.

On

UNIX,

NOT

THREADSAFE

processes

appear

as

db2fmp

(pid)

(where

pid

is

the

process

id

of

the

agent

using

the

fenced

mode

process)

or

as

db2fmp

(idle)

for

a

pooled

NOT

THREADSAFE

db2fmp.

Java

routines

If

you

intend

to

run

a

Java

routine

with

large

memory

requirements,

it

is

recommended

that

you

register

it

as

FENCED

NOT

THREADSAFE.

For

FENCED

THREADSAFE

Java

routine

invocations,

DB2

attempts

to

choose

a

threaded

Java

fenced

mode

process

with

a

Java

heap

that

is

large

enough

to

run

the

routine.

Failure

to

isolate

large

heap

consumers

in

their

own

process

can

result

in-out-of-Java-heap

errors

in

multithreaded

Java

db2fmp

processes.

If

your

Java

routine

does

not

fall

into

this

category,

FENCED

routines

will

run

better

in

threadsafe

mode

where

they

can

share

a

small

number

of

JVMs.

NOT

FENCED

Java

routines

are

currently

not

supported.

A

Java

routine

defined

as

NOT

FENCED

will

be

invoked

as

if

it

had

been

defined

as

FENCED

THREADSAFE.

C/C++

routines

C

or

C++

routines

are

generally

faster

than

Java

routines,

but

are

more

prone

to

errors,

memory

corruption,

and

crashing.

For

these

reasons,

the

ability

to

perform

memory

operations

makes

C

or

C++

routines

risky

candidates

for

THREADSAFE

or

NOT

FENCED

mode

registration.

These

risks

can

be

mitigated

by

adhering

to

programming

practices

for

secure

routines

(see

the

topic,

″Security

considerations

for

routines″),

and

thoroughly

testing

your

routine.

SQL

routines

SQL

routines,

particularly

SQL

procedures,

are

also

generally

faster

than

Java

routines,

and

usually

share

comparable

performance

with

C

routines.

SQL

routines

always

run

in

NOT

FENCED

mode,

providing

a

further

performance

benefit

over

external

routines.

UDFs

that

contain

complex

logic

will

generaly

run

more

quickly

if

written

in

C

than

in

SQL.

If

the

logic

is

simple,

than

an

SQL

UDF

will

be

comparable

to

any

external

UDF.

Scratchpads

A

scratchpad

is

a

block

of

memory

that

can

be

assigned

to

UDFs

and

methods.

The

scratchpad

only

applies

to

the

individual

reference

to

the

routine

in

an

SQL

statement.

If

there

are

multiple

references

to

a

routine

in

a

statement,

each

reference

has

its

own

scratchpad.

A

scratchpad

enables

a

UDF

or

method

to

save

its

state

from

one

invocation

to

the

next.

Chapter

2.

Developing

routines

23

|
|
|

For

UDFs

and

methods

with

complex

initializations,

you

can

use

scratchpads

to

store

any

values

required

in

the

first

invocation

for

use

in

all

future

invocations.

The

logic

of

other

UDFs

and

methods

might

also

require

that

intermediate

values

be

saved

from

invocation

to

invocation.

Use

VARCHAR

parameters

instead

of

CHAR

parameters

You

can

improve

the

performance

of

your

routines

by

using

VARCHAR

parameters

instead

of

CHAR

parameters

in

the

routine

definition.

Using

VARCHAR

data

types

instead

of

CHAR

data

types

prevents

DB2

from

padding

parameters

with

spaces

before

passing

the

parameter

and

decreases

the

amount

of

time

required

to

transmit

the

parameter

across

a

network.

For

example,

if

your

client

application

passes

the

string

″A

SHORT

STRING″

to

a

routine

that

expects

a

CHAR(200)

parameter,

DB2

has

to

pad

the

parameter

with

186

spaces,

null-terminate

the

string,

then

send

the

entire

200

character

string

and

null-terminator

across

the

network

to

the

routine.

In

comparison,

passing

the

same

string,

″A

SHORT

STRING,″

to

a

routine

that

expects

a

VARCHAR(200)

parameter

results

in

DB2

simply

passing

the

14

character

s

string

and

a

null

terminator

across

the

network.

Related

concepts:

v

“WCHARTYPE

Precompiler

Option

in

C

and

C++”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“WCHARTYPE

CONVERT

precompile

option”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Security

considerations

for

routines”

on

page

24

v

“C/C++

routines”

on

page

151

v

“Java

routines”

on

page

167

v

“Restrictions

on

using

routines”

on

page

29

v

“Library

and

class

management

considerations”

on

page

27

v

“Improving

the

performance

of

SQL

procedures”

on

page

75

Related

reference:

v

“CALL

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

FUNCTION

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

PROCEDURE

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

TYPE

(Structured)

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

METHOD

statement”

in

the

SQL

Reference,

Volume

2

Security

considerations

for

routines

Developing

and

deploying

routines

provides

you

with

an

opportunity

to

greatly

improve

the

performance

and

effectiveness

of

your

database

applications.

There

can,

however,

be

security

risks

if

the

deployment

of

routines

is

not

managed

correctly

by

the

database

administrator.

The

following

sections

describe

security

risks

and

means

by

which

you

can

mitigate

these

risks.

The

security

risks

are

followed

by

a

section

on

how

to

safely

deploy

routines

whose

security

is

unknown.

Security

risks:

24

Programming

Server

Applications

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|

NOT

FENCED

routines

can

access

database

manager

resources

NOT

FENCED

routines

run

in

the

same

process

as

the

database

manager.

Because

of

their

close

proximity

to

the

database

engine,

NOT

FENCED

routines

can

accidentally

or

maliciously

corrupt

the

database

manager’s

shared

memory,

or

damage

the

database

control

structures.

Either

form

of

damage

will

cause

the

database

manager

to

fail.

NOT

FENCED

routines

can

also

corrupt

databases

and

their

tables.

To

ensure

the

integrity

of

the

database

manager

and

its

databases,

you

must

thoroughly

screen

routines

you

intend

to

register

as

NOT

FENCED.

These

routines

must

be

fully

tested,

debugged,

and

exhibit

no

unexpected

side-effects.

In

the

examination

of

the

routine,

pay

close

attention

to

memory

management

and

the

use

of

static

variables.

The

greatest

potential

for

corruption

arises

when

code

does

not

properly

manage

memory

or

incorrectly

uses

static

variables.

These

problems

are

prevalent

in

languages

other

than

Java™

and

.NET

programming

langauges.

In

order

to

register

a

NOT

FENCED

routine,

the

CREATE_NOT_FENCED_ROUTINE

authority

is

required.

When

granting

the

CREATE_NOT_FENCED_ROUTINE

authority,

be

aware

that

the

recipient

can

potentially

gain

unrestricted

access

to

the

database

manager

and

all

its

resources.

Note:

NOT

FENCED

routines

are

not

supported

in

Common

Criteria

compliant

configurations.

FENCED

THREADSAFE

routines

can

access

memory

in

other

FENCED

THREADSAFE

routines

FENCED

THREADSAFE

routines

run

as

threads

inside

a

shared

process.

Each

of

these

routines

are

able

to

read

the

memory

used

by

other

routine

threads

in

the

same

process.

Therefore,

it

is

possible

for

one

threaded

routine

to

collect

sensitive

data

from

other

routines

in

the

threaded

process.

Another

risk

inherent

in

the

sharing

of

a

single

process,

is

that

one

routine

thread

with

flawed

memory

management

can

corrupt

other

routine

threads,

or

cause

the

entire

threaded

process

to

crash.

To

ensure

the

integrity

of

other

FENCED

THREADSAFE

routines,

you

must

thoroughly

screen

routines

you

intend

to

register

as

FENCED

THREADSAFE.

These

routines

must

be

fully

tested,

debugged,

and

exhibit

no

unexpected

side-effects.

In

the

examination

of

the

routine,

pay

close

attention

to

memory

management

and

the

use

of

static

variables.

This

is

where

the

greatest

potential

for

corruption

lies,

particularly

in

languages

other

than

Java.

In

order

to

register

a

FENCED

THREADSAFE

routine,

the

CREATE_EXTERNAL_ROUTINE

authority

is

required.

When

granting

the

CREATE_EXTERNAL_ROUTINE

authority,

be

aware

that

the

recipient

can

potentially

monitor

or

corrupt

the

memory

of

other

FENCED

THREADSAFE

routines.

Write

access

to

the

database

server

by

the

owner

of

fenced

processes

can

result

in

database

manager

corruption

The

user

ID

under

which

fenced

processes

run

is

defined

by

the

db2icrt

(create

instance)

or

db2iupdt

(update

instance)

system

commands.

This

user

ID

must

not

have

write

access

to

the

directory

where

routine

libraries

and

classes

are

stored

(in

UNIX®

environments,

sqllib/function;

in

Windows®

environments,

sqllib\function).

This

user

ID

must

also

not

have

read

or

write

access

to

any

database,

operating

system,

or

otherwise

critical

files

and

directories

on

the

database

server.

Chapter

2.

Developing

routines

25

|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|

If

the

owner

of

fenced

processes

does

have

write

access

to

various

critical

resources

on

the

database

server,

the

potential

for

system

corruption

exists.

For

example,

a

database

administrator

registers

a

routine

received

from

an

unknown

source

as

FENCED

NOT

THREADSAFE,

thinking

that

any

potential

harm

can

be

averted

by

isolating

the

routine

in

its

own

process.

However,

the

user

ID

that

owns

fenced

processes

has

write

access

to

the

sqllib/function

directory.

Users

invoke

this

routine,

and

unbeknownst

to

them,

it

overwrites

a

library

in

sqllib/function

with

an

alternate

version

of

a

routine

body

that

is

registered

as

NOT

FENCED.

This

second

routine

has

unrestricted

access

to

the

entire

database

manager,

and

can

thereby

distribute

sensitive

information

from

database

tables,

corrupt

the

databases,

collect

authentication

information,

or

crash

the

database

manager.

Ensure

the

user

ID

that

owns

fenced

processes

does

not

have

write

access

to

critical

files

or

directories

on

the

database

server

(especially

sqllib/function

and

the

database

data

directories).

Vulnerability

of

routine

libraries

and

classes

If

access

to

the

directory

where

routine

libraries

and

classes

are

stored

is

not

controlled,

routine

libraries

and

classes

can

be

deleted

or

overwritten.

As

discussed

in

the

previous

item,

the

replacement

of

a

NOT

FENCED

routine

body

with

a

malicious

(or

poorly

coded)

routine

can

severely

compromise

the

stability,

integrity,

and

privacy

of

the

database

server

and

its

resources.

To

protect

the

integrity

of

routines,

you

must

manage

access

to

the

directory

containing

the

routine

libraries

and

classes.

Ensure

that

the

fewest

possible

number

of

users

can

access

this

directory

and

its

files.

When

assigning

write

access

to

this

directory,

be

aware

that

this

privilege

can

provide

the

owner

of

the

user

ID

unrestricted

access

to

the

database

manager

and

all

its

resources.

Deploying

potentially

insecure

routines:

If

you

happen

to

acquire

a

routine

from

an

unknown

source,

be

sure

you

know

exactly

what

it

does

before

you

build,

register,

and

invoke

it.

It

is

recommend

that

you

register

it

as

FENCED

and

NOT

THREADSAFE

unless

you

have

tested

it

thoroughly,

and

it

exhibits

no

unexpected

side-effects.

If

you

need

to

deploy

a

routine

that

does

not

meet

the

criteria

for

secure

routines,

register

the

routine

as

FENCED

and

NOT

THREADSAFE.

To

ensure

that

database

integrity

is

maintained,

FENCED

and

NOT

THREADSAFE

routines:

v

Run

in

a

separate

DB2®

process,

shared

with

no

other

routines.

If

they

abnormally

terminate,

the

database

manager

will

be

unaffected.

v

Use

memory

that

is

distinct

from

memory

used

by

the

database.

An

inadvertent

mistake

in

a

value

assignment

will

not

affect

the

database

manager.

Related

concepts:

v

“Routines

in

application

development”

on

page

3

v

“Performance

considerations

for

developing

routines”

on

page

22

v

“Restrictions

on

using

routines”

on

page

29

v

“Library

and

class

management

considerations”

on

page

27

Related

reference:

v

“CREATE

FUNCTION

statement”

in

the

SQL

Reference,

Volume

2

26

Programming

Server

Applications

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

v

“CREATE

PROCEDURE

statement”

in

the

SQL

Reference,

Volume

2

v

“GRANT

(Routine

Privileges)

statement”

in

the

SQL

Reference,

Volume

2

v

“REVOKE

(Routine

Privileges)

statement”

in

the

SQL

Reference,

Volume

2

Library

and

class

management

considerations

When

developing

routines

for

DB2®,

you

have

the

option

of

using

a

variety

of

different

programming

languages,

including

SQL,

Java™,

C,

C++,

and

.NET

compatible

languages.

If

you

develop

routines

in

a

language

other

than

SQL,

they

are

known

as

external

routines.

The

compiled

source

code

for

an

external

routine

is

referred

to

as

a

routine

body.

Protecting

routine

bodies

The

bodies

of

external

routines

reside

in

libraries

and

classes

stored

on

the

database

server.

These

files

are

not

backed

up

or

protected

in

any

way

by

DB2.

The

CREATE

statement

used

to

create

a

routine

in

the

database

adds

routine

definition

information

to

the

database

catalogs

including

information

about

where

the

external

code

librarary

associated

with

the

routine

resides.

This

is

specified

in

the

EXTERNAL

clause

in

the

CREATE

statement.

The

routine

library

or

class

specified

in

the

EXTERNAL

clause

is

not

stored

in

the

database,

but

resides

in

the

file

system

of

the

server.

It

is

imperative

for

the

successful

invocation

of

your

external

routines

that

the

library

associated

with

a

given

routine

exist

in

the

location

specified

in

the

EXTERNAL

clause.

It

is

possible

that

the

library

can

be

moved

or

deleted.

If

this

happens

the

routine

can

no

longer

be

invoked

successfully.

To

preserve

the

integrity

of

the

invoking

clients

and

routines

that

depend

on

the

routine,

you

must

prevent

the

routine

body

from

being

inadvertently

or

intentionally

deleted

or

replaced.

This

can

be

done

by

managing

access

to

the

directory

containing

the

routine

and

by

protecting

the

routine

body

itself.

Note:

The

bodies

of

SQL

routines

are

considered

to

be

part

of

the

database,

and

as

such,

will

be

backed

up

with

other

database

objects.

However,

like

external

routines,

their

bodies

are

prone

to

being

altered,

and

therefore

require

the

same

protection.

The

scope

of

routine

bodies

For

routines

to

be

used

in

a

database,

they

must

be

cataloged

with

that

same

database.

If

there

are

multiple

databases

in

an

instance,

you

can

catalog

external

routines

in

one

database

using

routine

bodies

that

are

already

being

used

in

another

database.

Hence,

the

scope

of

routine

bodies

is

instance

wide.

While

this

affords

the

possibility

of

reusing

code,

library

or

class

name

conflicts

can

arise

in

situations

where

code

is

not

being

reused.

Specifically,

library

or

class

name

conflicts

can

manifest

themselves

in

a

situation

such

as

the

following:

there

are

multiple

databases

in

a

single

instance

and

the

routines

in

each

database

use

their

own

libraries

and

classes

of

routine

bodies.

A

conflict

arises

when

the

name

of

a

library

or

class

used

by

a

routine

in

one

database

is

identical

to

the

name

of

a

library

or

class

used

by

a

routine

in

another

database

(in

the

same

instance).

This

is

because

routine

bodies

are

normally

stored

in

the

sqllib/function

directory,

which

is

used

by

all

the

databases

of

an

instance.

For

non-Java

routines

library

name

conflicts

can

be

resolved

with

the

following

steps:

Chapter

2.

Developing

routines

27

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|

1.

Store

the

libraries

with

routine

bodies

in

separate

directories

for

each

database.

2.

Catalog

the

routines

with

the

EXTERNAL

NAME

clause,

specifying

the

full

path

of

the

given

library.

For

Java

routines

class

name

conflicts

are

not

solved

by

moving

the

files

in

question

into

different

directories,

because

the

CLASSPATH

environment

variable

is

instance-wide.

The

first

class

encountered

in

the

CLASSPATH

is

the

one

that

is

used.

Therefore,

if

you

have

two

different

Java

routines

that

reference

a

class

with

the

same

name,

one

of

the

routines

will

use

the

incorrect

class.

There

are

two

possible

solutions:

either

rename

the

affected

classes,

or

create

a

separate

instance

for

each

database.

Updating

a

routine

body

If

you

need

to

change

the

body

of

a

routine,

do

not

recompile

and

relink

the

routine

to

the

same

file

(for

example,

sqllib/function/foo.a)

the

current

routine

is

using

while

the

database

manager

is

running.

If

a

current

routine

invocation

is

accessing

a

cached

version

of

the

routine

process

and

the

underlying

library

is

replaced,

this

can

cause

the

rotine

invocation

to

fail.

If

it

is

necessary

to

change

the

body

of

a

routine

without

stopping

and

restarting

DB2,

complete

the

following

steps:

1.

Create

the

new

body

for

the

routine

with

a

different

library

or

class

name.

2.

Bind

the

new

routine

body

(if

it

contains

embedded

SQL)

with

the

database.

3.

Use

the

ALTER

statement

to

change

the

routine’s

EXTERNAL

NAME

to

reference

the

updated

routine

body.

Once

the

ALTER

updates

the

routine’s

catalog

entries,

all

subsequent

invocations

of

the

updated

routine

will

point

to

the

new

routine

body.

For

updating

Java

routines

that

are

built

into

JAR

files,

you

must

issue

a

CALL

SQLJ.REFRESH_CLASSES()

statement

to

force

DB2

to

load

the

new

classes.

If

you

do

not

issue

the

CALL

SQLJ.REFRESH_CLASSES()

statement

after

you

update

Java

routine

classes,

DB2

continues

to

use

the

previous

versions

of

the

classes.

DB2

refreshes

the

classes

when

a

COMMIT

or

ROLLBACK

occurs.

Note:

If

the

routine

body

to

be

updated

is

used

by

routines

cataloged

in

multiple

databases,

the

actions

prescribed

in

this

section

must

be

completed

for

each

affected

database.

Library

management-related

performance

considerations

The

DB2

library

manager

dynamically

adjusts

its

library

caching

according

to

your

workload.

For

optimal

performance

consider

the

following:

v

Keep

the

number

of

routines

in

your

libraries

as

small

as

possible.

If

you

are

including

multiple

routines

in

the

same

library,

ensure

that

you

group

them

based

on

whether

they

are

invoked

in

the

same

time

frame.

Consider

a

scenario

where

in

a

number

of

applications

a

call

to

the

procedure

ProcA

is

followed

by

a

call

to

the

procedure

ProcB.

In

this

situation,

it

might

be

appropriate

to

include

ProcA

and

ProcB

in

the

same

library.

With

a

library

caching

scheme,

it

is

better

to

have

numerous

smaller

libraries

than

a

few

large

libraries.

v

The

load

cost

for

a

library

in

the

C

process

is

paid

only

once

for

libraries

that

are

consistently

in

use

by

C

routines.

After

the

routine’s

first

28

Programming

Server

Applications

|
|

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|

invocation,

all

subsequent

invocations,

from

the

same

thread

in

the

process,

do

not

need

to

load

the

routine’s

library.

Routine

bodies

in

partitioned

databases

When

using

external

routines

in

partitioned

databases,

the

library

or

class

must

be

available

on

all

partitions

of

the

database.

On

UNIX®,

sqllib/function

is

a

good

location

for

routine

bodies,

because

the

sqllib

directory

is

cross-mounted

between

all

partitions

of

the

database.

On

Windows®,

a

good

approach

would

be

to

create

a

shared

directory

accessible

to

all

the

partitions,

and

put

the

libraries

or

classes

in

this

directory.

Related

concepts:

v

“Performance

considerations

for

developing

routines”

on

page

22

v

“Security

considerations

for

routines”

on

page

24

v

“Restrictions

on

using

routines”

on

page

29

Related

reference:

v

“CREATE

FUNCTION

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

PROCEDURE

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

METHOD

statement”

in

the

SQL

Reference,

Volume

2

v

“ALTER

FUNCTION

statement”

in

the

SQL

Reference,

Volume

2

v

“ALTER

METHOD

statement”

in

the

SQL

Reference,

Volume

2

v

“ALTER

PROCEDURE

statement”

in

the

SQL

Reference,

Volume

2

Restrictions

on

using

routines

The

following

are

restrictions

for

developing

routines.

v

In

pre-Version

8

editions

of

DB2®,

CALL

was

not

a

compiled

statement

and

data

type

matching

was

not

enforced.

The

data

types

you

register

a

routine

with

must

match

the

data

types

used

in

the

routines.

See

the

tables

with

SQL

type

mappings

to

Java™,

C,

OLE

automation,

and

OLE

DB

data

types.

v

UDFs

cannot

return

result

sets.

All

cursors

opened

by

a

UDF

with

SQL

must

be

closed

by

the

time

the

final

call

is

completed.

v

Routines

should

not

create

new

threads.

v

You

cannot

issue

any

connection

level

APIs

from

UDFs

or

methods.

v

Input

to,

and

output

from

the

screen

and

keyboard

is

not

possible

from

routines.

Hence,

you

should

not

use

the

standard

I/O

streams;

for

example,

calls

to

System.out.println()

in

Java,

printf()

in

C/C++,

or

display

in

COBOL.

In

the

process

model

of

DB2,

routines

run

in

the

background

and

cannot

write

to

the

screen.

However,

routines

can

write

to

a

file.

For

FENCED

routines

that

run

on

UNIX®,

the

target

directory

where

the

file

is

to

be

created,

or

the

file

itself,

must

have

the

appropriate

permissions

such

that

the

owner

of

the

sqllib/adm/.fenced

file

can

create

it

or

write

to

it.

For

NOT

FENCED

routines,

the

instance

owner

must

have

create,

read,

and

write

permissions

for

the

directory

in

which

the

file

is

opened.

Note:

DB2

does

not

attempt

to

synchronize

any

external

input

or

output

performed

by

a

routine

with

DB2’s

own

transactions.

So,

for

example,

if

a

Chapter

2.

Developing

routines

29

|
|

|
|
|

|
|

|
|
|

|
|
|
|
|

UDF

writes

to

a

file

during

a

transaction,

and

that

transaction

is

later

backed

out

for

some

reason,

no

attempt

is

made

to

discover

or

undo

the

writes

to

the

file.

v

You

cannot

execute

any

connection-related

statements

or

commands

in

routines,

including:

–

BACKUP

–

CONNECT

–

CONNECT

TO

–

CONNECT

RESET

–

CREATE

DATABASE

–

DROP

DATABASE

–

FORWARD

RECOVERY

–

RESTORE
v

In

general,

DB2

does

not

restrict

the

use

of

operating

system

functions.

However,

there

are

a

few

exceptions:

1.

It

is

imperative

that

no

routine

install

its

own

signal

handlers.

Failure

to

adhere

to

this

restriction

can

result

in

unexpected

failures,

database

abends,

or

other

problems.

Installing

signal

handlers

can

also

interfere

with

operation

of

the

JVM

for

Java

routines.

2.

System

calls

that

terminate

a

process

can

abnormally

terminate

one

of

DB2’s

processes

and

result

in

system

or

application

failure.

Other

system

calls

can

also

cause

problems

if

they

interfere

with

the

normal

operation

of

DB2;

for

example,

a

UDF

that

attempts

to

unload

a

library

containing

a

UDF

from

memory

could

cause

severe

problems.

Be

careful

in

coding

and

testing

any

routines

containing

system

calls.
v

Routines

must

not

contain

commands

that

would

terminate

the

current

process.

A

routine

must

always

return

control

to

DB2

without

terminating

the

current

process.

v

When

returning

result

sets

from

nested

stored

procedures,

you

can

open

a

cursor

with

the

same

name

on

multiple

nesting

levels.

However,

pre-version

8

applications

will

only

be

able

to

access

the

first

result

set

that

was

opened.

This

restriction

does

not

apply

to

cursors

that

are

opened

with

a

different

package

level.

v

Do

not

change

the

bodies

of

routines

while

the

database

is

active.

If

it

is

necessary

to

change

the

body

of

a

routine

without

stopping

and

restarting

DB2,

create

the

new

body

for

the

routine

with

a

different

library

name.

The

ALTER

statement

can

then

be

used

to

change

the

routine’s

EXTERNAL

NAME

to

reference

the

new

body.

v

The

values

of

all

environment

variables

with

names

beginning

with

'DB2'

are

captured

at

the

time

the

database

manager

is

started

with

db2start,

and

are

available

in

all

routines,

whether

they

are

FENCED

or

NOT

FENCED.

The

only

exception

is

the

DB2CKPTR

environment

variable.

Other

environment

variables

are

accessible

from

NOT

FENCED

routines,

but

not

from

the

FENCED

routine

process

(for

example,

LIBPATH).

Note

that

the

environment

variables

are

captured.

Any

changes

to

the

environment

variables

after

db2start

is

issued

are

not

available

to

the

routines.

v

When

using

protected

resources

(resources

that

allow

only

one

process

access

at

a

time

inside

routines),

you

should

try

to

avoid

deadlocks

between

routines.

If

two

or

more

routines

deadlock,

DB2

will

not

be

able

to

detect

or

resolve

the

condition,

resulting

in

hung

routine

processes.

30

Programming

Server

Applications

v

If

you

allocate

dynamic

memory

in

a

routine,

it

should

be

freed

before

returning

to

DB2.

Failure

to

do

so

results

in

a

memory

leak,

and

the

continual

growth

of

DB2

processes,

which

could

eventually

lead

to

out-of-memory

conditions.

For

UDFs

and

methods,

the

scratchpad

facility

can

be

used

to

anchor

dynamic

memory

needed

across

multiple

invocations.

If

you

use

a

scratchpad

in

this

manner,

specify

the

FINAL

CALL

attribute

in

the

CREATE

statement

for

the

UDF

or

method

so

that

it

can

free

the

allocated

memory

at

end-of-statement

processing.

v

Do

not

allocate

storage

for

any

parameters

in

your

routine

on

the

database

server.

The

database

manager

automatically

allocates

storage

based

upon

the

parameter

declaration

in

the

CREATE

statement.

Do

not

alter

any

storage

pointers

for

parameters

in

the

routine.

Attempting

to

change

a

pointer

with

a

locally

created

storage

pointer

can

result

in

memory

leaks,

data

corruption,

or

abends.

v

Do

not

use

static

or

global

data

in

routines.

DB2

cannot

guarantee

that

the

memory

used

by

static

or

global

variables

will

be

untouched

between

routine

invocations.

For

UDFs

and

methods,

you

can

use

scratchpads

to

store

values

for

use

between

invocations.

v

All

SQL

argument

values

are

buffered.

This

means

that

a

copy

of

the

value

is

made

and

presented

to

the

routine.

If

there

are

changes

made

to

the

input

parameters

of

a

routine,

these

changes

will

have

no

effect

on

SQL

values

or

processing.

However,

if

a

routine

writes

more

data

to

an

input

or

output

parameter

than

is

specified

by

the

CREATE

statement,

memory

corruption

has

occurred,

and

the

routine

can

abend.

Related

concepts:

v

“Performance

considerations

for

developing

routines”

on

page

22

v

“Security

considerations

for

routines”

on

page

24

v

“SQL

data

type

handling

in

C/C++

routines”

on

page

158

Related

reference:

v

“CALL

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

FUNCTION

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

PROCEDURE

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

METHOD

statement”

in

the

SQL

Reference,

Volume

2

v

“Supported

SQL

Data

Types

in

C

and

C++”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Data

Type

Mappings

between

DB2

and

OLE

DB”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“ALTER

FUNCTION

statement”

in

the

SQL

Reference,

Volume

2

v

“ALTER

METHOD

statement”

in

the

SQL

Reference,

Volume

2

v

“ALTER

PROCEDURE

statement”

in

the

SQL

Reference,

Volume

2

v

“Supported

SQL

data

types

in

OLE

DB”

on

page

190

v

“Supported

SQL

data

types

in

OLE

automation”

on

page

182

Creating

routines

in

the

database

A

routine

is

created

in

the

database

when

the

CREATE

statement

for

that

routine

is

executed.

For

external

routines,

the

CREATE

statement

execution

defines

not

only

the

name

and

properties

of

the

routine,

but

also

with

the

inclusion

of

the

EXTERNAL

clause

points

to

the

location

of

the

external

language

library

that

Chapter

2.

Developing

routines

31

|
|
|
|

contains

the

routine

logic.

A

routine

can

not

be

invoked

until

it

has

been

created

in

the

database.

An

external

routine

can

not

successfully

be

invoked

until

it

has

been

created

in

the

database

and

the

library

associated

with

the

routine

has

been

placed

in

the

location

specified

by

the

EXTERNAL

clause.

For

the

routine

to

work

properly,

it

is

vital

that

you

create

it

with

the

applicable

clauses

that

reflect

the

characteristics

of

the

routine.

Many

of

the

clauses

for

registering

the

different

types

of

routines

are

common.

Prerequisites:

For

the

list

of

privileges

required

to

create

a

routine

in

the

database,

see

the

following

statements:

v

CREATE

FUNCTION

v

CREATE

METHOD

v

CREATE

TYPE

v

CREATE

PROCEDURE

Procedure:

To

create

a

routine,

issue

the

CREATE

statement

with

the

applicable

clauses

that

correspond

to

the

type

of

routine

you

are

working

with.

The

statements

are

as

follows:

CREATE

FUNCTION,

CREATE

METHOD,

CREATE

TYPE,

and

CREATE

PROCEDURE.

To

create

a

method,

you

must

have

have

executed

a

CREATE

TYPE

statement

to

create

a

structured

type.

The

CREATE

TYPE

statement

contains

an

optional

METHOD

clause

that

can

be

used

to

optionally

specify

a

method

declaration

to

be

associated

with

the

type.

Alternatively

you

can

execute

the

ALTER

TYPE

statement

to

declare

a

method

for

an

existing

structured

type.

The

method

is

then

formally

created

by

executing

the

CREATE

METHOD

statement.

The

CREATE

METHOD

statement

only

addresses

attributes

that

relate

to

a

method’s

signature.

Once

you

have

created

your

routine,

you

can

invoke

it

from

any

interface

that

supports

routine

invocation

for

the

particular

routine

type.

Depending

on

the

routine

type,

this

can

include:

client

applications,

other

routines,

triggers,

and

SQL

statements.

Related

concepts:

v

“Routines

in

application

development”

on

page

3

v

“Parameter

styles

for

external

routines”

on

page

87

v

“Performance

considerations

for

developing

routines”

on

page

22

v

“Security

considerations

for

routines”

on

page

24

Related

tasks:

v

“Writing

routines”

on

page

33

Related

reference:

v

“CREATE

FUNCTION

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

PROCEDURE

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

TYPE

(Structured)

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

METHOD

statement”

in

the

SQL

Reference,

Volume

2

32

Programming

Server

Applications

|
|
|
|

|
|
|

|
|

|

|

|

|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

Related

samples:

v

“spcreate.db2

--

How

to

catalog

the

stored

procedures

contained

in

spserver.sqc

(C)”

v

“spserver.db2

--

To

create

a

set

of

SQL

procedures

”

v

“UDFsCreate.db2

--

How

to

catalog

the

UDFs

contained

in

UDFsqlsv.java

”

Writing

routines

The

three

types

of

routines

(procedures,

UDFs,

and

methods)

have

much

in

common

with

regards

to

how

they

are

written.

For

instance,

the

three

routine

types

employ

some

of

the

same

parameter

styles,

support

the

use

of

SQL

through

various

client

interfaces

(embedded

SQL,

CLI,

and

JDBC),

and

can

all

invoke

other

routines.

To

this

end,

the

following

steps

represent

a

single

approach

for

writing

routines.

There

are

some

routine

features

that

are

specific

to

a

routine

type.

For

example,

result

sets

are

specific

to

stored

procedures,

and

scratchpads

are

specific

to

UDFs

and

methods.

When

you

come

across

a

step

not

applicable

to

the

type

of

routine

you

are

developing,

go

to

the

step

that

follows

it.

Prerequisites:

Before

writing

a

routine,

you

must

decide

the

following:

v

The

type

of

routine

you

need.

(See

Types

of

routines

(procedures,

functions,

methods).)

v

The

programming

language

you

will

use

to

write

it.

(See

Supported

routine

programming

languages.)

v

Which

interface

to

use

if

you

require

SQL

statements

in

your

routine.

(See

When

to

use

DB2

CLI

or

embedded

SQL.)

See

also

the

topics

on

Security,

Library

and

Class

Management,

and

Performance

considerations.

Procedure:

To

create

a

routine

body,

you

must:

1.

Applicable

only

to

external

routines.

Accept

input

parameters

from

the

invoking

application

or

routine

and

declare

output

parameters.

How

a

routine

accepts

parameters

is

dependent

on

the

parameter

style

you

will

create

the

routine

with.

Each

parameter

style

defines

the

set

of

parameters

that

are

passed

to

the

routine

body

and

the

order

that

the

parameters

are

passed.

For

example,

the

following

is

a

signature

of

a

UDF

body

written

in

C

(using

sqludf.h)

for

PARAMETER

STYLE

SQL:

SQL_API_RC

SQL_API_FN

product

(

SQLUDF_DOUBLE

*in1,

SQLUDF_DOUBLE

*in2,

SQLUDF_DOUBLE

*outProduct,

SQLUDF_NULLIND

*in1NullInd,

SQLUDF_NULLIND

*in2NullInd,

SQLUDF_NULLIND

*productNullInd,

SQLUDF_TRAIL_ARGS

)

2.

Add

the

logic

that

the

routine

is

to

perform.

Some

features

that

you

can

employ

in

the

body

of

your

routines

are

as

follows:

v

Calling

other

routines

(nesting),

or

calling

the

current

routine

(recursion).

Chapter

2.

Developing

routines

33

|
|
|
|

|
|

v

In

routines

that

are

defined

to

have

SQL

(CONTAINS

SQL,

READS

SQL,

or

MODIFIES

SQL),

the

routine

can

issue

SQL

statements.

The

types

of

statements

that

can

be

invoked

is

controlled

by

how

routines

are

registered.

v

In

external

UDFs

and

methods,

use

scratchpads

to

save

state

from

one

call

to

the

next.

v

In

SQL

procedures,

use

condition

handlers

to

determine

the

SQL

procedure’s

behavior

when

a

specified

condition

occurs.

You

can

define

conditions

based

on

SQLSTATEs.
3.

Applicable

only

to

stored

procedures.

Return

one

or

more

result

sets.

In

addition

to

individual

parameters

that

are

exchanged

with

the

calling

application,

stored

procedures

have

the

capability

to

return

multiple

result

sets.

Only

SQL

routines

and

CLI,

ODBC,

JDBC,

and

SQLJ

routines

and

clients

can

accept

result

sets.

In

addition

to

writing

your

routine,

you

also

need

to

register

it

before

you

can

invoke

it.

This

is

done

with

the

CREATE

statement

that

matches

the

type

of

routine

you

are

developing.

In

general,

the

order

in

which

you

write

and

register

your

routine

does

not

matter.

However,

the

registration

of

a

routine

must

precede

its

being

built

if

it

issues

SQL

that

references

itself.

In

this

case,

for

a

bind

to

be

successful,

the

routine’s

registration

must

have

already

occurred.

Related

concepts:

v

“When

to

use

DB2

CLI

or

embedded

SQL”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Parameter

styles

for

external

routines”

on

page

87

v

“Performance

considerations

for

developing

routines”

on

page

22

v

“Security

considerations

for

routines”

on

page

24

v

“C/C++

routines”

on

page

151

v

“Java

routines”

on

page

167

v

“Restrictions

on

using

routines”

on

page

29

v

“Library

and

class

management

considerations”

on

page

27

v

“OLE

automation

routine

design”

on

page

179

v

“OLE

DB

user-defined

table

functions”

on

page

186

v

“Supported

routine

programming

languages”

on

page

19

Related

reference:

v

“CREATE

FUNCTION

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

PROCEDURE

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

TYPE

(Structured)

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

METHOD

statement”

in

the

SQL

Reference,

Volume

2

Related

samples:

v

“spserver.c

--

Definition

of

various

types

of

stored

procedures”

v

“spserver.db2

--

To

create

a

set

of

SQL

procedures

”

v

“spserver.sqc

--

Definition

of

various

types

of

stored

procedures

(C)”

v

“spserver.sqC

--

Definition

of

various

types

of

stored

procedures

(C++)”

v

“SpServer.java

--

Provide

a

variety

of

types

of

stored

procedures

to

be

called

from

(JDBC)”

v

“SpServer.sqlj

--

Provide

a

variety

of

types

of

stored

procedures

to

be

called

from

(SQLj)”

34

Programming

Server

Applications

Authorizations

and

binding

of

routines

that

contain

SQL

When

discussing

routine

level

authorization

it

is

important

to

define

some

roles

related

to

routines,

the

determination

of

the

roles,

and

the

privileges

related

to

these

roles:

Package

Owner

The

owner

of

a

particular

package

that

participates

in

the

implementation

of

a

routine.

The

package

owner

is

the

user

who

executes

the

BIND

command

to

bind

a

package

with

a

database,

unless

the

OWNER

precompile/BIND

option

is

used

to

override

the

package

ownership

and

set

it

to

an

alternate

user.

Upon

execution

of

the

BIND

command,

the

package

owner

is

granted

EXECUTE

WITH

GRANT

privilege

on

the

package.

A

routine

library

or

executable

can

be

comprised

of

multiple

packages

and

therefore

can

have

multiple

package

owners

associated

with

it.

Routine

Definer

The

ID

that

issues

the

CREATE

statement

to

register

a

routine.

The

routine

definer

is

generally

a

DBA,

but

is

also

often

the

routine

package

owner.

When

a

routine

is

invoked,

at

package

load

time,

the

authorization

to

run

the

routine

is

checked

against

the

definer’s

authorization

to

execute

the

package

or

packages

associated

with

the

routine

(not

against

the

authorization

of

the

routine

invoker).

For

a

routine

to

be

successfully

invoked,

the

routine

definer

must

have

one

of:

v

EXECUTE

privilege

on

the

package

or

packages

of

the

routine

and

EXECUTE

privilege

on

the

routine

v

SYSADM

or

DBADM

authority

If

the

routine

definer

and

the

routine

package

owner

are

the

same

user,

then

the

routine

definer

will

have

the

required

EXECUTE

privileges

on

the

packages.

If

the

definer

is

not

the

package

owner,

the

definer

must

be

explicitly

granted

EXECUTE

privilege

on

the

packages

by

the

package

owner

or

any

user

with

SYSADM

or

DBADM

authority.

Upon

issuing

the

CREATE

statement

that

registers

the

routine,

the

definer

is

implicitly

granted

the

EXECUTE

WITH

GRANT

OPTION

privilege

on

the

routine.

The

routine

definer’s

role

is

to

encapsulate

under

one

authorization

ID,

the

privileges

of

running

the

packages

associated

with

a

routine

and

the

privilege

of

granting

EXECUTE

privilege

on

the

routine

to

PUBLIC

or

to

specific

users

that

need

to

invoke

the

routine.

Note:

For

SQL

routines

the

routine

definer

is

also

implicitly

the

package

owner.

Therefore

the

definer

will

have

EXECUTE

WITH

GRANT

OPTION

on

both

the

routine

and

on

the

routine

package

upon

execution

of

the

CREATE

statement

for

the

routine.

Routine

Invoker

The

ID

that

invokes

the

routine.

To

determine

which

users

will

be

invokers

of

a

routine,

it

is

necessary

to

consider

how

a

routine

can

be

invoked.

Routines

can

be

invoked

from

a

command

window

or

from

within

an

embedded

SQL

application.

In

the

case

of

methods

and

UDFs

the

routine

reference

will

be

embedded

in

another

SQL

statement.

A

procedure

is

invoked

by

using

the

CALL

statement.

For

dynamic

SQL

in

an

application,

Chapter

2.

Developing

routines

35

|
|
|

|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|

|
|

|

|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

the

invoker

is

the

runtime

authorization

ID

of

the

immediately

higher-level

routine

or

application

containing

the

routine

invocation

(however,

this

ID

can

also

depend

on

the

DYNAMICRULES

option

with

which

the

higher-level

routine

or

application

was

bound).

For

static

SQL,

the

invoker

is

the

value

of

the

OWNER

precompile/BIND

option

of

the

package

that

contains

the

reference

to

the

routine.

To

successfully

invoke

the

routine,

these

users

will

require

EXECUTE

privilege

on

the

routine.

This

privilege

can

be

granted

by

any

user

with

EXECUTE

WITH

GRANT

OPTION

privilege

on

the

routine

(this

includes

the

routine

definer

unless

the

privilege

has

been

explicitly

revoked),

SYSADM

or

DBADM

authority

by

explicitly

issuing

a

GRANT

statement.

As

an

example,

if

a

package

associated

with

an

application

containing

dynamic

SQL

was

bound

with

DYNAMICRULES

BIND,

then

its

runtime

authorization

ID

will

be

its

package

owner,

not

the

person

invoking

the

package.

Also,

the

package

owner

will

be

the

actual

binder

or

the

value

of

the

OWNER

precompile/bind

option.

In

this

case,

the

invoker

of

the

routine

assumes

this

value

rather

than

the

ID

of

the

user

who

is

executing

the

application.

Notes:

1.

For

static

SQL

within

a

routine,

the

package

owner’s

privileges

must

be

sufficient

to

execute

the

SQL

statements

in

the

routine

body.

These

SQL

statements

might

require

table

access

privileges

or

execute

privileges

if

there

are

any

nested

references

to

routines.

2.

For

dynamic

SQL

within

a

routine,

the

userid

whose

privileges

will

be

validated

are

governed

by

the

DYNAMICRULES

option

of

the

BIND

of

the

routine

body.

3.

The

routine

package

owner

must

GRANT

EXECUTE

on

the

package

to

the

routine

definer.

This

can

be

done

before

or

after

the

routine

is

registered,

but

it

must

be

done

before

the

routine

is

invoked

otherwise

an

error

(SQLSTATE

42051)

will

be

returned.

The

steps

involved

in

managing

the

execute

privilege

on

a

routine

are

detailed

in

the

diagram

and

text

that

follows:

36

Programming

Server

Applications

|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

|
|
|

|
|
|
|

1.

Definer

performs

the

appropriate

CREATE

statement

to

register

the

routine.

This

registers

the

routine

in

DB2®

with

its

intended

level

of

SQL

access,

establishes

the

routine

signature,

and

also

points

to

the

routine

executable.

The

definer,

if

not

also

the

package

owner,

needs

to

communicate

with

the

package

owners

and

authors

of

the

routine

programs

to

be

clear

on

where

the

routine

libraries

reside

so

that

this

can

be

correctly

specified

in

the

EXTERNAL

clause

of

the

CREATE

statement.

By

virtue

of

a

successful

CREATE

statement,

the

definer

has

EXECUTE

WITH

GRANT

privilege

on

the

routine,

however

the

definer

does

not

yet

have

EXECUTE

privilege

on

the

packages

of

the

routine.

2.

Definer

must

grant

EXECUTE

privilege

on

the

routine

to

any

users

who

are

to

be

permitted

use

of

the

routine.

(If

the

package

for

this

routine

will

recursively

call

this

routine,

then

this

step

must

be

done

before

the

next

step.)

3.

Package

owners

precompile

and

bind

the

routine

program,

or

have

it

done

on

their

behalf.

Upon

a

successful

precompile

and

bind,

the

package

owner

is

implicitly

granted

EXECUTE

WITH

GRANT

OPTION

privilege

on

the

respective

package.

This

step

follows

step

one

in

this

list

only

to

cover

the

possibility

of

SQL

recursion

in

the

routine.

If

such

recursion

does

not

exist

in

any

particular

case,

the

precompile/bind

could

precede

the

issuing

of

the

CREATE

statement

for

the

routine.

Database
administrator 1 has:

User ID of the
routine invoker has:

EXECUTE on package
privilege

EXECUTE WITH GRANT
OPTION on routine privilege

Binds the routine package
using the BIND command

Discuss the
location of the
routine library

Grants the EXECUTE
on package privilege

Grants the EXECUTE on routine

privilege to the routine invoker

Database
administrator 1

Programmer 1

Creates the routine using
the CREATE statement

The routine is

successfully invoked

EXECUTE on
routine privilege

Invokes the routine

Programmer 1 has:

EXECUTE WITH GRANT
OPTION on package privilege

Figure

2.

Managing

the

EXECUTE

privilege

on

routines

Chapter

2.

Developing

routines

37

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

4.

Each

package

owner

must

explicitly

grant

EXECUTE

privilege

on

their

respective

routine

package

to

the

definer

of

the

routine.

This

step

must

come

at

some

time

after

the

previous

step.

If

the

package

owner

is

also

the

routine

definer,

this

step

can

be

skipped.

5.

Static

usage

of

the

routine:

the

bind

owner

of

the

package

referencing

the

routine

must

have

been

given

EXECUTE

privilege

on

the

routine,

so

the

previous

step

must

be

completed

at

this

point.

When

the

routine

executes,

DB2

verifies

that

the

definer

has

the

EXECUTE

privilege

on

any

package

that

is

needed,

so

step

3

must

be

completed

for

each

such

package.

6.

Dynamic

usage

of

the

routine:

the

authorization

ID

as

controlled

by

the

DYNAMICRULES

option

for

the

invoking

application

must

have

EXECUTE

privilege

on

the

routine

(step

4),

and

the

definer

of

the

routine

must

have

the

EXECUTE

privilege

on

the

packages

(step

3).

Related

concepts:

v

“Privileges,

authority

levels,

and

database

authorities”

in

the

Administration

Guide:

Implementation

v

“Effect

of

DYNAMICRULES

bind

option

on

dynamic

SQL”

on

page

104

v

“Routine

privileges”

in

the

Administration

Guide:

Implementation

Related

reference:

v

“CREATE

FUNCTION

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

PROCEDURE

statement”

in

the

SQL

Reference,

Volume

2

v

“BIND

Command”

in

the

Command

Reference

Debugging

routines

Before

deploying

routines

on

a

production

server

you

must

thoroughly

test

and

debug

them

on

a

test

server.

This

is

especially

important

for

routines

that

need

to

be

registered

as

NOT

FENCED

because

they

have

unrestricted

access

to

the

database

manager’s

memory,

its

databases,

and

database

control

structures.

FENCED

THREADSAFE

routines

also

demand

close

attention

because

they

share

memory

with

other

routines.

Procedure:

Checklist

of

common

routine

problems

To

ensure

that

a

routine

executes

properly,

check

that:

v

The

routine

is

registered

properly.

The

parameters

provided

in

the

CREATE

statement

must

match

the

arguments

handled

by

the

routine

body.

With

this

in

mind,

check

the

following

specific

items:

–

The

data

types

of

the

arguments

used

by

the

routine

body

are

appropriate

for

the

parameter

types

defined

in

the

CREATE

statement.

–

The

routine

does

not

write

more

bytes

to

an

output

variable

than

were

defined

for

the

corresponding

result

in

the

CREATE

statement.

–

The

routine

arguments

for

SCRATCHPAD,

FINAL

CALL,

DBINFO

are

present

if

the

routine

was

registered

with

corresponding

CREATE

options.

–

For

external

routines,

the

value

for

the

EXTERNAL

NAME

clause

in

the

CREATE

statement

must

match

the

routine

library

and

entry

point

(case

sensitivity

varies

by

operating

system).

38

Programming

Server

Applications

–

For

C++

routines,

the

C++

compiler

applies

type

decoration

to

the

entry

point

name.

Either

the

type

decorated

name

needs

to

be

specified

in

the

EXTERNAL

NAME

clause,

or

the

entry

point

should

be

defined

as

extern

"C"

in

the

user

code.

–

The

routine

name

specified

during

invocation

must

match

the

registered

name

(defined

in

the

CREATE

statement)

of

the

routine.

By

default,

routine

identifiers

are

folded

to

uppercase.

This

does

not

apply

to

delimited

identifiers,

which

are

not

folded

to

uppercase,

and

are

therefore

case

sensitive.

The

routine

must

be

placed

in

the

directory

path

specified

in

the

CREATE

statement,

or

if

no

path

is

given,

where

DB2

looks

for

it

by

default.

For

UDFs,

methods,

and

fenced

procedures,

this

is:

sqllib/function

(UNIX)

or

sqllib\function

(Windows).

For

unfenced

procedures,

this

is:

sqllib/function/unfenced

(UNIX)

or

sqllib\function\unfenced

(Windows).
v

The

routine

is

built

using

the

correct

calling

sequence,

precompile

(if

embedded

SQL),

compile,

and

link

options.

v

The

application

is

bound

to

the

database,

except

if

it

is

written

using

DB2

CLI,

ODBC,

or

JDBC.

The

routine

must

also

be

bound

if

it

contains

SQL

and

does

not

use

any

of

these

interfaces.

v

The

routine

accurately

returns

any

error

information

to

the

client

application.

v

All

applicable

call

types

are

accounted

for

if

the

routine

was

defined

with

FINAL

CALL.

v

The

system

resources

used

by

routines

are

returned.

v

If

you

attempt

to

invoke

a

routine

and

receive

an

error

(SQLCODE

-551,

SQLSTATE

42501)

indicating

that

you

have

insufficient

privileges

to

perform

this

operation,

this

is

likely

because

you

do

not

have

the

EXECUTE

privilege

on

the

routine.

This

privilege

can

be

granted

to

any

invoker

of

a

routine

by

a

user

with

SYSADM,

DBADM

authorization

or

by

the

definer

of

the

routine.

The

related

topic

on

authorizations

and

routines

provides

details

on

how

to

effectively

manage

the

use

of

this

privilege.

Routine

debugging

techniques

To

debug

a

routine,

use

the

following

techniques:

v

The

Development

Center

provides

extensive

debugging

tools

for

SQL-bodied

and

Java

procedures.

v

It

is

not

possible

to

write

diagnostic

data

to

screen

from

a

routine.

If

you

intend

to

write

diagnostic

data

to

a

file,

ensure

that

you

write

to

a

globally

accessible

directory

such

as

\tmp.

Do

not

write

to

directories

used

by

database

managers

or

databases.

For

procedures,

a

safe

alternative

is

to

write

diagnostic

data

to

an

SQL

table.

The

procedure

you

are

testing

must

be

registered

with

the

MODIFIES

SQL

DATA

clause

in

order

to

be

able

to

write

to

an

SQL

table.

If

you

need

an

existing

procedure

to

write

data

(or

no

longer

write

data)

to

an

SQL

table,

you

must

drop

and

re-register

the

procedure

with

(or

without)

the

MODIFIES

SQL

DATA

clause.

Before

dropping

and

re-registering

the

procedure,

be

aware

of

its

dependencies.

v

You

can

debug

your

routine

locally

by

writing

a

simple

application

that

invokes

the

routine

entry

point

directly.

Consult

your

compiler

documentation

for

information

on

using

the

supplied

debugger.

Chapter

2.

Developing

routines

39

|
|
|
|
|
|
|
|

Related

concepts:

v

“Authorizations

and

binding

of

routines

that

contain

SQL”

on

page

35

v

“Security

considerations

for

routines”

on

page

24

Related

tasks:

v

“Debugging

Java

stored

procedures”

on

page

175

v

“Returning

error

messages

from

SQL

procedures”

on

page

70

Related

reference:

v

“Identifiers”

in

the

SQL

Reference,

Volume

1

v

“CREATE

FUNCTION

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

PROCEDURE

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

TYPE

(Structured)

statement”

in

the

SQL

Reference,

Volume

2

v

“BIND

Command”

in

the

Command

Reference

v

“PRECOMPILE

Command”

in

the

Command

Reference

v

“CREATE

METHOD

statement”

in

the

SQL

Reference,

Volume

2

v

“Supported

SQL

data

types

in

OLE

DB”

on

page

190

v

“Syntax

for

passing

arguments

to

routines

written

in

C/C++,

OLE,

or

COBOL”

on

page

89

v

“Supported

SQL

data

types

in

OLE

automation”

on

page

182

v

“Supported

SQL

data

types

in

C/C++”

on

page

155

Data

conflicts

when

procedures

read

from

or

write

to

tables

To

preserve

the

integrity

of

the

database,

it

is

necessary

to

avoid

conflicts

when

reading

from

and

writing

to

tables.

For

example,

suppose

an

application

is

updating

the

EMPLOYEE

table,

and

the

statement

calls

a

routine.

Suppose

that

the

routine

tries

to

read

the

EMPLOYEE

table

and

encounters

the

row

being

updated

by

the

application.

THe

row

is

in

an

indeterminate

state

from

the

perspective

of

the

routine-

perhaps

some

columns

of

the

row

have

been

updated

while

other

have

not.

If

the

routine

acts

on

this

partially

updated

row,

it

can

take

incorrect

actions.

To

avoid

this

sort

of

problem,

DB2®

does

not

allow

operations

that

conflict

on

any

table.

To

describe

how

DB2

avoids

conflicts

when

reading

from

and

writing

to

tables

from

routines,

the

following

two

terms

are

needed:

top-level

statement

A

top-level

statement

is

any

SQL

statement

issued

from

an

application,

or

from

a

stored

procedure

that

was

invoked

as

a

top-level

statement.

If

a

procedure

is

invoked

within

a

dynamic

compound

statement

or

a

trigger,

the

compound

statement

or

the

statement

that

causes

the

firing

of

the

trigger

is

the

top-level

statement.

If

an

SQL

function

or

an

SQL

method

contains

a

nested

CALL

statement,

the

statement

invoking

the

function

or

the

method

is

the

top-level

statement.

table

access

context

A

table

access

context

refers

to

the

scope

where

conflicting

operations

on

a

table

are

allowed.

A

table

access

context

is

created

whenever:

v

A

top-level

statement

issues

an

SQL

statement.

v

A

UDF

or

method

is

invoked.

40

Programming

Server

Applications

|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|

|
|
|

|

|

v

A

procedure

is

invoked

from

a

trigger,

a

dynamic

compound

statement,

an

SQL

function

or

an

SQL

method.

For

example,

when

an

application

calls

a

stored

procedure,

the

CALL

is

a

top-level

statement

and

therefore

gets

a

table

access

context.

If

the

stored

procedure

does

an

UPDATE,

the

UPDATE

is

also

a

top-level

statement

(since

the

stored

procedure

was

invoked

as

a

top-level

statement)

and

therefore

gets

a

table

access

context.

If

the

UPDATE

invokes

a

UDF,

the

UDF

gets

a

separate

table

access

context

and

SQL

statements

inside

the

UDF

are

not

top-level

statements.

Once

a

table

has

been

accessed

for

reading

or

writing,

it

is

protected

from

conflicts

within

the

top-level

statement

that

made

the

access.

The

table

can

be

read

or

written

from

a

different

top-level

statement

or

from

a

routine

invoked

from

a

different

top-level

statement.

The

following

rules

are

applied:

1.

Within

a

table

access

context,

a

given

table

can

be

both

read

from

and

written

to

without

causing

a

conflict.

2.

If

a

table

is

being

read

within

a

table

access

context

then

other

contexts

can

also

read

the

table.

If

any

other

context

attempts

to

write

to

the

table,

however,

a

conflict

occurs.

3.

If

a

table

is

being

written

within

a

table

access

context,

then

no

other

context

can

read

or

write

to

the

table

without

causing

a

conflict.

If

a

conflict

occurs,

an

error

(SQLCODE

-746,

SQLSTATE

57053)

is

returned

to

the

statement

that

caused

the

conflict.

The

following

is

an

example

of

table

read

and

write

conflicts:

Suppose

an

application

issues

the

statement:

UPDATE

t1

SET

c1

=

udf1(c2)

UDF1

contains

the

statements:

DECLARE

cur1

CURSOR

FOR

SELECT

c1,

c2

FROM

t1

OPEN

cur1

This

will

result

in

a

conflict

because

rule

3

is

violated.

This

form

of

conflict

can

only

be

resolved

by

redesigning

the

application

or

UDF.

The

following

does

not

result

in

a

conflict:

Suppose

an

application

issues

the

statements:

DECLARE

cur2

CURSOR

FOR

SELECT

udf2(c1)

FROM

t2

OPEN

cur2

FETCH

cur2

INTO

:hv

UPDATE

t2

SET

c2

=

5

UDF2

contains

the

statements:

DECLARE

cur3

CURSOR

FOR

SELECT

c1,

c2

FROM

t2

OPEN

cur3

FETCH

cur3

INTO

:hv

With

the

cursor,

UDF2

is

allowed

to

read

table

T2

since

two

table

access

contexts

can

read

the

same

table.

The

application

is

allowed

to

update

T2

even

though

UDF2

is

reading

the

table

because

UDF2

was

invoked

in

a

different

application

level

statement

than

the

update.

Chapter

2.

Developing

routines

41

|
|

|
|
|
|
|
|
|

|
|
|
|

Related

concepts:

v

“Routines

in

application

development”

on

page

3

v

“SQL

in

external

routines”

on

page

101

Procedure

features

Stored

Procedures

have

special

capabilities

for

exchanging

data

with

invoking

applications

and

routines.

The

sections

that

follow

describe

procedure

parameter

modes,

the

capability

of

procedures

to

return

result

sets,

and

the

option

of

accepting

parameters

in

the

style

of

a

main

routine

or

a

subroutine.

Procedure

parameter

modes

Client

applications

and

calling

routines

exchange

information

with

procedures

through

parameters

and

result

sets.

The

parameters

for

routines

are

defined

as

having

specific

data

types.

Unlike

other

routines,

the

parameters

for

procedures

are

also

defined

by

the

direction

the

data

is

traveling

(the

parameter

mode).

There

are

three

types

of

parameters

for

procedures:

v

IN

parameters:

data

passed

to

the

procedure.

v

OUT

parameters:

data

returned

by

the

procedure.

v

INOUT

parameters:

data

passed

to

the

procedure

that

is,

during

procedure

execution,

replaced

by

data

to

be

returned

from

the

procedure.

The

mode

of

parameters

and

their

data

types

are

defined

when

a

procedure

is

registered

with

the

CREATE

PROCEDURE

statement.

Related

concepts:

v

“Procedure

result

sets”

on

page

42

Related

tasks:

v

“Creating

routines

in

the

database”

on

page

31

Related

reference:

v

“CREATE

PROCEDURE

statement”

in

the

SQL

Reference,

Volume

2

Procedure

result

sets

The

following

sections

describe

how

with

procedures

you

can

return

result

sets,

and

shows

you

how

to

return

and

receive

result

sets

using

various

interfaces.

Procedure

result

sets

In

addition

to

exchanging

parameters,

procedures

can

pass

information

to

invokers

by

returning

result

sets.

Result

sets

can

be

accepted

by

SQL-bodied

routines,

and

routines

and

applications

programmed

in

the

following

interfaces:

v

CLI

v

JDBC

v

SQLJ

v

ODBC

Stored

procedures

pass

result

sets

to

their

invokers

through

cursors.

The

procedure

body

must

contain

a

cursor

for

every

result

set

you

need

to

return.

While

you

can

fetch

rows

from

a

result

set

cursor

within

the

procedure,

only

unfetched

rows

are

42

Programming

Server

Applications

|
|

passed

to

the

invoker

as

the

result

set.

When

exiting

a

procedure,

leave

the

cursors

that

correspond

to

the

result

sets

open.

Multiple

result

sets

are

returned

in

the

order

in

which

you

open

their

cursors.

When

declaring

a

cursor

for

a

result

set,

it

is

strongly

recommended

that

you

specify

the

destination

in

the

WITH

RETURN

TO

clause

of

the

DECLARE

CURSOR

statement

(for

SQL

procedures,

this

is

mandatory).

To

return

the

result

set

to

the

invoker,

whether

the

invoker

is

an

application

or

a

routine,

specify

WITH

RETURN

TO

CALLER.

To

return

the

result

set

directly

to

the

application,

bypassing

any

intermediate

nested

routines,

specify

WITH

RETURN

TO

CLIENT.

In

external

routines,

cursors

are

defined

as

WITH

RETURN

TO

CALLER

by

default,

unless

they

are

explicitly

defined

as

WITH

RETURN

TO

CLIENT.

When

registering

a

procedure

with

the

CREATE

PROCEDURE

statement,

indicate

the

number

of

result

sets

that

it

returns

with

the

DYNAMIC

RESULT

SETS

clause.

This

value

is

in

the

RESULT_SETS

column

in

the

SYSCAT.ROUTINES

view.

If

the

number

of

result

sets

returned

from

a

procedure

is

different

than

the

number

specified

in

the

CREATE

PROCEDURE

statement,

a

warning

is

issued

(SQLCODE

+464,

SQLSTATE

0100E).

For

PARAMETER

STYLE

JAVA

stored

procedures,

the

number

of

result

sets

in

the

CREATE

PROCEDURE

statement

must

match

the

number

of

ResultSet[]

parameters

in

the

Java™

method

signature.

The

invoker

can

DESCRIBE

the

received

result

sets.

Note

that

if

the

same

cursor

is

opened

on

multiple

nesting

levels,

applications

running

on

DB2®

UDB

Version

7

clients

can

only

DESCRIBE

the

first

result

set

that

is

opened.

Result

sets

must

be

processed

in

a

serial

fashion

by

the

invoker

(if

the

invoker

is

not

an

SQL-bodied

routine).

A

cursor

is

automatically

opened

on

the

first

result

set

and

a

special

call

(SQLMoreResults

for

DB2

CLI,

getMoreResults

for

JDBC,

getNextResultSet

for

SQLJ)

is

provided

to

both

close

the

cursor

on

one

result

set

and

to

open

it

on

the

next.

To

receive

result

sets

in

SQL-bodied

routines,

you

must

DECLARE

and

ASSOCIATE

result

set

locators

to

the

procedure

you

expect

will

return

result

sets.

You

must

then

ALLOCATE

each

cursor

you

expect

will

be

returned

to

a

result

set

locator.

Once

this

is

done,

you

can

fetch

rows

from

the

result

sets.

If

a

procedure

is

invoked

within

a

trigger,

a

dynamic

compound

statement,

an

SQL

function

or

a

SQL

method,

any

result

sets

will

not

be

accessible.

Note:

A

COMMIT

issued

from

within

the

procedure

or

from

the

application

will

close

any

result

sets

that

are

not

for

WITH

HOLD

cursors.

A

ROLLBACK

issued

from

the

application

or

from

the

stored

procedure

will

close

all

result

set

cursors.

After

a

COMMIT

or

a

ROLLBACK

is

made

from

within

a

procedure,

cursors

can

be

opened

and

returned

as

result

sets.

Related

concepts:

v

“Procedures”

on

page

11

v

“Cursors

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Result

set

terminology

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Result

set

retrieval

into

arrays

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

tasks:

Chapter

2.

Developing

routines

43

|
|

v

“Declaring

and

Using

Cursors

in

Static

SQL

Programs”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Declaring

and

Using

Cursors

in

Dynamic

SQL

Programs”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Returning

result

sets

from

SQL

and

embedded

SQL

procedures”

on

page

44

v

“Receiving

procedure

result

sets

in

SQL

routines”

on

page

47

v

“Receiving

procedure

result

sets

in

JDBC

applications

and

routines”

on

page

49

v

“Returning

result

sets

from

JDBC

procedures”

on

page

46

v

“Receiving

procedure

result

sets

in

SQLJ

applications

and

routines”

on

page

48

v

“Returning

result

sets

from

SQLJ

procedures”

on

page

45

v

“Returning

result

sets

from

CLR

procedures”

on

page

114

Related

reference:

v

“COMMIT

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

PROCEDURE

statement”

in

the

SQL

Reference,

Volume

2

v

“DESCRIBE

statement”

in

the

SQL

Reference,

Volume

2

v

“PREPARE

statement”

in

the

SQL

Reference,

Volume

2

v

“ROLLBACK

statement”

in

the

SQL

Reference,

Volume

2

v

“SYSCAT.ROUTINES

catalog

view”

in

the

SQL

Reference,

Volume

1

Returning

result

sets

from

SQL

and

embedded

SQL

procedures

You

can

develop

procedures

that

return

result

sets

to

the

invoking

routine

or

application.

In

SQL

and

embedded

SQL

procedures,

the

returning

of

result

sets

is

handled

with

the

DECLARE

CURSOR

statement.

Procedure:

To

return

a

result

set

from

an

SQL

or

embedded

SQL

procedure:

1.

Declare

a

cursor

using

the

DECLARE

CURSOR

statement.

The

cursor

declaration

includes

the

SELECT

statement

that

generates

the

set

of

rows

that

will

compose

the

result

set.

In

the

cursor

declaration

it

is

strongly

recommended

that

you

specify

the

result

set

destination

with

the

WITH

RETURN

TO

clause

(this

is

mandatory

for

SQL

procedures).

v

To

return

a

result

set

to

the

invoker

of

a

procedure,

whether

the

invoker

is

a

client

application

or

another

routine,

use

the

WITH

RETURN

TO

CALLER

clause.

In

the

following

example,

the

SQL

procedure

“CALLER_SET”

uses

the

WITH

RETURN

TO

CALLER

clause

to

return

a

result

set

to

the

invoker

of

CALLER_SET:

CREATE

PROCEDURE

CALLER_SET()

DYNAMIC

RESULT

SETS

1

LANGUAGE

SQL

BEGIN

DECLARE

clientcur

CURSOR

WITH

RETURN

TO

CALLER

FOR

SELECT

name,

dept,

job

FROM

staff

WHERE

salary

>

15000;

OPEN

clientcur;

END

v

To

return

a

result

set

from

a

procedure

to

the

originating

application,

use

the

WITH

RETURN

TO

CLIENT

clause.

When

WITH

RETURN

TO

CLIENT

is

specified

on

a

result

set,

no

nested

procedures

can

access

the

result

set.

44

Programming

Server

Applications

In

the

following

example,

the

SQL

procedure

“CLIENT_SET”

uses

the

WITH

RETURN

TO

CLIENT

clause

in

the

DECLARE

CURSOR

statement

to

return

a

result

set

to

the

client

application,

even

if

“CLIENT_SET”

is

invoked

as

a

nested

routine:

CREATE

PROCEDURE

CLIENT_SET()

DYNAMIC

RESULT

SETS

1

LANGUAGE

SQL

BEGIN

DECLARE

clientcur

CURSOR

WITH

RETURN

TO

CLIENT

FOR

SELECT

name,

dept,

job

FROM

staff

WHERE

salary

>

20000;

OPEN

clientcur;

END

2.

Open

the

cursor

using

the

OPEN

statement.

After

the

cursor

is

opened

in

the

procedure,

you

can

FETCH

rows

from

it.

However,

the

result

set

that

is

returned

to

the

application

or

calling

routine

will

only

contain

unfetched

rows.

3.

Exit

from

the

procedure

without

closing

the

cursor.

If

you

have

not

done

so

already,

develop

a

client

application

or

caller

routine

that

will

accept

result

sets

from

your

procedure.

Related

concepts:

v

“Condition

handlers

in

SQL

procedures”

on

page

71

v

“SQLCODE

and

SQLSTATE

variables

in

SQL

procedures”

on

page

74

v

“Procedure

result

sets”

on

page

42

Related

tasks:

v

“Creating

SQL

procedures”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Calling

procedures

from

the

Command

Line

Processor

(CLP)”

on

page

204

v

“Calling

SQL

procedures

with

client

applications”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Calling

SQL

Procedures

with

Client

Applications

on

Windows”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Receiving

procedure

result

sets

in

SQL

routines”

on

page

47

v

“Receiving

procedure

result

sets

in

JDBC

applications

and

routines”

on

page

49

v

“Receiving

procedure

result

sets

in

SQLJ

applications

and

routines”

on

page

48

Related

reference:

v

“SQL

procedure

samples”

in

the

Application

Development

Guide:

Building

and

Running

Applications

Related

samples:

v

“spserver.sqc

--

Definition

of

various

types

of

stored

procedures

(C)”

v

“spserver.sqC

--

Definition

of

various

types

of

stored

procedures

(C++)”

Returning

result

sets

from

SQLJ

procedures

You

can

develop

SQLJ

procedures

that

return

result

sets

to

the

invoking

routine

or

application.

In

SQLJ

procedures,

the

returning

of

result

sets

is

handled

with

ResultSet

objects.

Procedure:

Chapter

2.

Developing

routines

45

To

return

a

result

set

from

an

SQLJ

procedure:

1.

Declare

an

iterator

class

to

handle

query

data.

For

example:

#sql

iterator

SpServerEmployees(String,

String,

double);

2.

For

each

result

set

that

is

to

be

returned,

include

a

parameter

of

type

ResultSet[]

in

the

procedure

declaration.

For

example

the

following

function

signature

accepts

an

array

of

ResultSet

objects:

public

static

void

getHighSalaries(

double

inSalaryThreshold,

//

double

input

int[]

errorCode,

//

SQLCODE

output

ResultSet[]

rs)

//

ResultSet

output

3.

Instantiate

an

iterator

object.

For

example:

SpServerEmployees

c1;

4.

Assign

the

SQL

statement

that

will

generate

the

result

set

to

an

iterator.

In

the

following

example,

a

host

variable

(called

inSalaryThreshold

--

see

the

function

signature

example

above)

is

used

in

the

query’s

WHERE

clause:

#sql

c1

=

{SELECT

name,

job,

CAST(salary

AS

DOUBLE)

FROM

staff

WHERE

salary

>

:inSalaryThreshold

ORDER

BY

salary};

5.

Execute

the

statement

and

get

the

result

set:

rs[0]

=

c1.getResultSet();

If

you

have

not

done

so

already,

develop

a

client

application

or

caller

routine

that

will

accept

result

sets

from

your

procedure.

Related

concepts:

v

“Procedure

result

sets”

on

page

42

Related

tasks:

v

“Receiving

procedure

result

sets

in

SQL

routines”

on

page

47

v

“Receiving

procedure

result

sets

in

JDBC

applications

and

routines”

on

page

49

v

“Receiving

procedure

result

sets

in

SQLJ

applications

and

routines”

on

page

48

Related

samples:

v

“SpServer.sqlj

--

Provide

a

variety

of

types

of

stored

procedures

to

be

called

from

(SQLj)”

Returning

result

sets

from

JDBC

procedures

You

can

develop

JDBC

procedures

that

return

result

sets

to

the

invoking

routine

or

application.

In

JDBC

procedures,

the

returning

of

result

sets

is

handled

with

ResultSet

objects.

Procedure:

To

return

a

result

set

from

a

JDBC

procedure:

1.

For

each

result

set

that

is

to

be

returned,

include

a

parameter

of

type

ResultSet[]

in

the

procedure

declaration.

For

example,

the

following

function

signature

accepts

an

array

of

ResultSet

objects:

public

static

void

getHighSalaries(

double

inSalaryThreshold,

//

double

input

int[]

errorCode,

//

SQLCODE

output

ResultSet[]

rs)

//

ResultSet

output

2.

Open

the

invoker’s

database

connection

(using

a

Connection

object):

46

Programming

Server

Applications

Connection

con

=

DriverManager.getConnection("jdbc:default:connection");

3.

Prepare

the

SQL

statement

that

will

generate

the

result

set

(using

a

PreparedStatement

object).

In

the

following

example,

the

prepare

is

followed

by

the

assignment

of

an

input

variable

(called

inSalaryThreshold

-

see

the

function

signature

example

above)

to

the

value

of

the

parameter

marker

(a

parameter

marker

is

indicated

with

a

″?″)

in

the

query

statement.

String

query

=

"SELECT

name,

job,

CAST(salary

AS

DOUBLE)

FROM

staff

"

+

"

WHERE

salary

>

?

"

+

"

ORDER

BY

salary";

PreparedStatement

stmt

=

con.prepareStatement(query);

stmt.setDouble(1,

inSalaryThreshold);

4.

Execute

the

statement:

rs[0]

=

stmt.executeQuery();

5.

End

the

procedure

body.

If

you

have

not

done

so

already,

develop

a

client

application

or

caller

routine

that

will

accept

result

sets

from

your

stored

procedure.

Related

concepts:

v

“Procedure

result

sets”

on

page

42

Related

tasks:

v

“Receiving

procedure

result

sets

in

SQL

routines”

on

page

47

v

“Receiving

procedure

result

sets

in

JDBC

applications

and

routines”

on

page

49

v

“Receiving

procedure

result

sets

in

SQLJ

applications

and

routines”

on

page

48

Related

samples:

v

“SpServer.java

--

Provide

a

variety

of

types

of

stored

procedures

to

be

called

from

(JDBC)”

Receiving

procedure

result

sets

in

SQL

routines

You

can

receive

result

sets

from

procedures

you

invoke

from

within

an

SQL-bodied

routine.

Prerequisites:

You

must

know

how

many

result

sets

the

invoked

procedure

will

return.

For

each

result

set

that

the

invoking

routine

receives,

a

result

set

must

be

declared.

Procedure:

To

accept

procedure

result

sets

from

within

an

SQL-bodied

routine:

1.

DECLARE

result

set

locators

for

each

result

set

that

the

procedure

will

return.

For

example:

DECLARE

result1

RESULT_SET_LOCATOR

VARYING;

DECLARE

result2

RESULT_SET_LOCATOR

VARYING;

DECLARE

result3

RESULT_SET_LOCATOR

VARYING;

2.

Invoke

the

procedure.

For

example:

CALL

targetProcedure();

Chapter

2.

Developing

routines

47

|
|
|
|
|

|
|
|
|
|
|
|

3.

ASSOCIATE

the

result

set

locator

variables

(defined

above)

with

the

invoked

procedure.

For

example:

ASSOCIATE

RESULT

SET

LOCATORS(result1,

result2,

result3)

WITH

PROCEDURE

targetProcedure;

4.

ALLOCATE

the

result

set

cursors

passed

from

the

invoked

procedure

to

the

result

set

locators.

For

example:

ALLOCATE

rsCur

CURSOR

FOR

RESULT

SET

result1;

5.

FETCH

rows

from

the

result

sets.

For

example:

FETCH

rsCur

INTO

...

Related

concepts:

v

“Procedure

result

sets”

on

page

42

Related

tasks:

v

“Returning

result

sets

from

SQL

and

embedded

SQL

procedures”

on

page

44

v

“Returning

result

sets

from

JDBC

procedures”

on

page

46

v

“Returning

result

sets

from

SQLJ

procedures”

on

page

45

Related

reference:

v

“CALL

statement”

in

the

SQL

Reference,

Volume

2

v

“DECLARE

CURSOR

statement”

in

the

SQL

Reference,

Volume

2

v

“FETCH

statement”

in

the

SQL

Reference,

Volume

2

v

“ALLOCATE

CURSOR

statement”

in

the

SQL

Reference,

Volume

2

v

“ASSOCIATE

LOCATORS

statement”

in

the

SQL

Reference,

Volume

2

Receiving

procedure

result

sets

in

SQLJ

applications

and

routines

You

can

receive

result

sets

from

procedures

you

invoke

from

an

SQLJ

routine

or

application.

Procedure:

To

accept

procedure

result

sets

from

within

an

SQLJ

routine

or

application:

1.

Open

a

database

connection

(using

a

Connection

object):

Connection

con

=

DriverManager.getConnection("jdbc:db2:sample",

userid,

passwd);

2.

Set

the

default

context

(using

a

DefaultContext

object):

DefaultContext

ctx

=

new

DefaultContext(con);

DefaultContext.setDefaultContext(ctx);

3.

Set

the

execution

context

(using

an

ExecutionContext

object):

ExecutionContext

execCtx

=

ctx.getExecutionContext();

4.

Invoke

a

procedure

that

returns

result

sets.

In

the

following

example,

a

procedure

named

GET_HIGH_SALARIES

is

invoked,

and

is

passed

an

input

variable

(called

inSalaryThreshold):

#sql

{CALL

GET_HIGH_SALARIES(:in

inSalaryThreshold,

:out

outErrorCode)};

5.

Declare

a

ResultSet

object,

and

use

the

ExecutionContext

object’s

getNextResultSet()

method

to

accept

result

sets

from

the

procedure.

For

multiple

result

sets,

put

the

getNextResultSet()

call

in

a

loop

structure.

Each

result

set

returned

by

the

procedure

will

spawn

a

loop

iteration.

Inside

the

loop,

you

can

fetch

the

result

set

rows

method,

and

then

close

the

result

set

object

(with

the

ResultSet

object’s

close()

method).

For

example:

48

Programming

Server

Applications

ResultSet

rs

=

null;

while

((rs

=

execCtx.getNextResultSet())

!=

null)

{

ResultSetMetaData

stmtInfo

=

rs.getMetaData();

int

numOfColumns

=

stmtInfo.getColumnCount();

int

r

=

0;

//

Result

set

rows

are

fetched

and

printed

to

screen.

while

(rs.next())

{

r++;

System.out.print("Row:

"

+

r

+

":

");

for

(int

i=1;

i

<=

numOfColumns;

i++)

{

System.out.print(rs.getString(i));

if

(i

!=

numOfColumns)

{

System.out.print(",

");

}

}

System.out.println();

}

rs.close();

}

Related

concepts:

v

“Procedure

result

sets”

on

page

42

Related

tasks:

v

“Returning

result

sets

from

SQL

and

embedded

SQL

procedures”

on

page

44

v

“Returning

result

sets

from

JDBC

procedures”

on

page

46

v

“Returning

result

sets

from

SQLJ

procedures”

on

page

45

Related

samples:

v

“SpClient.sqlj

--

Call

a

variety

of

types

of

stored

procedures

from

SpServer.sqlj

(SQLj)”

Receiving

procedure

result

sets

in

JDBC

applications

and

routines

You

can

receive

result

sets

from

procedures

you

invoke

from

a

JDBC

routine

or

application.

Procedure:

To

accept

procedure

result

sets

from

within

a

JDBC

routine

or

application:

1.

Open

a

database

connection

(using

a

Connection

object):

Connection

con

=

DriverManager.getConnection("jdbc:db2:sample",

userid,

passwd);

2.

Prepare

the

CALL

statement

that

will

invoke

a

procedure

that

returns

result

sets

(using

a

CallableStatement

object).

In

the

following

example,

a

procedure

named

GET_HIGH_SALARIES

is

invoked.

The

prepare

is

followed

by

the

assignment

of

an

input

variable

(called

inSalaryThreshold

--

a

numeric

value

to

be

passed

to

the

procedure)

to

the

value

of

the

parameter

marker

in

the

previous

statement.

(A

parameter

marker

is

indicated

with

a

″?″.)

Chapter

2.

Developing

routines

49

String

query

=

"CALL

GET_HIGH_SALARIES(?)";

CallableStatement

stmt

=

con.prepareCall(query);

stmt.setDouble(1,

inSalaryThreshold);

3.

Call

the

procedure:

stmt.execute();

4.

Use

the

CallableStatement

object’s

getResultSet()

method

to

accept

the

first

result

set

from

the

procedure

and

fetch

the

rows

from

the

result

sets

using

the

fetchAll()

method:

ResultSet

rs

=

stmt.getResultSet();

//

Result

set

rows

are

fetched

and

printed

to

screen.

while

(rs.next())

{

r++;

System.out.print("Row:

"

+

r

+

":

");

for

(int

i=1;

i

<=

numOfColumns;

i++)

{

System.out.print(rs.getString(i));

if

(i

!=

numOfColumns)

{

System.out.print(",

");

}

}

System.out.println();

}

5.

For

multiple

result

sets,

use

the

CallableStatement

object’s

getNextResultSet()

method

to

enable

the

following

result

set

to

be

read.

Then

repeat

the

process

in

the

previous

step,

where

the

ResultSet

object

accepts

the

current

result

set,

and

fetches

the

result

set

rows.

For

example:

while

(callStmt.getMoreResults())

{

rs

=

callStmt.getResultSet()

ResultSetMetaData

stmtInfo

=

rs.getMetaData();

int

numOfColumns

=

stmtInfo.getColumnCount();

int

r

=

0;

//

Result

set

rows

are

fetched

and

printed

to

screen.

while

(rs.next())

{

r++;

System.out.print("Row:

"

+

r

+

":

");

for

(int

i=1;

i

<=

numOfColumns;

i++)

{

System.out.print(rs.getString(i));

if

(i

!=

numOfColumns)

{

System.out.print(",

");

}

}

System.out.println();

}

}

6.

Close

the

ResultSet

object

with

its

close()

method:

rs.close();

Related

concepts:

v

“Procedure

result

sets”

on

page

42

Related

tasks:

50

Programming

Server

Applications

v

“Returning

result

sets

from

SQL

and

embedded

SQL

procedures”

on

page

44

v

“Returning

result

sets

from

JDBC

procedures”

on

page

46

v

“Returning

result

sets

from

SQLJ

procedures”

on

page

45

Related

samples:

v

“SpClient.java

--

Call

a

variety

of

types

of

stored

procedures

from

SpServer.java

(JDBC)”

Parameter

handling

in

PROGRAM

TYPE

MAIN

or

PROGRAM

TYPE

SUB

procedures

Procedures

can

accept

parameters

in

the

style

of

main

routines

or

subroutines.

This

is

determined

when

you

register

your

procedure

with

the

CREATE

PROCEDURE

statement.

C

or

C++

procedures

of

PROGRAM

TYPE

SUB

accept

arguments

in

the

same

manner

as

C

or

C++

subroutines.

Pass

parameters

as

pointers.

For

example,

the

following

C

procedure

signature

accepts

parameters

of

type

INTEGER,

SMALLINT,

and

CHAR(3):

int

storproc

(sqlint32

*arg1,

sqlint16

*arg2,

char

*arg3)

Java™

procedures

can

only

accept

arguments

as

subroutines.

Pass

IN

parameters

as

simple

arguments.

Pass

OUT

and

INOUT

parameters

as

arrays

with

a

single

element.

The

following

parameter-style

Java

procedure

signature

accepts

an

IN

parameter

of

type

INTEGER,

an

OUT

parameter

of

type

SMALLINT,

and

an

INOUT

parameter

of

type

CHAR(3):

int

storproc

(int

arg1,

short

arg2[],

String

arg[])

To

write

a

C

procedure

that

accepts

arguments

like

a

main

function

in

a

C

program,

specify

PROGRAM

TYPE

MAIN

in

the

CREATE

PROCEDURE

statement.

You

must

write

procedures

of

PROGRAM

TYPE

MAIN

to

conform

to

the

following

specifications:

v

The

procedure

accepts

parameters

through

two

arguments:

–

a

parameter

counter

variable;

for

example,

argc

–

an

array

of

pointers

to

the

parameters;

for

example,

char

**argv

v

The

procedure

must

be

built

as

a

shared

library

In

PROGRAM

TYPE

MAIN

procedures,

DB2®

sets

the

value

of

the

first

element

in

the

argv

array,

(argv[0]),

to

the

name

of

the

procedure.

The

remaining

elements

of

the

argv

array

correspond

to

the

parameters

as

defined

by

the

PARAMETER

STYLE

of

the

procedure.

For

example,

the

following

embedded

C

procedure

passes

in

one

IN

parameter

as

argv[1]

and

returns

two

OUT

parameters

as

argv[2]

and

argv[3].

The

CREATE

PROCEDURE

statement

for

the

PROGRAM

TYPE

MAIN

example

is

as

follows:

CREATE

PROCEDURE

MAIN_EXAMPLE

(IN

job

CHAR(8),

OUT

salary

DOUBLE,

OUT

errorcode

INTEGER)

DYNAMIC

RESULT

SETS

0

LANGUAGE

C

PARAMETER

STYLE

GENERAL

NO

DBINFO

FENCED

Chapter

2.

Developing

routines

51

READS

SQL

DATA

PROGRAM

TYPE

MAIN

EXTERNAL

NAME

’spserver!mainexample’

The

following

code

for

the

procedure

copies

the

value

of

argv[1]

into

the

CHAR(8)

host

variable

injob,

then

copies

the

value

of

the

DOUBLE

host

variable

outsalary

into

argv[2]

and

returns

the

SQLCODE

as

argv[3]:

SQL_API_RC

SQL_API_FN

main_example

(int

argc,

char

**argv)

{

EXEC

SQL

INCLUDE

SQLCA;

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

injob[9];

double

outsalary;

EXEC

SQL

END

DECLARE

SECTION;

/*

argv[0]

contains

the

procedure

name.

*/

/*

Parameters

start

at

argv[1]

*/

strcpy

(injob,

(char

*)argv[1]);

EXEC

SQL

SELECT

AVG(salary)

INTO

:outsalary

FROM

employee

WHERE

job

=

:injob;

memcpy

((double

*)argv[2],

(double

*)&outsalary,

sizeof(double));

memcpy

((sqlint32

*)argv[3],

(sqlint32

*)&SQLCODE,

sizeof(sqlint32));

return

(0);

}

/*

end

main_example

function

*/

Related

concepts:

v

“Procedures”

on

page

11

Related

reference:

v

“CREATE

PROCEDURE

statement”

in

the

SQL

Reference,

Volume

2

Related

samples:

v

“spcreate.db2

--

How

to

catalog

the

stored

procedures

contained

in

spserver.sqc

(C)”

v

“spserver.sqc

--

Definition

of

various

types

of

stored

procedures

(C)”

UDF

and

method

features

Unlike

stored

procedures,

UDFs

and

methods

are

invoked

from

within

SQL

statements.

Whereas

a

stored

procedure

is

invoked

only

once

when

it

is

called,

a

function

or

a

method

can

be

invoked

multiple

times

from

a

single

reference

in

an

SQL

statement.

This

difference

in

implementation

requires

special

features.

The

following

sections

describe

scratchpads,

which

can

be

used

to

preserve

state

information

between

invocations,

and

the

processing

model

for

UDFs

and

methods

registered

with

the

FINAL

CALL

option.

Scratchpads

for

UDFs

and

methods

A

scratchpad

enables

a

user-defined

function

or

method

to

save

its

state

from

one

invocation

to

the

next.

For

example,

here

are

two

situations

where

saving

state

between

invocations

is

beneficial:

52

Programming

Server

Applications

1.

Functions

or

methods

that,

to

be

correct,

depend

on

saving

state.

An

example

of

such

a

function

or

method

is

a

simple

counter

function

that

returns

a

'1'

the

first

time

it

is

called,

and

increments

the

result

by

one

each

successive

call.

Such

a

function

could,

in

some

circumstances,

be

used

to

number

the

rows

of

a

SELECT

result:

SELECT

counter(),

a,

b+c,

...

FROM

tablex

WHERE

...

The

function

needs

a

place

to

store

the

current

value

for

the

counter

between

invocations,

where

the

value

will

be

guaranteed

to

be

the

same

for

the

following

invocation.

On

each

invocation,

the

value

can

then

be

incremented

and

returned

as

the

result

of

the

function.

This

type

of

routine

is

NOT

DETERMINISTIC.

Its

output

does

not

depend

solely

on

the

values

of

its

SQL

arguments.

2.

Functions

or

methods

where

the

performance

can

be

improved

by

the

ability

to

perform

some

initialization

actions.

An

example

of

such

a

function

or

method,

which

might

be

a

part

of

a

document

application,

is

a

match

function,

which

returns

'Y'

if

a

given

document

contains

a

given

string,

and

'N'

otherwise:

SELECT

docid,

doctitle,

docauthor

FROM

docs

WHERE

match(’myocardial

infarction’,

docid)

=

’Y’

This

statement

returns

all

the

documents

containing

the

particular

text

string

value

represented

by

the

first

argument.

What

match

would

like

to

do

is:

v

First

time

only.

Retrieve

a

list

of

all

the

document

IDs

that

contain

the

string

’myocardial

infarction’

from

the

document

application,

that

is

maintained

outside

of

DB2®.

This

retrieval

is

a

costly

process,

so

the

function

would

like

to

do

it

only

one

time,

and

save

the

list

somewhere

handy

for

subsequent

calls.

v

On

each

call.

Use

the

list

of

document

IDs

saved

during

the

first

call

to

see

if

the

document

ID

that

is

passed

as

the

second

argument

is

contained

in

the

list.

This

type

of

routine

is

DETERMINISTIC.

Its

answer

only

depends

on

its

input

argument

values.

What

is

shown

here

is

a

function

whose

performance,

not

correctness,

depends

on

the

ability

to

save

information

from

one

call

to

the

next.

Both

of

these

needs

are

met

by

the

ability

to

specify

a

SCRATCHPAD

in

the

CREATE

statement:

CREATE

FUNCTION

counter()

RETURNS

int

...

SCRATCHPAD;

CREATE

FUNCTION

match(varchar(200),

char(15))

RETURNS

char(1)

...

SCRATCHPAD

10000;

The

SCRATCHPAD

keyword

tells

DB2

to

allocate

and

maintain

a

scratchpad

for

a

routine.

The

default

size

for

a

scratchpad

is

100

bytes,

but

you

can

determine

the

size

(in

bytes)

for

a

scratchpad.

The

match

example

is

10000

bytes

long.

DB2

initializes

the

scratchpad

to

binary

zeros

before

the

first

invocation.

If

the

scratchpad

is

being

defined

for

a

table

function,

and

if

the

table

function

is

also

defined

with

NO

FINAL

CALL

(the

default),

DB2

refreshes

the

scratchpad

before

each

OPEN

call.

If

you

specify

the

table

function

option

FINAL

CALL,

DB2

does

not

examine

or

change

the

content

of

the

scratchpad

after

its

initialization.

For

scalar

functions

defined

with

scratchpads,

DB2

also

does

not

examine

or

change

Chapter

2.

Developing

routines

53

the

scratchpad’s

content

after

its

initialization.

A

pointer

to

the

scratchpad

is

passed

to

the

routine

on

each

invocation,

and

DB2

preserves

the

routine’s

state

information

in

the

scratchpad.

So

for

the

counter

example,

the

last

value

returned

could

be

kept

in

the

scratchpad.

And

the

match

example

could

keep

the

list

of

documents

in

the

scratchpad

if

the

scratchpad

is

big

enough,

otherwise

it

could

allocate

memory

for

the

list

and

keep

the

address

of

the

acquired

memory

in

the

scratchpad.

Scratchpads

can

be

variable

length:

the

length

is

defined

in

the

CREATE

statement

for

the

routine.

The

scratchpad

only

applies

to

the

individual

reference

to

the

routine

in

the

statement.

If

there

are

multiple

references

to

a

routine

in

a

statement,

each

reference

has

its

own

scratchpad,

thus

scratchpads

cannot

be

used

to

communicate

between

references.

The

scratchpad

only

applies

to

a

single

DB2

agent

(an

agent

is

a

DB2

entity

that

performs

processing

of

all

aspects

of

a

statement).

There

is

no

″global

scratchpad″

to

coordinate

the

sharing

of

scratchpad

information

between

the

agents.

This

is

especially

important

for

situations

where

DB2

establishes

multiple

agents

to

process

a

statement

(in

either

a

single

partition

or

multiple

partition

database).

In

these

cases,

even

though

there

might

only

be

a

single

reference

to

a

routine

in

a

statement,

there

could

be

multiple

agents

doing

the

work,

and

each

would

have

its

own

scratchpad.

In

a

multiple

partition

database,

where

a

statement

referencing

a

UDF

is

processing

data

on

multiple

partitions,

and

invoking

the

UDF

on

each

partition,

the

scratchpad

would

only

apply

to

a

single

partition.

As

a

result,

there

is

a

scratchpad

on

each

partition

where

the

UDF

is

executed.

If

the

correct

execution

of

a

function

depends

on

there

being

a

single

scratchpad

per

reference

to

the

function,

then

register

the

function

as

DISALLOW

PARALLEL.

This

will

force

the

function

to

run

on

a

single

partition,

thereby

guaranteeing

that

only

a

single

scratchpad

will

exist

per

reference

to

the

function.

Because

it

is

recognized

that

a

UDF

or

method

might

require

system

resources,

the

UDF

or

method

can

be

defined

with

the

FINAL

CALL

keyword.

This

keyword

tells

DB2

to

call

the

UDF

or

method

at

end-of-statement

processing

so

that

the

UDF

or

method

can

release

its

system

resources.

It

is

vital

that

a

routine

free

any

resources

it

acquires;

even

a

small

leak

can

become

a

big

leak

in

an

environment

where

the

statement

is

repetitively

invoked,

and

a

big

leak

can

cause

a

DB2

crash.

Since

the

scratchpad

is

of

a

fixed

size,

the

UDF

or

method

can

itself

include

a

memory

allocation

and

thus,

can

make

use

of

the

final

call

to

free

the

memory.

For

example,

the

preceding

match

function

cannot

predict

how

many

documents

will

match

the

given

text

string.

So

a

better

definition

for

match

is:

CREATE

FUNCTION

match(varchar(200),

char(15))

RETURNS

char(1)

...

SCRATCHPAD

10000

FINAL

CALL;

For

UDFs

or

methods

that

use

a

scratchpad

and

are

referenced

in

a

subquery,

DB2

might

make

a

final

call,

if

the

UDF

or

method

is

so

specified,

and

refresh

the

scratchpad

between

invocations

of

the

subquery.

You

can

protect

yourself

against

this

possibility,

if

your

UDFs

or

methods

are

ever

used

in

subqueries,

by

defining

the

UDF

or

method

with

FINAL

CALL

and

using

the

call-type

argument,

or

by

always

checking

for

the

binary

zero

state

of

the

scratchpad.

If

you

do

specify

FINAL

CALL,

please

note

that

your

UDF

or

method

receives

a

call

of

type

FIRST.

This

could

be

used

to

acquire

and

initialize

some

persistent

resource.

54

Programming

Server

Applications

Related

concepts:

v

“Scratchpads

on

32-bit

and

64-bit

operating

systems”

on

page

55

v

“Method

and

scalar

function

processing

model”

on

page

56

Related

reference:

v

“CREATE

FUNCTION

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

TYPE

(Structured)

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

METHOD

statement”

in

the

SQL

Reference,

Volume

2

Scratchpads

on

32-bit

and

64-bit

operating

systems

To

make

your

UDF

or

method

code

portable

between

32-bit

and

64-bit

operating

systems,

you

must

take

care

in

the

way

you

create

and

use

scratchpads

that

contain

64-bit

values.

It

is

recommended

that

you

do

not

declare

an

explicit

length

variable

for

a

scratchpad

structure

that

contains

one

or

more

64-bit

values,

such

as

64-bit

pointers

or

sqlint64

BIGINT

variables.

A

scratchpad

is

passed

in

the

form

of

a

LOB,

which

has

the

structure:

struct

lob

{

sqlint32

length;

char

data[100];

}

When

defining

its

own

structure

for

the

scratchpad,

a

routine

has

two

choices:

1.

Redefine

the

entire

scratchpad

LOB,

in

which

case

it

needs

to

include

an

explicit

length

field.

For

example:

struct

spadlob

{

sqlint32

lob_length;

sqlint32

int_var;

sqlint64

bigint_var;

};

void

SQL_API_FN

routine(

...,

struct

spadlob*

scratchpad,

...

)

{

/*

Use

scratchpad

*/

}

2.

Redefine

just

the

data

portion

of

the

scratchpad

LOB,

in

which

case

no

length

field

is

needed.

struct

spaddata

{

sqlint32

int_var;

sqlint64

bigint_var;

};

void

SQL_API_FN

routine(

...,

struct

lob*

lob_spad,

...

)

{

struct

spaddata*

scratchpad

=

(struct

spaddata*)lob_spad-—>data;

/*

Use

scratchpad

*/

}

Since

the

application

cannot

change

the

value

in

the

length

field

of

the

scratchpad

LOB,

there

is

no

significant

benefit

to

coding

the

routine

as

shown

in

the

first

example.

The

second

example

is

also

portable

between

computers

with

different

word

sizes,

so

it

is

the

preferred

way

of

writing

the

routine.

Related

concepts:

v

“Scratchpads

for

UDFs

and

methods”

on

page

52

Chapter

2.

Developing

routines

55

v

“User-defined

scalar

functions”

on

page

13

v

“User-defined

scalar

functions”

on

page

15

Related

tasks:

v

“Invoking

32-bit

routines

on

a

64-bit

database

server”

on

page

197

Method

and

scalar

function

processing

model

The

processing

model

for

methods

and

scalar

UDFs

that

are

defined

with

the

FINAL

CALL

specification

is

as

follows:

FIRST

call

This

is

a

special

case

of

the

NORMAL

call,

identified

as

FIRST

to

enable

the

function

to

perform

any

initial

processing.

Arguments

are

evaluated

and

passed

to

the

function.

Normally,

the

function

will

return

a

value

on

this

call,

but

it

can

return

an

error,

in

which

case

no

NORMAL

or

FINAL

call

is

made.

If

an

error

is

returned

on

a

FIRST

call,

the

method

or

UDF

must

clean

up

before

returning,

because

no

FINAL

call

will

be

made.

NORMAL

call

These

are

the

second

through

second-last

calls

to

the

function,

as

dictated

by

the

data

and

the

logic

of

the

statement.

The

function

is

expected

to

return

a

value

with

each

NORMAL

call

after

arguments

are

evaluated

and

passed.

If

NORMAL

call

returns

an

error,

no

further

NORMAL

calls

are

made,

but

the

FINAL

call

is

made.

FINAL

call

This

is

a

special

call,

made

at

end-of-statement

processing

(or

CLOSE

of

a

cursor),

provided

that

the

FIRST

call

succeeded.

No

argument

values

are

passed

on

a

FINAL

call.

This

call

is

made

so

that

the

function

can

clean

up

any

resources.

The

function

does

not

return

a

value

on

this

call,

but

can

return

an

error.

For

methods

or

scalar

UDFs

not

defined

with

FINAL

CALL,

only

NORMAL

calls

are

made

to

the

function,

which

normally

returns

a

value

for

each

call.

If

a

NORMAL

call

returns

an

error,

or

if

the

statement

encounters

another

error,

no

more

calls

are

made

to

the

function.

Note:

This

model

describes

the

ordinary

error

processing

for

methods

and

scalar

UDFs.

In

the

event

of

a

system

failure

or

communication

problem,

a

call

indicated

by

the

error

processing

model

cannot

be

made.

For

example,

for

a

FENCED

UDF,

if

the

db2udf

fenced

process

is

somehow

prematurely

terminated,

DB2

cannot

make

the

indicated

calls.

Related

concepts:

v

“User-defined

scalar

functions”

on

page

13

v

“Methods”

on

page

16

User-defined

table

functions

In

addition

to

returning

scalar

values,

UDFs

can

also

be

developed

to

return

tables.

The

following

sections

describe

user-defined

table

functions

and

the

processing

model

for

table

UDFs

registered

with

the

FINAL

CALL

option.

56

Programming

Server

Applications

User-defined

table

functions

A

user-defined

table

function

delivers

a

table

to

the

SQL

in

which

it

is

referenced.

A

table

UDF

reference

is

only

valid

in

a

FROM

clause

of

a

SELECT

statement.

When

using

table

functions,

observe

the

following:

v

Even

though

a

table

function

delivers

a

table,

the

physical

interface

between

DB2®

and

the

UDF

is

one-row-at-a-time.

There

are

five

types

of

calls

made

to

a

table

function:

OPEN,

FETCH,

CLOSE,

FIRST,

and

FINAL.

The

existence

of

FIRST

and

FINAL

calls

depends

on

how

you

define

the

UDF.

The

same

call-type

mechanism

that

can

be

used

for

scalar

functions

is

used

to

distinguish

these

calls.

v

Not

every

result

column

defined

in

the

RETURNS

clause

of

the

CREATE

FUNCTION

statement

for

the

table

function

has

to

be

returned.

The

DBINFO

keyword

of

CREATE

FUNCTION,

and

corresponding

dbinfo

argument

enable

the

optimization

that

only

those

columns

needed

for

a

particular

table

function

reference

need

be

returned.

v

The

individual

column

values

returned

conform

in

format

to

the

values

returned

by

scalar

functions.

v

The

CREATE

FUNCTION

statement

for

a

table

function

has

a

CARDINALITY

specification.

This

specification

enables

the

definer

to

inform

the

DB2

optimizer

of

the

approximate

size

of

the

result

so

that

the

optimizer

can

make

better

decisions

when

the

function

is

referenced.

Regardless

of

what

has

been

specified

as

the

CARDINALITY

of

a

table

function,

exercise

caution

against

writing

a

function

with

infinite

cardinality,

that

is,

a

function

that

always

returns

a

row

on

a

FETCH

call.

There

are

many

situations

where

DB2

expects

the

end-of-table

condition,

as

a

catalyst

within

its

query

processing.

Using

GROUP

BY

or

ORDER

BY

are

examples

where

this

is

the

case.

DB2

cannot

form

the

groups

for

aggregation

until

end-of-table

is

reached,

and

it

cannot

sort

until

it

has

all

the

data.

So

a

table

function

that

never

returns

the

end-of-table

condition

(SQL-state

value

’02000’)

can

cause

an

infinite

processing

loop

if

you

use

it

with

a

GROUP

BY

or

ORDER

BY

clause.

Related

reference:

v

“CREATE

FUNCTION

statement”

in

the

SQL

Reference,

Volume

2

v

“Syntax

for

passing

arguments

to

routines

written

in

C/C++,

OLE,

or

COBOL”

on

page

89

Table

function

processing

model

The

processing

model

for

table

UDFs

that

are

defined

with

the

FINAL

CALL

specification

is

as

follows:

FIRST

call

This

call

is

made

before

the

first

OPEN

call,

and

its

purpose

is

to

enable

the

function

to

perform

any

initial

processing.

The

scratchpad

is

cleared

prior

to

this

call.

Arguments

are

evaluated

and

passed

to

the

function.

The

function

does

not

return

a

row.

If

the

function

returns

an

error,

no

further

calls

are

made

to

the

function.

OPEN

call

This

call

is

made

to

enable

the

function

to

perform

special

OPEN

processing

specific

to

the

scan.

The

scratchpad

(if

present)

is

not

cleared

prior

to

the

call.

Arguments

are

evaluated

and

passed.

The

function

does

Chapter

2.

Developing

routines

57

not

return

a

row

on

an

OPEN

call.

If

the

function

returns

an

error

from

the

OPEN

call,

no

FETCH

or

CLOSE

call

is

made,

but

the

FINAL

call

will

still

be

made

at

end

of

statement.

FETCH

call

FETCH

calls

continue

to

be

made

until

the

function

returns

the

SQLSTATE

value

signifying

end-of-table.

It

is

on

these

calls

that

the

UDF

develops

and

returns

a

row

of

data.

Argument

values

can

be

passed

to

the

function,

but

they

are

pointing

to

the

same

values

that

were

passed

on

OPEN.

Therefore,

the

argument

values

might

not

be

current

and

should

not

be

relied

upon.

If

you

do

need

to

maintain

current

values

between

the

invocations

of

a

table

function,

use

a

scratchpad.

The

function

can

return

an

error

on

a

FETCH

call,

and

the

CLOSE

call

will

still

be

made.

CLOSE

call

This

call

is

made

at

the

conclusion

of

the

scan

or

statement,

provided

that

the

OPEN

call

succeeded.

Any

argument

values

will

not

be

current.

The

function

can

return

an

error.

FINAL

call

The

FINAL

call

is

made

at

the

end

of

the

statement,

provided

that

the

FIRST

call

succeeded.

This

call

is

made

so

that

the

function

can

clean

up

any

resources.

The

function

does

not

return

a

value

on

this

call,

but

can

return

an

error.

For

table

UDFs

not

defined

with

FINAL

CALL,

only

OPEN,

FETCH,

and

CLOSE

calls

are

made

to

the

function.

Before

each

OPEN

call,

the

scratchpad

(if

present)

is

cleared.

The

difference

between

table

UDFs

that

are

defined

with

FINAL

CALL

and

those

defined

with

NO

FINAL

CALL

can

be

seen

when

examining

a

scenario

involving

a

join

or

a

subquery,

where

the

table

function

access

is

the

″inner″

access.

For

example,

in

a

statement

such

as:

SELECT

x,y,z,...

FROM

table_1

as

A,

TABLE(table_func_1(A.col1,...))

as

B

WHERE...

In

this

case,

the

optimizer

would

open

a

scan

of

table_func_1

for

each

row

of

table_1.

This

is

because

the

value

of

table_1’s

col1,

which

is

passed

to

table_func_1,

is

used

to

define

the

table

function

scan.

For

NO

FINAL

CALL

table

UDFs,

the

OPEN,

FETCH,

FETCH,

...,

CLOSE

sequence

of

calls

repeats

for

each

row

of

table_1.

Note

that

each

OPEN

call

will

get

a

clean

scratchpad.

Because

the

table

function

does

not

know

at

the

end

of

each

scan

whether

there

will

be

more

scans,

it

must

clean

up

completely

during

CLOSE

processing.

This

could

be

inefficient

if

there

is

significant

one-time

open

processing

that

must

be

repeated.

FINAL

CALL

table

UDFs,

provide

a

one-time

FIRST

call,

and

a

one-time

FINAL

call.

These

calls

are

used

to

amortize

the

expense

of

the

initialization

and

termination

costs

across

all

the

scans

of

the

table

function.

As

before,

the

OPEN,

FETCH,

FETCH,

...,

CLOSE

calls

are

made

for

each

row

of

the

outer

table,

but

because

the

table

function

knows

it

will

get

a

FINAL

call,

it

does

not

need

to

clean

everything

up

on

its

CLOSE

call

(and

reallocate

on

subsequent

OPEN).

Also

note

that

the

scratchpad

is

not

cleared

between

scans,

largely

because

the

table

function

resources

will

span

scans.

58

Programming

Server

Applications

At

the

expense

of

managing

two

additional

call

types,

the

table

UDF

can

achieve

greater

efficiency

in

these

join

and

subquery

scenarios.

Deciding

whether

to

define

the

table

function

as

FINAL

CALL

depends

on

how

it

is

expected

to

be

used.

Related

concepts:

v

“Table

function

execution

model

for

Java”

on

page

59

v

“User-defined

scalar

functions”

on

page

15

Related

reference:

v

“CREATE

FUNCTION

(OLE

DB

External

Table)

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

FUNCTION

(SQL

Scalar,

Table,

or

Row)

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

FUNCTION

(External

Table)

statement”

in

the

SQL

Reference,

Volume

2

Table

function

execution

model

for

Java

For

table

functions

written

in

Java™

and

using

PARAMETER

STYLE

DB2GENERAL,

it

is

important

to

understand

what

happens

at

each

point

in

DB2®’s

processing

of

a

given

statement.

The

following

table

details

this

information

for

a

typical

table

function.

Covered

are

both

the

NO

FINAL

CALL

and

the

FINAL

CALL

cases,

assuming

SCRATCHPAD

in

both

cases.

Point

in

scan

time

NO

FINAL

CALL

LANGUAGE

JAVA

SCRATCHPAD

FINAL

CALL

LANGUAGE

JAVA

SCRATCHPAD

Before

the

first

OPEN

for

the

table

function

No

calls.

v

Class

constructor

is

called

(means

new

scratchpad).

UDF

method

is

called

with

FIRST

call.

v

Constructor

initializes

class

and

scratchpad

variables.

Method

connects

to

Web

server.

At

each

OPEN

of

the

table

function

v

Class

constructor

is

called

(means

new

scratchpad).

UDF

method

is

called

with

OPEN

call.

v

Constructor

initializes

class

and

scratchpad

variables.

Method

connect

to

Web

server,

and

opens

the

scan

for

Web

data.

v

UDF

method

is

opened

with

OPEN

call.

v

Method

opens

the

scan

for

whatever

Web

data

it

wants.

(Might

be

able

to

avoid

reopen

after

a

CLOSE

reposition,

depending

on

what

is

saved

in

the

scratchpad.)

At

each

FETCH

for

a

new

row

of

table

function

data

v

UDF

method

is

called

with

FETCH

call.

v

Method

fetches

and

returns

next

row

of

data,

or

EOT.

v

UDF

method

is

called

with

FETCH

call.

v

Method

fetches

and

returns

new

row

of

data,

or

EOT.

At

each

CLOSE

of

the

table

function

v

UDF

method

is

called

with

CLOSE

call.

close()

method

if

it

exists

for

class.

v

Method

closes

its

Web

scan

and

disconnects

from

the

Web

server.

close()

does

not

need

to

do

anything.

v

UDF

method

is

called

with

CLOSE

call.

v

Method

might

reposition

to

the

top

of

the

scan,

or

close

the

scan.

It

can

save

any

state

in

the

scratchpad,

which

will

persist.

Chapter

2.

Developing

routines

59

Point

in

scan

time

NO

FINAL

CALL

LANGUAGE

JAVA

SCRATCHPAD

FINAL

CALL

LANGUAGE

JAVA

SCRATCHPAD

After

the

last

CLOSE

of

the

table

function

No

calls.

v

UDF

method

is

called

with

FINAL

call.

close()

method

is

called

if

it

exists

for

class.

v

Method

disconnects

from

the

Web

server.

close()

method

does

not

need

to

do

anything.

Notes:

1.

The

term

″UDF

method″

refers

to

the

Java

class

method

that

implements

the

UDF.

This

is

the

method

identified

in

the

EXTERNAL

NAME

clause

of

the

CREATE

FUNCTION

statement.

2.

For

table

functions

with

NO

SCRATCHPAD

specified,

the

calls

to

the

UDF

method

are

as

indicated

in

this

table,

but

because

the

user

is

not

asking

for

any

continuity

with

a

scratchpad,

DB2

will

cause

a

new

object

to

be

instantiated

before

each

call,

by

calling

the

class

constructor.

It

is

not

clear

that

table

functions

with

NO

SCRATCHPAD

(and

thus

no

continuity)

can

do

useful

things,

but

they

are

supported.

Related

concepts:

v

“DB2GENERAL

routines”

on

page

333

v

“Java

routines”

on

page

167

v

“Table

function

processing

model”

on

page

57

Related

reference:

v

“CREATE

FUNCTION

(External

Table)

statement”

in

the

SQL

Reference,

Volume

2

60

Programming

Server

Applications

Chapter

3.

SQL

routines

SQL

Procedural

Language

(SQL

PL)

in

DB2

.

.

. 61

CREATE

statements

for

SQL

routines

.

.

.

.

.

. 62

SQL

access

levels

in

SQL

routines

.

.

.

.

.

.

. 63

Dynamic

SQL

in

SQL

routines

.

.

.

.

.

.

.

. 63

SQL/

SQL

PL

procedures

.

.

.

.

.

.

.

.

.

. 65

Design

considerations

for

SQL

procedures

.

.

. 65

Creating

SQL

procedures

from

the

command

line

66

Parameters

in

SQL

procedures

.

.

.

.

.

.

. 67

Variables

in

SQL

procedures

(DECLARE,

DEFAULT,

SET

statements)

.

.

.

.

.

.

.

. 68

Compound

blocks

and

scope

of

variables

in

SQL

procedures

.

.

.

.

.

.

.

.

.

.

.

.

. 69

Returning

error

messages

from

SQL

procedures

70

Condition

handlers

in

SQL

procedures

.

.

.

. 71

Condition

handlers

in

SQL

procedures

.

.

. 71

Condition

handler

declarations

.

.

.

.

.

. 71

SIGNAL

and

RESIGNAL

statements

in

condition

handlers

.

.

.

.

.

.

.

.

.

. 74

SQLCODE

and

SQLSTATE

variables

in

SQL

procedures

.

.

.

.

.

.

.

.

.

.

.

. 74

Improving

the

performance

of

SQL

procedures

75

SQL

table

functions

.

.

.

.

.

.

.

.

.

.

.

. 80

SQL

table

functions

that

modify

SQL

data

.

.

. 80

Auditing

using

SQL

table

functions

.

.

.

.

. 83

SQL

routines

are

created

by

executing

the

appropriate

CREATE

statement

for

the

routine

type,

in

which

you

also

specify

the

routine

body

which

for

an

SQL

routine

must

be

entirely

composed

of

SQL

or

SQL

PL

statements.

You

can

use

the

IBM

DB2

Development

Center

to

help

you

create,

debug,

and

run

SQL

procedures,

or

you

can

create

them

using

the

DB2

command

line

processor.

SQL

Procedural

Language

(SQL

PL)

in

DB2

Before

discussing

the

use

of

SQL

PL

in

procedures

and

functions

it

is

important

to

first

review

some

basic

terminology

and

concepts

related

to

procedureal

SQL

in

DB2.

Procedural

SQL

constructs

such

as

scalar

variables,

IF

statements

and

WHILE

loops

were

introduced

in

DB2

with

the

release

of

DB2

Version

7.

These

constructs

expanded

into

the

set

of

SQL

statements

that

makes

up

the

SQL

Procedural

Langauge

(SQL

PL)

that

we

refer

to

today.

SQL

PL:

SQL

PL,

is

actually

a

subset

of

SQL

that

provides

procedural

constructs

that

can

be

used

to

implement

logic

around

traditional

SQL

statements.

SQL

PL

is

a

high

level

programming

language

with

a

simple

syntax,

and

common

programming

control

statements

including

the

IF,

ELSE,

WHILE,

FOR,

ITERATE,

and

GOTO

statements,

as

well

as

other

statements.

SQL

PL

and

SQL

procedures:

SQL

PL

procedures

can

contain

parameters,

variables,

assignment-statements,

SQL

PL

control

statements,

and

compound

SQL

statements.

SQL

PL

procedures

also

support

a

powerful

condition

and

error

handling

mechanism,

nested

and

recursive

calls,

the

returning

of

multiple

result

sets

to

the

caller

or

the

client

application.

For

a

complete

set

of

supported

language

elements

in

SQL

PL

procedures,

refer

to

the

CREATE

PROCEDURE

(SQL)

statement

in

the

SQL

reference.

Inline

SQL

PL

and

SQL

functions,

triggers,

and

dynamic

compound

statements:

As

of

DB2

Version

7.2,

a

subset

of

SQL

PL

is

supported

in

SQL

functions

and

trigger

bodies.

This

subset

of

SQL

PL

is

known

as

inline

SQL

PL.

The

word

inline

highlights

an

important

difference

between

inline

SQL

PL

and

the

full

SQL

PL

language.

Whereas

an

SQL

PL

procedure

is

implemented

by

statically

compiling

its

individual

SQL

queries

into

sections

in

a

package,

an

inline

SQL

PL

function

is

©

Copyright

IBM

Corp.

1993

-

2004

61

||

||

||
|
||
|
||

|

|

|

|
|
|
|
|
|

|

|
|
|
|
|

|

|
|
|
|
|
|

|

|
|
|
|
|

implemented,

as

the

name

suggests,

by

inlining

the

body

of

the

function

into

the

query

that

uses

it.

Some

performance

considerations

result

from

this

difference

and

should

be

considered

when

you

are

planning

on

whether

to

implement

your

procedural

logic

in

SQL

PL

in

a

procedure

or

with

inline

SQL

PL.

A

dynamic-compound-statement

is

a

statement

that

actually

allows

you

to

group

multiple

SQL

statements

into

a

small

logical

atomic

block

in

which

you

can

declare

variables,

and

condition

handling

elements.

These

statements

are

compiled

by

DB2

as

a

single

SQL

statement

and

can

contain

elements

of

SQL

PL.

The

subset

of

SQL

PL

known

as

inline

SQL

PL

and

only

a

small

set

of

basic

SQL

statements

can

be

included

within

a

dynamic

compound

statement.

Dynamic

compound

statements

are

useful

for

creating

short

scripts

that

perform

small

units

of

logical

work

with

minimal

control

flow,

but

that

have

significant

data

flow.

For

more

complex

logic

that

requires

parameters,

passing

of

result

sets

or

other

more

advanced

procedural

elements

SQL

procedures

and

functions

may

be

more

appropriate.

For

a

complete

list

of

SQL

PL

statements

that

are

supported

in

SQL

PL

procedures,

SQL

functions,

and

dynamic

compound

statements

including

triggers,

refer

to

the

SQL

Reference

CREATE

statements

for

each

routine

type.

Related

concepts:

v

“Routines

in

application

development”

on

page

3

v

“User-defined

routines”

on

page

9

v

“CREATE

statements

for

SQL

routines”

on

page

62

Related

tasks:

v

“Creating

SQL

procedures

from

the

command

line”

on

page

66

CREATE

statements

for

SQL

routines

SQL

routines

are

created

by

executing

the

appropriate

CREATE

statement

for

the

routine

type,

in

which

you

also

specify

the

routine

body,

which

for

an

SQL

routine,

must

be

composed

only

of

SQL

or

SQL

PL

statements.

You

can

use

the

IBM

DB2

Development

Center

to

help

you

create,

debug,

and

run

SQL

procedures.

SQL

procedures,

functions,

and

methods

can

also

be

created

using

the

DB2

command

line

processor.

SQL

procedures,

functions,

and

methods

each

have

a

respective

CREATE

statement.

The

syntax

for

these

statements

is

different

however

there

are

some

common

elements

to

them.

In

each

you

must

specify

the

routine

name,

and

parameters

if

there

are

to

be

any

as

well

as

a

return

type.

You

may

also

specify

additional

keywords

that

provide

DB2

with

information

about

the

logic

contained

in

the

routine.

DB2

uses

the

routine

prototype

and

the

additional

keywords

to

identify

the

routine

at

invocation

time,

and

to

execute

the

routine

with

the

required

feature

support

and

best

performance

possible.

For

specific

information

on

creating

SQL

procedures

in

the

DB2

Development

Center

or

from

the

Command

Line

Processor,

or

on

creating

functions

and

methods,

refer

to

the

related

topics.

62

Programming

Server

Applications

|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|

|

|

|

|

|

|

SQL

access

levels

in

SQL

routines

An

SQL

access

level

is

a

clause

specified

in

a

CREATE

statement

for

a

routine

that

indicates

the

level

of

SQL

access

used

in

the

routine.

This

clause

is

used

to

provide

information

to

the

database

manager

about

the

statement

so

that

the

statement

can

be

executed

safely

by

the

database

manager

and

with

the

best

possible

performance.

By

default

SQL

procedures

are

created

with

SQL

access

level

MODIFIES

SQL

DATA.

This

can

be

modified

to

a

lower

level

of

access

such

as

READS

SQL

DATA

or

CONTAINS

SQL

if

no

table

data

is

modified

by

the

SQL

statement

within

the

procedure.

This

is

done

by

specifying

the

appropriate

SQL

access

level

clause

in

the

CREATE

statement

of

the

procedure.

Optimal

performance

of

routines

is

achieved

when

the

most

restrictive

SQL

access

clause

that

is

valid

is

specified

in

the

CREATE

statement.

By

default

all

UDFs

(table

functions,

scalar

functions,

methods)

are

created

with

SQL

access

level

READS

SQL

DATA.

The

SQL

access

level

can

be

defined

or

modified

to

CONTAINS

SQL

for

SQL-bodied

UDFs

when

no

data

is

read

within

the

UDF.

The

SQL

access

level

for

SQL

bodied

table

functions

can

be

defined

or

modified

to

MODIFIES

SQL

DATA

because

SQL

statements

that

modify

tables

are

supported

within

their

bodies.

Related

concepts:

v

“SQL

table

functions

that

modify

SQL

data”

on

page

80

Related

reference:

v

“Supported

SQL

Statements”

in

the

Application

Development

Guide:

Programming

Client

Applications

Dynamic

SQL

in

SQL

routines

SQL

routines,

like

external

routines,

can

issue

dynamic

SQL

statements.

If

your

dynamic

SQL

statement

does

not

include

parameter

markers

and

you

plan

to

execute

it

only

once,

use

the

EXECUTE

IMMEDIATE

statement.

If

your

dynamic

SQL

statement

contains

parameter

markers,

you

must

use

the

PREPARE

and

EXECUTE

statements.

If

you

plan

to

execute

a

dynamic

SQL

statement

multiple

times,

it

might

be

more

efficient

to

issue

a

single

PREPARE

statement

and

to

issue

the

EXECUTE

statement

multiple

times

rather

than

issuing

the

EXECUTE

IMMEDIATE

statement

each

time.

To

use

the

PREPARE

and

EXECUTE

statements

to

issue

dynamic

SQL

in

your

SQL

routine,

you

must

include

the

following

statements

in

the

SQL

routine

body:

1.

Declare

a

variable

of

type

VARCHAR

that

is

large

enough

to

hold

your

dynamic

SQL

statement

using

a

DECLARE

statement.

2.

Assign

a

statement

string

to

the

variable

using

a

SET

statement.

You

cannot

include

variables

directly

in

the

statement

string.

Instead,

you

must

use

the

question

mark

('?')

symbol

as

a

parameter

marker

for

any

variables

used

in

the

statement.

3.

Create

a

prepared

statement

from

the

statement

string

using

a

PREPARE

statement.

Chapter

3.

SQL

routines

63

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

4.

Execute

the

prepared

statement

using

an

EXECUTE

statement.

If

the

statement

string

includes

input

parameter

markers,

use

the

USING

clause

to

replace

it

with

the

value

of

a

variable.

If

the

statement

includes

output

parameter

markers,

use

the

INTO

clause

to

specify

the

variables

that

will

receive

the

output.

Note:

Statement

names

defined

in

PREPARE

statements

for

SQL

routines

are

treated

as

scoped

variables.

Once

the

SQL

routine

exits

the

scope

in

which

you

define

the

statement

name,

DB2®

can

no

longer

access

the

statement

name.

Inside

any

compound

statement,

you

cannot

issue

two

PREPARE

statements

that

use

the

same

statement

name.

The

following

example

shows

an

SQL

procedure

that

includes

dynamic

SQL

statements:

The

SQL

procedure

receives

a

department

number

(deptNumber)

as

an

input

parameter.

In

the

SQL

procedure,

three

statement

strings

are

built,

prepared,

and

executed.

The

first

statement

string

executes

a

DROP

statement

to

ensure

that

the

table

to

be

created

does

not

already

exist.

This

table

is

named

DEPT_deptno_T,

where

deptno

is

the

value

of

input

parameter

deptNumber.

A

CONTINUE

HANDLER

ensures

that

the

SQL

procedure

will

continue

if

it

detects

SQLSTATE

42704

(“undefined

object

name”),

which

DB2

returns

from

the

DROP

statement

if

the

table

does

not

exist.

The

second

statement

string

issues

a

CREATE

statement

to

create

DEPT_deptno_T.

The

third

statement

string

inserts

rows

for

employees

in

department

deptno

into

DEPT_deptno_T.

The

third

statement

string

contains

a

parameter

marker

that

represents

deptNumber.

When

the

prepared

statement

is

executed,

parameter

deptNumber

is

substituted

for

the

parameter

marker.

CREATE

PROCEDURE

create_dept_table

(IN

deptNumber

VARCHAR(3),

OUT

table_name

VARCHAR(30))

LANGUAGE

SQL

BEGIN

DECLARE

stmt

VARCHAR(1000);

--

continue

if

sqlstate

42704

(’undefined

object

name’)

DECLARE

CONTINUE

HANDLER

FOR

SQLSTATE

’42704’

SET

stmt

=

’’;

DECLARE

CONTINUE

HANDLER

FOR

SQLEXCEPTION

SET

table_name

=

’PROCEDURE_FAILED’;

SET

table_name

=

’DEPT_’||deptNumber||’_T’;

SET

stmt

=

’DROP

TABLE

’||table_name;

PREPARE

s1

FROM

stmt;

EXECUTE

s1;

SET

stmt

=

’CREATE

TABLE

’||table_name||

’(

empno

CHAR(6)

NOT

NULL,

’||

’firstnme

VARCHAR(12)

NOT

NULL,

’||

’midinit

CHAR(1)

NOT

NULL,

’||

’lastname

VARCHAR(15)

NOT

NULL,

’||

’salary

DECIMAL(9,2))’;

PREPARE

s2

FROM

STMT;

EXECUTE

s2;

SET

stmt

=

’INSERT

INTO

’||table_name

||

’

’

||

’SELECT

empno,

firstnme,

midinit,

lastname,

salary

’||

’FROM

employee

’||

’WHERE

workdept

=

?’;

PREPARE

s3

FROM

stmt;

EXECUTE

s3

USING

deptNumber;

END

Related

concepts:

64

Programming

Server

Applications

v

“Dynamic

SQL

Support

Statements”

in

the

Application

Development

Guide:

Programming

Client

Applications

Related

reference:

v

“EXECUTE

statement”

in

the

SQL

Reference,

Volume

2

v

“PREPARE

statement”

in

the

SQL

Reference,

Volume

2

SQL/

SQL

PL

procedures

Design

considerations

for

SQL

procedures

When

you

are

considering

designing

an

SQL

procedure

you

should

consider

the

following:

Is

a

procedure

really

what

I

need?

Refer

to

the

comparison

of

routine

types

to

learn

about

how

procedures

and

other

routine

types

are

used,

and

to

compare

the

features

and

restrictions

of

each

type.

Are

the

SQL

statements

that

I

need

to

execute

supported

within

SQL

procedures?

To

check

this

refer

to

SQL

Reference.

If

the

statements

that

you

require

are

not

supported

within

an

SQL

procedure,

consider

implementing

the

logic

that

you

require

in

an

external

procedure,

SQL

function,

or

in

an

application.

Would

a

simple

dynamic

compound

statement

be

sufficient

to

meet

my

needs?

It

sometimes

arises

that

for

very

small

and

simple

pieces

of

procedural

logic,

that

a

compound

SQL

statement

is

sufficient.

Compound

statements

allow

you

to

group

multiple

statements

together

as

a

unit

to

be

executed

together

and

can

contain

some

SQL

PL

language

elements.

Compound

statements

are

ideal

if

you

do

not

require

parameters,

or

a

lot

of

procedural

logic,

but

instead

you

require

only

minimal

procedural

logic

as

the

logic

required

is

intended

primarily

to

flow

data.

To

learn

more

about

compound

statements

refer

to:

v

“SQL

Procedural

Language

(SQL

PL)

in

DB2”

on

page

61

v

Dynamic

compound

SQL

statement

Is

an

SQL

function

more

appropriate

than

an

SQL

procedure?

If

you

can

rewrite

the

SQL

that

you

want

to

contain

in

your

procedure

as

an

expression

instead

of

multiple

SQL

statements,

then

it

is

likely

better

for

you

if

you

implement

your

logic

as

a

function

because

SQL

expressions

are

more

efficient

and

will

perform

better

than

SQL

PL

combined

with

SQL

statements.

For

example

a

CASE

expression

will

perform

better

than

an

IF

ELSE

or

CASE

statement

that

contains

other

SQL

statements.

For

an

example

of

an

SQL

procedure

that

was

effectively

rewritten

as

an

SQL

function

refer

to:

v

“Improving

the

performance

of

SQL

procedures”

on

page

75

*

Is

this

procedure

to

be

used

for

OLTP

activities?

*

If

the

SQL

procedure

you

want

to

write

is

to

be

used

in

an

OLTP

application,

it

would

be

a

good

idea

to

read

about

some

other

DB2

features

that

might

help

you

maximize

the

performance

of

your

application.

Some

other

DB2

features

to

discover

are:

v

Global

temporary

tables:

useful

for

storing

intermediate

results,

faster

to

access

tan

base

tables

Chapter

3.

SQL

routines

65

|

|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|

|

|
|
|
|
|
|
|
|
|

|

||

||
|
|
|

|
|

v

Generated

columns

in

tables:

used

to

automatically

generate

column

values

in

a

row.

v

RUNSTATS

command:

used

to

gather

statistic

about

tables

to

improve

query

performance

v

“Improving

the

performance

of

SQL

procedures”

on

page

75

Performance

considerations

for

SQL

PL

procedures

Performance

is

almost

always

a

concern.

If

you

are

considering

implementing

an

SQL

procedure

to

perform

complex

logic,

for

example

a

complex

mathematical

algorithm,

that

will

require

a

lot

of

SQL

PL

and

very

few

database

queries

or

modifications,

you

should

consider

implementing

an

external

procedure

instead.

If

you

decide

to

implement

an

SQL

PL

procedure,

for

tips

on

writing

SQL

PL

procedures

that

perform

well,

refer

to:

v

“Improving

the

performance

of

SQL

procedures”

on

page

75

Related

concepts:

v

“Routines

in

application

development”

on

page

3

v

“Types

of

routines

(procedures,

functions,

methods)”

on

page

5

v

“SQL

access

levels

in

SQL

routines”

on

page

63

v

“SQL

Procedural

Language

(SQL

PL)

in

DB2”

on

page

61

v

“Compound

blocks

and

scope

of

variables

in

SQL

procedures”

on

page

69

Creating

SQL

procedures

from

the

command

line

Prerequisites:

v

The

user

must

have

the

privileges

required

to

execute

the

CREATE

PROCEDURE

statement

for

an

SQL

procedure.

v

Privileges

to

execute

all

of

the

SQL

statements

included

within

the

SQL-procedure-body

of

the

procedure.

v

Any

database

objects

referenced

in

the

CREATE

PROCEDURE

statement

for

the

SQL

procedure

must

exist

prior

to

the

execution

of

the

statement.

execution

Procedure:

v

Select

an

alternate

terminating

character

for

the

Command

Line

Processor

(DB2

CLP),

other

than

the

default

terminating

character

which

is

a

semicolon

(';'),

to

use

in

the

script

that

you

will

prepare

in

the

next

step.

This

is

required

so

that

the

CLP

can

distinguish

the

end

of

SQL

statements

that

appear

within

the

body

of

a

routine’s

CREATE

statement

from

the

end

of

the

CREATE

PROCEDURE

statement

itself.

The

semicolon

character

must

be

used

to

terminate

SQL

statements

within

the

SQL

routine

body

and

the

chosen

alternate

terminating

character

should

be

used

to

terminate

the

CREATE

statement

and

any

other

SQL

statements

that

you

might

contain

within

your

CLP

script.

For

example,

in

the

following

CREATE

PROCEDURE

statement,

the

'at;'

sign

('@')

is

used

as

the

terminating

character

for

a

DB2

CLP

script

named

myCLPscript.db2:

CREATE

PROCEDURE

UPDATE_SALARY_IF

(IN

employee_number

CHAR(6),

IN

rating

SMALLINT)

LANGUAGE

SQL

BEGIN

DECLARE

not_found

CONDITION

FOR

SQLSTATE

’02000’;

DECLARE

EXIT

HANDLER

FOR

not_found

SIGNAL

SQLSTATE

’20000’

SET

MESSAGE_TEXT

=

’Employee

not

found’;

66

Programming

Server

Applications

|
|

|
|

|

|
|
|
|
|
|
|
|

|

|

|

|

|

|

|

IF

(rating

=

1)

THEN

UPDATE

employee

SET

salary

=

salary

*

1.10,

bonus

=

1000

WHERE

empno

=

employee_number;

ELSEIF

(rating

=

2)

THEN

UPDATE

employee

SET

salary

=

salary

*

1.05,

bonus

=

500

WHERE

empno

=

employee_number;

ELSE

UPDATE

employee

SET

salary

=

salary

*

1.03,

bonus

=

0

WHERE

empno

=

employee_number;

END

IF;

END

@

v

Run

the

DB2

CLP

script

containing

the

CREATE

PROCEDURE

statement

for

the

procedure

from

the

command

line,

using

the

following

CLP

command:

db2

-td

<terminating-character>

-vf

<CLP-script-name>

where

<terminating-character>

is

the

terminating

character

used

in

the

CLP

script

file

CLP-script-name

that

is

to

be

run.

The

DB2

CLP

option

-td

indicates

that

the

CLP

terminator

default

is

to

be

reset

with

terminating

character.

The

-vf

indicates

that

the

CLP’s

optional

verbose

(-v)

option

is

to

be

used

which

will

cause

each

SQL

statement

or

command

in

the

script

to

be

displayed

to

the

screen

as

it

is

run,

along

with

any

output

that

results

from

its

execution.

The

-f

option

indicates

that

the

target

of

the

command

is

a

file.

To

run

the

specific

script

shown

in

the

first

step,

issue

the

following

command

from

the

system

command

prompt:

db2

-td@

-vf

myCLPscript.db2

Related

concepts:

v

“Routines

in

application

development”

on

page

3

Related

reference:

v

“CREATE

TYPE

(Structured)

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

FUNCTION

(SQL

Scalar,

Table,

or

Row)

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

PROCEDURE

(SQL)

statement”

in

the

SQL

Reference,

Volume

2

Parameters

in

SQL

procedures

DB2

supports

the

use

of

input,

output,

and

input

and

output

parameters

in

SQL

procedures.

The

keywords

IN,

OUT,

and

INOUT

in

the

CREATE

PROCEDURE

statement

indicate

the

mode

or

intended

use

of

the

parameter.

IN

and

OUT

parameters

are

passed

by

value,

and

INOUT

parameters

are

passed

by

reference.

Parameters

are

optional

and

you

can

create

SQL

procedures

that

do

not

have

any,

however,

when

multiple

parameters

are

specified

they

must

be

unique

within

the

procedure.

Also

if

a

variable

is

to

be

declared

within

the

procedure

with

the

same

name

as

a

parameter,

it

must

be

declared

within

a

labeled

atomic

block

nested

within

the

procedure

otherwise

DB2

will

detect

what

would

otherwise

be

an

ambiguous

reference.

Parameters

to

SQL

procedures

cannot

be

named

either

of

SQLSTATE

or

SQLCODE

regardless

of

the

data

type

for

the

parameter.

See

the

CREATE

PROCEDURE

statement

for

complete

details

about

parameter

modes

and

restrictions

on

parameters

in

SQL

procedures.

Chapter

3.

SQL

routines

67

|

|
|
|
|

|
|
|
|
|
|

|
|
|
|

The

following

SQL

procedure

named

myparams

illustrates

the

use

of

IN,

INOUT,

and

OUT

parameter

modes.

Let

us

say

that

SQL

procedure

is

defined

in

a

CLP

file

named

myfile.db2

and

that

we

are

using

the

command

line.

CREATE

PROCEDURE

myparams

(IN

p1

INT,

INOUT

p2

INT,

OUT

p3

INT)

LANGUAGE

SQL

BEGIN

SET

p2

=

p2

+

1;

SET

p3

=

2

*

p1;

END@

To

create

the

stored

procedure,

from

the

command

line

enter

the

following:

db2

-td@

-vf

myfile.db2

Then

to

call

the

procedure,

from

the

command

line

enter

the

following:

db2

"CALL

myParms(1,

3,

?)"

The

'?'

is

a

parameter

marker

for

the

output

parameter.

You

must

specify

an

input

value

for

any

INOUT

parameters,

even

if

they

are

not

referenced

within

the

procedure.

The

following

output

will

be

returned:

Value

of

output

parameters

Parameter

Name

:

P2

Parameter

Value

:

4

Parameter

Name

:

P3

Parameter

Value

:

2

Return

Status

=

0

Related

concepts:

v

“Parameter

styles

for

external

routines”

on

page

87

v

“Procedure

parameter

modes”

on

page

42

v

“SQL

Procedural

Language

(SQL

PL)

in

DB2”

on

page

61

v

“CREATE

statements

for

SQL

routines”

on

page

62

v

“Variables

in

SQL

procedures

(DECLARE,

DEFAULT,

SET

statements)”

on

page

68

Related

tasks:

v

“Creating

SQL

procedures

from

the

command

line”

on

page

66

Variables

in

SQL

procedures

(DECLARE,

DEFAULT,

SET

statements)

Variables

are

supported

in

procedures

as

part

of

a

compound

statement.

The

keyword

DECLARE

is

used

when

declaring

variables.

The

variable

declarations

must

appear

at

the

top

of

the

SQL

procedure

body,

before

the

declaration

of

any

conditions,

condition

handlers,

cursors

or

any

SQL

statements.

Variables

can

be

declared

with

a

default

value

by

using

the

DEFAULT

clause

where

the

default

value

can

be

a

constant,

special

register

value,

or

an

expression.

For

example:

CREATE

PROCEDURE

P2(INOUT

a

VARCHAR(8),

OUT

b

INTEGER)

LANGUAGE

SQL

68

Programming

Server

Applications

|
|
|

|
|
|
|
|
|

|

|
|

|

|
|

|
|
|

|
|
|
|
|
|
|
|
|
|

|

|

|

|

|

|
|

|

|

|

|

|
|
|
|

|
|
|

|
|
|

BEGIN

DECLARE

var1

INTEGER

DEFAULT

0;

DECLARE

var2

VARCHAR(5)

DEFAULT

a

||

’bc’;

--

other

SQL

statements

--

END@

Below

the

variable

declarations

of

an

SQL

procedure,

the

variables

and

parameters,

including

input

parameters,

can

be

assigned

values

by

using

the

assignment-statement

as

follows:

CREATE

PROCEDURE

P2(INOUT

a

VARCHAR(8),

OUT

b

INTEGER)

LANGUAGE

SQL

BEGIN

DECLARE

var1

INTEGER

DEFAULT

0;

DECLARE

var2

VARCHAR(5)

DEFAULT

a

||

’bc’;

SET

var1

=

0;

SET

var1

=

var1

+

1;

SET

var2

=

var2

||

’def’;

SET

a

=

var1;

SET

b

=

var2;

END@

Related

concepts:

v

“SQL

Procedural

Language

(SQL

PL)

in

DB2”

on

page

61

v

“CREATE

statements

for

SQL

routines”

on

page

62

v

“Parameters

in

SQL

procedures”

on

page

67

v

“Improving

the

performance

of

SQL

procedures”

on

page

75

Related

tasks:

v

“Creating

SQL

procedures

from

the

command

line”

on

page

66

Compound

blocks

and

scope

of

variables

in

SQL

procedures

Within

an

SQL

procedure

you

can

have

one

or

more

compound

statements.

Compound

statements

introduce

a

block

of

SQL

statements

that

are

compiled

and

executed

as

single

statement

in

DB2.

Compound

statements

are

easily

recognized

as

starting

and

ending

with

the

keywords

BEGIN

and

END

and

can

be

labeled

to

identify

the

code

block.

The

use

of

a

label

becomes

important

in

the

context

of

scope

of

variables

as

it

can

be

used

to

qualify

the

names

of

variables

which

is

important

in

the

identification

and

referencing

of

variables

in

different

compound

statements

or

in

nested

compound

statements.

In

the

following

example

there

are

two

declarations

of

the

variable

a.

One

instance

of

it

is

declared

in

the

outer

compound

statement

that

is

labelled

by

lab1,

and

the

second

instance

is

declared

in

the

inner

compound

statement

labelled

by

lab2.

As

it

is

written,

DB2

will

presume

that

the

reference

to

a

in

the

assignment-statement

is

the

one

which

is

in

the

local

scope

of

the

compound

block,

labelled

by

lab2.

However,

if

the

intended

instance

of

the

variable

a

was

the

one

declared

in

the

compound

statement

block

labeled

with

″lab1″,

then

to

correctly

reference

it

in

the

innermost

compound

block,

the

variable

should

have

been

qualified

with

the

label

of

that

block.

That

is,

qualified

as:

lab1.a.

Chapter

3.

SQL

routines

69

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|

|

|

|

|

|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

CREATE

PROCEDURE

P1

()

LANGUAGE

SQL

lab1:

BEGIN

DECLARE

a

INT

DEFAULT

100;

lab2:

BEGIN

DECLARE

a

INT

DEFAULT

NULL;

SET

a

=

a

+

lab1.a;

UPDATE

T1

SET

T1.b

=

5

WHERE

T1.b

=

a;

<--

Variable

a

refers

to

lab2.a

unless

qualified

otherwise

lab2:

END;

END

lab1@

The

outermost

compound

statement

in

an

SQL

procedure

can

be

declared

to

be

atomic,

by

adding

the

keyword

ATOMIC

after

the

BEGIN

keyword.

If

any

error

occurs

in

the

execution

of

the

statements

that

comprise

the

atomic

compound

statement,

then

the

entire

compound

statement

is

rolled

back.

Related

concepts:

v

“SQL

Procedural

Language

(SQL

PL)

in

DB2”

on

page

61

v

“Parameters

in

SQL

procedures”

on

page

67

v

“Variables

in

SQL

procedures

(DECLARE,

DEFAULT,

SET

statements)”

on

page

68

Related

tasks:

v

“Creating

SQL

procedures

from

the

command

line”

on

page

66

Returning

error

messages

from

SQL

procedures

When

you

issue

a

CREATE

PROCEDURE

statement

for

an

SQL

procedure,

DB2

might

accept

the

syntax

of

the

SQL

procedure

body

but

fail

to

create

the

SQL

procedure

at

the

precompile

or

compile

stage.

In

these

situations,

DB2

normally

creates

a

log

file

that

contains

the

error

messages.

To

retrieve

the

error

messages

generated

by

DB2

and

the

C

compiler

for

an

SQL

procedure,

display

the

message

log

file

in

the

following

directory

on

your

database

server:

UNIX

instance/function/routine/sqlproc/db_name/schema_name/tmp

where

instance

represents

the

path

of

the

DB2

instance,

db_name

represents

the

database

alias,

and

schema_name

represents

the

schema

with

which

the

CREATE

PROCEDURE

statement

was

issued.

Windows

instance\function\routine\sqlproc\db_name\schema_name\tmp

where

instance

represents

the

path

of

the

DB2

instance,

db_name

represents

the

database

alias,

and

schema_name

represents

the

schema

with

which

the

CREATE

PROCEDURE

statement

was

issued.

Note:

If

the

SQL

procedure

schema

name

is

not

issued

as

part

of

the

CREATE

PROCEDURE

statement,

DB2

uses

the

value

of

the

CURRENT

SCHEMA

70

Programming

Server

Applications

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|

|

|

|
|

|

|

special

register.

To

display

the

value

of

the

CURRENT

SCHEMA

special

register,

issue

the

following

statement

at

the

CLP:

VALUES

CURRENT

SCHEMA

Related

tasks:

v

“Debugging

routines”

on

page

38

Related

reference:

v

“CURRENT

SCHEMA

special

register”

in

the

SQL

Reference,

Volume

1

Condition

handlers

in

SQL

procedures

The

sections

that

follow

describe

condition

handlers,

and

how

they

can

be

used

to

enable

SQL

procedures

to

react

to

various

database

conditions.

Condition

handlers

in

SQL

procedures

Condition

handlers

determine

the

behavior

of

your

SQL

procedure

when

a

condition

occurs.

You

can

declare

one

or

more

condition

handlers

in

your

SQL

procedure

for

general

conditions,

named

conditions,

or

specific

SQLSTATE

values.

If

a

statement

in

your

SQL

procedure

raises

an

SQLWARNING

or

NOT

FOUND

condition,

and

you

have

declared

a

handler

for

the

respective

condition,

DB2®

passes

control

to

the

corresponding

handler.

If

you

have

not

declared

a

handler

for

such

a

condition,

DB2

passes

control

to

the

next

statement

in

the

SQL

procedure

body.

If

the

SQLCODE

and

SQLSTATE

variables

have

been

declared,

they

will

contain

the

corresponding

values

for

the

condition.

If

a

statement

in

your

SQL

procedure

raises

an

SQLEXCEPTION

condition,

and

you

declared

a

handler

for

the

specific

SQLSTATE

or

the

SQLEXCEPTION

condition,

DB2

passes

control

to

that

handler.

If

the

SQLSTATE

and

SQLCODE

variables

have

been

declared,

their

values

after

the

successful

execution

of

a

handler

will

be

‘00000’

and

0

respectively.

If

a

statement

in

your

SQL

procedure

raises

an

SQLEXCEPTION

condition,

and

you

have

not

declared

a

handler

for

the

specific

SQLSTATE

or

the

SQLEXCEPTION

condition,

DB2

terminates

the

SQL

procedure

and

returns

to

the

caller.

Related

concepts:

v

“SIGNAL

and

RESIGNAL

statements

in

condition

handlers”

on

page

74

v

“Condition

handler

declarations”

on

page

71

v

“SQLCODE

and

SQLSTATE

variables

in

SQL

procedures”

on

page

74

Related

tasks:

v

“Returning

error

messages

from

SQL

procedures”

on

page

70

Condition

handler

declarations

In

order

to

define

the

behavior

of

your

SQL

procedure

when

certain

conditions

occur,

you

need

to

declare

condition

handlers.

The

general

form

of

a

handler

declaration

is:

DECLARE

handler-type

HANDLER

FOR

condition

SQL-procedure-statement

Chapter

3.

SQL

routines

71

When

DB2®

raises

a

condition

that

matches

condition,

DB2

passes

control

to

the

condition

handler.

The

condition

handler

performs

the

action

indicated

by

handler-type,

and

then

executes

SQL-procedure-statement.

Handler-types

CONTINUE

Specifies

that

after

SQL-procedure-statement

completes,

execution

continues

with

the

statement

after

the

statement

that

caused

the

error.

EXIT

Specifies

that

after

SQL-procedure-statement

completes,

execution

continues

at

the

end

of

the

compound

statement

that

contains

the

handler.

UNDO

Specifies

that

before

SQL-procedure-statement

executes,

DB2

rolls

back

any

SQL

operations

that

have

occurred

in

the

compound

statement

that

contains

the

handler.

After

SQL-procedure-statement

completes,

execution

continues

at

the

end

of

the

compound

statement

that

contains

the

handler.

Note:

You

can

only

declare

UNDO

handlers

in

ATOMIC

compound

statements.

Conditions

DB2

provides

three

general

conditions:

NOT

FOUND

Identifies

any

condition

that

results

in

an

SQLCODE

of

+100

or

an

SQLSTATE

beginning

with

the

characters

‘02’.

SQLEXCEPTION

Identifies

any

condition

that

results

in

a

negative

SQLCODE.

SQLWARNING

Identifies

any

condition

that

results

in

a

warning

condition

(SQLWARN0

is

‘W’),

or

that

results

in

a

positive

SQL

return

code

other

than

+100.

The

corresponding

SQLSTATE

value

will

begin

with

the

characters

‘01’.

You

can

also

use

the

DECLARE

statement

to

define

your

own

condition

for

a

specific

SQLSTATE.

SQL-procedure-statement

You

can

use

a

single

SQL

procedure

statement

to

define

the

behavior

of

the

condition

handler.

DB2

accepts

a

compound

statement

delimited

by

a

BEGIN...END

block

as

a

single

SQL

procedure

statement.

If

you

use

a

compound

statement

to

define

the

behavior

of

a

condition

handler,

and

you

want

the

handler

to

retain

the

value

of

either

the

SQLSTATE

or

SQLCODE

variables,

you

must

assign

the

value

of

the

variable

to

a

local

variable

or

parameter

in

the

first

statement

of

the

compound

block.

If

the

first

statement

of

a

compound

block

does

not

assign

the

value

of

SQLSTATE

or

SQLCODE

to

a

local

variable

or

parameter,

SQLSTATE

and

SQLCODE

cannot

retain

the

value

that

caused

DB2

to

invoke

the

condition

handler.

The

following

examples

demonstrate

simple

condition

handlers:

CONTINUE

handler

This

handler

assigns

the

value

of

1

to

the

local

variable

at_end

when

DB2

raises

a

NOT

FOUND

condition.

DB2

then

passes

control

to

the

statement

following

the

one

that

raised

the

NOT

FOUND

condition.

72

Programming

Server

Applications

DECLARE

CONTINUE

HANDLER

FOR

NOT

FOUND

SET

at_end

=

1;

EXIT

handler

In

this

example,

the

scope

of

the

exit

handler

is

confined

to

the

compound

statement

labeled

A.

If

the

table

JAVELIN

does

not

exist,

the

DROP

statement

raises

the

NO_TABLE

condition.

The

exit

handler

will

be

activated,

OUT_BUFFER

will

be

set

to

the

string,

’Table

does

not

exist’,

and

execution

will

continue

with

the

INSERT

statement

at

C,

without

visiting

any

more

statements

in

compound

statement

A.

If

the

DROP

statement

completes

successfully,

the

handler

will

not

be

activated

and

execution

will

continue

with

the

SET

statement

at

B.

CREATE

PROCEDURE

EXIT_TEST

()

LANGUAGE

SQL

BEGIN

DECLARE

OUT_BUFFER

VARCHAR(80);

DECLARE

NO_TABLE

CONDITION

FOR

SQLSTATE

‘42704’;

A:

BEGIN

DECLARE

EXIT

HANDLER

FOR

NO_TABLE

BEGIN

SET

OUT_BUFFER=‘Table

does

not

exist’;

END;

--

Drop

potentially

nonexistent

table:

DROP

TABLE

JAVELIN;

B:

SET

OUT_BUFFER=‘Table

dropped

successfully’;

END;

--

Copy

OUT_BUFFER

to

some

message

table:

C:

INSERT

INTO

MESSAGES

VALUES

OUT_BUFFER;

END

UNDO

handler

In

this

example,

the

scope

of

the

undo

handler

is

confined

to

the

compound

statement

labeled

A.

If

table

JAVELIN

does

not

exist,

the

DROP

statement

raises

the

NO_TABLE

condition.

The

undo

handler

will

be

activated,

the

INSERT

preceding

the

DROP

will

be

rolled

back,

OUT_BUFFER

will

be

set

to

the

string

’Table

does

not

exist’,

and

execution

will

continue

with

the

INSERT

statement

at

C,

without

visiting

any

more

statements

in

compound

statement

A.

If

the

DROP

statement

completes

successfully,

the

handler

will

not

be

activated

and

execution

will

continue

with

the

SET

statement

at

B.

CREATE

PROCEDURE

UNDO_TEST

()

LANGUAGE

SQL

BEGIN

DECLARE

OUT_BUFFER

VARCHAR(80);

DECLARE

NO_TABLE

CONDITION

FOR

SQLSTATE

‘42704’;

A:

BEGIN

ATOMIC

DECLARE

UNDO

HANDLER

FOR

NO_TABLE

BEGIN

SET

OUT_BUFFER=‘Table

does

not

exist’;

END;

INSERT

INTO

MESSAGES

VALUES

‘This

message

will

be

removed

by

a

rollback.’;

--

Drop

potentially

nonexistent

table:

DROP

TABLE

JAVELIN;

B:

SET

OUT_BUFFER=‘Table

dropped

successfully’;

END;

Chapter

3.

SQL

routines

73

--

Copy

OUT_BUFFER

to

some

message

table:

C:

INSERT

INTO

MESSAGES

VALUES

OUT_BUFFER;

END

Note:

You

can

only

declare

UNDO

handlers

in

ATOMIC

compound

statements.

Related

concepts:

v

“Condition

handlers

in

SQL

procedures”

on

page

71

v

“SIGNAL

and

RESIGNAL

statements

in

condition

handlers”

on

page

74

v

“SQLCODE

and

SQLSTATE

variables

in

SQL

procedures”

on

page

74

Related

reference:

v

“Compound

SQL

(Embedded)

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

PROCEDURE

statement”

in

the

SQL

Reference,

Volume

2

v

“Compound

SQL

(Dynamic)

statement”

in

the

SQL

Reference,

Volume

2

SIGNAL

and

RESIGNAL

statements

in

condition

handlers

You

can

use

the

SIGNAL

and

RESIGNAL

statements

to

explicitly

raise

a

specific

SQLSTATE.

Use

the

SET

MESSAGE_TEXT

clause

of

the

SIGNAL

and

RESIGNAL

statements

to

define

the

text

that

DB2®

displays

along

with

the

raised

SQLSTATE.

In

the

following

example,

the

SQL

procedure

body

declares

a

condition

handler

for

the

custom

SQLSTATE

72822.

When

the

SQL

procedure

executes

the

SIGNAL

statement

that

raises

SQLSTATE

72822,

DB2

invokes

the

condition

handler.

The

condition

handler

tests

the

value

of

the

SQL

variable

var

with

an

IF

statement.

If

var

is

OK,

the

handler

redefines

the

SQLSTATE

value

as

72623

and

assigns

a

string

literal

to

the

text

associated

with

SQLSTATE

72623.

If

var

is

not

OK

,

the

handler

redefines

the

SQLSTATE

value

as

72319

and

assigns

the

value

of

var

to

the

text

associated

with

that

SQLSTATE.

DECLARE

EXIT

HANDLER

FOR

SQLSTATE

'72822'

BEGIN

IF

(

var

=

'OK'

)

RESIGNAL

SQLSTATE

'72623'

SET

MESSAGE_TEXT

=

'Got

SQLSTATE

72822';

ELSE

RESIGNAL

SQLSTATE

'72319'

SET

MESSAGE_TEXT

=

var;

END;

SIGNAL

SQLSTATE

'72822';

Related

concepts:

v

“Condition

handlers

in

SQL

procedures”

on

page

71

v

“Condition

handler

declarations”

on

page

71

v

“SQLCODE

and

SQLSTATE

variables

in

SQL

procedures”

on

page

74

Related

reference:

v

“SIGNAL

statement”

in

the

SQL

Reference,

Volume

2

v

“RESIGNAL

statement”

in

the

SQL

Reference,

Volume

2

SQLCODE

and

SQLSTATE

variables

in

SQL

procedures

To

help

debug

your

SQL

procedures,

you

might

find

it

useful

to

insert

the

value

of

the

SQLCODE

and

SQLSTATE

into

a

table

at

various

points

in

the

SQL

procedure,

or

to

return

the

SQLCODE

and

SQLSTATE

values

in

a

diagnostic

string

as

an

OUT

74

Programming

Server

Applications

parameter.

To

use

the

SQLCODE

and

SQLSTATE

values,

you

must

declare

the

following

SQL

variables

in

the

SQL

procedure

body:

DECLARE

SQLCODE

INTEGER

DEFAULT

0;

DECLARE

SQLSTATE

CHAR(5)

DEFAULT

‘00000’;

DB2®

implicitly

sets

these

variables

whenever

a

statement

is

executed.

If

a

statement

raises

a

condition

for

which

a

handler

exists,

the

values

of

the

SQLSTATE

and

SQLCODE

variables

are

available

at

the

beginning

of

the

handler

execution.

However,

the

variables

are

reset

as

soon

as

the

first

statement

in

the

handler

is

executed.

Therefore,

it

is

common

practice

to

copy

the

values

of

SQLSTATE

and

SQLCODE

into

local

variables

in

the

first

statement

of

the

handler.

In

the

following

example,

a

CONTINUE

handler

for

any

condition

is

used

to

copy

the

SQLCODE

variable

into

another

variable

named

retcode.

The

variable

retcode

can

then

be

used

in

the

executable

statements

to

control

procedural

logic,

or

pass

the

value

back

as

an

output

parameter.

BEGIN

DECLARE

SQLCODE

INTEGER

DEFAULT

0;

DECLARE

retcode

INTEGER

DEFAULT

0;

DECLARE

CONTINUE

HANDLER

FOR

SQLEXCEPTION,

SQLWARNING,

NOT

FOUND

SET

retcode

=

SQLCODE;

executable-statements

END

Note:

When

you

access

the

SQLCODE

or

SQLSTATE

variables

in

an

SQL

procedure,

DB2

sets

the

value

of

SQLCODE

to

0

and

SQLSTATE

to

‘00000’

for

the

subsequent

statement.

Related

concepts:

v

“Condition

handlers

in

SQL

procedures”

on

page

71

v

“SIGNAL

and

RESIGNAL

statements

in

condition

handlers”

on

page

74

v

“Condition

handler

declarations”

on

page

71

Improving

the

performance

of

SQL

procedures

Overview

of

how

DB2

compiles

SQL

PL

and

inline

SQL

PL:

Before

discussing

how

to

improve

the

performance

of

SQL

procedures

we

should

discuss

how

DB2

compiles

them

upon

the

execution

of

the

CREATE

PROCEDURE

statement.

When

an

SQL

procedure

is

created,

DB2

separates

the

SQL

queries

in

the

procedure

body

from

the

procedural

logic.

To

maximize

performance,

the

SQL

queries

are

statically

compiled

into

sections

in

a

package.

For

a

statically

compiled

query,

a

section

consists

mainly

of

the

access

plan

selected

by

the

DB2

optimizer

for

that

query.

A

package

is

a

collection

of

sections.

For

more

information

on

packages

and

sections,

please

refer

to

the

DB2

SQL

Reference.

The

procedural

logic

is

compiled

into

a

dynamically

linked

library.

During

the

execution

of

a

procedure,

every

time

control

flows

from

the

procedural

logic

to

an

SQL

statement,

there

is

a

″context

switch″

between

the

DLL

and

the

DB2

engine.

As

of

DB2

Version

8.1,

SQL

procedures

run

in

″unfenced

mode″.

That

is

they

run

in

the

same

addressing

space

as

the

DB2

engine.

Therefore

the

context

switch

we

refer

to

here

is

not

a

full

context

switch

at

the

operating

system

level,

but

rather

a

change

of

layer

within

DB2.

Reducing

the

number

of

context

switches

Chapter

3.

SQL

routines

75

|

|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

in

procedures

that

are

invoked

very

often,

such

as

procedures

in

an

OLTP

application,

or

that

process

large

numbers

of

rows,

such

as

procedures

that

perform

data

cleansing,

can

have

a

noticeable

impact

on

their

performance.

Whereas

an

SQL

procedure

containing

SQL

PL

is

implemented

by

statically

compiling

its

individual

SQL

queries

into

sections

in

a

package,

an

inline

SQL

PL

function

is

implemented,

as

the

name

suggests,

by

inlining

the

body

of

the

function

into

the

query

that

uses

it.

Queries

in

SQL

functions

are

compiled

together,

as

if

the

function

body

were

a

single

query.

The

compilation

occurs

every

time

a

statement

that

uses

the

function

is

compiled.

Unlike

what

happens

in

SQL

procedures,

procedural

statements

in

SQL

functions

however

are

not

executed

in

a

different

layer

than

dataflow

statements.

Therefore,

there

is

no

context

switch

every

time

control

flows

from

a

procedural

to

a

dataflow

statement

or

vice

versa.

If

there

are

no

side-effects

in

your

logic

use

an

SQL

function

instead:

Because

of

the

difference

in

compilation

between

SQL

PL

in

procedures

and

inline

SQL

PL

in

functions,

it

is

reasonable

to

presume

that

a

piece

of

procedural

code

will

execute

faster

in

a

function

than

in

a

procedure

if

it

only

queries

SQL

data

and

does

no

data

modifications

-

that

is

it

has

no

side-effects

on

the

data

in

the

database

or

external

to

the

database.

That

is

only

good

news

if

all

the

statements

that

you

need

to

execute

are

supported

in

SQL

functions.

SQL

functions

can

not

contain

SQL

statements

that

modify

the

database.

As

well,

only

a

subset

of

SQL

PL

is

available

in

the

inline

SQL

PL

of

functions.

For

example:

you

cannot

execute

CALL

statements,

declare

cursors,

or

return

result

sets

in

SQL

functions.

Here

is

an

example

of

an

SQL

procedure

containing

SQL

PL

that

was

a

good

candidate

for

conversion

to

an

SQL

function

to

maximize

performance:

CREATE

PROCEDURE

GetPrice

(IN

Vendor

CHAR&(20&),

IN

Pid

INT,

OUT

price

DECIMAL(10,3))

LANGUAGE

SQL

BEGIN

IF

Vendor

eq;

ssq;Vendor

1ssq;

THEN

SET

price

eq;

(SELECT

ProdPrice

FROM

V1Table

WHERE

Id

=

Pid);

ELSE

IF

Vendor

eq;

ssq;Vendor

2ssq;

THEN

SET

price

eq;

(SELECT

Price

FROM

V2Table

WHERE

Pid

eq;

GetPrice.Pid);

END

IF;

END

Here

is

the

rewritten

SQL

function:

CREATE

FUNCTION

GetPrice

(Vendor

CHAR(20),

PId

INT)

RETURNS

DECIMAL(10,3)

LANGUAGE

SQL

BEGIN

DECLARE

price

DECIMAL(10,3);

IF

Vendor

=

'Vendor

1'

THEN

SET

price

=

(SELECT

ProdPrice

FROM

V1Table

WHERE

Id

=

Pid);

ELSE

IF

Vendor

=

'Vendor

2'

THEN

SET

price

=

(SELECT

Price

FROM

V2Table

76

Programming

Server

Applications

|
|
|

|
|
|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

WHERE

Pid

=

GetPrice.Pid);

END

IF;

RETURN

price;

END

Remember

that

the

invocation

of

a

function

is

different

than

a

procedure.

To

invoke

the

function,

use

the

VALUES

statement

or

invoke

the

function

where

an

expression

is

valid,

such

as

in

a

SELECT

or

SET

statement.

Any

of

the

following

are

valid

ways

of

invoking

the

new

function:

VALUES

(GetPrice(’IBM’,

324))

SELECT

VName

FROM

Vendors

WHERE

GetPrice(Vname,

Pid)

<

10

SET

price

=

GetPrice(Vname,

Pid)

Avoid

multiple

statements

in

an

SQL

PL

procedure

when

just

one

would

is

sufficient:

Although

it

is

generally

a

good

idea

to

write

concise

SQL,

it

is

very

ease

to

forget

to

do

this

in

practice.

For

example

the

following

SQL

statements:

INSERT

INTO

tab_comp

VALUES

(item1,

price1,

qty1);

INSERT

INTO

tab_comp

VALUES

(item2,

price2,

qty2);

INSERT

INTO

tab_comp

VALUES

(item3,

price3,

qty3);

can

be

rewritten

as

a

single

statement:

INSERT

INTO

tab_comp

VALUES

(item1,

price1,

qty1),

(item2,

price2,

qty2),

(item3,

price3,

qty3);

The

multi-row

insert

will

require

roughly

one

third

of

the

time

required

to

execute

the

three

original

statements.

Isolated,

this

improvement

might

seem

negligible,

but

if

the

code

fragment

is

executed

repeatedly,

for

example,

in

a

loop

or

in

a

trigger

body,

the

improvement

can

be

significant.

Similarly,

a

sequence

of

SET

statements

like:

SET

A

=

expr1;

SET

B

=

expr2;

SET

C

=

expr3;

can

be

written

as

a

single

VALUES

statement:

VALUES

expr1,

expr2,

expr3

INTO

A,

B,

C;

This

transformation

preserves

the

semantics

of

the

original

sequence

if

there

are

no

dependencies

between

any

two

statements.

To

illustrate

this,

consider:

SET

A

=

monthly_avg

*

12;

SET

B

=

(A

⁄

2)

*

correction_factor;

Converting

the

previous

two

statements

to:

VALUES

(monthly_avg

*

12,

(A

⁄

2)

*

correction_factor)

INTO

A,

B;

does

not

preserve

the

original

semantics

because

the

expressions

before

the

INTO

keyword

are

evaluated

'in

parallel'.

This

means

that

the

value

assigned

to

B

is

not

based

on

the

value

assigned

to

A,

which

was

the

intended

semantics

of

the

original

statements.

Reduce

multiple

SQL

statements

to

a

single

SQL

expression:

Chapter

3.

SQL

routines

77

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

|
|

|
|
|

|

|
|
|

|
|
|
|

|

|
|
|

|

|

|
|

|
|

|

|

|
|
|
|

|

Like

other

programming

languages,

the

SQL

language

provides

two

types

of

conditional

constructs:

procedural

(IF

and

CASE

statements)

and

functional

(CASE

expressions).

In

most

circumstances

where

either

type

can

be

used

to

express

a

computation,

using

one

or

the

other

is

a

matter

of

taste.

However,

logic

written

using

CASE

expressions

is

not

only

more

compact,

but

also

more

efficient

than

logic

written

using

CASE

or

IF

statements.

Consider

the

following

fragment

of

SQL

PL

code:

IF

(Price

<=

MaxPrice)

THEN

INSERT

INTO

tab_comp(Id,

Val)

VALUES(Oid,

Price)semi;

ELSE

INSERT

INTO

tab_comp(Id,

Val)

VALUES(Oid,

MaxPrice)semi;

END

IF;

The

condition

in

the

IF

clause

is

only

being

used

to

decide

what

value

is

inserted

in

the

tab_comp.Val

column.

To

avoid

the

context

switch

between

the

procedural

and

the

dataflow

layers,

the

same

logic

can

be

expressed

as

a

single

INSERT

with

a

CASE

expression:

INSERT

INTO

tab_comp(Id,

Val)

VALUES(Oid,

CASE

WHEN

(Price

<=

MaxPrice)

THEN

Price

ELSE

MaxPrice

END);

It’s

worth

noting

that

CASE

expressions

can

be

used

in

any

context

where

a

scalar

value

is

expected.

In

particular,

they

can

be

used

on

the

right-hand

side

of

assignments.

For

example:

IF

(Name

IS

NOT

NULL)

THEN

SET

ProdName

=

Name;

ELSEIF

(NameStr

IS

NOT

NULL)

THEN

SET

ProdName

=

NameStr;

ELSE

SET

ProdName

=

DefaultName;

END

IF;

can

be

rewritten

as:

SET

ProdName

=

(CASE

WHEN

(Name

IS

NOT

NULL)

THEN

Name

WHEN

(NameStr

IS

NOT

NULL)

THEN

NameStr

ELSE

DefaultName

END);

In

fact,

this

particular

example

admits

an

even

better

solution:

SET

ProdName

=

COALESCE(Name,

NameStr,

DefaultName);

Don’t

underestimate

the

benefit

in

taking

the

time

to

analyze

your

SQL

and

rewriting

it

if

required.

The

performance

benefits

will

pay

you

back

many

times

over

for

the

time

invested

analyzing

and

rewriting

your

procedure.

Exploit

the

set-at-a-time

semantics

of

SQL:

Procedural

constructs

such

as

loops,

assignment

and

cursors

allow

us

to

express

computations

that

would

not

be

possible

to

express

using

just

SQL

DML

statements.

But

when

we

have

procedural

statements

at

our

disposal,

there

is

a

risk

that

we

could

turn

to

them

even

when

the

computation

at

hand

can,

in

fact,

be

expressed

using

just

SQL

DML

statements.

As

we’ve

mentioned

earlier,

the

78

Programming

Server

Applications

|
|
|
|
|
|

|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|

|
|
|
|
|

|

|

|
|
|

|

|
|
|
|
|

performance

of

a

procedural

computation

can

be

orders

of

magnitude

slower

than

the

performance

of

an

equivalent

computation

expressed

using

DML

statements.

Consider

the

following

fragment

of

code:

DECLARE

cur1

CURSOR

FOR

SELECT

col1,

col2

FROM

tab_comp;

OPEN

cur1;

FETCH

cur1

INTO

v1,

v2;

WHILE

SQLCODE

≠

100

DO

IF

(v1

>

20)

THEN

INSERT

INTO

tab_sel

VALUES

(20,

v2);

ELSE

INSERT

INTO

tab_sel

VALUES

(v1,

v2);

END

IF;

FETCH

cur1

INTO

v1,

v2;

END

WHILE;

To

begin

with,

the

loop

body

can

be

improved

by

applying

the

transformation

discussed

in

the

last

section

-

″Reduce

multiple

SQL

statements

to

a

single

SQL

expression″:

DECLARE

cur1

CURSOR

FOR

SELECT

col1,

col2

FROM

tab_comp;

OPEN

cur1;

FETCH

cur1

INTO

v1,

v2;

WHILE

SQLCODE

≠

100

DO

INSERT

INTO

tab_sel

VALUES

(CASE

WHEN

v1

>

20

THEN

20

ELSE

v1

END,

v2);

FETCH

cur1

INTO

v1,

v2;

END

WHILE;

But

upon

closer

inspection,

the

whole

block

of

code

can

be

written

as

an

INSERT

with

a

sub-SELECT:

INSERT

INTO

tab_sel

(SELECT

(CASE

WHEN

col1

>

20

THEN

20

ELSE

col1

END),

col2

FROM

tab_comp);

In

the

original

formulation,

there

was

a

context

switch

between

the

procedural

and

the

dataflow

layers

for

each

row

in

the

SELECT

statements.

In

the

last

formulation,

there

is

no

context

switch

at

all,

and

the

optimizer

has

a

chance

to

globally

optimize

the

full

computation.

On

the

other

hand,

this

dramatic

simplification

would

not

have

been

possible

if

each

of

the

INSERT

statements

targeted

a

different

table,

as

shown

below:

DECLARE

cur1

CURSOR

FOR

SELECT

col1,

col2

FROM

tab_comp;

OPEN

cur1;

FETCH

cur1

INTO

v1,

v2;

WHILE

SQLCODE

≠

100

DO

IF

(v1

>

20)

THEN

INSERT

INTO

tab_default

VALUES

(20,

v2);

ELSE

INSERT

INTO

tab_sel

VALUES

(v1,

v2);

END

IF;

FETCH

cur1

INTO

v1,

v2;

END

WHILE;

However,

the

set-at-a-time

nature

of

SQL

can

also

be

exploited

here:

INSERT

INTO

tab_sel

(SELECT

col1,

col2

FROM

tab_comp

WHERE

col1

<=

20);

Chapter

3.

SQL

routines

79

|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

INSERT

INTO

tab_default

(SELECT

col1,

col2

FROM

tab_comp

WHERE

col1

>

20);

When

looking

at

improving

the

performance

of

existing

procedural

logic,

any

time

spent

in

eliminating

cursor

loops

will

likely

pay

off.

Keep

the

DB2

optimizer

informed:

When

a

procedure

is

created,

its

individual

SQL

queries

are

compiled

into

sections

in

a

package.

The

DB2

optimizer

chooses

an

execution

plan

for

a

query

based,

among

other

things,

on

table

statistics

(for

example,

table

sizes

or

the

relative

frequency

of

data

values

in

a

column)

and

indexes

available

at

the

time

the

query

is

compiled.

When

tables

suffer

significant

changes,

it

may

be

a

good

idea

to

let

DB2

collect

statistics

on

these

tables

again.

And

when

statistics

are

updated,

or

when

new

indexes

are

created

it

may

also

be

a

good

idea

to

rebind

the

packages

associated

with

SQL

procedures

that

use

the

tables,

to

let

DB2

create

plans

that

exploit

the

latest

statistics

and

indexes.

Table

statistics

can

be

updated

using

the

RUNSTATS

command.

To

rebind

the

package

associated

with

an

SQL

procedure,

you

can

use

the

REBIND_ROUTINE_PACKAGE

built-in

procedure

that

is

available

in

DB2

Version

8.1.

For

example,

the

following

command

can

be

used

to

rebind

the

package

for

procedure

MYSCHEMA.MYPROC:

CALL

SYSPROC.REBIND_ROUTINE_PACKAGE(’P’,

’MYSCHEMA.MYPROC’,

’ANY’)

where

'P'

indicates

that

the

package

corresponds

to

a

procedure

and

’ANY’

indicates

that

any

of

the

functions

and

types

in

the

SQL

path

are

considered

for

function

and

type

resolution.

See

the

Command

Reference

entry

for

the

REBIND

command

for

more

details.

Related

concepts:

v

“Types

of

routines

(procedures,

functions,

methods)”

on

page

5

v

“SQL

Procedural

Language

(SQL

PL)

in

DB2”

on

page

61

v

“Design

considerations

for

SQL

procedures”

on

page

65

Related

tasks:

v

“Creating

SQL

procedures

from

the

command

line”

on

page

66

SQL

table

functions

SQL

table

functions

that

modify

SQL

data

When

the

MODIFIES

SQL

DATA

clause

is

specified

in

the

CREATE

FUNCTION

statement

of

an

SQL

table

function,

the

body

of

the

SQL

table

function

can

include

SQL

statements

that

modify

table

data.

All

statements

supported

in

a

dynamic-compound

statement

are

supported

in

the

body

of

an

SQL

table

function

including:

v

INSERT

v

UPDATE

v

DELETE

v

MERGE

v

SELECT

where

the

FROM

clause

references

a

data

change

statement

80

Programming

Server

Applications

|
|
|

|
|

|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|

|
|
|
|

|

|

|

|

|

|

|
|
|
|
|

|

|

|

|

|

An

SQL

table

function

that

modifies

SQL

data

is

a

useful

way

to

encapsulate

work

that

modifies

table

data

and

return

a

result

set.

The

result

set

can

be

used

to

return

rows

that

were

accessed

or

modified

within

the

table

function.

Modified

rows

of

multiple

tables

can

be

returned

in

a

single

result

set.

An

SQL

table

function

that

modifies

SQL

data

can

be

used

to

audit

transactions

that

access

or

modify

table

data.

Support

of

the

MODIFIES

SQL

DATA

clause

is

limited

to

SQL

procedures

and

functions.

You

can

not

create

an

external

table

function

specifying

MODIFIES

SQL

DATA.

An

SQL

Table

function

that

modifies

SQL

data:

v

can

only

be

referenced

in

the

outermost

FROM

clause

of

a

fullselect

embedded

in

a

SELECT,

SELECT

INTO,

SET,

or

RETURN

statement.

v

must

be

the

only

SQL

Table

function

that

modifies

SQL

data

within

a

FROM

clause

of

a

SELECT

statement.

v

must

appear

as

the

last

table

reference

in

the

FROM

clause

when

there

are

multiple

table

references

v

must

correlate

to

all

other

table

references

in

the

FROM

clause

v

can

not

be

referenced

in

the

body

of

a

view

definition

v

can

be

nested

within

a

routine

if

the

routine

modifies

SQL

data,

or

within

an

after-trigger

As

with

all

routines,

a

table

function

can

only

be

successfully

invoked

if

the

definer

of

the

table

function

is

authorized

to

execute

all

of

the

SQL

statements

in

the

body

of

the

function.

These

restrictions

ensure

a

deterministic

evaluation

of

the

table

functions

and

tables

in

the

statement.

The

table

references

preceding

an

SQL

table

function

will

be

entirely

evaluated

before

the

SQL

table

function

gets

executed.

Table

references

in

the

SELECT

list

or

WHERE

clause

of

the

SELECT

statement

will

be

evaluated

after

the

SQL

table

function

execution

completes.

Examples

of

SQL

Table

Functions

that

Modify

SQL

Data:

Note:

To

see

the

complete

prerequisite

SQL

associated

with

these

examples

or

to

run

a

related

SQL

sample,

refer

to

sample

tbfnuse.db2

and

prerequisite

script

tbfn.db2.

Example

1:

An

SQL

table

function

that

modifies

SQL

data:

This

table

function

updates

the

quantity

of

an

item

in

an

inventory

table.

An

UPDATE

statement

is

used

to

update

the

quantity

of

the

item

specified

by

itemNo

in

table

Inventory,

by

the

amount

specified

by

amount.

A

result

set

containing

the

product

name

and

the

new

quantity

of

the

item

is

returned.

Note

that

the

MODIFIES

SQL

DATA

clause

is

used

because

function

updates

table

data.

CREATE

FUNCTION

updateInv(itemNo

VARCHAR(20),

amount

INTEGER)

RETURNS

TABLE

(productName

varchar(20),

quantity

INTEGER)

LANGUAGE

SQL

MODIFIES

SQL

DATA

BEGIN

ATOMIC

UPDATE

Inventory

as

I

SET

quantity

=

quantity

+

amount

WHERE

I.itemID

=

itemNo;

Chapter

3.

SQL

routines

81

|
|
|
|
|
|

|
|
|

|

|
|

|
|

|
|

|

|

|
|

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

RETURN

SELECT

I.itemName,

I.quantity

FROM

Inventory

as

I

WHERE

I.itemID

=

itemNo;

END

Example

2:

Invocation

of

an

SQL

table

function

that

modifies

SQL

data:

The

SQL

table

function

of

Example

1

is

invoked

from

a

SELECT

statement.

The

quantity

of

an

item

identified

by

item

number,

’ISBN-0-8021-3424-6’

is

increased

by

five

(5).

The

product

name

and

the

updated

quantity

for

the

item

are

returned.

SELECT

productName,

quantity

FROM

TABLE(updateInv(’ISBN-0-8021-3424-6’,

5))

AS

T

PRODUCTNAME

QUANTITY

Feng

Shui

at

Home

15

Example

3:

Invoking

an

SQL

table

function

that

modifies

SQL

data

which

is

correlated

to

another

table-reference:

In

this

example,

the

quantities

of

multiple

existing

items

in

the

inventory

table

’Inventory’

are

updated.

The

VALUES

clause

is

used

to

generate

table-reference,

’newItem’,

which

contains

rows

of

items

to

be

updated.

The

table

function

’updateInv’

is

correlated

to

table

reference

’newItem’,

because

at

least

one

column

in

’newItem’

appears

as

an

argument

to

the

’updateInv’

table

function.

Note

that

the

table

function

is

the

last

table

reference

in

the

FROM

clause.

SELECT

newItem.id,

TF.productName,

TF.quantity

FROM

(VALUES

(’ISBN-0-8021-3424-6’,

2),

(’ISBN-0-8021-4612-1’,

5))

AS

newItem(id,

quantity),

TABLE(updateInv(newItem.id,

newItem.quantity))

AS

TF

ID

PRODUCTNAME

QUANTITY

ISBN-0-8021-3424-6

Feng

Shui

at

Home

12

ISBN-0-8021-4612-1

Baseball

Heroes

15

To

express

more

complex

queries

that

reference

SQL

table

functions

in

subselects

or

that

would

require

multiple

table

references

in

the

FROM

clause,

you

can

use

common

table

expressions.

Using

a

common

table

expression

is

a

practical

way

of

isolating

the

SQL

table

function

in

the

outermost

select

and

for

ensuring

that

the

table

function

modifying

SQL

data

is

the

last

table-reference

in

the

FROM

clause.

Example

4:

Invocation

of

an

SQL

table

function

that

modifies

SQL

data

which

is

correlated

to

another

table-reference

and

in

a

common-table-expression:

This

example

extends

example

3

by

returning

the

unit

price

and

total

inventory

value

of

the

updated

stock

items.

The

total

inventory

value

is

calculated

by

multiplying

the

new

quantities

of

these

items

by

the

price

from

a

price

list

table,

priceList.

WITH

newInv(itemNo,

quantity)

AS

(SELECT

id,

TF.quantity

FROM

(VALUES

(’ISBN-0-8021-3424-6’,

5),

(’ISBN-0-8021-4612-1’,

10))

AS

newItem(id,

q),

TABLE(updateInv(newItem.id,

newItem.q))

AS

TF)

SELECT

itemNo,

quantity,

unitPrice,

(quantity

*

unitPrice)

as

TotalInvValue

FROM

newInv,

priceList

82

Programming

Server

Applications

|
|
|
|
|
|

|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

WHERE

itemNo

=

priceList.itemID

ITEMNO

QUANTITY

UNITPRICE

TOTALINVVALUE

ISBN-0-8021-3424-6

12

10.00

120.00

ISBN-0-8021-4612-1

15

20.00

300.70

Related

tasks:

v

“Auditing

using

SQL

table

functions”

on

page

83

Related

reference:

v

“CREATE

FUNCTION

(SQL

Scalar,

Table,

or

Row)

statement”

in

the

SQL

Reference,

Volume

2

v

“SQL

statements

allowed

in

routines”

in

the

SQL

Reference,

Volume

1

v

“Supported

SQL

statements”

in

the

SQL

Reference,

Volume

2

Auditing

using

SQL

table

functions

Database

administrators

interested

in

monitoring

table

data

accesses

and

table

data

modifications

made

by

database

users

can

audit

transactions

on

a

table

by

creating

and

using

SQL

table

functions

that

modify

SQL

data.

Any

table

function

that

encapsulates

SQL

statements

that

perform

a

business

task,

such

as

updating

an

employee’/s

personal

information

can

additionally

include

SQL

statements

that

record,

in

a

separate

table,

details

about

the

table

accesses

or

modifications

made

by

the

user

that

invoked

the

function.

An

SQL

table

function

can

even

be

written

so

that

it

returns

a

result

set

of

table

rows

that

were

accessed

or

modified

in

the

body

of

the

table

function.

The

returned

result

set

rows

can

be

inserted

into

and

stored

in

a

separate

table

as

a

history

of

the

changes

made

to

the

table.

Prerequisites:

For

the

list

of

privileges

required

to

create

and

register

an

SQL

table

function,

see

the

following

statements:

v

CREATE

FUNCTION

(SQL

Scalar,

Table,

or

Row)

statement

The

definer

of

the

SQL

table

function

must

also

have

authority

to

run

the

SQL

statements

encapsulated

in

the

SQL

table

function

body.

Refer

to

the

list

of

privileges

required

for

each

encapsulated

SQL

statement.

To

grant

INSERT,

UPDATE,

DELETE

privileges

on

a

table

to

a

user,

see

the

following

statement:

v

GRANT

(Table,

View,

or

Nickname

Privileges)

statement

The

tables

accessed

by

the

SQL

table

function

must

exist

prior

to

invocation

of

the

SQL

table

function.

Example

1:

Auditing

accesses

of

table

data

using

an

SQL

table

function:

This

function

accesses

the

salary

data

of

all

employees

in

a

department

specified

by

input

argument

deptno.

It

also

records

in

an

audit

table,

named

audit_table,

the

user

ID

that

invoked

the

function,

the

name

of

the

table

that

was

read

from,

a

description

of

what

information

was

accessed,

and

the

current

time.

Note

that

the

table

function

is

created

with

the

keywords

MODIFIES

SQL

DATA

because

it

contains

an

INSERT

statement

that

modifies

SQL

data.

Chapter

3.

SQL

routines

83

|
|
|
|
|
|
|

CREATE

FUNCTION

sal_by_dept

(deptno

CHAR(3))

RETURNS

TABLE

(lastname

VARCHAR(10),

firstname

VARCHAR(10),

salary

INTEGER)

LANGUAGE

SQL

MODIFIES

SQL

DATA

NO

EXTERNAL

ACTION

NOT

DETERMINISTIC

BEGIN

ATOMIC

INSERT

INTO

audit_table(user,

table,

action,

time)

VALUES

(USER,

’EMPLOYEE’,

’Read

employee

salaries

in

department:

’

||

deptno,

CURRENT_TIMESTAMP);

RETURN

SELECT

lastname,

firstname,

salary

FROM

employee

as

E

WHERE

E.dept

=

deptno;

END

Example

2:

Auditing

updates

to

table

data

using

an

SQL

table

function:

This

function

updates

the

salary

of

an

employee

specified

by

updEmpNum,

by

the

amount

specified

by

amount,

and

also

records

in

an

audit

table

named

audit_table,

the

user

that

invoked

the

routine,

the

name

of

the

table

that

was

modified,

and

the

type

of

modification

made

by

the

user.

A

SELECT

statement

that

references

a

data

change

statement

(here

an

UPDATE

statement)

in

the

FROM

clause

is

used

to

return

the

updated

row

values.

Note

that

the

table

function

is

created

with

the

keywords

MODIFIES

SQL

DATA

because

it

contains

both

an

INSERT

statement

and

a

SELECT

statement

that

references

the

data

change

statement,

UPDATE.

CREATE

FUNCTION

update_salary(updEmpNum

CHAR(4),

amount

INTEGER)

RETURNS

TABLE

(emp_lastname

VARCHAR(10),

emp_firstname

VARCHAR(10),

newSalary

INTEGER)

LANGUAGE

SQL

MODIFIES

SQL

DATA

NO

EXTERNAL

ACTION

NOT

DETERMINISTIC

BEGIN

ATOMIC

INSERT

INTO

audit_table(user,

table,

action,

time)

VALUES

(USER,

’EMPLOYEE’,

’Update

emp

salary.

Values:

’

||

updEmpNum

||

’

’

||

char(amount),

CURRENT_TIMESTAMP);

RETURN

SELECT

lastname,

firstname,

salary

FROM

FINAL

TABLE(UPDATE

employee

SET

salary

=

salary

+

amount

WHERE

employee.empnum

=

updEmpNum);

END

Example

3:

Invoking

an

SQL

table

function

used

for

auditing

transactions:

The

following

shows

how

a

user

might

invoke

the

routine

to

update

an

employee’s

salary

by

500

yen:

SELECT

emp_lastname,

emp_firstname,

newsalary

FROM

TABLE(update_salary(CHAR(’1136’),

500))

AS

T

A

result

set

is

returned

with

the

last

name,

first

name,

and

new

salary

for

the

employee.

The

invoker

of

the

function

will

not

know

that

the

audit

record

was

made.

84

Programming

Server

Applications

EMP_LASTNAME

EMP_FIRSTNAME

NEWSALARY

JONES

GWYNETH

90500

The

audit

table

would

include

a

new

record

such

as

the

following:

USER

TABLE

ACTION

TIME

MBROOKS

EMPLOYEE

Update

emp

salary.

Values:

1136

500

2003-07-24-21.01.38.459255

Example

4:

Retrieving

rows

modified

within

the

body

of

an

SQL

table

function:

This

function

updates

the

salary

of

an

employee,

specified

by

an

employee

number

EMPNUM,

by

an

amount

specified

by

amount,

and

returns

the

original

values

of

the

modified

row

or

rows

to

the

caller.

This

example

makes

use

of

a

SELECT

statement

that

references

a

data

change

statement

in

the

FROM

clause.

Specifying

OLD

TABLE

within

the

FROM

clause

of

this

statement

flags

the

return

of

the

original

row

data

from

the

table

employee

that

was

the

target

of

the

UPDATE

statement.

Using

FINAL

TABLE,

instead

of

OLD

TABLE,

would

flag

the

return

of

the

row

values

subsequent

to

the

update

of

table

employee.

CREATE

FUNCTION

update_salary

(updEmpNum

CHAR(4),

amount

DOUBLE)

RETURNS

TABLE

(empnum

CHAR(4),

emp_lastname

VARCHAR(10),

emp_firstname

VARCHAR(10),

dept

CHAR(4),

newsalary

integer)

LANGUAGE

SQL

MODIFIES

SQL

DATA

NO

EXTERNAL

ACTION

DETERMINISTIC

BEGIN

ATOMIC

RETURN

SELECT

empnum,

lastname,

firstname,

dept,

salary

FROM

OLD

TABLE(UPDATE

employee

SET

salary

=

salary

+

amount

WHERE

employee.empnum

=

updEmpNum);

END

Related

concepts:

v

“SQL

table

functions

that

modify

SQL

data”

on

page

80

Related

reference:

v

“CREATE

FUNCTION

(SQL

Scalar,

Table,

or

Row)

statement”

in

the

SQL

Reference,

Volume

2

Chapter

3.

SQL

routines

85

86

Programming

Server

Applications

Chapter

4.

External

routines

Parameter

styles

for

external

routines

.

.

.

.

.

. 87

Syntax

for

passing

arguments

to

routines

written

in

C/C++,

OLE,

or

COBOL

.

.

.

.

.

.

.

.

.

. 89

SQL

in

external

routines

.

.

.

.

.

.

.

.

.

. 101

Effect

of

DYNAMICRULES

bind

option

on

dynamic

SQL

.

.

.

.

.

.

.

.

.

.

.

.

. 104

.NET

common

language

runtime

routines

.

.

.

. 106

Common

language

runtime

(CLR)

routines

.

. 106

Creating

CLR

routines

.

.

.

.

.

.

.

.

. 107

Supported

SQL

data

types

for

the

DB2

.NET

Data

Provider

.

.

.

.

.

.

.

.

.

.

.

. 110

Parameters

in

CLR

routines

.

.

.

.

.

.

.

. 111

Returning

result

sets

from

CLR

procedures

.

. 114

Restrictions

on

CLR

routines

.

.

.

.

.

.

. 116

Errors

related

to

CLR

routines

.

.

.

.

.

.

. 117

Examples

of

CLR

procedures

in

C#

.

.

.

.

. 119

Examples

of

CLR

procedures

in

Visual

Basic

130

Examples

of

CLR

user-defined

functions

in

C#

139

Examples

of

CLR

user-defined

functions

in

Visual

Basic

.

.

.

.

.

.

.

.

.

.

.

.

. 145

C/C++

routines

.

.

.

.

.

.

.

.

.

.

.

. 151

C/C++

routines

.

.

.

.

.

.

.

.

.

.

. 151

Include

file

for

C/C++

routines

(sqludf.h)

.

.

. 154

Supported

SQL

data

types

in

C/C++

.

.

.

. 155

SQL

data

type

handling

in

C/C++

routines

.

. 158

Graphic

host

variables

in

C/C++

routines

.

.

. 165

C++

type

decoration

.

.

.

.

.

.

.

.

.

. 165

Java

routines

.

.

.

.

.

.

.

.

.

.

.

.

. 167

Java

routines

.

.

.

.

.

.

.

.

.

.

.

. 167

Supported

SQL

data

types

in

Java

.

.

.

.

. 170

Where

to

put

Java

classes

.

.

.

.

.

.

.

. 172

Updating

Java

routines

(stored

procedures,

UDFs,

and

methods)

for

runtime

.

.

.

.

.

. 173

JAR

file

administration

on

the

database

server

173

Connection

contexts

in

SQLJ

routines

.

.

.

. 174

Debugging

stored

procedures

in

Java

.

.

.

. 175

Debugging

Java

stored

procedures

.

.

.

. 175

Preparing

to

debug

Java

stored

procedures

175

Invoking

the

debug

program

.

.

.

.

.

. 177

Populating

the

debug

table

.

.

.

.

.

.

. 177

Java

debug

table

DB2DBG.ROUTINE_DEBUG

.

.

.

.

.

. 178

OLE

automation

routines

.

.

.

.

.

.

.

.

. 179

OLE

automation

routine

design

.

.

.

.

.

. 179

Creating

OLE

automation

routines

.

.

.

.

. 180

Object

instance

and

scratchpad

considerations

and

OLE

routines

.

.

.

.

.

.

.

.

.

.

. 181

Supported

SQL

data

types

in

OLE

automation

182

OLE

automation

routines

in

BASIC

and

C++

183

OLE

DB

user-defined

table

functions

.

.

.

.

. 186

OLE

DB

user-defined

table

functions

.

.

.

. 186

Creating

an

OLE

DB

table

UDF

.

.

.

.

.

. 187

Fully

qualified

rowset

names

.

.

.

.

.

.

. 189

Supported

SQL

data

types

in

OLE

DB

.

.

.

. 190

External

routines

can

be

written

in

the

following

programming

languages:

C,

C++,

Java,

and

OLE.

In

addition

to

these

languages,

stored

procedures

can

also

be

written

in

COBOL.

In

order

to

build

an

external

routine,

you

need

to

install

and

configure

the

supported

compilers/developer

kits

on

the

database

server,

depending

on

the

routine’s

language.

External

routines

must

be

built

and

registered

before

you

can

invoke

them.

Parameter

styles

for

external

routines

Each

routine

must

conform

to

a

particular

convention

for

the

exchange

of

parameters.

These

conventions

are

known

as

parameter

styles.

You

assign

a

particular

parameter

style

to

a

routine

during

its

registration

with

the

PARAMETER

STYLE

clause.

Following

are

the

available

parameter

styles

and

their

attributes.

©

Copyright

IBM

Corp.

1993

-

2004

87

||
||

||
||
||
||
||

|

|

Table

1.

Parameter

styles

Parameter

style

Supported

language

Supported

routine

type

Description

SQL

1

v

C/C++

v

OLE

v

.NET

common

language

runtime

languages

v

COBOL

2

v

UDFs

v

stored

procedures

v

methods

In

addition

to

the

parameters

passed

during

invocation,

the

following

arguments

are

passed

to

the

routine

in

the

following

order:

v

A

null

indicator

for

each

parameter

or

result

declared

in

the

CREATE

statement.

v

The

SQLSTATE

to

be

returned

to

DB2®.

v

The

qualified

name

of

the

routine.

v

The

specific

name

of

the

routine.

v

The

SQL

diagnostic

string

to

be

returned

to

DB2.

Depending

on

options

specified

in

the

CREATE

statement

and

the

routine

type,

the

following

arguments

can

be

passed

to

the

routine

in

the

following

order:

v

A

buffer

for

the

scratchpad.

v

The

call

type

of

the

routine.

v

The

dbinfo

structure

(contains

information

about

the

database).

DB2SQL

1

v

C/C++

v

OLE

v

.NET

common

language

runtime

languages

v

COBOL

v

stored

procedures

In

addition

to

the

parameters

passed

during

invocation,

the

following

arguments

are

passed

to

the

stored

procedure

in

the

following

order:

v

A

vector

containing

a

null

indicator

for

each

parameter

on

the

CALL

statement.

v

The

SQLSTATE

to

be

returned

to

DB2.

v

The

qualified

name

of

the

stored

procedure.

v

The

specific

name

of

the

stored

procedure.

v

The

SQL

diagnostic

string

to

be

returned

to

DB2.

If

the

DBINFO

clause

is

specified

in

the

CREATE

PROCEDURE

statement,

a

dbinfo

structure

(it

contains

information

about

the

database)

is

passed

to

the

stored

procedure.

JAVA

v

Java™

v

UDFs

v

stored

procedures

PARAMETER

STYLE

JAVA

routines

use

a

parameter

passing

convention

that

conforms

to

the

Java

language

and

SQLJ

Routines

specification.

For

stored

procedures,

INOUT

and

OUT

parameters

will

be

passed

as

single

entry

arrays

to

facilitate

the

returning

of

values.

In

addition

to

the

IN,

OUT,

and

INOUT

parameters,

Java

method

signatures

for

stored

procedures

include

a

parameter

of

type

ResultSet[]

for

each

result

set

specified

in

the

DYNAMIC

RESULT

SETS

clause

of

the

CREATE

PROCEDURE

statement.

For

PARAMETER

STYLE

JAVA

UDFs

and

methods,

no

additional

arguments

to

those

specified

in

the

routine

invocation

are

passed.

DB2GENERAL

v

Java

v

UDFs

v

stored

procedures

v

methods

This

type

of

routine

will

use

a

parameter

passing

convention

that

is

defined

for

use

with

Java

methods.

Unless

you

are

developing

table

UDFs,

UDFs

with

scratchpads,

or

need

access

to

the

dbinfo

structure,

it

is

recommended

that

you

use

PARAMETER

STYLE

JAVA.

For

PARAMETER

STYLE

DB2GENERAL

routines,

no

additional

arguments

to

those

specified

in

the

routine

invocation

are

passed.

GENERAL

v

C/C++

v

.NET

common

language

runtime

languages

v

COBOL

v

stored

procedures

A

PARAMETER

STYLE

GENERAL

stored

procedure

receives

parameters

from

the

CALL

statement

in

the

invoking

application

or

routine.

If

the

DBINFO

clause

is

specified

in

the

CREATE

PROCEDURE

statement,

a

dbinfo

structure

(it

contains

information

about

the

database)

is

passed

to

the

stored

procedure.

GENERAL

is

the

equivalent

of

SIMPLE

stored

procedures

for

DB2

Universal

Database

for

z/OS

and

OS/390.

88

Programming

Server

Applications

Table

1.

Parameter

styles

(continued)

Parameter

style

Supported

language

Supported

routine

type

Description

GENERAL

WITH

NULLS

v

C/C++

v

.NET

common

language

runtime

languages

v

COBOL

v

stored

procedures

A

PARAMETER

STYLE

GENERAL

WITH

NULLS

stored

procedure

receives

parameters

from

the

CALL

statement

in

the

invoking

application

or

routine.

Also

included

is

a

vector

containing

a

null

indicator

for

each

parameter

on

the

CALL

statement.

If

the

DBINFO

clause

is

specified

in

the

CREATE

PROCEDURE

statement,

a

dbinfo

structure

(it

contains

information

about

the

database)

is

passed

to

the

stored

procedure.

GENERAL

WITH

NULLS

is

the

equivalent

of

SIMPLE

WITH

NULLS

stored

procedures

for

DB2

Universal

Database

for

z/OS

and

OS/390.

Note:

1.

For

UDFs

and

methods,

PARAMETER

STYLE

SQL

is

equivalent

to

PARAMETER

STYLE

DB2SQL.

2.

COBOL

can

only

be

used

to

develop

stored

procedures.

3.

.NET

common

language

runtime

methods

are

not

supported.<

Related

concepts:

v

“DB2GENERAL

routines”

on

page

333

v

“Java

routines”

on

page

167

Related

reference:

v

“CREATE

FUNCTION

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

PROCEDURE

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

TYPE

(Structured)

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

METHOD

statement”

in

the

SQL

Reference,

Volume

2

v

“Syntax

for

passing

arguments

to

routines

written

in

C/C++,

OLE,

or

COBOL”

on

page

89

Syntax

for

passing

arguments

to

routines

written

in

C/C++,

OLE,

or

COBOL

In

addition

to

the

SQL

arguments

that

are

specified

in

the

DML

reference

for

a

routine,

DB2

passes

additional

arguments

to

the

external

routine

body.

The

nature

and

order

of

these

arguments

is

determined

by

the

parameter

style

with

which

you

registered

your

routine.

To

ensure

that

information

is

exchanged

correctly

between

invokers

and

the

routine

body,

you

must

ensure

that

your

routine

accepts

arguments

in

the

order

they

are

passed,

according

to

the

parameter

style

being

used.

The

sqludf

include

file

can

aid

you

in

handling

and

using

these

arguments.

The

following

parameter

styles

are

applicable

only

to

LANGUAGE

C,

LANGUAGE

OLE,

and

LANGUAGE

COBOL

routines.

PARAMETER

STYLE

SQL

routines

��

�

�

SQL-argument

SQL-argument-ind

sqlstate

routine-name

�

Chapter

4.

External

routines

89

|

�

specific-name

diagnostic-message

scratchpad

call-type

dbinfo

��

PARAMETER

STYLE

DB2SQL

procedures

��

�

SQL-argument

SQL-argument-ind-array

sqlstate

routine-name

�

�

specific-name

diagnostic-message

dbinfo

��

PARAMETER

STYLE

GENERAL

procedures

��

�

SQL-argument

dbinfo

��

PARAMETER

STYLE

GENERAL

WITH

NULLS

procedures

��

�

SQL-argument

SQL-argument-ind-array

dbinfo

��

Note:

For

UDFs

and

methods,

PARAMETER

STYLE

SQL

is

equivalent

to

PARAMETER

STYLE

DB2SQL.

The

arguments

for

the

above

parameter

styles

are

described

as

follows:

SQL-argument...

Each

SQL-argument

represents

one

input

or

output

value

defined

when

the

routine

was

created.

The

list

of

arguments

is

determined

as

follows:

v

For

a

scalar

function,

one

argument

for

each

input

parameter

to

the

function

followed

by

one

SQL-argument

for

the

result

of

the

function.

v

For

a

table

function,

one

argument

for

each

input

parameter

to

the

function

followed

by

one

SQL-argument

for

each

column

in

the

result

table

of

the

function.

v

For

a

method,

one

SQL-argument

for

the

subject

type

of

the

method,

then

one

argument

for

each

input

parameter

to

the

method

followed

by

one

SQL-argument

for

the

result

of

the

method.

v

For

a

stored

procedure,

one

SQL-argument

for

each

parameter

to

the

stored

procedure.

Each

SQL-argument

is

used

as

follows:

v

Input

parameter

of

a

function

or

method,

subject

type

of

a

method,

or

an

IN

parameter

of

a

stored

procedure

This

argument

is

set

by

DB2

before

calling

the

routine.

The

value

of

each

of

these

arguments

is

taken

from

the

expression

specified

in

the

routine

invocation.

It

is

expressed

in

the

data

type

of

the

corresponding

parameter

definition

in

the

CREATE

statement.

90

Programming

Server

Applications

v

Result

of

a

function

or

method

or

an

OUT

parameter

of

a

stored

procedure

This

argument

is

set

by

the

routine

before

returning

to

DB2.

DB2

allocates

the

buffer

and

passes

its

address

to

the

routine.

The

routine

puts

the

result

value

into

the

buffer.

Enough

buffer

space

is

allocated

by

DB2

to

contain

the

value

expressed

in

the

data

type.

For

character

types

and

LOBs,

this

means

the

maximum

size,

as

defined

in

the

create

statement,

is

allocated.

For

scalar

functions

and

methods,

the

result

data

type

is

defined

in

the

CAST

FROM

clause,

if

it

is

present,

or

in

the

RETURNS

clause,

if

no

CAST

FROM

clause

is

present.

For

table

functions,

DB2

defines

a

performance

optimization

where

every

defined

column

does

not

have

to

be

returned

to

DB2.

If

you

write

your

UDF

to

take

advantage

of

this

feature,

it

returns

only

the

columns

required

by

the

statement

referencing

the

table

function.

For

example,

consider

a

CREATE

FUNCTION

statement

for

a

table

function

defined

with

100

result

columns.

If

a

given

statement

referencing

the

function

is

only

interested

in

two

of

them,

this

optimization

enables

the

UDF

to

return

only

those

two

columns

for

each

row

and

not

spend

time

on

the

other

98

columns.

See

the

dbinfo

argument

below

for

more

information

on

this

optimization.

For

each

value

returned,

the

routine

should

not

return

more

bytes

than

is

required

for

the

data

type

and

length

of

the

result.

Maximums

are

defined

during

the

creation

of

the

routine’s

catalog

entry.

An

overwrite

by

the

routine

can

cause

unpredictable

results

or

an

abnormal

termination.

v

INOUT

parameter

of

a

stored

procedure

This

argument

behaves

as

both

an

IN

and

an

OUT

parameter

and

therefore

follows

both

sets

of

rules

shown

above.

DB2

will

set

the

argument

before

calling

the

stored

procedure.

The

buffer

allocated

by

DB2

for

the

argument

is

large

enough

to

contain

the

maximum

size

of

the

data

type

of

the

parameter

defined

in

the

CREATE

PROCEDURE

statement.

For

example,

an

INOUT

parameter

of

a

CHAR

type

could

have

a

10

byte

varchar

going

in

to

the

stored

procedure,

and

a

100

byte

varchar

coming

out

of

the

stored

procedure.

The

buffer

is

set

by

the

stored

procedure

before

returning

to

DB2.

DB2

aligns

the

data

for

SQL-argument

according

to

the

data

type

and

the

server

operating

system,

also

known

as

platform.

SQL-argument-ind...

There

is

an

SQL-argument-ind

for

each

SQL-argument

passed

to

the

routine.

The

nth

SQL-argument-ind

corresponds

to

the

nth

SQL-argument

and

indicates

whether

the

SQL-argument

has

a

value

or

is

NULL.

Each

SQL-argument-ind

is

used

as

follows:

v

Input

parameter

of

a

function

or

method,

subject

type

of

a

method,

or

an

IN

parameter

of

a

stored

procedure

This

argument

is

set

by

DB2

before

calling

the

routine.

It

contains

one

of

the

following

values:

0

The

argument

is

present

and

not

NULL.

-1

The

argument

is

present

and

its

value

is

NULL.
If

the

routine

is

defined

with

RETURNS

NULL

ON

NULL

INPUT,

the

routine

body

does

not

need

to

check

for

a

NULL

value.

However,

if

it

is

Chapter

4.

External

routines

91

defined

with

CALLED

ON

NULL

INPUT,

any

argument

can

be

NULL

and

the

routine

should

check

SQL-argument-ind

before

using

the

corresponding

SQL-argument.

v

Result

of

a

function

or

method

or

an

OUT

parameter

of

a

stored

procedure

This

argument

is

set

by

the

routine

before

returning

to

DB2.

This

argument

is

used

by

the

routine

to

signal

if

the

particular

result

value

is

NULL:

0

The

result

is

not

NULL.

-1

The

result

is

the

NULL

value.
Even

if

the

routine

is

defined

with

RETURNS

NULL

ON

NULL

INPUT,

the

routine

body

must

set

the

SQL-argument-ind

of

the

result.

For

example,

a

divide

function

could

set

the

result

to

null

when

the

denominator

is

zero.

For

scalar

functions

and

methods,

DB2

treats

a

NULL

result

as

an

arithmetic

error

if

the

following

is

true:

–

The

database

configuration

parameter

dft_sqlmathwarn

is

YES

–

One

of

the

input

arguments

is

a

null

because

of

an

arithmetic

error

This

is

also

true

if

you

define

the

function

with

the

RETURNS

NULL

ON

NULL

INPUT

option

For

table

functions,

if

the

UDF

takes

advantage

of

the

optimization

using

the

result

column

list,

then

only

the

indicators

corresponding

to

the

required

columns

need

be

set.

v

INOUT

parameter

of

a

stored

procedure

This

argument

behaves

as

both

an

IN

and

an

OUT

parameter

and

therefore

follows

both

sets

of

rules

shown

above.

DB2

will

set

the

argument

before

calling

the

stored

procedure.

The

SQL-argument-ind

is

set

by

the

stored

procedure

before

returning

to

DB2.

Each

SQL-argument-ind

takes

the

form

of

a

SMALLINT

value.

DB2

aligns

the

data

for

SQL-argument-ind

according

to

the

data

type

and

the

server

operating

system.

SQL-argument-ind-array

There

is

an

element

in

SQL-argument-ind-array

for

each

SQL-argument

passed

to

the

stored

procedure.

The

nth

element

in

SQL-argument-ind-array

corresponds

to

the

nth

SQL-argument

and

indicates

whether

the

SQL-argument

has

a

value

or

is

NULL

Each

element

in

SQL-argument-ind-array

is

used

as

follows:

v

IN

parameter

of

a

stored

procedure

This

element

is

set

by

DB2

before

calling

the

routine.

It

contains

one

of

the

following

values:

0

The

argument

is

present

and

not

NULL.

-1

The

argument

is

present

and

its

value

is

NULL.

If

the

stored

procedure

is

defined

with

RETURNS

NULL

ON

NULL

INPUT,

the

stored

procedure

body

does

not

need

to

check

for

a

NULL

value.

However,

if

it

is

defined

with

CALLED

ON

NULL

INPUT,

any

argument

can

be

NULL

and

the

stored

procedure

should

check

SQL-argument-ind

before

using

the

corresponding

SQL-argument.

v

OUT

parameter

of

a

stored

procedure

92

Programming

Server

Applications

|
|

This

element

is

set

by

the

routine

before

returning

to

DB2.

This

argument

is

used

by

the

routine

to

signal

if

the

particular

result

value

is

NULL:

0

or

positive

The

result

is

not

NULL.

negative

The

result

is

the

NULL

value.
v

INOUT

parameter

of

a

stored

procedure

This

element

behaves

as

both

an

IN

and

an

OUT

parameter

and

therefore

follows

both

sets

of

rules

shown

above.

DB2

will

set

the

argument

before

calling

the

stored

procedure.

The

element

of

SQL-argument-ind-array

is

set

by

the

stored

procedure

before

returning

to

DB2.

Each

element

of

SQL-argument-ind-array

takes

the

form

of

a

SMALLINT

value.

DB2

aligns

the

data

for

SQL-argument-ind-array

according

to

the

data

type

and

the

server

operating

system.

sqlstate

This

argument

is

set

by

the

routine

before

returning

to

DB2.

It

can

be

used

by

the

routine

to

signal

warning

or

error

conditions.

The

routine

can

set

this

argument

to

any

value.

The

value

’00000’

means

that

no

warning

or

error

situations

were

detected.

Values

that

start

with

’01’

are

warning

conditions.

Values

that

start

with

anything

other

than

’00’

or

’01’

are

error

conditions.

When

the

routine

is

called,

the

argument

contains

the

value

’00000’.

For

error

conditions,

the

routine

returns

an

SQLCODE

of

-443.

For

warning

conditions,

the

routine

returns

an

SQLCODE

of

+462.

If

the

SQLSTATE

is

38001

or

38502,

then

the

SQLCODE

is

-487.

The

sqlstate

takes

the

form

of

a

CHAR(5)

value.

DB2

aligns

the

data

for

sqlstate

according

to

the

data

type

and

the

server

operating

system.

routine-name

This

argument

is

set

by

DB2

before

calling

the

routine.

It

is

the

qualified

function

name,

passed

from

DB2

to

the

routine

The

form

of

the

routine-name

that

is

passed

is:

schema.routine

The

parts

are

separated

by

a

period.

Two

examples

are:

PABLO.BLOOP

WILLIE.FINDSTRING

This

form

enables

you

to

use

the

same

routine

body

for

multiple

external

routines,

and

still

differentiate

between

the

routines

when

it

is

invoked.

Note:

Although

it

is

possible

to

include

the

period

in

object

names

and

schema

names,

it

is

not

recommended.

For

example,

if

a

function,

ROTATE

is

in

a

schema,

OBJ.OP,

the

routine

name

that

is

passed

to

the

function

is

OBJ.OP.ROTATE,

and

it

is

not

obvious

if

the

schema

name

is

OBJ

or

OBJ.OP.

The

routine-name

takes

the

form

of

a

VARCHAR(257)

value.

DB2

aligns

the

data

for

routine-name

according

to

the

data

type

and

the

server

operating

system.

specific-name

This

argument

is

set

by

DB2

before

calling

the

routine.

It

is

the

specific

name

of

the

routine

passed

from

DB2

to

the

routine.

Chapter

4.

External

routines

93

Two

examples

are:

WILLIE_FIND_FEB99

SQL9904281052440430

This

first

value

is

provided

by

the

user

in

his

CREATE

statement.

The

second

value

is

generated

by

DB2

from

the

current

timestamp

when

the

user

does

not

specify

a

value.

As

with

the

routine-name

argument,

the

reason

for

passing

this

value

is

to

give

the

routine

the

means

of

distinguishing

exactly

which

specific

routine

is

invoking

it.

The

specific-name

takes

the

form

of

a

VARCHAR(18)

value.

DB2

aligns

the

data

for

specific-name

according

to

the

data

type

and

the

server

operating

system.

diagnostic-message

This

argument

is

set

by

the

routine

before

returning

to

DB2.

The

routine

can

use

this

argument

to

insert

message

text

in

a

DB2

message.

When

the

routine

returns

either

an

error

or

a

warning,

using

the

sqlstate

argument

described

previously,

it

can

include

descriptive

information

here.

DB2

includes

this

information

as

a

token

in

its

message.

DB2

sets

the

first

character

to

null

before

calling

the

routine.

Upon

return,

it

treats

the

string

as

a

C

null-terminated

string.

This

string

will

be

included

in

the

SQLCA

as

a

token

for

the

error

condition.

At

least

the

first

part

of

this

string

will

appear

in

the

SQLCA

or

DB2

CLP

message.

However,

the

actual

number

of

characters

that

will

appear

depends

on

the

lengths

of

the

other

tokens,

because

DB2

truncates

the

tokens

to

conform

to

the

limit

on

total

token

length

imposed

by

the

SQLCA.

Avoid

using

X'FF'

in

the

text

since

this

character

is

used

to

delimit

tokens

in

the

SQLCA.

The

routine

should

not

return

more

text

than

will

fit

in

the

VARCHAR(70)

buffer

that

is

passed

to

it.

An

overwrite

by

the

routine

can

cause

unpredictable

results

or

an

abend.

DB2

assumes

that

any

message

tokens

returned

from

the

routine

to

DB2

are

in

the

same

code

page

as

the

routine.

Your

routine

should

ensure

that

this

is

the

case.

If

you

use

the

7-bit

invariant

ASCII

subset,

your

routine

can

return

the

message

tokens

in

any

code

page.

The

diagnostic-message

takes

the

form

of

a

VARCHAR(70)

value.

DB2

aligns

the

data

for

diagnostic-message

according

to

the

data

type

and

the

server

operating

system.

scratchpad

This

argument

is

set

by

DB2

before

invoking

the

UDF

or

method.

It

is

only

present

for

functions

and

methods

that

specified

the

SCRATCHPAD

keyword

during

registration.

This

argument

is

a

structure,

exactly

like

the

structure

used

to

pass

a

value

of

any

of

the

LOB

data

types,

with

the

following

elements:

v

An

INTEGER

containing

the

length

of

the

scratchpad.

Changing

the

length

of

the

scratchpad

will

result

in

SQLCODE

-450

(SQLSTATE

39501)

v

The

actual

scratchpad

initialized

to

all

binary

0s

as

follows:

–

For

scalar

functions

and

methods,

it

is

initialized

before

the

first

call,

and

not

generally

looked

at

or

modified

by

DB2

thereafter.

–

For

table

functions,

the

scratchpad

is

initialized

prior

to

the

FIRST

call

to

the

UDF

if

FINAL

CALL

is

specified

on

the

CREATE

FUNCTION.

94

Programming

Server

Applications

|
|
|
|

After

this

call,

the

scratchpad

content

is

totally

under

control

of

the

table

function.

If

NO

FINAL

CALL

was

specified

or

defaulted

for

a

table

function,

then

the

scratchpad

is

initialized

for

each

OPEN

call,

and

the

scratchpad

content

is

completely

under

control

of

the

table

function

between

OPEN

calls.

(This

can

be

very

important

for

a

table

function

used

in

a

join

or

subquery.

If

it

is

necessary

to

maintain

the

content

of

the

scratchpad

across

OPEN

calls,

then

FINAL

CALL

must

be

specified

in

your

CREATE

FUNCTION

statement.

With

FINAL

CALL

specified,

in

addition

to

the

normal

OPEN,

FETCH

and

CLOSE

calls,

the

table

function

will

also

receive

FIRST

and

FINAL

calls,

for

the

purpose

of

scratchpad

maintenance

and

resource

release.)

The

scratchpad

can

be

mapped

in

your

routine

using

the

same

type

as

either

a

CLOB

or

a

BLOB,

since

the

argument

passed

has

the

same

structure.

Ensure

your

routine

code

does

not

make

changes

outside

of

the

scratchpad

buffer.

An

overwrite

by

the

routine

can

cause

unpredictable

results,

an

abend,

and

might

not

result

in

a

graceful

failure

by

DB2.

If

a

scalar

UDF

or

method

that

uses

a

scratchpad

is

referenced

in

a

subquery,

DB2

might

decide

to

refresh

the

scratchpad

between

invocations

of

the

subquery.

This

refresh

occurs

after

a

final-call

is

made,

if

FINAL

CALL

is

specified

for

the

UDF.

DB2

initializes

the

scratchpad

so

that

the

data

field

is

aligned

for

the

storage

of

any

data

type.

This

can

result

in

the

entire

scratchpad

structure,

including

the

length

field,

being

improperly

aligned.

call-type

This

argument,

if

present,

is

set

by

DB2

before

invoking

the

UDF

or

method.

This

argument

is

present

for

all

table

functions

and

for

scalar

functions

and

methods

that

specified

FINAL

CALL

during

registration

All

the

current

possible

values

for

call-type

follow.

Your

UDF

or

method

should

contain

a

switch

or

case

statement

that

explicitly

tests

for

all

the

expected

values,

rather

than

containing

“if

A

do

AA,

else

if

B

do

BB,

else

it

must

be

C

so

do

CC”

type

logic.

This

is

because

it

is

possible

that

additional

call

types

will

be

added

in

the

future,

and

if

you

do

not

explicitly

test

for

condition

C

you

will

have

trouble

when

new

possibilities

are

added.

Notes:

1.

For

all

values

of

call-type,

it

might

be

appropriate

for

the

routine

to

set

a

sqlstate

and

diagnostic-message

return

value.

This

information

will

not

be

repeated

in

the

following

descriptions

of

each

call-type.

For

all

calls

DB2

will

take

the

indicated

action

as

described

previously

for

these

arguments.

2.

The

include

file

sqludf.h

is

intended

for

use

with

routines.

The

file

contains

symbolic

defines

for

the

following

call-type

values,

which

are

spelled

out

as

constants.

For

scalar

functions

and

methods

call-type

contains:

SQLUDF_FIRST_CALL

(-1)

This

is

the

FIRST

call

to

the

routine

for

this

statement.

The

scratchpad

(if

any)

is

set

to

binary

zeros

when

the

routine

is

called.

All

argument

values

are

passed,

and

the

routine

should

do

whatever

one-time

initialization

actions

are

Chapter

4.

External

routines

95

required.

In

addition,

a

FIRST

call

to

a

scalar

UDF

or

method

is

like

a

NORMAL

call,

in

that

it

is

expected

to

develop

and

return

an

answer.

Note:

If

SCRATCHPAD

is

specified

but

FINAL

CALL

is

not,

then

the

routine

will

not

have

this

call-type

argument

to

identify

the

very

first

call.

Instead,

it

will

have

to

rely

on

the

all-zero

state

of

the

scratchpad.

SQLUDF_NORMAL_CALL

(0)

This

is

a

NORMAL

call.

All

the

SQL

input

values

are

passed,

and

the

routine

is

expected

to

develop

and

return

the

result.

The

routine

can

also

return

sqlstate

and

diagnostic-message

information.

SQLUDF_FINAL_CALL

(1)

This

is

a

FINAL

call,

that

is

no

SQL-argument

or

SQL-argument-ind

values

are

passed,

and

attempts

to

examine

these

values

can

cause

unpredictable

results.

If

a

scratchpad

is

also

passed,

it

is

untouched

from

the

previous

call.

The

routine

is

expected

to

release

resources

at

this

point.

SQLUDF_FINAL_CRA

(255)

This

is

a

FINAL

call,

identical

to

the

FINAL

call

described

previously,

with

one

additional

characteristic,

namely

that

it

is

made

to

routines

that

are

defined

as

being

able

to

issue

SQL,

and

it

is

made

at

such

a

time

that

the

routine

must

not

issue

any

SQL

except

CLOSE

cursor.

(SQLCODE

-396,

SQLSTATE

38505)

For

example,

when

DB2

is

in

the

middle

of

COMMIT

processing,

it

can

not

tolerate

new

SQL,

and

any

FINAL

call

issued

to

a

routine

at

that

time

would

be

a

255

FINAL

call.

Routines

that

are

not

defined

as

containing

any

level

of

SQL

access

will

never

receive

a

255

FINAL

call,

whereas

routines

that

do

use

SQL

might

be

given

either

type

of

FINAL

call.

Releasing

resources

A

scalar

UDF

or

method

is

expected

to

release

resources

it

has

required,

for

example,

memory.

If

FINAL

CALL

is

specified

for

the

routine,

then

that

FINAL

call

is

a

natural

place

to

release

resources,

provided

that

SCRATCHPAD

is

also

specified

and

is

used

to

track

the

resource.

If

FINAL

CALL

is

not

specified,

then

any

resource

acquired

should

be

released

on

the

same

call.

For

table

functions

call-type

contains:

SQLUDF_TF_FIRST

(-2)

This

is

the

FIRST

call,

which

only

occurs

if

the

FINAL

CALL

keyword

was

specified

for

the

UDF.

The

scratchpad

is

set

to

binary

zeros

before

this

call.

Argument

values

are

passed

to

the

table

function.

The

table

function

can

acquire

memory

or

perform

other

one-time

only

resource

initialization.

This

is

not

an

OPEN

call,

that

call

follows

this

one.

On

a

FIRST

call

the

table

function

should

not

return

any

data

to

DB2

as

DB2

ignores

the

data.

96

Programming

Server

Applications

SQLUDF_TF_OPEN

(-1)

This

is

the

OPEN

call.

The

scratchpad

will

be

initialized

if

NO

FINAL

CALL

is

specified,

but

not

necessarily

otherwise.

All

SQL

argument

values

are

passed

to

the

table

function

on

OPEN.

The

table

function

should

not

return

any

data

to

DB2

on

the

OPEN

call.

SQLUDF_TF_FETCH

(0)

This

is

a

FETCH

call,

and

DB2

expects

the

table

function

to

return

either

a

row

comprising

the

set

of

return

values,

or

an

end-of-table

condition

indicated

by

SQLSTATE

value

’02000’.

If

scratchpad

is

passed

to

the

UDF,

then

on

entry

it

is

untouched

from

the

previous

call.

SQLUDF_TF_CLOSE

(1)

This

is

a

CLOSE

call

to

the

table

function.

It

balances

the

OPEN

call,

and

can

be

used

to

perform

any

external

CLOSE

processing

(for

example,

closing

a

source

file),

and

resource

release

(particularly

for

the

NO

FINAL

CALL

case).

In

cases

involving

a

join

or

a

subquery,

the

OPEN/FETCH.../CLOSE

call

sequences

can

repeat

within

the

execution

of

a

statement,

but

there

is

only

one

FIRST

call

and

only

one

FINAL

call.

The

FIRST

and

FINAL

call

only

occur

if

FINAL

CALL

is

specified

for

the

table

function.

SQLUDF_TF_FINAL

(2)

This

is

a

FINAL

call,

which

only

occurs

if

FINAL

CALL

was

specified

for

the

table

function.

It

balances

the

FIRST

call,

and

occurs

only

once

per

execution

of

the

statement.

It

is

intended

for

the

purpose

of

releasing

resources.

SQLUDF_TF_FINAL_CRA

(255)

This

is

a

FINAL

call,

identical

to

the

FINAL

call

described

above,

with

one

additional

characteristic,

namely

that

it

is

made

to

UDFs

which

are

defined

as

being

able

to

issue

SQL,

and

it

is

made

at

such

a

time

that

the

UDF

must

not

issue

any

SQL

except

CLOSE

cursor.

(SQLCODE

-396,

SQLSTATE

38505)

For

example,

when

DB2

is

in

the

middle

of

COMMIT

processing,

it

can

not

tolerate

new

SQL,

and

any

FINAL

call

issued

to

a

UDF

at

that

time

would

be

a

255

FINAL

call.

Note

that

UDFs

which

are

not

defined

as

containing

any

level

of

SQL

access

will

never

receive

a

255

FINAL

call,

whereas

UDFs

which

do

use

SQL

can

be

given

either

type

of

FINAL

call.

Releasing

resources

Write

routines

to

release

any

resources

that

they

acquire.

For

table

functions,

there

are

two

natural

places

for

this

release:

the

CLOSE

call

and

the

FINAL

call.

The

CLOSE

call

balances

each

OPEN

call

and

can

occur

multiple

times

in

the

execution

of

a

statement.

The

FINAL

call

only

occurs

if

FINAL

CALL

is

specified

for

the

UDF,

and

occurs

only

once

per

statement.

If

you

can

apply

a

resource

across

all

OPEN/FETCH/CLOSE

sequences

of

the

UDF,

write

the

UDF

to

acquire

the

resource

on

the

FIRST

call

and

free

it

on

the

FINAL

call.

The

scratchpad

is

a

natural

place

to

track

this

Chapter

4.

External

routines

97

resource.

For

table

functions,

if

FINAL

CALL

is

specified,

the

scratchpad

is

initialized

only

before

the

FIRST

call.

If

FINAL

CALL

is

not

specified,

then

it

is

reinitialized

before

each

OPEN

call.

If

a

resource

is

specific

to

each

OPEN/FETCH/CLOSE

sequence,

write

the

UDF

to

free

the

resource

on

the

CLOSE

call.

Note:

When

a

table

function

is

in

a

subquery

or

join,

it

is

very

possible

that

there

will

be

multiple

occurrences

of

the

OPEN/FETCH/CLOSE

sequence,

depending

on

how

the

DB2

Optimizer

chooses

to

organize

the

execution

of

the

statement.

The

call-type

takes

the

form

of

an

INTEGER

value.

DB2

aligns

the

data

for

call-type

according

to

the

data

type

and

the

server

operating

system.

dbinfo

This

argument

is

set

by

DB2

before

calling

the

routine.

It

is

only

present

if

the

CREATE

statement

for

the

routine

specifies

the

DBINFO

keyword.

The

argument

is

the

sqludf_dbinfo

structure

defined

in

the

header

file

sqludf.h.

The

variables

in

this

structure

that

contain

names

and

identifiers

might

be

longer

than

the

longest

value

possible

in

this

release

of

DB2,

but

they

are

defined

this

way

for

compatibility

with

future

releases.

You

can

use

the

length

variable

that

complements

each

name

and

identifier

variable

to

read

or

extract

the

portion

of

the

variable

that

is

actually

used.

The

dbinfo

structure

contains

the

following

elements:

1.

Database

name

length

(dbnamelen)

The

length

of

database

name

below.

This

field

is

an

unsigned

short

integer.

2.

Database

name

(dbname)

The

name

of

the

currently

connected

database.

This

field

is

a

long

identifier

of

128

characters.

The

database

name

length

field

described

previously

identifies

the

actual

length

of

this

field.

It

does

not

contain

a

null

terminator

or

any

padding.

3.

Application

Authorization

ID

Length

(authidlen)

The

length

of

application

authorization

ID

below.

This

field

is

an

unsigned

short

integer.

4.

Application

authorization

ID

(authid)

The

application

run-time

authorization

ID.

This

field

is

a

long

identifier

of

128

characters.

It

does

not

contain

a

null

terminator

or

any

padding.

The

application

authorization

ID

length

field

described

above

identifies

the

actual

length

of

this

field.

5.

Environment

code

pages

(codepg)

This

is

a

union

of

three

48-byte

structures;

one

is

common

to

all

DB2

Universal

Database

products

(cdpg_db2),

one

is

used

by

routines

written

for

older

versions

of

DB2

Universal

Database

(cdpg_cs),

and

the

last

is

for

use

by

older

versions

of

DB2

UDB

for

z/OS

and

OS/390

(cdpg_mvs).

For

portability,

it

is

recommended

that

the

common

structure,

cdpg_db2,

be

used

in

all

routines.

The

cdgp_db2

structure

is

made

up

of

an

array

(db2_ccsids_triplet)

of

three

sets

of

code

page

information

representing

the

possible

encoding

schemes

in

the

database

as

follows:

a.

ASCII

encoding

scheme.

Note

that

for

compatibility

with

previous

version

of

DB2

Universal

Database,

if

the

database

is

a

Unicode

database

then

the

information

for

the

Unicode

encoding

scheme

will

be

placed

here

as

well

as

appearing

in

the

third

element.

98

Programming

Server

Applications

|

|
|
|
|
|
|

|
|
|

|
|
|
|

b.

EBCDIC

encoding

scheme

c.

Unicode

encoding

scheme

Following

the

encoding

scheme

information

is

the

array

index

of

the

encoding

scheme

for

the

routine

(db2_encoding_scheme).

Each

element

of

the

array

is

composed

of

three

fields:

v

db2_sbcs.

Single

byte

code

page,

an

unsigned

long

integer.

v

db2_dbcs.

Double

byte

code

page,

an

unsigned

long

integer.

v

db2_mixed.

Composite

code

page

(also

called

mixed

code

page),

an

unsigned

long

integer.

6.

Schema

name

length

(tbschemalen)

The

length

of

schema

name

below.

Contains

0

(zero)

if

a

table

name

is

not

passed.

This

field

is

an

unsigned

short

integer.

7.

Schema

name

(tbschema)

Schema

for

the

table

name

below.

This

field

is

a

long

identifier

of

128

characters.

It

does

not

contain

a

null

terminator

or

any

padding.

The

schema

name

length

field

described

previously

identifies

the

actual

length

of

this

field.

8.

Table

name

length

(tbnamelen)

The

length

of

the

table

name

below.

Contains

0

(zero)

if

a

table

name

is

not

passed.

This

field

is

an

unsigned

short

integer.

9.

Table

name

(tbname)

This

is

the

name

of

the

table

being

updated

or

inserted.

This

field

is

set

only

if

the

routine

reference

is

the

right-side

of

a

SET

clause

in

an

UPDATE

statement,

or

an

item

in

the

VALUES

list

of

an

INSERT

statement.

This

field

is

a

long

identifier

of

128

characters.

It

does

not

contain

a

null

terminator

or

any

padding.

The

table

name

length

field

described

previously,

identifies

the

actual

length

of

this

field.

The

schema

name

field

described

previously,

together

with

this

field

form

the

fully

qualified

table

name.

10.

Column

name

length

(colnamelen)

Length

of

column

name

below.

It

contains

a

0

(zero)

if

a

column

name

is

not

passed.

This

field

is

an

unsigned

short

integer.

11.

Column

name

(colname)

Under

the

exact

same

conditions

as

for

table

name,

this

field

contains

the

name

of

the

column

being

updated

or

inserted;

otherwise,

it

is

not

predictable.

This

field

is

a

long

identifier

of

128

characters.

It

does

not

contain

a

null

terminator

or

any

padding.

The

column

name

length

field

described

above,

identifies

the

actual

length

of

this

field.

12.

Version/Release

number

(ver_rel)

An

8

character

field

that

identifies

the

product

and

its

version,

release,

and

modification

level

with

the

format

pppvvrrm

where:

v

ppp

identifies

the

product

as

follows:

DSN

DB2

Universal

Database

for

z/OS

or

OS/390

ARI

SQL/DS

or

DB2

for

VM

or

VSE

QSQ

DB2

Universal

Database

for

iSeries

SQL

DB2

Universal

Database
v

vv

is

a

two

digit

version

identifier.

v

rr

is

a

two

digit

release

identifier.

v

m

is

a

one

digit

modification

level

identifier.
13.

Reserved

field

(resd0)

This

field

is

for

future

use.

Chapter

4.

External

routines

99

|

|

|
|

|
|
|
|
|

14.

Platform

(platform)

The

operating

system

(platform)

for

the

application

server,

as

follows:

SQLUDF_PLATFORM_AIX

AIX

SQLUDF_PLATFORM_HP

HP-UX

SQLUDF_PLATFORM_LINUX

Linux

SQLUDF_PLATFORM_MVS

OS/390

SQLUDF_PLATFORM_NT

Windows

NT,

Windows

2000,

Windows

XP

SQLUDF_PLATFORM_SUN

Solaris

Operating

Environment

SQLUDF_PLATFORM_WINDOWS95

Windows

95,

Windows

98,

Windows

Me

SQLUDF_PLATFORM_UNKNOWN

Unknown

operating

system

or

platform
For

additional

operating

systems

that

are

not

contained

in

the

above

list,

see

the

contents

of

the

sqludf.h

file.

15.

Number

of

table

function

column

list

entries

(numtfcol)

The

number

of

non-zero

entries

in

the

table

function

column

list

specified

in

the

table

function

column

list

field

below.

16.

Reserved

field

(resd1)

This

field

is

for

future

use.

17.

Routine

id

of

the

stored

procedure

that

invoked

the

current

routine

(procid)

The

stored

procedure’s

routine

id

matches

the

ROUTINEID

column

in

SYSCAT.ROUTINES,

which

can

be

used

to

retrieve

the

name

of

the

invoking

stored

procedure.

This

field

is

a

32-bit

signed

integer.

18.

Reserved

field

(resd2)

This

field

is

for

future

use.

19.

Table

function

column

list

(tfcolumn)

If

this

is

a

table

function,

this

field

is

a

pointer

to

an

array

of

short

integers

that

is

dynamically

allocated

by

DB2.

If

this

is

any

other

type

of

routine,

this

pointer

is

null.

This

field

is

used

only

for

table

functions.

Only

the

first

n

entries,

where

n

is

specified

in

the

number

of

table

function

column

list

entries

field,

numtfcol,

are

of

interest.

n

can

be

equal

to

0,

and

n

is

less

than

or

equal

to

the

number

of

result

columns

defined

for

the

function

in

the

RETURNS

TABLE(...)

clause

of

the

CREATE

FUNCTION

statement.

The

values

correspond

to

the

ordinal

numbers

of

the

columns

that

this

statement

needs

from

the

table

function.

A

value

of

‘1’

means

the

first

defined

result

column,

‘2’

means

the

second

defined

result

column,

and

so

on,

and

the

values

can

be

in

any

order.

Note

that

n

could

be

equal

to

zero,

that

is,

the

variable

numtfcol

might

be

zero,

for

a

statement

similar

to

SELECT

COUNT(*)

FROM

TABLE(TF(...))

AS

QQ,

where

no

actual

column

values

are

needed

by

the

query.

This

array

represents

an

opportunity

for

optimization.

The

UDF

need

not

return

all

values

for

all

the

result

columns

of

the

table

function,

only

those

needed

in

the

particular

context,

and

these

are

the

columns

identified

(by

number)

in

the

array.

Since

this

optimization

can

complicate

the

UDF

logic

in

order

to

gain

the

performance

benefit,

the

UDF

can

choose

to

return

every

defined

column.

100

Programming

Server

Applications

20.

Unique

application

identifier

(appl_id)

This

field

is

a

pointer

to

a

C

null-terminated

string

that

uniquely

identifies

the

application’s

connection

to

DB2.

It

is

generated

by

DB2

at

connect

time.

The

string

has

a

maximum

length

of

32

characters,

and

its

exact

format

depends

on

the

type

of

connection

established

between

the

client

and

DB2.

Generally

it

takes

the

form:

x.y.ts

where

the

x

and

y

vary

by

connection

type,

but

the

ts

is

a

12

character

time

stamp

of

the

form

YYMMDDHHMMSS,

which

is

potentially

adjusted

by

DB2

to

ensure

uniqueness.

Example:

*LOCAL.db2inst.980707130144

21.

Reserved

field

(resd3)

This

field

is

for

future

use.

Related

concepts:

v

“Parameter

styles

for

external

routines”

on

page

87

v

“Include

file

for

C/C++

routines

(sqludf.h)”

on

page

154

v

“C/C++

routines”

on

page

151

Related

tasks:

v

“Writing

routines”

on

page

33

Related

reference:

v

“CREATE

FUNCTION

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

PROCEDURE

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

TYPE

(Structured)

statement”

in

the

SQL

Reference,

Volume

2

v

“appl_id

-

Application

ID

monitor

element”

in

the

System

Monitor

Guide

and

Reference

v

“CREATE

METHOD

statement”

in

the

SQL

Reference,

Volume

2

SQL

in

external

routines

All

routines

written

in

an

external

programming

language

(such

as

C,

Visual

Basic,

C#,

Java™,

and

others)

can

contain

SQL.

The

CREATE

statement

for

a

routine

(stored

procedure,

UDF),

or

the

CREATE

TYPE

statement,

in

the

case

of

a

method,

contains

a

clause

that

defines

the

level

of

SQL

access

for

the

routine

or

method.

Based

on

the

nature

of

the

SQL

included

in

your

routine,

you

must

choose

the

applicable

clause:

NO

SQL

the

routine

contains

no

SQL

at

all

CONTAINS

SQL

Contains

SQL,

but

neither

reads

nor

writes

data

(for

example:

SET

SPECIAL

REGISTER).

READS

SQL

DATA

Contains

SQL

that

can

read

from

tables

(SELECT,

VALUES

statements),

but

does

not

modify

table

data.

Chapter

4.

External

routines

101

|
|
|
|

|
|

|
|
|

|
|
|

MODIFIES

SQL

DATA

Contains

SQL

that

updates

tables,

either

user

tables

directly

(INSERT,

UPDATE,

DELETE

statements)

or

DB2®’s

catalog

tables

implicitly

(DDL

statements).

This

clause

is

only

applicable

to

stored

procedures

and

SQL-bodied

table

functions.

DB2

will

validate

at

execution

time

that

a

routine

does

not

exceed

its

defined

level.

For

example,

if

a

routine

defined

as

CONTAINS

SQL

tries

to

SELECT

from

a

table,

an

error

(SQLCODE

-579,

SQLSTATE

38004)

will

result

because

it

is

attempting

a

read

of

SQL

data.

Also

note

that

nested

routine

references,

must

be

of

the

same

or

of

a

more

restrictive

SQL

level

that

contains

the

reference.

For

example,

routines

that

modify

SQL

data

can

invoke

routines

that

read

SQL

data,

but

routines

that

can

only

read

SQL

data,

that

are

defined

with

the

READS

SQL

DATA

clause,

cannot

invoke

routines

that

modify

SQL

data.

A

routine

executes

SQL

statements

within

the

database

connection

scope

of

the

calling

application.

A

routine

cannot

establish

its

own

connection,

nor

can

it

reset

the

calling

application’s

connection

(SQLCODE

-751,

SQLSTATE

38003).

Only

a

stored

procedure

defined

as

MODIFIES

SQL

DATA

can

issue

COMMIT

and

ROLLBACK

statements.

Other

types

of

routines

(UDFs

and

methods)

cannot

issue

COMMITs

or

ROLLBACKs

(SQLCODE

-751,

SQLSTATE

38003).

Even

though

a

stored

procedure

defined

as

MODIFIES

SQL

DATA

can

attempt

to

COMMIT

or

ROLLBACK

a

transaction,

it

is

recommended

that

a

COMMIT

or

ROLLBACK

be

done

from

the

calling

application

so

changes

are

not

unexpectedly

committed.

Stored

procedures

cannot

issue

COMMIT

or

ROLLBACK

statements

if

the

stored

procedure

was

invoked

from

an

application

that

established

a

type

2

connection

to

the

database.

Also,

only

stored

procedures

defined

as

MODIFIES

SQL

DATA

can

establish

their

own

savepoints,

and

rollback

their

own

work

within

the

savepoint.

Other

types

of

routines

(UDFs

and

methods)

cannot

establish

their

own

savepoints.

A

savepoint

created

within

a

stored

procedure

is

not

released

when

the

stored

procedure

completes.

The

application

will

be

able

to

roll

back

the

savepoint.

Similarly,

a

stored

procedure

could

roll

back

a

savepoint

defined

in

the

application.

DB2

will

implicitly

release

any

savepoints

established

by

the

routine

when

it

returns.

A

routine

can

inform

DB2

about

whether

it

has

succeeded

by

assigning

an

SQLSTATE

value

to

the

sqlstate

argument

that

DB2

passes

to

it.

Some

parameter

styles

(PARAMETER

STYLEs

JAVA,

GENERAL,

and

GENERAL

WITH

NULLS)

do

not

support

the

exchange

of

SQLSTATE

values.

If,

in

handling

the

SQL

issued

by

a

routine,

DB2

encounters

an

error,

it

returns

that

error

to

the

routine,

just

as

it

does

for

any

application.

For

normal

user

errors,

the

routine

has

an

opportunity

to

take

alternative

or

corrective

action.

For

example,

if

a

routine

is

trying

to

INSERT

to

a

table

and

gets

a

duplicate

key

error

(SQLCODE

-813),

it

can

instead

UPDATE

the

existing

row

of

the

table.

There

are,

however,

certain

more

serious

errors

that

can

occur

that

make

it

impossible

for

DB2

to

proceed

in

a

normal

fashion.

Examples

of

these

include

deadlock,

or

database

partition

failure,

or

user

interrupt.

Some

of

these

errors

are

propagated

up

to

the

calling

application.

Other

severe

errors

that

are

unit

of

work

related

go

all

the

way

out

to

either

(a)

the

application,

or

(b)

a

stored

procedure

that

is

permitted

to

issue

transaction

control

statements

(COMMIT

or

ROLLBACK),

whichever

occurs

first

in

backing

out.

102

Programming

Server

Applications

|
|
|
|
|

|
|
|
|
|
|
|
|

If

one

of

these

errors

occurs

during

the

execution

of

SQL

issued

by

a

routine,

the

error

is

returned

to

the

routine,

but

DB2

remembers

that

a

serious

error

has

occurred.

Additionally,

in

this

case,

DB2

will

automatically

fail

(SQLCODE

-20139,

SQLSTATE

51038)

any

subsequent

SQL

issued

by

this

routine

and

by

any

calling

routines.

The

only

exception

to

this

is

if

the

error

only

backs

out

to

the

outermost

stored

procedure

that

is

permitted

to

issue

transaction

control

statements.

In

this

case,

this

stored

procedure

can

continue

to

issue

SQL.

Routines

can

issue

both

static

and

dynamic

SQL,

and

in

either

case

they

must

be

precompiled

and

bound

if

embedded

SQL

is

used.

For

static

SQL,

the

information

used

in

the

precompile/bind

process

is

the

same

as

it

is

for

any

client

application

using

embedded

SQL.

For

dynamic

SQL,

you

can

use

the

DYNAMICRULES

precompile/bind

option

to

control

the

current

schema

and

current

authentication

ID

for

embedded

dynamic

SQL.

This

behavior

is

different

for

routines

and

applications.

The

isolation

level

defined

for

the

routine

packages

or

statements

is

respected.

This

can

result

in

a

routine

running

at

a

more

restrictive,

or

a

more

generous,

isolation

level

than

the

calling

application.

This

is

important

to

consider

when

calling

a

routine

that

has

a

less

restrictive

isolation

level

than

the

calling

statement.

For

example,

if

a

cursor

stability

function

is

called

from

a

repeatable

read

application,

the

UDF

can

exhibit

non-repeatable

read

characteristics.

The

invoking

application

or

routine

is

not

affected

by

any

changes

made

by

the

routine

to

special

register

values.

Updatable

special

registers

are

inherited

by

the

routine

from

the

invoker.

Changes

to

updatable

special

registers

are

not

passed

back

to

the

invoker.

Non-updatable

special

registers

get

their

default

value.

For

further

details

on

updatable

and

non-updatable

special

registers,

see

the

related

topic,

″Special

registers″.

Routines

can

OPEN,

FETCH,

and

CLOSE

cursors

in

the

same

manner

as

client

applications.

Multiple

invocations

(for

example,

in

the

case

of

recursion)

of

the

same

function

each

get

their

own

instance

of

the

cursor.

UDFs

and

methods

must

close

their

cursors

before

the

invoking

statement

completes,

otherwise

an

error

will

occur

(SQLCODE

-472,

SQLSTATE

24517).

The

final

call

for

a

UDF

or

method

is

a

good

time

to

close

any

cursors

that

remain

open.

Any

opened

cursors

not

closed

before

completion

in

a

stored

procedure

are

returned

to

the

client

application

or

calling

routine

as

result

sets.

Arguments

passed

to

routines

are

not

automatically

treated

as

host

variables.

This

means

for

a

routine

to

use

a

parameter

as

a

host

variable

in

its

SQL,

it

must

declare

its

own

host

variable

and

copy

the

parameter

value

to

this

host

variable.

Note:

Embedded

SQL

routines

must

be

precompiled

and

bound

with

the

DATETIME

option

set

to

ISO.

Related

tasks:

v

“Customizing

precompile

and

bind

options

for

SQL

procedures”

in

the

Application

Development

Guide:

Building

and

Running

Applications

Related

reference:

v

“CREATE

FUNCTION

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

PROCEDURE

statement”

in

the

SQL

Reference,

Volume

2

v

“BIND

Command”

in

the

Command

Reference

Chapter

4.

External

routines

103

v

“CREATE

FUNCTION

(OLE

DB

External

Table)

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

FUNCTION

(SQL

Scalar,

Table,

or

Row)

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

FUNCTION

(External

Scalar)

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

FUNCTION

(External

Table)

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

FUNCTION

(Sourced

or

Template)

statement”

in

the

SQL

Reference,

Volume

2

v

“SQL

statements

allowed

in

routines”

in

the

SQL

Reference,

Volume

1

v

“CREATE

PROCEDURE

(External)

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

PROCEDURE

(SQL)

statement”

in

the

SQL

Reference,

Volume

2

v

“Special

registers”

in

the

SQL

Reference,

Volume

1

Effect

of

DYNAMICRULES

bind

option

on

dynamic

SQL

The

PRECOMPILE

and

BIND

option

DYNAMICRULES

determines

what

values

apply

at

run-time

for

the

following

dynamic

SQL

attributes:

v

The

authorization

ID

that

is

used

during

authorization

checking.

v

The

qualifier

that

is

used

for

qualification

of

unqualified

objects.

v

Whether

the

package

can

be

used

to

dynamically

prepare

the

following

statements:

GRANT,

REVOKE,

ALTER,

CREATE,

DROP,

COMMENT

ON,

RENAME,

SET

INTEGRITY

and

SET

EVENT

MONITOR

STATE

statements.

In

addition

to

the

DYNAMICRULES

value,

the

run-time

environment

of

a

package

controls

how

dynamic

SQL

statements

behave

at

run-time.

The

two

possible

run-time

environments

are:

v

The

package

runs

as

part

of

a

stand-alone

program

v

The

package

runs

within

a

routine

context

The

combination

of

the

DYNAMICRULES

value

and

the

run-time

environment

determine

the

values

for

the

dynamic

SQL

attributes.

That

set

of

attribute

values

is

called

the

dynamic

SQL

statement

behavior.

The

four

behaviors

are:

Run

behavior

DB2®

uses

the

authorization

ID

of

the

user

(the

ID

that

initially

connected

to

DB2)

executing

the

package

as

the

value

to

be

used

for

authorization

checking

of

dynamic

SQL

statements

and

for

the

initial

value

used

for

implicit

qualification

of

unqualified

object

references

within

dynamic

SQL

statements.

Bind

behavior

At

run-time,

DB2

uses

all

the

rules

that

apply

to

static

SQL

for

authorization

and

qualification.

That

is,

take

the

authorization

ID

of

the

package

owner

as

the

value

to

be

used

for

authorization

checking

of

dynamic

SQL

statements

and

the

package

default

qualifier

for

implicit

qualification

of

unqualified

object

references

within

dynamic

SQL

statements.

Define

behavior

Define

behavior

applies

only

if

the

dynamic

SQL

statement

is

in

a

package

that

is

run

within

a

routine

context,

and

the

package

was

bound

with

DYNAMICRULES

DEFINEBIND

or

DYNAMICRULES

DEFINERUN.

DB2

uses

the

authorization

ID

of

the

routine

definer

(not

the

routine’s

package

binder)

as

the

value

to

be

used

for

104

Programming

Server

Applications

authorization

checking

of

dynamic

SQL

statements

and

for

implicit

qualification

of

unqualified

object

references

within

dynamic

SQL

statements

within

that

routine.

Invoke

behavior

Invoke

behavior

applies

only

if

the

dynamic

SQL

statement

is

in

a

package

that

is

run

within

a

routine

context,

and

the

package

was

bound

with

DYNAMICRULES

INVOKEBIND

or

DYNAMICRULES

INVOKERUN.

DB2

uses

the

current

statement

authorization

ID

in

effect

when

the

routine

is

invoked

as

the

value

to

be

used

for

authorization

checking

of

dynamic

SQL

and

for

implicit

qualification

of

unqualified

object

references

within

dynamic

SQL

statements

within

that

routine.

This

is

summarized

by

the

following

table:

Invoking

Environment

ID

Used

Any

static

SQL

Implicit

or

explicit

value

of

the

OWNER

of

the

package

the

SQL

invoking

the

routine

came

from.

Used

in

definition

of

view

or

trigger

Definer

of

the

view

or

trigger.

Dynamic

SQL

from

a

run

behavior

package

ID

used

to

make

the

initial

connection

to

DB2.

Dynamic

SQL

from

a

define

behavior

package

Definer

of

the

routine

that

uses

the

package

that

the

SQL

invoking

the

routine

came

from.

Dynamic

SQL

from

an

invoke

behavior

package

Current®

authorization

ID

invoking

the

routine.

The

following

table

shows

the

combination

of

the

DYNAMICRULES

value

and

the

run-time

environment

that

yields

each

dynamic

SQL

behavior.

Table

2.

How

DYNAMICRULES

and

the

Run-Time

Environment

Determine

Dynamic

SQL

Statement

Behavior

DYNAMICRULES

Value

Behavior

of

Dynamic

SQL

Statements

in

a

Standalone

Program

Environment

Behavior

of

Dynamic

SQL

Statements

in

a

Routine

Environment

BIND

Bind

behavior

Bind

behavior

RUN

Run

behavior

Run

behavior

DEFINEBIND

Bind

behavior

Define

behavior

DEFINERUN

Run

behavior

Define

behavior

INVOKEBIND

Bind

behavior

Invoke

behavior

INVOKERUN

Run

behavior

Invoke

behavior

The

following

table

shows

the

dynamic

SQL

attribute

values

for

each

type

of

dynamic

SQL

behavior.

Chapter

4.

External

routines

105

Table

3.

Definitions

of

Dynamic

SQL

Statement

Behaviors

Dynamic

SQL

Attribute

Setting

for

Dynamic

SQL

Attributes:

Bind

Behavior

Setting

for

Dynamic

SQL

Attributes:

Run

Behavior

Setting

for

Dynamic

SQL

Attributes:

Define

Behavior

Setting

for

Dynamic

SQL

Attributes:

Invoke

Behavior

Authorization

ID

The

implicit

or

explicit

value

of

the

OWNER

BIND

option

ID

of

User

Executing

Package

Routine

definer

(not

the

routine’s

package

owner)

Current

statement

authorization

ID

when

routine

is

invoked.

Default

qualifier

for

unqualified

objects

The

implicit

or

explicit

value

of

the

QUALIFIER

BIND

option

CURRENT

SCHEMA

Special

Register

Routine

definer

(not

the

routine’s

package

owner)

Current

statement

authorization

ID

when

routine

is

invoked.

Can

execute

GRANT,

REVOKE,

ALTER,

CREATE,

DROP,

COMMENT

ON,

RENAME,

SET

INTEGRITY

and

SET

EVENT

MONITOR

STATE

No

Yes

No

No

Related

concepts:

v

“Authorization

Considerations

for

Dynamic

SQL”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Authorizations

and

binding

of

routines

that

contain

SQL”

on

page

35

.NET

common

language

runtime

routines

The

following

sections

describe

how

to

write

.NET

routines

to

be

executed

by

the

.NET

Framework

common

language

runtime.

Common

language

runtime

(CLR)

routines

In

DB2®,

a

common

language

runtime

(CLR)

routine

is

an

external

routine

created

by

executing

a

CREATE

PROCEDURE

or

CREATE

FUNCTION

statement

that

references

a

.NET

assembly

as

its

external

code

body.

The

following

terms

are

important

in

the

context

of

CLR

routines:

.NET

Framework

A

Microsoft®

application

development

environment

comprised

of

the

CLR

and

.NET

Framework

class

library

designed

to

provide

a

consistent

programming

environment

for

developing

and

integrating

code

pieces.

Common

language

runtime

(CLR)

The

runtime

interpreter

for

all

.NET

Framework

applications.

intermediate

language

(IL)

Type

of

compiled

byte-code

interpreted

by

the

.NET

Framework

CLR.

Source

code

from

all

.NET

compatible

languages

compiles

to

IL

byte-code.

assembly

A

file

that

contains

IL

byte-code.

This

can

either

be

a

library

or

an

executable.

106

Programming

Server

Applications

|

|
|
|

|

|
|
|
|

|
|

|
|
|

|
|
|

You

can

implement

CLR

routines

in

any

language

that

can

be

compiled

into

an

IL

assembly.

These

languages

include,

but

are

not

limited

to:

Managed

C++,

C#,

Visual

Basic,

and

J#.

Before

developing

a

CLR

routine,

it

is

important

to

both

understand

the

basics

of

routines

and

the

unique

features

and

characteristics

specific

to

CLR

routines.

To

learn

more

about

routines

and

CLR

routines

see:

v

“Routines

in

application

development”

on

page

3

v

“Supported

SQL

data

types

for

the

DB2

.NET

Data

Provider”

on

page

110

v

“Parameters

in

CLR

routines”

on

page

111

v

“Returning

result

sets

from

CLR

procedures”

on

page

114

v

“Restrictions

on

CLR

routines”

on

page

116

v

“Errors

related

to

CLR

routines”

on

page

117

Developing

a

CLR

routine

is

easy.

For

step-by-step

instructions

on

how

to

develop

a

CLR

routine

and

complete

examples

see:

v

“Creating

CLR

routines”

v

“Examples

of

CLR

procedures

in

C#”

on

page

119

v

“Examples

of

CLR

user-defined

functions

in

C#”

on

page

139

Related

concepts:

v

“Routines

in

application

development”

on

page

3

v

“Parameter

styles

for

external

routines”

on

page

87

v

“SQL

in

external

routines”

on

page

101

v

“Types

of

routines

(procedures,

functions,

methods)”

on

page

5

v

“Authorizations

and

binding

of

routines

that

contain

SQL”

on

page

35

Related

tasks:

v

“Building

Common

Language

Runtime

(CLR)

.NET

routines”

in

the

Application

Development

Guide:

Building

and

Running

Applications

Related

samples:

v

“SpCreate.db2

--

Creates

the

external

procedures

implemented

in

spserver.cs”

v

“SpServer.cs

--

C#

external

code

implementation

of

procedures

created

in

spcat.db2”

v

“SpCreate.db2

--

Creates

the

external

procedures

implemented

in

spserver.vb”

v

“SpServer.vb

--

VB.NET

implementation

of

procedures

created

in

SpCat.db2”

Creating

CLR

routines

Procedures

and

functions

that

reference

an

IL

assembly

are

created

in

the

same

way

as

any

external

routine

is

created.

You

would

choose

to

implement

an

external

routine

in

a

.NET

language

if:

v

You

want

to

encapsulate

complex

logic

into

a

routine

that

accesses

the

database

or

that

performs

an

action

outside

of

the

database.

v

You

require

the

encapsulated

logic

to

be

invoked

from

any

of:

multiple

applications,

the

CLP,

another

routine

(procedure,

function

(UDF),

or

method),

or

a

trigger.

v

You

are

most

comfortable

coding

this

logic

in

a

.NET

language.

Chapter

4.

External

routines

107

|
|
|

|
|
|

|

|

|

|

|

|

|
|

|

|

|

|

|

|

|

|

|

|

|
|

|

|

|
|

|

|

|

|
|
|

|
|

|
|
|

|

Prerequisites:

v

Knowledge

of

CLR

routine

implementation.

To

learn

about

CLR

routines

in

general

and

about

CLR

features,

see:

–

“Common

language

runtime

(CLR)

routines”

on

page

106
v

The

database

server

must

be

running

a

Windows

operating

system

that

supports

the

Microsoft

.NET

Framework.

v

The

.NET

Framework,

version

1.1,

must

be

installed

on

the

server.

The

.NET

Framework

is

independently

available

or

as

part

of

the

Microsoft

.NET

Framework

1.1

Software

Development

Kit.

v

The

following

versions

of

DB2

must

be

installed:

–

Server:

DB2

8.2

or

a

later

release.

–

Client:

Any

client

that

can

attach

to

a

DB2

8.2

instance

will

be

able

to

invoke

a

CLR

routine.

It

is

recommended

that

you

install

DB2

Version

7.2

or

a

later

release

on

the

client.
v

Authority

to

execute

the

CREATE

statement

for

the

external

routine.

For

the

privileges

required

to

execute

the

CREATE

PROCEDURE

statement

or

CREATE

FUNCTION

statement,

see

the

details

of

the

appropriate

statement.

Restrictions:

For

a

list

of

restrictions

associated

with

CLR

routines

see:

v

“Restrictions

on

CLR

routines”

on

page

116

Procedure:

1.

Code

the

routine

logic

in

any

CLR

supported

language.

v

For

general

information

about

.NET

CLR

routines

and

.NET

CLR

routine

features

see

the

topics

referenced

in

the

Prerequisites

section

v

Use

or

import

IBM.Data.DB2

if

your

routine

will

execute

SQL.

v

Declare

host

variables

and

parameters

correctly

using

data

types

that

map

to

DB2

SQL

data

types.

For

a

datatype

mapping

between

DB2

and

.NET

datatypes:

–

“Supported

SQL

data

types

for

the

DB2

.NET

Data

Provider”

on

page

110
v

Parameters

and

parameter

null

indicators

must

be

declared

using

one

of

DB2’s

supported

parameter

styles

and

according

to

the

parameter

requirements

for

.NET

CLR

routines.

As

well,

scratchpads

for

UDFs,

and

the

DBINFO

class

are

passed

into

CLR

routines

as

parameters.

For

more

on

parameters

and

prototype

declarations

see:

–

“Parameters

in

CLR

routines”

on

page

111
v

If

the

routine

is

a

procedure

and

you

want

to

return

a

result

set

to

the

caller

of

the

routine,

you

do

not

require

any

parameters

for

the

result

set.

For

more

on

returning

result

sets

from

CLR

routines:

–

“Returning

result

sets

from

CLR

procedures”

on

page

114
v

Set

a

routine

return

value

if

required.

CLR

scalar

functions

require

that

a

return

value

is

set

before

returning.

CLR

table

functions

require

that

a

return

code

is

specified

as

an

output

parameter

for

each

invocation

of

the

table

function.

CLR

procedures

do

not

return

with

a

return

value.
2.

Build

your

code

into

an

intermediate

language

(IL)

assembly

to

be

executed

by

the

CLR.

For

information

on

how

to

build

CLR

.NET

routines

that

access

DB2,

see

the

related

link:

v

Building

common

language

runtime

routines

108

Programming

Server

Applications

|

|
|

|

|
|

|
|
|

|

|

|
|
|

|
|
|

|

|

|

|

|

|
|

|

|
|
|

|

|
|
|
|
|

|

|
|
|

|

|
|
|
|

|
|
|

|

3.

Copy

the

assembly

into

the

DB2

function

directory

on

the

database

server.

It

is

recommended

that

you

store

assemblies

or

libraries

associated

with

DB2

routines

in

the

function

directory.

To

find

out

more

about

the

function

directory,

see

the

EXTERNAL

clause

of

either

of

the

following

statements:

CREATE

PROCEDURE

or

CREATE

FUNCTION.

You

can

copy

the

assembly

to

another

directory

on

the

server

if

you

wish,

but

to

successfully

invoke

the

routine

you

must

note

the

fully

qualified

path

name

of

your

assembly

as

you

will

require

it

for

the

next

step.

4.

Execute

either

dynamically

or

statically

the

appropriate

SQL

language

CREATE

statement

for

the

routine

type:

CREATE

PROCEDURE

or

CREATE

FUNCTION.

v

Specify

the

LANGUAGE

clause

with

value:

CLR.

v

Specify

the

PARAMETER

STYLE

clause

with

the

name

of

the

supported

parameter

style

that

was

implemented

in

the

routine

code.

v

Specify

the

EXTERNAL

clause

with

the

name

of

the

assembly

to

be

associated

with

the

routine

using

one

of

the

following

values:

–

the

fully

qualified

path

name

of

the

routine

assembly.

–

the

relative

path

name

of

the

routine

assembly

relative

to

the

function

directory.

By

default

DB2

will

look

for

the

assembly

by

name

in

the

function

directory

unless

a

fully

qualified

or

relative

path

name

for

the

library

is

specified

in

the

EXTERNAL

clause.

When

the

CREATE

statement

is

executed,

if

the

assembly

specified

in

the

EXTERNAL

clause

is

not

found

by

DB2

you

will

receive

an

error

(SQLCODE

-20282)

with

reason

code

1.

v

Specify

DYNAMIC

RESULT

SETS

with

value

1

if

your

routine

is

a

procedure

and

it

will

return

a

result

set

to

the

caller.

v

You

can

not

specify

the

NOT

FENCED

clause

for

CLR

procedures.

By

default

CLR

procedures

are

executed

as

FENCED

procedures.

To

invoke

your

CLR

routine,

see

“Routine

invocation”

on

page

193

Related

concepts:

v

“Common

language

runtime

(CLR)

routines”

on

page

106

v

“Parameters

in

CLR

routines”

on

page

111

v

“Routine

invocation”

on

page

193

v

“Parameter

styles

for

external

routines”

on

page

87

v

“Scratchpads

for

UDFs

and

methods”

on

page

52

v

“SQL

in

external

routines”

on

page

101

v

“Types

of

routines

(procedures,

functions,

methods)”

on

page

5

v

“Procedure

result

sets”

on

page

42

Related

tasks:

v

“Returning

result

sets

from

CLR

procedures”

on

page

114

v

“Building

Common

Language

Runtime

(CLR)

.NET

routines”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Creating

routines

in

the

database”

on

page

31

v

“Debugging

routines”

on

page

38

Related

reference:

v

“Restrictions

on

CLR

routines”

on

page

116

Chapter

4.

External

routines

109

|
|
|
|
|

|
|
|

|
|

|

|
|

|
|

|

|
|

|
|
|

|
|
|

|
|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|

|

|

|

v

“Supported

SQL

data

types

for

the

DB2

.NET

Data

Provider”

on

page

110

Related

samples:

v

“SpCreate.db2

--

Creates

the

external

procedures

implemented

in

spserver.cs”

v

“SpServer.cs

--

C#

external

code

implementation

of

procedures

created

in

spcat.db2”

v

“SpCreate.db2

--

Creates

the

external

procedures

implemented

in

spserver.vb”

v

“SpServer.vb

--

VB.NET

implementation

of

procedures

created

in

SpCat.db2”

Supported

SQL

data

types

for

the

DB2

.NET

Data

Provider

The

following

table

lists

the

mappings

between

the

DB2Type

data

types

in

the

DB2

.NET

Data

Provider,

the

DB2

data

type,

and

the

corresponding

.NET

Framework

data

type:

Table

4.

Mapping

DB2

Data

Types

to

.NET

data

types

DB2Type

Enum

DB2

Data

Type

.NET

Data

Type

SmallInt

SMALLINT

Int16

Integer

INTEGER

Int32

BigInt

BIGINT

Int64

Real

REAL

Single

Double

DOUBLE

PRECISION

Double

Float

FLOAT

Double

Decimal

DECIMAL

Decimal

Numeric

DECIMAL

Decimal

Date

DATE

DateTime

Time

TIME

TimeSpan

Timestamp

TIMESTAMP

DateTime

Char

CHAR

String

VarChar

VARCHAR

String

LongVarChar(1)

LONG

VARCHAR

String

Binary

CHAR

FOR

BIT

DATA

Byte[]

VarBinary

VARCHAR

FOR

BIT

DATA

Byte[]

LongVarBinary(1)

LONG

VARCHAR

FOR

BIT

DATA

Byte[]

Graphic

GRAPHIC

String

VarGraphic

VARGRAPHIC

String

LongVarGraphic(1)

LONG

GRAPHIC

String

Clob

CLOB

String

Blob

BLOB

Byte[]

DbClob

DBCLOB(N)

String

Notes:

1.

These

data

types

are

not

supported

in

DB2

.NET

common

language

runtime

routines.

They

are

only

supported

in

client

applications.

110

Programming

Server

Applications

|

|

|

|
|

|

|

Note:

The

dbinfo

structure

is

passed

into

CLR

functions

and

procedures

as

a

parameter.

The

scratchpad

and

call

type

for

CLR

UDFs

are

also

passed

into

CLR

routines

as

parameters.

For

information

about

the

appropriate

CLR

data

types

for

these

parameters,

see

the

related

topic:

v

Parameters

in

CLR

routines

Related

concepts:

v

“Parameter

styles

for

external

routines”

on

page

87

v

“Common

language

runtime

(CLR)

routines”

on

page

106

v

“Parameters

in

CLR

routines”

on

page

111

Related

tasks:

v

“Passing

structured

type

parameters

to

external

routines”

on

page

292

v

“Creating

CLR

routines”

on

page

107

v

“Examples

of

CLR

user-defined

functions

in

C#”

on

page

139

v

“Examples

of

CLR

procedures

in

C#”

on

page

119

Related

samples:

v

“SpCreate.db2

--

Creates

the

external

procedures

implemented

in

spserver.cs”

v

“SpServer.cs

--

C#

external

code

implementation

of

procedures

created

in

spcat.db2”

v

“SpCreate.db2

--

Creates

the

external

procedures

implemented

in

spserver.vb”

v

“SpServer.vb

--

VB.NET

implementation

of

procedures

created

in

SpCat.db2”

Parameters

in

CLR

routines

Parameter

declaration

in

CLR

routines

must

conform

to

the

requirements

of

one

of

the

supported

parameter

styles,

and

must

respect

the

parameter

keyword

requirements

of

the

particular

.NET

language

used

for

the

routine.

If

the

routine

is

to

use

a

scratchpad,

the

dbinfo

structure,

or

to

have

a

PROGRAM

TYPE

MAIN

parameter

interface,

there

are

additional

details

to

consider.

This

topic

addresses

all

CLR

parameter

considerations.

Supported

parameter

styles

for

CLR

routines:

The

parameter

style

of

the

routine

must

be

specified

at

routine

creation

time

in

the

EXTERNAL

clause

of

the

CREATE

statement

for

the

routine.

The

parameter

style

must

be

accurately

reflected

in

the

implementation

of

the

external

CLR

routine

code.

The

following

DB2®

parameter

styles

are

supported

for

CLR

routines:

v

SQL

(Supported

for

procedures

and

functions)

v

GENERAL

(Supported

for

procedures

only)

v

GENERAL

WITH

NULLS

(Supported

for

procedures

only)

v

DB2SQL

(Supported

for

procedures

and

functions)

For

more

information

about

these

parameter

styles

see:

v

“Parameter

styles

for

external

routines”

on

page

87

CLR

routine

parameter

null

indicators:

If

the

parameter

style

chosen

for

a

CLR

routine

requires

that

null

indicators

be

specified

for

the

parameters,

the

null

indicators

are

to

be

passed

into

the

CLR

Chapter

4.

External

routines

111

|

|
|
|
|
|
|

|

|
|
|
|

|

|

|

|

|

|

|

|
|

routine

as

System.Int16

type

values,

or

in

a

System.Int16[]

value

when

the

parameter

style

calls

for

a

vector

of

null

indicators.

When

the

parameter

style

dictates

that

the

null

indicators

be

passed

into

the

routine

as

distinct

parameters,

as

is

required

for

parameter

style

SQL,

one

System.Int16

null

indicator

is

required

for

each

parameter.

In

.NET

languages

distinct

parameters

must

be

prefaced

with

a

keywors

to

indicate

if

the

parameter

is

passed

by

value

or

by

reference.

The

same

keyword

that

is

used

for

a

routine

parameter

must

be

used

for

the

associated

null

indicator

parameter.

The

keywords

used

to

indicate

whether

an

argument

is

passed

by

value

or

by

reference

are

discussed

in

more

detail

below.

For

more

information

about

parameter

style

SQL

and

other

supported

parameter

styles,

see:

v

“Parameter

styles

for

external

routines”

on

page

87

Passing

CLR

routine

parameters

by

value

or

by

reference:

.NET

language

routines

that

compile

into

intermediate

language

(IL)

byte-code

require

that

parameters

be

prefaced

with

keywords

that

indicate

the

particular

properties

of

the

parameter

such

as

whether

the

parameter

is

passed

by

value,

by

reference,

is

an

input

only,

or

an

output

only

parameter.

Parameter

keywords

are

.NET

language

specific.

For

example

to

pass

a

parameter

by

reference

in

C#,

the

parameter

keyword

is

ref,

whereas

in

Visual

Basic,

a

by

reference

parameter

is

indicated

by

the

byRef

keyword.

The

keywords

must

be

used

to

indicate

the

SQL

parameter

usage

(IN,

OUT,

INOUT)

that

was

specified

in

the

CREATE

statement

for

the

routine.

The

following

rules

apply

when

applying

parameter

keywords

to

.NET

language

routine

parameters

in

DB2

routines:

v

IN

type

parameters

must

be

declared

without

a

parameter

keyword

in

C#,

and

must

be

declared

with

the

byVal

keyword

in

Visual

Basic.

v

INOUT

type

parameters

must

be

declared

with

the

language

specific

keyword

that

indicates

that

the

parameter

is

passed

by

reference.

In

C#

the

appropriate

keyword

is

ref.

In

Visual

Basic,

the

appropriate

keyword

is

byRef.

v

OUT

type

parameters

must

be

declared

with

the

language

specific

keyword

that

indicates

that

the

parameter

is

an

output

only

parameter.

In

C#,

use

the

out

keyword.

In

Visual

Basic,

the

parameter

must

be

declared

with

the

byRef

keyword.

Output

only

parameters

must

always

be

assigned

a

value

before

the

routine

returns

to

the

caller.

If

the

routine

does

not

assign

a

value

to

an

output

only

parameter,

an

error

will

be

raised

when

the

.NET

routine

is

compiled.

Here

is

what

a

C#,

parameter

style

SQL

procedure

prototype

looks

like

for

a

routine

that

returns

a

single

output

parameter

language.

public

static

void

Counter

(out

String

language,

out

Int16

languageNullInd,

ref

String

sqlState,

String

funcName,

String

funcSpecName,

ref

String

sqlMsgString,

ref

Byte[]

scratchPad,

Int32

callType);

112

Programming

Server

Applications

|
|

|
|
|

|
|
|
|
|

|
|

|

|

|
|
|
|

|
|
|
|
|

|
|

|
|

|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|

It

is

clear

that

the

parameter

style

SQL

is

implemented

because

of

the

extra

null

indicator

parameter,

languageNullInd

associated

with

the

output

parameter

language,

the

parameters

for

passing

the

SQLSTATE,

the

routine

name,

the

routine

specific

name,

and

optional

user-defined

SQL

error

message.

Parameter

keywords

have

been

specified

for

the

parameters

as

follows:

v

In

C#

no

parameter

keyword

is

required

for

input

only

parameters.

v

In

C#

the

’out’

keyword

indicates

that

the

variable

is

an

output

parameter

only,

and

that

its

value

has

not

been

initialized

by

the

caller.

v

In

C#

the

’ref’

keyword

indicates

that

the

parameter

was

initialized

by

the

caller,

and

that

the

routine

can

optionally

modify

this

value.

See

the

.NET

language

specific

documentation

regarding

parameter

passing

to

learn

about

the

parameter

keywords

in

that

language.

Note:

DB2

controls

allocation

of

memory

for

all

parameters

and

maintains

CLR

references

to

all

parameters

passed

into

or

out

of

a

routine.

No

parameter

marker

is

required

for

procedure

result

sets:

No

parameter

markers

is

required

in

the

procedure

declaration

of

a

procedure

for

a

result

set

that

will

be

returned

to

the

caller.

Any

cursor

statement

that

is

not

closed

from

inside

of

a

CLR

stored

procedure

will

be

passed

back

to

its

caller

as

a

result

set.

For

more

on

result

sets

in

CLR

routines,

see:

v

“Returning

result

sets

from

CLR

procedures”

on

page

114

Dbinfo

structure

as

CLR

parameter:

The

dbinfo

structure

used

for

passing

additional

database

information

parameters

to

and

from

a

routine

is

supported

for

CLR

routines

through

the

use

of

an

IL

dbinfo

class.

This

class

contains

all

of

the

elements

found

in

the

C

language

sqludf_dbinfo

structure

except

for

the

length

fields

associated

with

the

strings.

The

length

of

each

string

can

be

found

using

the

.NET

language

Length

property

of

the

particular

string.

To

access

the

dbinfo

class,

simply

include

the

IBM®.Data.DB2

assembly

in

the

file

that

contains

your

routine,

and

add

a

parameter

of

type

sqludf_dbinfo

to

your

routine’s

signature,

in

the

position

specified

by

the

parameter

style

used.

UDF

scratchpad

as

CLR

parameter:

If

a

scratchpad

is

requested

for

a

user

defined

function,

it

is

passed

into

the

routine

as

a

System.Byte[]

parameter

of

the

specified

size.

CLR

UDF

call

type

or

final

call

parameter:

For

user-defined

functions

that

have

requested

a

final

call

parameter

or

for

table

functions,

the

call

type

parameter

is

passed

into

the

routine

as

a

System.Int32

data

type.

PROGRAM

TYPE

MAIN

supported

for

CLR

procedures:

Chapter

4.

External

routines

113

|
|
|
|
|

|

|
|

|
|

|
|

|

|
|

|

|
|
|
|

|

|

|

|
|
|
|
|
|

|
|
|

|

|
|

|

|
|
|

|

Program

type

MAIN

is

supported

for

.NET

CLR

procedures.

Procedures

defined

as

using

Program

Type

MAIN

must

have

the

following

signature:

void

functionname(Int32

NumParams,

Object[]

Params)

Related

concepts:

v

“Parameter

styles

for

external

routines”

on

page

87

v

“Procedure

parameter

modes”

on

page

42

v

“Scratchpads

for

UDFs

and

methods”

on

page

52

v

“Procedure

result

sets”

on

page

42

v

“Parameter

handling

in

PROGRAM

TYPE

MAIN

or

PROGRAM

TYPE

SUB

procedures”

on

page

51

Related

tasks:

v

“Passing

structured

type

parameters

to

external

routines”

on

page

292

v

“Examples

of

CLR

user-defined

functions

in

C#”

on

page

139

v

“Examples

of

CLR

procedures

in

C#”

on

page

119

v

“Returning

result

sets

from

CLR

procedures”

on

page

114

Related

reference:

v

“Supported

SQL

data

types

for

the

DB2

.NET

Data

Provider”

on

page

110

Returning

result

sets

from

CLR

procedures

You

can

develop

CLR

procedures

that

return

result

sets

to

a

calling

routine

or

application.

Result

sets

cannot

be

returned

from

CLR

functions

(UDFs).

The

.NET

representation

of

a

result

set

is

a

DB2DataReader

object

which

can

be

returned

from

one

of

the

various

execute

calls

of

a

DB2Command

object.

Any

DB2DataReader

object

whose

Close()

method

has

not

explicitly

been

called

prior

to

the

return

of

the

procedure,

can

be

returned.

The

order

in

which

result

sets

are

returned

to

the

caller

is

the

same

as

the

order

in

which

the

DB2DataReader

objects

were

instantiated.

No

additional

parameters

are

required

in

the

function

definition

in

order

to

return

a

result

set.

Prerequisites:

A

general

understanding

of

how

to

create

CLR

routines

will

help

you

to

follow

the

steps

in

the

procedure

below

returning

results

from

a

CLR

procedure.

“Creating

CLR

routines”

on

page

107

Procedure:

To

return

a

result

set

from

a

CLR

procedure:

1.

In

the

CREATE

PROCEDURE

statement

for

the

CLR

routine

you

must

specify

along

with

any

other

appropriate

clauses,

the

DYNAMIC

RESULT

SETS

clause

with

a

value

equal

to

the

number

of

result

sets

that

are

to

be

returned

by

the

procedure.

2.

No

parameter

marker

is

required

in

the

procedure

declaration

for

a

result

set

that

is

to

be

returned

to

the

caller.

114

Programming

Server

Applications

|
|

|

|

|

|

|

|

|
|

|

|

|

|

|

|

|

|

|
|

|
|
|
|
|
|
|

|

|
|

|

|

|

|
|
|
|

|
|

3.

In

the

.NET

language

implementation

of

your

CLR

routine,

create

a

DB2Connection

object,

a

DB2Command

object,

and

a

DB2Transaction

object.

A

DB2Transaction

object

is

responsible

for

rolling

back

and

committing

database

transactions.

4.

Initialize

the

Transaction

property

of

the

DB2Command

object

to

the

DB2Transaction

object.

5.

Assign

a

string

query

to

the

DB2Command

object’s

CommandText

property

that

defines

the

result

set

that

you

want

to

return.

6.

Instantiate

a

DB2DataReader,

and

assign

to

it,

the

result

of

the

invocation

of

the

DB2Command

object

method

ExecuteReader.

The

result

set

of

the

query

will

be

contained

in

the

DB2DataReader

object.

7.

Do

not

execute

the

Close()

method

of

the

DB2DataReader

object

at

any

point

prior

to

the

procedure’s

return

to

the

caller.

The

still

open

DB2DataReader

object

will

be

returned

as

a

result

set

to

the

caller.

When

more

than

one

DB2DataReader

is

left

open

upon

the

return

of

a

procedure,

the

DB2DataReaders

are

returned

to

the

caller

in

the

order

of

their

creation.

Only

the

number

of

result

sets

specified

in

the

CREATE

PROCEDURE

statement

will

be

returned

to

the

caller.

8.

Compile

your

.NET

CLR

language

procedure

and

install

the

assembly

in

the

location

specified

by

the

EXTERNAL

clause

in

the

CREATE

PROCEDURE

statement.

Execute

the

CREATE

PROCEDURE

statement

for

the

CLR

procedure,

if

you

have

not

already

done

so.

9.

Once

the

CLR

procedure

assembly

has

been

installed

in

the

appropriate

location

and

the

CREATE

PROCEDURE

statement

has

successfully

been

executed,

you

can

invoke

the

procedure

with

the

CALL

statement

to

see

the

result

sets

return

to

the

caller.

For

information

on

calling

procedures

and

other

types

of

routines:

v

“Routine

invocation”

on

page

193

Specifying

DYNAMIC

RESULT

SETS

with

a

value

greater

than

1:

Only

one

dynamic

result

set

can

be

returned

from

CLR

procedures

at

this

time.

For

details

on

this

restriction

see:

v

“Restrictions

on

CLR

routines”

on

page

116

Related

concepts:

v

“Routine

invocation”

on

page

193

v

“Procedure

parameter

modes”

on

page

42

v

“Procedure

result

sets”

on

page

42

v

“Common

language

runtime

(CLR)

routines”

on

page

106

Related

tasks:

v

“Creating

CLR

routines”

on

page

107

Related

reference:

v

“Restrictions

on

CLR

routines”

on

page

116

Chapter

4.

External

routines

115

|
|
|
|

|
|

|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|

|

|

|
|

|

|

|

|

|

|

|

|

|

|

Restrictions

on

CLR

routines

The

general

implementation

restrictions

that

apply

to

all

external

routines

or

particular

routine

classes

(procedure

or

UDF)

also

apply

to

CLR

routines.

There

are

some

restrictions

that

are

particular

to

CLR

routines.

These

restrictions

are

listed

here.

The

CREATE

METHOD

statement

with

LANGUAGE

CLR

clause

is

not

supported:

You

cannot

create

external

methods

for

DB2

structured

types

that

reference

a

CLR

assembly.

The

use

of

a

CREATE

METHOD

statement

that

specifies

the

LANGUAGE

clause

with

value

CLR

is

not

supported.

CLR

procedures

cannot

be

implemented

as

NOT

FENCED

procedures:

CLR

procedures

cannot

be

run

as

unfenced

procedures.

The

CREATE

PROCEDURE

statement

for

a

CLR

procedure

can

not

specify

the

NOT

FENCED

clause.

At

this

time

CLR

procedures

can

return

a

maximum

of

one

result

set:

The

maximum

number

of

result

sets

that

can

be

returned

by

a

CLR

procedure

is

limited

to

the

maximum

number

of

DB2DataReader

objects

that

the

data

provider

(IBM.Data.DB2)

can

simultaneously

support

having

open

within

a

connection.

The

maximum

number

that

can

be

open

at

this

time

is

one.

Therefore

only

one

result

set

can

be

returned

from

a

CLR

procedure.

If

a

CREATE

PROCEDURE

statement

for

a

CLR

procedure

specifies

the

DYNAMIC

RESULT

SETS

clause

with

a

value

greater

than

one,

no

error

will

be

raised

when

this

statement

is

executed.

At

runtime

however,

only

one

DB2DataReader

is

allowed

to

be

open

in

the

procedure

when

the

procedure

returns.

Therefore,

only

the

single

result

set

associated

with

the

open

DB2DataReader

will

be

returned

to

the

caller

when

the

procedure

returns.

Maximum

decimal

precision

is

29,

maximum

decimal

scale

is

28

in

a

CLR

routine:

The

decimal

data

type

in

DB2

is

represented

with

a

precision

of

31

digits

and

a

scale

of

28

digits.

In

.NET

programming

languages

the

decimal

data

type

is

represented

with

a

precision

of

29

digits

and

a

scale

of

28

digits.

To

avoid

data

truncation,

DB2

external

CLR

routines

must

therefore

not

specify

a

decimal

value

that

exceeds

a

precision

of

29

digits

and

a

scale

of

28

digits.

If

you

require

your

routine

to

manipulate

decimal

values

with

the

maximum

precision

and

scale

supported

by

DB2,

you

can

implement

your

external

routine

in

a

different

programming

language

such

as

C

or

Java.

Data

types

not

supported

in

CLR

routines:

The

following

DB2

SQL

data

types

are

not

supported

in

CLR

routines:

v

LONG

VARCHAR

v

LONG

VARCHAR

FOR

BIT

DATA

116

Programming

Server

Applications

|

|
|
|
|

|
|

|
|
|

|

|
|
|

|

|
|
|
|
|

|
|
|

|
|
|
|

|
|

|
|
|
|
|

|
|
|

|

|

|

|

v

LONG

GRAPHIC

v

DATALINK

v

ROWID

Running

a

32-bit

CLR

routine

on

a

64-bit

instance:

CLR

routines

cannot

be

run

on

64-

bit

instances,

because

the

.NET

Framework

cannot

be

installed

on

64-bit

operating

systems

at

this

time.

Related

concepts:

v

“Common

language

runtime

(CLR)

routines”

on

page

106

v

“Parameters

in

CLR

routines”

on

page

111

Related

tasks:

v

“Creating

CLR

routines”

on

page

107

v

“Returning

result

sets

from

CLR

procedures”

on

page

114

Errors

related

to

CLR

routines

All

external

routines

share

a

generally

common

implementation,

there

are

some

DB2

errors

that

may

arise

that

are

specific

to

CLR

routines.

This

reference

lists

the

most

likely

to

be

encountered

of

these

errors,

by

their

SQLCODE

or

behavior

with

some

debugging

suggestions.

DB2

errors

related

to

routines

can

be

classified

as

follows:

Routine

creation

time

errors

Errors

that

arise

when

the

CREATE

statement

for

the

routine

is

executed.

Routine

runtime

errors

Errors

that

arise

during

the

routine

invocation

or

execution.

Regardless

of

when

a

DB2

routine

related

error

is

raised

by

DB2,

the

error

message

text

details

the

cause

of

the

error

and

the

action

that

the

user

should

take

to

resolve

the

problem.

Additional

routine

error

scenario

information

can

be

found

in

the

db2diag.log

diagnostic

log

file.

CLR

routine

creation

time

errors:

SQLCODE

-451,

SQLSTATE

42815

This

error

is

raised

upon

an

attempt

to

execute

a

CREATE

TYPE

statement

that

includes

an

external

method

declaration

specifying

the

LANGUAGE

clause

with

value

CLR.

You

can

not

create

DB2

external

methods

for

structured

types

that

reference

a

CLR

assembly

at

this

time.

Change

the

LANGUAGE

clause

so

that

it

specifies

a

supported

language

for

the

method

and

implement

the

method

in

that

alternate

language.

SQLCODE

-449,

SQLSTATE

42878

The

CREATE

statement

for

the

CLR

routine

contains

an

invalidly

formatted

library

or

function

identification

in

the

EXTERNAL

NAME

clause.

For

language

CLR,

the

EXTERNAL

clause

value

must

specifically

take

the

form:

’<a>:!<c>’

as

follows:

v

<a>

is

the

CLR

assembly

file

in

which

the

class

is

located.

v

is

the

class

in

which

the

method

to

invoke

resides.

v

<c>

is

the

method

to

invoke.

Chapter

4.

External

routines

117

|

|

|

|

|
|

|

|

|

|

|

|

|

|
|
|
|
|

|
|

|
|

|
|
|
|

|

|
|
|
|
|
|
|

|
|
|
|
|

|

|

|

No

leading

or

trailing

blank

characters

are

permitted

between

the

single

quotes,

object

identifiers,

and

the

separating

characters

(for

example,

’

<a>

!

’

is

invalid).

Path

and

file

names,

however,

may

contain

blanks

if

the

platform

permits.

For

all

file

names,

the

file

can

be

specified

using

either

the

short

form

of

the

name

(example:

math.dll

or

the

fully

qualified

path

name

(example:

d:\udfs\math.dll.

If

the

short

form

of

the

file

name

is

used,

if

the

platform

is

UNIX

or

if

the

routine

is

a

LANGUAGE

CLR

routine,

then

the

file

must

reside

in

the

function

directory.

If

the

platform

is

Windows

and

the

routine

is

not

a

LANGUAGE

CLR

routine

then

the

file

must

reside

in

the

system

PATH.

File

extensions

(examples:

.a

(on

UNIX),

.dll

(on

Windows))

should

always

be

included

in

the

file

name.

CLR

routine

runtime

errors:

SQLCODE

-20282,

SQLSTATE

42724,

reason

code

1

The

external

assembly

specified

by

the

EXTERNAL

clause

in

the

CREATE

statement

for

the

routine

was

not

found.

v

Check

that

the

EXTERNAL

clause

specifies

the

correct

routine

assembly

name

and

that

the

assembly

is

located

in

the

specified

location.

If

the

EXTERNAL

clause

does

not

specify

a

fully

qualified

path

name

to

the

desired

assembly,

DB2

presumes

that

the

path

name

provided

is

a

relative

path

name

to

the

assembly,

relative

to

the

DB2

function

directory.

SQLCODE

-20282,

SQLSTATE

42724,

reason

code

2

An

assembly

was

found

in

the

location

specified

by

the

EXTERNAL

clause

in

the

CREATE

statement

for

the

routine,

but

no

class

was

found

within

the

assembly

to

match

the

class

specified

in

the

EXTERNAL

clause.

v

Check

that

the

assembly

name

specified

in

the

EXTERNAL

clause

is

the

correct

assembly

for

the

routine

and

that

it

exists

in

the

specified

location.

v

Check

that

the

class

name

specified

in

the

EXTERNAL

clause

is

the

correct

class

name

and

that

it

exists

in

the

specified

assembly.

SQLCODE

-20282,

SQLSTATE

42724,

reason

code

3

An

assembly

was

found

in

the

location

specified

by

the

EXTERNAL

clause

in

the

CREATE

statement

for

the

routine,

that

had

a

correctly

matching

class

definition,

but

the

routine

method

signature

does

not

match

the

routine

signature

specified

in

the

CREATE

statement

for

the

routine.

v

Check

that

the

assembly

name

specified

in

the

EXTERNAL

clause

is

the

correct

assembly

for

the

routine

and

that

it

exists

in

the

specified

location.

v

Check

that

the

class

name

specified

in

the

EXTERNAL

clause

is

the

correct

class

name

and

that

it

exists

in

the

specified

assembly.

v

Check

that

the

parameter

style

implementation

matches

the

parameter

style

specified

in

the

CREATE

statement

for

the

routine.

v

Check

that

the

order

of

the

parameter

implementation

matches

the

parameter

declaration

order

in

the

CREATE

statement

for

the

routine

and

that

it

respects

the

extra

parameter

requirements

for

the

parameter

style.

v

Check

that

the

SQL

parameter

data

types

are

correctly

mapped

to

CLR

.NET

supported

data

types.

SQLCODE

-4301,

SQLSTATE

58004,

reason

code

5

or

6

An

error

occurred

while

attempting

to

start

or

communicate

with

a

.NET

118

Programming

Server

Applications

|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|

|
|

|
|
|
|
|

|
|
|

|
|

|
|

|
|
|
|

|
|

|
|

interpreter.

DB2

was

unable

to

load

a

dependent

.NET

library

[reason

code

5]

or

a

call

to

the

.NET

interpreter

failed

[reason

code

6].

v

Ensure

that

the

DB2

instance

is

configured

correctly

to

run

a

.NET

procedure

or

function

(mscoree.dll

must

be

present

in

the

system

PATH).

Ensure

that

db2clr.dll

is

present

in

the

sqllib/bin

directory,

and

that

IBM.Data.DB2

is

installed

in

the

global

assembly

cache.

If

these

are

not

present,

please

ensure

that

the

.NET

Framework

version

1.1,

or

a

later

version,

is

installed

on

the

database

server,

and

that

the

database

server

is

running

DB2

version

8.2

or

a

later

release.

SQLCODE

-4302,

SQLSTATE

38501

An

unhandled

exception

occurred

while

executing,

preparing

to

execute,

or

subsequent

to

executing

the

routine.

This

could

be

the

result

of

a

routine

logic

programming

error

that

was

unhandled

or

could

be

the

result

of

an

internal

processing

error.

Related

concepts:

v

“SQL

in

external

routines”

on

page

101

v

“Authorizations

and

binding

of

routines

that

contain

SQL”

on

page

35

v

“Security

considerations

for

routines”

on

page

24

v

“Library

and

class

management

considerations”

on

page

27

v

“Common

language

runtime

(CLR)

routines”

on

page

106

Related

tasks:

v

“Creating

CLR

routines”

on

page

107

Examples

of

CLR

procedures

in

C#

Once

the

basics

of

procedures,

also

called

stored

procedures,

and

the

essentials

of

.NET

common

language

runtime

routines

are

understood,

you

can

start

using

CLR

procedures

in

your

applications.

This

topic

contains

examples

of

CLR

procedures

implemented

in

C#

that

illustrate

the

supported

parameter

styles,

passing

parameters,

including

the

dbinfo

structure,

how

to

return

a

result

set

and

more.

For

examples

of

CLR

UDFs

in

C#:

v

“Examples

of

CLR

user-defined

functions

in

C#”

on

page

139

Prerequisites:

Before

working

with

the

CLR

procedure

examples

you

may

want

to

read

the

following

concept

topics:

v

“Common

language

runtime

(CLR)

routines”

on

page

106

v

“Creating

CLR

routines”

on

page

107

v

“Routines

in

application

development”

on

page

3

v

Building

common

language

runtime

(CLR)

.NET

routines

The

examples

below

make

use

of

a

table

named

EMPLOYEE

that

is

contained

in

the

SAMPLE

database.

Procedure:

Use

the

following

examples

as

references

when

making

your

own

C#

CLR

procedures:

Chapter

4.

External

routines

119

|
|

|
|
|
|
|
|
|

|
|
|
|
|

|

|

|

|

|

|

|

|

|

|
|
|

|
|
|

|

|

|
|

|

|

|

|

|
|

|

|
|

v

“The

C#

external

code

file”

v

“Example

1:

C#

parameter

style

GENERAL

procedure”

v

“Example

2:

C#

parameter

style

GENERAL

WITH

NULLS

procedure”

on

page

121

v

“Example

3:

C#

parameter

style

SQL

procedure”

on

page

123

v

“Example

4:

C#

procedure

returning

a

result

set”

on

page

126

v

“Example

5:

C#

procedure

accessing

the

dbinfo

structure”

on

page

126

v

“Example

6:

C#

procedure

in

PROGRAM

TYPE

MAIN

style

”

on

page

127

The

C#

external

code

file:

The

examples

show

a

variety

of

C#

procedure

implementations.

Each

example

consists

of

two

parts:

the

CREATE

PROCEDURE

statement

and

the

external

C#

code

implementation

of

the

procedure

from

which

the

associated

assembly

can

be

built.

The

C#

source

file

that

contains

the

procedure

implementations

of

the

following

examples

is

named

gwenProc.cs

and

has

the

following

format:

Table

5.

C#

external

code

file

format

using

System;

using

System.IO;

using

IBM.Data.DB2;

namespace

bizLogic

{

class

empOps

{

...

//

C#

procedures

...

}

}

The

file

inclusions

are

indicated

at

the

top

of

the

file.

The

IBM.Data.DB2

inclusion

is

required

if

any

of

the

procedures

in

the

file

contain

SQL.

There

is

a

namespace

declaration

in

this

file

and

a

class

empOps

that

contains

the

procedures.

The

use

of

namespaces

is

optional.

If

a

namespace

is

used,

the

namespace

must

appear

in

the

assembly

path

name

provided

in

the

EXTERNAL

clause

of

the

CREATE

PROCEDURE

statement.

It

is

important

to

note

the

name

of

the

file,

the

namespace,

and

the

name

of

the

class,

that

contains

a

given

procedure

implementation.

These

names

are

important,

because

the

EXTERNAL

clause

of

the

CREATE

PROCEDURE

statement

for

each

procedure

must

specify

this

information

so

that

DB2

can

locate

the

assembly

and

class

of

the

CLR

procedure.

Example

1:

C#

parameter

style

GENERAL

procedure:

This

example

shows

the

following:

v

CREATE

PROCEDURE

statement

for

a

parameter

style

GENERAL

procedure

v

C#

code

for

a

parameter

style

GENERAL

procedure

This

procedure

takes

an

employee

ID

and

a

current

bonus

amount

as

input.

It

retrieves

the

employee’s

name

and

salary.

If

the

current

bonus

amount

is

zero,

a

new

bonus

is

calculated,

based

on

the

employee’s

salary,

and

returned

along

with

120

Programming

Server

Applications

|

|

|
|

|

|

|

|

|

|
|
|
|

|
|

||

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|

|

|

|

|
|
|

the

employee’s

full

name.

If

the

employee

is

not

found,

an

empty

string

is

returned.

Table

6.

Code

to

create

a

C#

parameter

style

GENERAL

procedure

CREATE

PROCEDURE

setEmpBonusGEN(IN

empID

CHAR(6),

INOUT

bonus

Decimal(9,2),

OUT

empName

VARCHAR(60))

SPECIFIC

SetEmpBonusGEN

LANGUAGE

CLR

PARAMETER

STYLE

GENERAL

DYNAMIC

RESULT

SETS

0

PROGRAM

TYPE

SUB

EXTERNAL

NAME

’gwenProc.dll:bizLogic.empOps!SetEmpBonusGEN’

;

public

static

void

SetEmpBonusGEN(

String

empID,

ref

Decimal

bonus,

out

String

empName)

{

//

Declare

local

variables

Decimal

salary

=

0;

DB2Command

myCommand

=

DB2Context.GetCommand();

myCommand.CommandText

=

"SELECT

FIRSTNME,

MIDINIT,

LASTNAME,

SALARY

"

+

"FROM

EMPLOYEE

"

+

"WHERE

EMPNO

=

’"

+

empID

+

’";

DB2DataReader

reader

=

myCommand.ExecuteReader();

if

(reader.Read())

//

If

employee

record

is

found

{

//

Get

the

employee’s

full

name

and

salary

empName

=

reader.GetString(0)

+

"

"

+

reader.GetString(1)

+

".

"

+

reader.GetString(2);

salary

=

reader.GetDecimal(3);

if

(bonus

==

0)

{

if

(salary

>

75000)

{

bonus

=

salary

*

(Decimal)0.025;

}

else

{

bonus

=

salary

*

(Decimal)0.05;

}

}

}

else

//

Employee

not

found

{

empName

=

"";

//

Set

output

parameter

}

reader.Close();

}

Example

2:

C#

parameter

style

GENERAL

WITH

NULLS

procedure:

This

example

shows

the

following:

v

CREATE

PROCEDURE

statement

for

a

parameter

style

GENERAL

WITH

NULLS

procedure

v

C#

code

for

a

parameter

style

GENERAL

WITH

NULLS

procedure

Chapter

4.

External

routines

121

|
|

||

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

This

procedure

takes

an

employee

ID

and

a

current

bonus

amount

as

input.

If

the

input

parameter

is

not

null,

it

retrieves

the

employee’s

name

and

salary.

If

the

current

bonus

amount

is

zero,

a

new

bonus

based

on

salary

is

calculated

and

returned

along

with

the

employee’s

full

name.

If

the

employee

data

is

not

found,

a

NULL

string

and

integer

is

returned.

Table

7.

Code

to

create

a

C#

parameter

style

GENERAL

WITH

NULLS

procedure

CREATE

PROCEDURE

SetEmpbonusGENNULL(IN

empID

CHAR(6),

INOUT

bonus

Decimal(9,2),

OUT

empName

VARCHAR(60))

SPECIFIC

SetEmpbonusGENNULL

LANGUAGE

CLR

PARAMETER

STYLE

GENERAL

WITH

NULLS

DYNAMIC

RESULT

SETS

0

FENCED

PROGRAM

TYPE

SUB

EXTERNAL

NAME

’gwenProc.dll:bizLogic.empOps!SetEmpBonusGENNULL’

;

122

Programming

Server

Applications

|
|
|
|
|

||

|
|
|
|
|
|
|
|
|
|
|
|

Table

7.

Code

to

create

a

C#

parameter

style

GENERAL

WITH

NULLS

procedure

(continued)

public

static

void

SetEmpBonusGENNULL(

String

empID,

ref

Decimal

bonus,

out

String

empName,

Int16[]

NullInds)

{

Decimal

salary

=

0;

if

(NullInds[0]

==

-1)

//

Check

if

the

input

is

null

{

NullInds[1]

=

-1;

//

Return

a

NULL

bonus

value

empName

=

"";

//

Set

output

value

NullInds[2]

=

-1;

//

Return

a

NULL

empName

value

}

else

{

DB2Command

myCommand

=

DB2Context.GetCommand();

myCommand.CommandText

=

"SELECT

FIRSTNME,

MIDINIT,

LASTNAME,

SALARY

"

+

"FROM

EMPLOYEE

"

+

"WHERE

EMPNO

=

’"

+

empID

+

"’";

DB2DataReader

reader

=

myCommand.ExecuteReader();

if

(reader.Read())

//

If

employee

record

is

found

{

//

Get

the

employee’s

full

name

and

salary

empName

=

reader.GetString(0)

+

"

"

+

reader.GetString(1)

+

".

"

+

reader.GetString(2);

salary

=

reader.GetDecimal(3);

if

(bonus

==

0)

{

if

(salary

>

75000)

{

bonus

=

salary

*

(Decimal)0.025;

NullInds[1]

=

0;

//

Return

a

non-NULL

value

}

else

{

bonus

=

salary

*

(Decimal)0.05;

NullInds[1]

=

0;

//

Return

a

non-NULL

value

}

}

}

else

//

Employee

not

found

{

empName

=

"*sdq;;

//

Set

output

parameter

NullInds[2]

=

-1;

//

Return

a

NULL

value

}

reader.Close();

}

}

Example

3:

C#

parameter

style

SQL

procedure:

This

example

shows

the

following:

v

CREATE

PROCEDURE

statement

for

a

parameter

style

SQL

procedure

v

C#

code

for

a

parameter

style

SQL

procedure

This

procedure

takes

an

employee

ID

and

a

current

bonus

amount

as

input.

It

retrieves

the

employee’s

name

and

salary.

If

the

current

bonus

amount

is

zero,

a

Chapter

4.

External

routines

123

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|

new

bonus

based

on

salary

is

calculated

and

returned

along

with

the

employee’s

full

name.

If

the

employee

is

not

found,

an

empty

string

is

returned.

Table

8.

Code

to

create

a

C#

procedure

in

parameter

style

SQL

with

parameters

CREATE

PROCEDURE

SetEmpbonusSQL(IN

empID

CHAR(6),

INOUT

bonus

Decimal(9,2),

OUT

empName

VARCHAR(60))

SPECIFIC

SetEmpbonusSQL

LANGUAGE

CLR

PARAMETER

STYLE

SQL

DYNAMIC

RESULT

SETS

0

FENCED

PROGRAM

TYPE

SUB

EXTERNAL

NAME

’gwenProc.dll:bizLogic.empOps!SetEmpBonusSQL’

;

124

Programming

Server

Applications

|
|

||

|
|
|
|
|
|
|
|
|
|
|

Table

8.

Code

to

create

a

C#

procedure

in

parameter

style

SQL

with

parameters

(continued)

public

static

void

SetEmpBonusSQL(

String

empID,

ref

Decimal

bonus,

out

String

empName,

Int16

empIDNullInd,

ref

Int16

bonusNullInd,

out

Int16

empNameNullInd,

ref

string

sqlStateate,

string

funcName,

string

specName,

ref

string

sqlMessageText)

{

//

Declare

local

host

variables

Decimal

salary

eq;

0;

if

(empIDNullInd

==

-1)

//

Check

if

the

input

is

null

{

bonusNullInd

=

-1;

//

Return

a

NULL

bonus

value

empName

=

"";

empNameNullInd

=

-1;

//

Return

a

NULL

empName

value

}

else

DB2Command

myCommand

=

DB2Context.GetCommand();

myCommand.CommandText

=

"SELECT

FIRSTNME,

MIDINIT,

LASTNAME,

SALARY

"

+

"FROM

EMPLOYEE

"

+

"WHERE

EMPNO

=

’"

+

empID

+

"’";

DB2DataReader

reader

=

myCommand.ExecuteReader();

if

(reader.Read())

//

If

employee

record

is

found

{

//

Get

the

employee’s

full

name

and

salary

empName

=

reader.GetString(0)

+

"

"

+

reader.GetString(1)

+

".

"

+

reader.GetString(2);

empNameNullInd

=

0;

salary

=

reader.GetDecimal(3);

if

(bonus

==

0)

{

if

(salary

>

75000)

{

bonus

=

salary

*

(Decimal)0.025;

bonusNullInd

=

0;

//

Return

a

non-NULL

value

}

else

{

bonus

=

salary

*

(Decimal)0.05;

bonusNullInd

=

0;

//

Return

a

non-NULL

value

}

}

}

else

//

Employee

not

found

}

empName

=

"";

//

Set

output

parameter

empNameNullInd

=

-1;

//

Return

a

NULL

value

}

reader.Close();

}

}

Chapter

4.

External

routines

125

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Example

4:

C#

parameter

style

GENERAL

procedure

returning

a

result

set:

This

example

shows

the

following:

v

CREATE

PROCEDURE

statement

for

an

external

C#

procedure

returning

a

result

set

v

C#

code

for

a

parameter

style

GENERAL

procedure

that

returns

a

result

set

This

procedure

accepts

the

name

of

a

table

as

a

parameter.

It

returns

a

result

set

containing

all

the

rows

of

the

table

specified

by

the

input

parameter.

This

is

done

by

leaving

a

DB2DataReader

for

a

given

query

result

set

open

when

the

procedure

returns.

Specifically,

if

reader.Close()

is

not

executed,

the

result

set

will

be

returned.

Table

9.

Code

to

create

a

C#

procedure

that

returns

a

result

set

CREATE

PROCEDURE

ReturnResultSet(IN

tableName

VARCHAR(20))

SPECIFIC

ReturnResultSet

DYNAMIC

RESULT

SETS

1

LANGUAGE

CLR

PARAMETER

STYLE

GENERAL

FENCED

PROGRAM

TYPE

SUB

EXTERNAL

NAME

’gwenProc.dll:bizLogic.empOps!ReturnResultSet’

;

public

static

void

ReturnResultSet(string

tableName)

{

DB2Command

myCommand

=

DB2Context.GetCommand();

//

Set

the

SQL

statement

to

be

executed

and

execute

it.

myCommand.CommandText

=

"SELECT

*

FROM

"

+

tableName;

DB2DataReader

reader

=

myCommand.ExecuteReader();

//

The

DB2DataReader

contains

the

result

of

the

query.

//

This

result

set

can

be

returned

with

the

procedure,

//

by

simply

NOT

closing

the

DB2DataReader.

//

Specifically,

do

NOT

execute

reader.Close();

}

Example

5:

C#

parameter

style

SQL

procedure

accessing

the

dbinfo

structure:

This

example

shows

the

following:

v

CREATE

PROCEDURE

statement

for

a

procedure

accessing

the

dbinfo

structure

v

C#

code

for

a

parameter

style

SQL

procedure

that

accesses

the

dbinfo

structure

To

access

the

dbinfo

structure,

the

DBINFO

clause

must

be

specified

in

the

CREATE

PROCEDURE

statement.

No

parameter

is

required

for

the

dbinfo

structure

in

the

CREATE

PROCEDURE

statement

however

a

parameter

must

be

created

for

it,

in

the

external

routine

code.

This

procedure

returns

only

the

value

of

the

current

database

name

from

the

dbname

field

in

the

dbinfo

structure.

126

Programming

Server

Applications

|
|
|

|
|

|

|
|
|
|
|

||

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|
|
|
|

Table

10.

Code

to

create

a

C#

procedure

that

accesses

the

dbinfo

structure

CREATE

PROCEDURE

ReturnDbName(OUT

dbName

VARCHAR(20))

SPECIFIC

ReturnDbName

DYNAMIC

RESULT

SETS

0

LANGUAGE

CLR

PARAMETER

STYLE

SQL

FENCED

DBINFO

PROGRAM

TYPE

SUB

EXTERNAL

NAME

’gwenProc.dll:bizLogic.empOps!ReturnDbName’

;

public

static

void

ReturnDbName(out

string

dbName,

out

Int16

dbNameNullInd,

ref

string

sqlStateate,

string

funcName,

string

specName,

ref

string

sqlMessageText,

sqludf_dbinfo

dbinfo)

{

//

Retrieve

the

current

database

name

from

the

//

dbinfo

structure

and

return

it.

//

**

Note!

**

dbinfo

field

names

are

case

sensitive

dbName

=

dbinfo.dbname;

dbNameNullInd

=

0;

//

Return

a

non-null

value;

//

If

you

want

to

return

a

user-defined

error

in

//

the

SQLCA

you

can

specify

a

5

digit

user-defined

//

sqlStateate

and

an

error

message

string

text.

//

For

example:

//

//

sqlStateate

=

"ABCDE";

//

sqlMessageText

=

"A

user-defined

error

has

occured"

//

//

DB2

returns

the

above

values

to

the

client

in

the

//

SQLCA

structure.

The

values

are

used

to

generate

a

//

standard

DB2

sqlStateate

error.

}

Example

6:

C#

procedure

with

PROGRAM

TYPE

MAIN

style:

This

example

shows

the

following:

v

CREATE

PROCEDURE

statement

for

a

procedure

using

a

main

program

style

v

C#

parameter

style

GENERAL

WITH

NULLS

code

in

using

a

MAIN

program

style

To

implement

a

routine

in

a

main

program

style,

the

PROGRAM

TYPE

clause

must

be

specified

in

the

CREATE

PROCEDURE

statement

with

the

value

MAIN.

Parameters

are

specified

in

the

CREATE

PROCEDURE

statement

however

in

the

code

implementation,

parameters

are

passed

into

the

routine

in

an

argc

integer

parameter

and

an

argv

array

of

parameters.

Chapter

4.

External

routines

127

||

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|
|
|
|

Table

11.

Code

to

create

a

C#

procedure

in

program

type

MAIN

style

CREATE

PROCEDURE

MainStyle(

IN

empID

CHAR(6),

INOUT

bonus

Decimal(9,2),

OUT

empName

VARCHAR(60))

SPECIFIC

MainStyle

DYNAMIC

RESULT

SETS

0

LANGUAGE

CLR

PARAMETER

STYLE

GENERAL

WITH

NULLS

FENCED

PROGRAM

TYPE

MAIN

EXTERNAL

NAME

’gwenProc.dll:bizLogic.empOps!main’

;

128

Programming

Server

Applications

||

|
|
|
|
|
|
|
|
|
|
|

Table

11.

Code

to

create

a

C#

procedure

in

program

type

MAIN

style

(continued)

public

static

void

main(Int32

argc,

Object[]

argv)

{

String

empID

=

(String)argv[0];

//

argv[0]

has

nullInd:argv[3]

Decimal

bonus

=

(Decimal)argv[1];

//

argv[1]

has

nullInd:argv[4]

//

argv[2]

has

nullInd:argv[5]

Decimal

salary

=

0;

Int16[]

NullInds

=

(Int16[])argv[3];

if

((NullInds[0])

==

(Int16)(-1))

//

Check

if

empID

is

null

{

NullInds[1]

=

(Int16)(-1);

//

Return

a

NULL

bonus

value

argv[1]

=

(String)"";

//

Set

output

parameter

empName

NullInds[2]

=

(Int16)(-1);

//

Return

a

NULL

empName

value

Return;

}

else

DB2Command

myCommand

=

DB2Context.GetCommand();

myCommand.CommandText

=

"SELECT

FIRSTNME,

MIDINIT,

LASTNAME,

salary

"

+

"FROM

EMPLOYEE

"

+

"WHERE

EMPNO

=

’"

+

empID

+

"’";

DB2DataReader

reader

=

myCommand.ExecuteReader();

if

(reader.Read())

//

If

employee

record

is

found

{

//

Get

the

employee’s

full

name

and

salary

argv[2]

=

(String)

(reader.GetString(0)

+

"

"

+

reader.GetString(1)

+

".

"

+

reader.GetString(2));

NullInds[2]

=

(Int16)0;

salary

=

reader.GetDecimal(3);

if

(bonus

==

0)

{

if

(salary

>

75000)

{

argv[1]

=

(Decimal)(salary

*

(Decimal)0.025);

NullInds[1]

=

(Int16)(0);

//

Return

a

non-NULL

value

}

else

{

argv[1]

=

(Decimal)(salary

*

(Decimal)0.05);

NullInds[1]

=

(Int16)(0);

//

Return

a

non-NULL

value

}

}

}

else

//

Employee

not

found

{

argv[2]

=

(String)("");

//

Set

output

parameter

NullInds[2]

=

(Int16)(-1);

//

Return

a

NULL

value

}

reader.Close();

}

}

Related

concepts:

v

“Common

language

runtime

(CLR)

routines”

on

page

106

v

“Routines

in

application

development”

on

page

3

Chapter

4.

External

routines

129

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

Related

tasks:

v

“Examples

of

CLR

user-defined

functions

in

C#”

on

page

139

v

“Creating

CLR

routines”

on

page

107

v

“Building

Common

Language

Runtime

(CLR)

.NET

routines”

in

the

Application

Development

Guide:

Building

and

Running

Applications

Related

samples:

v

“SpCreate.db2

--

Creates

the

external

procedures

implemented

in

spserver.cs”

v

“SpServer.cs

--

C#

external

code

implementation

of

procedures

created

in

spcat.db2”

v

“SpCreate.db2

--

Creates

the

external

procedures

implemented

in

spserver.vb”

v

“SpServer.vb

--

VB.NET

implementation

of

procedures

created

in

SpCat.db2”

Examples

of

CLR

procedures

in

Visual

Basic

Once

the

basics

of

procedures,

also

called

stored

procedures,

and

the

essentials

of

.NET

common

language

runtime

routines

are

understood,

you

can

start

using

CLR

procedures

in

your

applications.

This

topic

contains

examples

of

CLR

procedures

implemented

in

Visual

Basic;

that

illustrate

the

supported

parameter

styles,

passing

parameters,

including

the

dbinfo

structure,

how

to

return

a

result

set

and

more.

For

examples

of

CLR

UDFs

in

Visual

Basic:

v

“Examples

of

CLR

user-defined

functions

in

Visual

Basic”

on

page

145

Prerequisites:

Before

working

with

the

CLR

procedure

examples

you

may

want

to

read

the

following

concept

topics:

v

“Common

language

runtime

(CLR)

routines”

on

page

106

v

“Creating

CLR

routines”

on

page

107

v

“Routines

in

application

development”

on

page

3

v

Building

common

language

runtime

(CLR)

.NET

routines

The

examples

below

make

use

of

a

table

named

EMPLOYEE

that

is

contained

in

the

SAMPLE

database.

Procedure:

Use

the

following

examples

as

references

when

making

your

own

Visual

Basic

CLR

procedures:

v

“The

Visual

Basic

external

code

file”

v

“Example

1:

Visual

Basic

parameter

style

GENERAL

procedure”

on

page

131

v

“Example

2:

Visual

Basic

parameter

style

GENERAL

WITH

NULLS

procedure”

on

page

132

v

“Example

3:

Visual

Basic

parameter

style

SQL

procedure”

on

page

134

v

“Example

4:

Visual

Basic

procedure

returning

a

result

set”

on

page

135

v

“Example

5:

Visual

Basic

procedure

accessing

the

dbinfo

structure”

on

page

136

v

“Example

6:

Visual

Basic

procedure

in

PROGRAM

TYPE

MAIN

style

”

on

page

137

The

Visual

Basic

external

code

file:

130

Programming

Server

Applications

|

|

|

|
|

|

|

|
|

|

|

The

examples

show

a

variety

of

Visual

Basic

procedure

implementations.

Each

example

consists

of

two

parts:

the

CREATE

PROCEDURE

statement

and

the

external

Visual

Basic

code

implementation

of

the

procedure

from

which

the

associated

assembly

can

be

built.

The

Visual

Basic

source

file

that

contains

the

procedure

implementations

of

the

following

examples

is

named

gwenVbProc.vb

and

has

the

following

format:

Table

12.

Visual

Basic

external

code

file

format

using

System;

using

System.IO;

using

IBM.Data.DB2;

Namespace

bizLogic

Class

empOps

...

’

Visual

Basic

procedures

...

End

Class

End

Namespace

The

file

inclusions

are

indicated

at

the

top

of

the

file.

The

IBM.Data.DB2

inclusion

is

required

if

any

of

the

procedures

in

the

file

contain

SQL.

There

is

a

namespace

declaration

in

this

file

and

a

class

empOps

that

contains

the

procedures.

The

use

of

namespaces

is

optional.

If

a

namespace

is

used,

the

namespace

must

appear

in

the

assembly

path

name

provided

in

the

EXTERNAL

clause

of

the

CREATE

PROCEDURE

statement.

It

is

important

to

note

the

name

of

the

file,

the

namespace,

and

the

name

of

the

class,

that

contains

a

given

procedure

implementation.

These

names

are

important,

because

the

EXTERNAL

clause

of

the

CREATE

PROCEDURE

statement

for

each

procedure

must

specify

this

information

so

that

DB2

can

locate

the

assembly

and

class

of

the

CLR

procedure.

Example

1:

Visual

Basic

parameter

style

GENERAL

procedure:

This

example

shows

the

following:

v

CREATE

PROCEDURE

statement

for

a

parameter

style

GENERAL

procedure

v

Visual

Basic

code

for

a

parameter

style

GENERAL

procedure

This

procedure

takes

an

employee

ID

and

a

current

bonus

amount

as

input.

It

retrieves

the

employee’s

name

and

salary.

If

the

current

bonus

amount

is

zero,

a

new

bonus

is

calculated,

based

on

the

employee

salary,

and

returned

along

with

the

employee’s

full

name.

If

the

employee

is

not

found,

an

empty

string

is

returned.

Chapter

4.

External

routines

131

Table

13.

Code

to

create

a

Visual

Basic

parameter

style

GENERAL

procedure

CREATE

PROCEDURE

SetEmpBonusGEN(IN

empId

CHAR(6),

INOUT

bonus

Decimal(9,2),

OUT

empName

VARCHAR(60))

SPECIFIC

setEmpBonusGEN

LANGUAGE

CLR

PARAMETER

STYLE

GENERAL

DYNAMIC

RESULT

SETS

0

FENCED

PROGRAM

TYPE

SUB

EXTERNAL

NAME

’gwenVbProc.dll:bizLogic.empOps!SetEmpBonusGEN’

Public

Shared

Sub

SetEmpBonusGEN(ByVal

empId

As

String,

_

ByRef

bonus

As

Decimal,

_

ByRef

empName

As

String)

Dim

salary

As

Decimal

Dim

myCommand

As

DB2Command

Dim

myReader

As

DB2DataReader

salary

=

0

myCommand

=

DB2Context.GetCommand()

myCommand.CommandText

=

_

"SELECT

FIRSTNME,

MIDINIT,

LASTNAME,

SALARY

"

_

+

"FROM

EMPLOYEE

"

_

+

"WHERE

EMPNO

=

’"

+

empId

+

"’"

myReader

=

myCommand.ExecuteReader()

If

myReader.Read()

’

If

employee

record

is

found

’

Get

the

employee’s

full

name

and

salary

empName

=

myReader.GetString(0)

+

"

"

_

+

myReader.GetString(1)

+

".

"

_

+

myReader.GetString(2)

salary

=

myReader.GetDecimal(3)

If

bonus

=

0

If

salary

>

75000

bonus

=

salary

*

0.025

Else

bonus

=

salary

*

0.05

End

If

End

If

Else

’

Employee

not

found

empName

=

""

’

Set

output

parameter

End

If

myReader.Close()

End

Sub

Example

2:

Visual

Basic

parameter

style

GENERAL

WITH

NULLS

procedure:

This

example

shows

the

following:

v

CREATE

PROCEDURE

statement

for

a

parameter

style

GENERAL

WITH

NULLS

procedure

v

Visual

Basic

code

for

a

parameter

style

GENERAL

WITH

NULLS

procedure

This

procedure

takes

an

employee

ID

and

a

current

bonus

amount

as

input.

If

the

input

parameter

is

not

null,

it

retrieves

the

employee’s

name

and

salary.

If

the

current

bonus

amount

is

zero,

a

new

bonus

based

on

salary

is

calculated

and

returned

along

with

the

employee’s

full

name.

If

the

employee

data

is

not

found,

a

NULL

string

and

integer

is

returned.

132

Programming

Server

Applications

Table

14.

Code

to

create

a

Visual

Basic

parameter

style

GENERAL

WITH

NULLS

procedure

CREATE

PROCEDURE

SetEmpBonusGENNULL(IN

empId

CHAR(6),

INOUT

bonus

Decimal(9,2),

OUT

empName

VARCHAR(60))

SPECIFIC

SetEmpBonusGENNULL

LANGUAGE

CLR

PARAMETER

STYLE

GENERAL

WITH

NULLS

DYNAMIC

RESULT

SETS

0

FENCED

PROGRAM

TYPE

SUB

EXTERNAL

NAME

’gwenVbProc.dll:bizLogic.empOps!SetEmpBonusGENNULL’

Public

Shared

Sub

SetEmpBonusGENNULL(ByVal

empId

As

String,

_

ByRef

bonus

As

Decimal,

_

ByRef

empName

As

String,

_

byVal

nullInds

As

Int16())

Dim

salary

As

Decimal

Dim

myCommand

As

DB2Command

Dim

myReader

As

DB2DataReader

salary

=

0

If

nullInds(0)

=

-1

’

Check

if

the

input

is

null

nullInds(1)

=

-1

’

Return

a

NULL

bonus

value

empName

=

""

’

Set

output

parameter

nullInds(2)

=

-1

’

Return

a

NULL

empName

value

Return

Else

myCommand

=

DB2Context.GetCommand()

myCommand.CommandText

=

_

"SELECT

FIRSTNME,

MIDINIT,

LASTNAME,

SALARY

"

_

+

"FROM

EMPLOYEE

"

_

+

"WHERE

EMPNO

=

’"

+

empId

+

"’"

myReader

=

myCommand.ExecuteReader()

If

myReader.Read()

’

If

employee

record

is

found

’

Get

the

employee’s

full

name

and

salary

empName

=

myReader.GetString(0)

+

"

"

_

+

myReader.GetString(1)

+

".

"

_

+

myReader.GetString(2)

salary

=

myReader.GetDecimal(3)

If

bonus

=

0

If

salary

>

75000

bonus

=

Salary

*

0.025

nullInds(1)

=

0

’Return

a

non-NULL

value

Else

bonus

=

salary

*

0.05

nullInds(1)

=

0

’

Return

a

non-NULL

value

End

If

Else

’Employee

not

found

empName

=

""

’

Set

output

parameter

nullInds(2)

=

-1

’

Return

a

NULL

value

End

If

End

If

myReader.Close()

End

If

End

Sub

Chapter

4.

External

routines

133

Example

3:

Visual

Basic

parameter

style

SQL

procedure:

This

example

shows

the

following:

v

CREATE

PROCEDURE

statement

for

a

parameter

style

SQL

procedure

v

Visual

Basic

code

for

a

parameter

style

SQL

procedure

This

procedure

takes

an

employee

ID

and

a

current

bonus

amount

as

input.

It

retrieves

the

employee’s

name

and

salary.

If

the

current

bonus

amount

is

zero,

a

new

bonus

based

on

salary

is

calculated

and

returned

along

with

the

employee’s

full

name.

If

the

employee

is

not

found,

an

empty

string

is

returned.

Table

15.

Code

to

create

a

Visual

Basic

procedure

in

parameter

style

SQL

with

parameters

CREATE

PROCEDURE

SetEmpBonusSQL(IN

empId

CHAR(6),

INOUT

bonus

Decimal(9,2),

OUT

empName

VARCHAR(60))

SPECIFIC

SetEmpBonusSQL

LANGUAGE

CLR

PARAMETER

STYLE

SQL

DYNAMIC

RESULT

SETS

0

FENCED

PROGRAM

TYPE

SUB

EXTERNAL

NAME

’gwenVbProc.dll:bizLogic.empOps!SetEmpBonusSQL’

134

Programming

Server

Applications

Table

15.

Code

to

create

a

Visual

Basic

procedure

in

parameter

style

SQL

with

parameters

(continued)

Public

Shared

Sub

SetEmpBonusSQL(byVal

empId

As

String,

_

byRef

bonus

As

Decimal,

_

byRef

empName

As

String,

_

byVal

empIdNullInd

As

Int16,

_

byRef

bonusNullInd

As

Int16,

_

byRef

empNameNullInd

As

Int16,

_

byRef

sqlState

As

String,

_

byVal

funcName

As

String,

_

byVal

specName

As

String,

_

byRef

sqlMessageText

As

String)

’

Declare

local

host

variables

Dim

salary

As

Decimal

Dim

myCommand

As

DB2Command

Dim

myReader

As

DB2DataReader

salary

=

0

If

empIdNullInd

=

-1

’

Check

if

the

input

is

null

bonusNullInd

=

-1

’

Return

a

NULL

Bonus

value

empName

=

""

empNameNullInd

=

-1

’

Return

a

NULL

empName

value

Else

myCommand

=

DB2Context.GetCommand()

myCommand.CommandText

=

_

"SELECT

FIRSTNME,

MIDINIT,

LASTNAME,

SALARY

"

_

+

"FROM

EMPLOYEE

"

_

+

"

WHERE

EMPNO

=

’"

+

empId

+

"’"

myReader

=

myCommand.ExecuteReader()

If

myReader.Read()

’

If

employee

record

is

found

’

Get

the

employee’s

full

name

and

salary

empName

=

myReader.GetString(0)

+

"

"

+

myReader.GetString(1)

_

+

".

"

+

myReader.GetString(2)

empNameNullInd

=

0

salary

=

myReader.GetDecimal(3)

If

bonus

=

0

If

salary

>

75000

bonus

=

salary

*

0.025

bonusNullInd

=

0

’

Return

a

non-NULL

value

Else

bonus

=

salary

*

0.05

bonusNullInd

=

0

’

Return

a

non-NULL

value

End

If

End

If

Else

’

Employee

not

found

empName

=

""

’

Set

output

parameter

empNameNullInd

=

-1

’

Return

a

NULL

value

End

If

myReader.Close()

End

If

End

Sub

Example

4:

Visual

Basic

parameter

style

GENERAL

procedure

returning

a

result

set:

This

example

shows

the

following:

Chapter

4.

External

routines

135

v

CREATE

PROCEDURE

statement

for

an

external

Visual

Basic

procedure

returning

a

result

set

v

Visual

Basic

code

for

a

parameter

style

GENERAL

procedure

that

returns

a

result

set

This

procedure

accepts

the

name

of

a

table

as

a

parameter.

It

returns

a

result

set

containing

all

the

rows

of

the

table

specified

by

the

input

parameter.

This

is

done

by

leaving

a

DB2DataReader

for

a

given

query

result

set

open

when

the

procedure

returns.

Specifically,

if

reader.Close()

is

not

executed,

the

result

set

will

be

returned.

Table

16.

Code

to

create

a

Visual

Basic

procedure

that

returns

a

result

set

CREATE

PROCEDURE

ReturnResultSet(IN

tableName

VARCHAR(20))

SPECIFIC

ReturnResultSet

DYNAMIC

RESULT

SETS

1

LANGUAGE

CLR

PARAMETER

STYLE

GENERAL

FENCED

PROGRAM

TYPE

SUB

EXTERNAL

NAME

’gwenVbProc.dll:bizLogic.empOps!ReturnResultSet’

Public

Shared

Sub

ReturnResultSet(byVal

tableName

As

String)

Dim

myCommand

As

DB2Command

Dim

myReader

As

DB2DataReader

myCommand

=

DB2Context.GetCommand()

’

Set

the

SQL

statement

to

be

executed

and

execute

it.

myCommand.CommandText

=

"SELECT

*

FROM

"

+

tableName

myReader

=

myCommand.ExecuteReader()

’

The

DB2DataReader

contains

the

result

of

the

query.

’

This

result

set

can

be

returned

with

the

procedure,

’

by

simply

NOT

closing

the

DB2DataReader.

’

Specifically,

do

NOT

execute

reader.Close()

End

Sub

Example

5:

Visual

Basic

parameter

style

SQL

procedure

accessing

the

dbinfo

structure:

This

example

shows

the

following:

v

CREATE

PROCEDURE

statement

for

a

procedure

accessing

the

dbinfo

structure

v

Visual

Basic

code

for

a

parameter

style

SQL

procedure

that

accesses

the

dbinfo

structure

To

access

the

dbinfo

structure,

the

DBINFO

clause

must

be

specified

in

the

CREATE

PROCEDURE

statement.

No

parameter

is

required

for

the

dbinfo

structure

in

the

CREATE

PROCEDURE

statement

however

a

parameter

must

be

created

for

it,

in

the

external

routine

code.

This

procedure

returns

only

the

value

of

the

current

database

name

from

the

dbname

field

in

the

dbinfo

structure.

136

Programming

Server

Applications

Table

17.

Code

to

create

a

Visual

Basic

procedure

that

accesses

the

dbinfo

structure

CREATE

PROCEDURE

ReturnDbName(OUT

dbName

VARCHAR(20))

SPECIFIC

ReturnDbName

LANGUAGE

CLR

PARAMETER

STYLE

SQL

DBINFO

FENCED

PROGRAM

TYPE

SUB

EXTERNAL

NAME

’gwenVbProc.dll:bizLogic.empOps!ReturnDbName’

Public

Shared

Sub

ReturnDbName(byRef

dbName

As

String,

_

byRef

dbNameNullInd

As

Int16,

_

byRef

sqlState

As

String,

_

byVal

funcName

As

String,

_

byVal

specName

As

String,

_

byRef

sqlMessageText

As

String,

_

byVal

dbinfo

As

sqludf_dbinfo)

’

Retrieve

the

current

database

name

from

the

’

dbinfo

structure

and

return

it.

dbName

=

dbinfo.dbname

dbNameNullInd

=

0

’

Return

a

non-null

value

’

If

you

want

to

return

a

user-defined

error

in

’

the

SQLCA

you

can

specify

a

5

digit

user-defined

’

SQLSTATE

and

an

error

message

string

text.

’

For

example:

’

’

sqlState

=

"ABCDE"

’

msg_token

=

"A

user-defined

error

has

occured"

’

’

These

will

be

returned

by

DB2

in

the

SQLCA.

It

’

will

appear

in

the

format

of

a

regular

DB2

sqlState

’

error.

End

Sub

Example

6:

Visual

Basic

procedure

with

PROGRAM

TYPE

MAIN

style:

This

example

shows

the

following:

v

CREATE

PROCEDURE

statement

for

a

procedure

using

a

main

program

style

v

Visual

Basic

parameter

style

GENERAL

WITH

NULLS

code

in

using

a

MAIN

program

style

To

implement

a

routine

in

a

main

program

style,

the

PROGRAM

TYPE

clause

must

be

specified

in

the

CREATE

PROCEDURE

statement

with

the

value

MAIN.

Parameters

are

specified

in

the

CREATE

PROCEDURE

statement

however

in

the

code

implementation,

parameters

are

passed

into

the

routine

in

an

argc

integer

parameter

and

an

argv

array

of

parameters.

Table

18.

Code

to

create

a

Visual

Basic

procedure

in

program

type

MAIN

style

CREATE

PROCEDURE

MainStyle(IN

empId

CHAR(6),

INOUT

bonus

Decimal(9,2),

OUT

empName

VARCHAR(60))

SPECIFIC

mainStyle

DYNAMIC

RESULT

SETS

0

LANGUAGE

CLR

PARAMETER

STYLE

GENERAL

WITH

NULLS

FENCED

PROGRAM

TYPE

MAIN

EXTERNAL

NAME

’gwenVbProc.dll:bizLogic.empOps!Main’

Chapter

4.

External

routines

137

Table

18.

Code

to

create

a

Visual

Basic

procedure

in

program

type

MAIN

style

(continued)

Public

Shared

Sub

Main(

byVal

argc

As

Int32,

_

byVal

argv

As

Object())

Dim

myCommand

As

DB2Command

Dim

myReader

As

DB2DataReader

Dim

empId

As

String

Dim

bonus

As

Decimal

Dim

salary

As

Decimal

Dim

nullInds

As

Int16()

empId

=

argv(0)

’

argv[0]

(IN)

nullInd

=

argv[3]

bonus

=

argv(1)

’

argv[1]

(INOUT)

nullInd

=

argv[4]

’

argv[2]

(OUT)

nullInd

=

argv[5]

salary

=

0

nullInds

=

argv(3)

If

nullInds(0)

=

-1

’

Check

if

the

empId

input

is

null

nullInds(1)

=

-1

’

Return

a

NULL

Bonus

value

argv(1)

=

""

’

Set

output

parameter

empName

nullInds(2)

=

-1

’

Return

a

NULL

empName

value

Return

Else

’

If

the

employee

exists

and

the

current

bonus

is

0,

’

calculate

a

new

employee

bonus

based

on

the

employee’s

’

salary.

Return

the

employee

name

and

the

new

bonus

myCommand

=

DB2Context.GetCommand()

myCommand.CommandText

=

_

"SELECT

FIRSTNME,

MIDINIT,

LASTNAME,

SALARY

"

_

+

"

FROM

EMPLOYEE

"

_

+

"

WHERE

EMPNO

=

’"

+

empId

+

"’"

myReader

=

myCommand.ExecuteReader()

If

myReader.Read()

’

If

employee

record

is

found

’

Get

the

employee’s

full

name

and

salary

argv(2)

=

myReader.GetString(0)

+

"

"

_

+

myReader.GetString(1)

+

".

"

_

+

myReader.GetString(2)

nullInds(2)

=

0

salary

=

myReader.GetDecimal(3)

If

bonus

=

0

If

salary

>

75000

argv(1)

=

salary

*

0.025

nullInds(1)

=

0

’

Return

a

non-NULL

value

Else

argv(1)

=

Salary

*

0.05

nullInds(1)

=

0

’

Return

a

non-NULL

value

End

If

End

If

Else

’

Employee

not

found

argv(2)

=

""

’

Set

output

parameter

nullInds(2)

=

-1

’

Return

a

NULL

value

End

If

myReader.Close()

End

If

End

Sub

Related

concepts:

v

“Common

language

runtime

(CLR)

routines”

on

page

106

v

“Routines

in

application

development”

on

page

3

138

Programming

Server

Applications

Related

tasks:

v

“Examples

of

CLR

user-defined

functions

in

Visual

Basic”

on

page

145

v

“Creating

CLR

routines”

on

page

107

v

“Building

Common

Language

Runtime

(CLR)

.NET

routines”

in

the

Application

Development

Guide:

Building

and

Running

Applications

Examples

of

CLR

user-defined

functions

in

C#

Once

you

understand

the

basics

of

user-defined

functions

(UDFs),

and

the

essentials

of

CLR

routines,

you

can

start

exploiting

CLR

UDFs

in

your

applications

and

database

environment.

This

topic

contains

some

examples

of

CLR

UDFs

to

get

you

started.

For

examples

of

CLR

procedures

in

C#:

v

“Examples

of

CLR

procedures

in

C#”

on

page

119

Prerequisites:

Before

working

with

the

CLR

UDF

examples

you

may

want

to

read

the

following

concept

topics:

v

“Common

language

runtime

(CLR)

routines”

on

page

106

v

“Creating

CLR

routines”

on

page

107

v

“User-defined

scalar

functions”

on

page

13

v

“User-defined

scalar

functions”

on

page

15

v

Building

common

language

runtime

(CLR)

.NET

routines

The

examples

below

make

use

of

a

table

named

EMPLOYEE

that

is

contained

in

the

SAMPLE

database.

Procedure:

Use

the

following

examples

as

references

when

making

your

own

C#

CLR

UDFs:

v

“The

C#

external

code

file”

v

“Example

1:

C#

parameter

style

SQL

table

function”

on

page

140

v

“Example

2:

C#

parameter

style

SQL

scalar

function”

on

page

143

The

C#

external

code

file:

The

following

examples

show

a

variety

of

C#

UDF

implementations.

The

CREATE

FUNCTION

statement

is

provided

for

each

UDF

with

the

corresponding

C#

source

code

from

which

the

associated

assembly

can

be

built.

The

C#

source

file

that

contains

the

functions

declarations

used

in

the

following

examples

is

named

gwenUDF.cs

and

has

the

following

format:

Table

19.

C#

external

code

file

format

using

System;

using

System.IO;

using

IBM.Data.DB2;

namespace

bizLogic

{

...

//

Class

definitions

that

contain

UDF

declarations

//

and

any

supporting

class

definitions

...

}

Chapter

4.

External

routines

139

The

function

declarations

must

be

contained

in

a

class

within

a

C#

file.

The

use

of

namespaces

is

optional.

If

a

namespace

is

used,

the

namespace

must

appear

in

the

assembly

path

name

provided

in

the

EXTERNAL

clause

of

the

CREATE

PROCEDURE

statement.

The

IBM.Data.DB2.

inclusion

is

required

if

the

function

contains

SQL.

Example

1:

C#

parameter

style

SQL

table

function:

This

example

shows

the

following:

v

CREATE

FUNCTION

statement

for

a

parameter

style

SQL

table

function

v

C#

code

for

a

parameter

style

SQL

table

function

This

table

function

returns

a

table

containing

rows

of

employee

data

that

was

created

from

a

data

array.

There

are

two

classes

associated

with

this

example.

Class

person

represents

the

employees,

and

the

class

empOps

contains

the

routine

table

UDF

that

uses

class

person.

The

employee

salary

information

is

updated

based

on

the

value

of

an

input

parameter.

The

data

array

in

this

example

is

created

within

the

table

function

itself

on

the

first

call

of

the

table

function.

Such

an

array

could

have

also

been

created

by

reading

in

data

from

a

text

file

on

the

filesystem.

The

array

data

values

are

written

to

a

scratchpad

so

that

the

data

can

be

accessed

in

subsequent

calls

of

the

table

function.

On

each

call

of

the

table

function,

one

record

is

read

from

the

array

and

one

row

is

generated

in

the

table

that

is

returned

by

the

function.

The

row

is

generated

in

the

table,

by

setting

the

output

parameters

of

the

table

function

to

the

desired

row

values.

After

the

final

call

of

the

table

function

occurs,

the

table

of

generated

rows

is

returned.

Table

20.

Code

to

create

a

C#

parameter

style

SQL

table

function

CREATE

FUNCTION

tableUDF(double)

RETURNS

TABLE

(name

varchar(20),

job

varchar(20),

salary

double)

EXTERNAL

NAME

’gwenUDF.dll:bizLogic.empOps!tableUDF’

LANGUAGE

CLR

PARAMETER

STYLE

SQL

NOT

DETERMINISTIC

FENCED

SCRATCHPAD

10

FINAL

CALL

DISALLOW

PARALLEL

NO

DBINFO

140

Programming

Server

Applications

Table

20.

Code

to

create

a

C#

parameter

style

SQL

table

function

(continued)

//

The

class

Person

is

a

supporting

class

for

//

the

table

function

UDF,

tableUDF,

below.

class

Person

{

private

String

name;

private

String

position;

private

Int32

salary;

public

Person(String

newName,

String

newPosition,

Int32

newSalary)

{

this.name

=

newName;

this.position

=

newPosition;

this.salary

=

newSalary;

}

public

String

getName()

{

return

this.name;

}

public

String

getPosition()

{

return

this.position;

}

public

Int32

getSalary()

{

return

this.salary;

}

}

Chapter

4.

External

routines

141

Table

20.

Code

to

create

a

C#

parameter

style

SQL

table

function

(continued)

class

empOps

{

{

public

static

void

TableUDF(

Double

factor,

out

String

name,

out

String

position,

out

Double

salary,

Int16

factorNullInd,

out

Int16

nameNullInd,

out

Int16

positionNullInd,

out

Int16

salaryNullInd,

ref

String

sqlState,

String

funcName,

String

specName,

ref

String

sqlMessageText,

Byte[]

scratchPad,

Int32

callType)

{

Int16

intRow

=

0;

//

Create

an

array

of

Person

type

information

Person[]

Staff

=

new

Person[3];

Staff[0]

=

new

Person("Gwen",

"Developer",

10000);

Staff[1]

=

new

Person("Andrew",

"Developer",

20000);

Staff[2]

=

new

Person("Liu",

"Team

Leader",

30000);

salary

=

0;

name

=

position

=

"";

nameNullInd

=

positionNullInd

=

salaryNullInd

=

-1;

switch(callType)

{

case

(-2):

//

Case

SQLUDF_TF_FIRST:

break;

case

(-1):

//

Case

SQLUDF_TF_OPEN:

intRow

=

1;

scratchPad[0]

=

(Byte)intRow;

//

Write

to

scratchpad

break;

case

(0):

//

Case

SQLUDF_TF_FETCH:

intRow

=

(Int16)scratchPad[0];

if

(intRow

>

Staff.Length)

{

sqlState

=

"02000";

//

Return

an

error

SQLSTATE

}

else

{

//

Generate

a

row

in

the

output

table

//

based

on

the

Staff

array

data.

name

=

Staff[intRow−1].getName();

position

=

Staff[intRow−1].getPosition();

salary

=

(Staff[intRow−1].getSalary[]]

*

factor;

nameNullInd

=

0;

positionNullInd

=

0;

salaryNullInd

=

0;

}

intRow++;

scratchPad[0]

=

(Byte)intRow;

//

Write

scratchpad

break;

case

(1):

//

Case

SQLUDF_TF_CLOSE:

break;

case

(2):

//

Case

SQLUDF_TF_FINAL:

break;

}

}

}

142

Programming

Server

Applications

Example

2:

C#

parameter

style

SQL

scalar

function:

This

example

shows

the

following:

v

CREATE

FUNCTION

statement

for

a

parameter

style

SQL

scalar

function

v

C#

code

for

a

parameter

style

SQL

scalar

function

This

scalar

function

returns

a

single

count

value

for

each

input

value

that

it

operates

on.

For

an

input

value

in

the

nth

position

of

the

set

of

input

values,

the

output

scalar

value

is

the

value

n.

On

each

call

of

the

scalar

function,

where

one

call

is

associated

with

each

row

or

value

in

the

input

set

of

rows

or

values,

the

count

is

increased

by

one

and

the

current

value

of

the

count

is

returned.

The

count

is

then

saved

in

the

scratchpad

memory

buffer

to

maintain

the

count

value

between

each

call

of

the

scalar

function.

This

scalar

function

can

be

easily

invoked

if

for

example

we

have

a

table

defined

as

follows:

CREATE

TABLE

T

(i1

INTEGER);

INSERT

INTO

T

VALUES

12,

45,

16,

99;

A

simple

query

such

as

the

following

can

be

used

to

invoke

the

scalar

function:

SELECT

countUp(i1)

as

count,

i1

FROM

T;

The

output

of

such

a

query

would

be:

COUNT

I1

1

12

2

45

3

16

4

99

This

scalar

UDF

is

quite

simple.

Instead

of

returning

just

the

count

of

the

rows,

you

could

use

a

scalar

function

to

format

data

in

an

existing

column.

For

example

you

might

append

a

string

to

each

value

in

an

address

column

or

you

might

build

up

a

complex

string

from

a

series

of

input

strings

or

you

might

do

a

complex

mathematical

evaluation

over

a

set

of

data

where

you

must

store

an

intermediate

result.

Table

21.

Code

to

create

a

C#

parameter

style

SQL

scalar

function

CREATE

FUNCTION

countUp(INTEGER)

RETURNS

INTEGER

LANGUAGE

CLR

PARAMETER

STYLE

SQL

FENCED

SCRATCHPAD

10

FINAL

CALL

VARIANT

NO

SQL

EXTERNAL

NAME

’gwenUDF.dll:bizLogic.empOps!CountUp’

;

Chapter

4.

External

routines

143

Table

21.

Code

to

create

a

C#

parameter

style

SQL

scalar

function

(continued)

class

empOps

{

public

static

void

CountUp(

Int32

input,

out

Int32

outCounter,

Int16

inputNullInd,

out

Int16

outCounterNullInd,

ref

String

sqlState,

String

funcName,

String

specName,

ref

String

sqlMessageText,

Byte[]

scratchPad,

Int32

callType)

{

Int32

counter

=

1;

switch(callType)

{

case

-1:

//

case

SQLUDF_FIRST_CALL

scratchPad[0]

=

(Byte)counter;

outCounter

=

counter;

outCounterNullInd

=

0;

break;

case

0:

//

case

SQLUDF_NORMAL_CALL:

counter

=

(Int32)scratchPad[0];

counter

=

counter

+

1;

outCounter

=

counter;

outCounterNullInd

=

0;

scratchPad[0]

=

(Byte)counter;

break;

case

1:

//

case

SQLUDF_FINAL_CALL:

counter

=

(Int32)scratchPad[0];

outCounter

=

counter;

outCounterNullInd

=

0;

break;

default:

//

Should

never

enter

here

//

*

Required

so

that

at

compile

time

//

out

parameter

outCounter

is

always

set

*

outCounter

=

(Int32)(0);

outCounterNullInd

=

-1;

sqlState="ABCDE";

sqlMessageText

=

"Should

not

get

here:

Default

case!";

break;

}

}

}

Related

concepts:

v

“Common

language

runtime

(CLR)

routines”

on

page

106

v

“User-defined

scalar

functions”

on

page

13

v

“User-defined

scalar

functions”

on

page

15

Related

tasks:

v

“Examples

of

CLR

procedures

in

C#”

on

page

119

v

“Creating

CLR

routines”

on

page

107

v

“Building

Common

Language

Runtime

(CLR)

.NET

routines”

in

the

Application

Development

Guide:

Building

and

Running

Applications

Related

samples:

144

Programming

Server

Applications

v

“SpCreate.db2

--

Creates

the

external

procedures

implemented

in

spserver.cs”

v

“SpServer.cs

--

C#

external

code

implementation

of

procedures

created

in

spcat.db2”

v

“SpCreate.db2

--

Creates

the

external

procedures

implemented

in

spserver.vb”

v

“SpServer.vb

--

VB.NET

implementation

of

procedures

created

in

SpCat.db2”

Examples

of

CLR

user-defined

functions

in

Visual

Basic

Once

you

understand

the

basics

of

user-defined

functions

(UDFs),

and

the

essentials

of

CLR

routines,

you

can

start

exploiting

CLR

UDFs

in

your

applications

and

database

environment.

This

topic

contains

some

examples

of

CLR

UDFs

to

get

you

started.

For

examples

of

CLR

procedures

in

Visual

Basic:

v

“Examples

of

CLR

procedures

in

Visual

Basic”

on

page

130

Prerequisites:

Before

working

with

the

CLR

UDF

examples

you

may

want

to

read

the

following

concept

topics:

v

“Common

language

runtime

(CLR)

routines”

on

page

106

v

“Creating

CLR

routines”

on

page

107

v

“User-defined

scalar

functions”

on

page

13

v

“User-defined

scalar

functions”

on

page

15

v

Building

common

language

runtime

(CLR)

.NET

routines

The

examples

below

make

use

of

a

table

named

EMPLOYEE

that

is

contained

in

the

SAMPLE

database.

Procedure:

Use

the

following

examples

as

references

when

making

your

own

Visual

Basic

CLR

UDFs:

v

“The

Visual

Basic

external

code

file”

v

“Example

1:

Visual

Basic

parameter

style

SQL

table

function”

on

page

146

v

“Example

2:

Visual

Basic

parameter

style

SQL

scalar

function”

on

page

148

The

Visual

Basic

external

code

file:

The

following

examples

show

a

variety

of

Visual

Basic

UDF

implementations.

The

CREATE

FUNCTION

statement

is

provided

for

each

UDF

with

the

corresponding

Visual

Basic

source

code

from

which

the

associated

assembly

can

be

built.

The

Visual

Basic

source

file

that

contains

the

functions

declarations

used

in

the

following

examples

is

named

gwenVbUDF.cs

and

has

the

following

format:

Chapter

4.

External

routines

145

Table

22.

Visual

Basic

external

code

file

format

using

System;

using

System.IO;

using

IBM.Data.DB2;

Namespace

bizLogic

...

’

Class

definitions

that

contain

UDF

declarations

’

and

any

supporting

class

definitions

...

End

Namespace

The

function

declarations

must

be

contained

in

a

class

within

a

Visual

Basic

file.

The

use

of

namespaces

is

optional.

If

a

namespace

is

used,

the

namespace

must

appear

in

the

assembly

path

name

provided

in

the

EXTERNAL

clause

of

the

CREATE

PROCEDURE

statement.

The

IBM.Data.DB2.

inclusion

is

required

if

the

function

contains

SQL.

Example

1:

Visual

Basic

parameter

style

SQL

table

function:

This

example

shows

the

following:

v

CREATE

FUNCTION

statement

for

a

parameter

style

SQL

table

function

v

Visual

Basic

code

for

a

parameter

style

SQL

table

function

This

table

function

returns

a

table

containing

rows

of

employee

data

that

was

created

from

a

data

array.

There

are

two

classes

associated

with

this

example.

Class

person

represents

the

employees,

and

the

class

empOps

contains

the

routine

table

UDF

that

uses

class

person.

The

employee

salary

information

is

updated

based

on

the

value

of

an

input

parameter.

The

data

array

in

this

example

is

created

within

the

table

function

itself

on

the

first

call

of

the

table

function.

Such

an

array

could

have

also

been

created

by

reading

in

data

from

a

text

file

on

the

filesystem.

The

array

data

values

are

written

to

a

scratchpad

so

that

the

data

can

be

accessed

in

subsequent

calls

of

the

table

function.

On

each

call

of

the

table

function,

one

record

is

read

from

the

array

and

one

row

is

generated

in

the

table

that

is

returned

by

the

function.

The

row

is

generated

in

the

table,

by

setting

the

output

parameters

of

the

table

function

to

the

desired

row

values.

After

the

final

call

of

the

table

function

occurs,

the

table

of

generated

rows

is

returned.

Table

23.

Code

to

create

a

Visual

Basic

parameter

style

SQL

table

function

CREATE

FUNCTION

TableUDF(double)

RETURNS

TABLE

(name

varchar(20),

job

varchar(20),

salary

double)

EXTERNAL

NAME

’gwenVbUDF.dll:bizLogic.empOps!TableUDF’

LANGUAGE

CLR

PARAMETER

STYLE

SQL

NOT

DETERMINISTIC

FENCED

SCRATCHPAD

10

FINAL

CALL

DISALLOW

PARALLEL

NO

DBINFO

146

Programming

Server

Applications

Table

23.

Code

to

create

a

Visual

Basic

parameter

style

SQL

table

function

(continued)

Class

Person

’

The

class

Person

is

a

supporting

class

for

’

the

table

function

UDF,

tableUDF,

below.

Private

name

As

String

Private

position

As

String

Private

salary

As

Int32

Public

Sub

New(ByVal

newName

As

String,

_

ByVal

newPosition

As

String,

_

ByVal

newSalary

As

Int32)

name

=

newName

position

=

newPosition

salary

=

newSalary

End

Sub

Public

Property

GetName()

As

String

Get

Return

name

End

Get

Set

(ByVal

value

As

String)

name

=

value

End

Set

End

Property

Public

Property

GetPosition()

As

String

Get

Return

position

End

Get

Set

(ByVal

value

As

String)

position

=

value

End

Set

End

Property

Public

Property

GetSalary()

As

Int32

Get

Return

salary

End

Get

Set

(ByVal

value

As

Int32)

salary

=

value

End

Set

End

Property

End

Class

Chapter

4.

External

routines

147

Table

23.

Code

to

create

a

Visual

Basic

parameter

style

SQL

table

function

(continued)

Class

empOps

Public

Shared

Sub

TableUDF(byVal

factor

as

Double,

_

byRef

name

As

String,

_

byRef

position

As

String,

_

byRef

salary

As

Double,

_

byVal

factorNullInd

As

Int16,

_

byRef

nameNullInd

As

Int16,

_

byRef

positionNullInd

As

Int16,

_

byRef

salaryNullInd

As

Int16,

_

byRef

sqlState

As

String,

_

byVal

funcName

As

String,

_

byVal

specName

As

String,

_

byRef

sqlMessageText

As

String,

_

byVal

scratchPad

As

Byte(),

_

byVal

callType

As

Int32)

Dim

intRow

As

Int16

intRow

=

0

’

Create

an

array

of

Person

type

information

Dim

staff(2)

As

Person

staff(0)

=

New

Person("Gwen",

"Developer",

10000)

staff(1)

=

New

Person("Andrew",

"Developer",

20000)

staff(2)

=

New

Person("Liu",

"Team

Leader",

30000)

’

Initialize

output

parameter

values

and

NULL

indicators

salary

=

0

name

=

position

=

""

nameNullInd

=

positionNullInd

=

salaryNullInd

=

-1

Select

callType

Case

-2

’

Case

SQLUDF_TF_FIRST:

Case

-1

’

Case

SQLUDF_TF_OPEN:

intRow

=

1

scratchPad(0)

=

intRow

’

Write

to

scratchpad

Case

0

’

Case

SQLUDF_TF_FETCH:

intRow

=

scratchPad(0)

If

intRow

>

staff.Length

sqlState

=

"02000"

’

Return

an

error

SQLSTATE

Else

’

Generate

a

row

in

the

output

table

’

based

on

the

staff

array

data.

name

=

staff(intRow).GetName()

position

=

staff(intRow).GetPosition()

salary

=

(staff(intRow).GetSalary())

*

factor

nameNullInd

=

0

positionNullInd

=

0

salaryNullInd

=

0

End

If

intRow

=

intRow

+

1

scratchPad(0)

=

intRow

’

Write

scratchpad

Case

1

’

Case

SQLUDF_TF_CLOSE:

Case

2

’

Case

SQLUDF_TF_FINAL:

End

Select

End

Sub

End

Class

Example

2:

Visual

Basic

parameter

style

SQL

scalar

function:

This

example

shows

the

following:

148

Programming

Server

Applications

v

CREATE

FUNCTION

statement

for

a

parameter

style

SQL

scalar

function

v

Visual

Basic

code

for

a

parameter

style

SQL

scalar

function

This

scalar

function

returns

a

single

count

value

for

each

input

value

that

it

operates

on.

For

an

input

value

in

the

nth

position

of

the

set

of

input

values,

the

output

scalar

value

is

the

value

n.

On

each

call

of

the

scalar

function,

where

one

call

is

associated

with

each

row

or

value

in

the

input

set

of

rows

or

values,

the

count

is

increased

by

one

and

the

current

value

of

the

count

is

returned.

The

count

is

then

saved

in

the

scratchpad

memory

buffer

to

maintain

the

count

value

between

each

call

of

the

scalar

function.

This

scalar

function

can

be

easily

invoked

if

for

example

we

have

a

table

defined

as

follows:

CREATE

TABLE

T

(i1

INTEGER);

INSERT

INTO

T

VALUES

12,

45,

16,

99;

A

simple

query

such

as

the

following

can

be

used

to

invoke

the

scalar

function:

SELECT

my_count(i1)

as

count,

i1

FROM

T;

The

output

of

such

a

query

would

be:

COUNT

I1

1

12

2

45

3

16

4

99

This

scalar

UDF

is

quite

simple.

Instead

of

returning

just

the

count

of

the

rows,

you

could

use

a

scalar

function

to

format

data

in

an

existing

column.

For

example

you

might

append

a

string

to

each

value

in

an

address

column

or

you

might

build

up

a

complex

string

from

a

series

of

input

strings

or

you

might

do

a

complex

mathematical

evaluation

over

a

set

of

data

where

you

must

store

an

intermediate

result.

Table

24.

Code

to

create

a

Visual

Basic

parameter

style

SQL

scalar

function

CREATE

FUNCTION

mycount(INTEGER)

RETURNS

INTEGER

LANGUAGE

CLR

PARAMETER

STYLE

SQL

FENCED

SCRATCHPAD

10

FINAL

CALL

VARIANT

NO

SQL

EXTERNAL

NAME

’gwenUDF.dll:bizLogic.empOps!CountUp’;

Chapter

4.

External

routines

149

Table

24.

Code

to

create

a

Visual

Basic

parameter

style

SQL

scalar

function

(continued)

Class

empOps

Public

Shared

Sub

CountUp(byVal

input

As

Int32,

_

byRef

outCounter

As

Int32,

_

byVal

nullIndInput

As

Int16,

_

byRef

nullIndOutCounter

As

Int16,

_

byRef

sqlState

As

String,

_

byVal

qualName

As

String,

_

byVal

specName

As

String,

_

byRef

sqlMessageText

As

String,

_

byVal

scratchPad

As

Byte(),

_

byVal

callType

As

Int32)

Dim

counter

As

Int32

counter

=

1

Select

callType

case

-1

’

case

SQLUDF_TF_OPEN_CALL

scratchPad(0)

=

counter

outCounter

=

counter

nullIndOutCounter

=

0

case

0

’case

SQLUDF_TF_FETCH_CALL:

counter

=

scratchPad(0)

counter

=

counter

+

1

outCounter

=

counter

nullIndOutCounter

=

0

scratchPad(0)

=

counter

case

1

’case

SQLUDF_CLOSE_CALL:

counter

=

scratchPad(0)

outCounter

=

counter

nullIndOutCounter

=

0

case

Else

’

Should

never

enter

here

’

These

cases

won’t

occur

for

the

following

reasons:

’

Case

-2

(SQLUDF_TF_FIRST)

->No

FINAL

CALL

in

CREATE

stmt

’

Case

2

(SQLUDF_TF_FINAL)

->No

FINAL

CALL

in

CREATE

stmt

’

Case

255

(SQLUDF_TF_FINAL_CRA)

->No

SQL

used

in

the

function

’

’

*

Note!*

’

’

The

Else

is

required

so

that

at

compile

time

’

out

parameter

outCounter

is

always

set

*

outCounter

=

0

nullIndOutCounter

=

-1

End

Select

End

Sub

End

Class

Related

concepts:

v

“Common

language

runtime

(CLR)

routines”

on

page

106

v

“User-defined

scalar

functions”

on

page

13

v

“User-defined

scalar

functions”

on

page

15

Related

tasks:

v

“Examples

of

CLR

procedures

in

Visual

Basic”

on

page

130

v

“Creating

CLR

routines”

on

page

107

v

“Building

Common

Language

Runtime

(CLR)

.NET

routines”

in

the

Application

Development

Guide:

Building

and

Running

Applications

150

Programming

Server

Applications

C/C++

routines

The

following

sections

describe

how

to

write

C

or

C++

routines.

C/C++

routines

When

developing

routines

in

C

or

C++,

it

is

strongly

recommended

that

you

register

them

using

the

PARAMETER

STYLE

SQL

clause

in

the

CREATE

statement.

It

is

also

recommended

that

you

use

the

sqludf.h

include

file.

It

contains

structures,

definitions

and

values

useful

when

writing

both

UDFs

and

stored

procedures.

C/C++

UDFs

and

Methods:

The

C/C++

signature

of

PARAMETER

STYLE

SQL

UDFs

and

methods

follows

this

format:

SQL_API_RC

SQL_API_FN

function-name

(

SQL-arguments,

SQL-argument-inds,

SQLUDF_TRAIL_ARGS

)

SQL_API_RC

SQL_API_FN

SQL_API_RC

and

SQL_API_FN

are

macros

that

specify

the

return

type

and

calling

convention

for

a

C/C++

function,

which

can

vary

across

supported

operating

systems.

They

are

declared

in

sqlsystm.h.

This

macro

is

required

when

you

write

C/C++

routines.

function-name

Name

of

the

C/C++

function.

During

routine

registration,

this

value

is

specified

with

the

library

name

in

the

EXTERNAL

NAME

clause

of

the

CREATE

PROCEDURE

statement.

For

C++

routines,

the

C++

compiler

applies

type

decoration

to

the

entry

point

name.

Either

the

type

decorated

name

needs

to

be

specified

in

the

EXTERNAL

NAME

clause,

or

the

entry

point

should

be

defined

as

extern

"C"

in

the

user

code.

SQL-arguments

Corresponds

to

the

list

of

input

parameters

in

the

routine’s

CREATE

statement.

SQL-argument-inds

For

every

SQL-argument

there

is

an

indicator

variable.

Define

each

indicator

with

the

SQLUDF_NULLIND

type

definition

from

sqludf.h.

SQLUDF_TRAIL_ARGS

A

macro

defined

in

sqludf.h

that

defines

the

trailing

arguments

for

a

routine.

This

includes

pointers

to

the

SQLSTATE,

fully

qualified

function

name,

function

specific

name,

and

message

text.

If

your

UDF

is

registered

with

SCRATCHPAD

and

FINAL

CALL,

use

the

SQLUDF_TAIL_ARGS_ALL

macro.

In

addition

to

the

arguments

included

in

SQLUDF_TRAIL_ARGS,

it

contains

pointers

to

the

scratchpad,

and

call

type.

The

following

is

an

example

of

a

C/C++

UDF

that

returns

the

product

of

its

two

input

arguments:

SQL_API_RC

SQL_API_FN

product

(

SQLUDF_DOUBLE

*in1,

SQLUDF_DOUBLE

*in2,

SQLUDF_DOUBLE

*outProduct,

SQLUDF_NULLIND

*in1NullInd,

SQLUDF_NULLIND

*in2NullInd,

SQLUDF_NULLIND

*productNullInd,

SQLUDF_TRAIL_ARGS

)

{

Chapter

4.

External

routines

151

*outProduct

=

(*in1)

*

(*in2);

return

(0);

}

The

corresponding

CREATE

FUNCTION

statement

for

this

UDF

is

as

follows:

CREATE

FUNCTION

product(

DOUBLE

in1,

DOUBLE

in2

)

RETURNS

DOUBLE

LANGUAGE

c

PARAMETER

STYLE

sql

NO

SQL

FENCED

THREADSAFE

DETERMINISTIC

RETURNS

NULL

ON

NULL

INPUT

NO

EXTERNAL

ACTION

EXTERNAL

NAME

’c_rtns!product’

The

preceding

statement

assumes

that

the

C/C++

function

is

in

a

library

called

c_rtns.

C/C++

Stored

Procedures:

The

C/C++

signature

of

PARAMETER

STYLE

SQL

stored

procedures

follows

this

format:

SQL_API_RC

SQL_API_FN

function-name

(

SQL-arguments,

SQL-argument-inds,

sqlstate,

routine-name,

specific-name,

diagnostic-message

)

SQL_API_RC

SQL_API_FN

SQL_API_RC

and

SQL_API_FN

are

macros

that

specify

the

return

type

and

calling

convention

for

a

C/C++

function,

which

can

vary

across

supported

operating

systems.

They

are

declared

in

sqlsystm.h.

This

macro

is

required

when

you

write

C/C++

routines.

function-name

Name

of

the

C/C++

function.

During

routine

registration,

this

value

is

specified

with

the

library

name

in

the

EXTERNAL

NAME

clause

of

the

CREATE

PROCEDURE

statement.

For

C++

routines,

the

C++

compiler

applies

type

decoration

to

the

entry

point

name.

Either

the

type

decorated

name

needs

to

be

specified

in

the

EXTERNAL

NAME

clause,

or

the

entry

point

should

be

defined

as

external

″C″

in

the

user

code.

SQL-arguments

Corresponds

to

the

list

of

input

parameters

in

the

CREATE

PROCEDURE

statement.

OUT

or

INOUT

mode

parameters

are

passed

as

single-element

arrays.

sqlstate

Used

by

the

routine

to

signal

warning

or

error

conditions.

routine-name

The

qualified

function

name.

This

value

is

generated

by

DB2®

and

passed

to

the

routine

in

the

form

schema.routine.

This

value

corresponds

to

the

ROUTINESCHEMA

and

ROUTINENAME

columns

in

the

SYSCAT.ROUTINES

view.

specific-name

The

specific

function

name.

This

value

is

generated

by

DB2

and

passed

to

the

routine.

This

value

corresponds

to

the

SPECIFICNAME

column

in

the

SYSCAT.ROUTINES

view.

152

Programming

Server

Applications

diagnostic-message

Used

by

the

routine

to

return

message

text

to

the

invoking

application

or

routine.

Note:

Unlike

the

function

signature

presented

in

the

C/C++

UDF

and

Methods

section,

the

function

signature

presented

for

C/C++

Stored

Procedures

does

not

make

use

of

macros

declared

in

sqludf.h.

It

is,

however,

possible

to

write

C/C++

stored

procedures

with

the

sqludf.h

macros.

Conversely,

it

is

also

possible

to

write

C/C++

UDFs

and

methods

without

the

sqludf.h

macros.

The

following

is

an

example

of

a

C/C++

stored

procedure

that

accepts

an

input

parameter,

and

then

returns

an

output

parameter

and

a

result

set:

SQL_API_RC

SQL_API_FN

cstp

(

sqlint16

*inParm,

double

*outParm,

sqlint16

*inParmNullInd,

sqlint16

*outParmNullInd,

char

sqlst[6],

char

qualname[28],

char

specname[19],

char

diagmsg[71]

)

{

EXEC

SQL

INCLUDE

SQLCA;

EXEC

SQL

BEGIN

DECLARE

SECTION;

sqlint16

sql_inParm;

EXEC

SQL

END

DECLARE

SECTION;

sql_inParm

=

*inParm;

EXEC

SQL

DECLARE

cur1

CURSOR

FOR

SELECT

value

FROM

table01

WHERE

index

=

:sql_inParm;

*outParm

=

(*inParm)

+

1;

EXEC

SQL

OPEN

cur1;

return

(0);

}

The

corresponding

CREATE

PROCEDURE

statement

for

this

stored

procedure

is

as

follows:

CREATE

PROCEDURE

cproc(

IN

inParm

INT,

OUT

outParm

INT

)

LANGUAGE

c

PARAMETER

STYLE

sql

DYNAMIC

RESULT

SETS

1

FENCED

THREADSAFE

RETURNS

NULL

ON

NULL

INPUT

EXTERNAL

NAME

’c_rtns!cstp’

The

preceding

statement

assumes

that

the

C/C++

function

is

in

a

library

called

c_rtns.

Note:

When

registering

a

C

or

C++

routine

on

Windows®

operating

systems,

take

the

following

precaution

when

identifying

a

routine

body

in

the

CREATE

statement’s

EXTERNAL

NAME

clause.

If

you

use

an

absolute

path

id

to

identify

the

routine

body,

you

must

append

the

.dll

extension.

For

example:

CREATE

PROCEDURE

getSalary(

IN

inParm

INT,

OUT

outParm

INT

)

LANGUAGE

c

PARAMETER

STYLE

sql

Chapter

4.

External

routines

153

DYNAMIC

RESULT

SETS

1

FENCED

THREADSAFE

RETURNS

NULL

ON

NULL

INPUT

EXTERNAL

NAME

’d:\mylib\myfunc.dll’

Related

concepts:

v

“Database

manager

instances”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“AIX

export

files

for

routines”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“AIX

routines

and

the

CREATE

Statement”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Include

file

for

C/C++

routines

(sqludf.h)”

on

page

154

v

“SQL

data

type

handling

in

C/C++

routines”

on

page

158

Related

tasks:

v

“Building

UNIX

C

routines”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Building

UNIX

C++

routines”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Building

C/C++

routines

on

Windows”

in

the

Application

Development

Guide:

Building

and

Running

Applications

Related

reference:

v

“CREATE

FUNCTION

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

PROCEDURE

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

TYPE

(Structured)

statement”

in

the

SQL

Reference,

Volume

2

v

“C

samples”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Syntax

for

passing

arguments

to

routines

written

in

C/C++,

OLE,

or

COBOL”

on

page

89

Related

samples:

v

“spserver.c

--

Definition

of

various

types

of

stored

procedures”

v

“udfcli.c

--

How

to

work

with

different

types

of

user-defined

functions

(UDFs)”

v

“spserver.sqC

--

Definition

of

various

types

of

stored

procedures

(C++)”

v

“udfemsrv.sqC

--

Call

a

variety

of

types

of

embedded

SQL

user-defined

functions.

(C++)”

v

“udfemsrv.sqc

--

Call

a

variety

of

types

of

embedded

SQL

user-defined

functions.

(C)”

Include

file

for

C/C++

routines

(sqludf.h)

The

sqludf.h

include

file

contains

structures,

definitions,

and

values

that

are

useful

when

writing

routines.

Although

this

file

has

’udf’

in

its

name,

(for

historical

reasons)

it

is

also

useful

for

stored

procedures

and

methods.

When

compiling

your

routine,

you

need

to

reference

the

directory

that

contains

this

file.

This

directory

is

sqllib/include.

The

sqludf.h

include

file

is

self-describing.

Following

is

a

brief

summary

of

its

content:

154

Programming

Server

Applications

1.

Structure

definitions

for

the

passed

arguments

that

are

structures:

v

VARCHAR

FOR

BIT

DATA

arguments

and

result

v

LONG

VARCHAR

(with

or

without

FOR

BIT

DATA)

arguments

and

result

v

LONG

VARGRAPHIC

arguments

and

result

v

All

the

LOB

types,

SQL

arguments

and

result

v

The

scratchpad

v

The

dbinfo

structure
2.

C

language

type

definitions

for

all

the

SQL

data

types,

for

use

in

the

definition

of

routine

arguments

corresponding

to

SQL

arguments

and

result

having

the

data

types.

These

are

the

definitions

with

names

SQLUDF_x

and

SQLUDF_x_FBD

where

x

is

a

SQL

data

type

name,

and

FBD

represents

For

Bit

Data.

Also

included

is

a

C

language

type

for

an

argument

or

result

that

is

defined

with

the

AS

LOCATOR

clause.

This

is

applicable

only

to

UDFs

and

methods.

3.

Definition

of

C

language

types

for

the

scratchpad

and

call-type

arguments,

with

an

enum

type

definition

of

the

call-type

argument.

4.

Macros

for

defining

the

standard

trailing

arguments,

both

with

and

without

the

inclusion

of

scratchpad

and

call-type

arguments.

This

corresponds

to

the

presence

and

absence

of

SCRATCHPAD

and

FINAL

CALL

keywords

in

the

function

definition.

These

are

the

SQL-state,

function-name,

specific-name,

diagnostic-message,

scratchpad,

and

call-type

UDF

invocation

arguments.

Also

included

are

definitions

for

referencing

these

constructs,

and

the

various

valid

SQLSTATE

values.

5.

Macros

for

testing

whether

the

SQL

arguments

are

null.

A

corresponding

include

file

for

COBOL

exists:

sqludf.cbl.

This

file

only

includes

definitions

for

the

scratchpad

and

dbinfo

structures.

Related

concepts:

v

“SQL

data

type

handling

in

C/C++

routines”

on

page

158

v

“C/C++

routines”

on

page

151

Related

reference:

v

“Syntax

for

passing

arguments

to

routines

written

in

C/C++,

OLE,

or

COBOL”

on

page

89

v

“Supported

SQL

data

types

in

C/C++”

on

page

155

Supported

SQL

data

types

in

C/C++

The

following

table

lists

the

supported

mappings

between

SQL

data

types

and

C

data

types

for

routines.

Accompanying

each

C/C++

data

type

is

the

corresponding

defined

type

from

sqludf.h.

Table

25.

SQL

Data

Types

Mapped

to

C/C++

Declarations

SQL

Column

Type

C/C++

Data

Type

SQL

Column

Type

Description

SMALLINT

sqlint16

SQLUDF_SMALLINT

16-bit

signed

integer

INTEGER

sqlint32

SQLUDF_INTEGER

32-bit

signed

integer

BIGINT

sqlint64

SQLUDF_BIGINT

64-bit

signed

integer

REAL

FLOAT(n)

where

1<=n<=24

float

SQLUDF_REAL

Single-precision

floating

point

Chapter

4.

External

routines

155

Table

25.

SQL

Data

Types

Mapped

to

C/C++

Declarations

(continued)

SQL

Column

Type

C/C++

Data

Type

SQL

Column

Type

Description

DOUBLE

FLOAT

FLOAT(n)

where

25<=n<=53

double

SQLUDF_DOUBLE

Double-precision

floating

point

DECIMAL(p,

s)

Not

supported.

To

pass

a

decimal

value,

define

the

parameter

to

be

of

a

data

type

castable

from

DECIMAL

(for

example

CHAR

or

DOUBLE)

and

explicitly

cast

the

argument

to

this

type.

CHAR(n)

char[n+1]

where

n

is

large

enough

to

hold

the

data

1<=n<=254

SQLUDF_CHAR

Fixed-length,

null-terminated

character

string

CHAR(n)

FOR

BIT

DATA

char[n+1]

where

n

is

large

enough

to

hold

the

data

1<=n<=254

SQLUDF_CHAR

Fixed-length,

null-terminated

character

string

VARCHAR(n)

char[n+1]

where

n

is

large

enough

to

hold

the

data

1<=n<=32

672

SQLUDF_VARCHAR

Null-terminated

varying

length

string

VARCHAR(n)

FOR

BIT

DATA

struct

{

sqluint16

length;

char[n]

}

1<=n<=32

672

SQLUDF_VARCHAR_FBD

Not

null-terminated

varying

length

character

string

LONG

VARCHAR

struct

{

sqluint16

length;

char[n]

}

1<=n<=32

700

SQLUDF_LONG

Not

null-terminated

varying

length

character

string

CLOB(n)

struct

{

sqluint32

length;

char

data[n];

}

1<=n<=2

147

483

647

SQLUDF_CLOB

Not

null-terminated

varying

length

character

string

with

4-byte

string

length

indicator

BLOB(n)

struct

{

sqluint32

length;

char

data[n];

}

1<=n<=2

147

483

647

SQLUDF_BLOB

Not

null-terminated

varying

binary

string

with

4-byte

string

length

indicator

DATE

char[11]

SQLUDF_DATE

Null-terminated

character

string

of

the

following

format:

yyyy-mm-dd

156

Programming

Server

Applications

Table

25.

SQL

Data

Types

Mapped

to

C/C++

Declarations

(continued)

SQL

Column

Type

C/C++

Data

Type

SQL

Column

Type

Description

TIME

char[9]

SQLUDF_TIME

Null-terminated

character

string

of

the

following

format:

hh.mm.ss

TIMESTAMP

char[27]

SQLUDF_STAMP

Null-terminated

character

string

of

the

following

format:

yyyy-mm-dd-hh.mm.ss.nnnnnn

LOB

LOCATOR

sqluint32

SQLUDF_LOCATOR

32-bit

signed

integer

DATALINK

struct

{

sqluint32

version;

char

linktype[4];

sqluint32

url_length;

sqluint32

comment_length;

char

reserve2[8];

char

url_plus_comment[230];

}

SQLUDF_DATALINK

Note:

The

following

data

types

are

only

available

in

the

DBCS

or

EUC

environment

when

precompiled

with

the

WCHARTYPE

NOCONVERT

option.

GRAPHIC(n)

sqldbchar[n+1]

where

n

is

large

enough

to

hold

the

data

1<=n<=127

SQLUDF_GRAPH

Fixed-length,

null-terminated

double-byte

character

string

VARGRAPHIC(n)

sqldbchar[n+1]

where

n

is

large

enough

to

hold

the

data

1<=n<=16

336

SQLUDF_GRAPH

Not

null-terminated,

variable-length

double-byte

character

string

LONG

VARGRAPHIC

struct

{

sqluint16

length;

sqldbchar[n]

}

1<=n<=16

350

SQLUDF_LONGVARG

Not

null-terminated,

variable-length

double-byte

character

string

DBCLOB(n)

struct

{

sqluint32

length;

sqldbchar

data[n];

}

1<=n<=1

073

741

823

SQLUDF_DBCLOB

Not

null-terminated

varying

length

character

string

with

4-byte

string

length

indicator

Related

concepts:

v

“Include

file

for

C/C++

routines

(sqludf.h)”

on

page

154

v

“SQL

data

type

handling

in

C/C++

routines”

on

page

158

v

“C/C++

routines”

on

page

151

Chapter

4.

External

routines

157

SQL

data

type

handling

in

C/C++

routines

This

section

identifies

the

valid

types

for

routine

parameters

and

results,

and

it

specifies

how

the

corresponding

argument

should

be

defined

in

your

C

or

C++

language

routine.

All

arguments

in

the

routine

must

be

passed

as

pointers

to

the

appropriate

data

type.

Note

that

if

you

use

the

sqludf.h

include

file

and

the

types

defined

there,

you

can

automatically

generate

language

variables

and

structures

that

are

correct

for

the

different

data

types

and

compilers.

For

example,

for

BIGINT

you

can

use

the

SQLUDF_BIGINT

data

type

to

hide

differences

in

the

type

required

for

BIGINT

representation

between

different

compilers.

It

is

the

data

type

for

each

parameter

defined

in

the

routine’s

CREATE

statement

that

governs

the

format

for

argument

values.

Promotions

from

the

argument’s

data

type

might

be

needed

to

get

the

value

in

the

appropriate

format.

Such

promotions

are

performed

automatically

by

DB2®

on

argument

values.

However,

if

incorrect

data

types

are

specified

in

the

routine

code,

then

unpredictable

behavior,

such

as

loss

of

data

or

abends,

will

occur.

For

the

result

of

a

scalar

function

or

method,

it

is

the

data

type

specified

in

the

CAST

FROM

clause

of

the

CREATE

FUNCTION

statement

that

defines

the

format.

If

no

CAST

FROM

clause

is

present,

then

the

data

type

specified

in

the

RETURNS

clause

defines

the

format.

In

the

following

example,

the

presence

of

the

CAST

FROM

clause

means

that

the

routine

body

returns

a

SMALLINT

and

that

DB2

casts

the

value

to

INTEGER

before

passing

it

along

to

the

statement

where

the

function

reference

occurs:

...

RETURNS

INTEGER

CAST

FROM

SMALLINT

...

In

this

case,

the

routine

must

be

written

to

generate

a

SMALLINT,

as

defined

later

in

this

section.

Note

that

the

CAST

FROM

data

type

must

be

castable

to

the

RETURNS

data

type,

therefore,

it

is

not

possible

to

arbitrarily

choose

another

data

type.

The

following

is

a

list

of

the

SQL

types

and

their

C/C++

language

representations.

It

includes

information

on

whether

each

type

is

valid

as

a

parameter

or

a

result.

Also

included

are

examples

of

how

the

types

could

appear

as

an

argument

definition

in

your

C

or

C++

language

routine:

v

SMALLINT

Valid.

Represent

in

C

as

SQLUDF_SMALLINT

or

sqlint16.

Example:

sqlint16

*arg1;

/*

example

for

SMALLINT

*/

When

defining

integer

routine

parameters,

consider

using

INTEGER

rather

than

SMALLINT

because

DB2

does

not

promote

INTEGER

arguments

to

SMALLINT.

For

example,

suppose

you

define

a

UDF

as

follows:

CREATE

FUNCTION

SIMPLE(SMALLINT)...

If

you

invoke

the

SIMPLE

function

using

INTEGER

data,

(...

SIMPLE(1)...),

you

will

receive

an

SQLCODE

-440

(SQLSTATE

42884)

error

indicating

that

the

function

was

not

found,

and

end-users

of

this

function

might

not

perceive

the

reason

for

the

message.

In

the

preceding

example,

1

is

an

INTEGER,

so

you

can

either

cast

it

to

SMALLINT

or

define

the

parameter

as

INTEGER.

v

INTEGER

or

INT

Valid.

Represent

in

C

as

SQLUDF_INTEGER

or

sqlint32.

You

must

#include

sqludf.h

or

#include

sqlsystm.h

to

pick

up

this

definition.

158

Programming

Server

Applications

Example:

sqlint32

*arg2;

/*

example

for

INTEGER

*/

v

BIGINT

Valid.

Represent

in

C

as

SQLUDF_BIGINT

or

sqlint64.

Example:

sqlint64

*arg3;

/*

example

for

INTEGER

*/

DB2

defines

the

sqlint64

C

language

type

to

overcome

differences

between

definitions

of

the

64-bit

signed

integer

in

compilers

and

operating

systems.

You

must

#include

sqludf.h

or

#include

sqlsystm.h

to

pick

up

the

definition.

v

REAL

or

FLOAT(n)

where

1

<=

n

<=

24

Valid.

Represent

in

C

as

SQLUDF_REAL

or

float.

Example:

float

*result;

/*

example

for

REAL

*/

v

DOUBLE

or

DOUBLE

PRECISION

or

FLOAT

or

FLOAT(n)

where

25

<=

n

<=

53

Valid.

Represent

in

C

as

SQLUDF_DOUBLE

or

double.

Example:

double

*result;

/*

example

for

DOUBLE

*/

v

DECIMAL(p,s)

or

NUMERIC(p,s)

Not

valid

because

there

is

no

C

language

representation.

If

you

want

to

pass

a

decimal

value,

you

must

define

the

parameter

to

be

of

a

data

type

castable

from

DECIMAL

(for

example

CHAR

or

DOUBLE)

and

explicitly

cast

the

argument

to

this

type.

In

the

case

of

DOUBLE,

you

do

not

need

to

explicitly

cast

a

decimal

argument

to

a

DOUBLE

parameter,

as

DB2

promotes

it

automatically.

Example:

Suppose

you

have

two

columns,

WAGE

as

DECIMAL(5,2)

and

HOURS

as

DECIMAL(4,1),

and

you

wish

to

write

a

UDF

to

calculate

weekly

pay

based

on

wage,

number

of

hours

worked

and

some

other

factors.

The

UDF

could

be

as

follows:

CREATE

FUNCTION

WEEKLY_PAY

(DOUBLE,

DOUBLE,

...)

RETURNS

DECIMAL(7,2)

CAST

FROM

DOUBLE

...;

For

the

preceding

UDF,

the

first

two

parameters

correspond

to

the

wage

and

number

of

hours.

You

invoke

the

UDF

WEEKLY_PAY

in

your

SQL

select

statement

as

follows:

SELECT

WEEKLY_PAY

(WAGE,

HOURS,

...)

...;

Note

that

no

explicit

casting

is

required

because

the

DECIMAL

arguments

are

castable

to

DOUBLE.

Alternatively,

you

could

define

WEEKLY_PAY

with

CHAR

arguments

as

follows:

CREATE

FUNCTION

WEEKLY_PAY

(VARCHAR(6),

VARCHAR(5),

...)

RETURNS

DECIMAL

(7,2)

CAST

FROM

VARCHAR(10)

...;

You

would

invoke

it

as

follows:

SELECT

WEEKLY_PAY

(CHAR(WAGE),

CHAR(HOURS),

...)

...;

Observe

that

explicit

casting

is

required

because

DECIMAL

arguments

are

not

promotable

to

VARCHAR.

An

advantage

of

using

floating

point

parameters

is

that

it

is

easy

to

perform

arithmetic

on

the

values

in

the

routine;

an

advantage

of

using

character

parameters

is

that

it

is

always

possible

to

exactly

represent

the

decimal

value.

This

is

not

always

possible

with

floating

point.

Chapter

4.

External

routines

159

v

CHAR(n)

or

CHARACTER(n)

with

or

without

the

FOR

BIT

DATA

modifier.

Valid.

Represent

in

C

as

SQLUDF_CHAR

or

char...[n+1]

(this

is

a

C

null-terminated

string).

Example:

char

arg1[14];

/*

example

for

CHAR(13)

*/

char

*arg1;

/*

also

acceptable

*/

For

a

CHAR(n)

parameter,

DB2

moves

n

bytes

of

data

to

the

buffer

and

sets

the

byte

in

the

n+1>

position

to

the

null

terminator

(X'00').

For

a

RETURNS

CHAR(n)

value

or

an

output

parameter

of

a

stored

procedure

that

is

not

specified

as

FOR

BIT

DATA

DB2

looks

for

a

null

terminator

within

the

first

n

bytes

of

the

CHAR

value.

If

a

null

terminator

is

found,

DB2

pads

the

remaining

bytes,

up

to

byte

n,

with

ascii

blanks.

For

a

RETURNS

CHAR(n)

value

or

an

output

parameter

of

a

stored

procedure

that

is

specified

as

FOR

BIT

DATA,

DB2

copies

over

the

first

n

bytes

regardless

of

any

occurrences

of

string

null

terminators

within

the

n

bytes.

The

string

null

terminators

are

treated

as

normal

data.

Exercise

caution

when

using

the

normal

C

string

handling

functions

in

a

routine

that

manipulates

a

FOR

BIT

DATA

value,

because

many

of

these

functions

look

for

a

null

terminator

to

delimit

a

string

argument

and

null

terminators

(X'00')

can

legitimately

appear

in

the

middle

of

a

FOR

BIT

DATA

value.

Using

the

C

functions

on

FOR

BIT

DATA

values

might

cause

the

undesired

truncation

of

the

data

value.

When

defining

character

routine

parameters,

consider

using

VARCHAR

rather

than

CHAR

as

DB2

does

not

promote

VARCHAR

arguments

to

CHAR

and

string

literals

are

automatically

considered

as

VARCHARs.

For

example,

suppose

you

define

a

UDF

as

follows:

CREATE

FUNCTION

SIMPLE(INT,CHAR(1))...

If

you

invoke

the

SIMPLE

function

using

VARCHAR

data,

(...

SIMPLE(1,’A’)...),

you

will

receive

an

SQLCODE

-440

(SQLSTATE

42884)

error

indicating

that

the

function

was

not

found,

and

end-users

of

this

function

might

not

perceive

the

reason

for

the

message.

In

the

preceding

example,

’A’

is

VARCHAR,

so

you

can

either

cast

it

to

CHAR

or

define

the

parameter

as

VARCHAR.

v

VARCHAR(n)

FOR

BIT

DATA

or

LONG

VARCHAR

with

or

without

the

FOR

BIT

DATA

modifier.

Valid.

Represent

VARCHAR(n)

FOR

BIT

DATA

in

C

as

SQLUDF_VARCHAR_FBD.

Represent

LONG

VARCHAR

in

C

as

SQLUDF_LONG.

Otherwise

represent

these

two

SQL

types

in

C

as

a

structure

similar

to

the

following

from

the

sqludf.h

include

file:

struct

sqludf_vc_fbd

{

unsigned

short

length;

/*

length

of

data

*/

char

data[1];

/*

first

char

of

data

*/

};

The

[1]

indicates

an

array

to

the

compiler.

It

does

not

mean

that

only

one

character

is

passed;

because

the

address

of

the

structure

is

passed,

and

not

the

actual

structure,

it

provides

a

way

to

use

array

logic.

These

values

are

not

represented

as

C

null-terminated

strings

because

the

null-character

could

legitimately

be

part

of

the

data

value.

The

length

is

explicitly

passed

to

the

routine

for

parameters

using

the

structure

variable

length.

For

the

RETURNS

clause,

the

length

that

is

passed

to

the

routine

is

the

length

of

the

buffer.

What

the

routine

body

must

pass

back,

using

the

structure

variable

length,

is

the

actual

length

of

the

data

value.

Example:

160

Programming

Server

Applications

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

struct

sqludf_vc_fbd

*arg1;

/*

example

for

VARCHAR(n)

FOR

BIT

DATA

*/

struct

sqludf_vc_fbd

*result;

/*

also

for

LONG

VARCHAR

FOR

BIT

DATA

*/

v

VARCHAR(n)

without

FOR

BIT

DATA.

Valid.

Represent

in

C

as

SQLUDF_VARCHAR

or

char...[n+1].

(This

is

a

C

null-terminated

string.)

For

a

VARCHAR(n)

parameter,

DB2

will

put

a

null

in

the

(k+1)

position,

where

k

is

the

length

of

the

particular

string.

The

C

string-handling

functions

are

well

suited

for

manipulation

of

these

values.

For

a

RETURNS

VARCHAR(n)

value

or

an

output

parameter

of

a

stored

procedure,

the

routine

body

must

delimit

the

actual

value

with

a

null

because

DB2

will

determine

the

result

length

from

this

null

character.

Example:

char

arg2[51];

/*

example

for

VARCHAR(50)

*/

char

*result;

/*

also

acceptable

*/

v

DATE

Valid.

Represent

in

C

same

as

SQLUDF_DATE

or

CHAR(10),

that

is

as

char...[11].

The

date

value

is

always

passed

to

the

routine

in

ISO

format:

yyyy-mm-dd

Example:

char

arg1[11];

/*

example

for

DATE

*/

char

*result;

/*

also

acceptable

*/

Note:

For

DATE,

TIME

and

TIMESTAMP

return

values,

DB2

demands

the

characters

be

in

the

defined

form,

and

if

this

is

not

the

case

the

value

could

be

misinterpreted

by

DB2

(For

example,

2001-04-03

will

be

interpreted

as

April

3

even

if

March

4

is

intended)

or

will

cause

an

error

(SQLCODE

-493,

SQLSTATE

22007).

v

TIME

Valid.

Represent

in

C

same

as

SQLUDF_TIME

or

CHAR(8),

that

is,

as

char...[9].

The

time

value

is

always

passed

to

the

routine

in

ISO

format:

hh.mm.ss

Example:

char

*arg;

/*

example

for

DATE

*/

char

result[9];

/*

also

acceptable

*/

v

TIMESTAMP

Valid.

Represent

in

C

as

SQLUDF_STAMP

or

CHAR(26),

that

is,

as

char...[27].

The

timestamp

value

is

always

passed

with

format:

yyyy-mm-dd-hh.mm.ss.nnnnnn

Example:

char

arg1[27];

/*

example

for

TIMESTAMP

*/

char

*result;

/*

also

acceptable

*/

v

GRAPHIC(n)

Valid.

Represent

in

C

as

SQLUDF_GRAPH

or

sqldbchar[n+1].

(This

is

a

null-terminated

graphic

string).

Note

that

you

can

use

wchar_t[n+1]

on

operating

systems

where

wchar_t

is

defined

to

be

2

bytes

in

length;

however,

sqldbchar

is

recommended.

For

a

GRAPHIC(n)

parameter,

DB2

moves

n

double-byte

characters

to

the

buffer

and

sets

the

following

two

bytes

to

null.

Data

passed

from

DB2

to

a

routine

is

in

DBCS

format,

and

the

result

passed

back

is

expected

to

be

in

DBCS

format.

This

behavior

is

the

same

as

using

the

WCHARTYPE

NOCONVERT

precompiler

option.

For

a

RETURNS

GRAPHIC(n)

value

or

an

output

parameter

of

a

stored

Chapter

4.

External

routines

161

procedure,

DB2

looks

for

an

embedded

GRAPHIC

null

CHAR,

and

if

it

finds

it,

pads

the

value

out

to

n

with

GRAPHIC

blank

characters.

When

defining

graphic

routine

parameters,

consider

using

VARGRAPHIC

rather

than

GRAPHIC

as

DB2

does

not

promote

VARGRAPHIC

arguments

to

GRAPHIC.

For

example,

suppose

you

define

a

routine

as

follows:

CREATE

FUNCTION

SIMPLE(GRAPHIC)...

If

you

invoke

the

SIMPLE

function

using

VARGRAPHIC

data,

(...

SIMPLE('graphic_literal')...),

you

will

receive

an

SQLCODE

-440

(SQLSTATE

42884)

error

indicating

that

the

function

was

not

found,

and

end-users

of

this

function

might

not

understand

the

reason

for

this

message.

In

the

preceding

example,

graphic_literal

is

a

literal

DBCS

string

that

is

interpreted

as

VARGRAPHIC

data,

so

you

can

either

cast

it

to

GRAPHIC

or

define

the

parameter

as

VARGRAPHIC.

Example:

sqldbchar

arg1[14];

/*

example

for

GRAPHIC(13)

*/

sqldbchar

*arg1;

/*

also

acceptable

*/

v

VARGRAPHIC(n)

Valid.

Represent

in

C

as

SQLUDF_GRAPH

or

sqldbchar[n+1].

(This

is

a

null-terminated

graphic

string).

Note

that

you

can

use

wchar_t[n+1]

on

operating

systems

where

wchar_t

is

defined

to

be

2

bytes

in

length;

however,

sqldbchar

is

recommended.

For

a

VARGRAPHIC(n)

parameter,

DB2

will

put

a

graphic

null

in

the

(k+1)

position,

where

k

is

the

length

of

the

particular

occurrence.

A

graphic

null

refers

to

the

situation

where

all

the

bytes

of

the

last

character

of

the

graphic

string

contain

binary

zeros

('\0's).

Data

passed

from

DB2

to

a

routine

is

in

DBCS

format,

and

the

result

passed

back

is

expected

to

be

in

DBCS

format.

This

behavior

is

the

same

as

using

the

WCHARTYPE

NOCONVERT

precompiler

option.

For

a

RETURNS

VARGRAPHIC(n)

value

or

an

output

parameter

of

a

stored

procedure,

the

routine

body

must

delimit

the

actual

value

with

a

graphic

null,

because

DB2

will

determine

the

result

length

from

this

graphic

null

character.

Example:

sqldbchar

args[51],

/*

example

for

VARGRAPHIC(50)

*/

sqldbchar

*result,

/*

also

acceptable

*/

v

LONG

VARGRAPHIC

Valid.

Represent

in

C

as

SQLUDF_LONGVARG

or

a

structure:

struct

sqludf_vg

{

unsigned

short

length;

/*

length

of

data

*/

sqldbchar

data[1];

/*

first

char

of

data

*/

};

Note

that

in

the

preceding

structure,

you

can

use

wchar_t

in

place

of

sqldbchar

on

operating

systems

where

wchar_t

is

defined

to

be

2

bytes

in

length,

however,

the

use

of

sqldbchar

is

recommended.

The

[1]

merely

indicates

an

array

to

the

compiler.

It

does

not

mean

that

only

one

graphic

character

is

passed.

Because

the

address

of

the

structure

is

passed,

and

not

the

actual

structure,

it

provides

a

way

to

use

array

logic.

These

are

not

represented

as

null-terminated

graphic

strings.

The

length,

in

double-byte

characters,

is

explicitly

passed

to

the

routine

for

parameters

using

the

structure

variable

length.

Data

passed

from

DB2

to

a

routine

is

in

DBCS

format,

and

the

result

passed

back

is

expected

to

be

in

DBCS

format.

This

behavior

is

the

same

as

using

the

WCHARTYPE

NOCONVERT

precompiler

option.

For

the

RETURNS

clause

or

an

output

parameter

of

a

stored

procedure,

162

Programming

Server

Applications

the

length

that

is

passed

to

the

routine

is

the

length

of

the

buffer.

What

the

routine

body

must

pass

back,

using

the

structure

variable

length,

is

the

actual

length

of

the

data

value,

in

double

byte

characters.

Example:

struct

sqludf_vg

*arg1;

/*

example

for

VARGRAPHIC(n)

*/

struct

sqludf_vg

*result;

/*

also

for

LONG

VARGRAPHIC

*/

v

BLOB(n)

and

CLOB(n)

Valid.

Represent

in

C

as

SQLUDF_BLOB,

SQLUDF_CLOB,

or

a

structure:

struct

sqludf_lob

{

sqluint32

length;

/*

length

in

bytes

*/

char

data[1];

/*

first

byte

of

lob

*/

};

The

[1]

merely

indicates

an

array

to

the

compiler.

It

does

not

mean

that

only

one

character

is

passed;

because

the

address

of

the

structure

is

passed,

and

not

the

actual

structure,

it

provides

a

way

to

use

array

logic.

These

are

not

represented

as

C

null-terminated

strings.

The

length

is

explicitly

passed

to

the

routine

for

parameters

using

the

structure

variable

length.

For

the

RETURNS

clause

or

an

output

parameter

of

a

stored

procedure,

the

length

that

is

passed

back

to

the

routine,

is

the

length

of

the

buffer.

What

the

routine

body

must

pass

back,

using

the

structure

variable

length,

is

the

actual

length

of

the

data

value.

Example:

struct

sqludf_lob

*arg1;

/*

example

for

BLOB(n),

CLOB(n)

*/

struct

sqludf_lob

*result;

v

DBCLOB(n)

Valid.

Represent

in

C

as

SQLUDF_DBCLOB

or

a

structure:

struct

sqludf_lob

{

sqluint32

length;

/*

length

in

graphic

characters

*/

sqldbchar

data[1];

/*

first

byte

of

lob

*/

};

Note

that

in

the

preceding

structure,

you

can

use

wchar_t

in

place

of

sqldbchar

on

operating

systems

where

wchar_t

is

defined

to

be

2

bytes

in

length,

however,

the

use

of

sqldbchar

is

recommended.

The

[1]

merely

indicates

an

array

to

the

compiler.

It

does

not

mean

that

only

one

graphic

character

is

passed;

because

the

address

of

the

structure

is

passed,

and

not

the

actual

structure,

it

provides

a

way

to

use

array

logic.

These

are

not

represented

as

null-terminated

graphic

strings.

The

length

is

explicitly

passed

to

the

routine

for

parameters

using

the

structure

variable

length.

Data

passed

from

DB2

to

a

routine

is

in

DBCS

format,

and

the

result

passed

back

is

expected

to

be

in

DBCS

format.

This

behavior

is

the

same

as

using

the

WCHARTYPE

NOCONVERT

precompiler

option.

For

the

RETURNS

clause

or

an

output

parameter

of

a

stored

procedure,

the

length

that

is

passed

to

the

routine

is

the

length

of

the

buffer.

What

the

routine

body

must

pass

back,

using

the

structure

variable

length,

is

the

actual

length

of

the

data

value,

with

all

of

these

lengths

expressed

in

double

byte

characters.

Example:

struct

sqludf_lob

*arg1;

/*

example

for

DBCLOB(n)

*/

struct

sqludf_lob

*result;

v

Distinct

Types

Chapter

4.

External

routines

163

Valid

or

invalid

depending

on

the

base

type.

Distinct

types

will

be

passed

to

the

UDF

in

the

format

of

the

base

type

of

the

UDT,

so

can

be

specified

if

and

only

if

the

base

type

is

valid.

Example:

struct

sqludf_lob

*arg1;

/*

for

distinct

type

based

on

BLOB(n)

*/

double

*arg2;

/*

for

distinct

type

based

on

DOUBLE

*/

char

res[5];

/*

for

distinct

type

based

on

CHAR(4)

*/

v

Distinct

Types

AS

LOCATOR,

or

any

LOB

type

AS

LOCATOR

Valid

for

parameters

and

results

of

UDFs

and

methods.

It

can

only

be

used

to

modify

LOB

types

or

any

distinct

type

that

is

based

on

a

LOB

type.

Represent

in

C

as

SQLUDF_LOCATOR

or

a

four

byte

integer.

The

locator

value

can

be

assigned

to

any

locator

host

variable

with

a

compatible

type

and

then

be

used

in

an

SQL

statement.

This

means

that

locator

variables

are

only

useful

in

UDFs

and

methods

defined

with

an

SQL

access

indicator

of

CONTAINS

SQL

or

higher.

For

compatibility

with

existing

UDFs

and

methods,

the

locator

APIs

are

still

supported

for

NOT

FENCED

NO

SQL

UDFs.

Use

of

these

APIs

is

not

encouraged

for

new

functions.

Example:

sqludf_locator

*arg1;

/*

locator

argument

*/

sqludf_locator

*result;

/*

locator

result

*/

EXEC

SQL

BEGIN

DECLARE

SECTION;

SQL

TYPE

IS

CLOB

LOCATOR

arg_loc;

SQL

TYPE

IS

CLOB

LOCATOR

res_loc;

EXEC

SQL

END

DECLARE

SECTION;

/*

Extract

some

characters

from

the

middle

*/

/*

of

the

argument

and

return

them

*/

*arg_loc

=

arg1;

EXEC

SQL

VALUES

SUBSTR(arg_loc,

10,

20)

INTO

:res_loc;

*result

=

res_loc;

v

Structured

Types

Valid

for

parameters

and

results

of

UDFs

and

methods

where

an

appropriate

transform

function

exists.

Structured

type

parameters

will

be

passed

to

the

function

or

method

in

the

result

type

of

the

FROM

SQL

transform

function.

Structured

type

results

will

be

passed

in

the

parameter

type

of

the

TO

SQL

transform

function.

v

DATALINK

Valid.

Represent

in

C

as

SQLUDF_DATALINK

or

a

structure

similar

to

the

following

from

the

sqludf.h

include

file:

struct

sqludf_datalink

{

sqluint32

version;

char

linktype[4];

sqluint32

url_length;

sqluint32

comment_length;

char

reserve2[8];

char

url_plus_comment[230];

}

Related

concepts:

v

“Transform

functions

and

transform

groups”

on

page

284

v

“Graphic

host

variables

in

C/C++

routines”

on

page

165

v

“Include

file

for

C/C++

routines

(sqludf.h)”

on

page

154

v

“C/C++

routines”

on

page

151

164

Programming

Server

Applications

Related

reference:

v

“CREATE

FUNCTION

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

PROCEDURE

statement”

in

the

SQL

Reference,

Volume

2

v

“Supported

SQL

Data

Types

in

C

and

C++”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Supported

SQL

data

types

in

C/C++”

on

page

155

Graphic

host

variables

in

C/C++

routines

Any

routine

written

in

C

or

C++

that

receives

or

returns

graphic

data

through

its

parameter

input

or

output

should

generally

be

precompiled

with

the

WCHARTYPE

NOCONVERT

option.

This

is

because

graphic

data

passed

through

these

parameters

is

considered

to

be

in

DBCS

format,

rather

than

the

wchar_t

process

code

format.

Using

NOCONVERT

means

that

graphic

data

manipulated

in

SQL

statements

in

the

routine

will

also

be

in

DBCS

format,

matching

the

format

of

the

parameter

data.

With

WCHARTYPE

NOCONVERT,

no

character

code

conversion

occurs

between

the

graphic

host

variable

and

the

database

manager.

The

data

in

a

graphic

host

variable

is

sent

to,

and

received

from,

the

database

manager

as

unaltered

DBCS

characters.

If

you

do

not

use

WCHARTYPE

NOCONVERT,

it

is

still

possible

for

you

to

manipulate

graphic

data

in

wchar_t

format

in

a

routine;

however,

you

must

perform

the

input

and

output

conversions

manually.

CONVERT

can

be

used

in

FENCED

routines,

and

it

will

affect

the

graphic

data

in

SQL

statements

within

the

routine,

but

not

data

passed

through

the

routine’s

parameters.

NOT

FENCED

routines

must

be

built

using

the

NOCONVERT

option.

In

summary,

graphic

data

passed

to

or

returned

from

a

routine

through

its

input

or

output

parameters

is

in

DBCS

format,

regardless

of

how

it

was

precompiled

with

the

WCHARTYPE

option.

Related

concepts:

v

“WCHARTYPE

Precompiler

Option

in

C

and

C++”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“WCHARTYPE

CONVERT

precompile

option”

in

the

Application

Development

Guide:

Building

and

Running

Applications

Related

reference:

v

“PRECOMPILE

Command”

in

the

Command

Reference

C++

type

decoration

The

names

of

C++

functions

can

be

overloaded.

Two

C++

functions

with

the

same

name

can

coexist

if

they

have

different

arguments,

for

example:

int

func(

int

i

)

and

int

func(

char

c

)

C++

compilers

type-decorate

or

’mangle’

function

names

by

default.

This

means

that

argument

type

names

are

appended

to

their

function

names

to

resolve

them,

Chapter

4.

External

routines

165

as

in

func__Fi

and

func__Fc

for

the

two

earlier

examples.

The

mangled

names

will

be

different

on

each

operating

system,

so

code

that

explicitly

uses

a

mangled

name

is

not

portable.

On

Windows®

operating

systems,

the

type-decorated

function

name

can

be

determined

from

the

.obj

(object)

file.

With

the

Microsoft®

Visual

C++

compiler

on

Windows,

you

can

use

the

dumpbin

command

to

determine

the

type-decorated

function

name

from

the

.obj

(object)

file,

as

follows:

dumpbin

/symbols

myprog.obj

where

myprog.obj

is

your

program

object

file.

On

UNIX®

operating

systems,

the

type-decorated

function

name

can

be

determined

from

the

.o

(object)

file,

or

from

the

shared

library,

using

the

nm

command.

This

command

can

produce

considerable

output,

so

it

is

suggested

that

you

pipe

the

output

through

grep

to

look

for

the

right

line,

as

follows:

nm

myprog.o

|

grep

myfunc

where

myprog.o

is

your

program

object

file,

and

myfunc

is

the

function

in

the

program

source

file.

The

output

produced

by

all

of

these

commands

includes

a

line

with

the

mangled

function

name.

On

UNIX,

for

example,

this

line

is

similar

to

the

following:

myfunc__FPlT1PsT3PcN35|

3792|unamex|

|

...

Once

you

have

obtained

the

mangled

function

name

from

one

of

the

preceding

commands,

you

can

use

it

in

the

appropriate

command.

This

is

demonstrated

later

in

this

section

using

the

mangled

function

name

obtained

from

the

preceding

UNIX

example.

A

mangled

function

name

obtained

on

Windows

would

be

used

in

the

same

way.

When

registering

a

routine

with

the

CREATE

statement,

the

EXTERNAL

NAME

clause

must

specify

the

mangled

function

name.

For

example:

CREATE

FUNCTION

myfunco(...)

RETURNS...

...

EXTERNAL

NAME

’/whatever/path/myprog!myfunc__FPlT1PsT3PcN35’

...

If

your

routine

library

does

not

contain

overloaded

C++

function

names,

you

have

the

option

of

using

extern

"C"

to

force

the

compiler

to

not

type-decorate

function

names.

(Note

that

you

can

always

overload

the

SQL

function

names

given

to

UDFs,

because

DB2®

resolves

what

library

function

to

invoke

based

on

the

name

and

the

parameters

it

takes.)

166

Programming

Server

Applications

In

this

example,

the

UDFs

fold

and

findvwl

are

not

type-decorated

by

the

compiler,

and

should

be

registered

in

the

CREATE

FUNCTION

statement

using

their

plain

names.

Similarly,

if

a

C++

stored

procedure

or

method

is

coded

with

extern

"C",

its

undecorated

function

name

would

be

used

in

the

CREATE

statement.

Related

concepts:

v

“Parameter

styles

for

external

routines”

on

page

87

v

“C/C++

routines”

on

page

151

v

“Parameter

handling

in

PROGRAM

TYPE

MAIN

or

PROGRAM

TYPE

SUB

procedures”

on

page

51

Java

routines

The

following

sections

describe

how

to

write

Java

routines.

Java

routines

When

developing

routines

in

Java™,

it

is

strongly

recommended

that

you

register

them

using

the

PARAMETER

STYLE

JAVA

clause

in

the

CREATE

statement.

With

PARAMETER

STYLE

JAVA,

a

routine

will

use

a

parameter

passing

convention

that

conforms

to

the

Java

language

and

SQLJ

Routines

specification.

There

are

some

UDF

and

method

features

that

cannot

be

implemented

with

PARAMETER

STYLE

JAVA.

These

are

as

follows:

v

table

functions

v

scratchpads

#include

<string.h>

#include

<stdlib.h>

#include

"sqludf.h"

/*---*/

/*

function

fold:

output

=

input

string

is

folded

at

point

indicated

*/

/*

by

the

second

argument.

*/

/*

inputs:

CLOB,

input

string

*/

/*

LONG

position

to

fold

on

*/

/*

output:

CLOB

folded

string

*/

/*---*/

extern

"C"

void

fold(

SQLUDF_CLOB

*in1,

/*

input

CLOB

to

fold

*/

...

...

}

/*

end

of

UDF:

fold

*/

/*---*/

/*

function

find_vowel:

*/

/*

returns

the

position

of

the

first

vowel.

*/

/*

returns

error

if

no

vowel.

*/

/*

defined

as

NOT

NULL

CALL

*/

/*

inputs:

VARCHAR(500)

*/

/*

output:

INTEGER

*/

/*---*/

extern

"C"

void

findvwl(

SQLUDF_VARCHAR

*in,

/*

input

smallint

*/

...

...

}

/*

end

of

UDF:

findvwl

*/

Chapter

4.

External

routines

167

v

access

to

the

DBINFO

structure

v

the

ability

to

make

a

FINAL

CALL

(and

a

separate

first

call)

to

the

function

or

method

If

you

need

to

implement

the

above

features

in

a

UDF

or

method

you

can

either

write

your

routine

in

C,

or

write

it

in

Java,

using

PARAMETER

STYLE

DB2GENERAL.

Aside

from

these

specific

cases,

all

mentions

of

Java

routines

in

this

documentation

will

assume

the

use

of

PARAMETER

STYLE

JAVA.

Java

UDFs

and

methods:

The

signature

of

PARAMETER

STYLE

JAVA

UDFs

and

methods

follows

this

format:

public

static

return-type

method-name

(

SQL-arguments

)

throws

SQLException

return-type

The

data

type

of

the

value

to

be

returned

by

the

scalar

routine.

Inside

the

routine,

the

return

value

is

passed

back

to

the

invoker

through

a

return

statement.

method-name

Name

of

the

method.

During

routine

registration,

this

value

is

specified

with

the

class

name

in

the

EXTERNAL

NAME

clause

of

the

routine’s

CREATE

statement.

SQL-arguments

Corresponds

to

the

list

of

input

parameters

in

the

routine’s

CREATE

statement.

The

following

is

an

example

of

a

Java

UDF

that

returns

the

product

of

its

two

input

arguments:

public

static

double

product(

double

in1,

double

in2

)

throws

SQLException

{

return

in1

*

in2;

}

The

corresponding

CREATE

FUNCTION

statement

for

this

UDF

is

as

follows:

CREATE

FUNCTION

product(

DOUBLE

in1,

DOUBLE

in2

)

RETURNS

DOUBLE

LANGUAGE

java

PARAMETER

STYLE

java

NO

SQL

FENCED

THREADSAFE

DETERMINISTIC

RETURNS

NULL

ON

NULL

INPUT

NO

EXTERNAL

ACTION

EXTERNAL

NAME

’myjar:udfclass.product’

The

preceding

statement

assumes

that

the

method

is

in

a

class

called

udfclass

which

lives

in

a

JAR

file

that

has

been

cataloged

to

the

database

with

the

Jar

ID

myjar

Java

stored

procedures:

The

signature

of

PARAMETER

STYLE

JAVA

stored

procedures

follows

this

format:

public

static

void

method-name

(

SQL-arguments,

ResultSet[]

result-set-array

)

throws

SQLException

168

Programming

Server

Applications

method-name

Name

of

the

method.

During

routine

registration,

this

value

is

specified

with

the

class

name

in

the

EXTERNAL

NAME

clause

of

the

CREATE

PROCEDURE

statement.

SQL-arguments

Corresponds

to

the

list

of

input

parameters

in

the

CREATE

PROCEDURE

statement.

OUT

or

INOUT

mode

parameters

are

passed

as

single-element

arrays.

For

each

result

set

that

is

specified

in

the

DYNAMIC

RESULT

SETS

clause

of

the

CREATE

PROCEDURE

statement,

a

single-element

array

of

type

ResultSet

is

appended

to

the

parameter

list.

result-set-array

Name

of

the

array

of

ResultSet

objects.

For

every

result

set

declared

in

the

DYNAMIC

RESULT

SETS

parameter

of

the

CREATE

PROCEDURE

statement,

a

parameter

of

type

ResultSet[]

must

be

declared

in

the

Java

method

signature.

The

following

is

an

example

of

a

Java

stored

procedure

that

accepts

an

input

parameter,

and

then

returns

an

output

parameter

and

a

result

set:

public

static

void

javastp(

int

inparm,

int[]

outparm,

ResultSet[]

rs

)

throws

SQLException

{

Connection

con

=

DriverManager.getConnection(

"jdbc:default:connection"

);

PreparedStatement

stmt

=

null;

String

sql

=

SELECT

value

FROM

table01

WHERE

index

=

?";

//Prepare

the

query

with

the

value

of

index

stmt

=

con.prepareStatement(

sql

);

stmt.setInt(

1,

inparm

);

//Execute

query

and

set

output

parm

rs[0]

=

stmt.executeQuery();

outparm[0]

=

inparm

+

1;

//Close

open

resources

if

(stmt

!=

null)

stmt.close();

if

(con

!=

null)

con.close();

return;

}

The

corresponding

CREATE

PROCEDURE

statement

for

this

stored

procedure

is

as

follows:

CREATE

PROCEDURE

javaproc(

IN

in1

INT,

OUT

out1

INT

)

LANGUAGE

java

PARAMETER

STYLE

java

DYNAMIC

RESULT

SETS

1

FENCED

THREADSAFE

EXTERNAL

NAME

’myjar:stpclass.javastp’

The

preceding

statement

assumes

that

the

method

is

in

a

class

called

stpclass,

which

exists

in

a

JAR

file

that

has

been

cataloged

to

the

database

with

the

Jar

ID

myjar

Notes:

1.

PARAMETER

STYLE

JAVA

routines

use

exceptions

to

pass

error

data

back

to

the

invoker.

For

complete

information,

including

the

exception

call

stack,

refer

to

administration

notification

log.

Other

than

this

detail,

there

are

no

other

special

considerations

for

invoking

PARAMETER

STYLE

JAVA

routines.

Chapter

4.

External

routines

169

2.

JNI

calls

are

not

supported

in

Java

routines.

However,

it

is

possible

to

invoke

C

functionality

from

Java

routines

by

nesting

an

invocation

of

a

C

routine.

This

involves

moving

the

desired

C

functionality

into

a

routine,

registering

it,

and

invoking

it

from

within

the

Java

routine.

Related

concepts:

v

“DB2GENERAL

routines”

on

page

333

v

“Table

function

execution

model

for

Java”

on

page

59

Related

tasks:

v

“Debugging

Java

stored

procedures”

on

page

175

v

“Building

JDBC

routines”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Building

SQLJ

routines”

in

the

Application

Development

Guide:

Building

and

Running

Applications

Related

reference:

v

“CREATE

TYPE

(Structured)

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

METHOD

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

FUNCTION

(External

Scalar)

statement”

in

the

SQL

Reference,

Volume

2

v

“Supported

SQL

data

types

in

Java”

on

page

170

v

“JAR

file

administration

on

the

database

server”

on

page

173

v

“JDBC

samples”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“SQLJ

samples”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“CREATE

PROCEDURE

(External)

statement”

in

the

SQL

Reference,

Volume

2

Related

samples:

v

“SpServer.java

--

Provide

a

variety

of

types

of

stored

procedures

to

be

called

from

(JDBC)”

v

“UDFjsrv.java

--

Provide

UDFs

to

be

called

by

UDFjcli.java

(JDBC)”

v

“UDFsqlsv.java

--

Provide

UDFs

to

be

called

by

UDFsqlcl.java

(JDBC)”

v

“UDFsrv.java

--

Provide

UDFs

to

be

called

by

UDFcli.java

(JDBC)”

v

“SpServer.sqlj

--

Provide

a

variety

of

types

of

stored

procedures

to

be

called

from

(SQLj)”

v

“UDFjsrv.java

--

Provide

UDFs

to

be

called

by

UDFjcli.sqlj

(SQLj)”

v

“UDFsrv.java

--

Provide

UDFs

to

be

called

by

UDFcli.sqlj

(SQLj)”

Supported

SQL

data

types

in

Java

The

following

table

shows

the

Java

equivalent

of

each

SQL

data

type,

based

on

the

JDBC

specification

for

data

type

mappings.

The

JDBC

driver

converts

the

data

exchanged

between

the

application

and

the

database

using

the

following

mapping

schema.

Use

these

mappings

in

your

Java

applications

and

your

PARAMETER

STYLE

JAVA

procedures

and

UDFs.

Note:

There

is

no

host

variable

support

for

the

DATALINK

data

type

in

any

of

the

programming

languages

supported

by

DB2.

170

Programming

Server

Applications

Table

26.

SQL

Data

Types

Mapped

to

Java

Declarations

SQL

Column

Type

Java

Data

Type

SQL

Column

Type

Description

SMALLINT

(500

or

501)

short,

boolean

16-bit,

signed

integer

INTEGER

(496

or

497)

int

32-bit,

signed

integer

BIGINT

1

(492

or

493)

long

64-bit,

signed

integer

REAL

(480

or

481)

float

Single

precision

floating

point

DOUBLE

(480

or

481)

double

Double

precision

floating

point

DECIMAL(p,s)

(484

or

485)

java.math.BigDecimal

Packed

decimal

CHAR(n)

(452

or

453)

java.lang.String

Fixed-length

character

string

of

length

n

where

n

is

from

1

to

254

CHAR(n)

FOR

BIT

DATA

byte[]

Fixed-length

character

string

of

length

n

where

n

is

from

1

to

254

VARCHAR(n)

(448

or

449)

java.lang.String

Variable-length

character

string

VARCHAR(n)

FOR

BIT

DATA

byte[]

Variable-length

character

string

LONG

VARCHAR

(456

or

457)

java.lang.String

Long

variable-length

character

string

LONG

VARCHAR

FOR

BIT

DATA

byte[]

Long

variable-length

character

string

BLOB(n)

(404

or

405)

java.sql.Blob

Large

object

variable-length

binary

string

CLOB(n)

(408

or

409)

java.sql.Clob

Large

object

variable-length

character

string

DBCLOB(n)

(412

or

413)

java.sql.Clob

Large

object

variable-length

double-byte

character

string

DATE

(384

or

385)

java.sql.Date

10-byte

character

string

TIME

(388

or

389)

java.sql.Time

8-byte

character

string

TIMESTAMP

(392

or

393)

java.sql.Timestamp

26-byte

character

string

GRAPHIC(n)

(468

or

469)

java.lang.String

Fixed-length

double-byte

character

string

VARGRAPHIC(n)

(464

or

465)

java.lang.String

Non-null-terminated

varying

double-byte

character

string

with

2-byte

string

length

indicator

LONGVARGRAPHIC

(472

or

473)

java.lang.String

Non-null-terminated

varying

double-byte

character

string

with

2-byte

string

length

indicator

Note:

Chapter

4.

External

routines

171

|
|
||

|

|
|

|
|

|
|

1.

For

Java

applications

connected

from

a

DB2

UDB

Version

8.1

client

to

a

DB2

UDB

Version

7.1

(or

7.2)

server,

note

the

following:

when

the

getObject()

method

is

used

to

retrieve

a

BIGINT

value,

a

java.math.BigDecimal

object

is

returned.

Where

to

put

Java

classes

You

can

use

individual

Java™

class

files

for

your

stored

procedures

and

UDFs,

or

collect

the

class

files

into

JAR

files

and

install

the

JAR

file

in

the

database.

If

you

decide

to

use

JAR

files,

see

the

description

of

registering

Java

functions

and

stored

procedures

for

more

information.

Note:

If

you

update

or

replace

Java

routine

class

files,

you

must

issue

a

CALL

SQLJ.REFRESH_CLASSES()

statement

to

enable

DB2®

to

load

the

updated

classes.

For

more

information

on

the

CALL

SQLJ.REFRESH_CLASSES()

statement,

see

the

description

of

how

to

update

Java

classes

for

routines.

To

enable

DB2

to

find

and

use

your

Java

language

routines

(stored

procedures,

UDFs

or

methods),

you

must

store

the

corresponding

class

files

as

follows:

Unix

and

Windows®

operating

systems

In

any

directory

path

specified

by

your

CLASSPATH

variable.

It

is

recommended

that

you

store

Java

class

files

associated

with

DB2

routines

in

the

function

directory,

/u/$DB2INSTANCE/sqllib/function

where

/u/$DB2INSTANCE

is

the

directory

associated

with

the

currently

active

database

manager.

The

JVM

that

DB2

invokes

uses

the

CLASSPATH

environment

variable

to

locate

Java

files.

DB2

automatically

adds

the

function

directory

and

sqllib/java/db2java.zip

to

the

front

of

your

CLASSPATH

setting

so

that

you

do

not

have

to

do

this

manually.

It

is

recommended

that

you

store

your

Java

class

files

associated

with

DB2

routines

in

the

function

directory.

Classes

associated

with

unfenced

routines

should

be

stored

in

the

/u/$DB2INSTANCE/sqllib/function/unfenced

sub-directory.

To

set

your

environment

so

that

DB2

can

find

the

JVM,

you

can

set

the

jdk_path

configuration

parameter

or

use

the

default

value.

Also,

you

might

need

to

set

the

java_heap_sz

configuration

parameter

to

increase

the

heap

size

for

your

application.

Note:

If

you

declare

a

class

to

be

part

of

a

Java

package,

create

subdirectories

in

the

function

directory

that

correspond

to

the

fully

qualified

class

names

and

place

the

related

class

files

in

the

corresponding

subdirectory.

For

example,

if

you

create

a

class

ibm.tests.test1

for

a

Linux

system,

store

the

corresponding

Java

bytecode

file

(named

test1.class)

in

sqllib/function/ibm/tests.

Related

tasks:

v

“Updating

Java

routines

(stored

procedures,

UDFs,

and

methods)

for

runtime”

on

page

173

Related

reference:

v

“java_heap_sz

-

Maximum

Java

interpreter

heap

size

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“jdk_path

-

Software

Developer's

Kit

for

Java

installation

path

configuration

parameter”

in

the

Administration

Guide:

Performance

172

Programming

Server

Applications

|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

Updating

Java

routines

(stored

procedures,

UDFs,

and

methods)

for

runtime

Procedure:

When

you

update

Java

routine

classes,

you

must

also

issue

a

CALL

SQLJ.REFRESH_CLASSES()

statement

to

force

DB2

to

load

the

new

classes.

If

you

do

not

issue

the

CALL

SQLJ.REFRESH_CLASSES()

statement

after

you

update

Java

routine

classes,

DB2

continues

to

use

the

previous

versions

of

the

classes.

The

CALL

SQLJ.REFRESH_CLASSES()

statement

only

applies

to

FENCED

routines.

DB2

refreshes

the

classes

when

a

COMMIT

or

ROLLBACK

occurs.

Note:

You

cannot

update

NOT

FENCED

routines

without

stopping

and

restarting

the

database

manager.

Related

concepts:

v

“Java

routines”

on

page

167

Related

reference:

v

“Java

debug

table

DB2DBG.ROUTINE_DEBUG”

on

page

178

v

“Java

classes

for

DB2GENERAL

routines”

on

page

337

JAR

file

administration

on

the

database

server

The

Java

class

files

that

you

use

to

implement

a

routine

must

reside

in

either

a

JAR

file

you

have

installed

in

the

database,

or

in

the

correct

CLASSPATH

for

your

operating

system.

The

DB2

classloader

searches

the

classes

and

JAR

files

in

the

CLASSPATH

and

will

pick

up

the

first

class

it

encounters

with

the

specified

name.

To

install,

replace,

or

remove

a

JAR

file

in

a

DB2

instance,

use

the

stored

procedures

provided

with

DB2:

Install

sqlj.install_jar(

jar-url,

jar-id

)

Note:

The

privileges

held

by

the

authorization

ID

of

the

caller

of

sqlj.install_jar

must

include

at

least

one

of

the

following:

v

CREATEIN

privilege

for

the

implicitly

or

explicitly

specified

schema

v

SYSADM

or

DBADM

authority

Replace

sqlj.replace_jar(

jar-url,

jar-id

)

Remove

sqlj.remove_jar(

jar-id

)

v

jar-url:

The

URL

containing

the

JAR

file

to

be

installed

or

replaced.

The

only

URL

scheme

supported

is

’file:’.

v

jar-id:

A

unique

string

identifier,

up

to

128

bytes

in

length.

It

specifies

the

JAR

identifier

in

the

database

associated

with

the

jar-url

file.

Note:

When

invoked

from

applications,

the

stored

procedures

sqlj.install_jar

and

sqlj.remove_jar

have

an

additional

parameter.

It

is

an

integer

value

that

dictates

the

use

of

the

deployment

descriptor

in

the

specified

JAR

file.

At

Chapter

4.

External

routines

173

|

|
|

|
|

|

|

present,

the

deployment

parameter

is

not

supported,

and

any

invocation

specifying

a

nonzero

value

will

be

rejected.

Following

are

a

series

of

examples

of

how

to

use

the

preceding

JAR

file

management

stored

procedures.

To

register

a

JAR

located

in

the

path

/home/bob/bobsjar.jar

with

the

database

instance

as

MYJAR:

CALL

sqlj.install_jar(

’file:/home/bob/bobsjar.jar’,

’MYJAR’

)

Subsequent

SQL

commands

that

use

the

bobsjar.jar

file

refer

to

it

with

the

name

MYJAR.

To

replace

MYJAR

with

a

different

JAR

containing

some

updated

classes:

CALL

sqlj.replace_jar(

’file:/home/bob/bobsnewjar.jar’,

’MYJAR’

)

To

remove

MYJAR

from

the

database

catalogs:

CALL

sqlj.remove_jar(

’MYJAR’

)

Note:

On

Windows

operating

systems,

DB2

stores

JAR

files

in

the

path

specified

by

the

DB2INSTPROF

instance-specific

registry

setting.

To

make

JAR

files

unique

for

an

instance,

you

must

specify

a

unique

value

for

DB2INSTPROF

for

that

instance.

Related

concepts:

v

“Where

to

put

Java

classes”

on

page

172

v

“Java

routines”

on

page

167

v

“Library

and

class

management

considerations”

on

page

27

Connection

contexts

in

SQLJ

routines

With

the

introduction

of

multithreaded

routines

in

DB2®

Universal

Database,

Version

8,

it

is

important

that

SQLJ

routines

avoid

the

use

of

the

default

connection

context.

That

is,

each

SQL

statement

must

explicitly

indicate

the

ConnectionContext

object,

and

that

context

must

be

explicitly

instantiated

in

the

Java™

method.

For

instance,

in

previous

releases

of

DB2,

a

SQLJ

routine

could

be

written

as

follows:

class

myClass

{

public

static

void

myRoutine(

short

myInput

)

{

DefaultContext

ctx

=

DefaultContext.getDefaultContext();

#sql

{

some

SQL

statement

};

}

}

This

use

of

the

default

context

causes

all

threads

in

a

multithreaded

environment

to

use

the

same

connection

context,

which,

in

turn,

will

result

in

unexpected

failures.

The

SQLJ

routine

above

must

be

changed

as

follows:

#context

MyContext;

class

myClass

{

public

static

void

myRoutine(

short

myInput

)

{

174

Programming

Server

Applications

|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|

|
|
|
|
|
|

MyContext

ctx

=

new

MyContext(

"jdbc:default:connection",

false

);

#sql

[ctx]

{

some

SQL

statement

};

ctx.close();

}

}

This

way,

each

invocation

of

the

routine

will

create

its

own

unique

ConnectionContext

(and

underlying

JDBC

connection),

which

avoids

unexpected

interference

by

concurrent

threads.

Related

concepts:

v

“Java

routines”

on

page

167

v

“Basic

steps

in

writing

an

SQLJ

application”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“SQL

statements

in

an

SQLJ

application”

in

the

Application

Development

Guide:

Programming

Client

Applications

Debugging

stored

procedures

in

Java

The

following

sections

describe

how

to

debug

Java

stored

procedures.

Debugging

Java

stored

procedures

DB2

provides

the

capability

to

interactively

debug

a

stored

procedure

written

in

JDBC

when

it

executes

on

an

AIX,

Linux,

the

Solaris

Operating

Environment,

Windows

NT,

or

Windows

2000

server.

The

easiest

way

to

debug

Java

stored

procedures

is

through

the

DB2

Development

Center.

The

DB2

Distributed

Debugger

9.2

must

be

properly

configured

to

enable

the

debugging

of

Java

Stored

Procedures

while

working

with

DB2.

The

Distributed

Debugger

is

included

with

all

DB2

UDB

Version

8

packaging

options.

The

Distributed

Debugger

is

configured

to

work

with

the

standard

SDK

1.3.1

level

that

is

installed

with

DB2

UDB

Version

8.

If

you

are

using

a

different

SDK

level

you

must

update

the

DB2

database

manager

configuration

with

the

following

command

from

a

DB2

command

prompt:

db2

update

dbm

cfg

using

jdk_path

<jdk131

path>

Procedure:

To

debug

stored

procedures

in

Java:

1.

Prepare

to

debug.

2.

Populate

the

debug

table.

3.

Invoke

the

debugger.

Related

tasks:

v

“Preparing

to

debug

Java

stored

procedures”

on

page

175

v

“Populating

the

debug

table”

on

page

177

v

“Invoking

the

debug

program”

on

page

177

v

“Debugging

routines”

on

page

38

Preparing

to

debug

Java

stored

procedures

When

preparing

to

interactively

debug

a

Java

stored

procedure,

you

work

with

the

stored

procedure,

the

client,

and

the

server.

Chapter

4.

External

routines

175

|
|
|
|
|

|
|
|

|

|

|
|

|
|

|
|
|
|

|
|
|
|
|
|
|

|

Procedure:

To

prepare

to

debug

Java

stored

procedures:

1.

Compile

the

stored

procedure

in

debug

mode

according

to

your

SDK

documentation.

2.

Prepare

the

server.

If

the

source

code

is

on

the

server,

set

the

CLASSPATH

environment

variable

to

include

the

Java

source

code

directory

or

store

the

source

code

in

the

function

directory,

as

described

in

the

JAR

File

Administration

on

the

Database

Server

topic.

3.

Set

the

client

environment

variables.

If

the

source

code

is

stored

on

the

client,

set

the

DB2_DBG_PATH

environment

variable

to

the

directory

that

contains

the

source

code

for

the

stored

procedure.

4.

Create

the

debug

table.

If

you

do

not

use

the

Development

Center

to

invoke

the

debug

program,

create

the

debug

table

with

the

following

command:

db2

-tf

sqllib/misc/db2debug.ddl

Note:

In

partitioned

database

environments,

the

default

database

partition

group

is

IBMDEFAULTGROUP

for

the

USERSPACE1

table

space,

and

it

spans

all

the

database

partitions.

To

improve

the

performance

of

debugging

stored

procedures

in

a

partitioned

database

environment,

you

should

have

a

single

coordinator

partition

where

debugging

will

occur,

and

define

a

database

partition

group

that

only

contains

that

database

partition.

5.

Configure

the

Distributed

Debugger:

a.

From

a

DOS

command

prompt,

enter

the

following

DB2SET

command:

db2set

DB2ROUTINE_DEBUG=on.

b.

If

operating

on

a

UNIX

operating

system,

complete

the

following

steps

(Windows

users

skip

this

step

and

continue

with

step

c):

1)

mkdir

sqllib/function/src

2)

chmod

777

sqllib/function/src

3)

chmod

777

/home/youruserid/.DbgProf

(some

later

Distributed

Debugger

versions

such

as

9.2.3)

c.

Start

DB2

(or

restart

DB2

if

it

is

already

started)

by

entering

the

following

command

from

the

command

prompt:

db2start

d.

Start

the

client

daemon

by

entering

the

following

command

from

the

command

prompt:

idebug

-qdaemon

-quiport=portno

where

quiport

is

an

unused

TCP/IP

port

number.

If

you

do

not

supply

a

value,

the

debug

program

uses

8000

as

the

default

port

number.

You

are

now

ready

to

populate

the

debug

table.

Related

concepts:

v

“Where

to

put

Java

classes”

on

page

172

Related

tasks:

v

“Populating

the

debug

table”

on

page

177

v

“Invoking

the

debug

program”

on

page

177

176

Programming

Server

Applications

|

|
|

|
|

|

|

|
|

|
|

|
|

|

|
|

v

“Debugging

routines”

on

page

38

Related

reference:

v

“Java

debug

table

DB2DBG.ROUTINE_DEBUG”

on

page

178

v

“JAR

file

administration

on

the

database

server”

on

page

173

Invoking

the

debug

program

In

the

debug

program,

you

can

step

through

the

source

code,

display

variables,

and

set

breakpoints

in

the

source

code.

Procedure:

After

you

have

prepared

to

debug

and

populated

the

debug

table,

call

the

stored

procedure

that

you

want

to

debug.

This

action

invokes

the

debug

program

on

the

client

using

the

IP

address

that

you

specified

in

the

debug

table.

To

start

debugging

Java

Stored

Procedures

in

the

Development

Center,

use

the

Wizard

to

create

a

new

Java

Stored

Procedure.

From

the

options

panel,

select

enable

debugging.

To

debug

existing

Java

Stored

Procedures

that

were

previously

not

built

with

the

enable

debugging

option:

1.

From

the

Stored

Procedures

folder,

right

click

and

select

Build

for

Debug.

2.

Run

the

Stored

Procedure

in

Debug

mode

by

selecting

the

Run/Debug

icon

from

the

tool

bar.

For

more

information

on

operating

the

Distributed

Debugger,

see

the

online

help

within

the

Distributed

Debugger

product.

Related

tasks:

v

“Preparing

to

debug

Java

stored

procedures”

on

page

175

v

“Populating

the

debug

table”

on

page

177

v

“Debugging

routines”

on

page

38

Related

reference:

v

“Java

debug

table

DB2DBG.ROUTINE_DEBUG”

on

page

178

Populating

the

debug

table

The

debug

table

contains

information

about

the

stored

procedures

you

debug

and

the

client/server

environment

that

you

debug

in.

Only

DBAs

or

users

with

INSERT,

UPDATE,

or

DELETE

privilege

on

the

table

can

manipulate

values

directly

in

the

base

table

DB2DBG.ROUTINE_DEBUG.

However,

unless

the

DBA

has

added

further

restrictions,

anyone

can

add,

update,

or

delete

rows

through

the

user

view,

DB2DBG.ROUTINE_DEBUG_USER.

The

rest

of

this

section

assumes

that

you

are

populating

that

table

through

the

user

view.

Procedure:

If

you

use

the

Development

Center

to

invoke

debugging,

you

can

use

the

debug

program

to

populate

and

manage

the

debug

table.

Otherwise,

to

enable

debugging

support

for

a

given

stored

procedure,

issue

the

following

command

from

the

CLP:

Chapter

4.

External

routines

177

|
|
|

|
|

|

|
|

|
|

DB2

INSERT

INTO

db2dbg.routine_debug_user

(AUTHID,

TYPE,

ROUTINE_SCHEMA,

SPECIFICNAME,

DEBUG_ON,

CLIENT_IPADDR)

VALUES

(’authid’,

’S’,

’schema’,

’proc_name’,

’Y’,

’IP_num’)

where:

authid

The

user

name

used

for

debugging

the

stored

procedure,

that

is,

the

user

name

used

to

connect

to

the

database.

schema

The

schema

name

for

the

stored

procedure.

proc_name

The

specific

name

of

the

stored

procedure.

This

is

the

specific

name

that

was

provided

on

the

CREATE

PROCEDURE

command

or

a

system-generated

identifier,

if

no

specific

name

has

been

provided.

IP_num

The

IP

address

in

the

form

nnn.nnn.nnn.nnn

of

the

client

used

to

debug

the

stored

procedure.

For

example,

to

enable

debugging

for

the

stored

procedure

MySchema.myProc

by

the

user

USER1

with

the

debugging

client

located

at

the

IP

address

192.168.111.222,

type

the

following

command:

DB2

INSERT

INTO

db2dbg.routine_debug_user

(AUTHID,

TYPE,

ROUTINE_SCHEMA,

SPECIFICNAME,

DEBUG_ON,

CLIENT_IPADDR)

VALUES

(’USER1’,

’S’,

’MySchema’,

’myProc’,

’Y’,

’192.168.111.222’)

If

you

drop

a

stored

procedure,

its

debug

information

is

not

automatically

deleted

from

the

debug

table.

Debug

information

for

non-existent

stored

procedures

cannot

harm

your

database

or

instance.

However,

old

debug

information

can

cause

some

confusion

if

a

stored

procedure

is

recreated.

If

you

want

to

keep

the

debug

table

synchronized

with

the

DB2

catalog,

you

must

delete

the

debug

information

manually.

You

are

now

ready

to

invoke

the

debug

program.

Related

tasks:

v

“Preparing

to

debug

Java

stored

procedures”

on

page

175

v

“Invoking

the

debug

program”

on

page

177

v

“Debugging

routines”

on

page

38

Related

reference:

v

“Java

debug

table

DB2DBG.ROUTINE_DEBUG”

on

page

178

Java

debug

table

DB2DBG.ROUTINE_DEBUG

Whether

you

create

the

debug

table

manually

or

through

the

Development

Center,

the

debug

table

is

named

DB2DBG.ROUTINE_DEBUG

and

has

the

following

definition:

Table

27.

DB2DBG.ROUTINE_DEBUG

Table

Definition

Column

Name

Data

Type

Attributes

Description

AUTHID

VARCHAR(128)

NOT

NULL,

DEFAULT

USER

The

application

authid

under

which

the

debugging

for

this

stored

procedure

is

to

be

performed.

This

is

the

user

ID

that

was

provided

on

connect

to

the

database.

TYPE

CHAR(1)

NOT

NULL

Valid

values:

’S’

(Procedure)

178

Programming

Server

Applications

Table

27.

DB2DBG.ROUTINE_DEBUG

Table

Definition

(continued)

Column

Name

Data

Type

Attributes

Description

ROUTINE_SCHEMA

VARCHAR(128)

NOT

NULL

Schema

name

of

the

stored

procedure

to

be

debugged.

SPECIFICNAME

VARCHAR(18)

NOT

NULL

Specific

name

of

the

stored

procedure

to

be

debugged.

DEBUG_ON

CHAR(1)

NOT

NULL,

DEFAULT

’N’

Valid

values:

v

Y

-

enables

debugging

for

the

stored

procedure.

v

N

-

disables

debugging

for

the

stored

procedure.

This

is

the

default.

CLIENT_IPADDR

VARCHAR(15)

NOT

NULL

The

IP

address

of

the

client

that

does

the

debugging

of

the

form

nnn.nnn.nnn.nnn

CLIENT_PORT

INTEGER

NOT

NULL,

DEFAULT

8000

The

port

of

the

debugging

communication.

The

default

is

8000.

DEBUG_STARTN

INTEGER

NOT

NULL

Not

used.

DEBUG_STOPN

INTEGER

NOT

NULL

Not

used.

The

primary

key

of

this

table

is

AUTHID,

TYPE,

ROUTINE_SCHEMA,

SPECIFICNAME.

The

DB2DBG.ROUTINE_DEBUG_USER

view

limits

the

access

to

this

table

only

to

rows

belonging

to

the

user

connected

to

the

database.

Related

tasks:

v

“Debugging

Java

stored

procedures”

on

page

175

v

“Preparing

to

debug

Java

stored

procedures”

on

page

175

v

“Populating

the

debug

table”

on

page

177

v

“Invoking

the

debug

program”

on

page

177

v

“Debugging

routines”

on

page

38

OLE

automation

routines

The

following

sections

describe

how

to

write

OLE

automation

routines.

OLE

automation

routine

design

Object

Linking

and

Embedding

(OLE)

automation

is

part

of

the

OLE

2.0

architecture

from

Microsoft®

Corporation.

With

OLE

automation,

your

applications,

regardless

of

the

language

in

which

they

are

written,

can

expose

their

properties

and

methods

in

OLE

automation

objects.

Other

applications,

such

as

Lotus®

Notes

or

Microsoft

Exchange,

can

then

integrate

these

objects

by

taking

advantage

of

these

properties

and

methods

through

OLE

automation.

The

applications

exposing

the

properties

and

methods

are

called

OLE

automation

servers

or

objects,

and

the

applications

that

access

those

properties

and

methods

are

called

OLE

automation

controllers.

OLE

automation

servers

are

COM

components

(objects)

that

implement

the

OLE

IDispatch

interface.

An

OLE

automation

controller

is

a

COM

client

that

communicates

with

the

automation

server

through

its

IDispatch

interface.

COM

is

the

foundation

of

OLE.

For

OLE

Chapter

4.

External

routines

179

automation

routines,

DB2®

acts

as

an

OLE

automation

controller.

Through

this

mechanism,

DB2

can

invoke

methods

of

OLE

automation

objects

as

external

routines.

Note

that

all

OLE

automation

topics

assume

that

you

are

familiar

with

OLE

automation

terms

and

concepts.

For

an

overview

of

OLE

automation,

refer

to

Microsoft

Corporation:

The

Component

Object

Model

Specification,

October

1995.

For

details

on

OLE

automation,

refer

to

OLE

Automation

Programmer’s

Reference,

Microsoft

Press,

1996,

ISBN

1-55615-851-3.

Related

concepts:

v

“Object

instance

and

scratchpad

considerations

and

OLE

routines”

on

page

181

v

“OLE

automation

routines

in

BASIC

and

C++”

on

page

183

Related

tasks:

v

“Creating

OLE

automation

routines”

on

page

180

Related

reference:

v

“Supported

SQL

data

types

in

OLE

automation”

on

page

182

Creating

OLE

automation

routines

OLE

automation

routines

are

implemented

as

public

methods

of

OLE

automation

objects.

The

OLE

automation

objects

must

be

externally

creatable

by

an

OLE

automation

controller,

in

this

case

DB2,

and

support

late

binding

(also

called

IDispatch-based

binding).

OLE

automation

objects

must

be

registered

in

the

Windows

registry

with

a

class

identifier

(CLSID),

and

optionally,

an

OLE

programmatic

ID

(progID)

to

identify

the

automation

object.

The

progID

can

identify

an

in-process

(.DLL)

or

local

(.EXE)

OLE

automation

server,

or

a

remote

server

through

DCOM

(Distributed

COM).

Procedure:

To

register

OLE

automation

routines:

After

you

code

an

OLE

automation

object,

you

need

to

create

the

methods

of

the

object

as

routines

using

the

CREATE

statement.

Creating

OLE

automation

routines

is

very

similar

to

registering

C

or

C++

routines,

but

you

must

use

the

following

options:

v

LANGUAGE

OLE

v

FENCED

NOT

THREADSAFE,

since

OLE

automation

routines

must

run

in

FENCED

mode,

but

cannot

be

run

as

THREADSAFE.

The

external

name

consists

of

the

OLE

progID

identifying

the

OLE

automation

object

and

the

method

name

separated

by

!

(exclamation

mark):

CREATE

FUNCTION

bcounter

()

RETURNS

INTEGER

EXTERNAL

NAME

’bert.bcounter!increment’

LANGUAGE

OLE

FENCED

NOT

THREADSAFE

SCRATCHPAD

FINAL

CALL

NOT

DETERMINISTIC

NULL

CALL

180

Programming

Server

Applications

PARAMETER

STYLE

DB2SQL

NO

SQL

NO

EXTERNAL

ACTION

DISALLOW

PARALLEL;

The

calling

conventions

for

OLE

method

implementations

are

identical

to

the

conventions

for

routines

written

in

C

or

C++.

An

implementation

of

the

previous

method

in

the

BASIC

language

looks

like

the

following

(notice

that

in

BASIC

the

parameters

are

by

default

defined

as

call

by

reference):

Public

Sub

increment(output

As

Long,

_

indicator

As

Integer,

_

sqlstate

As

String,

_

fname

As

String,

_

fspecname

As

String,

_

sqlmsg

As

String,

_

scratchpad()

As

Byte,

_

calltype

As

Long)

Related

concepts:

v

“Object

Linking

and

Embedding

(OLE)

automation

with

Visual

Basic”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Object

Linking

and

Embedding

(OLE)

automation

with

Visual

C++”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“OLE

automation

routine

design”

on

page

179

v

“Object

instance

and

scratchpad

considerations

and

OLE

routines”

on

page

181

v

“OLE

automation

routines

in

BASIC

and

C++”

on

page

183

Related

reference:

v

“CREATE

TYPE

(Structured)

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

FUNCTION

(External

Scalar)

statement”

in

the

SQL

Reference,

Volume

2

v

“Object

Linking

and

Embedding

(OLE)

samples”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“CREATE

PROCEDURE

(External)

statement”

in

the

SQL

Reference,

Volume

2

v

“Supported

SQL

data

types

in

OLE

automation”

on

page

182

Object

instance

and

scratchpad

considerations

and

OLE

routines

OLE

automation

UDFs

and

methods

(methods

of

OLE

automation

objects)

are

applied

on

instances

of

OLE

automation

objects.

DB2®

creates

an

object

instance

for

each

UDF

or

method

reference

in

an

SQL

statement.

An

object

instance

can

be

reused

for

subsequent

method

invocations

of

the

UDF

or

method

reference

in

an

SQL

statement,

or

the

instance

can

be

released

after

the

method

invocation

and

a

new

instance

is

created

for

each

subsequent

method

invocation.

The

proper

behavior

can

be

specified

with

the

SCRATCHPAD

option

in

the

CREATE

statement.

For

the

LANGUAGE

OLE

clause,

the

SCRATCHPAD

option

has

the

additional

semantic

compared

to

C

or

C++,

that

a

single

object

instance

is

created

and

reused

for

the

entire

query,

whereas

if

NO

SCRATCHPAD

is

specified,

a

new

object

instance

can

be

created

each

time

a

method

is

invoked.

Chapter

4.

External

routines

181

Using

the

scratchpad

allows

a

method

to

maintain

state

information

in

instance

variables

of

the

object,

across

function

or

method

invocations.

It

also

increases

performance

as

an

object

instance

is

only

created

once

and

then

reused

for

subsequent

invocations.

Related

concepts:

v

“OLE

automation

routine

design”

on

page

179

v

“OLE

automation

routines

in

BASIC

and

C++”

on

page

183

Related

tasks:

v

“Creating

OLE

automation

routines”

on

page

180

Related

reference:

v

“CREATE

TYPE

(Structured)

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

FUNCTION

(External

Scalar)

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

PROCEDURE

(External)

statement”

in

the

SQL

Reference,

Volume

2

v

“Supported

SQL

data

types

in

OLE

automation”

on

page

182

Supported

SQL

data

types

in

OLE

automation

DB2

handles

type

conversion

between

SQL

types

and

OLE

automation

types.

The

following

table

summarizes

the

supported

data

types

and

how

they

are

mapped.

Table

28.

Mapping

of

SQL

and

OLE

Automation

Datatypes

SQL

Type

OLE

Automation

Type

OLE

Automation

Type

Description

SMALLINT

short

16-bit

signed

integer

INTEGER

long

32-bit

signed

integer

REAL

float

32-bit

IEEE

floating-point

number

FLOAT

or

DOUBLE

double

64-bit

IEEE

floating-point

number

DATE

DATE

64-bit

floating-point

fractional

number

of

days

since

December

30,

1899

TIME

DATE

TIMESTAMP

DATE

CHAR(n)

BSTR

Length-prefixed

string

as

described

in

the

OLE

Automation

Programmer’s

Reference.

VARCHAR(n)

BSTR

LONG

VARCHAR

BSTR

CLOB(n)

BSTR

GRAPHIC(n)

BSTR

Length-prefixed

string

as

described

in

the

OLE

Automation

Programmer’s

Reference.

VARGRAPHIC(n)

BSTR

LONG

GRAPHIC

BSTR

DBCLOB(n)

BSTR

182

Programming

Server

Applications

Table

28.

Mapping

of

SQL

and

OLE

Automation

Datatypes

(continued)

SQL

Type

OLE

Automation

Type

OLE

Automation

Type

Description

CHAR(n)

SAFEARRAY[unsigned

char]

1-dim

Byte()

array

of

8-bit

unsigned

data

items.

(SAFEARRAYs

are

described

in

the

OLE

Automation

Programmer’s

Reference.)

VARCHAR(n)

SAFEARRAY[unsigned

char]

LONG

VARCHAR

SAFEARRAY[unsigned

char]

CHAR(n)

FOR

BIT

DATA

SAFEARRAY[unsigned

char]

VARCHAR(n)

FOR

BIT

DATA

SAFEARRAY[unsigned

char]

LONG

VARCHAR

FOR

BIT

DATA

SAFEARRAY[unsigned

char]

BLOB(n)

SAFEARRAY[unsigned

char]

Data

passed

between

DB2

and

OLE

automation

routines

is

passed

as

call

by

reference.

SQL

types

such

as

BIGINT,

DECIMAL,

DATALINK,

or

LOCATORS,

or

OLE

automation

types

such

as

Boolean

or

CURRENCY

that

are

not

listed

in

the

table

are

not

supported.

Character

and

graphic

data

mapped

to

BSTR

is

converted

from

the

database

code

page

to

the

UCS-2

scheme.

(UCS-2

is

also

known

as

Unicode,

IBM

code

page

13488).

Upon

return,

the

data

is

converted

back

to

the

database

code

page

from

UCS-2.

These

conversions

occur

regardless

of

the

database

code

page.

If

these

code

page

conversion

tables

are

not

installed,

you

receive

SQLCODE

-332

(SQLSTATE

57017).

Related

concepts:

v

“OLE

automation

routine

design”

on

page

179

v

“Object

instance

and

scratchpad

considerations

and

OLE

routines”

on

page

181

v

“OLE

automation

routines

in

BASIC

and

C++”

on

page

183

Related

tasks:

v

“Creating

OLE

automation

routines”

on

page

180

OLE

automation

routines

in

BASIC

and

C++

You

can

implement

OLE

automation

routines

in

any

language.

This

section

shows

you

how

to

implement

OLE

automation

routines

using

BASIC

or

C++

as

two

sample

languages.

The

following

table

shows

the

mapping

of

OLE

automation

types

to

data

types

in

BASIC

and

C++.

Table

29.

Mapping

of

SQL

and

OLE

Data

Types

to

BASIC

and

C++

Data

Types

SQL

Type

OLE

Automation

Type

BASIC

Type

C++

Type

SMALLINT

short

Integer

short

INTEGER

long

Long

long

REAL

float

Single

float

FLOAT

or

DOUBLE

double

Double

double

DATE,

TIME,

TIMESTAMP

DATE

Date

DATE

CHAR(n)

BSTR

String

BSTR

CHAR(n)

FOR

BIT

DATA

SAFEARRAY[unsigned

char]

Byte()

SAFEARRAY

VARCHAR(n)

BSTR

String

BSTR

VARCHAR(n)

FOR

BIT

DATA

SAFEARRAY[unsigned

char]

Byte()

SAFEARRAY

Chapter

4.

External

routines

183

Table

29.

Mapping

of

SQL

and

OLE

Data

Types

to

BASIC

and

C++

Data

Types

(continued)

SQL

Type

OLE

Automation

Type

BASIC

Type

C++

Type

LONG

VARCHAR

BSTR

String

BSTR

LONG

VARCHAR

FOR

BIT

DATA

SAFEARRAY[unsigned

char]

Byte()

SAFEARRAY

BLOB(n)

BSTR

String

BSTR

BLOB(n)

FOR

BIT

DATA

SAFEARRAY[unsigned

char]

Byte()

SAFEARRAY

GRAPHIC(n),

VARGRAPHIC(n),

LONG

GRAPHIC,

DBCLOB(n)

BSTR

String

BSTR

OLE

Automation

in

BASIC:

To

implement

OLE

automation

routines

in

BASIC

you

need

to

use

the

BASIC

data

types

corresponding

to

the

SQL

data

types

mapped

to

OLE

automation

types.

The

BASIC

declaration

of

the

OLE

automation

UDF,

bcounter,

looks

like

the

following:

Public

Sub

increment(output

As

Long,

_

indicator

As

Integer,

_

sqlstate

As

String,

_

fname

As

String,

_

fspecname

As

String,

_

sqlmsg

As

String,

_

scratchpad()

As

Byte,

_

calltype

As

Long)

OLE

Automation

in

C++:

The

C++

declaration

of

the

OLE

automation

UDF,

increment,

is

as

follows:

STDMETHODIMP

Ccounter::increment

(long

*output,

short

*indicator,

BSTR

*sqlstate,

BSTR

*fname,

BSTR

*fspecname,

BSTR

*sqlmsg,

SAFEARRAY

**scratchpad,

long

*calltype

);

OLE

supports

type

libraries

that

describe

the

properties

and

methods

of

OLE

automation

objects.

Exposed

objects,

properties,

and

methods

are

described

in

the

Object

Description

Language

(ODL).

The

ODL

description

of

the

above

C++

method

is

as

follows:

HRESULT

increment

([out]

long

*output,

[out]

short

*indicator,

[out]

BSTR

*sqlstate,

[in]

BSTR

*fname,

[in]

BSTR

*fspecname,

[out]

BSTR

*sqlmsg,

[in,out]

SAFEARRAY

(unsigned

char)

*scratchpad,

[in]

long

*calltype);

The

ODL

description

allows

you

to

specify

whether

a

parameter

is

an

input

(in),

output

(out),

or

input/output

(in,out)

parameter.

For

an

OLE

automation

routine,

the

routine

input

parameters

and

input

indicators

are

specified

as

[in]

parameters,

and

routine

output

parameters

and

output

indicators

as

[out]

parameters.

For

the

184

Programming

Server

Applications

routine

trailing

arguments,

sqlstate

is

an

[out]

parameter,

fname

and

fspecname

are

[in]

parameters,

scratchpad

is

an

[in,out]

parameter,

and

calltype

is

an

[in]

parameter.

OLE

automation

defines

the

BSTR

data

type

to

handle

strings.

BSTR

is

defined

as

a

pointer

to

OLECHAR:

typedef

OLECHAR

*BSTR.

For

allocating

and

freeing

BSTRs,

OLE

imposes

the

rule

that

the

called

routine

frees

a

BSTR

passed

in

as

a

by-reference

parameter

before

assigning

the

parameter

a

new

value.

The

same

rule

applies

for

one-dimensional

byte

arrays

that

are

received

by

the

called

routine

as

SAFEARRAY**.

This

rule

means

the

following

for

DB2®

and

OLE

automation

routines:

v

[in]

parameters:

DB2

allocates

and

frees

[in]

parameters.

v

[out]

parameters:

DB2

passes

in

a

pointer

to

NULL.

The

[out]

parameter

must

be

allocated

by

the

invoked

routine

and

is

freed

by

DB2.

v

[in,out]

parameters:

DB2

initially

allocates

[in,out]

parameters.

They

can

be

freed

and

re-allocated

by

the

invoked

routine.

As

is

true

for

[out]

parameters,

DB2

frees

the

final

returned

parameter.

All

other

parameters

are

passed

as

pointers.

DB2

allocates

and

manages

the

referenced

memory.

OLE

automation

provides

a

set

of

data

manipulation

functions

for

dealing

with

BSTRs

and

SAFEARRAYs.

The

data

manipulation

functions

are

described

in

the

OLE

Automation

Programmer’s

Reference.

The

following

C++

routine

returns

the

first

5

characters

of

a

CLOB

input

parameter:

//

UDF

DDL:

CREATE

FUNCTION

crunch

(CLOB(5k))

RETURNS

CHAR(5)

STDMETHODIMP

Cobj::crunch

(BSTR

*in,

//

CLOB(5K)

BSTR

*out,

//

CHAR(5)

short

*indicator1,

//

input

indicator

short

*indicator2,

//

output

indicator

BSTR

*sqlstate,

//

pointer

to

NULL

BSTR

*fname,

//

pointer

to

function

name

BSTR

*fspecname,

//

pointer

to

specific

name

BSTR

*msgtext)

//

pointer

to

NULL

{

//

Allocate

BSTR

of

5

characters

//

and

copy

5

characters

of

input

parameter

//

out

is

an

[out]

parameter

of

type

BSTR,

that

is,

//

it

is

a

pointer

to

NULL

and

the

memory

does

not

have

to

be

freed.

//

DB2

will

free

the

allocated

BSTR.

*out

=

SysAllocStringLen

(*in,

5);

return

NOERROR;

};

An

OLE

automation

server

can

be

implemented

as

creatable

single-use

or

creatable

multi-use.

With

creatable

single-use,

each

client

(that

is,

a

DB2

FENCED

process)

connecting

with

CoGetClassObject

to

an

OLE

automation

object

will

use

its

own

instance

of

a

class

factory,

and

run

a

new

copy

of

the

OLE

automation

server

if

necessary.

With

creatable

multi-use,

many

clients

connect

to

the

same

class

factory.

That

is,

each

instantiation

of

a

class

factory

is

supplied

by

an

already

running

copy

of

the

OLE

server,

if

any.

If

there

are

no

copies

of

the

OLE

server

running,

a

copy

is

automatically

started

to

supply

the

class

object.

The

choice

between

single-use

Chapter

4.

External

routines

185

and

multi-use

OLE

automation

servers

is

yours,

when

you

implement

your

automation

server.

A

single-use

server

is

recommended

for

better

performance.

Related

concepts:

v

“Object

Linking

and

Embedding

(OLE)

automation

with

Visual

Basic”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Object

Linking

and

Embedding

(OLE)

automation

with

Visual

C++”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“OLE

automation

routine

design”

on

page

179

v

“Object

instance

and

scratchpad

considerations

and

OLE

routines”

on

page

181

Related

tasks:

v

“Creating

OLE

automation

routines”

on

page

180

Related

reference:

v

“CREATE

FUNCTION

statement”

in

the

SQL

Reference,

Volume

2

v

“Object

Linking

and

Embedding

(OLE)

samples”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Supported

SQL

data

types

in

OLE

automation”

on

page

182

OLE

DB

user-defined

table

functions

The

following

sections

describe

how

to

write

OLE

DB

table

functions.

OLE

DB

user-defined

table

functions

Microsoft®

OLE

DB

is

a

set

of

OLE/COM

interfaces

that

provide

applications

with

uniform

access

to

data

stored

in

diverse

information

sources.

The

OLE

DB

component

DBMS

architecture

defines

OLE

DB

consumers

and

OLE

DB

providers.

An

OLE

DB

consumer

is

any

system

or

application

that

consumes

OLE

DB

interfaces;

an

OLE

DB

provider

is

a

component

that

exposes

OLE

DB

interfaces.

There

are

two

classes

of

OLE

DB

providers:

OLE

DB

data

providers,

which

own

data

and

expose

their

data

in

tabular

format

as

a

rowset;

and

OLE

DB

service

providers,

which

do

not

own

their

own

data,

but

encapsulate

some

services

by

producing

and

consuming

data

through

OLE

DB

interfaces.

DB2

Universal

Database

simplifies

the

creation

of

OLE

DB

applications

by

enabling

you

to

define

table

functions

that

access

an

OLE

DB

data

source.

DB2

is

an

OLE

DB

consumer

that

can

access

any

OLE

DB

data

or

service

provider.

You

can

perform

operations

including

GROUP

BY,

JOIN,

and

UNION

on

data

sources

that

expose

their

data

through

OLE

DB

interfaces.

For

example,

you

can

define

an

OLE

DB

table

function

to

return

a

table

from

a

Microsoft

Access

database

or

a

Microsoft

Exchange

address

book,

then

create

a

report

that

seamlessly

combines

data

from

this

OLE

DB

table

function

with

data

in

your

DB2®

database.

Using

OLE

DB

table

functions

reduces

your

application

development

effort

by

providing

built-in

access

to

any

OLE

DB

provider.

For

C,

Java™,

and

OLE

automation

table

functions,

the

developer

needs

to

implement

the

table

function,

whereas

in

the

case

of

OLE

DB

table

functions,

a

generic

built-in

OLE

DB

consumer

interfaces

with

any

OLE

DB

provider

to

retrieve

data.

You

only

need

to

register

a

table

function

as

LANGUAGE

OLEDB,

and

refer

to

the

OLE

DB

provider

and

the

relevant

rowset

as

a

data

source.

You

do

not

have

to

do

any

UDF

programming

to

take

advantage

of

OLE

DB

table

functions.

186

Programming

Server

Applications

To

use

OLE

DB

table

functions

with

DB2

Universal

Database,

you

must

install

OLE

DB

2.0

or

later,

available

from

Microsoft

at

http://www.microsoft.com.

If

you

attempt

to

invoke

an

OLE

DB

table

function

without

first

installing

OLE

DB,

DB2

issues

SQLCODE

-465,

SQLSTATE

58032,

reason

code

35.

For

the

system

requirements

and

OLE

DB

providers

available

for

your

data

sources,

refer

to

your

data

source

documentation.

For

the

OLE

DB

specification,

see

the

Microsoft

OLE

DB

2.0

Programmer’s

Reference

and

Data

Access

SDK,

Microsoft

Press,

1998.

Restrictions

on

using

OLE

DB

table

functions:

OLE

DB

table

functions

cannot

connect

to

a

DB2

database.

Related

concepts:

v

“Object

Linking

and

Embedding

Database

(OLE

DB)

table

functions”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Fully

qualified

rowset

names”

on

page

189

Related

tasks:

v

“Creating

an

OLE

DB

table

UDF”

on

page

187

Related

reference:

v

“CREATE

FUNCTION

(OLE

DB

External

Table)

statement”

in

the

SQL

Reference,

Volume

2

v

“Object

Linking

and

Embedding

Database

(OLE

DB)

table

function

samples”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Supported

SQL

data

types

in

OLE

DB”

on

page

190

Creating

an

OLE

DB

table

UDF

To

define

an

OLE

DB

table

function

with

a

single

CREATE

FUNCTION

statement,

you

must:

v

define

the

table

that

the

OLE

DB

provider

returns

v

specify

LANGUAGE

OLEDB

v

identify

the

OLE

DB

rowset

and

provide

an

OLE

DB

provider

connection

string

in

the

EXTERNAL

NAME

clause

OLE

DB

data

sources

expose

their

data

in

tabular

form,

called

a

rowset.

A

rowset

is

a

set

of

rows,

each

having

a

set

of

columns.

The

RETURNS

TABLE

clause

includes

only

the

columns

relevant

to

the

user.

The

binding

of

table

function

columns

to

columns

of

a

rowset

at

an

OLE

DB

data

source

is

based

on

column

names.

If

the

OLE

DB

provider

is

case

sensitive,

place

the

column

names

in

quotation

marks;

for

example,

"UPPERcase".

The

EXTERNAL

NAME

clause

can

take

either

of

the

following

forms:

’server!rowset’

or

’!rowset!connectstring’

where:

server

identifies

a

server

registered

with

the

CREATE

SERVER

statement

rowset

identifies

a

rowset,

or

table,

exposed

by

the

OLE

DB

provider;

this

value

should

be

empty

if

the

table

has

an

input

parameter

to

pass

through

command

text

to

the

OLE

DB

provider.

Chapter

4.

External

routines

187

|
|

connectstring

contains

initialization

properties

needed

to

connect

to

an

OLE

DB

provider.

For

the

complete

syntax

and

semantics

of

the

connection

string,

see

the

″Data

Link

API

of

the

OLE

DB

Core

Components″

in

the

Microsoft

OLE

DB

2.0

Programmer’s

Reference

and

Data

Access

SDK,

Microsoft

Press,

1998.

You

can

use

a

connection

string

in

the

EXTERNAL

NAME

clause

of

a

CREATE

FUNCTION

statement,

or

specify

the

CONNECTSTRING

option

in

a

CREATE

SERVER

statement.

For

example,

you

can

define

an

OLE

DB

table

function

and

return

a

table

from

a

Microsoft

Access

database

with

the

following

CREATE

FUNCTION

and

SELECT

statements:

CREATE

FUNCTION

orders

()

RETURNS

TABLE

(orderid

INTEGER,

...)

LANGUAGE

OLEDB

EXTERNAL

NAME

’!orders!Provider=Microsoft.Jet.OLEDB.3.51;

Data

Source=c:\msdasdk\bin\oledb\nwind.mdb’;

SELECT

orderid,

DATE(orderdate)

AS

orderdate,

DATE(shippeddate)

AS

shippeddate

FROM

TABLE(orders())

AS

t

WHERE

orderid

=

10248;

Instead

of

putting

the

connection

string

in

the

EXTERNAL

NAME

clause,

you

can

create

and

use

a

server

name.

For

example,

assuming

you

have

defined

the

server

Nwind,

you

could

use

the

following

CREATE

FUNCTION

statement:

CREATE

FUNCTION

orders

()

RETURNS

TABLE

(orderid

INTEGER,

...)

LANGUAGE

OLEDB

EXTERNAL

NAME

’Nwind!orders’;

OLE

DB

table

functions

also

allow

you

to

specify

one

input

parameter

of

any

character

string

data

type.

Use

the

input

parameter

to

pass

command

text

directly

to

the

OLE

DB

provider.

If

you

define

an

input

parameter,

do

not

provide

a

rowset

name

in

the

EXTERNAL

NAME

clause.

DB2

passes

the

command

text

to

the

OLE

DB

provider

for

execution

and

the

OLE

DB

provider

returns

a

rowset

to

DB2.

Column

names

and

data

types

of

the

resulting

rowset

need

to

be

compatible

with

the

RETURNS

TABLE

definition

in

the

CREATE

FUNCTION

statement.

Since

binding

to

the

column

names

of

the

rowset

is

based

on

matching

column

names,

you

must

ensure

that

you

name

the

columns

properly.

The

following

example

registers

an

OLE

DB

table

function,

which

retrieves

store

information

from

a

Microsoft

SQL

Server

7.0™

database.

The

connection

string

is

provided

in

the

EXTERNAL

NAME

clause.

Since

the

table

function

has

an

input

parameter

to

pass

through

command

text

to

the

OLE

DB

provider,

the

rowset

name

is

not

specified

in

the

EXTERNAL

NAME

clause.

The

query

example

passes

in

a

SQL

command

text

that

retrieves

information

about

the

top

three

stores

from

a

SQL

Server

database.

CREATE

FUNCTION

favorites

(VARCHAR(600))

RETURNS

TABLE

(store_id

CHAR

(4),

name

VARCHAR

(41),

sales

INTEGER)

SPECIFIC

favorites

LANGUAGE

OLEDB

EXTERNAL

NAME

’!!Provider=SQLOLEDB.1;Persist

Security

Info=False;

User

ID=sa;Initial

Catalog=pubs;Data

Source=WALTZ;

Locale

Identifier=1033;Use

Procedure

for

Prepare=1;

Auto

Translate=False;Packet

Size=4096;Workstation

ID=WALTZ;

OLE

DB

Services=CLIENTCURSOR;’;

188

Programming

Server

Applications

SELECT

*

FROM

TABLE

(favorites

(’

select

top

3

sales.stor_id

as

store_id,

’

||

’

stores.stor_name

as

name,

’

||

’

sum(sales.

qty)

as

sales

’

||

’

from

sales,

stores

’

||

’

where

sales.stor_id

=

stores.stor_id

’

||

’

group

by

sales.stor_id,

stores.stor_name

’

||

’

order

by

sum(sales.qty)

desc’))

as

f;

Related

concepts:

v

“Fully

qualified

rowset

names”

on

page

189

v

“OLE

DB

user-defined

table

functions”

on

page

186

Related

tasks:

v

“Installing

DB2

Information

Integrator

and

setting

up

the

server

to

access

OLE

DB

data

sources”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

v

“Adding

OLE

DB

data

sources

to

a

federated

server”

in

the

IBM

DB2

Information

Integrator

Data

Source

Configuration

Guide

Related

reference:

v

“CREATE

NICKNAME

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

SERVER

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

WRAPPER

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

FUNCTION

(OLE

DB

External

Table)

statement”

in

the

SQL

Reference,

Volume

2

v

“Object

Linking

and

Embedding

Database

(OLE

DB)

table

function

samples”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Supported

SQL

data

types

in

OLE

DB”

on

page

190

Fully

qualified

rowset

names

Some

rowsets

need

to

be

identified

in

the

EXTERNAL

NAME

clause

through

a

fully

qualified

name.

A

fully

qualified

name

incorporates

either

or

both

of

the

following:

v

the

associated

catalog

name,

which

requires

the

following

information:

–

whether

the

provider

supports

catalog

names

–

where

to

put

the

catalog

name

in

the

fully

qualified

name

–

which

catalog

name

separator

to

use
v

the

associated

schema

name,

which

requires

the

following

information:

–

whether

the

provider

supports

schema

names

–

which

schema

name

separator

to

use

For

information

on

the

support

offered

by

your

OLE

DB

provider

for

catalog

and

schema

names,

refer

to

the

documentation

of

the

literal

information

of

your

OLE

DB

provider.

If

DBLITERAL_CATALOG_NAME

is

not

NULL

in

the

literal

information

of

your

provider,

use

a

catalog

name

and

the

value

of

DBLITERAL_CATALOG_SEPARATOR

as

a

separator.

To

determine

whether

the

catalog

name

goes

at

the

beginning

or

the

end

of

the

fully

qualified

name,

refer

to

the

value

of

DBPROP_CATALOGLOCATION

in

the

property

set

DBPROPSET_DATASOURCEINFO

of

your

OLE

DB

provider.

Chapter

4.

External

routines

189

If

DBLITERAL_SCHEMA_NAME

is

not

NULL

in

the

literal

information

of

your

provider,

use

a

schema

name

and

the

value

of

DBLITERAL_SCHEMA_SEPARATOR

as

a

separator.

If

the

names

contain

special

characters

or

match

keywords,

enclose

the

names

in

the

quote

characters

specified

for

your

OLE

DB

provider.

The

quote

characters

are

defined

in

the

literal

information

of

your

OLE

DB

provider

as

DBLITERAL_QUOTE_PREFIX

and

DBLITERAL_QUOTE_SUFFIX.

For

example,

in

the

following

EXTERNAL

NAME

the

specified

rowset

includes

catalog

name

pubs

and

schema

name

dbo

for

a

rowset

called

authors,

with

the

quote

character

"

used

to

enclose

the

names.

EXTERNAL

NAME

’!"pubs"."dbo"."authors"!Provider=SQLOLEDB.1;...’;

For

more

information

on

constructing

fully

qualified

names,

refer

to

Microsoft®

OLE

DB

2.0

Programmer’s

Reference

and

Data

Access

SDK,

Microsoft

Press,

1998,

and

the

documentation

for

your

OLE

DB

provider.

Related

concepts:

v

“OLE

DB

user-defined

table

functions”

on

page

186

Related

reference:

v

“CREATE

FUNCTION

(OLE

DB

External

Table)

statement”

in

the

SQL

Reference,

Volume

2

Supported

SQL

data

types

in

OLE

DB

The

following

table

shows

how

DB2

data

types

map

to

the

OLE

DB

data

types

as

described

in

Microsoft

OLE

DB

2.0

Programmer’s

Reference

and

Data

Access

SDK,

Microsoft

Press,

1998.

Use

the

mapping

table

to

define

the

appropriate

RETURNS

TABLE

columns

in

your

OLE

DB

table

functions.

For

example,

if

you

define

an

OLE

DB

table

function

with

a

column

of

data

type

INTEGER,

DB2

requests

the

data

from

the

OLE

DB

provider

as

DBTYPE_I4.

For

mappings

of

OLE

DB

provider

source

data

types

to

OLE

DB

data

types,

refer

to

the

OLE

DB

provider

documentation.

For

examples

of

how

the

ANSI

SQL,

Microsoft

Access,

and

Microsoft

SQL

Server

providers

might

map

their

respective

data

types

to

OLE

DB

data

types,

refer

to

the

Microsoft

OLE

DB

2.0

Programmer’s

Reference

and

Data

Access

SDK,

Microsoft

Press,

1998.

Table

30.

Mapping

DB2

Data

Types

to

OLE

DB

DB2

Data

Type

OLE

DB

Data

Type

SMALLINT

DBTYPE_I2

INTEGER

DBTYPE_I4

BIGINT

DBTYPE_I8

REAL

DBTYPE_R4

FLOAT/DOUBLE

DBTYPE_R8

DEC

(p,

s)

DBTYPE_NUMERIC

(p,

s)

DATE

DBTYPE_DBDATE

TIME

DBTYPE_DBTIME

TIMESTAMP

DBTYPE_DBTIMESTAMP

CHAR(N)

DBTYPE_STR

VARCHAR(N)

DBTYPE_STR

190

Programming

Server

Applications

Table

30.

Mapping

DB2

Data

Types

to

OLE

DB

(continued)

DB2

Data

Type

OLE

DB

Data

Type

LONG

VARCHAR

DBTYPE_STR

CLOB(N)

DBTYPE_STR

CHAR(N)

FOR

BIT

DATA

DBTYPE_BYTES

VARCHAR(N)

FOR

BIT

DATA

DBTYPE_BYTES

LONG

VARCHAR

FOR

BIT

DATA

DBTYPE_BYTES

BLOB(N)

DBTYPE_BYTES

GRAPHIC(N)

DBTYPE_WSTR

VARGRAPHIC(N)

DBTYPE_WSTR

LONG

GRAPHIC

DBTYPE_WSTR

DBCLOB(N)

DBTYPE_WSTR

Note:

OLE

DB

data

type

conversion

rules

are

defined

in

the

Microsoft

OLE

DB

2.0

Programmer’s

Reference

and

Data

Access

SDK,

Microsoft

Press,

1998.

For

example:

v

To

retrieve

the

OLE

DB

data

type

DBTYPE_CY,

the

data

can

get

converted

to

OLE

DB

data

type

DBTYPE_NUMERIC(19,4),

which

maps

to

DB2

data

type

DEC(19,4).

v

To

retrieve

the

OLE

DB

data

type

DBTYPE_I1,

the

data

can

get

converted

to

OLE

DB

data

type

DBTYPE_I2,

which

maps

to

DB2

data

type

SMALLINT.

v

To

retrieve

the

OLE

DB

data

type

DBTYPE_GUID,

the

data

can

get

converted

to

OLE

DB

data

type

DBTYPE_BYTES,

which

maps

to

DB2

data

type

CHAR(12)

FOR

BIT

DATA.

Related

concepts:

v

“OLE

DB

user-defined

table

functions”

on

page

186

Related

tasks:

v

“Creating

an

OLE

DB

table

UDF”

on

page

187

Chapter

4.

External

routines

191

192

Programming

Server

Applications

Chapter

5.

Invoking

routines

Routine

invocation

.

.

.

.

.

.

.

.

.

.

. 193

Routine

names

and

paths

.

.

.

.

.

.

.

.

. 195

Nested

routine

invocations

.

.

.

.

.

.

.

.

. 196

Invoking

32-bit

routines

on

a

64-bit

database

server

197

Routine

code

page

considerations

.

.

.

.

.

. 197

Procedure

invocation

.

.

.

.

.

.

.

.

.

.

. 199

References

to

procedures

.

.

.

.

.

.

.

. 199

Procedure

selection

.

.

.

.

.

.

.

.

.

. 200

Calling

procedures

from

applications

or

external

routines

.

.

.

.

.

.

.

.

.

.

.

.

.

. 200

Calling

procedures

from

triggers

or

SQL

routines

.

.

.

.

.

.

.

.

.

.

.

.

.

. 202

Calling

procedures

from

the

Command

Line

Processor

(CLP)

.

.

.

.

.

.

.

.

.

.

. 204

Function

and

method

invocation

.

.

.

.

.

.

. 206

References

to

functions

.

.

.

.

.

.

.

.

. 206

Function

selection

.

.

.

.

.

.

.

.

.

.

. 208

Distinct

types

as

UDF

or

method

parameters

209

LOB

values

as

UDF

parameters

.

.

.

.

.

. 210

Invoking

scalar

functions

or

methods

.

.

.

. 211

Invoking

user-defined

table

functions

.

.

.

. 212

Routine

invocation

Once

a

routine

has

been

developed

and

created

in

the

database

by

issuing

the

CREATE

statement,

if

the

appropriate

routine

priviliges

have

been

granted

to

the

routine

definer

and

routine

invoker,

the

routine

can

be

invoked.

Each

routine

type

serves

a

different

purpose

and

is

used

in

a

different

way.

The

prerequisites

for

invoking

routines

is

common,

but

the

implementation

of

the

invocation

differs

for

each.

Prerequisites

for

routine

invocation:

v

The

routine

must

have

been

created

in

the

database

using

the

CREATE

statement.

v

For

an

external

routine,

the

library

or

class

file

must

be

installed

in

location

specified

by

the

EXTERNAL

clause

of

the

CREATE

statement,

or

an

error

(SQLCODE

SQL0444,

SQLSTATE

42724)

will

occur.

v

The

routine

invoker

must

have

the

EXECUTE

privilege

on

the

routine.

If

the

invoker

is

not

authorized

to

execute

the

routine,

an

error

(SQLSTATE

42501)

will

occur.

Procedure

invocation:

Procedures

are

invoked

by

executing

the

CALL

statement

with

a

reference

to

a

procedure.

The

CALL

statement

enables

the

procedure

invocation,

the

passing

of

parameters

to

the

procedure,

and

the

receiving

of

parameters

returned

from

the

procedure.

Any

accessible

result

sets

returned

from

a

procedure

can

be

processed

once

the

procedure

has

successfully

returned.

Procedures

can

be

invoked

from

anywhere

that

the

CALL

statement

is

supported

including:

v

client

applications

v

External

routines

(procedure,

UDF,

or

method)

v

SQL

routines

(procedure,

UDF,

or

method)

v

Triggers

(before

triggers,

after

triggers,

or

instead

of

triggers)

v

Dynamic

compound

statements

©

Copyright

IBM

Corp.

1993

-

2004

193

||

|
||
|
||

|

|

|

|
|
|

|
|
|

|

|
|

|
|
|

|
|
|

|

|
|

|
|
|
|

|
|

|

|

|

|

|

v

Command

line

processor

(CLP)

If

you

choose

to

invoke

a

procedure

from

a

client

application

or

from

an

external

routine,

the

client

application

or

external

routine

can

be

written

in

a

language

other

than

that

of

the

procedure.

For

example,

a

client

application

written

in

C++

can

use

the

CALL

statement

to

invoke

a

procedure

written

in

Java™.

This

provides

programmers

with

great

flexibility

to

program

in

their

language

of

choice

and

to

integrate

code

pieces

written

in

different

languages.

In

addition,

the

client

application

that

invokes

the

procedure

can

be

executed

on

a

different

operating

system

than

the

one

where

the

procedure

resides.

For

example

a

client

application

running

on

a

Windows®

operating

system

can

use

the

CALL

statement

to

invoke

a

procedure

residing

on

a

Linux

database

server.

Depending

on

where

a

procedure

is

invoked

from

there

may

be

some

additional

considerations.

Function

invocation:

Functions

are

intended

to

be

referenced

within

SQL

statements.

Built-in

functions,

sourced

aggregate

functions,

and

scalar

user-defined

can

be

referenced

wherever

an

expression

is

allowed

within

an

SQL

statement.

For

example

within

the

select-list

of

a

query

or

within

the

VALUES

clause

of

an

INSERT

statement.

Table

functions

can

only

be

referenced

in

the

FROM

clause.

For

example

in

the

FROM

clause

of

a

query

or

a

data

change

statement.

Method

invocation:

Methods

are

similar

to

scalar

functions

except

that

they

are

used

to

give

behavior

to

structured

types.

Method

invocation

is

the

same

as

scalar

user-defined

function

invocation,

except

that

one

of

the

parameters

to

the

method

must

be

the

structured

type

that

the

method

operates

on.

Routine

invocation

related-tasks:

To

invoke

a

particular

type

of

routine:

v

“Calling

procedures

from

applications

or

external

routines”

on

page

200

v

“Calling

procedures

from

triggers

or

SQL

routines”

on

page

202

v

Call

a

procedure

from

a

CLI

application

v

Call

a

procedure

from

the

Command

line

processor

(CLP)

v

“Invoking

scalar

functions

or

methods”

on

page

211

v

“Invoking

user-defined

table

functions”

on

page

212

Related

concepts:

v

“Routines

in

application

development”

on

page

3

v

“Routine

code

page

considerations”

on

page

197

v

“Routine

names

and

paths”

on

page

195

v

“Nested

routine

invocations”

on

page

196

Related

tasks:

v

“Writing

routines”

on

page

33

v

“Creating

routines

in

the

database”

on

page

31

194

Programming

Server

Applications

|

|
|
|
|
|
|

|
|
|
|

|
|

|

|

|
|
|
|
|

|

|
|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

v

“Invoking

32-bit

routines

on

a

64-bit

database

server”

on

page

197

Related

reference:

v

“CALL

statement”

in

the

SQL

Reference,

Volume

2

Routine

names

and

paths

The

qualified

name

of

a

stored

procedure

or

UDF

is

schema-name.routine-name.

You

can

use

this

qualified

name

anywhere

you

refer

to

a

stored

procedure

or

UDF.

For

example:

SANDRA.BOAT_COMPARE

SMITH.FOO

SYSIBM.SUBSTR

SYSFUN.FLOOR

However,

you

can

also

omit

the

schema-name.,

in

which

case,

DB2®

will

attempt

to

identify

the

stored

procedure

or

UDF

to

which

you

are

referring.

For

example:

BOAT_COMPARE

FOO

SUBSTR

FLOOR

The

qualified

name

of

a

method

is

schema-name.type..method-name.

The

concept

of

SQL

path

is

central

to

DB2’s

resolution

of

unqualified

references

that

occur

when

you

do

not

use

the

schema-name.

The

SQL

path

is

an

ordered

list

of

schema

names.

It

provides

a

set

of

schemas

for

resolving

unqualified

references

to

stored

procedures,

UDFs,

and

types.

In

cases

where

a

reference

matches

a

stored

procedure,

type,

or

UDF

in

more

than

one

schema

in

the

path,

the

order

of

the

schemas

in

the

path

is

used

to

resolve

this

match.

The

SQL

path

is

established

by

means

of

the

FUNCPATH

option

on

the

precompile

and

bind

commands

for

static

SQL.

The

SQL

path

is

set

by

the

SET

PATH

statement

for

dynamic

SQL.

The

SQL

path

has

the

following

default

value:

"SYSIBM","SYSFUN","SYSPROC",

"ID"

This

applies

to

both

static

and

dynamic

SQL,

where

ID

represents

the

current

statement

authorization

ID.

Routine

names

can

be

overloaded,

which

means

that

multiple

routines,

even

in

the

same

schema,

can

have

the

same

name.

Multiple

functions

or

methods

with

the

same

name

can

have

the

same

number

of

parameters,

as

long

as

the

data

types

differ.

This

is

not

true

for

stored

procedures,

where

multiple

stored

procedures

with

the

same

name

must

have

different

numbers

of

parameters.

Instances

of

different

routine

types

do

not

overload

one-another,

except

for

methods,

which

are

able

to

overload

functions.

For

a

method

to

overload

a

function,

the

method

must

be

registered

using

the

WITH

FUNCTION

ACCESS

clause.

A

function,

a

stored

procedure,

and

a

method

can

have

identical

signatures

and

be

in

the

same

schema

without

overloading

each

other.

In

the

context

of

routines,

signatures

are

the

qualified

routine

name

concatenated

with

the

defined

data

types

of

all

the

parameters

in

the

order

in

which

they

are

defined.

Methods

are

invoked

against

instances

of

their

associated

structured

type.

When

a

subtype

is

created,

among

the

attributes

it

inherits

are

the

methods

defined

for

the

supertype.

Hence,

a

supertype’s

methods

can

also

be

run

against

any

instances

of

its

subtypes.

When

defining

a

subtype

you

can

override

the

supertype’s

method.

To

override

a

method

means

to

reimplement

it

specifically

for

a

given

subtype.

This

facilitates

the

dynamic

dispatch

of

methods

(also

known

as

polymorphism),

where

an

application

will

execute

the

most

specific

method

depending

on

the

type

of

the

structured

type

instance

(for

example,

where

it

is

situated

in

the

structured

type

hierarchy).

Chapter

5.

Invoking

routines

195

|

|

|

Each

routine

type

has

its

own

selection

algorithm

that

takes

into

account

the

facts

of

overloading

(in

the

case

of

methods,

and

overriding)

and

SQL

path

to

choose

the

most

appropriate

match

for

every

routine

reference.

Related

concepts:

v

“Routines

in

application

development”

on

page

3

v

“User-defined

structured

types”

on

page

245

v

“Dynamic

dispatch

of

methods”

on

page

251

v

“Function

selection”

on

page

208

v

“Types

of

routines

(procedures,

functions,

methods)”

on

page

5

v

“Procedure

selection”

on

page

200

Related

tasks:

v

“Defining

behavior

for

structured

types”

on

page

251

Related

reference:

v

“Functions”

in

the

SQL

Reference,

Volume

1

v

“CREATE

FUNCTION

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

PROCEDURE

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

TYPE

(Structured)

statement”

in

the

SQL

Reference,

Volume

2

v

“SET

PATH

statement”

in

the

SQL

Reference,

Volume

2

v

“BIND

Command”

in

the

Command

Reference

v

“PRECOMPILE

Command”

in

the

Command

Reference

v

“Methods”

in

the

SQL

Reference,

Volume

1

Nested

routine

invocations

In

the

context

of

routines,

nesting

refers

to

the

situation

where

one

routine

invokes

another.

That

is

to

say,

the

SQL

issued

by

one

routine

can

reference

another

routine,

which

could

issue

SQL

that

again

references

another

routine,

and

so

on.

If

the

series

of

routines

that

is

referenced

contains

a

routine

that

was

previously

referenced

this

is

said

to

be

a

recursive

nesting

situation.

You

can

use

nesting

and

recursion

in

your

DB2®

routines

under

the

following

restrictions:

16

levels

of

nesting

You

can

nest

routine

invocations

up

to

16

levels

deep.

Consider

a

scenario

in

which

routine

A

calls

routine

B,

and

routine

B

calls

routine

C.

In

this

example,

the

execution

of

routine

C

is

at

nesting

level

3.

A

further

thirteen

levels

of

nesting

are

possible.

Other

restrictions

A

routine

cannot

call

a

target

routine

that

is

cataloged

with

a

higher

SQL

data

access

level.

For

example,

a

UDF

created

with

the

CONTAINS

SQL

clause

can

call

stored

procedures

created

with

either

the

CONTAINS

SQL

clause

or

the

NO

SQL

clause.

However,

this

routine

cannot

call

stored

procedures

created

with

either

the

READS

SQL

DATA

clause

or

the

MODIFIES

SQL

DATA

clause

(SQLCODE

-577,

SQLSTATE

38002).

This

is

because

the

invoker’s

SQL

level

does

not

allow

any

read

or

modify

operations

to

occur

(this

is

inherited

by

the

routine

being

invoked).

196

Programming

Server

Applications

|

Another

limitation

when

nesting

routines

is

that

access

to

tables

is

restricted

to

prevent

conflicting

read

and

write

operations

between

routines.

Related

concepts:

v

“Data

conflicts

when

procedures

read

from

or

write

to

tables”

on

page

40

v

“Security

considerations

for

routines”

on

page

24

Invoking

32-bit

routines

on

a

64-bit

database

server

It

is

possible

to

invoke

32-bit

routines

on

a

64-bit

database

server.

The

first

time

a

32-

bit

routine

is

invoked

in

such

an

environment,

there

is

a

performance

degradation.

Subsequent

invocations

of

the

32-bit

stored

procedure

will

perform

the

same

as

an

equivalent

64-bit

routine.

For

Java

procedures,

a

32-bit

Java

Virtual

Machine

(JVM)

can

function

on

a

64-bit

database

server.

For

32-bit

Java

routines

using

this

JVM,

there

is

no

additional

performance

overhead.

A

comparable

64-bit

routine

using

a

64-bit

JVM

will

run

no

faster.

However,

a

32-bit

Java

routine

running

on

a

64-bit

database

server

will

not

scale

well

because

the

routine

needs

to

run

in

FENCED

NOT

THREADSAFE

mode.

So,

every

invocation

of

such

a

routine

will

require

its

own

JVM.

Restrictions:

32-bit

routines

must

be

registered

as

FENCED

and

NOT

THREADSAFE

in

order

to

work

in

a

64-bit

instance.

It

is

not

possible

to

invoke

32-bit

routines

on

a

Linux/IA-64

database

server.

Procedure:

To

invoke

existing

32-bit

routines

on

a

64-bit

server:

1.

Copy

the

routine

class

or

library

to

the

database

routines

directory:

v

UNIX:

sqllib/function

v

Windows:

sqllib\function
2.

Register

the

stored

procedure

with

the

CREATE

PROCEDURE

statement.

3.

Invoke

the

stored

procedure

with

the

CALL

statement.

Related

concepts:

v

“Routine

invocation”

on

page

193

v

“Java

routines”

on

page

167

Routine

code

page

considerations

Character

data

is

passed

to

external

routines

in

the

code

page

implied

by

the

PARAMETER

CCSID

option

used

when

the

routine

was

created.

Similarly,

a

character

string

that

is

output

from

the

routine

is

assumed

by

the

database

to

use

the

code

page

implied

by

the

PARAMETER

CCSID

option.

When

a

client

program

(using,

for

example,

code

page

C)

accesses

a

section

with

a

different

code

page

(for

example,

code

page

S)

that

invokes

a

routine

using

a

different

code

page

(for

example,

code

page

R),

the

following

events

occur:

Chapter

5.

Invoking

routines

197

|
|
|
|
|
|

|
|
|
|

|
|
|

1.

When

an

SQL

statement

is

invoked,

input

character

data

is

converted

from

the

code

page

of

the

client

application

(C)

to

the

one

associated

with

the

section

(S).

Conversion

does

not

occur

for

BLOBs

or

data

that

will

be

used

as

FOR

BIT

DATA.

2.

If

the

code

page

of

the

routine

is

not

the

same

as

the

code

page

of

the

section,

then

before

the

routine

is

invoked,

input

character

data

(except

for

BLOB

and

FOR

BIT

DATA)

is

converted

to

the

code

page

of

the

routine

(R).

It

is

strongly

recommended

that

you

precompile,

compile,

and

bind

the

server

routine

using

the

code

page

that

the

routine

will

be

invoked

under

(R).

This

might

not

be

possible

in

all

cases.

For

example,

you

can

create

a

Unicode

database

in

a

Windows®

environment.

However,

if

the

Windows

environment

does

not

have

the

Unicode

code

page,

you

have

to

precompile,

compile,

and

bind

the

application

that

creates

the

routine

in

a

Windows

code

page.

The

routine

will

work

if

the

application

has

no

special

delimiter

characters

that

the

precompiler

does

not

understand.

3.

When

the

routine

finishes,

the

database

manager

converts

all

output

character

data

from

the

routine

code

page

(R)

to

the

section

code

page

(S)

if

necessary.

If

the

routine

raised

an

error

during

its

execution,

the

SQLSTATE

and

diagnostic

message

from

the

routine

will

also

be

converted

from

the

routine

code

page

to

the

section

code

page.

Conversion

does

not

happen

for

BLOB

or

FOR

BIT

DATA

character

strings.

4.

When

the

statement

finishes,

output

character

data

is

converted

from

the

section

code

page

(S)

back

to

code

page

of

the

client

application

(C).

Conversion

does

not

occur

for

BLOBS

or

for

data

that

was

used

as

FOR

BIT

DATA.

By

using

the

DBINFO

option

on

the

CREATE

FUNCTION,

CREATE

PROCEDURE,

and

CREATE

TYPE

statements,

the

routine

code

page

is

passed

to

the

routine.

Using

this

information,

a

routine

that

is

sensitive

to

the

code

page

can

be

written

to

operate

in

many

different

code

pages.

Related

concepts:

v

“Character

conversion”

in

the

SQL

Reference,

Volume

1

v

“Derivation

of

code

page

values”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Active

Code

Page

for

Precompilation

and

Binding”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Active

Code

Page

for

Application

Execution”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Character

conversion

between

different

code

pages”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“When

code

page

conversion

occurs”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Character

Substitutions

During

Code

Page

Conversions”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Supported

Code

Page

Conversions”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Application

Development

in

Unequal

Code

Page

Situations”

in

the

Application

Development

Guide:

Programming

Client

Applications

Related

reference:

v

“CREATE

FUNCTION

statement”

in

the

SQL

Reference,

Volume

2

198

Programming

Server

Applications

|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

v

“CREATE

PROCEDURE

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

TYPE

(Structured)

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

METHOD

statement”

in

the

SQL

Reference,

Volume

2

v

“Supported

territory

codes

and

code

pages”

in

the

Administration

Guide:

Planning

v

“Conversion

tables

for

code

pages

923

and

924”

in

the

Administration

Guide:

Planning

Procedure

invocation

References

to

procedures

Stored

Procedures

are

invoked

from

the

CALL

statement

where

they

are

referenced

by

a

qualified

name

(schema

and

stored

procedure

name),

followed

by

a

list

of

arguments

enclosed

by

parentheses.

A

stored

procedure

can

also

be

invoked

without

the

schema

name,

resulting

in

a

choice

of

possible

stored

procedures

in

different

schemas

with

the

same

number

of

parameters.

Each

parameter

passed

to

the

stored

procedure

can

be

composed

of

a

host

variable,

parameter

marker,

expression,

or

NULL.

The

following

are

restrictions

for

stored

procedure

parameters:

v

OUT

and

INOUT

parameters

must

be

host

variables.

v

NULLs

cannot

be

passed

to

Java™

stored

procedures

unless

the

SQL

data

type

maps

to

a

Java

class

type.

v

NULLs

cannot

be

passed

to

PARAMETER

STYLE

GENERAL

stored

procedures.

The

position

of

the

arguments

is

important

and

must

conform

to

the

stored

procedure

definition

for

the

semantics

to

be

correct.

Both

the

position

of

the

arguments

and

the

stored

procedure

definition

must

conform

to

the

stored

procedure

body

itself.

DB2®

does

not

attempt

to

shuffle

arguments

to

better

match

a

stored

procedure

definition,

and

DB2

does

not

understand

the

semantics

of

the

individual

stored

procedure

parameters.

Related

concepts:

v

“Parameter

styles

for

external

routines”

on

page

87

Related

tasks:

v

“Calling

procedures

from

the

Command

Line

Processor

(CLP)”

on

page

204

v

“Calling

stored

procedures

from

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Calling

procedures

from

triggers

or

SQL

routines”

on

page

202

v

“Calling

procedures

from

applications

or

external

routines”

on

page

200

Related

reference:

v

“CREATE

PROCEDURE

statement”

in

the

SQL

Reference,

Volume

2

v

“Syntax

for

passing

arguments

to

routines

written

in

C/C++,

OLE,

or

COBOL”

on

page

89

Chapter

5.

Invoking

routines

199

Procedure

selection

Given

a

stored

procedure

invocation,

the

database

manager

must

decide

which

of

the

possible

stored

procedures

with

the

same

name

to

call.

Stored

procedure

resolution

is

done

using

the

steps

that

follow.

1.

Find

all

stored

procedures

from

the

catalog

(SYSCAT.ROUTINES),

such

that

all

of

the

following

are

true:

v

For

invocations

where

the

schema

name

was

specified

(that

is,

qualified

references),

the

schema

name

and

the

stored

procedure

name

match

the

invocation

name.

v

For

invocations

where

the

schema

name

was

not

specified

(that

is,

unqualified

references),

the

stored

procedure

name

matches

the

invocation

name,

and

has

a

schema

name

that

matches

one

of

the

schemas

in

the

SQL

path.

v

The

number

of

defined

parameters

matches

the

invocation.

v

The

invoker

has

the

EXECUTE

privilege

on

the

stored

procedure.
2.

Choose

the

stored

procedure

whose

schema

is

earliest

in

the

SQL

path.

If

there

are

no

candidate

stored

procedures

remaining

after

the

first

step,

an

error

is

returned

(SQLSTATE

42884).

Related

concepts:

v

“Routine

invocation”

on

page

193

v

“References

to

procedures”

on

page

199

Related

tasks:

v

“Calling

procedures

from

triggers

or

SQL

routines”

on

page

202

v

“Calling

procedures

from

applications

or

external

routines”

on

page

200

Calling

procedures

from

applications

or

external

routines

Invoking

a

procedure

(also

called

a

stored

procedure)

that

encapsulates

logic

from

a

client

application

or

from

an

application

associated

with

an

external

routine

is

easily

done

with

some

simple

setup

work

in

the

application

and

by

using

the

CALL

statement.

Prerequisites:

The

procedure

must

have

been

created

in

the

database

by

executing

the

CREATE

PROCEDURE

statement.

For

external

procedures,

the

library

or

class

file

must

exist

in

the

location

specified

by

the

EXTERNAL

clause

in

the

CREATE

PROCEDURE

statement.

The

procedure

invoker

must

have

the

privileges

required

to

execute

the

CALL

statement.

The

procedure

invoker

in

this

case

is

the

user

ID

executing

the

application,

however

special

rules

apply

if

the

DYNAMICRULES

bind

option

is

used

for

the

application.

Procedure:

Certain

elements

must

be

included

in

your

application

if

you

want

that

application

to

invoke

a

procedure.

In

writing

your

application

you

must

do

the

following:

200

Programming

Server

Applications

|

|
|
|
|

|

|
|

|
|

|
|
|
|

|

|
|

1.

Declare,

allocate,

and

initialize

storage

for

the

optional

data

structures

and

host

variables

or

parameter

markers

required

for

the

CALL

statement.

To

do

this:

v

Assign

a

host

variable

or

parameter

marker

to

be

used

for

each

parameter

of

the

procedure.

v

Initialize

the

host

variables

or

parameter

markers

that

correspond

to

IN

or

INOUT

parameters.
2.

Establish

a

database

connection.

Do

this

by

executing

an

embedded

SQL

language

CONNECT

TO

statement,

or

by

coding

an

implicit

database

connection.

3.

Code

the

procedure

invocation.

After

the

database

connection

code,

you

can

code

the

procedure

invocation.

Do

this

by

executing

the

SQL

language

CALL

statement.

Be

sure

to

specify

a

host

variable,

constant,

or

parameter

marker

for

each

IN,

INOUT,

OUT

parameter

that

the

procedure

expects.

4.

Add

code

to

process

the

OUT

and

INOUT

parameters,

and

result

sets.

This

code

must

come

after

the

CALL

statement

execution.

5.

Code

a

database

COMMIT

or

ROLLBACK.

Subsequent

to

the

CALL

statement

and

evaluation

of

output

parameter

values

or

data

returned

by

the

procedure,

you

might

want

your

application

to

commit

or

roll

back

the

transaction.

This

can

be

done

by

including

a

COMMIT

or

ROLLBACK

statement.

A

procedure

can

include

a

COMMIT

or

ROLLBACK

statement,

however

it

is

recommended

practice

that

transaction

management

be

done

within

the

client

application.

Note:

Procedures

invoked

from

an

application

that

established

a

type

2

connection

to

the

database,

cannot

issue

COMMIT

or

ROLLBACK

statements.

6.

Disconnect

from

the

database.

7.

Prepare,

compile,

link,

and

bind

your

application.

If

the

application

is

for

an

external

routine,

issue

the

CREATE

statement

to

create

the

routine

and

locate

your

external

code

library

in

the

appropriate

function

path

for

your

operating

system

so

that

the

database

manager

can

find

it.

8.

Run

your

application

or

invoke

your

external

routine.

The

CALL

statement

that

you

embedded

in

your

application

will

be

invoked.

Note:

You

can

code

SQL

statements

and

routine

logic

at

any

point

between

steps

2

and

5.

Related

concepts:

v

“Routine

invocation”

on

page

193

v

“Procedure

selection”

on

page

200

v

“References

to

procedures”

on

page

199

Related

tasks:

v

“Calling

procedures

from

triggers

or

SQL

routines”

on

page

202

Related

reference:

v

“COMMIT

statement”

in

the

SQL

Reference,

Volume

2

v

“ROLLBACK

statement”

in

the

SQL

Reference,

Volume

2

Related

samples:

v

“spcall.c

--

Call

individual

stored

procedures”

Chapter

5.

Invoking

routines

201

|
|

|

|
|

|
|

|
|
|

|
|
|
|

|
|

|
|
|
|
|
|

|
|
|

|

|
|
|
|

|
|

|
|

|

|

|

|

|

|

|

|

|

|

|

v

“spclient.c

--

Call

various

stored

procedures”

v

“spclient.sqc

--

Call

various

stored

procedures

(C)”

v

“spclient.sqC

--

Call

various

stored

procedures

(C++)”

v

“SpClient.java

--

Call

a

variety

of

types

of

stored

procedures

from

SpServer.java

(JDBC)”

Calling

procedures

from

triggers

or

SQL

routines

Calling

a

procedure

from

an

SQL

routine,

a

trigger,

or

dynamic

compound

statement

is

essentially

the

same.

The

same

steps

are

used

to

implement

this

call.

This

topic

explains

the

steps

using

a

trigger

scenario.

Any

prerequisites

or

steps

that

differ

when

calling

a

procedure

from

a

routine

or

dynamic

compound

statement

are

stated.

Prerequisites:

v

The

procedure

must

have

been

created

in

the

database

by

executing

the

CREATE

PROCEDURE

statement.

v

For

external

procedures,

the

library

or

class

files

must

be

in

the

location

specified

by

the

EXTERNAL

clause

of

the

CREATE

PROCEDURE

statement.

v

The

creator

of

a

trigger

that

contains

a

CALL

statement

must

have

the

privilege

to

execute

the

CALL

statement.

At

runtime

when

a

trigger

is

activated

it

is

the

authorization

of

the

creator

of

the

trigger

that

is

checked

for

the

privilege

to

execute

the

CALL

statement.

A

user

that

executes

a

dynamic

compound

statement

that

contains

a

CALL

statement,

must

have

the

privilege

to

execute

the

CALL

statement

for

that

procedure.

v

To

invoke

a

trigger,

a

user

must

have

the

privilege

to

execute

the

data

change

statement

associated

with

the

trigger

event.

Similarly,

to

successfully

invoke

an

SQL

routine

or

dynamic

compound

statement

a

user

must

have

the

EXECUTE

privilege

on

the

routine.

Restrictions:

When

invoking

a

procedure

from

within

an

SQL

trigger,

an

SQL

routine,

or

a

dynamic

compound

statement

the

following

restrictions

apply:

v

In

partitioned

database

environments

procedures

cannot

be

invoked

from

triggers

or

SQL

UDFs.

v

On

symmetric

multi-processor

(SMP)

machines,

procedure

calls

from

triggers

are

executed

on

a

single

processor.

v

A

procedure

that

is

to

be

called

from

a

trigger

must

not

contain

a

COMMIT

statement

or

a

ROLLBACK

statement

that

attempts

to

rollback

the

unit

of

work.

The

ROLLBACK

TO

SAVEPOINT

statement

is

supported

within

the

procedure

however

the

specified

savepoint

must

be

in

the

procedure.

v

A

rollback

of

a

CALL

statement

from

within

a

trigger

will

not

rollback

the

statements

executed

within

the

procedure.

v

The

procedure

must

not

modify

any

federated

table.

This

means

that

the

procedure

must

not

contain

a

searched

UPDATE

of

a

nickname,

a

searched

DELETE

from

a

nickname

or

an

INSERT

to

a

nickname.

v

Result

sets

specified

for

the

procedure

will

not

be

accessible.

BEFORE

triggers

can

not

be

created

if

they

contain

a

CALL

statement

that

references

a

procedure

created

with

an

access

level

of

MODIFIES

SQL

DATA.

The

202

Programming

Server

Applications

|

|

|

|
|

|

|
|
|
|
|

|

|
|

|
|

|
|
|
|
|
|

|
|
|
|

|

|
|

|
|

|
|

|
|
|
|

|
|

|
|
|

|

|
|

execution

of

a

CREATE

TRIGGER

statement

for

such

a

trigger

will

fail

with

error

(SQLSTATE

42987).

For

more

about

SQL

access

levels

in

routines

see:

v

“SQL

access

levels

in

SQL

routines”

on

page

63

v

“SQL

in

external

routines”

on

page

101

Procedure:

This

procedure

section

explains

how

to

create

and

invoke

a

trigger

that

contains

a

CALL

statement.

The

SQL

required

to

call

a

procedure

from

a

trigger

is

the

same

SQL

required

to

call

a

procedure

from

an

SQL

routine

or

dynamic

compound

statement.

1.

Write

a

basic

CREATE

TRIGGER

statement

specifying

the

desired

trigger

attributes.

See

the

CREATE

TRIGGER

statement.

2.

In

the

trigger

action

portion

of

the

trigger

you

can

declare

SQL

variables

for

any

IN,

INOUT,

OUT

parameters

that

the

procedure

specifies.

See

the

DECLARE

statement.

To

see

how

to

initialize

or

set

these

variables

see

the

assignment

statement.

Trigger

transition

variables

can

also

be

used

as

parameters

to

a

procedure.

3.

In

the

trigger

action

portion

of

the

trigger

add

a

CALL

statement

for

the

procedure.

Specify

a

value

or

expression

for

each

of

the

procedure’s

IN,

INOUT,

and

OUT

parameters

4.

For

SQL

procedures

you

can

optionally

capture

the

return

status

of

the

procedure

by

using

the

GET

DIAGNOSTICS

statement.

To

do

this

you

will

need

to

use

an

integer

type

variable

to

hold

the

return

status.

Immediately

after

the

CALL

statement,

simply

add

a

GET

DIAGNOSTICS

statement

that

assigns

RETURN_STATUS

to

your

local

trigger

return

status

variable.

5.

Having

completed

writing

your

CREATE

TRIGGER

statement

you

can

now

execute

it

statically

(from

within

an

application)

or

dynamically

(from

the

CLP,

or

from

the

Control

Center)

to

formally

create

the

trigger

in

the

database.

6.

Invoke

your

trigger.

Do

this

by

executing

against

the

appropriate

data

change

statement

that

corresponds

to

your

trigger

event.

7.

When

the

data

change

statement

is

executed

against

the

table,

the

appropriate

triggers

defined

for

that

table

are

fired.

When

the

trigger

action

is

executed,

the

SQL

statements

contained

within

it,

including

the

CALL

statement,

are

executed.

Run-time

errors:

If

the

procedure

attempts

to

read

or

write

to

a

table

that

the

trigger

also

reads

or

writes

to,

an

error

might

be

raised

if

a

read

or

write

conflict

is

detected.

The

set

of

tables

that

the

trigger

modifies,

including

the

table

for

which

the

trigger

was

defined

must

be

exclusive

from

the

tables

modified

by

the

procedure.

Example:

Calling

an

SQL

procedure

from

a

trigger:

This

example

illustrates

how

you

can

embed

a

CALL

statement

to

invoke

a

procedure

within

a

trigger

and

how

to

capture

the

return

status

of

the

procedure

call

using

the

GET

DIAGNOSTICS

statement.

The

SQL

below

creates

the

necesary

tables,

an

SQL

PL

language

procedure,

and

an

after

trigger.

CREATE

TABLE

T1

(c1

INT,

c2

CHAR(2))@

CREATE

TABLE

T2

(c1

INT,

c2

CHAR(2))@

CREATE

PROCEDURE

proc(IN

val

INT,

IN

name

CHAR(2))

LANGUAGE

SQL

Chapter

5.

Invoking

routines

203

|
|

|

|

|

|
|
|
|

|
|

|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|

|
|

|
|
|
|

|

|
|
|
|

|

|
|
|
|

|
|
|
|
|

DYNAMIC

RESULTSETS

0

MODIFIES

SQL

DATA

BEGIN

DECLARE

rc

INT

DEFAULT

0;

INSERT

INTO

TABLE

T2

VALUES

(val,

name);

GET

DIANOSTICS

rc

=

ROW_COUNT;

IF

(

rc

>

0

)

THEN

RETURN

0;

ELSE

RETURN

−200;

END

IF;

END@

CREATE

TRIGGER

trig1

AFTER

UPDATE

ON

t1

REFERENCING

NEW

AS

n

FOR

EACH

ROW

MODE

DB2SQL

WHEN

(n.c1

>

100);

BEGIN

ATOMIC

DECLARE

rs

INTEGER

DEFAULT

0;

CALL

proc(n.c1,

n.c2);

GET

DIANOSTICS

rs

=

RETURN_STATUS;

VALUES(CASE

WHEN

rc

<

0

THEN

RAISE_ERROR(’70001’,

’PROC

CALL

failed’));

END@

Issuing

the

following

SQL

statement

will

cause

the

trigger

to

fire

and

the

procedure

will

be

invoked.

UPDATE

T1

SET

c1

=

c1+1

WHERE

c2

=

’CA’@

Related

concepts:

v

“SQL

access

levels

in

SQL

routines”

on

page

63

v

“SQL

in

external

routines”

on

page

101

v

“Routine

invocation”

on

page

193

v

“Procedure

selection”

on

page

200

v

“References

to

procedures”

on

page

199

Related

tasks:

v

“Calling

stored

procedures

from

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Calling

procedures

from

applications

or

external

routines”

on

page

200

Related

reference:

v

“CALL

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

PROCEDURE

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

TRIGGER

statement”

in

the

SQL

Reference,

Volume

2

v

“GET

DIAGNOSTICS

statement”

in

the

SQL

Reference,

Volume

2

Calling

procedures

from

the

Command

Line

Processor

(CLP)

You

can

call

stored

procedures

by

using

the

CALL

statement

from

the

DB2

command

line

processor

interface.

The

stored

procedure

being

called

must

be

defined

in

the

DB2

system

catalog

tables.

Procedure:

To

call

the

stored

procedure,

first

connect

to

the

database:

db2

connect

to

sample

user

userid

using

password

204

Programming

Server

Applications

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|

|

|

|

|

|

|

|
|

|

|

|

|

|

|

|
|
|

where

userid

and

password

are

the

user

ID

and

password

of

the

instance

where

the

sample

database

is

located.

To

use

the

CALL

statement,

enter

the

stored

procedure

name

plus

any

IN

or

INOUT

parameter

values,

as

well

as

’?’

as

a

place-holder

for

each

OUT

parameter

value.

The

parameters

for

a

stored

procedure

are

given

in

the

CREATE

PROCEDURE

statement

for

the

stored

procedure

in

the

program

source

file.

SQL

procedure

example

For

information

on

creating

an

SQL

procedure,

see

’Creating

SQL

procedures’

in

Chapter

6.

SQL

procedures.

In

the

whiles.db2

file,

the

CREATE

PROCEDURE

statement

for

the

DEPT_MEDIAN

procedure

signature

is

as

follows:

CREATE

PROCEDURE

DEPT_MEDIAN

(IN

deptNumber

SMALLINT,

OUT

medianSalary

DOUBLE)

To

invoke

this

procedure,

use

the

CALL

statement

in

which

you

must

specify

the

procedure

name

and

appropriate

parameter

arguments,

which

which

in

this

are

the

value

for

the

IN

parameter,

and

a

question

mark,

’?’,

for

the

value

of

the

OUT

parameter.

The

procedure’s

SELECT

statement

uses

the

deptNumber

value

on

the

DEPT

column

of

the

STAFF

table,

so

to

get

meaningful

output

the

IN

parameter

needs

to

be

a

valid

value

from

the

DEPT

column;

for

example,

the

value

″51″:

db2

call

dept_median

(51,

?)

Note:

On

UNIX

platforms

the

parentheses

have

special

meaning

to

the

command

shell,

so

they

must

be

preceded

with

a

″\″

character

or

surrounded

with

quotes,

as

follows:

db2

"call

dept_median

(51,

?)"

You

do

not

use

quotes

if

you

are

using

the

interactive

mode

of

the

command

line

processor.

After

running

the

above

command,

you

should

receive

this

result:

Value

of

output

parameters

Parameter

Name

:

MEDIANSALARY

Parameter

Value

:

+1.76545000000000E+004

Return

Status

=

0

C

stored

procedure

example

You

can

also

call

stored

procedures

created

from

supported

host

languages

with

the

Command

Line

Processor.

In

the

samples/c

directory

on

UNIX,

and

the

samples\c

directory

on

Windows,

DB2

provides

files

for

creating

stored

procedures.

The

spserver

shared

library

contains

a

number

of

stored

procedures

that

can

be

created

from

the

source

file,

spserver.sqc.

The

spcreate.db2

file

catalogs

the

stored

procedures.

In

the

spcreate.db2

file,

the

CREATE

PROCEDURE

statement

for

the

MAIN_EXAMPLE

procedure

begins:

CREATE

PROCEDURE

MAIN_EXAMPLE

(IN

job

CHAR(8),

OUT

salary

DOUBLE,

OUT

errorcode

INTEGER)

Chapter

5.

Invoking

routines

205

|

|

|
|
|
|
|
|

|
|

|
|
|

To

call

this

stored

procedure,

you

need

to

put

in

a

CHAR

value

for

the

IN

parameter,

job,

and

a

question

mark,

’?’,

for

each

of

the

OUT

parameters.

The

procedure’s

SELECT

statement

uses

the

job

value

on

the

JOB

column

of

the

EMPLOYEE

table,

so

to

get

meaningful

output

the

IN

parameter

needs

to

be

a

valid

value

from

the

JOB

column.

The

C

sample

program,

spclient,

that

calls

the

stored

procedure,

uses

’DESIGNER’

for

the

JOB

value.

We

can

do

the

same,

as

follows:

db2

"call

MAIN_EXAMPLE

(’DESIGNER’,

?,

?)"

After

running

the

above

command,

you

should

receive

this

result:

Value

of

output

parameters

Parameter

Name

:

SALARY

Parameter

Value

:

+2.37312500000000E+004

Parameter

Name

:

ERRORCODE

Parameter

Value

:

0

Return

Status

=

0

An

ERRORCODE

of

zero

indicates

a

successful

result.

Comparing

with

the

spclient

program,

we

see

that

spclient

has

formatted

the

result

in

decimal

for

easier

viewing:

CALL

stored

procedure

named

MAIN_EXAMPLE

Stored

procedure

returned

successfully

Average

salary

for

job

DESIGNER

=

23731.25

Related

tasks:

v

“Creating

SQL

procedures”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Calling

SQL

procedures

with

client

applications”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Calling

SQL

Procedures

with

Client

Applications

on

Windows”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Calling

procedures

from

triggers

or

SQL

routines”

on

page

202

v

“Calling

procedures

from

applications

or

external

routines”

on

page

200

Related

samples:

v

“spclient.sqc

--

Call

various

stored

procedures

(C)”

v

“spcreate.db2

--

How

to

catalog

the

stored

procedures

contained

in

spserver.sqc

(C)”

v

“spserver.sqc

--

Definition

of

various

types

of

stored

procedures

(C)”

v

“whiles.db2

--

To

create

the

DEPT_MEDIAN

SQL

procedure

”

v

“whiles.sqc

--

To

call

the

DEPT_MEDIAN

SQL

procedure”

Function

and

method

invocation

References

to

functions

Each

reference

to

a

function,

whether

it

is

a

UDF,

or

a

built-in

function,

contains

the

following

syntax:

206

Programming

Server

Applications

|
|
|
|
|
|
|

|

|

|
|
|
|
|
|
|
|
|

|

|
|

|
|
|

��

�

function_name

(

)

,

expression

��

In

the

preceding

syntax

diagram,

function_name

can

be

either

an

unqualified

or

a

qualified

function

name.

The

arguments

can

number

from

0

to

90

and

are

expressions.

Examples

of

some

components

that

can

compose

expressions

are

the

following:

v

a

column

name,

qualified

or

unqualified

v

a

constant

v

a

host

variable

v

a

special

register

v

a

parameter

marker

The

position

of

the

arguments

is

important

and

must

conform

to

the

function

definition

for

the

semantics

to

be

correct.

Both

the

position

of

the

arguments

and

the

function

definition

must

conform

to

the

function

body

itself.

DB2®

does

not

attempt

to

shuffle

arguments

to

better

match

a

function

definition,

and

DB2

does

not

understand

the

semantics

of

the

individual

function

parameters.

Use

of

column

names

in

UDF

argument

expressions

requires

that

the

table

references

that

contain

the

columns

have

proper

scope.

For

table

functions

referenced

in

a

join

and

using

any

argument

involving

columns

from

another

table

or

table

function,

the

referenced

table

or

table

function

must

precede

the

table

function

containing

the

reference

in

the

FROM

clause.

In

order

to

use

parameter

markers

in

functions

you

cannot

simply

code

the

following:

BLOOP(?)

Because

the

function

selection

logic

does

not

know

what

data

type

the

argument

might

turn

out

to

be,

it

cannot

resolve

the

reference.

You

can

use

the

CAST

specification

to

provide

a

type

for

the

parameter

marker.

For

example,

INTEGER,

and

then

the

function

selection

logic

can

proceed:

BLOOP(CAST(?

AS

INTEGER))

Some

valid

examples

of

function

invocations

are:

AVG(FLOAT_COLUMN)

BLOOP(COLUMN1)

BLOOP(FLOAT_COLUMN

+

CAST(?

AS

INTEGER))

BLOOP(:hostvar

:indicvar)

BRIAN.PARSE(CHAR_COLUMN

CONCAT

USER,

1,

0,

0,

1)

CTR()

FLOOR(FLOAT_COLUMN)

PABLO.BLOOP(A+B)

PABLO.BLOOP(:hostvar)

"search_schema"(CURRENT

FUNCTION

PATH,

’GENE’)

SUBSTR(COLUMN2,8,3)

SYSFUN.FLOOR(AVG(EMP.SALARY))

SYSFUN.AVG(SYSFUN.FLOOR(EMP.SALARY))

SYSIBM.SUBSTR(COLUMN2,11,LENGTH(COLUMN3))

SQRT(SELECT

SUM(length*length)

FROM

triangles

WHERE

id=

’J522’

AND

legtype

<>

’HYP’)

Chapter

5.

Invoking

routines

207

If

any

of

the

above

functions

are

table

functions,

the

syntax

to

reference

them

is

slightly

different

than

presented

previously.

For

example,

if

PABLO.BLOOP

is

a

table

function,

to

properly

reference

it,

use:

TABLE(PABLO.BLOOP(A+B))

AS

Q

Related

tasks:

v

“Invoking

scalar

functions

or

methods”

on

page

211

v

“Invoking

user-defined

table

functions”

on

page

212

Related

reference:

v

“Functions”

in

the

SQL

Reference,

Volume

1

Function

selection

For

both

qualified

and

unqualified

function

references,

the

function

selection

algorithm

looks

at

all

the

applicable

functions,

both

built-in

and

user-defined,

that

have:

v

The

given

name

v

The

same

number

of

defined

parameters

as

arguments

in

the

function

reference

v

Each

parameter

identical

to

or

promotable

from

the

type

of

the

corresponding

argument.

Applicable

functions

are

functions

in

the

named

schema

for

a

qualified

reference,

or

functions

in

the

schemas

of

the

SQL

path

for

an

unqualified

reference.

The

algorithm

looks

for

an

exact

match,

or

failing

that,

a

best

match

among

these

functions.

The

SQL

path

is

used,

in

the

case

of

an

unqualified

reference

only,

as

the

deciding

factor

if

two

identically

good

matches

are

found

in

different

schemas.

You

can

nest

function

references,

even

references

to

the

same

function.

This

is

generally

true

for

built-in

functions

as

well

as

UDFs;

however,

there

are

some

limitations

when

column

functions

are

involved.

For

example:

CREATE

FUNCTION

BLOOP

(INTEGER)

RETURNS

INTEGER

...

CREATE

FUNCTION

BLOOP

(DOUBLE)

RETURNS

INTEGER

...

Now

consider

the

following

DML

statement:

SELECT

BLOOP(

BLOOP(COLUMN1))

FROM

T

If

column1

is

a

DECIMAL

or

DOUBLE

column,

the

inner

BLOOP

reference

resolves

to

the

second

BLOOP

defined

above.

Because

this

BLOOP

returns

an

INTEGER,

the

outer

BLOOP

resolves

to

the

first

BLOOP.

Alternatively,

if

column1

is

a

SMALLINT

or

INTEGER

column,

the

inner

bloop

reference

resolves

to

the

first

BLOOP

defined

above.

Because

this

BLOOP

returns

an

INTEGER,

the

outer

BLOOP

also

resolves

to

the

first

BLOOP.

In

this

case,

you

are

seeing

nested

references

to

the

same

function.

By

defining

a

function

with

the

name

of

one

of

the

SQL

operators,

you

can

actually

invoke

a

UDF

using

infix

notation.

For

example,

suppose

you

can

attach

some

meaning

to

the

"+"

operator

for

values

which

have

distinct

type

BOAT.

You

can

define

the

following

UDF:

CREATE

FUNCTION

"+"

(BOAT,

BOAT)

RETURNS

...

Then

you

can

write

the

following

valid

SQL

statement:

208

Programming

Server

Applications

SELECT

BOAT_COL1

+

BOAT_COL2

FROM

BIG_BOATS

WHERE

BOAT_OWNER

=

’Nelson

Mattos’

But

you

can

also

write

the

equally

valid

statement:

SELECT

"+"(BOAT_COL1,

BOAT_COL2)

FROM

BIG_BOATS

WHERE

BOAT_OWNER

=

’Nelson

Mattos’

Note

that

you

are

not

permitted

to

overload

the

built-in

conditional

operators

such

as

>,

=,

LIKE,

IN,

and

so

on,

in

this

way.

For

a

more

thorough

description

of

function

selection,

see

the

Function

References

section

in

the

Functions

topic

listed

in

the

related

links.

Related

concepts:

v

“References

to

functions”

on

page

206

Related

tasks:

v

“Invoking

scalar

functions

or

methods”

on

page

211

v

“Invoking

user-defined

table

functions”

on

page

212

Related

reference:

v

“Functions”

in

the

SQL

Reference,

Volume

1

v

“CREATE

FUNCTION

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

TYPE

(Structured)

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

METHOD

statement”

in

the

SQL

Reference,

Volume

2

Distinct

types

as

UDF

or

method

parameters

UDFs

and

methods

can

be

defined

with

distinct

types

as

parameters

or

as

the

result.

DB2

will

pass

the

value

to

the

UDF

or

method

in

the

format

of

the

source

data

type

of

the

distinct

type.

Distinct

type

values

that

originate

in

a

host

variable

and

which

are

used

as

arguments

to

a

UDF

that

has

its

corresponding

parameter

defined

as

a

distinct

type,

must

be

explicitly

cast

to

the

distinct

type

by

the

user.

There

is

no

host

language

type

for

distinct

types.

DB2’s

strong

typing

necessitates

this,

otherwise

your

results

can

be

ambiguous.

Consider

the

BOAT

distinct

type

which

is

defined

over

a

BLOB,

and

consider

the

BOAT_COST

UDF

defined

as

follows:

CREATE

FUNCTION

BOAT_COST

(BOAT)

RETURNS

INTEGER

...

In

the

following

fragment

of

a

C

language

application,

the

host

variable

:ship

holds

the

BLOB

value

that

is

to

passed

to

the

BOAT_COST

function:

EXEC

SQL

BEGIN

DECLARE

SECTION;

SQL

TYPE

IS

BLOB(150K)

ship;

EXEC

SQL

END

DECLARE

SECTION;

Both

of

the

following

statements

correctly

resolve

to

the

BOAT_COST

function,

because

both

cast

the

:ship

host

variable

to

type

BOAT:

...

SELECT

BOAT_COST

(BOAT(:ship))

FROM

...

...

SELECT

BOAT_COST

(CAST(:ship

AS

BOAT))

FROM

...

Chapter

5.

Invoking

routines

209

If

there

are

multiple

BOAT

distinct

types

in

the

database,

or

BOAT

UDFs

in

other

schema,

you

must

exercise

care

with

your

SQL

path.

Your

results

can

otherwise

be

ambiguous.

Related

concepts:

v

“User-Defined

Types

(UDTs)

and

Large

Objects

(LOBs)”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Function

selection”

on

page

208

v

“Procedure

selection”

on

page

200

Related

tasks:

v

“Passing

structured

type

parameters

to

external

routines”

on

page

292

v

“LOB

values

as

UDF

parameters”

on

page

210

Related

reference:

v

“CREATE

FUNCTION

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

PROCEDURE

statement”

in

the

SQL

Reference,

Volume

2

v

“SELECT

statement”

in

the

SQL

Reference,

Volume

2

LOB

values

as

UDF

parameters

UDFs

can

be

defined

with

parameters

or

results

having

any

of

the

LOB

types:

BLOB,

CLOB,

or

DBCLOB.

DB2

will

materialize

the

entire

LOB

value

in

storage

before

invoking

such

a

function,

even

if

the

source

of

the

value

is

a

LOB

locator

host

variable.

For

example,

consider

the

following

fragment

of

a

C

language

application:

EXEC

SQL

BEGIN

DECLARE

SECTION;

SQL

TYPE

IS

CLOB(150K)

clob150K

;

/*

LOB

host

var

*/

SQL

TYPE

IS

CLOB_LOCATOR

clob_locator1;

/*

LOB

locator

host

var

*/

char

string[40];

/*

string

host

var

*/

EXEC

SQL

END

DECLARE

SECTION;

Either

host

variable

:clob150K

or

:clob_locator1

is

valid

as

an

argument

for

a

function

whose

corresponding

parameter

is

defined

as

CLOB(500K).

For

example,

suppose

you

have

registered

a

UDF

as

follows:

CREATE

FUNCTION

FINDSTRING

(CLOB(500K,

VARCHAR(200))

...

Both

of

the

following

invocations

of

FINDSTRING

are

valid

in

the

program:

...

SELECT

FINDSTRING

(:clob150K,

:string)

FROM

...

...

SELECT

FINDSTRING

(:clob_locator1,

:string)

FROM

...

UDF

parameters

or

results

which

have

one

of

the

LOB

types

can

be

created

with

the

AS

LOCATOR

modifier.

In

this

case,

the

entire

LOB

value

is

not

materialized

prior

to

invocation.

Instead,

a

LOB

LOCATOR

is

passed

to

the

UDF,

which

can

then

use

SQL

to

manipulate

the

actual

bytes

of

the

LOB

value.

You

can

also

use

this

capability

on

UDF

parameters

or

results

which

have

a

distinct

type

that

is

based

on

a

LOB.

Note

that

the

argument

to

such

a

function

can

be

any

LOB

value

of

the

defined

type;

it

does

not

have

to

be

a

host

variable

defined

as

one

of

the

LOCATOR

types.

The

use

of

host

variable

locators

as

arguments

is

completely

orthogonal

to

the

use

of

AS

LOCATOR

in

UDF

parameters

and

result

definitions.

210

Programming

Server

Applications

Related

concepts:

v

“User-Defined

Types

(UDTs)

and

Large

Objects

(LOBs)”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Function

selection”

on

page

208

v

“Procedure

selection”

on

page

200

Related

tasks:

v

“Retrieving

a

LOB

value

with

a

LOB

locator”

on

page

220

v

“Distinct

types

as

UDF

or

method

parameters”

on

page

209

Related

reference:

v

“CREATE

FUNCTION

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

METHOD

statement”

in

the

SQL

Reference,

Volume

2

Invoking

scalar

functions

or

methods

The

invocation

of

built-in

scalar

functions,

user-defined

scalar-functions

and

methods

is

very

similar.

Scalar

functions

and

methods

can

only

be

invoked

where

expressions

are

supported

within

an

SQL

statement.

Prerequisites:

v

For

built-in

functions,

SYSIBM

must

be

in

the

CURRENT

PATH

special

register.

SYSIBM

is

in

CURRENT

PATH

by

default.

v

For

user-defined

scalar

functions,

the

function

must

have

been

created

in

the

database

using

either

the

CREATE

FUNCTION

or

CREATE

METHOD

statement.

v

For

external

user-defined

scalar

functions,

the

library

or

class

file

associated

with

the

function

must

be

in

the

location

specified

by

the

EXTERNAL

clause

of

the

CREATE

FUNCTION

or

CREATE

METHOD

statement.

v

To

invoke

a

user-defined

function

or

method,

a

user

must

have

EXECUTE

privilege

on

the

function

or

method.

If

the

function

or

method

is

to

be

used

by

all

users,

the

EXECUTE

privilege

on

the

function

or

method

can

be

granted

to

PUBLIC.

For

more

privilege

related

information

see

the

specific

CREATE

statement

reference.

Procedure:

To

invoke

a

scalar

UDF

or

method:

v

Include

a

reference

to

it

within

an

expression

contained

in

an

SQL

statement

where

it

is

to

process

one

or

more

input

values.

Functions

and

methods

can

be

invoked

anywhere

that

an

expression

is

valid.

Examples

of

where

a

scalar

UDF

or

method

can

be

referenced

include

the

select-list

of

a

query

or

in

a

VALUES

clause

For

example,

suppose

that

you

have

created

a

user-defined

scalar

function

called

TOTAL_SAL

that

adds

the

base

salary

and

bonus

together

for

each

employee

row

in

the

EMPLOYEE

table.

CREATE

FUNCTION

TOTAL_SAL

(SALARY

DECIMAL(9,2),

BONUS

DECIMAL(9,2))

RETURNS

DECIMAL(9,2)

LANGUAGE

SQL

CONTAINS

SQL

NO

EXTERNAL

ACTION

DETERMINISTIC

RETURN

SALARY+BONUS

Chapter

5.

Invoking

routines

211

|

|
|
|

|

|
|

|
|

|
|
|

|
|
|
|
|

|

|

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

The

following

is

a

SELECT

statement

that

makes

use

of

TOTAL_SAL:

SELECT

LASTNAME,

TOTAL_SAL(SALARY,

BONUS)

AS

TOTAL

FROM

EMPLOYEE

Related

concepts:

v

“References

to

functions”

on

page

206

v

“Routine

invocation”

on

page

193

v

“Routine

names

and

paths”

on

page

195

v

“User-defined

scalar

functions”

on

page

13

v

“Methods”

on

page

16

Related

tasks:

v

“Invoking

user-defined

table

functions”

on

page

212

Related

reference:

v

“SELECT

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

FUNCTION

(SQL

Scalar,

Table,

or

Row)

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

FUNCTION

(External

Scalar)

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

FUNCTION

(Sourced

or

Template)

statement”

in

the

SQL

Reference,

Volume

2

Related

samples:

v

“udfcli.sqc

--

Call

a

variety

of

types

of

user-defined

functions

(C)”

v

“udfemcli.sqc

--

Call

a

variety

of

types

of

embedded

SQL

user-defined

functions.

(C)”

v

“udfcli.sqC

--

Call

a

variety

of

types

of

user-defined

functions

(C++)”

v

“udfemcli.sqC

--

Call

a

variety

of

types

of

embedded

SQL

user-defined

functions.

(C++)”

v

“UDFcli.java

--

Call

the

UDFs

in

UDFsrv.java

(JDBC)”

v

“UDFjcli.java

--

Call

the

UDFs

in

UDFjsrv.java

(JDBC)”

v

“UDFcli.sqlj

--

Call

the

UDFs

in

UDFsrv.java

(SQLj)”

v

“UDFjcli.sqlj

--

Call

the

UDFs

in

UDFjsrv.java

(SQLj)”

Invoking

user-defined

table

functions

Once

the

user-defined

table

function

is

written

and

registered

with

the

database,

you

can

invoke

it

in

the

FROM

clause

of

a

SELECT

statement.

Prerequisites:

v

The

table

function

must

have

been

created

in

the

database

by

executing

the

CREATE

FUNCTION.

v

For

external

user-defined

table

functions,

the

library

or

class

file

associated

with

the

function

must

be

in

the

location

specified

by

the

EXTERNAL

clause

of

the

CREATE

FUNCTION.

v

To

invoke

a

user-defined

table

function

a

user

must

have

EXECUTE

privilege

on

the

function.

For

more

privilege

related

information

see

the

CREATE

FUNCTION

reference.

212

Programming

Server

Applications

|

|
|

|

|

|

|

|

|

|

|

|

|

|
|

|
|

|
|

|

|

|
|

|

|
|

|

|

|

|

|

|

|
|

|
|
|

|
|
|

Restrictions:

For

restrictions

on

invoking

user-defined

table

functions,

see

the

CREATE

FUNCTION

topics

in

the

related

links.

Procedure:

To

invoke

a

user-defined

table

function,

reference

the

function

in

the

FROM

clause

of

an

SQL

statement

where

it

is

to

process

a

set

of

input

values.

The

reference

to

the

table

function

must

be

preceeded

by

the

TABLE

clause

and

be

contained

in

brackets.

For

example,

the

following

CREATE

FUNCTION

statement

defines

a

table

function

that

returns

the

employees

in

a

specified

department

number.

CREATE

FUNCTION

DEPTEMPLOYEES

(DEPTNO

VARCHAR(3))

RETURNS

TABLE

(EMPNO

CHAR(6),

LASTNAME

VARCHAR(15),

FIRSTNAME

VARCHAR(12))

LANGUAGE

SQL

READS

SQL

DATA

NO

EXTERNAL

ACTION

DETERMINISTIC

RETURN

SELECT

EMPNO,

LASTNAME,

FIRSTNME

FROM

EMPLOYEE

WHERE

EMPLOYEE.WORKDEPT

=

DEPTEMPLOYEES.DEPTNO

The

following

is

a

SELECT

statement

that

makes

use

of

DEPTEMPLOYEES:

SELECT

EMPNO,

LASTNAME,

FIRSTNAME

FROM

TABLE(DEPTEMPLOYEES(’A00’))

AS

D

Related

concepts:

v

“References

to

functions”

on

page

206

v

“Routine

names

and

paths”

on

page

195

v

“User-defined

scalar

functions”

on

page

15

Related

tasks:

v

“LOB

values

as

UDF

parameters”

on

page

210

v

“Invoking

scalar

functions

or

methods”

on

page

211

Related

reference:

v

“CREATE

FUNCTION

(OLE

DB

External

Table)

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

FUNCTION

(SQL

Scalar,

Table,

or

Row)

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

FUNCTION

(External

Table)

statement”

in

the

SQL

Reference,

Volume

2

Related

samples:

v

“udfcli.sqc

--

Call

a

variety

of

types

of

user-defined

functions

(C)”

v

“udfemcli.sqc

--

Call

a

variety

of

types

of

embedded

SQL

user-defined

functions.

(C)”

v

“udfcli.sqC

--

Call

a

variety

of

types

of

user-defined

functions

(C++)”

v

“udfemcli.sqC

--

Call

a

variety

of

types

of

embedded

SQL

user-defined

functions.

(C++)”

v

“UDFcli.java

--

Call

the

UDFs

in

UDFsrv.java

(JDBC)”

v

“UDFjcli.java

--

Call

the

UDFs

in

UDFjsrv.java

(JDBC)”

Chapter

5.

Invoking

routines

213

|
|
|
|

v

“UDFcli.sqlj

--

Call

the

UDFs

in

UDFsrv.java

(SQLj)”

v

“UDFjcli.sqlj

--

Call

the

UDFs

in

UDFjsrv.java

(SQLj)”

214

Programming

Server

Applications

Part

2.

Large

objects,

user-defined

distinct

types,

and

triggers

©

Copyright

IBM

Corp.

1993

-

2004

215

216

Programming

Server

Applications

Chapter

6.

Large

objects

Large

object

usage

.

.

.

.

.

.

.

.

.

.

.

. 217

Large

object

locators

.

.

.

.

.

.

.

.

.

.

. 218

Retrieving

a

LOB

value

with

a

LOB

locator

.

.

. 220

Deferring

the

evaluation

of

LOB

expressions

.

.

. 221

Large

object

file

reference

variables

.

.

.

.

.

. 223

Writing

data

from

a

CLOB

column

to

a

text

file

225

Inserting

data

from

a

text

file

into

a

CLOB

column

226

Large

object

usage

The

VARCHAR

and

VARGRAPHIC

data

types

have

a

limit

of

32K

bytes

of

storage.

While

this

could

be

sufficient

for

small

to

medium

size

text

data,

applications

often

need

to

store

large

text

documents.

They

might

also

need

to

store

a

wide

variety

of

additional

data

types,

such

as

audio,

video,

drawings,

mixed

text

and

graphics,

and

images.

DB2®

provides

three

data

types

to

store

these

data

objects

as

strings

of

up

to

two

gigabytes

(GB)

in

size.

The

three

large

object

(LOB)

data

types

are

binary

large

objects

(BLOBs),

character

large

objects

(CLOBs),

and

double-byte

character

large

objects

(DBCLOBs).

Note:

CLOBs

can

contain

either

single-byte

or

double-byte

characters.

DBCLOBs

can

contain

either

four-byte

or

double

byte

characters.

Each

DB2

table

can

have

a

large

amount

of

associated

LOB

data.

Although

any

single

LOB

value

cannot

exceed

2

gigabytes,

a

single

row

can

contain

as

much

as

24

gigabytes

of

LOB

data,

and

a

table

can

contain

as

much

as

2

terabytes

of

LOB

data.

A

separate

database

location

stores

all

large

object

values

outside

their

records

in

the

table.

There

is

a

large

object

descriptor

for

each

large

object

in

each

row

in

a

table.

The

large

object

descriptor

contains

control

information

used

to

access

the

large

object

data

stored

elsewhere

on

disk.

Storing

large

object

data

outside

their

records

allows

LOBs

to

be

2

GB

in

size.

Accessing

the

large

object

descriptor

causes

a

small

amount

of

overhead

when

manipulating

LOBs.

(For

storage

and

performance

reasons

you

would

likely

not

want

to

put

small

data

items

into

LOBs.)

The

maximum

size

for

each

large

object

column

is

part

of

the

declaration

of

the

large

object

type

in

the

CREATE

TABLE

statement.

The

maximum

size

of

a

large

object

column

determines

the

maximum

size

of

any

LOB

descriptor

in

that

column.

As

a

result,

it

also

determines

how

many

columns

of

all

data

types

can

fit

in

a

single

row.

The

space

used

by

the

LOB

descriptor

in

the

row

ranges

from

approximately

60

to

300

bytes,

depending

on

the

maximum

size

of

the

corresponding

column.

The

lob-options-clause

for

CREATE

TABLE

gives

you

the

choice

to

log

(or

not)

the

changes

made

to

the

LOB

columns.

This

clause

also

allows

for

a

compact

representation

for

the

LOB

descriptor

(or

not).

This

means

you

can

allocate

only

enough

space

to

store

the

LOB,

or

you

can

allocate

extra

space

for

future

append

operations

to

the

LOB.

The

tablespace-options-clause

for

CREATE

TABLE

allows

you

to

identify

a

LARGE

table

space

to

store

the

column

values

of

long

field

or

LOB

data

types.

©

Copyright

IBM

Corp.

1993

-

2004

217

|
|

With

their

potentially

large

size,

LOBs

can

slow

down

the

performance

of

your

database

system

significantly

when

moved

into

or

out

of

a

database.

Even

though

DB2

does

not

allow

logging

of

a

LOB

value

greater

than

1

GB,

LOB

values

with

sizes

approaching

1

GB

can

quickly

push

the

database

log

to

near

capacity.

An

error,

SQLCODE

-355

(SQLSTATE

42993),

results

from

attempting

to

log

a

LOB

greater

than

1

GB

in

size.

The

lob-options-clause

in

the

CREATE

TABLE

and

ALTER

TABLE

statements

allows

users

to

turn

off

logging

for

a

particular

LOB

column.

Although

setting

the

option

to

NOT

LOGGED

will

improve

performance,

changes

to

the

LOB

values

after

the

most

recent

backup

are

lost

during

roll-forward

recovery.

When

selecting

a

LOB

value,

you

have

the

following

options:

v

Select

the

entire

LOB

value

into

a

host

variable.

The

entire

LOB

value

is

copied

from

the

server

to

the

client.

This

is

inefficient

and

is

sometimes

not

feasible.

Host

variables

use

the

client

memory

buffer,

which

might

not

have

the

capacity

to

hold

larger

LOB

values.

v

Select

only

a

LOB

locator

into

a

host

variable.

The

LOB

value

remains

on

the

server;

the

LOB

locator

moves

to

the

client.

If

the

LOB

value

is

very

large

and

is

needed

only

as

an

input

value

for

one

or

more

subsequent

SQL

statements,

then

it

is

best

to

keep

the

value

in

a

locator.

The

use

of

a

locator

eliminates

any

client/server

communication

traffic

needed

to

transfer

the

LOB

value

to

the

host

variable

and

back

to

the

server.

v

Select

the

entire

LOB

value

into

a

file

reference

variable.

The

LOB

value

(or

a

part

of

it)

is

moved

to

a

file

at

the

client

without

going

through

the

application’s

memory.

Related

concepts:

v

“Large

object

locators”

on

page

218

v

“Large

object

file

reference

variables”

on

page

223

Large

object

locators

A

large

object

locator

(or

LOB

locator)

is

a

host

variable

with

a

4-byte

value

that

represents

a

single

LOB

value

in

the

database

server.

LOB

locators

provide

users

with

a

mechanism

by

which

they

can

easily

manipulate

very

large

objects

in

application

programs

without

requiring

them

to

store

the

entire

LOB

value

on

the

client

machine

where

the

application

program

is

running.

Subsequent

statements

can

then

use

the

locators

to

perform

operations

on

the

data

without

necessarily

retrieving

the

entire

large

object.

Locator

variables

are

used

to

reduce

the

storage

requirements

for

applications

that

access

LOBs,

and

improve

their

performance

by

reducing

the

flow

of

data

between

the

client

and

the

server.

LOB

locators

are

ideally

suited

for

a

number

of

programming

scenarios:

1.

When

moving

only

a

small

part

of

a

much

larger

LOB

to

a

client

program.

2.

When

the

entire

LOB

cannot

fit

in

the

application’s

memory.

3.

When

the

program

needs

a

temporary

LOB

value

from

a

LOB

expression

but

does

not

need

to

save

the

result.

LOB

locators

can

also

represent

the

value

associated

with

a

LOB

expression.

For

example,

a

LOB

locator

might

represent

the

value

associated

with:

SUBSTR(

<lob

1>

CONCAT

<lob

2>

CONCAT

<lob

3>,

<start>,

<length>

)

218

Programming

Server

Applications

It

is

important

to

understand

that

a

LOB

locator

represents

a

value,

not

a

row

or

location

in

the

database.

Once

a

value

is

selected

into

a

locator,

there

is

no

operation

that

one

can

perform

on

the

original

row

or

table

that

will

affect

the

value

that

is

referenced

by

the

locator.

The

value

associated

with

a

locator

is

valid

until

the

transaction

ends,

or

until

the

locator

is

explicitly

freed,

whichever

comes

first.

Locators

do

not

force

extra

copies

of

the

data

in

order

to

provide

this

function.

Instead,

the

locator

mechanism

stores

a

description

of

the

base

LOB

value.

The

materialization

of

the

LOB

value

(or

expression,

as

shown

above)

is

deferred

until

it

is

actually

assigned

to

some

location

--

either

into

a

user

buffer

in

the

form

of

a

host

variable

or

into

another

record’s

field

value

in

the

database.

A

LOB

locator

is

only

a

mechanism

used

to

refer

to

a

LOB

value

during

a

transaction;

it

does

not

persist

beyond

the

transaction

in

which

it

was

created.

The

FREE

LOCATOR

statement

releases

a

locator

from

its

associated

value.

In

a

similar

way,

a

commit

or

roll-back

operation

frees

all

LOB

locators

associated

with

the

transaction.

Furthermore,

a

LOB

locator

is

not

a

database

type;

it

is

never

stored

in

the

database

and,

as

a

result,

cannot

participate

in

views

or

check

constraints.

However,

since

a

LOB

locator

is

a

client

representation

of

a

LOB

type,

there

are

SQLTYPEs

for

LOB

locators

so

that

they

can

be

described

within

an

SQLDA

structure

that

is

used

by

FETCH,

OPEN

and

EXECUTE

statements.

They

can

also

be

passed

between

DB2®

and

UDFs.

For

normal

host

variables

in

an

application

program,

when

selecting

a

NULL

value

into

a

host

variable,

the

indicator

variable

is

set

to

-1,

signifying

that

the

value

is

NULL.

In

the

case

of

LOB

locators,

however,

the

meaning

of

indicator

variables

is

slightly

different.

Since

a

locator

host

variable

itself

can

never

be

NULL,

a

negative

indicator

variable

value

indicates

that

the

LOB

value

represented

by

the

LOB

locator

is

NULL.

Related

concepts:

v

“Large

object

usage”

on

page

217

Related

tasks:

v

“Retrieving

a

LOB

value

with

a

LOB

locator”

on

page

220

v

“Deferring

the

evaluation

of

LOB

expressions”

on

page

221

Related

samples:

v

“dtlob.out

--

HOW

TO

USE

THE

LOB

DATA

TYPE

(C)”

v

“dtlob.sqc

--

How

to

use

the

LOB

data

type

(C)”

v

“dtlob.out

--

HOW

TO

USE

THE

LOB

DATA

TYPE

(C++)”

v

“dtlob.sqC

--

How

to

use

the

LOB

data

type

(C++)”

v

“dtLob.bas

--

Get/set

Large

Objects

(LOBs)”

v

“DtLob.java

--

How

to

use

LOB

data

type

(JDBC)”

v

“DtLob.out

--

HOW

TO

USE

LOB

DATA

TYPE.

Connect

to

’sample’

database

using

JDBC

type

2

driver

(JDBC)”

v

“lobeval.sqb

--

Demonstrates

how

to

use

a

Large

Object

(LOB)

(IBM

COBOL)”

v

“lobloc.sqb

--

Demonstrates

the

use

of

LOB

locators

(IBM

COBOL)”

Chapter

6.

Large

objects

219

Retrieving

a

LOB

value

with

a

LOB

locator

If

you

need

to

extract

data

from

a

LOB

you

can

use

LOB

locators.

This

is

a

good

alternative

if

the

LOB

to

be

accessed

is

large.

Transferring

the

entire

LOB

to

a

client

when

only

a

subset

of

the

LOB

data

is

needed

is

avoided

with

the

use

of

locators.

The

example

uses

embedded

SQL

in

C.

Procedure:

To

retrieve

a

LOB

value

with

a

LOB

locator:

1.

Declare

the

LOB

locator

host

variables:

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

number[7];

sqlint32

deptInfoBeginLoc;

sqlint32

deptInfoEndLoc;

SQL

TYPE

IS

CLOB_LOCATOR

resume;

SQL

TYPE

IS

CLOB_LOCATOR

deptBuffer;

short

lobind;

char

buffer[1000]="";

char

userid[9];

char

passwd[19];

EXEC

SQL

END

DECLARE

SECTION;

In

the

host

variable

declaration

section:

v

number

will

contain

the

value

returned

by

empno

in

the

SELECT

statement

to

be

issued

by

the

cursor

c1.

v

deptInfoBeginLoc

and

deptInfoEnd

will

temporarily

hold

LOB

locator

values.

v

resume

and

deptBuffer

are

LOB

locators.

v

lobind

is

used

to

indicate

if

the

LOB

read

is

null

or

not.

v

buffer

will

contain

the

data

extracted

from

the

LOB.

v

userid

and

passwd

represent

a

userid

and

password

combination,

which

are

needed

for

the

application

to

connect

to

a

database.
2.

Connect

the

application

to

the

database.

3.

Declare

and

open

a

cursor:

EXEC

SQL

DECLARE

c1

CURSOR

FOR

SELECT

empno,

resume

FROM

emp_resume

WHERE

resume_format=’ascii’

AND

empno

<>

’A00130’;

EXEC

SQL

OPEN

c1;

4.

Fetch

the

LOB

value

into

the

host

variable

locator.

EXEC

SQL

FETCH

c1

INTO

:number,

:resume

:lobind;

5.

Evaluate

the

LOB

locator:

a.

Locate

the

beginning

of

Department

Information

section:

EXEC

SQL

VALUES

(POSSTR(:resume,

’Department

Information’))

INTO

:deptInfoBeginLoc;

b.

Locate

the

beginning

of

Education

section

(end

of

Department

Information):

EXEC

SQL

VALUES

(POSSTR(:resume,

’Education’))

INTO

:deptInfoEndLoc;

c.

Obtain

only

the

Department

Information

section

by

using

SUBSTR:

EXEC

SQL

VALUES(SUBSTR(:resume,

:deptInfoBeginLoc,

:deptInfoEndLoc

-

:deptInfoBeginLoc))

INTO

:deptBuffer;

d.

Append

the

Department

Information

section

to

the

:buffer

variable:

EXEC

SQL

VALUES(:buffer

||

:deptBuffer)

INTO

:buffer;

220

Programming

Server

Applications

6.

Free

the

LOB

locators

resume

and

deptBuffer:

EXEC

SQL

FREE

LOCATOR

:resume,

:deptBuffer;

7.

Close

the

cursor:

EXEC

SQL

CLOSE

c1;

8.

End

the

Program.

Related

concepts:

v

“Large

object

usage”

on

page

217

v

“Large

object

locators”

on

page

218

Related

tasks:

v

“Connecting

an

Application

to

a

Database”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Ending

an

Application

Program”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Deferring

the

evaluation

of

LOB

expressions”

on

page

221

Related

samples:

v

“dtlob.out

--

HOW

TO

USE

THE

LOB

DATA

TYPE

(C)”

v

“dtlob.sqc

--

How

to

use

the

LOB

data

type

(C)”

v

“dtlob.out

--

HOW

TO

USE

THE

LOB

DATA

TYPE

(C++)”

v

“dtlob.sqC

--

How

to

use

the

LOB

data

type

(C++)”

v

“dtLob.bas

--

Get/set

Large

Objects

(LOBs)”

v

“DtLob.java

--

How

to

use

LOB

data

type

(JDBC)”

v

“DtLob.out

--

HOW

TO

USE

LOB

DATA

TYPE.

Connect

to

’sample’

database

using

JDBC

type

2

driver

(JDBC)”

v

“lobeval.sqb

--

Demonstrates

how

to

use

a

Large

Object

(LOB)

(IBM

COBOL)”

v

“lobloc.sqb

--

Demonstrates

the

use

of

LOB

locators

(IBM

COBOL)”

Deferring

the

evaluation

of

LOB

expressions

The

bytes

of

a

LOB

value

do

not

move

until

you

assign

a

LOB

expression

to

a

target

destination.

This

means

that

a

LOB

value

locator

used

with

string

functions

and

operators

can

create

an

expression

where

the

evaluation

is

postponed

until

the

time

of

assignment.

This

technique

is

known

as

deferring

the

evaluation

of

a

LOB

expression.

Deferring

evaluation

gives

DB2

an

opportunity

to

increase

LOB

I/O

performance.

This

occurs

because

the

LOB

function

optimizer

attempts

to

transform

the

LOB

expressions

into

alternative

expressions.

These

alternative

expressions

produce

equivalent

results

and

usually

require

fewer

disk

I/Os.

The

example

uses

embedded

SQL

in

C.

Procedure:

To

defer

the

evaluation

of

a

LOB

expression:

1.

Declare

the

LOB

locator

host

variables:

EXEC

SQL

BEGIN

DECLARE

SECTION;

sqlint32

hv_start_deptinfo;

sqlint32

hv_start_educ;

Chapter

6.

Large

objects

221

sqlint32

hv_return_code;

SQL

TYPE

IS

CLOB(5K)

hv_new_section_buffer;

SQL

TYPE

IS

CLOB_LOCATOR

hv_doc_locator1;

SQL

TYPE

IS

CLOB_LOCATOR

hv_doc_locator2;

SQL

TYPE

IS

CLOB_LOCATOR

hv_doc_locator3;

char

userid[9];

char

passwd[19];

EXEC

SQL

END

DECLARE

SECTION;

In

the

host

variable

declaration

section:

v

hv_start_deptinfo,

hv_return_code,

and

hv_start_educ

will

temporarily

hold

LOB

locator

values.

v

hv_new_section_buffer

will

contain

the

data

extracted

from

the

LOB.

v

hv_doc_locator1,

hv_doc_locator2,

and

hv_doc_locator3

are

LOB

locators.

v

userid

and

passwd

represent

a

userid

and

password

combination,

which

are

needed

for

the

application

to

connect

to

a

database.
2.

Connect

the

application

to

the

database.

3.

Fetch

the

LOB

value

into

the

host

variable

locator:

EXEC

SQL

SELECT

resume

INTO

:hv_doc_locator1

FROM

emp_resume

WHERE

empno

=

’000130’

AND

resume_format

=

’ascii’;

4.

Manipulate

LOB

data

with

locators.

These

five

statements

manipulate

LOB

data

without

moving

the

actual

data

contained

in

the

LOB

field.

a.

Use

the

POSSTR

function

to

locate

the

start

of

the

Department

Information

section:

EXEC

SQL

VALUES

(POSSTR(:hv_doc_locator1,

’Department

Information’))

INTO

:hv_start_deptinfo;

b.

Use

the

POSSTR

function

to

locate

the

start

of

the

Education

section:

EXEC

SQL

VALUES

(POSSTR(:hv_doc_locator1,

’Education’))

INTO

:hv_start_educ;

c.

Replace

the

Department

Information

section

with

nothing:

EXEC

SQL

VALUES

(SUBSTR(:hv_doc_locator1,

1,

:hv_start_deptinfo

-1)

||

SUBSTR

(:hv_doc_locator1,

:hv_start_educ))

INTO

:hv_doc_locator2;

d.

Move

the

Department

Information

section

into

the

hv_new_section_buffer

:

EXEC

SQL

VALUES

(SUBSTR(:hv_doc_locator1,

:hv_start_deptinfo,

:hv_start_educ

-:hv_start_deptinfo))

INTO

:hv_new_section_buffer;

e.

Append

the

new

section

to

the

end.

Effectively,

this

just

moves

the

Department

Information

section

to

the

bottom

of

the

resume.

EXEC

SQL

VALUES

(:hv_doc_locator2

||

:hv_new_section_buffer)

INTO

:hv_doc_locator3;

5.

Move

LOB

data

to

the

target

destination:

EXEC

SQL

INSERT

INTO

emp_resume

VALUES

(’A00130’,

’ascii’,

:hv_doc_locator3);

The

evaluation

of

the

LOB

assigned

to

the

target

destination

is

postponed

until

this

statement.

It

is

at

this

point

that

LOB

value

bytes

finally

move.

6.

Free

the

LOB

locators

hv_doc_locator1,

hv_doc_locator2,

and

hv_doc_locator3:

EXEC

SQL

FREE

LOCATOR

:hv_doc_locator1,

:hv_doc_locator2,

:

hv_doc_locator3;

7.

End

the

Program.

In

this

example,

a

particular

resume

(empno

=

’000130’)

was

sought

from

within

a

table

of

resumes

EMP_RESUME.

The

Department

Information

section

of

the

222

Programming

Server

Applications

resume

was

copied,

cut,

and

then

appended

to

the

end

of

the

resume.

This

new

resume

was

then

inserted

into

the

EMP_RESUME

table.

The

original

resume

in

this

table

was

left

unchanged.

Locators

permitted

the

assembly

and

examination

of

the

new

resume

without

actually

moving

or

copying

any

bytes

from

the

original

resume.

The

movement

of

bytes

does

not

happen

until

the

final

assignment;

that

is,

the

INSERT

statement

--

and

then

only

at

the

server.

Related

concepts:

v

“Large

object

usage”

on

page

217

v

“Large

object

locators”

on

page

218

Related

tasks:

v

“Connecting

an

Application

to

a

Database”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Ending

an

Application

Program”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Retrieving

a

LOB

value

with

a

LOB

locator”

on

page

220

Related

samples:

v

“dtlob.out

--

HOW

TO

USE

THE

LOB

DATA

TYPE

(C)”

v

“dtlob.sqc

--

How

to

use

the

LOB

data

type

(C)”

v

“dtlob.out

--

HOW

TO

USE

THE

LOB

DATA

TYPE

(C++)”

v

“dtlob.sqC

--

How

to

use

the

LOB

data

type

(C++)”

v

“dtLob.bas

--

Get/set

Large

Objects

(LOBs)”

v

“DtLob.java

--

How

to

use

LOB

data

type

(JDBC)”

v

“DtLob.out

--

HOW

TO

USE

LOB

DATA

TYPE.

Connect

to

’sample’

database

using

JDBC

type

2

driver

(JDBC)”

v

“lobeval.sqb

--

Demonstrates

how

to

use

a

Large

Object

(LOB)

(IBM

COBOL)”

Large

object

file

reference

variables

LOB

file

reference

variables

facilitate

the

movement

of

LOB

values

from

the

database

server

to

a

client

application

without

going

through

the

client

application’s

memory.

File

reference

variables

are

similar

to

host

variables

except

that

they

are

used

to

transfer

data

to

and

from

client

files,

and

not

to

and

from

memory

buffers.

With

this

approach,

client

applications

do

not

have

to

call

utility

routines

to

read

and

write

files

using

host

variables

(which

have

size

restrictions)

to

carry

out

the

movement

of

LOB

data.

A

file

reference

variable

represents

(rather

than

contains)

the

file,

just

as

a

LOB

locator

represents

(rather

than

contains)

the

LOB

value.

Database

queries,

updates,

and

inserts

can

use

file

reference

variables

to

store,

or

to

retrieve,

single

LOB

column

values.

File

reference

variables

are

used

for

direct

file

input

and

output

for

LOBs,

and

can

be

defined

in

all

host

languages.

Since

they

are

not

native

data

types,

SQL

extensions

are

used

and

the

precompilers

generate

the

host

language

constructs

necessary

to

represent

each

variable.

A

file

reference

variable

has

the

following

properties:

Chapter

6.

Large

objects

223

1.

Data

Type:

BLOB,

CLOB,

or

DBCLOB.

This

property

is

specified

when

the

variable

is

declared.

2.

File

name:

The

application

program

must

specify

this

at

run

time.

It

is

one

of:

v

The

complete

path

name

of

the

file

(which

is

advised).

v

A

relative

file

name.

If

a

relative

file

name

is

provided,

it

is

appended

to

the

current

path

of

the

client

process.

Within

an

application,

a

file

should

only

be

referenced

in

one

file

reference

variable.
3.

File

Name

Length:

The

application

program

must

specify

this

at

run

time.

It

is

the

length

of

the

file

name

(in

bytes).

4.

File

Options:

An

application

must

assign

one

of

a

number

of

options

to

a

file

reference

variable

before

it

makes

use

of

that

variable.

Options

are

set

by

an

INTEGER

value

in

a

field

in

the

file

reference

variable

structure.

One

of

the

file

options

must

be

specified

for

each

file

reference

variable:

File

option

(by

language)

Direction

Description

C:

SQL_FILE_READ

COBOL:

SQL-FILE-READ

FORTRAN:

sql_file_read

input

This

is

a

regular

file

that

can

be

opened,

read

and

closed.

C:

SQL_FILE_CREATE

COBOL:

SQL-FILE-CREATE

FORTRAN:

sql_file_create

output

Create

a

new

file.

If

the

file

already

exists,

an

error

is

returned.

C:

SQL_FILE_OVERWRITE

COBOL:

SQL-FILE-OVERWRITE

FORTRAN:

sql_file_overwrite

output

If

an

existing

file

with

the

specified

name

exists,

it

is

overwritten;

otherwise,

a

new

file

is

created.

C:

SQL_FILE_APPEND

COBOL:

SQL-FILE-APPEND

FORTRAN:

sql_file_append

output

If

an

existing

file

with

the

specified

name

exists,

the

output

is

appended

to

it;

otherwise

a

new

file

is

created.

5.

Data

Length:

This

is

unused

on

input.

On

output,

the

implementation

sets

the

data

length

(in

bytes)

to

the

length

of

the

new

data

written

to

the

file.

For

normal

host

variables

in

an

application

program,

when

selecting

a

NULL

value

into

a

host

variable,

the

indicator

variable

is

set

to

-1,

signifying

that

the

value

is

NULL.

In

the

case

of

file

reference

variables,

however,

the

meaning

of

indicator

variables

is

slightly

different.

Since

a

file

reference

variable

itself

can

never

be

NULL,

a

negative

indicator

variable

value

indicates

that

the

LOB

value

represented

by

the

file

reference

variable

is

NULL.

The

file

referenced

by

the

file

reference

variable

must

be

accessible

from

(but

not

necessarily

resident

on)

the

system

on

which

the

program

runs.

For

a

stored

procedure,

this

would

be

the

server.

In

an

Extended

UNIX®

Code

(EUC)

environment,

the

files

to

which

DBCLOB

file

reference

variables

point

are

assumed

to

contain

valid

EUC

characters

appropriate

for

storage

in

a

graphic

column,

and

to

never

contain

UCS-2

characters.

224

Programming

Server

Applications

If

a

LOB

file

reference

variable

is

used

in

an

OPEN

statement,

the

file

associated

with

the

LOB

file

reference

variable

must

not

be

deleted

until

the

cursor

is

closed.

Related

concepts:

v

“Large

object

usage”

on

page

217

Related

tasks:

v

“Writing

data

from

a

CLOB

column

to

a

text

file”

on

page

225

v

“Inserting

data

from

a

text

file

into

a

CLOB

column”

on

page

226

Related

samples:

v

“dtlob.out

--

HOW

TO

USE

THE

LOB

DATA

TYPE

(C)”

v

“dtlob.sqc

--

How

to

use

the

LOB

data

type

(C)”

v

“dtlob.out

--

HOW

TO

USE

THE

LOB

DATA

TYPE

(C++)”

v

“dtlob.sqC

--

How

to

use

the

LOB

data

type

(C++)”

v

“dtLob.bas

--

Get/set

Large

Objects

(LOBs)”

v

“DtLob.java

--

How

to

use

LOB

data

type

(JDBC)”

v

“DtLob.out

--

HOW

TO

USE

LOB

DATA

TYPE.

Connect

to

’sample’

database

using

JDBC

type

2

driver

(JDBC)”

v

“lobfile.sqb

--

Demonstrates

the

use

of

LOB

file

handles

(IBM

COBOL)”

Writing

data

from

a

CLOB

column

to

a

text

file

If

you

need

access

to

data

in

a

CLOB

column

outside

of

the

database,

write

it

to

a

text

file.

The

example

in

the

procedure

uses

embedded

SQL

in

C.

In

this

example,

a

particular

resume

(empno

=

’000130’)

is

SELECTed

from

a

CLOB

column

and

put

into

a

text

file.

Procedure:

To

write

data

from

a

CLOB

column

to

a

text

file:

1.

Declare

the

CLOB

FILE

REFERENCE

host

variable:

EXEC

SQL

BEGIN

DECLARE

SECTION;

SQL

TYPE

IS

CLOB_FILE

resume;

char

userid[9];

char

passwd[19];

short

lobind;

EXEC

SQL

END

DECLARE

SECTION;

In

the

host

variable

declaration

section:

v

resume

represents

the

file

that

will

contain

the

data

extracted

from

the

CLOB

column.

v

userid

and

passwd

represent

a

userid

and

password

combination,

which

are

needed

for

the

application

to

connect

to

a

database.
2.

Connect

the

application

to

the

database.

3.

Set

up

the

CLOB

FILE

REFERENCE

host

variable:

strcpy

(resume.name,

"RESUME.TXT");

resume.name_length

=

strlen("RESUME.TXT");

resume.file_options

=

SQL_FILE_OVERWRITE;

In

the

path

description

provided

in

the

strcpy

function:

v

RESUME.TXT

is

the

name

of

the

file

whose

data

will

be

inserted

into

the

table.

Chapter

6.

Large

objects

225

4.

SELECT

the

data

from

the

resume

field

in

the

CLOB

column

into

the

specified

text

file.

EXEC

SQL

SELECT

resume

INTO

:resume

:lobind

FROM

emp_resume

WHERE

resume_format=’ascii’

AND

empno=’000130’;

5.

End

the

Program.

Related

concepts:

v

“Large

object

locators”

on

page

218

v

“Large

object

file

reference

variables”

on

page

223

Related

tasks:

v

“Connecting

an

Application

to

a

Database”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Ending

an

Application

Program”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Inserting

data

from

a

text

file

into

a

CLOB

column”

on

page

226

Related

samples:

v

“dtlob.out

--

HOW

TO

USE

THE

LOB

DATA

TYPE

(C)”

v

“dtlob.sqc

--

How

to

use

the

LOB

data

type

(C)”

v

“dtlob.out

--

HOW

TO

USE

THE

LOB

DATA

TYPE

(C++)”

v

“dtlob.sqC

--

How

to

use

the

LOB

data

type

(C++)”

v

“dtLob.bas

--

Get/set

Large

Objects

(LOBs)”

v

“DtLob.java

--

How

to

use

LOB

data

type

(JDBC)”

v

“DtLob.out

--

HOW

TO

USE

LOB

DATA

TYPE.

Connect

to

’sample’

database

using

JDBC

type

2

driver

(JDBC)”

v

“lobfile.sqb

--

Demonstrates

the

use

of

LOB

file

handles

(IBM

COBOL)”

Inserting

data

from

a

text

file

into

a

CLOB

column

If

you

need

the

database

to

process

CLOB

data

that

currently

exists

in

a

text

file,

insert

it

into

a

CLOB

column.

The

example

uses

embedded

SQL

in

C

on

a

UNIX-based

file

system.

Procedure:

To

insert

data

from

a

text

file

into

a

CLOB

column:

1.

Declare

the

CLOB

FILE

REFERENCE

host

variable:

EXEC

SQL

BEGIN

DECLARE

SECTION;

SQL

TYPE

IS

CLOB_FILE

hv_text_file;

EXEC

SQL

END

DECLARE

SECTION;

hv_text_file

represents

a

file.

2.

Connect

the

application

to

the

database.

3.

Set

up

the

CLOB

FILE

REFERENCE

host

variable:

strcpy(hv_text_file.name,

"/u/userid/dirname/filnam.1");

hv_text_file.name_length

=

strlen("/u/userid/dirname/filnam.1");

hv_text_file.file_options

=

SQL_FILE_READ;

In

the

path

description

provided

in

the

strcpy

function:

v

userid

represents

the

directory

for

one

of

your

users.

v

dirname

represents

a

subdirectory

belonging

to

“userid”.

226

Programming

Server

Applications

v

filnam.1

is

the

name

of

the

file

whose

data

will

be

inserted

into

the

table.

v

clobtab

is

the

name

of

the

table

with

the

CLOB

data

type.
4.

Insert

data

from

hv_text_file

into

the

CLOB

table.

EXEC

SQL

INSERT

INTO

CLOBTAB

VALUES(:hv_text_file);

5.

End

the

program.

Related

concepts:

v

“Large

object

locators”

on

page

218

v

“Large

object

file

reference

variables”

on

page

223

Related

tasks:

v

“Connecting

an

Application

to

a

Database”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Ending

an

Application

Program”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Writing

data

from

a

CLOB

column

to

a

text

file”

on

page

225

Related

samples:

v

“dtlob.out

--

HOW

TO

USE

THE

LOB

DATA

TYPE

(C)”

v

“dtlob.sqc

--

How

to

use

the

LOB

data

type

(C)”

v

“dtlob.out

--

HOW

TO

USE

THE

LOB

DATA

TYPE

(C++)”

v

“dtlob.sqC

--

How

to

use

the

LOB

data

type

(C++)”

v

“dtLob.bas

--

Get/set

Large

Objects

(LOBs)”

v

“DtLob.java

--

How

to

use

LOB

data

type

(JDBC)”

v

“DtLob.out

--

HOW

TO

USE

LOB

DATA

TYPE.

Connect

to

’sample’

database

using

JDBC

type

2

driver

(JDBC)”

v

“lobfile.sqb

--

Demonstrates

the

use

of

LOB

file

handles

(IBM

COBOL)”

Chapter

6.

Large

objects

227

228

Programming

Server

Applications

Chapter

7.

User-defined

distinct

types

User-defined

types

.

.

.

.

.

.

.

.

.

.

. 229

User-defined

distinct

types

.

.

.

.

.

.

.

.

. 229

Strong

typing

in

user-defined

distinct

types

.

.

. 231

Creating

distinct

types

.

.

.

.

.

.

.

.

.

. 231

Creating

tables

with

columns

based

on

distinct

types

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 233

Dropping

user-defined

types

.

.

.

.

.

.

.

. 234

Creating

currency-based

distinct

types

.

.

.

.

. 235

Creating

a

distinct

type

for

completed

job

application

forms

.

.

.

.

.

.

.

.

.

.

.

. 235

Creating

tables

to

track

international

sales

.

.

.

. 236

Creating

a

table

to

store

completed

job

application

forms

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 237

Manipulating

distinct

types

.

.

.

.

.

.

.

.

. 237

Manipulating

distinct

types

.

.

.

.

.

.

.

. 237

Casting

between

distinct

types

.

.

.

.

.

. 238

Performing

comparisons

involving

distinct

types

239

Performing

comparisons

between

distinct

types

and

constants

.

.

.

.

.

.

.

.

.

.

.

. 240

Performing

assignments

involving

distinct

types

in

embedded

SQL

.

.

.

.

.

.

.

.

.

.

. 240

Performing

assignments

involving

distinct

types

in

dynamic

SQL

.

.

.

.

.

.

.

.

.

.

. 241

Performing

assignments

involving

different

distinct

types

.

.

.

.

.

.

.

.

.

.

.

. 241

Performing

UNION

operations

on

distinctly

typed

columns

.

.

.

.

.

.

.

.

.

.

.

. 242

Defining

sourced

UDFs

for

distinct

types

.

.

. 243

User-defined

types

A

user-defined

type

(UDT)

is

a

data

type

that

you

derive

from

existing

data

types,

but

is

nevertheless

considered

to

be

separate

and

incompatible

from

them.

UDTs

enable

you

to

extend

the

built-in

types

already

available

in

DB2®

and

create

your

own

customized

data

types.

There

are

two

classifications

of

user-defined

types:

v

distinct

type:

shares

a

common

representation

with

built-in

data

types.

v

structured

type:

enables

the

representation

of

a

sequence

of

named

attributes

that

each

have

a

type.

One

structured

type

can

be

a

subtype

of

another

structured

type

(called

a

supertype),

defining

a

type

hierarchy.

Related

concepts:

v

“User-defined

distinct

types”

on

page

229

v

“User-defined

structured

types”

on

page

245

Related

tasks:

v

“Creating

distinct

types”

on

page

231

User-defined

distinct

types

Distinct

types

are

user-defined

types

that

are

based

on

existing

DB2®

built-in

data

types.

Internally,

a

distinct

type

shares

its

representation

with

an

existing

type

(the

source

type),

but

is

considered

to

be

a

separate

and

incompatible

type.

For

example,

distinct

types

can

represent

various

currencies,

such

as

US_Dollar

and

Canadian_Dollar.

Both

of

these

types

are

represented

internally

(and

in

your

host

language

program)

as

the

built-in

type

that

you

defined

these

currencies

on.

For

example,

if

you

define

both

currencies

as

DECIMAL,

they

are

represented

as

decimal

data

types

in

the

system.

DB2

also

has

built-in

types

for

storing

and

manipulating

large

objects.

Your

distinct

type

could

be

based

on

one

of

these

large

object

(LOB)

data

types,

which

you

©

Copyright

IBM

Corp.

1993

-

2004

229

might

want

to

use

for

something

like

an

audio

or

video

stream.

The

following

example

illustrates

the

creation

of

a

distinct

type

named

AUDIO:

CREATE

DISTINCT

TYPE

AUDIO

AS

BLOB

(1M)

Although

AUDIO

has

the

same

representation

as

the

built-in

data

type

BLOB,

it

is

considered

to

be

a

separate

type

that

is

not

comparable

to

a

BLOB

or

to

any

other

type.

This

allows

the

creation

of

functions

written

specifically

for

AUDIO

and

assures

that

these

functions

will

not

be

applied

to

any

other

type.

There

are

several

benefits

associated

with

distinct

types:

1.

Extensibility:

By

defining

new

types,

you

can

increase

the

set

of

types

provided

by

DB2

to

support

your

applications.

2.

Flexibility:

You

can

specify

any

semantics

and

behavior

for

your

new

type

by

using

user-defined

functions

(UDFs)

to

augment

the

diversity

of

the

types

available

in

the

system.

3.

Consistent

behavior:

Strong

typing

insures

that

your

distinct

types

will

behave

appropriately.

It

guarantees

that

only

functions

defined

on

your

distinct

type

can

be

applied

to

instances

of

the

distinct

type.

4.

Encapsulation:

The

set

of

functions

and

operators

that

you

can

apply

to

distinct

types

defines

the

behavior

of

your

distinct

types.

This

provides

flexibility

in

the

implementation

since

running

applications

do

not

depend

on

the

internal

representation

that

you

choose

for

your

type.

5.

Performance:

Distinct

types

are

highly

integrated

into

the

database

manager.

Because

distinct

types

are

internally

represented

the

same

way

as

built-in

data

types,

they

share

the

same

efficient

code

used

to

implement

components

such

as

built-in

functions,

comparison

operators,

and

indexes

for

built-in

data

types.

Distinct

types

are

identified

by

qualified

identifiers.

If

the

schema

name

is

not

used

to

qualify

the

distinct

type

name

when

used

in

statements

other

than

CREATE

DISTINCT

TYPE,

DROP

DISTINCT

TYPE,

or

COMMENT

ON

DISTINCT

TYPE,

the

SQL

path

is

searched

in

sequence

for

the

first

schema

with

a

distinct

type

that

matches.

Distinct

types

sourced

on

LONG

VARCHAR,

LONG

VARGRAPHIC,

LOB

types,

or

DATALINK

are

subject

to

the

same

restrictions

as

their

source

type.

However,

certain

functions

and

operators

of

the

source

type

can

be

explicitly

specified

to

apply

to

the

distinct

type

by

defining

user-defined

functions.

(These

functions

are

sourced

on

functions

defined

on

the

source

type

of

the

distinct

type.)

The

comparison

operators

are

automatically

generated

for

user-defined

distinct

types,

except

those

using

LONG

VARCHAR,

LONG

VARGRAPHIC,

BLOB,

CLOB,

DBCLOB,

or

DATALINK

as

the

source

type.

In

addition,

functions

are

generated

to

support

casting

from

the

source

type

to

the

distinct

type,

and

from

the

distinct

type

to

the

source

type.

Related

concepts:

v

“Strong

typing

in

user-defined

distinct

types”

on

page

231

v

“User-defined

types”

on

page

229

Related

tasks:

v

“Creating

distinct

types”

on

page

231

v

“Creating

tables

with

columns

based

on

distinct

types”

on

page

233

v

“Manipulating

distinct

types”

on

page

237

230

Programming

Server

Applications

Related

samples:

v

“dtudt.out

--

HOW

TO

CREATE/USE/DROP

UDTs

(C)”

v

“dtudt.sqc

--

How

to

create,

use,

and

drop

user-defined

distinct

types

(C)”

v

“dtudt.out

--

HOW

TO

CREATE/USE/DROP

UDTs

(C++)”

v

“dtudt.sqC

--

How

to

create,

use,

and

drop

user-defined

distinct

types

(C++)”

v

“DtUdt.java

--

How

to

create,

use

and

drop

user

defined

distinct

types

(JDBC)”

v

“DtUdt.out

--

HOW

TO

CREATE,

USE

AND

DROP

USER

DEFINED

DISTINCT

TYPES

(JDBC)”

v

“DtUdt.out

--

HOW

TO

CREATE,

USE

AND

DROP

USER

DEFINED

DISTINCT

TYPES

(SQLJ)”

v

“DtUdt.sqlj

--

How

to

create,

use

and

drop

user

defined

distinct

types

(SQLj)”

Strong

typing

in

user-defined

distinct

types

One

of

the

most

important

concepts

associated

with

distinct

types

is

strong

typing.

Strong

typing

guarantees

that

only

functions

and

operators

defined

explicitly

on

the

distinct

type

can

be

applied

to

its

instances.

Strong

typing

is

important

to

ensure

that

the

instances

of

your

distinct

types

are

correct.

For

example,

if

you

have

defined

a

function

to

convert

US

dollars

to

Canadian

dollars

according

to

the

current

exchange

rate,

you

do

not

want

this

same

function

to

be

used

to

convert

euros

to

Canadian

dollars

because

it

will

certainly

return

the

wrong

amount.

As

a

consequence

of

strong

typing,

DB2®

does

not

allow

you

to

write

queries

that

compare,

for

example,

distinct

type

instances

with

instances

of

the

source

type

of

the

distinct

type.

For

the

same

reason,

DB2

will

not

let

you

apply

functions

defined

on

other

types

to

distinct

types.

If

you

want

to

compare

instances

of

distinct

types

with

instances

of

another

type,

you

have

to

cast

the

instances

of

one

or

the

other

type.

In

the

same

sense,

you

have

to

cast

the

distinct

type

instance

to

the

type

of

the

parameter

of

a

function

that

is

not

defined

on

a

distinct

type

if

you

want

to

apply

this

function

to

a

distinct

type

instance.

Related

concepts:

v

“User-defined

distinct

types”

on

page

229

Related

tasks:

v

“Creating

distinct

types”

on

page

231

v

“Creating

tables

with

columns

based

on

distinct

types”

on

page

233

Creating

distinct

types

A

user-defined

distinct

type

is

a

data

type

derived

from

an

existing

type,

such

as

an

integer,

decimal,

or

character

type.

When

you

create

distinct

types,

DB2

generates

cast

functions

to

cast

from

the

distinct

type

to

the

source

type,

and

to

cast

from

the

source

type

to

the

distinct

type.

These

functions

are

essential

for

the

manipulation

of

distinct

types

in

queries.

Instances

of

the

same

distinct

type

can

be

compared

to

each

other,

if

the

WITH

COMPARISONS

clause

is

specified

on

the

CREATE

DISTINCT

TYPE

statement

(as

Chapter

7.

User-defined

distinct

types

231

in

the

example

in

the

procedure).

The

WITH

COMPARISONS

clause

cannot

be

specified

if

the

source

data

type

is

a

large

object,

a

DATALINK,

LONG

VARCHAR,

or

LONG

VARGRAPHIC

type.

Prerequisites:

For

the

list

of

privileges

required

to

define

distinct

types,

see

the

CREATE

DISTINCT

TYPE

statement.

Restrictions:

The

source

type

of

the

distinct

type

is

the

data

type

used

by

DB2

to

internally

represent

the

distinct

type.

For

this

reason,

it

must

be

a

built-in

data

type.

Previously

defined

distinct

types

cannot

be

used

as

source

types

of

other

distinct

types.

Procedure:

To

define

a

distinct

type,

issue

the

CREATE

DISTINCT

TYPE

statement,

specifying

a

type

name

and

the

source

type.

For

example,

the

following

statement

defines

a

new

distinct

type

called

new_type,

that

contains

SMALLINT

values:

CREATE

DISTINCT

TYPE

new_type

AS

SMALLINT

WITH

COMPARISONS

Because

the

distinct

type

defined

in

the

above

statement

is

based

on

SMALLINT,

the

WITH

COMPARISONS

parameters

must

be

specified.

To

further

understand

the

application

of

user-defined

distinct

types,

see

the

following

examples

of

distinct

type

definitions

based

on

sample

business

cases:

v

Define

currency-based

distinct

types.

v

Define

a

distinct

type

for

job

applications.

Related

concepts:

v

“Strong

typing

in

user-defined

distinct

types”

on

page

231

v

“User-defined

types”

on

page

229

v

“User-defined

distinct

types”

on

page

229

Related

tasks:

v

“Creating

currency-based

distinct

types”

on

page

235

v

“Creating

a

distinct

type

for

completed

job

application

forms”

on

page

235

v

“Manipulating

distinct

types”

on

page

237

Related

reference:

v

“CREATE

DISTINCT

TYPE

statement”

in

the

SQL

Reference,

Volume

2

Related

samples:

v

“dtudt.out

--

HOW

TO

CREATE/USE/DROP

UDTs

(C)”

v

“dtudt.sqc

--

How

to

create,

use,

and

drop

user-defined

distinct

types

(C)”

v

“dtudt.out

--

HOW

TO

CREATE/USE/DROP

UDTs

(C++)”

v

“dtudt.sqC

--

How

to

create,

use,

and

drop

user-defined

distinct

types

(C++)”

v

“DtUdt.java

--

How

to

create,

use

and

drop

user

defined

distinct

types

(JDBC)”

v

“DtUdt.out

--

HOW

TO

CREATE,

USE

AND

DROP

USER

DEFINED

DISTINCT

TYPES

(JDBC)”

232

Programming

Server

Applications

v

“DtUdt.out

--

HOW

TO

CREATE,

USE

AND

DROP

USER

DEFINED

DISTINCT

TYPES

(SQLJ)”

v

“DtUdt.sqlj

--

How

to

create,

use

and

drop

user

defined

distinct

types

(SQLj)”

Creating

tables

with

columns

based

on

distinct

types

After

you

have

defined

distinct

types,

you

can

start

creating

tables

with

columns

based

on

distinct

types.

Prerequisites:

For

the

list

of

privileges

required

to

define

distinct

types,

see

the

CREATE

DISTINCT

TYPE

statement.

For

the

list

of

privileges

required

to

create

tables,

see

the

CREATE

TABLE

statement.

Procedure:

To

create

a

table

with

columns

based

on

distinct

types:

1.

Define

a

distinct

type:

CREATE

DISTINCT

TYPE

t_educ

AS

SMALLINT

WITH

COMPARISONS

2.

Create

the

table,

naming

the

distinct

type,

T_EDUC

as

a

column

type.

CREATE

TABLE

employee

(empno

CHAR(6)

NOT

NULL,

firstnme

VARCHAR(12)

NOT

NULL,

lastname

VARCHAR(15)

NOT

NULL,

workdept

CHAR(3),

phoneno

CHAR(4),

photo

BLOB(10M)

NOT

NULL,

edlevel

T_EDUC)

IN

RESOURCE

To

further

understand

the

application

of

tables,

see

the

following

examples

of

table

creation

based

on

sample

business

cases:

v

Create

tables

to

track

international

sales.

v

Create

a

table

to

store

filled

job

application

forms.

Related

concepts:

v

“Strong

typing

in

user-defined

distinct

types”

on

page

231

v

“User-defined

types”

on

page

229

v

“User-defined

distinct

types”

on

page

229

Related

tasks:

v

“Creating

tables

to

track

international

sales”

on

page

236

v

“Creating

a

table

to

store

completed

job

application

forms”

on

page

237

v

“Creating

distinct

types”

on

page

231

v

“Manipulating

distinct

types”

on

page

237

v

“Creating

currency-based

distinct

types”

on

page

235

v

“Creating

a

distinct

type

for

completed

job

application

forms”

on

page

235

Related

reference:

v

“CREATE

DISTINCT

TYPE

statement”

in

the

SQL

Reference,

Volume

2

Chapter

7.

User-defined

distinct

types

233

v

“CREATE

TABLE

statement”

in

the

SQL

Reference,

Volume

2

Dropping

user-defined

types

You

can

drop

a

user-defined

type

(UDT)

using

the

DROP

statement.

You

cannot

drop

a

UDT

if

it

is

used:

v

In

a

column

definition

for

an

existing

table

or

view.

v

As

the

type

of

an

existing

typed

table

or

typed

view.

v

As

the

supertype

of

another

structured

type.

The

database

manager

attempts

to

drop

every

routine

that

is

dependent

on

this

UDT.

A

routine

cannot

be

dropped

if

a

view,

trigger,

table

check

constraint,

or

another

routine

is

dependent

on

it.

If

DB2

cannot

drop

a

dependent

routine,

DB2

does

not

drop

the

UDT.

Dropping

a

UDT

invalidates

any

packages

or

cached

dynamic

SQL

statements

that

used

it.

If

you

have

created

a

transform

for

a

UDT,

and

you

plan

to

drop

that

UDT,

consider

dropping

the

associated

transform.

To

drop

a

transform,

issue

a

DROP

TRANSFORM

statement.

Note

that

you

can

only

drop

user-defined

transforms.

You

cannot

drop

built-in

transforms

or

their

associated

group

definitions.

Related

concepts:

v

“User-defined

types”

on

page

229

v

“User-defined

distinct

types”

on

page

229

v

“User-defined

structured

types”

on

page

245

v

“Transform

functions

and

transform

groups”

on

page

284

Related

tasks:

v

“Creating

distinct

types”

on

page

231

v

“Creating

structured

types”

on

page

246

Related

reference:

v

“DROP

statement”

in

the

SQL

Reference,

Volume

2

Related

samples:

v

“dtstruct.out

--

Sample

C++

program

:

dtstruct.sqC

(C++)”

v

“dtstruct.sqC

--

Create,

use,

drop

a

hierarchy

of

structured

types

and

typed

tables

(C++)”

v

“dtudt.out

--

HOW

TO

CREATE/USE/DROP

UDTs

(C++)”

v

“dtudt.sqC

--

How

to

create,

use,

and

drop

user-defined

distinct

types

(C++)”

v

“dtudt.out

--

HOW

TO

CREATE/USE/DROP

UDTs

(C)”

v

“dtudt.sqc

--

How

to

create,

use,

and

drop

user-defined

distinct

types

(C)”

v

“DtUdt.java

--

How

to

create,

use

and

drop

user

defined

distinct

types

(JDBC)”

v

“DtUdt.out

--

HOW

TO

CREATE,

USE

AND

DROP

USER

DEFINED

DISTINCT

TYPES

(JDBC)”

v

“DtUdt.out

--

HOW

TO

CREATE,

USE

AND

DROP

USER

DEFINED

DISTINCT

TYPES

(SQLJ)”

v

“DtUdt.sqlj

--

How

to

create,

use

and

drop

user

defined

distinct

types

(SQLj)”

234

Programming

Server

Applications

Creating

currency-based

distinct

types

Suppose

you

are

writing

applications

that

need

to

handle

different

currencies.

Given

that

conversions

are

necessary

whenever

you

want

to

compare

values

of

different

currencies,

you

want

to

ensure

that

DB2

does

not

allow

these

currencies

to

be

compared

or

manipulated

directly

with

one

another.

Because

distinct

types

are

only

compatible

with

themselves,

you

must

define

one

for

each

currency

that

you

need

to

represent.

Prerequisites:

For

the

list

of

privileges

required

to

define

distinct

types,

see

the

CREATE

DISTINCT

TYPE

statement.

Procedure:

To

define

distinct

types

representing

the

euro

and

the

American

and

Canadian

currencies,

issue

the

following

statements:

CREATE

DISTINCT

TYPE

US_DOLLAR

AS

DECIMAL

(9,3)

WITH

COMPARISONS

CREATE

DISTINCT

TYPE

CANADIAN_DOLLAR

AS

DECIMAL

(9,3)

WITH

COMPARISONS

CREATE

DISTINCT

TYPE

EURO

AS

DECIMAL

(9,3)

WITH

COMPARISONS

Note

that

you

have

to

specify

the

WITH

COMPARISONS

clause

because

comparison

operators

are

supported

on

DECIMAL

(9,3).

Related

concepts:

v

“User-defined

distinct

types”

on

page

229

Related

tasks:

v

“Creating

tables

with

columns

based

on

distinct

types”

on

page

233

v

“Creating

a

distinct

type

for

completed

job

application

forms”

on

page

235

v

“Creating

tables

to

track

international

sales”

on

page

236

Related

reference:

v

“CREATE

DISTINCT

TYPE

statement”

in

the

SQL

Reference,

Volume

2

Creating

a

distinct

type

for

completed

job

application

forms

Suppose

you

would

like

to

keep

incoming

job

application

forms

in

a

DB2

table

and

be

able

to

use

functions

to

extract

the

information

from

these

forms.

You

can

define

a

distinct

type

to

represent

the

forms

in

tables

and

as

parameters

to

functions.

Prerequisites:

For

the

list

of

privileges

required

to

define

distinct

types,

see

the

CREATE

DISTINCT

TYPE

statement.

Procedure:

To

define

a

distinct

type

representing

the

completed

job

application

forms,

issue

the

following

statement:

CREATE

DISTINCT

TYPE

PERSONNEL.APPLICATION_FORM

AS

CLOB(32K)

Chapter

7.

User-defined

distinct

types

235

Because

DB2

does

not

support

comparisons

on

CLOBs,

you

cannot

specify

the

WITH

COMPARISONS

clause.

The

PERSONNEL

schema

is

specified

in

the

above

statement

because

the

schema

intended

to

contain

all

the

distinct

types

and

UDFs

dealing

with

application

forms.

Related

concepts:

v

“User-defined

distinct

types”

on

page

229

Related

tasks:

v

“Creating

tables

with

columns

based

on

distinct

types”

on

page

233

v

“Creating

currency-based

distinct

types”

on

page

235

v

“Creating

a

table

to

store

completed

job

application

forms”

on

page

237

Creating

tables

to

track

international

sales

Suppose

you

want

to

define

tables

to

track

your

company’s

sales

in

different

regions.

You

can

create

tables

using

the

applicable

currency

distinct

type

as

the

column

type

for

a

given

region’s

total

sales

revenue.

Prerequisites:

For

the

list

of

privileges

required

to

create

tables,

see

the

CREATE

TABLE

statement.

Procedure:

To

create

tables

to

track

international

sales:

1.

Create

currency-based

distinct

types.

2.

Issue

the

following

CREATE

TABLE

statements:

CREATE

TABLE

US_SALES

(PRODUCT_ITEM

INTEGER,

MONTH

INTEGER

CHECK

(MONTH

BETWEEN

1

AND

12),

YEAR

INTEGER

CHECK

(YEAR

>

1985),

TOTAL

US_DOLLAR)

CREATE

TABLE

CANADIAN_SALES

(PRODUCT_ITEM

INTEGER,

MONTH

INTEGER

CHECK

(MONTH

BETWEEN

1

AND

12),

YEAR

INTEGER

CHECK

(YEAR

>

1985),

TOTAL

CANADIAN_DOLLAR)

CREATE

TABLE

GERMAN_SALES

(PRODUCT_ITEM

INTEGER,

MONTH

INTEGER

CHECK

(MONTH

BETWEEN

1

AND

12),

YEAR

INTEGER

CHECK

(YEAR

>

1985),

TOTAL

EURO)

Related

concepts:

v

“User-defined

distinct

types”

on

page

229

Related

tasks:

v

“Creating

distinct

types”

on

page

231

v

“Creating

currency-based

distinct

types”

on

page

235

v

“Creating

a

table

to

store

completed

job

application

forms”

on

page

237

236

Programming

Server

Applications

Creating

a

table

to

store

completed

job

application

forms

Suppose

you

need

to

define

a

table

where

you

keep

the

forms

filled

out

by

applicants.

You

can

create

a

table

using

the

distinct

type

PERSONNEL.APPLICATION_FORM

as

a

column

type

to

contain

the

completed

forms.

Prerequisites:

For

the

list

of

privileges

required

to

create

tables,

see

the

CREATE

TABLE

statement.

Procedure:

To

create

a

table

to

contain

completed

job

application

forms:

1.

Create

a

distinct

type

for

a

job

application

form.

2.

Issue

the

following

CREATE

TABLE

statement:

CREATE

TABLE

APPLICATIONS

(ID

SYSIBM.INTEGER,

NAME

VARCHAR

(30),

APPLICATION_DATE

SYSIBM.DATE,

FORM

PERSONNEL.APPLICATION_FORM)

The

distinct

type

name

is

fully

qualified

because

its

qualifier

is

not

the

same

as

the

authorization

ID

and

the

default

function

path

was

not

changed.

Remember

that

whenever

type

and

function

names

are

not

fully

qualified,

DB2

searches

through

the

schemas

listed

in

the

current

function

path

and

looks

for

a

type

or

function

name

matching

the

given

unqualified

name.

Because

SYSIBM

is

always

considered

(if

it

has

been

omitted)

in

the

current

function

path,

you

can

omit

the

qualification

of

built-in

data

types.

Related

concepts:

v

“User-defined

distinct

types”

on

page

229

Related

tasks:

v

“Creating

distinct

types”

on

page

231

v

“Creating

a

distinct

type

for

completed

job

application

forms”

on

page

235

v

“Creating

tables

to

track

international

sales”

on

page

236

Manipulating

distinct

types

Manipulating

distinct

types

Once

you

define

distinct

types

and

create

tables

based

upon

them,

you

can

begin

manipulating

actual

distinctly

typed

values.

Procedure:

To

implement

various

kinds

of

distinct

type

manipulation:

v

Cast

between

distinct

types.

v

Perform

comparisons

between

distinct

types.

v

Perform

comparisons

between

distinct

types

and

constants.

Chapter

7.

User-defined

distinct

types

237

v

Define

sourced

UDFs

for

distinct

types.

v

Perform

assignments

involving

distinct

types.

v

Perform

assignments

involving

distinct

types

in

dynamic

SQL.

v

Perform

assignments

involving

different

distinct

types.

v

Perform

UNION

operations

on

distinctly

typed

columns.

Related

concepts:

v

“User-defined

distinct

types”

on

page

229

Related

tasks:

v

“Casting

between

distinct

types”

on

page

238

v

“Performing

comparisons

involving

distinct

types”

on

page

239

v

“Performing

comparisons

between

distinct

types

and

constants”

on

page

240

v

“Defining

sourced

UDFs

for

distinct

types”

on

page

243

v

“Performing

assignments

involving

distinct

types

in

embedded

SQL”

on

page

240

v

“Performing

assignments

involving

distinct

types

in

dynamic

SQL”

on

page

241

v

“Performing

assignments

involving

different

distinct

types”

on

page

241

v

“Performing

UNION

operations

on

distinctly

typed

columns”

on

page

242

v

“Creating

distinct

types”

on

page

231

v

“Creating

tables

with

columns

based

on

distinct

types”

on

page

233

Related

samples:

v

“dtudt.c

--

How

to

create,

use,

and

drop

user-defined

distinct

types.”

v

“dtudt.out

--

HOW

TO

CREATE/USE/DROP

UDTs

(C)”

v

“dtudt.sqc

--

How

to

create,

use,

and

drop

user-defined

distinct

types

(C)”

v

“dtudt.out

--

HOW

TO

CREATE/USE/DROP

UDTs

(C++)”

v

“dtudt.sqC

--

How

to

create,

use,

and

drop

user-defined

distinct

types

(C++)”

v

“DtUdt.java

--

How

to

create,

use

and

drop

user

defined

distinct

types

(JDBC)”

v

“DtUdt.out

--

HOW

TO

CREATE,

USE

AND

DROP

USER

DEFINED

DISTINCT

TYPES

(JDBC)”

v

“DtUdt.out

--

HOW

TO

CREATE,

USE

AND

DROP

USER

DEFINED

DISTINCT

TYPES

(SQLJ)”

v

“DtUdt.sqlj

--

How

to

create,

use

and

drop

user

defined

distinct

types

(SQLj)”

Casting

between

distinct

types

Suppose

you

want

to

define

a

UDF

that

converts

another

currency

into

U.S.

dollars.

For

the

purposes

of

this

example,

you

can

obtain

the

current

exchange

rate

from

a

table

such

as

the

following:

CREATE

TABLE

exchange_rates(source

CHAR(3),

target

CHAR(3),

rate

DECIMAL(9,3))

The

following

function

can

be

used

to

directly

access

the

values

in

the

exchange_rates

table:

CREATE

FUNCTION

exchange_rate(src

VARCHAR(3),

trg

VARCHAR(3))

RETURNS

DECIMAL(9,3)

RETURN

SELECT

rate

FROM

exchange_rates

WHERE

source

=

src

AND

target

=

trg

238

Programming

Server

Applications

The

currency

exchange

rates

in

the

above

function

are

based

on

the

DECIMAL

type,

not

distinct

types.

To

represent

some

different

currencies,

use

the

following

distinct

type

definitions:

CREATE

DISTINCT

TYPE

CANADIAN_DOLLAR

AS

DECIMAL

(9,3)

WITH

COMPARISONS

CREATE

DISTINCT

TYPE

EURO

AS

DECIMAL(9,3)

WITH

COMPARISONS

CREATE

DISTINCT

TYPE

US_DOLLAR

AS

DECIMAL

(9,3)

WITH

COMPARISONS

To

create

a

UDF

that

converts

CANADIAN_DOLLAR

or

EURO

to

US_DOLLAR

you

need

to

cast

the

values

involved.

Note

that

the

exchange_rate

function

returns

an

exchange

rate

as

a

DECIMAL.

For

example,

a

function

that

converts

values

of

CANADIAN_DOLLAR

to

US_DOLLAR

performs

the

following

steps:

v

cast

the

CANADIAN_DOLLAR

value

to

DECIMAL

v

get

the

exchange

rate

for

converting

the

Canadian

dollar

to

the

U.S.

dollar

from

the

exchange_rate

function,

which

returns

the

exchange

rate

as

a

DECIMAL

value

v

multiply

the

Canadian

dollar

DECIMAL

value

to

the

DECIMAL

exchange

rate

v

cast

this

DECIMAL

value

to

US_DOLLAR

v

return

the

US_DOLLAR

value

The

following

are

instances

of

the

US_DOLLAR

function

(for

both

the

Canadian

dollar

and

the

euro),

which

follow

the

above

steps.

CREATE

FUNCTION

US_DOLLAR(amount

CANADIAN_DOLLAR)

RETURNS

US_DOLLAR

RETURN

US_DOLLAR(DECIMAL(amount)

*

exchange_rate(’CAN’,

’USD’))

CREATE

FUNCTION

US_DOLLAR(amount

EURO)

RETURNS

US_DOLLAR

RETURN

US_DOLLAR(DECIMAL(amount)

*

exchange_rate(’EUR’,

’USD’))

Related

concepts:

v

“User-defined

distinct

types”

on

page

229

Related

tasks:

v

“Creating

distinct

types”

on

page

231

v

“Creating

tables

with

columns

based

on

distinct

types”

on

page

233

v

“Defining

sourced

UDFs

for

distinct

types”

on

page

243

Performing

comparisons

involving

distinct

types

Suppose

you

want

to

know

which

products

sold

more

in

the

United

States

than

in

Canada

and

Germany

for

the

month

of

July,

1999

(7/1999):

SELECT

US.PRODUCT_ITEM,

US.TOTAL

FROM

US_SALES

AS

US,

CANADIAN_SALES

AS

CDN,

GERMAN_SALES

AS

GERMAN

WHERE

US.PRODUCT_ITEM

=

CDN.PRODUCT_ITEM

AND

US.PRODUCT_ITEM

=

GERMAN.PRODUCT_ITEM

AND

US.TOTAL

>

US_DOLLAR

(CDN.TOTAL)

AND

US.TOTAL

>

US_DOLLAR

(GERMAN.TOTAL)

AND

US.MONTH

=

7

AND

US.YEAR

=

1999

AND

CDN.MONTH

=

7

AND

CDN.YEAR

=

1999

AND

GERMAN.MONTH

=

7

AND

GERMAN.YEAR

=

1999

Because

you

cannot

directly

compare

U.S.

dollars

with

Canadian

dollars

or

euros,

use

the

UDF

to

cast

the

amount

in

Canadian

dollars

to

US

dollars,

and

the

UDF

to

cast

the

amount

in

euros

to

U.S.

dollars.

You

should

not

cast

them

all

to

DECIMAL

Chapter

7.

User-defined

distinct

types

239

and

compare

the

converted

DECIMAL

values

because

the

amounts

are

not

monetarily

comparable.

That

is,

the

amounts

are

not

in

the

same

currency.

Related

concepts:

v

“User-defined

distinct

types”

on

page

229

Related

tasks:

v

“Creating

distinct

types”

on

page

231

v

“Creating

tables

with

columns

based

on

distinct

types”

on

page

233

v

“Casting

between

distinct

types”

on

page

238

Performing

comparisons

between

distinct

types

and

constants

Suppose

you

want

to

know

which

products

sold

more

than

U.S.

$100

000.00

in

the

United

States

in

the

month

of

July,

1999

(7/99).

SELECT

PRODUCT_ITEM

FROM

US_SALES

WHERE

TOTAL

>

US_DOLLAR

(100000)

AND

month

=

7

AND

year

=

1999

Because

you

cannot

compare

US

dollars

with

instances

of

the

source

type

of

U.S.

dollars

(that

is,

DECIMAL)

directly,

you

have

used

the

cast

function

provided

by

DB2

to

cast

from

DECIMAL

to

U.S.

dollars.

You

can

also

use

the

other

cast

function

provided

by

DB2

(that

is,

the

one

to

cast

from

U.S.

dollars

to

DECIMAL)

and

cast

the

column

total

to

DECIMAL.

Either

way

you

decide

to

cast,

from

or

to

the

distinct

type,

you

can

use

the

cast

specification

notation

to

perform

the

casting,

or

the

functional

notation.

That

is,

you

could

have

written

the

above

query

as:

SELECT

PRODUCT_ITEM

FROM

US_SALES

WHERE

TOTAL

>

CAST

(100000

AS

us_dollar)

AND

MONTH

=

7

AND

YEAR

=

1999

Related

concepts:

v

“User-defined

distinct

types”

on

page

229

Related

tasks:

v

“Creating

distinct

types”

on

page

231

v

“Creating

tables

with

columns

based

on

distinct

types”

on

page

233

v

“Casting

between

distinct

types”

on

page

238

Performing

assignments

involving

distinct

types

in

embedded

SQL

Suppose

you

want

to

store

the

job

application

form

completed

by

a

new

applicant

into

the

database.

You

can

define

a

host

variable

containing

the

character

string

value

used

to

represent

the

completed

form:

EXEC

SQL

BEGIN

DECLARE

SECTION;

SQL

TYPE

IS

CLOB(32K)

hv_form;

EXEC

SQL

END

DECLARE

SECTION;

/*

Code

to

fill

hv_form

*/

240

Programming

Server

Applications

INSERT

INTO

APPLICATIONS

VALUES

(134523,

’Peter

Holland’,

CURRENT

DATE,

:hv_form)

You

do

not

explicitly

invoke

the

cast

function

to

convert

the

host

variable

to

the

distinct

type

personal.application_form

because

DB2

lets

you

assign

instances

of

the

source

type

of

a

distinct

type

to

targets

having

that

distinct

type.

Related

concepts:

v

“User-defined

distinct

types”

on

page

229

Related

tasks:

v

“Creating

distinct

types”

on

page

231

v

“Creating

tables

with

columns

based

on

distinct

types”

on

page

233

v

“Defining

sourced

UDFs

for

distinct

types”

on

page

243

Performing

assignments

involving

distinct

types

in

dynamic

SQL

Suppose

you

want

to

store

the

job

application

form

completed

by

a

new

applicant

into

the

database.

You

have

defined

a

host

variable

containing

the

character

string

value

used

to

represent

the

completed

form.

To

use

dynamic

SQL,

you

can

use

parameter

markers

as

follows:

EXEC

SQL

BEGIN

DECLARE

SECTION;

long

id;

char

name[30];

SQL

TYPE

IS

CLOB(32K)

form;

char

command[80];

EXEC

SQL

END

DECLARE

SECTION;

/*

Code

to

fill

host

variables

*/

strcpy(command,"INSERT

INTO

APPLICATIONS

VALUES");

strcat(command,"(?,

?,

CURRENT

DATE,

CAST

(?

AS

CLOB(32K)))");

EXEC

SQL

PREPARE

APP_INSERT

FROM

:command;

EXEC

SQL

EXECUTE

APP_INSERT

USING

:id,

:name,

:form;

This

makes

use

of

DB2’s

cast

specification

to

tell

DB2

that

the

type

of

the

parameter

marker

is

CLOB(32K),

a

type

that

is

assignable

to

the

distinct

type

column.

Remember

that

you

cannot

declare

a

host

variable

of

a

distinct

type,

since

host

languages

do

not

support

distinct

types.

Therefore,

you

cannot

specify

that

the

type

of

a

parameter

marker

is

a

distinct

type.

Related

concepts:

v

“User-defined

distinct

types”

on

page

229

Related

tasks:

v

“Creating

distinct

types”

on

page

231

v

“Creating

tables

with

columns

based

on

distinct

types”

on

page

233

Performing

assignments

involving

different

distinct

types

Suppose

you

have

defined

two

sourced

UDFs

on

the

built-in

SUM

function

to

support

SUM

on

U.S.

and

Canadian

dollars:

Chapter

7.

User-defined

distinct

types

241

CREATE

FUNCTION

SUM

(CANADIAN_DOLLAR)

RETURNS

CANADIAN_DOLLAR

SOURCE

SYSIBM.SUM

(DECIMAL())

CREATE

FUNCTION

SUM

(US_DOLLAR)

RETURNS

US_DOLLAR

SOURCE

SYSIBM.SUM

(DECIMAL())

Now

suppose

your

supervisor

requests

that

you

maintain

the

annual

total

sales

in

U.S.

dollars

of

each

product

and

in

each

region,

in

separate

tables:

CREATE

TABLE

US_SALES_94

(PRODUCT_ITEM

INTEGER,

TOTAL

US_DOLLAR)

CREATE

TABLE

GERMAN_SALES_94

(PRODUCT_ITEM

INTEGER,

TOTAL

US_DOLLAR)

CREATE

TABLE

CANADIAN_SALES_94

(PRODUCT_ITEM

INTEGER,

TOTAL

US_DOLLAR)

INSERT

INTO

US_SALES_94

SELECT

PRODUCT_ITEM,

SUM

(TOTAL)

FROM

US_SALES

WHERE

YEAR

=

1994

GROUP

BY

PRODUCT_ITEM

INSERT

INTO

GERMAN_SALES_94

SELECT

PRODUCT_ITEM,

US_DOLLAR

(SUM

(TOTAL))

FROM

GERMAN_SALES

WHERE

YEAR

=

1994

GROUP

BY

PRODUCT_ITEM

INSERT

INTO

CANADIAN_SALES_94

SELECT

PRODUCT_ITEM,

US_DOLLAR

(SUM

(TOTAL))

FROM

CANADIAN_SALES

WHERE

YEAR

=

1994

GROUP

BY

PRODUCT_ITEM

You

explicitly

convert

the

amounts

in

Canadian

dollars

and

euros

to

US

dollars

since

different

distinct

types

are

not

directly

assignable

to

each

other.

You

cannot

use

the

cast

specification

syntax

because

distinct

types

can

only

be

cast

to

their

own

source

type.

Related

concepts:

v

“User-defined

distinct

types”

on

page

229

Related

tasks:

v

“Creating

distinct

types”

on

page

231

v

“Creating

tables

with

columns

based

on

distinct

types”

on

page

233

Performing

UNION

operations

on

distinctly

typed

columns

Suppose

you

would

like

to

provide

your

American

users

with

a

view

containing

all

the

sales

of

every

product

of

your

company:

CREATE

VIEW

ALL_SALES

AS

SELECT

PRODUCT_ITEM,

MONTH,

YEAR,

TOTAL

FROM

US_SALES

UNION

SELECT

PRODUCT_ITEM,

MONTH,

YEAR,

US_DOLLAR

(TOTAL)

242

Programming

Server

Applications

FROM

CANADIAN_SALES

UNION

SELECT

PRODUCT_ITEM,

MONTH,

YEAR,

US_DOLLAR

(TOTAL)

FROM

GERMAN_SALES

You

cast

Canadian

dollars

to

US

dollars

and

euros

to

US

dollars

because

distinct

types

are

union

compatible

only

with

the

same

distinct

type.

The

above

example

makes

use

of

the

UDFs

defined

in

Casting

between

distinct

types

to

cast

between

the

currencies,

which

results

in

the

use

of

functional

notation

instead

of

a

cast

specification.

Related

concepts:

v

“User-defined

distinct

types”

on

page

229

Related

tasks:

v

“Creating

distinct

types”

on

page

231

v

“Creating

tables

with

columns

based

on

distinct

types”

on

page

233

v

“Casting

between

distinct

types”

on

page

238

Defining

sourced

UDFs

for

distinct

types

Suppose

you

have

defined

a

sourced

UDF

on

the

built-in

SUM

function

to

support

SUM

on

euros:

CREATE

FUNCTION

SUM

(EUROS)

RETURNS

EUROS

SOURCE

SYSIBM.SUM

(DECIMAL())

You

want

to

know

the

total

of

sales

in

Germany

for

each

product

in

the

year

of

1994.

You

would

like

to

obtain

the

total

sales

in

US

dollars:

SELECT

PRODUCT_ITEM,

US_DOLLAR

(SUM

(TOTAL))

FROM

GERMAN_SALES

WHERE

YEAR

=

1994

GROUP

BY

PRODUCT_ITEM

You

could

not

write

SUM

(us_dollar

(total)),

unless

you

had

defined

a

SUM

function

on

US

dollar

in

a

manner

similar

to

the

above.

Related

concepts:

v

“User-defined

distinct

types”

on

page

229

Related

tasks:

v

“Creating

distinct

types”

on

page

231

v

“Creating

tables

with

columns

based

on

distinct

types”

on

page

233

v

“Performing

assignments

involving

distinct

types

in

embedded

SQL”

on

page

240

Chapter

7.

User-defined

distinct

types

243

244

Programming

Server

Applications

Chapter

8.

User-defined

structured

types

User-defined

structured

types

.

.

.

.

.

.

.

. 245

Creating

structured

types

.

.

.

.

.

.

.

.

. 246

Storing

instances

of

structured

types

.

.

.

.

. 247

Instantiability

in

structured

types

.

.

.

.

.

.

. 248

Structured

type

hierarchies

.

.

.

.

.

.

.

.

. 248

Creating

a

structured

type

hierarchy

.

.

.

.

.

. 249

Defining

behavior

for

structured

types

.

.

.

.

. 251

Dynamic

dispatch

of

methods

.

.

.

.

.

.

.

. 251

System-generated

routines

for

structured

types

.

. 253

Comparison

and

casting

functions

for

structured

types

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 253

Constructor

functions

for

structured

types

.

.

. 254

Mutator

methods

for

structured

types

.

.

.

. 254

Observer

methods

for

structured

types

.

.

.

. 254

Typed

tables

.

.

.

.

.

.

.

.

.

.

.

.

.

. 255

Typed

tables

.

.

.

.

.

.

.

.

.

.

.

.

. 255

Creating

typed

tables

.

.

.

.

.

.

.

.

.

. 255

Dropping

typed

tables

.

.

.

.

.

.

.

.

. 258

Substitutability

in

typed

tables

.

.

.

.

.

. 259

Storing

objects

in

typed

table

rows

.

.

.

.

. 260

Defining

system-generated

object

identifiers

.

. 261

Defining

constraints

on

object

identifier

columns

263

Reference

types

.

.

.

.

.

.

.

.

.

.

.

. 264

Reference

types

.

.

.

.

.

.

.

.

.

.

. 264

Relationships

between

objects

in

typed

tables

265

Defining

semantic

relationships

with

references

.

.

.

.

.

.

.

.

.

.

.

. 266

Referential

integrity

versus

scoped

references

268

Typed

views

.

.

.

.

.

.

.

.

.

.

.

.

.

. 269

Typed

views

.

.

.

.

.

.

.

.

.

.

.

.

. 269

Creating

typed

views

.

.

.

.

.

.

.

.

.

. 269

Altering

typed

views

.

.

.

.

.

.

.

.

.

. 271

Dropping

typed

views

.

.

.

.

.

.

.

.

. 272

Querying

typed

tables

and

typed

views

.

.

.

. 272

Issuing

queries

to

dereference

references

.

.

. 272

Returning

objects

of

a

particular

type

using

ONLY

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 274

Restricting

returned

types

using

a

TYPE

predicate

.

.

.

.

.

.

.

.

.

.

.

.

.

. 275

Returning

all

possible

types

using

OUTER

.

. 275

Structured

types

as

column

types

.

.

.

.

.

.

. 276

Storing

structured

type

objects

in

table

columns

276

Inserting

structured

type

attributes

into

columns

278

Defining

and

altering

tables

with

structured

type

columns

.

.

.

.

.

.

.

.

.

.

.

. 279

Defining

types

with

structured

type

attributes

279

Inserting

rows

that

contain

structured

type

values

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 280

Modifying

structured

type

values

in

columns

281

Retrieving

and

modifying

structured

type

values

in

columns

.

.

.

.

.

.

.

.

.

. 281

Retrieving

structured

type

attributes

.

.

.

. 282

Accessing

the

attributes

of

subtypes

.

.

.

. 283

Modifying

structured

type

attributes

.

.

. 283

Returning

information

about

a

structured

type

.

.

.

.

.

.

.

.

.

.

.

.

.

. 284

Transform

functions

and

transform

groups

.

.

. 284

Transform

functions

and

transform

groups

.

. 284

Recommendations

for

naming

transform

groups

285

Specification

of

transform

groups

.

.

.

.

.

. 286

Specification

of

transform

groups

.

.

.

.

. 286

Specifying

transform

groups

for

external

routines

.

.

.

.

.

.

.

.

.

.

.

.

. 287

Specifying

transform

groups

for

dynamic

SQL

.

.

.

.

.

.

.

.

.

.

.

.

.

. 287

Specifying

transform

groups

for

static

SQL

287

Creating

the

mapping

to

the

host

language

program

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 288

Host

language

program

mappings

with

transform

functions

.

.

.

.

.

.

.

.

.

. 288

Function

transforms

.

.

.

.

.

.

.

.

.

. 289

Implementing

function

transforms

using

SQL-bodied

routines

.

.

.

.

.

.

.

.

.

. 291

Passing

structured

type

parameters

to

external

routines

.

.

.

.

.

.

.

.

.

.

.

.

.

. 292

Client

transforms

.

.

.

.

.

.

.

.

.

.

. 294

Implementing

client

transforms

using

external

UDFs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 296

Implementing

client

transforms

for

binding

in

from

a

client

using

external

UDFs

.

.

.

.

. 296

Data

conversion

considerations

.

.

.

.

.

. 297

Transform

function

requirements

.

.

.

.

.

. 298

Retrieving

subtype

data

from

DB2

.

.

.

.

. 299

Returning

subtype

data

to

DB2

.

.

.

.

.

. 302

Structured

type

host

Variables

.

.

.

.

.

.

.

. 305

Declaring

structured

type

host

variables

.

.

. 305

Describing

a

structured

type

.

.

.

.

.

.

. 305

User-defined

structured

types

A

structured

type

is

a

user-defined

data

type

containing

one

or

more

named

attributes,

each

of

which

has

a

data

type.

Attributes

are

properties

that

describe

an

instance

of

a

type.

A

geometric

shape,

for

example,

might

have

attributes

such

as

its

list

of

Cartesian

coordinates.

A

person

might

have

attributes

of

name,

address,

and

so

on.

A

department

might

have

attributes

of

a

name

or

some

other

kind

of

ID.

©

Copyright

IBM

Corp.

1993

-

2004

245

A

structured

type

also

includes

a

set

of

method

specifications.

Methods

enable

you

to

define

behaviors

for

structured

types.

Like

user-defined

functions

(UDFs),

methods

are

routines

that

extend

SQL.

In

the

case

of

methods,

however,

the

behavior

is

integrated

solely

with

a

particular

structured

type.

A

structured

type

can

be

used

as

the

type

of

a

table,

view,

or

column.

When

used

as

the

type

for

a

table

or

view,

that

table

or

view

is

known

as

a

typed

table

or

typed

view

respectively.

For

typed

tables

and

typed

views,

the

names

and

data

types

of

the

attributes

of

the

structured

type

become

the

names

and

data

types

of

the

columns

of

the

typed

table

or

typed

view.

Rows

of

the

typed

table

or

typed

view

can

be

thought

of

as

a

representation

of

instances

of

the

structured

type.

A

type

cannot

be

dropped

when

certain

other

objects

use

the

type,

either

directly

or

indirectly.

For

example,

a

type

cannot

be

dropped

if

a

table

or

view

column

makes

a

direct

or

indirect

use

of

the

type.

Related

concepts:

v

“User-defined

types”

on

page

229

v

“Typed

tables”

on

page

255

v

“Typed

views”

on

page

269

Related

tasks:

v

“Creating

structured

types”

on

page

246

v

“Storing

instances

of

structured

types”

on

page

247

v

“Defining

behavior

for

structured

types”

on

page

251

v

“Dropping

user-defined

types”

on

page

234

Related

samples:

v

“dtstruct.out

--

Sample

C++

program

:

dtstruct.sqC

(C++)”

v

“dtstruct.sqC

--

Create,

use,

drop

a

hierarchy

of

structured

types

and

typed

tables

(C++)”

Creating

structured

types

A

structured

type

is

a

user-defined

type

that

contains

one

or

more

attributes,

each

of

which

has

a

name

and

a

data

type

of

its

own.

A

structured

type

can

serve

as

the

type

of

a

table

or

view

in

which

each

column

of

the

table

derives

its

name

and

data

type

from

one

of

the

attributes

of

the

structured

type.

A

structured

type

can

also

serve

as

a

type

of

a

column

or

a

type

for

an

argument

to

a

routine.

Prerequisites:

For

the

list

of

privileges

required

to

define

structured

types,

see

the

CREATE

TYPE

statement.

Procedure:

To

define

a

structured

type

to

represent

a

person,

with

age

and

address

attributes,

issue

the

following

statement:

CREATE

TYPE

Person_t

AS

(Name

VARCHAR(20),

Age

INT,

246

Programming

Server

Applications

Address

Address_t)

INSTANTIABLE

REF

USING

VARCHAR(13)

FOR

BIT

DATA

MODE

DB2SQL;

Unlike

distinct

types,

the

attributes

of

structured

types

can

be

composed

of

types

other

than

the

built-in

DB2

data

types.

The

above

type

declaration

includes

an

attribute

called

Address

whose

source

type

is

another

structured

type,

Address_t.

Related

concepts:

v

“User-defined

distinct

types”

on

page

229

v

“User-defined

structured

types”

on

page

245

v

“Structured

type

hierarchies”

on

page

248

Related

tasks:

v

“Storing

instances

of

structured

types”

on

page

247

v

“Creating

a

structured

type

hierarchy”

on

page

249

v

“Dropping

user-defined

types”

on

page

234

Related

reference:

v

“CREATE

TYPE

(Structured)

statement”

in

the

SQL

Reference,

Volume

2

Related

samples:

v

“dtstruct.out

--

Sample

C++

program

:

dtstruct.sqC

(C++)”

v

“dtstruct.sqC

--

Create,

use,

drop

a

hierarchy

of

structured

types

and

typed

tables

(C++)”

Storing

instances

of

structured

types

A

structured

type

instance

can

be

stored

in

the

database

in

two

ways:

v

As

a

row

in

a

table,

in

which

each

column

of

the

table

is

an

attribute

of

the

instance

of

the

type.

If

you

need

to

refer

to

an

instance

from

other

tables,

you

must

use

typed

tables.

To

store

objects

as

rows

in

a

table,

the

table

is

defined

with

the

structured

type,

rather

than

by

specifying

individual

columns

in

the

table

definition:

CREATE

TABLE

Person

OF

Person_t

...

Each

column

in

the

table

derives

its

name

and

data

type

from

one

of

the

attributes

of

the

indicated

structured

type.

Such

tables

are

known

as

typed

tables.

v

As

a

value

in

a

column.

To

store

objects

in

table

columns,

the

column

is

defined

using

the

structured

type

as

its

type.

The

following

statement

creates

a

Properties

table

that

has

a

structured

type

Address

that

is

of

the

Address_t

structured

type:

CREATE

TABLE

Properties

(ParcelNum

INT,

Photo

BLOB(2K),

Address

Address_t)

...

Related

concepts:

v

“User-defined

structured

types”

on

page

245

Chapter

8.

User-defined

structured

types

247

v

“Typed

tables”

on

page

255

Related

tasks:

v

“Storing

objects

in

typed

table

rows”

on

page

260

v

“Storing

structured

type

objects

in

table

columns”

on

page

276

Instantiability

in

structured

types

Types

can

also

be

defined

to

be

INSTANTIABLE

or

NOT

INSTANTIABLE.

By

default,

types

are

instantiable,

which

means

that

an

instance

of

that

object

can

be

created.

Conversely,

noninstantiable

types

serve

as

models

intended

for

further

refinement

in

the

type

hierarchy.

For

example,

if

you

define

Person_t

using

the

NOT

INSTANTIABLE

clause,

then

you

cannot

store

any

instances

of

a

person

in

the

database

and

you

cannot

create

a

table

or

view

using

Person_t.

Instead,

you

can

only

store

instances

of

Employee_t

or

other

subtypes

of

Person_t

that

you

define.

Related

concepts:

v

“User-defined

structured

types”

on

page

245

Related

tasks:

v

“Creating

structured

types”

on

page

246

Related

reference:

v

“CREATE

TYPE

(Structured)

statement”

in

the

SQL

Reference,

Volume

2

Structured

type

hierarchies

It

is

certainly

possible

to

model

objects

such

as

people

using

traditional

relational

tables

and

columns.

However,

structured

types

offer

an

additional

property

of

inheritance.

That

is,

a

structured

type

can

have

subtypes

that

reuse

all

of

its

attributes

and

contain

additional

attributes

specific

to

the

subtype.

The

original

type

is

the

supertype.

For

example,

the

structured

type

Person_t

might

contain

attributes

for

Name,

Age,

and

Address.

A

subtype

of

Person_t

might

be

Employee_t

that

contains

all

of

the

attributes

Name,

Age,

and

Address

and,

in

addition,

contains

attributes

for

SerialNum,

Salary,

and

BusinessUnit.

A

set

of

subtypes

based

(at

some

level)

on

the

same

supertype

is

known

as

a

type

hierarchy.

For

example,

a

data

model

may

need

to

represent

a

special

type

of

employee

called

a

manager.

Managers

have

more

attributes

than

employees

who

are

not

managers.

The

Manager_t

type

inherits

the

attributes

defined

for

an

employee,

but

also

is

defined

with

some

additional

attributes

of

its

own,

such

as

a

special

bonus

attribute

that

is

only

available

to

managers.

Employee_t (SerialNum, Salary, Dept)Name, Age, Address,

Person_t (Name, Age, Address)

Figure

3.

Structured

type

Employee_t

inherits

attributes

from

supertype

Person_t

248

Programming

Server

Applications

The

following

figure

presents

an

illustration

of

the

various

subtypes

that

might

be

derived

from

person

and

employee

types:

In

Figure

4,

the

person

type

Person_t

is

the

root

type

of

the

hierarchy.

Person_t

is

also

the

supertype

of

the

types

below

it--in

this

case,

the

type

named

Employee_t

and

the

type

named

Student_t.

The

relationships

among

subtypes

and

supertypes

are

transitive;

in

other

words,

the

relationship

between

subtype

and

supertype

exists

throughout

the

entire

type

hierarchy.

So,

Person_t

is

also

a

supertype

of

types

Manager_t

and

Architect_t.

The

department

type,

BusinessUnit_t

is

considered

a

trivial

type

hierarchy.

It

is

the

root

of

a

hierarchy

with

no

subtypes.

Related

concepts:

v

“User-defined

structured

types”

on

page

245

Related

tasks:

v

“Creating

structured

types”

on

page

246

v

“Creating

a

structured

type

hierarchy”

on

page

249

Creating

a

structured

type

hierarchy

The

following

figure

presents

an

illustration

of

a

structured

type

hierarchy:

To

create

the

BusinessUnit_t

type,

issue

the

following

CREATE

TYPE

SQL

statement:

Person_t

BusinessUnit_t

Employee_t

Manager_t

Student_t

Architect_t

Figure

4.

Type

hierarchies

(BusinessUnit_t

and

Person_t)

Person_t

BusinessUnit_t

Employee_t

Manager_t

Student_t

Architect_t

Figure

5.

Type

hierarchies

(BusinessUnit_t

and

Person_t)

Chapter

8.

User-defined

structured

types

249

CREATE

TYPE

BusinessUnit_t

AS

(Name

VARCHAR(20),

Headcount

INT)

MODE

DB2SQL;

To

create

the

Person_t

type

hierarchy,

issue

the

following

SQL

statements:

CREATE

TYPE

Person_t

AS

(Name

VARCHAR(20),

Age

INT,

Address

Address_t)

REF

USING

VARCHAR(13)

FOR

BIT

DATA

MODE

DB2SQL;

CREATE

TYPE

Employee_t

UNDER

Person_t

AS

(SerialNum

INT,

Salary

DECIMAL

(9,2),

Dept

REF(BusinessUnit_t))

MODE

DB2SQL;

CREATE

TYPE

Student_t

UNDER

Person_t

AS

(SerialNum

CHAR(6),

GPA

DOUBLE)

MODE

DB2SQL;

CREATE

TYPE

Manager_t

UNDER

Employee_t

AS

(Bonus

DECIMAL

(7,2))

MODE

DB2SQL;

CREATE

TYPE

Architect_t

UNDER

Employee_t

AS

(StockOption

INTEGER)

MODE

DB2SQL;

Person_t

has

three

attributes:

Name,

Age

and

Address.

Its

two

subtypes,

Employee_t

and

Student_t,

each

inherit

the

attributes

of

Person_t

and

also

have

several

additional

attributes

that

are

specific

to

their

particular

types.

For

example,

although

both

employees

and

students

have

serial

numbers,

the

format

used

for

student

serial

numbers

is

different

from

the

format

used

for

employee

serial

numbers.

Finally,

Manager_t

and

Architect_t

are

both

subtypes

of

Employee_t;

they

inherit

all

the

attributes

of

Employee_t

and

extend

them

further

as

appropriate

for

their

types.

Thus,

an

instance

of

type

Manager_t

will

have

a

total

of

seven

attributes:

Name,

Age,

Address,

SerialNum,

Salary,

Dept,

and

Bonus.

Related

concepts:

v

“User-defined

structured

types”

on

page

245

v

“Structured

type

hierarchies”

on

page

248

Related

tasks:

v

“Creating

structured

types”

on

page

246

v

“Creating

typed

tables”

on

page

255

Related

reference:

v

“CREATE

TYPE

(Structured)

statement”

in

the

SQL

Reference,

Volume

2

Related

samples:

v

“dtstruct.out

--

Sample

C++

program

:

dtstruct.sqC

(C++)”

v

“dtstruct.sqC

--

Create,

use,

drop

a

hierarchy

of

structured

types

and

typed

tables

(C++)”

250

Programming

Server

Applications

Defining

behavior

for

structured

types

To

define

behaviors

for

structured

types,

you

can

create

user-defined

methods.

You

cannot

create

methods

for

distinct

types.

Creating

a

method

is

similar

to

creating

a

function,

with

the

exception

that

methods

are

created

specifically

for

a

type,

so

that

the

type

and

its

behavior

are

tightly

integrated.

The

method

specification

must

be

associated

with

the

type

before

you

issue

the

CREATE

METHOD

statement.

The

following

statement

adds

the

method

specification

for

a

method

called

calc_bonus

to

the

Employee_t

type:

ALTER

TYPE

Employee_t

ADD

METHOD

calc_bonus

(rate

DOUBLE)

RETURNS

DECIMAL(7,2)

LANGUAGE

SQL

CONTAINS

SQL

NO

EXTERNAL

ACTION

DETERMINISTIC;

Once

you

have

associated

the

method

specification

with

the

type,

you

can

define

the

behavior

for

the

type

by

creating

the

method

as

either

an

external

method

or

an

SQL-bodied

method,

according

to

the

method

specification.

For

example,

the

following

statement

registers

an

SQL

method

called

calc_bonus

that

resides

in

the

same

schema

as

the

type

Employee_t:

CREATE

METHOD

calc_bonus

(rate

DOUBLE)

RETURNS

DECIMAL(7,2)

FOR

Employee_t

RETURN

SELF..salary

*

rate;

You

can

create

as

many

methods

named

calc_bonus

as

you

like,

as

long

as

they

have

different

numbers

or

types

of

parameters,

or

are

defined

for

types

in

different

type

hierarchies.

In

other

words,

you

cannot

create

another

method

named

calc_bonus

for

Architect_t

that

has

the

same

parameter

types

and

same

number

of

parameters.

Related

concepts:

v

“User-defined

structured

types”

on

page

245

v

“Dynamic

dispatch

of

methods”

on

page

251

Related

tasks:

v

“Creating

structured

types”

on

page

246

Related

reference:

v

“ALTER

TYPE

(Structured)

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

TABLE

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

METHOD

statement”

in

the

SQL

Reference,

Volume

2

Dynamic

dispatch

of

methods

The

behavior

for

a

structured

type

is

represented

by

its

methods.

These

methods

can

only

be

invoked

against

instances

of

their

structured

type.

When

a

subtype

is

created,

among

the

attributes

it

inherits

are

the

methods

defined

for

the

supertype.

Hence,

a

supertype’s

methods

can

also

be

run

against

any

instances

of

its

subtypes.

Chapter

8.

User-defined

structured

types

251

If

you

do

not

want

a

method

defined

for

a

supertype

to

be

used

for

a

particular

subtype,

you

can

override

the

method.

To

override

a

method

means

to

reimplement

it

specifically

for

a

given

subtype.

This

facilitates

the

dynamic

dispatch

of

methods

(also

known

as

polymorphism),

where

an

application

will

execute

the

most

specific

method

depending

on

the

type

of

the

structured

type

instance

(for

example,

where

it

is

situated

in

the

structured

type

hierarchy).

To

define

an

overriding

method,

use

the

CREATE

TYPE

(or

ALTER

TYPE)

statement,

and

specify

the

OVERRIDING

clause

before

the

METHOD

clause.

If

OVERRIDING

is

not

specified,

the

original

method

(belonging

to

the

supertype)

will

be

used.

For

an

overriding

method

to

be

defined,

the

following

conditions

must

be

met:

v

The

type

you

are

creating

(or

altering)

must

be

a

subtype

of

the

structured

type

whose

method

you

intend

to

override.

v

The

signature

(the

method’s

name

and

parameter

list)

of

the

method

you

are

declaring

is

identical

to

that

of

a

method

belonging

to

the

supertype.

v

An

overriding

method

must

implicitly

override

exactly

one

original

method.

v

The

routine

you

intend

to

override

is

a

user-defined

structured

type

instance

method.

v

The

original

method

is

not

declared

with

PARAMETER

STYLE

JAVA.

The

following

example

demonstrates

a

sample

scenario

for

the

overriding

of

methods:

Data

types:

CREATE

TYPE

a

AS

(z

VARCHAR(20))

METHOD

foo(i

INTEGER)

RETURNS

VARCHAR(80)

LANGUAGE

SQL;

CREATE

TYPE

b

UNDER

a

AS

(y

VARCHAR(20))

OVERRIDING

METHOD

foo(i

INTEGER)

RETURNS

VARCHAR(80);

CREATE

TYPE

c

UNDER

a

AS

(x

VARCHAR(20))

OVERRIDING

METHOD

foo(i

INTEGER)

RETURNS

VARCHAR(80);

CREATE

TYPE

d

UNDER

b

AS

(w

VARCHAR(20))

OVERRIDING

METHOD

foo(i

INTEGER)

RETURNS

VARCHAR(80);

In

this

situation,

a

is

the

supertype.

Types

b

and

c

are

subtypes

of

a.

Finally,

d

is

the

subtype

of

b

Methods:

CREATE

METHOD

foo(i

INTEGER)

FOR

a

RETURN

"In

method

foo_a.

Input:

"

|

char(i)

|

self..z

|

".";

CREATE

METHOD

foo(i

INTEGER)

FOR

b

RETURN

"In

method

foo_b.

Input:

"

|

char(i)

|

self..z

|

"

y

=

"

|

self..y

|

".";

CREATE

METHOD

foo(i

INTEGER)

FOR

c

RETURN

"In

method

foo_c.

Input:

"

|

char(i)

|

self..z

|

"

y

=

"

|

self..y

|

"

x

=

"

|

self..x

|

".";

CREATE

METHOD

foo(i

INTEGER)

FOR

d

RETURN

"In

method

foo_d.

Input:

"

|

char(i)

|

self..z

|

"

y

=

"

|

self..y

|

"

w

=

"

|

self..w

|

".";

252

Programming

Server

Applications

The

original

method

here

is

fooA.

fooB,

fooC,

and

fooD

explicitly

override

fooA.

fooD

implicitly

overrides

fooB

and

fooA.

Similarly,

fooB

implicitly

overrides

fooA,

and

fooC

implicitly

overrides

fooA.

(Note

that

explicit

overriding

implies

implicit

overriding.)

Related

concepts:

v

“User-defined

structured

types”

on

page

245

v

“Structured

type

hierarchies”

on

page

248

Related

tasks:

v

“Creating

structured

types”

on

page

246

v

“Defining

behavior

for

structured

types”

on

page

251

Related

reference:

v

“ALTER

TYPE

(Structured)

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

TYPE

(Structured)

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

METHOD

statement”

in

the

SQL

Reference,

Volume

2

System-generated

routines

for

structured

types

Comparison

and

casting

functions

for

structured

types

DB2®

automatically

creates

functions

that

cast

values

between

the

reference

type

and

its

representation

type,

in

both

directions.

The

CREATE

TYPE

statement

has

an

optional

CAST

WITH

clause

that

allows

you

to

choose

the

names

of

these

two

cast

functions.

By

default,

the

names

of

the

cast

functions

are

the

same

as

the

names

of

the

structured

type

and

its

reference

representation

type.

For

example,

the

CREATE

TYPE

Person_t

statement

automatically

creates

functions

with

the

following

format:

CREATE

FUNCTION

VARCHAR(REF(Person_t))

RETURNS

VARCHAR

DB2

also

creates

the

function

that

does

the

inverse

operation:

CREATE

FUNCTION

Person_t(VARCHAR(13))

RETURNS

REF(Person_t)

You

will

use

these

cast

functions

whenever

you

need

to

insert

a

new

value

into

the

typed

table

or

when

you

want

to

compare

a

reference

value

to

another

value.

DB2

also

creates

functions

that

let

you

compare

reference

types

using

the

following

comparison

operators:

=,

<>,

<,

<=,

>,

and

>=.

Related

concepts:

v

“User-defined

structured

types”

on

page

245

v

“Reference

types”

on

page

264

Related

tasks:

v

“Creating

structured

types”

on

page

246

Related

reference:

v

“CREATE

TYPE

(Structured)

statement”

in

the

SQL

Reference,

Volume

2

Chapter

8.

User-defined

structured

types

253

Constructor

functions

for

structured

types

When

you

create

a

structured

type,

DB2®

creates

a

function

of

the

same

name

as

the

type

is

created.

This

function

has

no

parameters

and

returns

an

instance

of

the

type

with

all

of

its

attributes

set

to

null.

The

function

that

is

created

for

structured

type

Person_t,

for

example,

has

the

following

format:

CREATE

FUNCTION

Person_t

(

)

RETURNS

Person_t

For

the

subtype

Manager_t,

a

constructor

with

the

following

format

is

created:

CREATE

FUNCTION

Manager_t

(

)

RETURNS

Manager_t

To

construct

an

instance

of

a

type

to

insert

into

a

column,

use

the

constructor

function

with

the

mutator

methods.

If

the

type

is

stored

in

a

table,

rather

than

a

column,

you

do

not

have

to

use

the

constructor

function

with

the

mutator

methods

to

insert

an

instance

of

a

type.

Related

concepts:

v

“User-defined

structured

types”

on

page

245

Related

tasks:

v

“Creating

structured

types”

on

page

246

Mutator

methods

for

structured

types

A

mutator

method

exists

for

each

attribute

of

an

object.

The

instance

of

a

structured

type

on

which

a

method

is

invoked

is

called

the

subject

instance

of

the

method.

When

the

mutator

method

invoked

on

a

subject

instance

receives

a

new

value

for

an

attribute,

the

method

returns

a

new

instance

with

the

attribute

updated

to

the

new

value.

So,

for

type

Person_t,

DB2®

creates

mutator

methods

for

each

of

the

following

attributes:

name,

age,

and

address.

The

mutator

method

DB2

creates

for

attribute

age,

for

example,

has

the

following

format:

ALTER

TYPE

Person_t

ADD

METHOD

AGE(int)

RETURNS

Person_t;

Related

concepts:

v

“User-defined

structured

types”

on

page

245

Related

tasks:

v

“Creating

structured

types”

on

page

246

Observer

methods

for

structured

types

An

observer

method

exists

for

each

attribute

of

an

object.

If

the

method

for

an

attribute

receives

an

object

of

the

expected

type

or

subtype,

the

method

returns

the

value

of

the

attribute

for

that

object.

The

observer

method

DB2®

creates

for

the

attribute

age

of

the

type

Person_t,

for

example,

has

the

following

format:

ALTER

TYPE

Person_t

ADD

METHOD

AGE()

RETURNS

INTEGER;

254

Programming

Server

Applications

To

invoke

a

method

on

a

structured

type,

use

the

method

invocation

operator:

‘..’.

The

following

example

demonstrates

the

use

of

observer

methods

for

the

Person_t

type:

CREATE

FUNCTION

MailingAddress

(p

Person_t)

RETURNS

VARCHAR(40)

RETURN

p..name()

||

’

’

||

p..address()

In

this

function,

the

name

column

and

address

column

from

a

Person_t

instance

are

retrieved

via

their

observer

methods

and

concatenated

into

a

single

string

to

form

a

mailing

address.

Related

concepts:

v

“User-defined

structured

types”

on

page

245

Related

tasks:

v

“Creating

structured

types”

on

page

246

Typed

tables

Typed

tables

Typed

tables

are

tables

that

are

defined

with

a

user-defined

structured

type.

With

typed

tables,

you

can

establish

a

hierarchical

structure

with

a

defined

relationship

between

those

tables

called

a

table

hierarchy.

The

table

hierarchy

is

made

up

of

a

single

root

table,

supertables,

and

subtables.

Typed

tables

store

instances

of

structured

types

as

rows,

in

which

each

attribute

of

the

type

is

stored

in

a

separate

column.

Related

concepts:

v

“User-defined

structured

types”

on

page

245

v

“Reference

types”

on

page

264

v

“Substitutability

in

typed

tables”

on

page

259

v

“Typed

views”

on

page

269

Related

tasks:

v

“Storing

objects

in

typed

table

rows”

on

page

260

v

“Dropping

typed

tables”

on

page

258

v

“Defining

system-generated

object

identifiers”

on

page

261

v

“Defining

constraints

on

object

identifier

columns”

on

page

263

v

“Creating

typed

tables”

on

page

255

Related

reference:

v

“CREATE

TABLE

statement”

in

the

SQL

Reference,

Volume

2

v

“DROP

statement”

in

the

SQL

Reference,

Volume

2

Creating

typed

tables

Typed

tables

are

used

to

actually

store

instances

of

objects

whose

characteristics

are

defined

with

the

CREATE

TYPE

statement.

You

can

create

a

typed

table

using

a

variant

of

the

CREATE

TABLE

statement.

You

can

also

create

a

hierarchy

of

typed

Chapter

8.

User-defined

structured

types

255

tables

that

is

based

on

a

hierarchy

of

structured

types.

To

store

instances

of

subtypes

in

typed

tables,

you

must

create

a

corresponding

table

hierarchy.

The

figure

below

illustrates

a

typed

table

hierarchy.

The

example

that

follows

the

figure

illustrates

the

creation

of

this

hierarchy.

Here

is

the

SQL

to

create

the

BusinessUnit

typed

table:

CREATE

TABLE

BusinessUnit

OF

BusinessUnit_t

(REF

IS

Oid

USER

GENERATED);

Here

is

the

SQL

to

create

the

tables

in

the

Person

table

hierarchy:

CREATE

TABLE

Person

OF

Person_t

(REF

IS

Oid

USER

GENERATED);

CREATE

TABLE

Employee

OF

Employee_t

UNDER

Person

INHERIT

SELECT

PRIVILEGES

(SerialNum

WITH

OPTIONS

NOT

NULL,

Dept

WITH

OPTIONS

SCOPE

BusinessUnit

);

CREATE

TABLE

Student

OF

Student_t

UNDER

Person

INHERIT

SELECT

PRIVILEGES;

CREATE

TABLE

Manager

OF

Manager_t

UNDER

Employee

INHERIT

SELECT

PRIVILEGES;

CREATE

TABLE

Architect

OF

Architect_t

UNDER

Employee

INHERIT

SELECT

PRIVILEGES;

Defining

the

Type

of

the

Table

The

first

typed

table

created

in

the

previous

example

is

BusinessUnit.

This

table

is

defined

to

be

OF

type

BusinessUnit_t,

so

it

will

hold

instances

of

that

type.

This

means

that

it

will

have

a

column

corresponding

to

each

attribute

of

the

structured

type

BusinessUnit_t,

and

one

additional

column

called

the

object

identifier

column.

Naming

the

Object

Identifier

Because

typed

tables

contain

objects

that

can

be

referenced

by

other

objects,

every

typed

table

has

an

object

identifier

column

as

its

first

column.

In

this

example,

the

type

of

the

object

identifier

column

is

REF(BusinessUnit_t).

You

can

name

the

object

identifier

column

using

the

REF

IS

...

USER

GENERATED

clause.

In

this

case,

the

column

is

named

Oid.

The

USER

GENERATED

part

of

the

REF

IS

clause

Person
(Oid, Name, Age, Address)

Student
(..., SerialNum, GPA)

Manager
(..., Bonus)

Architect
(..., StockOption)

BusinessUnit
(Oid, Name, Headcount)

Employee
(..., SerialNum, Salary, Dept)

Figure

6.

Typed

table

hierarchy

256

Programming

Server

Applications

indicates

that

you

must

provide

the

initial

value

for

the

object

identifier

column

of

each

newly

inserted

row.

It

is

common

practice

in

object-oriented

design

to

completely

separate

the

data

from

the

object

identifier.

For

that

reason,

you

cannot

update

the

value

of

the

object

identifier

after

you

insert

the

object

identifier.

If

you

want

DB2

to

generate

the

OID

values,you

can

use

a

a

SEQUENCE

or

the

GENERATE_UNIQUE()

function.

Specifying

the

Position

in

the

Table

Hierarchy

The

Person

typed

table

is

of

type

Person_t.

To

store

instances

of

the

subtypes

of

employees

and

students,

it

is

necessary

to

create

the

subtables

of

the

Person

table,

Employee

and

Student.

The

two

additional

subtypes

of

Employee_t

also

require

tables.

Those

subtables

are

named

Manager

and

Architect.

Just

as

a

subtype

inherits

the

attributes

of

its

supertype,

a

subtable

inherits

the

columns

of

its

supertable,

including

the

object

identifier

column.

Note:

A

subtable

must

reside

in

the

same

schema

as

its

supertable.

Rows

in

the

Employee

subtable,

therefore,

will

have

a

total

of

seven

columns:

Oid,

Name,

Age,

Address,

SerialNum,

Salary,

and

Dept.

A

SELECT,

UPDATE,

or

DELETE

statement

that

operates

on

a

supertable

by

default

automatically

operates

on

all

its

subtables

as

well.

For

example,

an

UPDATE

statement

on

the

Employee

table

might

affect

rows

in

the

Employee,

Manager,

and

Architect

tables,

but

an

UPDATE

statement

on

the

Manager

table

can

only

affect

Manager

rows.

If

you

want

to

restrict

the

actions

of

the

SELECT,

INSERT,

or

DELETE

statement

to

just

the

specified

table,

use

the

ONLY

option.

Indicating

That

SELECT

Privileges

Are

Inherited

The

mandatory

INHERIT

SELECT

PRIVILEGES

clause

of

the

CREATE

TABLE

statement

specifies

that

the

resulting

subtable,

such

as

Employee,

is

initially

accessible

by

the

same

users

and

groups

as

the

supertable,

such

as

Person,

from

which

it

is

created

using

the

UNDER

clause.

Any

user

or

group

currently

holding

SELECT

privileges

on

the

supertable

is

granted

SELECT

privileges

on

the

newly

created

subtable.

The

creator

of

the

subtable

is

the

grantor

of

the

SELECT

privileges.

To

specify

privileges

such

as

DELETE

and

UPDATE

on

subtables,

you

must

issue

the

same

explicit

GRANT

or

REVOKE

statements

that

you

use

to

specify

privileges

on

regular

tables.

Privileges

can

be

granted

and

revoked

independently

at

every

level

of

a

table

hierarchy.

If

you

create

a

subtable,

you

can

also

revoke

the

inherited

SELECT

privileges

on

that

subtable.

Revoking

the

inherited

SELECT

privileges

from

the

subtable

prevents

users

with

SELECT

privileges

on

the

supertable

from

seeing

any

columns

that

appear

only

in

the

subtable.

Revoking

the

inherited

SELECT

privileges

from

the

subtable

limits

users

who

only

have

SELECT

privileges

on

the

supertable

to

seeing

the

supertable

columns

of

the

rows

of

the

subtable.

Users

can

only

operate

directly

on

a

subtable

if

they

hold

the

necessary

privilege

on

that

subtable.

So,

to

prevent

users

from

selecting

the

bonuses

of

the

managers

in

the

subtable,

revoke

the

SELECT

privilege

on

that

table

and

grant

it

only

to

those

users

for

whom

this

information

is

necessary.

Defining

Column

Options

Chapter

8.

User-defined

structured

types

257

The

WITH

OPTIONS

clause

lets

you

define

options

that

apply

to

an

individual

column

in

the

typed

table.

The

format

of

WITH

OPTIONS

is:

column-name

WITH

OPTIONS

column-options

where

column-name

represents

the

name

of

the

column

in

the

CREATE

TABLE

or

ALTER

TABLE

statement,

and

column-options

represents

the

options

defined

for

the

column.

For

example,

to

prevent

users

from

inserting

nulls

into

a

SerialNum

column,

specify

the

NOT

NULL

column

option

as

follows:

(SerialNum

WITH

OPTIONS

NOT

NULL)

Defining

the

Scope

of

a

Reference

Column

Another

use

of

WITH

OPTIONS

is

to

specify

the

SCOPE

of

a

column.

For

example,

in

the

Employee

table

and

its

subtables,

the

clause:

Dept

WITH

OPTIONS

SCOPE

BusinessUnit

declares

that

the

Dept

column

of

this

table

and

its

subtables

have

a

scope

of

BusinessUnit.

This

means

that

the

reference

values

in

this

column

of

the

Employee

table

are

intended

to

refer

to

objects

in

the

BusinessUnit

table.

For

example,

the

following

query

on

the

Employee

table

uses

the

dereference

operator

to

tell

DB2

to

follow

the

path

from

the

Dept

column

to

the

BusinessUnit

table.

The

dereference

operator

returns

the

value

of

the

Name

column:

SELECT

Name,

Salary,

Dept->Name

FROM

Employee;

Related

concepts:

v

“User-defined

structured

types”

on

page

245

v

“Structured

type

hierarchies”

on

page

248

v

“Typed

tables”

on

page

255

Related

tasks:

v

“Creating

structured

types”

on

page

246

v

“Storing

objects

in

typed

table

rows”

on

page

260

v

“Dropping

typed

tables”

on

page

258

v

“Defining

system-generated

object

identifiers”

on

page

261

v

“Defining

constraints

on

object

identifier

columns”

on

page

263

Related

reference:

v

“CREATE

TABLE

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

TYPE

(Structured)

statement”

in

the

SQL

Reference,

Volume

2

Dropping

typed

tables

Dropping

a

typed

table

is

similar

to

dropping

a

non-typed

table.

An

important

difference

is

that

you

must

ensure

that

the

table

you

are

dropping

has

no

subtables.

If

the

table

you

are

trying

to

drop

does

have

subtables,

an

error

will

occur.

The

following

example

shows

how

to

drop

the

Architect

table:

DROP

TABLE

Architect;

258

Programming

Server

Applications

When

a

subtable

is

dropped

from

a

table

hierarchy,

the

columns

associated

with

the

subtable

are

no

longer

accessible.

Through

substitutability,

dropping

a

subtable

has

the

semantic

effect

of

deleting

all

the

rows

of

the

subtable

from

the

supertables.

This

can

result

in

the

activation

of

triggers

or

referential

integrity

constraints

defined

on

the

supertables.

Other

database

objects

such

as

tables

and

indexes

will

not

be

affected

although

packages

and

cached

dynamic

statements

are

marked

invalid.

You

can

also

drop

an

entire

table

hierarchy.

Simply

add

the

HIERARCHY

clause

to

the

DROP

TABLE

statement

and

name

the

root

table

of

the

hierarchy.

For

example:

DROP

TABLE

HIERARCHY

Person;

Dropping

a

table

hierarchy

will

not

result

in

the

activation

of

triggers

or

referential

integrity

contsraints.

Related

concepts:

v

“Structured

type

hierarchies”

on

page

248

v

“Typed

tables”

on

page

255

Related

reference:

v

“DROP

statement”

in

the

SQL

Reference,

Volume

2

Substitutability

in

typed

tables

When

a

SELECT,

UPDATE,

or

DELETE

statement

is

applied

to

a

typed

table,

the

operation

applies

to

the

named

table

and

all

of

its

subtables.

For

example,

if

you

create

a

typed

table

from

structured

type

Person_t

and

select

all

rows

from

that

table,

your

application

can

receive

not

just

instances

of

the

Person

type,

but

Person

information

about

instances

of

the

Employee

subtype

and

other

subtypes.

The

property

of

substitutability

also

applies

to

subtables

created

from

subtypes.

For

example,

SELECT,

UPDATE,

and

DELETE

statements

for

the

Employee

subtable

apply

to

both

the

Employee_t

type

and

its

own

subtypes.

Similarly,

a

column

defined

with

Address_t

type

can

contain

instances

of

a

US

address

or

a

Brazilian

address.

However,

this

does

not

mean

that

the

UPDATE

statement

can

change

the

type

of

a

row

if,

for

instance,

a

Person_t

row

is

to

be

updated

with

Employee_t

data.

For

this

to

work,

the

Person_t

row

would

have

to

be

deleted,

and

the

Employee_t

row

inserted

as

a

new

type.

To

restrict

substitutability

in

SELECT,

UPDATE,

or

DELETE

statements,

you

can

use

the

ONLY

clause.

For

example,

UPDATE

ONLY(Person)

SET

will

update

rows

only

in

the

Person

table

and

not

in

its

subtables.

INSERT

operations,

in

contrast,

only

apply

to

the

table

that

is

specified

in

the

INSERT

statement.

Inserting

into

the

Employee

table

creates

an

Employee_t

object

in

the

Person

table

hierarchy.

You

can

also

substitute

subtype

instances

when

you

pass

structured

types

as

parameters

to

functions,

or

as

the

result

from

a

function.

If

a

function

has

a

parameter

of

type

Address_t,

you

can

pass

an

instance

of

one

of

its

subtypes,

such

as

US_addr_t,

instead

of

an

instance

of

Address_t.

External

table

functions

cannot

return

structured

type

columns.

Chapter

8.

User-defined

structured

types

259

Because

a

column

or

table

is

defined

with

one

type

but

might

contain

instances

of

subtypes,

it

is

sometimes

important

to

distinguish

between

the

type

that

was

used

for

the

definition

and

the

type

of

the

instance

that

is

actually

returned

at

runtime.

The

definition

of

the

structured

type

in

a

column,

row,

or

function

parameter

is

called

the

static

type.

The

actual

type

of

a

structured

type

instance

is

called

the

dynamic

type.

To

retrieve

information

about

the

dynamic

type,

your

application

can

use

the

TYPE_NAME,

TYPE_SCHEMA,

and

TYPE_ID

built-in

functions.

Related

concepts:

v

“Structured

type

hierarchies”

on

page

248

v

“Typed

tables”

on

page

255

Related

tasks:

v

“Creating

a

structured

type

hierarchy”

on

page

249

v

“Issuing

queries

to

dereference

references”

on

page

272

Storing

objects

in

typed

table

rows

When

storing

objects

as

rows

in

a

table,

each

column

of

the

table

contains

one

attribute

of

the

object.

Just

as

with

non-typed

tables,

you

must

provide

data

for

all

columns

that

are

defined

as

NOT

NULL,

including

the

object

identifier

column.

Because

the

object

identifier

column

is

a

REF

type,

which

is

strongly

typed,

you

must

cast

the

user-provided

object

identifier

values

using

the

system-generated

cast

function

(which

was

created

for

you

when

you

created

the

structured

type).

For

example,

you

can

store

an

instance

of

a

person,

in

a

table

that

contains

a

column

for

name

and

a

column

for

age.

First,

here

is

an

example

of

a

CREATE

TABLE

statement

for

storing

instances

of

Person.

CREATE

TABLE

Person

OF

Person_t

(REF

IS

Oid

USER

GENERATED)

To

insert

an

instance

of

Person

into

the

table,

you

can

use

the

following

syntax:

INSERT

INTO

Person

(Oid,

Name,

Age)

VALUES(Person_t('a'),

'Andrew',

29);

Table

31.

Person

typed

table

Oid

Name

Age

Address

a

Andrew

29

Your

program

accesses

attributes

of

the

object

by

accessing

the

columns

of

the

typed

table:

UPDATE

Person

SET

Age=30

WHERE

Name='Andrew';

After

the

previous

UPDATE

statement,

the

table

looks

like

this:

Table

32.

Person

typed

table

after

update

Oid

Name

Age

Address

a

Andrew

30

260

Programming

Server

Applications

Because

there

is

a

subtype

of

Person_t

called

Employee_t,

instances

of

Employee_t

cannot

be

stored

in

the

Person

table

and

need

to

be

stored

in

a

subtable.

The

following

CREATE

TABLE

statement

creates

the

Employee

subtable

under

the

Person

table:

CREATE

TABLE

Employee

OF

Employee_t

UNDER

Person

INHERIT

SELECT

PRIVILEGES

(SerialNum

WITH

OPTIONS

NOT

NULL,

Dept

WITH

OPTIONS

SCOPE

BusinessUnit);

And,

again,

an

insert

into

the

Employee

table

looks

like

this:

INSERT

INTO

Employee

(Oid,

Name,

Age,

SerialNum,

Salary)

VALUES

(Employee_t('s'),

'Susan',

39,

24001,

37000.48)

Table

33.

Employer

typed

subtable

Oid

Name

Age

Address

SerialNum

Salary

Dept

s

Susan

39

24001

37000.48

If

you

execute

the

following

query,

the

information

for

Susan

is

returned:

SELECT

*

FROM

Employee

WHERE

Name='Susan';

You

can

access

instances

of

both

employees

and

people

just

by

executing

your

SQL

statement

on

the

Person

table.

This

feature

is

called

substitutability.

By

executing

a

query

on

the

table

that

contains

instances

that

are

higher

in

the

type

hierarchy,

you

automatically

get

instances

of

types

that

are

lower

in

the

hierarchy.

In

other

words,

the

Person

table

logically

looks

like

this

to

SELECT,

UPDATE,

and

DELETE

statements

:

Table

34.

Person

table

contains

Person

and

Employee

instances

Oid

Name

Age

Address

a

Andrew

30

(null)

s

Susan

39

(null)

If

you

execute

the

following

query,

you

get

an

object

identifier

and

Person_t

information

about

both

Andrew

(a

person)

and

Susan

(an

employee):

SELECT

*

FROM

Person;

Related

concepts:

v

“Relationships

between

objects

in

typed

tables”

on

page

265

v

“Substitutability

in

typed

tables”

on

page

259

v

“Typed

tables”

on

page

255

Related

tasks:

v

“Storing

instances

of

structured

types”

on

page

247

v

“Creating

typed

tables”

on

page

255

Defining

system-generated

object

identifiers

There

are

two

common

approaches

of

generating

unique

values,

both

of

which

can

be

applied

to

object

identifiers:

Chapter

8.

User-defined

structured

types

261

v

with

sequences

v

with

the

GENERATE_UNIQUE

function

If

you

need

to

use

numeric

values

as

object

identifiers,

you

can

use

a

sequence.

To

begin,

use

the

REF

USING

clause

to

specify

that

the

base

type

of

the

object

reference

is

to

be

a

numeric

type,

in

the

following

case,

an

INT:

CREATE

TYPE

BusinessUnit_t

AS

(Name

VARCHAR(20),

Headcount

INT)

REF

USING

INT

MODE

DB2SQL

The

typed

table

definition

is

as

follows:

CREATE

TABLE

BusinessUnit

OF

BusinessUnit_t

(REF

IS

oid

USER

GENERATED)

The

sequence

to

generate

object

identifiers

can

be

defined

as

follows:

CREATE

SEQUENCE

BusinessUnitOid

AS

REF(BusinessUnit_t)

Note

that

modifying

data

in

a

subtable

implicitly

modifies

all

supertables.

Therefore,

the

trigger

that

invokes

the

sequence

to

generate

the

object

identifier

is

best

added

to

the

root

of

the

table

hierarchy.

CREATE

TRIGGER

Gen_Bunit_oid

NO

CASCADE

BEFORE

INSERT

ON

BusinessUnit

REFERENCING

NEW

AS

new

FOR

EACH

ROW

MODE

DB2SQL

SET

new.oid

=

NEXTVAL

FOR

BusinessUnitOid

Note

that

since

the

sequence

is

defined

as

REF(BusinessUnitOid),

no

casting

is

required

to

assign

to

the

oid

column.

A

new

business

unit

can

now

be

added:

INSERT

INTO

BusinessUnit

(Name,

Headcount)

VALUES(’Software’,

10)

The

usage

of

a

sequence

also

enables

you

to

retrieve

the

generated

object

identifier

and

use

it

in

subsequent

statements.

For

example,

you

can

add

an

employee

to

the

Software

BusinessUnit

assuming

the

Dept

column

is

of

type

REF(BusinessUnit):

INSERT

INTO

Employee(Name,

Age,

SerialNum,

Salary,

Dept)

VALUES(’Tom’,

28,

106,

60000,

PREVVAL

FOR

BusinessUnitOid)

As

an

alternative

to

using

sequences

to

generate

object

identifiers,

you

can

use

the

GENERATE_UNIQUE

function.

Because

GENERATE_UNIQUE

returns

a

CHAR

(13)

FOR

BIT

DATA

value,

ensure

that

the

REF

USING

clause

on

the

CREATE

TYPE

statement

can

accommodate

a

value

of

that

type.

The

default

of

VARCHAR

(16)

FOR

BIT

DATA

is

suitable

for

this

purpose.

For

example,

assume

that

the

BusinessUnit_t

type

is

created

with

the

default

representation

type;

that

is,

no

REF

USING

clause

is

specified,

as

follows:

CREATE

TYPE

BusinessUnit_t

AS

(Name

VARCHAR(20),

Headcount

INT)

MODE

DB2SQL;

The

typed

table

definition

is

as

follows:

262

Programming

Server

Applications

CREATE

TABLE

BusinessUnit

OF

BusinessUnit_t

(REF

IS

Oid

USER

GENERATED);

Note

that

you

must

always

provide

the

clause

USER

GENERATED.

An

INSERT

statement

to

insert

a

row

into

the

typed

table,

then,

might

look

like

this:

INSERT

INTO

BusinessUnit

(Oid,

Name,

Headcount)

VALUES(BusinessUnit_t(GENERATE_UNIQUE(

)),

'Toy'

15);

To

insert

an

employee

that

belongs

to

the

Toy

department,

you

can

use

a

statement

like

the

following,

which

issues

a

subselect

to

retrieve

the

value

of

the

object

identifier

column

from

the

BusinessUnit

table,

casts

the

value

to

the

BusinessUnit_t

type,

and

inserts

that

value

into

the

Dept

column:

INSERT

INTO

Employee

(Oid,

Name,

Age,

SerialNum,

Salary,

Dept)

VALUES(Employee_t('d'),

'Dennis',

26,

105,

30000,

BusinessUnit_t(SELECT

Oid

FROM

BusinessUnit

WHERE

Name='Toy'));

Instead

of

inserting

the

generated

object

identifier

explicitly

on

the

INSERT

statement,

you

can

encapsulate

the

generation

and

insertion

of

the

object

identifier

in

a

trigger.

A

trigger

on

the

root

of

the

hierarchy

can

automate

the

invocation

of

the

GENERATE_UNIQUE

function.

The

following

trigger

will

generate

identifiers

for

inserts

into

the

Person,

Employee,

Architect,

and

Manager

tables.

CREATE

TRIGGER

Gen_Person_oid

NO

CASCADE

BEFORE

INSERT

ON

Person

REFERENCING

NEW

AS

new

FOR

EACH

ROW

MODE

DB2SQL

SET

new.oid

=

Person_t

(generate_unique());

Related

concepts:

v

“Reference

types”

on

page

264

v

“Relationships

between

objects

in

typed

tables”

on

page

265

Related

tasks:

v

“Creating

a

structured

type

hierarchy”

on

page

249

v

“Issuing

queries

to

dereference

references”

on

page

272

v

“Creating

typed

tables”

on

page

255

Related

reference:

v

“CREATE

TRIGGER

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

TYPE

(Structured)

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

SEQUENCE

statement”

in

the

SQL

Reference,

Volume

2

Defining

constraints

on

object

identifier

columns

If

you

want

to

use

the

object

identifier

column

as

a

key

column

of

the

parent

table

in

a

foreign

key,

you

must

first

alter

the

typed

table

to

add

an

explicit

unique

or

primary

key

constraint

on

the

object

identifier

column.

For

example,

assume

that

you

want

to

create

a

self-referencing

relationship

on

employees

in

which

the

manager

of

each

employee

must

always

exist

as

an

employee

in

the

employee

table,

as

shown

in

Figure

7

on

page

264.

Chapter

8.

User-defined

structured

types

263

To

define

constraints

on

an

object

identifier

column

to

create

a

self-referencing

relationship

on

an

object:

Step

1.

Create

the

type,

for

example:

CREATE

TYPE

Empl_t

AS

(Name

VARCHAR(10),

Mgr

REF(Empl_t))

MODE

DB2SQL;

Step

2.

Create

the

typed

table,

for

example:

CREATE

TABLE

Empl

OF

Empl_t

(REF

IS

Oid

USER

GENERATED);

Step

3.

Add

the

primary

or

unique

constraint

on

the

Oid

column,

for

example:

ALTER

TABLE

Empl

ADD

CONSTRAINT

pk1

UNIQUE(Oid);

Step

4.

Add

the

foreign

key

constraint,

for

example:

ALTER

TABLE

Empl

ADD

CONSTRAINT

fk1

FOREIGN

KEY(Mgr)

REFERENCES

Empl

(Oid);

Related

concepts:

v

“Reference

types”

on

page

264

Related

tasks:

v

“Creating

structured

types”

on

page

246

v

“Storing

objects

in

typed

table

rows”

on

page

260

v

“Defining

system-generated

object

identifiers”

on

page

261

Related

reference:

v

“CREATE

TABLE

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

TYPE

(Structured)

statement”

in

the

SQL

Reference,

Volume

2

Reference

types

Reference

types

For

every

structured

type

you

create,

DB2®

automatically

creates

a

companion

type.

The

companion

type

is

called

a

reference

type

and

the

structured

type

to

which

it

refers

is

called

a

referenced

type.

Typed

tables

can

make

special

use

of

the

reference

type.

You

can

also

use

reference

types

in

SQL

statements

in

the

same

way

that

you

use

other

user-defined

types.

To

use

a

reference

type

in

an

SQL

statement,

use

REF(type-name),

where

type-name

represents

the

referenced

type.

DB2

uses

the

reference

type

as

the

type

of

the

object

identifier

column

in

typed

tables.

The

object

identifier

uniquely

identifies

a

row

object

in

the

typed

table

hierarchy.

DB2

also

uses

reference

types

to

store

references

to

rows

in

typed

tables.

You

can

use

reference

types

to

refer

to

each

row

object

in

the

table.

OID

Empl Table

Name Mgr (ref)

Figure

7.

Self-referencing

type

example

264

Programming

Server

Applications

References

are

strongly

typed.

Therefore,

you

must

have

a

way

to

use

the

type

in

expressions.

When

you

create

the

root

type

of

a

type

hierarchy,

you

can

specify

the

base

type

for

a

reference

with

the

REF

USING

clause

of

the

CREATE

TYPE

statement.

The

base

type

for

a

reference

is

called

the

representation

type.

If

you

do

not

specify

the

representation

type

with

the

REF

USING

clause,

DB2

uses

the

default

data

type

of

VARCHAR(16)

FOR

BIT

DATA.

The

representation

type

of

the

root

type

is

inherited

by

all

its

subtypes.

The

REF

USING

clause

is

only

valid

when

you

define

the

root

type

of

a

hierarchy.

In

the

examples

used

throughout

this

section,

the

representation

type

for

the

BusinessUnit_t

type

is

INTEGER,

while

the

representation

type

for

Person_t

is

VARCHAR(13).

Related

concepts:

v

“Referential

integrity

versus

scoped

references”

on

page

268

v

“Relationships

between

objects

in

typed

tables”

on

page

265

v

“Typed

tables”

on

page

255

Related

tasks:

v

“Storing

objects

in

typed

table

rows”

on

page

260

v

“Issuing

queries

to

dereference

references”

on

page

272

v

“Defining

system-generated

object

identifiers”

on

page

261

v

“Defining

constraints

on

object

identifier

columns”

on

page

263

v

“Creating

typed

tables”

on

page

255

Relationships

between

objects

in

typed

tables

You

can

define

relationships

between

objects

in

one

typed

table

and

objects

in

another

table.

You

can

also

define

relationships

between

objects

in

the

same

typed

table.

For

example,

assume

that

you

have

defined

a

typed

table

that

contains

instances

of

departments.

Instead

of

maintaining

department

numbers

in

the

Employee

table,

the

Dept

column

of

the

Employee

table

can

contain

a

logical

pointer

to

one

of

the

departments

in

the

BusinessUnit

table.

These

pointers

are

called

references,

and

are

illustrated

in

Figure

8.

A

normal

table

(a

table

that

is

not

a

typed

table)

can

have

a

REF

column

that

refers

to

a

typed

table.

However,

a

typed

table

cannot

have

a

REF

column

that

points

to

a

normal

table.

Name

Employee_t Table BusinessUnit_t Table

Age Address SerialNum Salary Dept OID Name Headcount

(ref)

(ref)

(ref)

(ref)

(ref)

(ref)

(ref)

1 Toy

Shoe

Finance

Quality

2

3

4

...

...

...

Name

Employee_t Table

Age Address SerialNum Salary Dept OID Name Headcount

(ref)

(ref)

(ref)

(ref)

(ref)

(ref)

(ref)

1 Toy

Shoe

Finance

Quality

2

3

4

...

...

...

Figure

8.

Structured

type

references

from

Employee_t

to

BusinessUnit_t

Chapter

8.

User-defined

structured

types

265

Important:

References

do

not

perform

the

same

function

as

referential

constraints.

It

is

possible

to

have

a

reference

to

a

department

that

does

not

exist.

If

it

is

important

to

maintain

integrity

between

department

and

employees,

you

can

define

a

referential

constraint

between

those

two

tables.

The

real

power

of

references

is

that

it

gives

you

the

ability

to

write

queries

that

navigate

the

relationship

between

the

tables.

What

the

query

does

is

dereference

the

relationship

and

instantiate

the

object

that

is

being

pointed

to.

The

operator

that

you

use

to

perform

this

action

is

called

the

dereference

operator,

which

looks

like

this:

->.

For

example,

the

following

query

on

the

Employee

table

uses

the

dereference

operator

to

tell

DB2®

to

follow

the

path

from

the

Dept

column

to

the

BusinessUnit

table.

The

dereference

operator

returns

the

value

of

the

Name

column:

SELECT

Name,

Salary,

Dept->Name

FROM

Employee;

Related

concepts:

v

“Reference

types”

on

page

264

v

“Referential

integrity

versus

scoped

references”

on

page

268

v

“Typed

tables”

on

page

255

Related

tasks:

v

“Restricting

returned

types

using

a

TYPE

predicate”

on

page

275

v

“Defining

system-generated

object

identifiers”

on

page

261

Defining

semantic

relationships

with

references

Using

the

WITH

OPTIONS

clause

of

CREATE

TABLE,

you

can

define

that

a

relationship

exists

between

a

column

in

one

table

and

the

objects

in

the

same

or

another

table.

The

WITH

OPTIONS

clause

of

CREATE

TABLE

defines

the

column

properties

for

a

column

in

a

typed

table.

These

definable

table

properties

include

the

relationship

between

a

column

in

one

table

and

the

objects

in

the

same

(or

another)

table.

In

the

example

illustrated

below,

the

department

for

each

employee

is

actually

a

reference

to

an

object

in

the

BusinessUnit

table.

To

define

the

destination

objects

of

a

given

reference

column,

use

the

SCOPE

keyword

on

the

WITH

OPTIONS

clause.

266

Programming

Server

Applications

Self-Referencing

Relationships

You

can

define

scoped

references

to

objects

in

the

same

typed

table

as

well.

The

statements

in

the

following

example

create

one

typed

table

for

parts

and

one

typed

table

for

suppliers.

To

show

the

reference

type

definitions,

the

sample

also

includes

the

statements

used

to

create

the

types:

CREATE

TYPE

Company_t

AS

(name

VARCHAR(30),

location

VARCHAR(30))

MODE

DB2SQL

CREATE

TYPE

Part_t

AS

(Descript

VARCHAR(20),

Supplied_by

REF(Company_t),

Used_in

REF(part_t))

MODE

DB2SQL

CREATE

TABLE

Suppliers

OF

Company_t

(REF

IS

suppno

USER

GENERATED)

CREATE

TABLE

Parts

OF

Part_t

(REF

IS

Partno

USER

GENERATED,

Supplied_by

WITH

OPTIONS

SCOPE

Suppliers,

Used_in

WITH

OPTIONS

SCOPE

Parts)

Employee (and subtables)

BusinessUnit

CREATE TABLE Employee OF Employee_t UNDER Person
INHERIT SELECT PRIVILEGES
(Dept WITH OPTIONS SCOPE BusinessUnit);

Dept column of
Employee table BusinessUnit table

Oid

Oid

Name

Name

Age

Age

Address

Headcount

SerialNum Salary Dept

Figure

9.

Dept

attribute

refers

to

a

BusinessUnit

object

Chapter

8.

User-defined

structured

types

267

You

can

use

scoped

references

to

write

queries

that,

without

scoped

references,

would

have

to

be

written

as

outer

joins

or

correlated

subqueries.

For

example,

the

two

following

queries

retrieve

the

supplier

of

the

part

in

which

the

part

’1234’

is

being

used:

SELECT

Used_in->Supplied_by->Name

FROM

Parts

WHERE

Partno

=

Part_t(’1234’)

Without

a

a

scoped

reference

the

query

looks

like

this:

SELECT

S.Name

FROM

(Parts

AS

P

RIGHT

OUTER

JOIN

Parts

C

ON

P.Used_in

=

C.Partno)

RIGHT

OUTER

JOIN

Suppliers

S

ON

C.Supplied_by

=

S.Suppno

WHERE

P.Partno

=

Part_t(’1234’)

Related

concepts:

v

“Reference

types”

on

page

264

v

“Referential

integrity

versus

scoped

references”

on

page

268

v

“Relationships

between

objects

in

typed

tables”

on

page

265

v

“Typed

tables”

on

page

255

Related

tasks:

v

“Defining

system-generated

object

identifiers”

on

page

261

Referential

integrity

versus

scoped

references

Although

scoped

references

do

define

relationships

among

objects

in

tables,

they

are

different

than

referential

integrity

relationships.

Scopes

simply

provide

information

about

a

target

table.

That

information

is

used

when

dereferencing

objects

from

that

target

table.

Scoped

references

do

not

require

or

enforce

that

a

value

exists

at

the

other

table.

To

ensure

that

the

objects

in

these

relationships

exist,

you

must

add

a

referential

constraint

between

the

tables.

Related

concepts:

v

“Reference

types”

on

page

264

v

“Typed

tables”

on

page

255

Parts table

Supplier table

Partno Descript Supplied_by Used_in

Part_t type

Company_t type

Suppno Name Location

Figure

10.

Example

of

a

self-referencing

scope

268

Programming

Server

Applications

Related

tasks:

v

“Defining

semantic

relationships

with

references”

on

page

266

Typed

views

Typed

views

For

typed

views,

the

names

and

data

types

of

the

attributes

of

the

structured

type

become

the

names

and

data

types

of

the

columns

of

this

typed

view.

Rows

of

the

typed

view

can

be

thought

of

as

a

representation

of

instances

of

the

structured

type.

Like

a

typed

table,

a

typed

view

can

be

part

of

a

view

hierarchy.

A

subview

inherits

columns

from

its

superview.

The

term

subview

applies

to

all

typed

views

that

are

below

a

typed

view

in

the

view

hierarchy.

A

proper

subview

of

a

view

V

is

a

view

below

V

in

the

typed

view

hierarchy.

Related

concepts:

v

“User-defined

structured

types”

on

page

245

v

“Typed

tables”

on

page

255

Related

tasks:

v

“Creating

typed

views”

on

page

269

v

“Altering

typed

views”

on

page

271

v

“Dropping

typed

views”

on

page

272

Related

reference:

v

“ALTER

VIEW

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

VIEW

statement”

in

the

SQL

Reference,

Volume

2

v

“DROP

statement”

in

the

SQL

Reference,

Volume

2

Creating

typed

views

You

can

create

a

typed

view

using

the

CREATE

VIEW

statement.

For

example,

to

create

a

view

of

the

typed

BusinessUnit

table,

you

can

define

a

structured

type

that

has

the

desired

attributes

and

then

create

a

typed

view

using

that

type:

CREATE

TYPE

VBusinessUnit_t

AS

(Name

VARCHAR(20))

MODE

DB2SQL;

CREATE

VIEW

VBusinessUnit

OF

VBusinessUnit_t

MODE

DB2SQL

(REF

IS

VObjectID

USER

GENERATED)

AS

SELECT

VBusinessUnit_t(VARCHAR(Oid)),

Name

FROM

BusinessUnit;

The

OF

clause

in

the

CREATE

VIEW

statement

tells

DB2

to

base

the

columns

of

the

view

on

the

attributes

of

the

indicated

structured

type.

In

this

case,

DB2

bases

the

columns

of

the

view

on

the

VBusinessUnit_t

structured

type.

The

VObjectID

column

of

the

view

has

a

type

of

REF(VBusinessUnit_t).

Since

you

cannot

cast

from

a

type

of

REF(BusinessUnit_t)

to

REF(VBusinessUnit_t),

you

must

first

cast

the

value

of

the

Oid

column

from

table

BusinessUnit

to

data

type

VARCHAR,

and

then

cast

from

data

type

VARCHAR

to

data

type

REF(VBusinessUnit_t).

Chapter

8.

User-defined

structured

types

269

The

MODE

DB2SQL

clause

specifies

the

mode

of

the

typed

view.

This

is

the

only

mode

currently

supported.

The

REF

IS...

clause

is

identical

to

that

of

the

typed

CREATE

TABLE

statement.

It

provides

a

name

for

the

object

identifier

column

of

the

view

(VObjectID

in

this

case),

which

is

the

first

column

of

the

view.

If

you

create

a

root

view,

you

must

specify

an

object

identifier

column

for

the

view.

If

you

create

a

subview,

it

inherits

the

object

identifier

column.

The

USER

GENERATED

clause

specifies

that

the

value

for

the

object

identifier

column

must

be

provided

by

the

user

when

inserting

a

row.

Once

inserted,

the

object

identifier

column

cannot

be

updated.

The

body

of

the

view,

which

follows

the

keyword

AS,

is

a

SELECT

statement

that

determines

the

content

of

the

view.

The

column

types

returned

by

this

SELECT

statement

must

be

compatible

with

the

column

types

of

the

typed

view,

including

the

object

identifier

column.

To

illustrate

the

creation

of

a

typed

view

hierarchy,

the

following

example

defines

a

view

hierarchy

that

omits

some

sensitive

data

and

eliminates

some

type

distinctions

from

the

Person

table

hierarchy:

CREATE

TYPE

VPerson_t

AS

(Name

VARCHAR(20))

MODE

DB2SQL;

CREATE

TYPE

VEmployee_t

UNDER

VPerson_t

AS

(Salary

INT,

Dept

REF(VBusinessUnit_t))

MODE

DB2SQL;

CREATE

VIEW

VPerson

OF

VPerson_t

MODE

DB2SQL

(REF

IS

VObjectID

USER

GENERATED)

AS

SELECT

VPerson_t

(VARCHAR(Oid)),

Name

FROM

ONLY(Person);

CREATE

VIEW

VEmployee

OF

VEmployee_t

MODE

DB2SQL

UNDER

VPerson

INHERIT

SELECT

PRIVILEGES

(Dept

WITH

OPTIONS

SCOPE

VBusinessUnit)

AS

SELECT

VEmployee_t(VARCHAR(Oid)),

Name,

Salary,

VBusinessUnit_t(VARCHAR(Dept))

FROM

Employee;

The

two

CREATE

TYPE

statements

create

the

structured

types

that

are

needed

to

create

the

object

view

hierarchy

for

this

example.

The

first

typed

CREATE

VIEW

statement

above

creates

the

root

view

of

the

hierarchy,

VPerson,

and

is

very

similar

to

the

VBusinessUnit

view

definition.

The

difference

is

the

use

of

ONLY(Person)

to

ensure

that

only

the

rows

in

the

Person

table

hierarchy

that

are

in

the

Person

table,

and

not

in

any

subtable,

are

included

in

the

VPerson

view.

This

ensures

that

the

Oid

values

in

VPerson

are

unique

compared

with

the

Oid

values

in

VEmployee.

The

second

CREATE

VIEW

statement

creates

a

subview

VEmployee

under

the

view

VPerson.

As

was

the

case

for

the

UNDER

clause

in

the

CREATE

TABLE...UNDER

statement,

the

UNDER

clause

establishes

the

view

hierarchy.

You

must

create

a

subview

in

the

same

schema

as

its

superview.

Like

typed

tables,

subviews

inherit

columns

from

their

superview.

Rows

in

the

VEmployee

view

inherit

the

columns

VObjectID

and

Name

from

VPerson

and

have

the

additional

columns

Salary

and

Dept

associated

with

the

type

VEmployee_t.

The

INHERIT

SELECT

PRIVILEGES

clause

has

the

same

effect

when

you

issue

a

CREATE

VIEW

statement

as

when

you

issue

a

typed

CREATE

TABLE

statement.

270

Programming

Server

Applications

The

WITH

OPTIONS

clause

in

a

typed

view

definition

also

has

the

same

effect

as

it

does

in

a

typed

table

definition.

The

WITH

OPTIONS

clause

enables

you

to

specify

column

options

such

as

SCOPE.

The

READ

ONLY

clause

forces

a

superview

column

to

be

marked

as

read-only,

so

that

subsequent

subview

definitions

can

specify

an

expression

for

the

same

column

that

is

also

read-only.

If

a

view

has

a

reference

column,

like

the

Dept

column

of

the

VEmployee

view,

you

must

associate

a

scope

with

the

column

to

use

the

column

in

SQL

dereference

operations.

If

you

do

not

specify

a

scope

for

the

reference

column

of

the

view

and

the

underlying

table

or

view

column

is

scoped,

then

the

scope

of

the

underlying

column

is

passed

on

to

the

reference

column

of

the

view.

You

can

explicitly

assign

a

scope

to

the

reference

column

of

the

view

by

using

the

WITH

OPTIONS

clause.

In

the

previous

example,

the

Dept

column

of

the

VEmployee

view

receives

the

VBusinessUnit

view

as

its

scope.

If

the

underlying

table

or

view

column

does

not

have

a

scope,

and

no

scope

is

explicitly

assigned

in

the

view

definition,

or

no

scope

is

assigned

with

an

ALTER

VIEW

statement,

the

reference

column

remains

unscoped.

Related

concepts:

v

“User-defined

structured

types”

on

page

245

v

“Typed

tables”

on

page

255

v

“Typed

views”

on

page

269

Related

reference:

v

“CREATE

VIEW

statement”

in

the

SQL

Reference,

Volume

2

Altering

typed

views

The

ALTER

VIEW

statement

modifies

an

existing

view

by

altering

a

reference

type

column

to

add

a

scope.

Any

other

changes

you

intend

to

make

to

a

view

require

that

you

drop

and

then

re-create

the

view.

When

altering

the

view,

the

scope

must

be

added

to

an

existing

reference

type

column

that

does

not

already

have

a

scope

defined.

Further,

the

column

must

not

be

inherited

from

a

superview.

The

data

type

of

the

column

name

in

the

ALTER

VIEW

statement

must

be

REF

(type

of

the

typed

table

name

or

typed

view

name).

Related

concepts:

v

“User-defined

structured

types”

on

page

245

v

“Typed

tables”

on

page

255

v

“Typed

views”

on

page

269

Related

tasks:

v

“Creating

typed

views”

on

page

269

Related

reference:

v

“ALTER

VIEW

statement”

in

the

SQL

Reference,

Volume

2

Chapter

8.

User-defined

structured

types

271

Dropping

typed

views

The

following

example

shows

how

to

drop

the

EMP_VIEW:

DROP

VIEW

EMP_VIEW;

Any

views

that

are

dependent

on

the

dropped

view

become

inoperative.

Other

database

objects

such

as

tables

and

indexes

will

not

be

affected

although

packages

and

cached

dynamic

statements

are

marked

invalid.

As

in

the

case

of

a

table

hierarchy,

it

is

possible

to

drop

an

entire

view

hierarchy

in

one

statement

by

naming

the

root

view

of

the

hierarchy,

as

in

the

following

example:

DROP

VIEW

HIERARCHY

VPerson;

Related

concepts:

v

“User-defined

structured

types”

on

page

245

v

“Typed

tables”

on

page

255

v

“Typed

views”

on

page

269

Related

tasks:

v

“Creating

typed

views”

on

page

269

Related

reference:

v

“DROP

statement”

in

the

SQL

Reference,

Volume

2

Querying

typed

tables

and

typed

views

Issuing

queries

to

dereference

references

Whenever

you

have

a

scoped

reference,

you

can

use

a

dereference

operation

to

issue

queries

that

would

otherwise

require

outer

joins

or

correlated

subqueries.

Consider

the

Dept

attribute

of

the

Employee

table,

and

subtables

of

Employee,

which

is

scoped

to

the

BusinessUnit

table.

The

following

example

returns

the

names,

salaries,

and

department

names,

or

NULL

values,

where

applicable,

of

all

the

employees

in

the

database;

that

means

the

query

returns

these

values

for

every

row

in

the

Employee

table

and

the

Employee

subtables.

You

could

write

a

similar

query

using

a

correlated

subquery

or

an

outer

join.

However,

it

is

easier

to

use

the

dereference

operator

(->)

to

traverse

the

path

from

the

reference

column

in

the

Employee

table

and

subtables

to

the

BusinessUnit

table,

and

to

return

the

result

from

the

Name

column

of

the

BusinessUnit

table.

The

simple

format

of

the

dereference

operation

is

as

follows:

scoped-reference-expression->column-in-target-typed-table

The

following

query

uses

the

dereference

operator

to

obtain

the

Name

column

from

the

BusinessUnit

table:

SELECT

Name,

Salary,

Dept->Name

FROM

Employee

The

result

of

the

query

is

as

follows:

272

Programming

Server

Applications

NAME

SALARY

NAME

Dennis

30000

Toy

Eva

45000

Shoe

Franky

39000

Shoe

Iris

55000

Toy

Christina

85000

Toy

Ken

105000

Shoe

Leo

92000

Shoe

Brian

112000

Toy

Susan

37000.48

You

can

dereference

self-referencing

references

as

well.

Consider

the

Parts

table.

The

following

query

lists

the

parts

directly

used

in

a

wing

with

the

locations

of

the

suppliers

of

the

parts:

SELECT

P.Descript,

P.Supplied_by->Location

FROM

Parts

P

WHERE

P.Used_in->Descript='Wing';

DEREF

Built-in

Function

You

can

also

dereference

references

to

obtain

entire

structured

objects

as

a

single

value

by

using

the

DEREF

built-in

function.

The

simple

form

of

DEREF

is

as

follows:

DEREF

(scoped-reference-expression)

DEREF

is

usually

used

in

the

context

of

other

built-in

functions,

such

as

TYPE_NAME,

or

to

obtain

a

whole

structured

object

for

the

purposes

of

binding

out

to

an

application.

Other

Type-Related

Built-in

Functions

The

DEREF

function

is

often

invoked

as

part

of

the

TYPE_NAME,

TYPE_ID,

or

TYPE_SCHEMA

built-in

functions.

The

purpose

of

these

functions,

respectively,

is

to

return

the

name,

internal

ID,

and

schema

name

of

the

dynamic

type

of

an

expression.

For

example,

the

following

example

creates

a

Project

typed

table

with

an

attribute

called

Responsible:

CREATE

TYPE

Project_t

AS

(Projid

INT,

Responsible

REF(Employee_t))

MODE

DB2SQL;

CREATE

TABLE

Project

OF

Project_t

(REF

IS

Oid

USER

GENERATED,

Responsible

WITH

OPTIONS

SCOPE

Employee);

The

Responsible

attribute

is

defined

as

a

reference

to

the

Employee

table,

so

that

it

can

refer

to

instances

of

managers

and

architects

as

well

as

employees.

If

your

application

needs

to

know

the

name

of

the

dynamic

type

of

every

row,

you

can

use

a

query

like

the

following:

SELECT

Projid,

Responsible->Name,

TYPE_NAME(DEREF(Responsible))

FROM

PROJECT;

The

preceding

example

uses

the

dereference

operator

to

return

the

value

of

Name

from

the

Employee

table,

and

invokes

the

DEREF

function

to

return

the

dynamic

type

for

the

instance

of

Employee_t.

Authorization

requirement:

To

use

the

DEREF

function,

you

must

have

SELECT

authority

on

every

table

and

subtable

in

the

referenced

portion

of

the

table

Chapter

8.

User-defined

structured

types

273

hierarchy.

In

the

above

query,

for

example,

you

need

SELECT

privileges

on

the

Employee,

Manager,

and

Architect

typed

tables.

Related

concepts:

v

“User-defined

structured

types”

on

page

245

v

“Reference

types”

on

page

264

v

“Relationships

between

objects

in

typed

tables”

on

page

265

v

“Typed

tables”

on

page

255

v

“Typed

views”

on

page

269

Related

tasks:

v

“Storing

objects

in

typed

table

rows”

on

page

260

v

“Returning

objects

of

a

particular

type

using

ONLY”

on

page

274

v

“Restricting

returned

types

using

a

TYPE

predicate”

on

page

275

v

“Returning

all

possible

types

using

OUTER”

on

page

275

v

“Defining

system-generated

object

identifiers”

on

page

261

Related

reference:

v

“DEREF

scalar

function”

in

the

SQL

Reference,

Volume

1

Returning

objects

of

a

particular

type

using

ONLY

To

have

a

query

return

only

objects

of

a

particular

type,

and

not

of

its

subtypes,

use

the

ONLY

keyword.

For

example,

the

following

query

returns

only

the

names

of

employees

that

are

not

architects

or

managers:

SELECT

Name

FROM

ONLY(Employee);

The

previous

query

returns

the

following

result:

NAME

Dennis

Eva

Franky

Susan

To

protect

the

security

of

the

data,

the

use

of

ONLY

requires

the

SELECT

privilege

on

every

subtable

of

Employee.

You

can

also

use

the

ONLY

clause

to

restrict

the

operation

of

an

UPDATE

or

DELETE

statement

to

the

named

table.

That

is,

the

ONLY

clause

ensures

that

the

operation

does

not

occur

on

any

subtables

of

that

named

table.

Related

concepts:

v

“User-defined

distinct

types”

on

page

229

v

“Typed

tables”

on

page

255

Related

tasks:

v

“Storing

objects

in

typed

table

rows”

on

page

260

v

“Issuing

queries

to

dereference

references”

on

page

272

274

Programming

Server

Applications

Restricting

returned

types

using

a

TYPE

predicate

If

you

want

a

more

general

way

to

restrict

what

rows

are

returned

or

affected

by

an

SQL

statement,

you

can

use

the

type

predicate.

The

type

predicate

enables

you

to

compare

the

dynamic

type

of

an

expression

to

one

or

more

named

types.

A

simple

version

of

the

type

predicate

is:

<expression>

IS

OF

(<type_name>[,

...])

where

expression

represents

an

SQL

expression

that

returns

an

instance

of

a

structured

type,

and

type_name

represents

one

or

more

structured

types

with

which

the

instance

is

compared.

For

example,

the

following

query

returns

people

who

are

greater

than

35

years

old,

and

who

are

either

managers

or

architects:

SELECT

Name

FROM

Employee

E

WHERE

E.Age

>

35

AND

DEREF(E.Oid)

IS

OF

(Manager_t,

Architect_t);

The

previous

query

returns

the

following

result:

NAME

Ken

Related

concepts:

v

“User-defined

structured

types”

on

page

245

v

“Reference

types”

on

page

264

v

“Typed

tables”

on

page

255

v

“Typed

views”

on

page

269

Related

tasks:

v

“Storing

objects

in

typed

table

rows”

on

page

260

v

“Issuing

queries

to

dereference

references”

on

page

272

Returning

all

possible

types

using

OUTER

When

DB2

returns

a

structured

type

row

value,

the

application

does

not

necessarily

know

which

attributes

that

particular

instance

contains

or

can

contain.

For

example,

when

you

return

a

person,

that

person

might

just

have

the

attributes

of

a

person,

or

it

might

have

attributes

of

an

employee,

manager,

or

other

subtype

of

person.

If

your

application

needs

to

obtain

the

values

of

all

possible

attributes

within

one

SQL

query,

you

can

use

the

keyword

OUTER

in

the

table

reference.

OUTER

(table-name)

and

OUTER(view-name)

return

a

virtual

table

that

consists

of

the

columns

of

the

table

or

view

followed

by

the

additional

columns

introduced

by

each

of

its

subtables,

if

any.

The

additional

columns

are

added

on

the

right

hand

side

of

the

table,

traversing

the

subtable

hierarchy

in

the

order

of

depth.

Subtables

that

have

a

common

parent

are

traversed

in

the

order

in

which

their

respective

types

were

created.

The

rows

include

all

the

rows

of

table-name

and

all

of

the

additional

rows

of

the

subtables

of

table-name.

Null

values

are

returned

for

columns

that

are

not

in

the

subtable

for

the

row.

Chapter

8.

User-defined

structured

types

275

You

might

use

OUTER,

for

example,

when

you

want

to

see

information

about

people

who

tend

to

achieve

above

the

norm.

The

following

query

returns

information

from

the

Person

table

hierarchy

that

have

either

a

high

salary

Salary

or

a

high

grade

point

average

GPA:

SELECT

*

FROM

OUTER(Person)

P

WHERE

P.Salary

>

200000

OR

P.GPA

>

3.95

;

Using

OUTER(Person)

enables

you

to

refer

to

subtype

attributes,

which

is

not

otherwise

possible

in

Person

queries.

The

use

of

OUTER

requires

the

SELECT

privilege

on

every

subtable

or

view

of

the

referenced

table

because

all

of

their

information

is

exposed

through

its

usage.

Suppose

that

your

application

needs

to

see

not

just

the

attributes

of

these

high

achievers,

but

what

the

most

specific

type

is

for

each

one.

You

can

do

this

in

a

single

query

by

passing

the

object

identifier

of

an

object

to

the

TYPE_NAME

built-in

function

and

combining

it

with

an

OUTER

query,

as

follows:

SELECT

TYPE_NAME(DEREF(P.Oid)),

P.*

FROM

OUTER(Person)

P

WHERE

P.Salary

>

200000

OR

P.GPA

>

3.95

;

Because

the

Address

column

of

the

Person

typed

table

contains

structured

types,

you

would

have

to

define

additional

functions

and

issue

additional

SQL

to

return

the

data

from

that

column.

Assuming

you

perform

these

additional

steps,

the

preceding

query

returns

the

following

output,

where

Additional

Attributes

includes

GPA

and

Salary:

1

OID

NAME

Additional

Attributes

...

PERSON_T

a

Andrew

...

PERSON_T

b

Bob

...

PERSON_T

c

Cathy

...

EMPLOYEE_T

d

Dennis

...

EMPLOYEE_T

e

Eva

...

EMPLOYEE_T

f

Franky

...

MANAGER_T

i

Iris

...

ARCHITECT_T

l

Leo

...

EMPLOYEE_T

s

Susan

...

Related

concepts:

v

“User-defined

structured

types”

on

page

245

v

“Typed

tables”

on

page

255

v

“Typed

views”

on

page

269

Related

tasks:

v

“Storing

structured

type

objects

in

table

columns”

on

page

276

v

“Issuing

queries

to

dereference

references”

on

page

272

Structured

types

as

column

types

Storing

structured

type

objects

in

table

columns

Storing

objects

in

columns

is

useful

when

you

need

to

model

facts

about

your

business

objects

that

cannot

be

adequately

modeled

with

the

DB2

built-in

data

276

Programming

Server

Applications

types.

In

other

words,

you

can

store

your

business

objects

(such

as

employees,

departments,

and

so

on)

in

typed

tables,

but

those

objects

might

also

have

attributes

that

are

best

modeled

using

a

structured

type.

For

example,

assume

that

your

application

has

the

need

to

access

certain

parts

of

an

address.

Rather

than

store

the

address

as

an

unstructured

character

string,

you

can

store

it

as

a

structured

object

as

shown

in

Figure

11.

Furthermore,

you

can

define

a

type

hierarchy

of

addresses

to

model

different

formats

of

addresses

that

are

used

in

different

countries.

For

example,

you

might

want

to

include

both

a

US

address

type,

which

contains

a

zip

code,

and

a

Brazilian

address

type,

for

which

the

neighborhood

attribute

is

required.

Figure

12

shows

a

hierarchy

for

the

different

types

of

addresses.

The

root

type

is

Address_t,

which

has

three

subtypes,

each

with

an

additional

attribute

that

reflects

some

aspect

of

how

addresses

are

formed

in

that

region.

CREATE

TYPE

Address_t

AS

(street

VARCHAR(30),

number

CHAR(15),

city

VARCHAR(30),

state

VARCHAR(10))

MODE

DB2SQL;

CREATE

TYPE

Germany_addr_t

UNDER

Address_t

AS

(family_name

VARCHAR(30))

MODE

DB2SQL;

CREATE

TYPE

Brazil_addr_t

UNDER

Address_t

AS

(neighborhood

VARCHAR(30))

MODE

DB2SQL;

CREATE

TYPE

US_addr_t

UNDER

Address_t

AS

(zip

CHAR(10))

MODE

DB2SQL;

When

objects

are

stored

as

column

values,

the

attributes

are

not

externally

represented

as

they

are

with

objects

stored

in

rows

of

tables.

Instead,

you

must

use

Person

Address (Address_t)Age (INT)Name (VARCHAR)

Street Number City State

Figure

11.

Address

attribute

as

a

structured

type

Germany_addr_t
(Family_name)

Brazil_addr_t
(Neighborhood)

US_addr_t
(Zipcode)

Address_t
(Street, Number, City, State)

Figure

12.

Structured

type

hierarchy

for

Address_t

type

Chapter

8.

User-defined

structured

types

277

methods

to

manipulate

their

attributes.

DB2

generates

both

observer

methods

to

return

attributes,

and

mutator

methods

to

change

attributes.

The

following

example

uses

one

observer

method

and

two

mutator

methods,

one

for

the

Number

attribute

and

one

for

the

Street

attribute,

to

change

an

address:

UPDATE

Employee

SET

Address=Address..Number('4869')..Street('Appletree')

WHERE

Name='Franky'

AND

Address..State='CA';

In

the

preceding

example,

the

SET

clause

of

the

UPDATE

statement

invokes

the

Number

and

Street

mutator

methods

to

update

attributes

of

the

instances

of

type

Address_t.

To

allow

for

updating

of

more

complex,

especially

nested,

instances

of

structured

types,

DB2

also

allows

you

to

drill

down

to

the

attribute

to

be

updated

on

the

left

side

of

the

SET

clause:

UPDATE

Employee

SET

Address..Number

=

'4869',

Address..Street

=

'Appletree'

WHERE

Name='Franky'

AND

Address..State='CA'

The

WHERE

clause

restricts

the

operation

of

the

update

statement

with

two

predicates:

an

equality

comparison

for

the

Name

column,

and

an

equality

comparison

that

invokes

the

State

observer

method

of

the

Address

column.

Related

concepts:

v

“User-defined

structured

types”

on

page

245

Related

tasks:

v

“Creating

structured

types”

on

page

246

v

“Storing

instances

of

structured

types”

on

page

247

v

“Inserting

structured

type

attributes

into

columns”

on

page

278

v

“Retrieving

and

modifying

structured

type

values

in

columns”

on

page

281

Related

reference:

v

“UPDATE

statement”

in

the

SQL

Reference,

Volume

2

Inserting

structured

type

attributes

into

columns

To

insert

an

attribute

of

a

user-defined

structured

type

into

a

column

that

is

of

the

same

type

as

the

attribute

using

embedded

static

SQL,

enclose

the

host

variable

that

represents

the

instance

of

the

type

in

parentheses,

and

append

the

double-dot

operator

and

attribute

name

to

the

closing

parenthesis.

For

example,

consider

the

following

situation:

-

PERSON_T

is

a

structured

type

that

includes

the

attribute

NAME

of

type

VARCHAR(30).

-

T1

is

a

table

that

includes

a

column

C1

of

type

VARCHAR(30).

-

personhv

is

the

host

variable

declared

for

type

PERSON_T

in

the

programming

language.

The

proper

syntax

for

inserting

the

NAME

attribute

into

column

C1

is:

EXEC

SQL

INSERT

INTO

T1

(C1)

VALUES

((:personhv)..NAME)

Related

concepts:

278

Programming

Server

Applications

v

“Observer

methods

for

structured

types”

on

page

254

Related

tasks:

v

“Creating

structured

types”

on

page

246

v

“Storing

structured

type

objects

in

table

columns”

on

page

276

v

“Retrieving

structured

type

attributes”

on

page

282

Defining

and

altering

tables

with

structured

type

columns

Creating

a

table

with

columns

of

structured

types

is

for

the

most

part

no

different

than

creating

tables

with

only

the

DB2

SQL

data

types.

For

every

column

that

is

defined,

a

corresponding

data

type

is

assigned.

For

structured

type

columns,

the

structured

type

name

is

provided

as

the

corresponding

data

type.

For

example,

the

following

ALTER

TABLE

statement

adds

a

column

of

Address_t

type

to

a

Customer_List

untyped

table:

ALTER

TABLE

Customer_List

ADD

COLUMN

Address

Address_t;

Now

instances

of

Address_t

or

any

of

the

subtypes

of

Address_t

can

be

stored

in

this

table.

If

you

are

concerned

with

how

structured

types

are

laid

out

in

the

data

record,

you

can

use

the

INLINE

LENGTH

clause

in

the

CREATE

TYPE

statement.

This

clause

will

indicate

the

maximum

size

of

an

instance

of

a

structured

type

in

a

column.

If

the

size

of

a

structured

type

instance

is

less

than

the

defined

maximum,

the

data

will

be

stored

inline

with

the

rest

of

the

values

in

the

row.

If

the

size

of

the

structured

type

exceeds

the

defined

maximum,

the

structured

type

data

is

stored

outside

of

the

table

(much

like

LOBs).

To

accommodate

changes

you

make

to

a

structured

type,

you

can

alter

the

affected

structured

type

column’s

size

by

issuing

the

ALTER

TABLE

ALTER

COLUMN

SET

INLINE

LENGTH

statement.

After

altering

a

column’s

length

you

should

invoke

the

REORG

utility.

Related

concepts:

v

“User-defined

structured

types”

on

page

245

Related

tasks:

v

“Creating

structured

types”

on

page

246

v

“Storing

structured

type

objects

in

table

columns”

on

page

276

Related

reference:

v

“ALTER

TABLE

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

TABLE

statement”

in

the

SQL

Reference,

Volume

2

Defining

types

with

structured

type

attributes

A

type

can

be

created

with

a

structured

type

attribute,

or

it

can

be

altered

(before

it

is

used)

to

add

or

drop

such

an

attribute.

For

example,

the

following

CREATE

TYPE

statement

contains

an

attribute

of

type

Address_t:

Chapter

8.

User-defined

structured

types

279

CREATE

TYPE

Person_t

AS

(Name

VARCHAR(20),

Age

INT,

Address

Address_t)

REF

USING

VARCHAR(13)

MODE

DB2SQL;

Person_t

can

be

used

as

the

type

of

a

table,

the

type

of

a

column

in

a

regular

table,

or

as

an

attribute

of

another

structured

type.

Related

tasks:

v

“Creating

structured

types”

on

page

246

v

“Storing

structured

type

objects

in

table

columns”

on

page

276

Related

reference:

v

“CREATE

TYPE

(Structured)

statement”

in

the

SQL

Reference,

Volume

2

Inserting

rows

that

contain

structured

type

values

When

you

create

a

structured

type,

DB2

automatically

generates

a

constructor

method

for

the

type,

and

generates

mutator

and

observer

methods

for

the

attributes

of

the

type.

You

can

use

these

methods

to

create

instances

of

structured

types

and

to

insert

these

instances

into

a

column

of

a

table.

Assume

that

you

want

to

add

a

new

row

to

the

Employee

typed

table

and

that

you

want

that

row

to

contain

an

address.

Just

as

with

built-in

data

types,

you

can

add

this

row

using

INSERT

with

the

VALUES

clause.

However,

when

you

specify

the

value

to

insert

into

the

address,

you

must

invoke

the

system-provided

constructor

function

to

create

the

value:

INSERT

INTO

Employee

(Oid,

Name,

Age,

SerialNum,

Salary,

Dept,

Address)

VALUES(Employee_t('m'),

'Marie',

35,

005,

55000,

BusinessUnit_t(2),

US_addr_t

(

)

�1�

..street('Bakely

Avenue')

�2�

..number('555')

�3�

..city('San

Jose')

�4�

..state('CA')

�5�

..zip('95141'));

�6�

The

previous

statement

creates

an

instance

of

the

US_addr_t

type

by

performing

the

following

tasks:

1.

The

call

to

US_addr_t()

invokes

the

constructor

function

for

the

US_addr_t

type

to

create

an

instance

of

the

type

with

all

attributes

set

to

null

values.

2.

The

call

to

..street('Bakely

Avenue')

invokes

the

mutator

method

for

the

street

attribute

to

set

its

value

to

‘Bakely

Avenue’.

3.

The

call

to

..number('555')

invokes

the

mutator

method

for

the

number

attribute

to

set

its

value

to

‘555’.

4.

The

call

to

..city('San

Jose')

invokes

the

mutator

method

for

the

city

attribute

to

set

its

value

to

'San

Jose'.

5.

The

call

to

..state('CA')

invokes

the

mutator

method

for

the

state

attribute

to

set

its

value

to

'CA'.

6.

The

call

to

..zip('95141')

invokes

the

mutator

method

for

the

zip

attribute

to

set

its

value

to

'95141'.

280

Programming

Server

Applications

Notice

that

although

the

type

of

the

column

Address

in

the

Employee

table

is

defined

with

type

Address_t,

the

property

of

substitutability

means

that

you

can

populate

it

with

an

instance

of

US_addr_t

because

US_addr_t

is

a

subtype

of

Address_t.

To

avoid

having

to

explicitly

call

the

mutator

methods

for

each

attribute

of

a

structured

type

every

time

you

create

an

instance

of

the

type,

consider

defining

your

own

SQL-bodied

constructor

function

that

initializes

all

of

the

attributes.

The

following

example

contains

the

declaration

for

an

SQL-bodied

constructor

function

for

the

US_addr_t

type:

CREATE

FUNCTION

US_addr_t

(street

VARCHAR(30),

number

CHAR(15),

city

VARCHAR(30),

state

VARCHAR(20),

zip

CHAR(10))

RETURNS

US_addr_t

LANGUAGE

SQL

RETURN

US_addr_t()..street(street)..number(number)

..city(city)..state(state)..zip(zipcode);

The

following

example

demonstrates

how

to

create

an

instance

of

the

US_addr_t

type

by

calling

the

SQL-bodied

constructor

function

from

the

previous

example:

INSERT

INTO

Employee(Oid,

Name,

Age,

SerialNum,

Salary,

Dept,

Address)

VALUES(Employee_t(’m’),

’Marie’,

35,

005,

55000,

BusinessUnit_t(2),

US_addr_t(’Bakely

Avenue’,

’555’,

’San

Jose’,

’CA’,

’95141’));

Related

concepts:

v

“Substitutability

in

typed

tables”

on

page

259

v

“Typed

tables”

on

page

255

Related

tasks:

v

“Creating

structured

types”

on

page

246

v

“Storing

structured

type

objects

in

table

columns”

on

page

276

v

“Inserting

structured

type

attributes

into

columns”

on

page

278

v

“Defining

and

altering

tables

with

structured

type

columns”

on

page

279

v

“Defining

types

with

structured

type

attributes”

on

page

279

Modifying

structured

type

values

in

columns

Retrieving

and

modifying

structured

type

values

in

columns

There

are

two

ways

that

applications

and

user-defined

functions

can

access

data

in

structured

type

columns:

by

accessing

individual

attributes

of

an

object,

or

by

assessing

the

object

as

a

single

value.

If

you

want

to

treat

an

object

as

a

single

value,

you

must

first

define

transform

functions.

Once

you

define

the

correct

transform

functions,

you

can

select

a

structured

object

much

as

you

can

any

other

value:

SELECT

Name,

Dept,

Address

FROM

Employee

WHERE

Salary

>

20000;

The

following

topics

describe

how

you

can

explicitly

access

individual

attributes

of

an

object

by

invoking

the

DB2

built-in

observer

and

mutator

methods.

These

built-in

methods

do

not

require

you

to

define

a

transform

function.

Chapter

8.

User-defined

structured

types

281

Procedure:

1.

Retrieving

structured

type

attributes

2.

Accessing

the

attributes

of

subtypes

3.

Modifying

structured

type

attributes

4.

Returning

information

about

a

structured

type

Related

concepts:

v

“Transform

functions

and

transform

groups”

on

page

284

Related

tasks:

v

“Retrieving

structured

type

attributes”

on

page

282

v

“Accessing

the

attributes

of

subtypes”

on

page

283

v

“Modifying

structured

type

attributes”

on

page

283

v

“Returning

information

about

a

structured

type”

on

page

284

v

“Storing

structured

type

objects

in

table

columns”

on

page

276

v

“Inserting

structured

type

attributes

into

columns”

on

page

278

v

“Inserting

rows

that

contain

structured

type

values”

on

page

280

Retrieving

structured

type

attributes

To

explicitly

access

individual

attributes

of

an

object,

invoke

the

DB2

built-in

observer

methods

on

those

attributes.

Using

the

observer

methods,

you

can

retrieve

the

attributes

individually

rather

than

treating

the

object

as

a

single

value.

The

following

example

accesses

data

in

the

Address

column

by

invoking

the

observer

methods

on

Address_t,

the

defined

static

type

for

the

Address

column:

SELECT

Name,

Dept,

Address..street,

Address..number,

Address..city,

Address..state

FROM

Employee

WHERE

Salary

>

20000;

Note:

DB2

enables

you

to

invoke

methods

that

take

no

parameters

using

either

<type-name>..<method-name>()

or

<type-name>..<method-name>,

where

type-name

represents

the

name

of

the

structured

type,

and

attribute-name

represents

the

name

of

the

method

that

takes

no

parameters.

You

can

also

use

observer

methods

to

select

each

attribute

into

a

host

variable,

as

follows:

SELECT

Name,

Dept,

Address..street,

Address..number,

Address..city,

Address..state

INTO

:name,

:dept,

:street,

:number,

:city,

:state

FROM

Employee

WHERE

Empno

=

‘000250’;

Related

tasks:

v

“Inserting

structured

type

attributes

into

columns”

on

page

278

v

“Accessing

the

attributes

of

subtypes”

on

page

283

v

“Modifying

structured

type

attributes”

on

page

283

v

“Returning

information

about

a

structured

type”

on

page

284

282

Programming

Server

Applications

Accessing

the

attributes

of

subtypes

In

the

Employee

table,

addresses

can

be

of

4

different

types:

Address_t,

US_addr_t,

Brazil_addr_t,

and

Germany_addr_t.

To

access

attributes

of

values

from

one

of

the

subtypes

of

Address_t,

you

must

use

the

TREAT

expression

to

indicate

to

DB2

that

a

particular

object

can

be

of

the

US_addr_t,

Germany_addr_t,

or

Brazil_addr_t

types.

The

TREAT

expression

casts

a

structured

type

expression

into

one

of

its

subtypes,

as

shown

in

the

following

query:

SELECT

Name,

Dept,

Address..street,

Address..number,

Address..city,

Address..state,

CASE

WHEN

Address

IS

OF

(US_addr_t)

THEN

TREAT(Address

AS

US_addr_t)..zip

WHEN

Address

IS

OF

(Germany_addr_t)

THEN

TREAT

(Address

AS

Germany_addr_t)..family_name

WHEN

Address

IS

OF

(Brazil_addr_t)

THEN

TREAT

(Address

AS

Brazil_addr_t)..neighborhood

ELSE

NULL

END

FROM

Employee

WHERE

Salary

>

20000;

Related

tasks:

v

“Inserting

structured

type

attributes

into

columns”

on

page

278

v

“Retrieving

structured

type

attributes”

on

page

282

v

“Modifying

structured

type

attributes”

on

page

283

v

“Returning

information

about

a

structured

type”

on

page

284

Modifying

structured

type

attributes

To

change

an

attribute

of

a

structured

column

value,

invoke

the

mutator

method

for

the

attribute

you

want

to

change.

For

example,

to

change

the

street

attribute

of

an

address,

you

can

invoke

the

mutator

method

for

street

with

the

value

to

which

it

will

be

changed.

The

returned

value

is

an

address

with

the

new

value

for

street.

The

following

example

invokes

a

mutator

method

for

the

attribute

named

street

to

update

an

address

type

in

the

Employee

table:

UPDATE

Employee

SET

Address

=

Address..street(‘Bailey’)

WHERE

Address..street

=

‘Bakely’;

The

following

example

performs

the

same

update

as

the

previous

example,

but

instead

of

naming

the

structured

column

for

the

update,

the

SET

clause

directly

accesses

the

mutator

method

for

the

attribute

named

street:

UPDATE

Employee

SET

Address..street

=

‘Bailey’

WHERE

Address..street

=

‘Bakely’;

Related

tasks:

v

“Inserting

structured

type

attributes

into

columns”

on

page

278

v

“Retrieving

structured

type

attributes”

on

page

282

v

“Accessing

the

attributes

of

subtypes”

on

page

283

v

“Returning

information

about

a

structured

type”

on

page

284

Chapter

8.

User-defined

structured

types

283

Returning

information

about

a

structured

type

You

can

use

built-in

functions

to

return

the

name,

schema,

or

internal

type

ID

of

a

particular

type.

The

following

statement

returns

the

exact

type

of

the

address

value

associated

with

the

employee

named

‘Iris’:

SELECT

TYPE_NAME(Address)

FROM

Employee

WHERE

Name='Iris';

Related

tasks:

v

“Inserting

structured

type

attributes

into

columns”

on

page

278

v

“Retrieving

structured

type

attributes”

on

page

282

v

“Accessing

the

attributes

of

subtypes”

on

page

283

v

“Modifying

structured

type

attributes”

on

page

283

Transform

functions

and

transform

groups

Transform

functions

and

transform

groups

Transform

functions

are

used

to

exchange

structured

type

values

with

host

language

programs

and

with

external

functions

and

methods.

Transform

functions

naturally

occur

in

pairs:

one

FROM

SQL

transform

function,

and

one

TO

SQL

transform

function.

The

FROM

SQL

function

converts

a

structured

type

object

into

a

type

that

can

be

exchanged

with

an

external

program,

and

the

TO

SQL

function

constructs

the

object.

When

you

create

transform

functions,

you

put

each

logical

pair

of

transform

functions

into

a

group.

The

transform

group

name

uniquely

identifies

a

pair

of

these

functions

for

a

given

structured

type.

Before

you

can

use

a

transform

function,

you

must

use

the

CREATE

TRANSFORM

statement

to

associate

the

transform

function

with

a

group

name

and

a

type.

The

CREATE

TRANSFORM

statement

identifies

one

or

more

existing

functions

and

causes

them

to

be

used

as

transform

functions.

The

following

example

names

two

pairs

of

functions

to

be

used

as

transform

functions

for

the

type

Address_t.

The

statement

creates

two

transform

groups,

func_group

and

client_group,

each

of

which

consists

of

a

FROM

SQL

transform

and

a

TO

SQL

transform.

CREATE

TRANSFORM

FOR

Address_t

func_group

(

FROM

SQL

WITH

FUNCTION

addresstofunc,

TO

SQL

WITH

FUNCTION

functoaddress

)

client_group

(

FROM

SQL

WITH

FUNCTION

stream_to_client,

TO

SQL

WITH

FUNCTION

stream_from_client

)

;

You

can

associate

additional

functions

with

the

Address_t

type

by

adding

more

groups

on

the

CREATE

TRANSFORM

statement.

To

alter

the

transform

definition,

you

must

reissue

the

CREATE

TRANSFORM

statement

with

the

additional

functions.

Use

the

SQL

statement

DROP

TRANSFORM

to

disassociate

transform

functions

from

types.

After

you

execute

the

DROP

TRANSFORM

statement,

the

functions

will

still

exist,

but

they

will

no

longer

be

used

as

transform

functions

for

this

type.

The

following

example

disassociates

the

specific

group

of

transform

functions

func_group

for

the

Address_t

type,

and

then

disassociates

all

transform

functions

for

the

Address_t

type:

284

Programming

Server

Applications

DROP

TRANSFORMS

func_group

FOR

Address_t;

DROP

TRANSFORMS

ALL

FOR

Address_t;

To

alter

the

transform

definition,

you

must

reissue

the

CREATE

TRANSFORM

statement

with

the

additional

functions.

For

example,

you

might

want

to

customize

your

client

functions

for

different

host

language

programs,

such

as

having

one

for

C

and

one

for

Java™.

To

optimize

the

performance

of

your

application,

you

might

want

your

transforms

to

work

only

with

a

subset

of

the

object

attributes.

Or

you

might

want

one

transform

that

uses

VARCHAR

as

the

client

representation

for

an

object

and

one

transform

that

uses

BLOB.

Related

concepts:

v

“User-defined

structured

types”

on

page

245

v

“Transform

function

requirements”

on

page

298

v

“Specification

of

transform

groups”

on

page

286

v

“Host

language

program

mappings

with

transform

functions”

on

page

288

v

“Function

transforms”

on

page

289

v

“Recommendations

for

naming

transform

groups”

on

page

285

Related

tasks:

v

“Retrieving

and

modifying

structured

type

values

in

columns”

on

page

281

Related

reference:

v

“DROP

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

TRANSFORM

statement”

in

the

SQL

Reference,

Volume

2

Recommendations

for

naming

transform

groups

Transform

group

names

are

unqualified

identifiers;

that

is,

they

are

not

associated

with

any

specific

schema.

Unless

you

are

writing

transforms

to

handle

subtype

parameters,

you

should

not

assign

a

different

transform

group

name

for

every

structured

type.

Because

you

might

need

to

use

several

different,

unrelated

types

in

the

same

program

or

in

the

same

SQL

statement,

you

should

name

your

transform

groups

according

to

the

tasks

performed

by

the

transform

functions.

The

names

of

your

transform

groups

should

generally

reflect

the

function

they

perform

without

relying

on

type

names

or

in

any

way

reflecting

the

logic

of

the

transform

functions,

which

will

likely

be

very

different

across

the

different

types.

For

example,

you

could

use

the

name

func_group

or

object_functions

for

any

group

in

which

your

TO

and

FROM

SQL

function

transforms

are

defined.

You

could

use

the

name

client_group

or

program_group

for

a

group

that

contains

TO

and

FROM

SQL

client

transforms.

In

the

following

example,

the

Address_t

and

Polygon

types

use

very

different

transforms,

but

they

use

the

same

function

group

names

CREATE

TRANSFORM

FOR

Address_t

func_group

(TO

SQL

WITH

FUNCTION

functoaddress,

FROM

SQL

WITH

FUNCTION

addresstofunc

);

CREATE

TRANSFORM

FOR

Polygon

func_group

(TO

SQL

WITH

FUNCTION

functopolygon,

FROM

SQL

WITH

FUNCTION

polygontofunc);

Chapter

8.

User-defined

structured

types

285

Once

you

set

the

transform

group

to

func_group

in

the

appropriate

situation,

DB2®

invokes

the

correct

transform

function

whenever

you

bind

in

or

bind

out

an

address

or

polygon.

Restriction:

You

cannot

begin

a

transform

group

with

the

string

’SYS’;

this

group

is

reserved

for

use

by

DB2.

When

you

define

an

external

function

or

method

and

you

do

not

specify

a

transform

group

name,

DB2

attempts

to

use

the

name

DB2_FUNCTION,

and

assumes

that

that

group

name

was

specified

for

the

given

structured

type.

If

you

do

not

specify

a

group

name

when

you

precompile

a

client

program

that

references

a

given

structured

type,

DB2

attempts

to

use

a

group

name

called

DB2_PROGRAM,

and

again

assumes

that

the

group

name

was

defined

for

that

type.

This

default

behavior

is

convenient

in

some

cases,

but

in

a

more

complex

database

schema,

you

might

want

a

slightly

more

extensive

convention

for

transform

group

names.

For

example,

it

might

help

you

to

use

different

group

names

for

different

languages

to

which

you

might

bind

out

the

type.

Related

concepts:

v

“Transform

functions

and

transform

groups”

on

page

284

v

“Specification

of

transform

groups”

on

page

286

Related

reference:

v

“CREATE

TRANSFORM

statement”

in

the

SQL

Reference,

Volume

2

Specification

of

transform

groups

Specification

of

transform

groups

Many

transform

groups

can

be

defined

for

a

given

structured

type,

so

you

must

specify

which

group

of

transforms

to

use

for

that

type

in

a

program

or

specific

SQL

statement.

There

are

three

circumstances

in

which

you

must

specify

transform

groups:

v

When

an

external

function

or

method

is

defined,

you

must

specify

the

group

that

decomposes

and

constructs

a

referenced

object.

v

When

precompiling

or

binding

static

SQL,

you

must

specify

the

group

of

transforms

that

perform

client

bind

in

and

bind

out

for

a

referenced

type.

v

When

executing

dynamic

SQL,

or

when

using

the

Command

Line

Processor,

you

must

specify

the

group

of

transforms

that

perform

client

bind

in

and

bind

out

for

a

referenced

type.

Related

concepts:

v

“Transform

functions

and

transform

groups”

on

page

284

v

“Host

language

program

mappings

with

transform

functions”

on

page

288

Related

tasks:

v

“Specifying

transform

groups

for

external

routines”

on

page

287

v

“Specifying

transform

groups

for

dynamic

SQL”

on

page

287

v

“Specifying

transform

groups

for

static

SQL”

on

page

287

286

Programming

Server

Applications

Specifying

transform

groups

for

external

routines

The

CREATE

FUNCTION

and

CREATE

METHOD

statements

enable

you

to

specify

the

TRANSFORM

GROUP

clause,

which

is

only

valid

when

the

value

of

the

LANGUAGE

clause

is

not

SQL.

SQL

language

functions

do

not

require

transforms,

while

external

functions

do

require

transforms.

The

TRANSFORM

GROUP

clause

allows

you

to

specify,

for

any

given

function

or

method,

the

transform

group

that

contains

the

TO

SQL

and

FROM

SQL

transforms

used

for

structured

type

parameters

and

results.

In

the

following

example,

the

CREATE

FUNCTION

and

CREATE

METHOD

statements

specify

the

transform

group

func_group

for

the

TO

SQL

and

FROM

SQL

transforms:

CREATE

FUNCTION

stream_from_client

(VARCHAR

(150))

RETURNS

Address_t

...

TRANSFORM

GROUP

func_group

EXTERNAL

NAME

’addressudf!address_stream_from_client’

...

CREATE

METHOD

distance

(

point

)

FOR

polygon

RETURNS

integer

:

TRANSFORM

GROUP

func_group

;

Related

concepts:

v

“Transform

functions

and

transform

groups”

on

page

284

v

“Specification

of

transform

groups”

on

page

286

Related

tasks:

v

“Defining

behavior

for

structured

types”

on

page

251

v

“Specifying

transform

groups

for

dynamic

SQL”

on

page

287

v

“Specifying

transform

groups

for

static

SQL”

on

page

287

Specifying

transform

groups

for

dynamic

SQL

If

you

use

dynamic

SQL,

you

can

set

the

CURRENT

DEFAULT

TRANSFORM

GROUP

special

register.

This

special

register

is

not

used

for

static

SQL

statements

or

for

the

exchange

of

parameters

and

results

with

external

functions

or

methods.

Use

the

SET

CURRENT

DEFAULT

TRANSFORM

GROUP

statement

to

set

the

default

transform

group

for

your

dynamic

SQL

statements:

SET

CURRENT

DEFAULT

TRANSFORM

GROUP

=

client_group;

Related

concepts:

v

“Transform

functions

and

transform

groups”

on

page

284

v

“Specification

of

transform

groups”

on

page

286

Related

tasks:

v

“Specifying

transform

groups

for

external

routines”

on

page

287

v

“Specifying

transform

groups

for

static

SQL”

on

page

287

Specifying

transform

groups

for

static

SQL

For

static

SQL,

use

the

TRANSFORM

GROUP

option

on

the

PRECOMPILE

or

BIND

command

to

specify

the

static

transform

group

used

by

static

SQL

statements

to

exchange

values

of

various

types

with

host

programs.

Static

transform

groups

do

not

apply

to

dynamic

SQL

statements

or

to

the

exchange

of

Chapter

8.

User-defined

structured

types

287

parameters

and

results

with

external

functions

or

methods.

To

specify

the

static

transform

group

on

the

PRECOMPILE

or

BIND

command,

use

the

TRANSFORM

GROUP

clause:

PRECOMPILE

...

TRANSFORM

GROUP

client_group

...

;

Related

concepts:

v

“Transform

functions

and

transform

groups”

on

page

284

v

“Specification

of

transform

groups”

on

page

286

Related

tasks:

v

“Specifying

transform

groups

for

external

routines”

on

page

287

v

“Specifying

transform

groups

for

dynamic

SQL”

on

page

287

Related

reference:

v

“BIND

Command”

in

the

Command

Reference

v

“PRECOMPILE

Command”

in

the

Command

Reference

Creating

the

mapping

to

the

host

language

program

Host

language

program

mappings

with

transform

functions

An

application

cannot

directly

select

an

entire

object,

although

you

can

select

individual

attributes

of

an

object

into

an

application.

An

application

usually

does

not

directly

insert

an

entire

object,

although

it

can

insert

the

result

of

an

invocation

of

the

constructor

function:

INSERT

INTO

Employee(Address)

VALUES

(Address_t());

To

exchange

whole

objects

between

the

server

and

client

applications,

or

external

functions,

you

must

normally

write

transform

functions.

A

transform

function

defines

how

DB2®

converts

an

object

into

a

well-defined

format

for

accessing

its

contents,

or

binds

out

the

object.

A

different

transform

function

defines

how

DB2

returns

the

object

to

be

stored

in

the

database,

or

binds

in

the

object.

Transforms

that

bind

out

an

object

are

called

FROM

SQL

transform

functions,

and

transforms

that

bind

in

a

column

object

are

called

TO

SQL

transforms.

Most

likely,

there

will

be

different

transforms

for

passing

objects

to

routines,

or

external

UDFs

and

methods,

than

those

for

passing

objects

to

client

applications.

This

is

because

when

you

pass

the

object

to

an

external

routine,

you

decompose

the

object

and

pass

it

to

the

routine

as

a

list

of

parameters.

With

client

applications,

you

must

turn

the

object

into

a

single

built-in

type,

such

as

a

BLOB.

This

process

is

called

encoding

the

object.

Often

these

two

types

of

transforms

are

used

together.

Use

the

SQL

statement

CREATE

TRANSFORM

to

associate

transform

functions

with

a

particular

structured

type.

Within

the

CREATE

TRANSFORM

statement,

the

functions

are

paired

into

what

are

called

transform

groups.

This

makes

it

easier

to

identify

which

functions

are

used

for

a

particular

transform

purpose.

Each

transform

group

can

contain

not

more

than

one

FROM

SQL

transform,

and

not

more

than

one

TO

SQL

transform,

for

a

particular

type.

288

Programming

Server

Applications

Related

concepts:

v

“Transform

function

requirements”

on

page

298

v

“Transform

functions

and

transform

groups”

on

page

284

v

“Function

transforms”

on

page

289

v

“Client

transforms”

on

page

294

Related

tasks:

v

“Implementing

function

transforms

using

SQL-bodied

routines”

on

page

291

v

“Passing

structured

type

parameters

to

external

routines”

on

page

292

Related

reference:

v

“CREATE

TRANSFORM

statement”

in

the

SQL

Reference,

Volume

2

Function

transforms

DB2®

uses

TO

SQL

and

FROM

SQL

function

transforms

to

pass

an

object

to

and

from

an

external

routine.

There

is

no

need

to

use

transforms

for

SQL-bodied

routines.

However,

DB2

often

uses

these

functions

as

part

of

the

process

of

passing

an

object

to

and

from

a

client

program.

The

following

example

issues

an

SQL

statement

that

invokes

an

external

UDF

called

MYUDF

that

takes

an

address

as

an

input

parameter,

modifies

the

address

(to

reflect

a

change

in

street

names,

for

example),

and

returns

the

modified

address:

SELECT

MYUDF(Address)

FROM

PERSON;

Figure

13

on

page

290

shows

how

DB2

processes

the

address.

Chapter

8.

User-defined

structured

types

289

1.

Your

FROM

SQL

transform

function

decomposes

the

structured

object

into

an

ordered

set

of

its

base

attributes.

This

enables

the

routine

to

receive

the

object

as

a

simple

list

of

parameters

whose

types

are

basic

built-in

data

types.

For

example,

assume

that

you

want

to

pass

an

address

object

to

an

external

routine.

The

attributes

of

Address_t

are

VARCHAR,

CHAR,

VARCHAR,

and

VARCHAR,

in

that

order.

The

FROM

SQL

transform

for

passing

this

object

to

a

routine

must

accept

this

object

as

an

input

and

return

VARCHAR,

CHAR,

VARCHAR,

and

VARCHAR.

These

outputs

are

then

passed

to

the

external

routine

as

four

separate

parameters,

with

four

corresponding

null

indicator

parameters,

and

a

null

indicator

for

the

structured

type

itself.

The

order

of

parameters

in

the

FROM

SQL

function

does

not

matter,

as

long

as

all

functions

that

return

Address_t

types

use

the

same

order.

2.

Your

external

routine

accepts

the

decomposed

address

as

its

input

parameters,

does

its

processing

on

those

values,

and

then

returns

the

attributes

as

output

parameters.

3.

Your

TO

SQL

transform

function

must

turn

the

VARCHAR,

CHAR,

VARCHAR,

and

VARCHAR

parameters

that

are

returned

from

MYUDF

back

into

an

object

of

type

Address_t.

In

other

words,

the

TO

SQL

transform

function

must

take

the

SELECT MYUDF(Address) FROM Person;

MYUDF (varchar, char, varchar, varchar)
input parameters

(varchar, char, varchar, varchar)
structured type output

1. FROM SQL function transform

3. TO SQL function transform

2. The external code which implements MYUDF operates on 4 parameters
...and returns 4 output parameters.

VARCHAR

VARCHAR

VARCHAR

VARCHAR

VARCHAR

VARCHAR

CHAR

CHAR

structured type input

structured type input

Figure

13.

Exchanging

a

structured

type

parameter

with

an

external

routine

290

Programming

Server

Applications

four

parameters,

and

all

of

the

corresponding

null

indicator

parameters,

as

output

values

from

the

routine.

The

TO

SQL

function

constructs

the

structured

object

and

then

mutates

the

attributes

with

the

given

values.

Note:

If

MYUDF

also

returns

a

structured

type,

another

transform

function

must

transform

the

resultant

structured

type

when

the

UDF

is

used

in

a

SELECT

clause.

To

avoid

creating

another

transform

function,

you

can

use

SELECT

statements

with

observer

methods,

as

in

the

following

example:

SELECT

Name

FROM

Employee

WHERE

MYUDF(Address)..city

LIKE

‘Tor%’;

Related

concepts:

v

“Transform

functions

and

transform

groups”

on

page

284

v

“Host

language

program

mappings

with

transform

functions”

on

page

288

v

“Client

transforms”

on

page

294

Related

tasks:

v

“Implementing

function

transforms

using

SQL-bodied

routines”

on

page

291

v

“Passing

structured

type

parameters

to

external

routines”

on

page

292

Implementing

function

transforms

using

SQL-bodied

routines

To

decompose

and

construct

objects

when

exchanging

the

object

with

an

external

routine,

you

must

use

user-defined

functions

written

in

SQL,

called

SQL-bodied

functions.

To

create

a

SQL-bodied

function,

issue

a

CREATE

FUNCTION

statement

with

the

LANGUAGE

SQL

clause.

In

your

SQL-bodied

function,

you

can

use

constructors,

observers,

and

mutators

to

achieve

the

transformation.

This

SQL-bodied

transform

intervenes

between

the

SQL

statement

and

the

external

function.

The

FROM

SQL

transform

takes

the

object

as

an

SQL

parameter

and

returns

a

row

of

values

representing

the

attributes

of

the

structured

type.

The

following

example

contains

a

possible

FROM

SQL

transform

function

for

an

address

object

using

a

SQL-bodied

function:

CREATE

FUNCTION

addresstofunc

(A

Address_t)

�1�

RETURNS

ROW

(Street

VARCHAR(30),

Number

CHAR(15),

City

VARCHAR(30),

State

(VARCHAR(10))

�2�

LANGUAGE

SQL

�3�

RETURN

VALUES

(A..Street,

A..Number,

A..City,

A..State)

�4�

The

following

list

explains

the

syntax

of

the

preceding

CREATE

FUNCTION

statement:

1.

The

signature

of

this

function

indicates

that

it

accepts

one

parameter,

an

object

of

type

Address_t.

2.

The

RETURNS

ROW

clause

indicates

that

the

function

returns

a

row

containing

four

columns:

Street,

Number,

City,

and

State.

3.

The

LANGUAGE

SQL

clause

indicates

that

this

is

an

SQL-bodied

function,

not

an

external

function.

4.

The

RETURN

clause

marks

the

beginning

of

the

function

body.

The

body

consists

of

a

single

VALUES

clause

that

invokes

the

observer

method

for

each

attribute

of

the

Address_t

object.

The

observer

methods

decompose

the

object

into

a

set

of

base

types,

which

the

function

returns

as

a

row.

Chapter

8.

User-defined

structured

types

291

DB2

does

not

know

that

you

intend

to

use

this

function

as

a

transform

function.

Until

you

create

a

transform

group

that

uses

this

function,

and

then

specify

that

transform

group

in

the

appropriate

situation,

DB2

cannot

use

the

function

as

a

transform

function.

The

TO

SQL

transform

simply

does

the

opposite

of

the

FROM

SQL

function.

It

takes

as

input

the

list

of

parameters

from

a

routine

and

returns

an

instance

of

the

structured

type.

To

construct

the

object,

the

following

FROM

SQL

function

invokes

the

constructor

function

for

the

Address_t

type:

CREATE

FUNCTION

functoaddress

(street

VARCHAR(30),

number

CHAR(15),

city

VARCHAR(30),

state

VARCHAR(10))

�1�

RETURNS

Address_t

�2�

LANGUAGE

SQL

CONTAINS

SQL

RETURN

Address_t()..street(street)..number(number)

..city(city)..state(state)

�3�

The

following

list

explains

the

syntax

of

the

previous

statement:

1.

The

function

takes

a

set

of

base

type

attributes.

2.

The

function

returns

an

Address_t

structured

type.

3.

The

function

constructs

the

object

from

the

input

types

by

invoking

the

constructor

for

Address_t

and

the

mutators

for

each

of

the

attributes.

The

order

of

parameters

in

the

FROM

SQL

function

does

not

matter,

other

than

that

all

functions

that

return

addresses

using

this

transform

function

must

use

this

same

order.

Related

concepts:

v

“Function

transforms”

on

page

289

Related

reference:

v

“CREATE

FUNCTION

(SQL

Scalar,

Table,

or

Row)

statement”

in

the

SQL

Reference,

Volume

2

Passing

structured

type

parameters

to

external

routines

When

you

pass

structured

type

parameters

to

an

external

routine,

you

should

pass

a

parameter

for

each

attribute.

You

must

pass

a

null

indicator

for

each

parameter

and

a

null

indicator

for

the

structured

type

itself.

The

following

example

accepts

the

structured

type

Address_t

and

returns

a

base

type:

CREATE

FUNCTION

stream_to_client

(Address_t)

RETURNS

VARCHAR(150)

...

The

external

routine

must

accept

the

null

indicator

for

the

instance

of

the

Address_t

type

(address_ind)

and

one

null

indicator

for

each

of

the

attributes

of

the

Address_t

type.

There

is

also

a

null

indicator

for

the

VARCHAR

output

parameter.

The

following

code

represents

the

C

language

function

headers

for

the

functions

that

implement

the

UDFs:

void

SQL_API_FN

stream_to_client(

/*

decomposed

address

*/

SQLUDF_VARCHAR

*street,

SQLUDF_CHAR

*number,

SQLUDF_VARCHAR

*city,

SQLUDF_VARCHAR

*state,

/*

VARCHAR

output

*/

292

Programming

Server

Applications

SQLUDF_VARCHAR

*output,

/*

null

indicators

for

type

attributes

*/

SQLUDF_NULLIND

*street_ind,

SQLUDF_NULLIND

*number_ind,

SQLUDF_NULLIND

*city_ind,

SQLUDF_NULLIND

*state_ind,

/*

null

indicator

for

instance

of

the

type

*/

SQLUDF_NULLIND

*address_ind,

/*

null

indicator

for

the

VARCHAR

output

*/

SQLUDF_NULLIND

*out_ind,

SQLUDF_TRAIL_ARGS)

Suppose

that

the

routine

accepts

two

different

structured

type

parameters,

st1

and

st2,

and

returns

another

structured

type

of

st3:

CREATE

FUNCTION

myudf

(int,

st1,

st2)

RETURNS

st3

Table

35.

Attributes

of

myudf

parameters

ST1

ST2

ST3

st1_att1

VARCHAR

st2_att1

VARCHAR

st3_att1

INTEGER

st2_att2

INTEGER

st2_att2

CHAR

st3_att2

CLOB

st2_att3

INTEGER

The

following

code

represents

the

C

language

headers

for

routines

that

implement

the

UDFs.

The

arguments

include

variables

and

null

indicators

for

the

attributes

of

the

decomposed

structured

type

and

a

null

indicator

for

each

instance

of

a

structured

type,

as

follows:

void

SQL_API_FN

myudf(

SQLUDF_INTEGER

*INT,

/*

Decomposed

st1

input

*/

SQLUDF_VARCHAR

*st1_att1,

SQLUDF_INTEGER

*st1_att2,

/*

Decomposed

st2

input

*/

SQLUDF_VARCHAR

*st2_att1,

SQLUDF_CHAR

*st2_att2,

SQLUDF_INTEGER

*st2_att3,

/*

Decomposed

st3

output

*/

SQLUDF_VARCHAR

*st3_att1out,

SQLUDF_CLOB

*st3_att2out,

/*

Null

indicator

of

integer

*/

SQLUDF_NULLIND

*INT_ind,

/*

Null

indicators

of

st1

attributes

and

type

*/

SQLUDF_NULLIND

*st1_att1_ind,

SQLUDF_NULLIND

*st1_att2_ind,

SQLUDF_NULLIND

*st1_ind,

/*

Null

indicators

of

st2

attributes

and

type

*/

SQLUDF_NULLIND

*st2_att1_ind,

SQLUDF_NULLIND

*st2_att2_ind,

SQLUDF_NULLIND

*st2_att3_ind,

SQLUDF_NULLIND

*st2_ind,

/*

Null

indicators

of

st3_out

attributes

and

type

*/

SQLUDF_NULLIND

*st3_att1_ind,

SQLUDF_NULLIND

*st3_att2_ind,

SQLUDF_NULLIND

*st3_ind,

/*

trailing

arguments

*/

SQLUDF_TRAIL_ARGS

)

Related

concepts:

v

“Transform

functions

and

transform

groups”

on

page

284

Chapter

8.

User-defined

structured

types

293

v

“Host

language

program

mappings

with

transform

functions”

on

page

288

v

“Function

transforms”

on

page

289

v

“Client

transforms”

on

page

294

Related

tasks:

v

“Implementing

client

transforms

for

binding

in

from

a

client

using

external

UDFs”

on

page

296

Client

transforms

Client

transforms

exchange

structured

types

with

client

application

programs.

For

example,

assume

that

you

want

to

execute

the

following

SQL

statement:

...

SQL

TYPE

IS

Address_t

AS

VARCHAR(150)

addhv;

...

EXEC

SQL

SELECT

Address

FROM

Person

INTO

:addhv

WHERE

AGE

>

25

END

EXEC;

Figure

14

shows

the

process

of

binding

out

that

address

to

the

client

program.

1.

The

object

must

first

be

passed

to

the

FROM

SQL

function

transform

to

decompose

the

object

into

its

base

type

attributes.

2.

Your

FROM

SQL

client

transform

must

encode

the

value

into

a

single

built-in

type,

such

as

a

VARCHAR

or

BLOB.

This

enables

the

client

program

to

receive

the

entire

value

in

a

single

host

variable.

SELECT FROM Person INTO: WHERE...;Address addhv

flattened address attributes

1. FROM SQL transformfunction

2. FROM SQL transformclient

Server
Client

3. After retrieving the address as a VARCHAR,
the client can decode its attributes and
access them as desired.

VARCHAR

Figure

14.

Binding

out

a

structured

type

to

a

client

application

294

Programming

Server

Applications

This

encoding

can

be

as

simple

as

copying

the

attributes

into

a

contiguous

area

of

storage

(providing

for

required

alignments

as

necessary).

Because

the

encoding

and

decoding

of

attributes

cannot

generally

be

achieved

with

SQL,

client

transforms

are

usually

written

as

external

UDFs.

3.

The

client

program

processes

the

value.

Figure

15

shows

the

reverse

process

of

passing

the

address

back

to

the

database.

1.

The

client

application

encodes

the

address

into

a

format

expected

by

the

TO

SQL

client

transform.

2.

The

TO

SQL

client

transform

decomposes

the

single

built-in

type

into

a

set

of

its

base

type

attributes,

which

is

used

as

input

to

the

TO

SQL

function

transform.

3.

The

TO

SQL

function

transform

constructs

the

address

and

returns

it

to

the

database.

Include

the

TRANSFORM

GROUP

clause

to

tell

DB2®

which

set

of

transforms

to

use

in

processing

the

address

type

in

the

given

function.

Related

concepts:

v

“Host

language

program

mappings

with

transform

functions”

on

page

288

v

“Function

transforms”

on

page

289

Related

tasks:

v

“Implementing

client

transforms

using

external

UDFs”

on

page

296

v

“Implementing

client

transforms

for

binding

in

from

a

client

using

external

UDFs”

on

page

296

INSERT INTO Person (Address) VALUES (:addhv);

decomposed Address_t attributes

1. TO SQL transformfunction

2. TO SQL transformclient

Server

Client

3. Before sending the address as an instance of type
Address_t, the client invokes the TO SQL function
transform to decompose the host variable into
Address_t attributes, then invokes the TO SQL
client transform to construct an instance of
Address_t, which the server inserts into the table.

Address_t

Figure

15.

Binding

in

a

structured

type

from

a

client

Chapter

8.

User-defined

structured

types

295

Implementing

client

transforms

using

external

UDFs

Register

the

client

transforms

the

same

way

as

any

other

external

UDF.

For

example,

assume

that

you

have

written

external

UDFs

that

do

the

appropriate

encoding

and

decoding

for

an

address.

Suppose

that

you

have

named

the

FROM

SQL

client

transform

from_sql_to_client

and

the

TO

SQL

client

transform

to_sql_from_client.

In

both

of

these

cases,

the

output

of

the

functions

are

in

a

format

that

can

be

used

as

input

by

the

appropriate

FROM

SQL

and

TO

SQL

function

transforms.

CREATE

FUNCTION

from_sql_to_client

(Address_t)

RETURNS

VARCHAR

(150)

LANGUAGE

C

TRANSFORM

GROUP

func_group

EXTERNAL

NAME

'addressudf!address_from_sql_to_client'

NOT

VARIANT

NO

EXTERNAL

ACTION

NOT

FENCED

NO

SQL

PARAMETER

STYLE

SQL;

The

DDL

in

the

previous

example

makes

it

seem

as

if

the

from_sql_to_client

UDF

accepts

a

parameter

of

type

Address_t.

What

really

happens

is

that,

for

each

row

for

which

the

from_sql_to_client

UDF

is

invoked,

the

Addresstofunc

transform

decomposes

the

Address

into

its

various

attributes.

The

from_sql_to_client

UDF

produces

a

simple

character

string

and

formats

the

address

attributes

for

display,

allowing

you

to

use

the

following

simple

SQL

query

to

display

the

Name

and

Address

attributes

for

each

row

of

the

Person

table:

SELECT

Name,

from_sql_to_client

(Address)

FROM

Person;

Notice

that

the

DDL

in

from_sql_to_client

includes

a

clause

called

TRANSFORM

GROUP.

This

clause

tells

DB2

which

set

of

transforms

to

use

in

processing

the

address

type

in

those

functions.

Related

concepts:

v

“Client

transforms”

on

page

294

Related

tasks:

v

“Passing

structured

type

parameters

to

external

routines”

on

page

292

v

“Implementing

client

transforms

for

binding

in

from

a

client

using

external

UDFs”

on

page

296

Implementing

client

transforms

for

binding

in

from

a

client

using

external

UDFs

The

following

DDL

registers

a

function

that

takes

the

VARCHAR-encoded

object

from

the

client,

decomposes

it

into

its

various

base

type

attributes,

and

passes

it

to

the

TO

SQL

function

transform.

CREATE

FUNCTION

to_sql_from_client

(VARCHAR

(150))

RETURNS

Address_t

LANGUAGE

C

TRANSFORM

GROUP

func_group

EXTERNAL

NAME

'addressudf!address_to_sql_from_client'

NOT

VARIANT

296

Programming

Server

Applications

NO

EXTERNAL

ACTION

NOT

FENCED

NO

SQL

PARAMETER

STYLE

SQL;

Although

it

appears

as

if

the

to_sql_from_client

returns

the

address

directly,

what

really

happens

is

that

to_sql_from_client

converts

the

VARCHAR

(150)

to

a

set

of

base

type

attributes.

Then

DB2

implicitly

invokes

the

TO

SQL

transform

functoaddress

to

construct

the

address

object

that

is

returned

to

the

database.

Notice

that

the

DDL

in

to_sql_from_client

includes

a

clause

called

TRANSFORM

GROUP.

This

clause

tells

DB2

which

set

of

transforms

to

use

in

processing

the

address

type

in

those

functions.

Related

concepts:

v

“Client

transforms”

on

page

294

Related

tasks:

v

“Implementing

client

transforms

using

external

UDFs”

on

page

296

Data

conversion

considerations

When

data,

especially

binary

data,

is

exchanged

between

server

and

client,

there

are

several

data

conversion

issues

to

consider.

For

example,

when

data

is

transferred

between

operating

systems

with

different

byte-ordering

schemes,

numeric

data

must

undergo

a

byte-reversal

process

to

restore

its

correct

numeric

value.

Different

operating

systems

also

have

certain

alignment

requirements

for

referencing

numeric

data

in

memory;

some

operating

systems

will

cause

program

exceptions

if

these

requirements

are

not

observed.

Character

data

types

are

automatically

converted

by

the

database,

except

when

character

data

is

embedded

in

a

binary

data

type

such

as

BLOB

or

a

VARCHAR

FOR

BIT

DATA.

There

are

two

ways

to

avoid

data

conversion

problems:

v

Always

transform

objects

into

printable

character

data

types,

including

numeric

data.

This

approach

has

the

disadvantages

of

slowing

performance,

due

to

the

many

potential

conversions

required,

and

increasing

the

complexity

of

code

accessing

these

objects,

such

as

on

the

client

or

in

the

transform

function

itself.

v

Devise

an

operating

system-neutral

format

for

an

object

transformed

into

a

binary

data

type,

similar

to

the

approach

that

is

taken

by

Java™

implementations.

Be

sure

to:

–

Take

care

when

packing

or

unpacking

these

compacted

objects

to

properly

encode

or

decode

the

individual

data

types

and

to

avoid

data

corruption

or

program

faults.

–

Include

sufficient

header

information

in

the

transformed

type

so

that

the

remainder

of

the

encoded

object

can

be

correctly

interpreted

independent

of

the

client

or

server

operating

system.

–

Use

the

DBINFO

option

of

CREATE

FUNCTION

to

pass

to

the

transform

function

various

characteristics

related

to

the

database

server

environment.

These

characteristics

can

be

included

in

the

header

in

an

operating

system-neutral

format.

As

much

as

possible,

write

transform

functions

so

that

they

correctly

handle

all

of

the

complexities

associated

with

the

transfer

of

data

between

server

and

client.

Chapter

8.

User-defined

structured

types

297

When

you

design

your

application,

consider

the

specific

requirements

of

your

environment

and

evaluate

the

tradeoffs

between

complete

generality

and

simplicity.

For

example,

if

you

know

that

both

the

database

server

and

all

of

its

clients

run

in

an

AIX®

environment

and

use

the

same

code

page,

you

could

decide

to

ignore

the

previously

discussed

considerations,

because

no

conversions

are

currently

required.

However,

if

your

environment

changes

in

the

future,

you

might

have

to

exert

considerable

effort

to

revise

your

original

design

to

correctly

handle

data

conversion.

Related

concepts:

v

“Transform

functions

and

transform

groups”

on

page

284

v

“Host

language

program

mappings

with

transform

functions”

on

page

288

v

“Function

transforms”

on

page

289

Transform

function

requirements

Table

36

is

intended

to

help

you

determine

what

transform

functions

you

need,

depending

on

whether

you

are

binding

out

to

an

external

routine

or

a

client

application.

Table

36.

Characteristics

of

transform

functions

Characteristic

Exchanging

values

with

an

external

routine

Exchanging

values

with

a

client

application

Transform

direction

FROM

SQL

TO

SQL

FROM

SQL

TO

SQL

What

is

being

transformed

Routine

parameter

Routine

result

Output

host

variable

Input

host

variable

Behavior

Decomposes

Constructs

Encodes

Decodes

Transform

function

parameters

Structured

type

Row

of

built-in

types

Structured

type

One

built-in

type

Transform

function

result

Row

of

built-in

types

(probably

attributes)

Structured

type

One

built-in

type

Structured

type

Dependent

on

another

transform?

No

No

FROM

SQL

UDF

transform

TO

SQL

UDF

transform

When

is

the

transform

group

specified?

At

the

time

the

UDF

is

registered

Static:

precompile

time

Dynamic:

Special

register

Are

there

data

conversion

considerations?

No

Yes

Note:

Although

not

generally

the

case,

client

type

transforms

can

actually

be

written

in

SQL

if

any

of

the

following

are

true:

v

The

structured

type

contains

only

one

attribute.

v

The

encoding

and

decoding

of

the

attributes

into

a

built-in

type

can

be

achieved

by

some

combination

of

SQL

operators

or

functions.

In

these

cases,

you

do

not

have

to

depend

on

function

transforms

to

exchange

the

values

of

a

structured

type

with

a

client

application.

298

Programming

Server

Applications

Related

concepts:

v

“Transform

functions

and

transform

groups”

on

page

284

Related

tasks:

v

“Retrieving

subtype

data

from

DB2”

on

page

299

Retrieving

subtype

data

from

DB2

If

your

data

model

takes

advantage

of

subtypes,

a

value

in

a

column

could

be

one

of

many

different

subtypes.

You

can

dynamically

choose

the

correct

transform

functions

based

on

the

actual

input

type.

Suppose

you

want

to

issue

the

following

SELECT

statement:

SELECT

Address

FROM

Person

INTO

:hvaddr;

The

application

has

no

way

of

knowing

whether

an

instance

of

Address_t,

US_addr_t,

or

so

on,

will

be

returned.

To

keep

the

example

from

being

too

complex,

let

it

be

assumed

that

only

Address_t

or

US_addr_t

can

be

returned.

The

structures

of

these

types

are

different,

so

the

transforms

that

decompose

the

attributes

must

be

different.

To

ensure

that

the

proper

transforms

are

invoked:

Step

1.

Create

a

FROM

SQL

function

transform

for

each

variation

of

address:

CREATE

FUNCTION

addresstofunc(A

address_t)

RETURNS

ROW

(Street

VARCHAR(30),

Number

CHAR(15),

City

VARCHAR(30),

STATE

VARCHAR

(10))

LANGUAGE

SQL

RETURN

VALUES

(A..Street,

A..Number,

A..City,

A..State)

CREATE

FUNCTION

US_addresstofunc(A

US_addr_t)

RETURNS

ROW

(Street

VARCHAR(30),

Number

CHAR(15),

City

VARCHAR(30),

STATE

VARCHAR

(10),

Zip

CHAR(10))

LANGUAGE

SQL

RETURN

VALUES

(A..Street,

A..Number,

A..City,

A..State,

A..Zip)

Step

2.

Create

transform

groups,

one

for

each

type

variation:

CREATE

TRANSFORM

FOR

Address_t

funcgroup1

(FROM

SQL

WITH

FUNCTION

addresstofunc)

CREATE

TRANSFORM

FOR

US_addr_t

funcgroup2

(FROM

SQL

WITH

FUNCTION

US_addresstofunc)

Step

3.

Create

external

UDFs,

one

for

each

type

variation.

Register

the

external

UDF

for

the

Address_t

type:

CREATE

FUNCTION

address_to_client

(A

Address_t)

RETURNS

VARCHAR(150)

LANGUAGE

C

EXTERNAL

NAME

'addressudf!address_to_client'

...

TRANSFORM

GROUP

funcgroup1

Write

the

address_to_client

UDF:

void

SQL_API_FN

address_to_client(

SQLUDF_VARCHAR

*street,

SQLUDF_CHAR

*number,

SQLUDF_VARCHAR

*city,

Chapter

8.

User-defined

structured

types

299

SQLUDF_VARCHAR

*state,

SQLUDF_VARCHAR

*output,

/*

Null

indicators

for

attributes

*/

SQLUDF_NULLIND

*street_ind,

SQLUDF_NULLIND

*number_ind,

SQLUDF_NULLIND

*city_ind,

SQLUDF_NULLIND

*state_ind,

/*

Null

indicator

for

instance

*/

SQLUDF_NULLIND

*address_ind,

/*

Null

indicator

for

output

*/

SQLUDF_NULLIND

*output_ind,

SQLUDF_TRAIL_ARGS)

{

sprintf

(output,

"[address_t]

[Street:%s]

[number:%s]

[city:%s]

[state:%s]",

street,

number,

city,

state);

*output_ind

=

0;

}

Register

the

external

UDF

for

the

US_addr_t

type:

CREATE

FUNCTION

address_to_client

(A

US_addr_t)

RETURNS

VARCHAR(150)

LANGUAGE

C

EXTERNAL

NAME

'addressudf!US_addr_to_client'

...

TRANSFORM

GROUP

funcgroup2

Write

the

US_addr_to_client

UDF:

void

SQL_API_FN

US_address_to_client(

SQLUDF_VARCHAR

*street,

SQLUDF_CHAR

*number,

SQLUDF_VARCHAR

*city,

SQLUDF_VARCHAR

*state,

SQLUDF_CHAR

*zip,

SQLUDF_VARCHAR

*output,

/*

Null

indicators

*/

SQLUDF_NULLIND

*street_ind,

SQLUDF_NULLIND

*number_ind,

SQLUDF_NULLIND

*city_ind,

SQLUDF_NULLIND

*state_ind,

SQLUDF_NULLIND

*zip_ind,

SQLUDF_NULLIND

*us_address_ind,

SQLUDF_NULLIND

*output_ind,

SQLUDF_TRAIL_ARGS)

{

sprintf

(output,

"[US_addr_t]

[Street:%s]

[number:%s]

[city:%s]

[state:%s]

[zip:%s]",

street,

number,

city,

state,

zip);

*output_ind

=

0;

}

Step

4.

Create

a

SQL-bodied

UDF

that

chooses

the

correct

external

UDF

to

process

the

instance.

The

following

UDF

uses

the

TREAT

specification

in

SELECT

statements

combined

by

a

UNION

ALL

clause

to

invoke

the

correct

FROM

SQL

client

transform:

CREATE

FUNCTION

addr_stream

(ab

Address_t)

RETURNS

VARCHAR(150)

LANGUAGE

SQL

RETURN

WITH

temp(addr)

AS

(SELECT

address_to_client(ta.a)

FROM

TABLE

(VALUES

(ab))

AS

ta(a)

WHERE

ta.a

IS

OF

(ONLY

Address_t)

300

Programming

Server

Applications

UNION

ALL

SELECT

address_to_client(TREAT

(tb.a

AS

US_addr_t))

FROM

TABLE

(VALUES

(ab))

AS

tb(a)

WHERE

tb.a

IS

OF

(ONLY

US_addr_t))

SELECT

addr

FROM

temp;

At

this

point,

applications

can

invoke

the

appropriate

external

UDF

by

invoking

the

Addr_stream

function:

SELECT

Addr_stream(Address)

FROM

Employee;

Step

5.

Add

the

Addr_stream

external

UDF

as

a

FROM

SQL

client

transform

for

Address_t:

CREATE

TRANSFORM

GROUP

FOR

Address_t

client_group

(FROM

SQL

WITH

FUNCTION

Addr_stream)

Note:

If

your

application

might

use

a

type

predicate

to

specify

particular

address

types

in

the

query,

add

Addr_stream

as

a

FROM

SQL

to

client

transform

for

US_addr_t.

This

ensures

that

Addr_stream

can

be

invoked

when

a

query

specifically

requests

instances

of

US_addr_t.

Step

6.

Bind

the

application

with

the

TRANSFORM

GROUP

option

set

to

client_group.

PREP

myprogram

TRANSFORM

GROUP

client_group

When

DB2

binds

the

application

that

contains

the

SELECT

Address

FROM

Person

INTO

:hvar

statement,

DB2

looks

for

a

FROM

SQL

client

transform.

DB2

recognizes

that

a

structured

type

is

being

bound

out,

and

looks

in

the

transform

group

client_group

because

that

is

the

TRANSFORM

GROUP

specified

at

bind

time

in

Step

6.

The

transform

group

contains

the

transform

function

Addr_stream

associated

with

the

root

type

Address_t

in

Step

5.

Addr_stream

is

a

SQL-bodied

function,

defined

in

Step

4

on

page

300,

so

it

has

no

dependency

on

any

other

transform

function.

The

Addr_stream

function

returns

VARCHAR(150),

the

data

type

required

by

the

:hvaddr

host

variable.

The

Addr_stream

function

takes

an

input

value

of

type

Address_t,

which

can

be

substituted

with

US_addr_t

in

this

example,

and

determines

the

dynamic

type

of

the

input

value.

When

Addr_stream

determines

the

dynamic

type,

it

invokes

the

corresponding

external

UDF

on

the

value:

address_to_client

if

the

dynamic

type

is

Address_t;

or

USaddr_to_client

if

the

dynamic

type

is

US_addr_t.

These

two

UDFs

are

defined

in

Step

3

on

page

299.

Each

UDF

decomposes

their

respective

structured

type

to

VARCHAR(150),

the

type

required

by

the

Addr_stream

transform

function.

To

accept

the

structured

types

as

input,

each

UDF

needs

a

FROM

SQL

transform

function

to

decompose

the

input

structured

type

instance

into

individual

attribute

parameters.

The

CREATE

FUNCTION

statements

in

Step

3

on

page

299

name

the

TRANSFORM

GROUP

that

contains

these

transforms.

The

CREATE

FUNCTION

statements

for

the

transform

functions

are

issued

in

Step

1

on

page

299.

The

CREATE

TRANSFORM

statements

that

associate

the

transform

functions

with

their

transform

groups

are

issued

in

Step

2

on

page

299.

Related

concepts:

v

“Transform

function

requirements”

on

page

298

Chapter

8.

User-defined

structured

types

301

v

“Transform

functions

and

transform

groups”

on

page

284

Related

reference:

v

“CREATE

FUNCTION

statement”

in

the

SQL

Reference,

Volume

2

Returning

subtype

data

to

DB2

Suppose

you

want

to

insert

a

structured

type

into

a

DB2

database

from

an

application

using

the

following

syntax:

INSERT

INTO

person

(Oid,

Name,

Address)

VALUES

(‘n’,

‘Norm’,

:hvaddr);

To

execute

the

INSERT

statement

for

a

structured

type:

Step

1.

Create

a

TO

SQL

function

transform

for

each

variation

of

address.

The

following

example

shows

SQL-bodied

UDFs

that

transform

the

Address_t

and

US_addr_t

types:

CREATE

FUNCTION

functoaddress

(str

VARCHAR(30),

num

CHAR(15),

cy

VARCHAR(30),

st

VARCHAR

(10))

RETURNS

Address_t

LANGUAGE

SQL

RETURN

Address_t()..street(str)..number(num)..city(cy)..state(st);

CREATE

FUNCTION

functoaddress

(str

VARCHAR(30),

num

CHAR(15),

cy

VARCHAR(30),

st

VARCHAR

(10),

zp

CHAR(10))

RETURNS

US_addr_t

LANGUAGE

SQL

RETURN

US_addr_t()..street(str)..number(num)..city(cy)

..state(st)..zip(zp);

Step

2.

Create

transform

groups,

one

for

each

type

variation:

CREATE

TRANSFORM

FOR

Address_t

funcgroup1

(TO

SQL

WITH

FUNCTION

functoaddress);

CREATE

TRANSFORM

FOR

US_addr_t

funcgroup2

(TO

SQL

WITH

FUNCTION

functousaddr);

Step

3.

Create

external

UDFs

that

return

the

encoded

address

types,

one

for

each

type

variation.

Register

the

external

UDF

for

the

Address_t

type:

CREATE

FUNCTION

client_to_address

(encoding

VARCHAR(150))

RETURNS

Address_t

LANGUAGE

C

TRANSFORM

GROUP

funcgroup1

...

EXTERNAL

NAME

'address!client_to_address';

Write

the

external

UDF

for

the

Address_t

version

of

client_to_address:

void

SQL_API_FN

client_to_address

(

SQLUDF_VARCHAR

*encoding,

SQLUDF_VARCHAR

*street,

SQLUDF_CHAR

*number,

SQLUDF_VARCHAR

*city,

SQLUDF_VARCHAR

*state,

/*

Null

indicators

*/

SQLUDF_NULLIND

*encoding_ind,

SQLUDF_NULLIND

*street_ind,

SQLUDF_NULLIND

*number_ind,

SQLUDF_NULLIND

*city_ind,

302

Programming

Server

Applications

SQLUDF_NULLIND

*state_ind,

SQLUDF_NULLIND

*address_ind,

SQLUDF_TRAIL_ARGS

)

{

char

c[150];

char

*pc;

strcpy(c,

encoding);

pc

=

strtok

(c,

":]");

pc

=

strtok

(NULL,

":]");

pc

=

strtok

(NULL,

":]");

strcpy

(street,

pc);

pc

=

strtok

(NULL,

":]");

pc

=

strtok

(NULL,

":]");

strcpy

(number,

pc);

pc

=

strtok

(NULL,

":]");

pc

=

strtok

(NULL,

":]");

strcpy

(city,

pc);

pc

=

strtok

(NULL,

":]");

pc

=

strtok

(NULL,

":]");

strcpy

(state,

pc);

*street_ind

=

*number_ind

=

*city_ind

=

*state_ind

=

*address_ind

=

0;

}

Register

the

external

UDF

for

the

US_addr_t

type:

CREATE

FUNCTION

client_to_us_address

(encoding

VARCHAR(150))

RETURNS

US_addr_t

LANGUAGE

C

TRANSFORM

GROUP

funcgroup1

...

EXTERNAL

NAME

'address!client_to_US_addr';

Write

the

external

UDF

for

the

US_addr_t

version

of

client_to_address:

void

SQL_API_FN

client_to_US_addr(

SQLUDF_VARCHAR

*encoding,

SQLUDF_VARCHAR

*street,

SQLUDF_CHAR

*number,

SQLUDF_VARCHAR

*city,

SQLUDF_VARCHAR

*state,

SQLUDF_VARCHAR

*zip,

/*

Null

indicators

*/

SQLUDF_NULLIND

*encoding_ind,

SQLUDF_NULLIND

*street_ind,

SQLUDF_NULLIND

*number_ind,

SQLUDF_NULLIND

*city_ind,

SQLUDF_NULLIND

*state_ind,

SQLUDF_NULLIND

*zip_ind,

SQLUDF_NULLIND

*us_addr_ind,

SQLUDF_TRAIL_ARGS)

{

char

c[150];

char

*pc;

strcpy(c,

encoding);

pc

=

strtok

(c,

":]");

pc

=

strtok

(NULL,

":]");

pc

=

strtok

(NULL,

":]");

strcpy

(street,

pc);

pc

=

strtok

(NULL,

":]");

pc

=

strtok

(NULL,

":]");

strncpy

(number,

pc,14);

Chapter

8.

User-defined

structured

types

303

pc

=

strtok

(NULL,

":]");

pc

=

strtok

(NULL,

":]");

strcpy

(city,

pc);

pc

=

strtok

(NULL,

":]");

pc

=

strtok

(NULL,

":]");

strcpy

(state,

pc);

pc

=

strtok

(NULL,

":]");

pc

=

strtok

(NULL,

":]");

strncpy

(zip,

pc,

9);

*street_ind

=

*number_ind

=

*city_ind

=

*state_ind

=

*zip_ind

=

*us_addr_ind

=

0;

}

Step

4.

Create

a

SQL-bodied

UDF

that

chooses

the

correct

external

UDF

for

processing

that

instance.

The

following

UDF

uses

the

TYPE

predicate

to

invoke

the

correct

to

client

transform.

The

results

are

placed

in

a

temporary

table:

CREATE

FUNCTION

stream_address

(ENCODING

VARCHAR(150))

RETURNS

Address_t

LANGUAGE

SQL

RETURN

(CASE(SUBSTR(ENCODING,2,POSSTR(ENCODING,‘]’)−2))

WHEN

‘address_t’

THEN

client_to_address(ENCODING)

WHEN

‘us_addr_t’

THEN

client_to_us_addr(ENCODING)

ELSE

NULL

END);

Step

5.

Add

the

stream_address

UDF

as

a

TO

SQL

client

transform

for

Address_t:

CREATE

TRANSFORM

FOR

Address_t

client_group

(TO

SQL

WITH

FUNCTION

stream_address);

Step

6.

Bind

the

application

with

the

TRANSFORM

GROUP

option

set

to

client_group.

PREP

myProgram2

TRANSFORM

GROUP

client_group

When

the

application

containing

the

INSERT

statement

with

a

structured

type

is

bound,

DB2

looks

for

a

TO

SQL

client

transform.

DB2

looks

for

the

transform

in

the

transform

group

client_group

because

that

is

the

TRANSFORM

GROUP

specified

at

bind

time

in

Step

6.

DB2

finds

the

transform

function

it

needs:

stream_address,

which

is

associated

with

the

root

type

Address_t

in

Step

5.

stream_address

is

a

SQL-bodied

function,

defined

in

Step

4,

so

it

has

no

stated

dependency

on

any

additional

transform

function.

For

input

parameters,

stream_address

accepts

VARCHAR(150),

which

corresponds

to

the

application

host

variable

:hvaddr.

stream_address

returns

a

value

that

is

both

of

the

correct

root

type,

Address_t,

and

of

the

correct

dynamic

type.

stream_address

parses

the

VARCHAR(150)

input

parameter

for

a

substring

that

names

the

dynamic

type:

in

this

case,

either

‘Address_t’

or

‘US_addr_t’.

stream_address

then

invokes

the

corresponding

external

UDF

to

parse

the

VARCHAR(150)

and

returns

an

object

of

the

specified

type.

There

are

two

client_to_address()

UDFs,

one

to

return

each

possible

type.

These

UDFs

are

defined

in

Step

3

on

page

302.

Each

UDF

takes

the

input

VARCHAR(150),

and

internally

constructs

the

attributes

of

the

appropriate

structured

type,

thus

returning

the

structured

type.

304

Programming

Server

Applications

To

return

the

structured

types,

each

UDF

needs

a

TO

SQL

transform

function

to

construct

the

output

attribute

values

into

an

instance

of

the

structured

type.

The

CREATE

FUNCTION

statements

in

Step

3

on

page

302

name

the

TRANSFORM

GROUP

that

contains

the

transforms.

The

SQL-bodied

transform

functions

from

Step

1

on

page

302,

and

the

associations

with

the

transform

groups

from

Step

2

on

page

302,

are

named

in

the

CREATE

FUNCTION

statements

of

Step

3

on

page

302.

Related

concepts:

v

“Transform

function

requirements”

on

page

298

v

“Transform

functions

and

transform

groups”

on

page

284

Related

reference:

v

“CREATE

FUNCTION

statement”

in

the

SQL

Reference,

Volume

2

Structured

type

host

Variables

Declaring

structured

type

host

variables

To

retrieve

or

send

structured

type

host

variables

in

static

SQL,

you

must

provide

an

SQL

declaration

that

indicates

the

built-in

type

used

to

represent

the

structured

type.

The

format

of

the

declaration

is

as

follows:

EXEC

SQL

BEGIN

DECLARE

SECTION

;

SQL

TYPE

IS

structured_type

AS

base_type

host-variable-name

;

EXEC

SQL

END

DECLARE

SECTION;

For

example,

assume

that

the

type

Address_t

is

to

be

transformed

to

a

varying-length

character

type

when

passed

to

the

client

application.

Use

the

following

declaration

for

the

Address_t

type

host

variable:

SQL

TYPE

IS

Address_t

AS

VARCHAR(150)

addrhv;

Related

concepts:

v

“Transform

functions

and

transform

groups”

on

page

284

Related

tasks:

v

“Describing

a

structured

type”

on

page

305

Describing

a

structured

type

A

DESCRIBE

of

a

statement

with

a

structured

type

variable

causes

DB2

to

put

a

description

of

the

result

type

of

the

FROM

SQL

transform

function

in

the

SQLTYPE

field

of

the

base

SQLVAR

of

the

SQLDA.

However,

if

there

is

no

FROM

SQL

transform

function

defined,

either

because

no

TRANSFORM

GROUP

was

specified

using

the

CURRENT

DEFAULT

TRANSFORM

GROUP

special

register

or

because

the

named

group

does

not

have

a

FROM

SQL

transform

function

defined,

DESCRIBE

returns

an

error.

The

actual

name

of

the

structured

type

is

returned

in

SQLVAR2.

Related

concepts:

Chapter

8.

User-defined

structured

types

305

v

“Transform

functions

and

transform

groups”

on

page

284

Related

tasks:

v

“Declaring

structured

type

host

variables”

on

page

305

306

Programming

Server

Applications

Chapter

9.

Triggers

Triggers

in

application

development

.

.

.

.

.

. 307

INSERT,

UPDATE,

and

DELETE

triggers

.

.

.

. 310

Trigger

interactions

with

referential

constraints

.

. 311

INSTEAD

OF

triggers

.

.

.

.

.

.

.

.

.

. 311

Trigger

creation

guidelines

.

.

.

.

.

.

.

.

. 313

Creating

triggers

.

.

.

.

.

.

.

.

.

.

.

. 314

Trigger

granularity

.

.

.

.

.

.

.

.

.

.

. 314

Trigger

activation

time

.

.

.

.

.

.

.

.

.

. 315

Transition

variables

.

.

.

.

.

.

.

.

.

.

. 318

Transition

tables

.

.

.

.

.

.

.

.

.

.

.

. 319

Triggered

action

.

.

.

.

.

.

.

.

.

.

.

. 320

Triggered

action

.

.

.

.

.

.

.

.

.

.

. 320

Triggered

actions

qualified

by

conditions

.

.

. 321

Triggered

action

composed

of

SQL

statements

321

Triggered

action

containing

a

procedure

or

function

reference

.

.

.

.

.

.

.

.

.

.

. 322

Multiple

triggers

.

.

.

.

.

.

.

.

.

.

.

. 324

Synergy

between

triggers,

constraints,

and

routines

325

Extracting

information

from

UDTs,

UDFs,

and

LOBs

with

triggers

.

.

.

.

.

.

.

.

.

. 325

Preventing

operations

on

tables

using

triggers

326

Defining

business

rules

using

triggers

.

.

.

. 327

Defining

actions

using

triggers

.

.

.

.

.

. 328

Triggers

in

application

development

In

order

to

change

your

database

manager

from

a

passive

system

to

an

active

one,

use

the

capabilities

embodied

in

an

SQL

trigger.

An

SQL

trigger

is

a

named

rule

that

is

associated

with

a

single

base

table.

A

trigger

specifies

actions

that

are

to

be

conditionally

activated

upon

the

occurrence

of

a

trigger

event

where

the

trigger

event

is

a

table

modification

(INSERT,

UPDATE

or

DELETE)

that

targets

a

particular

base

table.

A

trigger

also

specifies

when

the

trigger

action

is

to

take

place;

either

before

or

after

the

trigger

event

occurs.

Triggers

are

created

and

dropped

with

the

CREATE

TRIGGER

and

DROP

TRIGGER

statements.

The

following

figure

illustrates

the

basic

logical

structure

of

a

trigger:

A

trigger

can

be

thought

of

as

a

piece

of

logic

as

follows:

when

an

event

occurs,

if

a

prescribed

condition

is

true,

then

execute

an

action.

The

event

is

a

database

operation

on

a

table.

The

condition

can

be

a

condition

of

the

state

of

the

database

or

a

transitional

state

of

the

table

upon

the

event

of

the

operation.

The

action

can

be

the

execution

of

one

or

more

SQL

statements

that

effect

further

changes

to

the

database,

the

raising

of

an

exception

to

prevent

the

modify

operation

from

taking

place,

a

fix-up

of

data

modified

in

the

event

operation,

or

anything

that

can

logically

be

contained

in

a

procedure

or

function

invocation.

Procedures

and

functions

can

contain

complex

logic

and

can

be

used

as

sub-routines

in

the

trigger.

External

user-defined

functions

and

procedures

can

enable

a

trigger

to

send

an

e-mail

or

to

write

data

to

a

file

in

the

filesystem.

The

following

diagram

shows

the

logical

structure

of

a

trigger:

©

Copyright

IBM

Corp.

1993

-

2004

307

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

You

can

use

triggers

to

support

general

forms

of

integrity

such

as

business

rules.

For

example,

your

business

might

want

to

refuse

orders

that

exceed

its

customers’

credit

limit.

A

trigger

can

be

used

to

enforce

this

constraint.

In

general,

triggers

are

powerful

mechanisms

to

capture

transitional

business

rules.

Transitional

business

rules

are

rules

that

involve

different

states

of

the

data.

For

example,

suppose

a

salary

cannot

be

increased

by

more

than

10

per

cent.

To

check

this

rule,

the

value

of

the

salary

before

and

after

the

increase

must

be

compared.

For

rules

that

do

not

involve

more

than

one

state

of

the

data,

check

and

referential

integrity

constraints

are

more

appropriate.

Because

of

the

declarative

semantics

of

check

and

referential

constraints,

their

use

is

recommended

for

constraints

that

are

not

transitional.

You

can

also

use

triggers

for

tasks

such

as

automatically

updating

summary

data.

By

keeping

these

actions

as

a

part

of

the

database

and

ensuring

that

they

occur

automatically,

triggers

enhance

database

integrity.

For

example,

suppose

you

want

to

automatically

track

the

number

of

employees

managed

by

a

company:

Tables:

EMPLOYEE

(from

the

Sample

Tables)

COMPANY_STATS

(NBEMP,

NBPRODUCT,

REVENUE)

You

can

define

two

triggers:

v

A

trigger

that

increments

the

number

of

employees

each

time

a

new

person

is

hired,

that

is,

each

time

a

new

row

is

inserted

into

the

table

EMPLOYEE:

Condition

Action

Database Event
• Update

Delete
Insert

•
•

Database or
External Action
• Alert
• Reject
• Fix up
• Replicate
• . . .

Search condition on
• Database state
• Transition values

Event

When

Then

If

Figure

16.

Classifications

of

routines

308

Programming

Server

Applications

CREATE

TRIGGER

NEW_HIRED

AFTER

INSERT

ON

EMPLOYEE

FOR

EACH

ROW

MODE

DB2SQL

UPDATE

COMPANY_STATS

SET

NBEMP

=

NBEMP

+

1

v

A

trigger

that

decrements

the

number

of

employees

each

time

an

employee

leaves

the

company,

that

is,

each

time

a

row

is

deleted

from

the

table

EMPLOYEE:

CREATE

TRIGGER

FORMER_EMP

AFTER

DELETE

ON

EMPLOYEE

FOR

EACH

ROW

MODE

DB2SQL

UPDATE

COMPANY_STATS

SET

NBEMP

=

NBEMP

-

1

Specifically,

you

can

use

triggers

to:

v

Validate

input

data

using

the

SIGNAL

SQLSTATE

SQL

statement,

the

built-in

RAISE_ERROR

function,

or

invoke

a

stored

procedure

(serial

only)

or

UDF

to

return

an

SQLSTATE

indicating

that

an

error

has

occurred

if

invalid

data

is

discovered.

Note

that

validation

of

non-transitional

data

is

usually

better

handled

by

check

and

referential

constraints.

By

contrast,

triggers

are

appropriate

for

validation

of

transitional

data,

that

is,

validations

which

require

comparisons

between

the

value

before

and

after

an

update

operation.

v

Automatically

generate

values

for

newly

inserted

rows

(this

is

known

as

a

surrogate

function).

That

is,

to

implement

user-defined

default

values,

possibly

based

on

other

values

in

the

row

or

values

in

other

tables.

To

implement

functionally

dependent

columns

DB2®

also

supports

GENERATED

columns.

These

are

columns

whose

values

are

always

derived

in

a

deterministic

fashion

from

other

values

in

the

same

row.

v

Read

from

other

tables

for

cross-referencing

purposes.

v

Write

to

other

tables

for

audit-trail

purposes.

v

Support

alerts

(for

example,

through

electronic

mail

messages).

Using

triggers

in

your

database

manager

can

result

in:

v

Faster

application

development.

Because

triggers

are

stored

in

the

relational

database,

the

actions

performed

by

triggers

do

not

have

to

be

coded

in

each

application.

v

Global

enforcement

of

business

rules

A

trigger

only

has

to

be

defined

once,

and

then

it

can

be

used

for

any

application

that

changes

the

table.

v

Easier

maintenance

If

a

business

policy

changes,

only

the

corresponding

trigger

needs

to

change

instead

of

each

application

program.

When

you

run

a

triggered

SQL

statement,

it

mmight

cause

the

event

of

another,

or

even

the

same,

trigger

to

occur,

which

in

turn,

causes

the

other,

(or

a

second

instance

of

the

same)

trigger

to

be

activated.

Therefore,

activating

a

trigger

can

cascade

the

activation

of

one

or

more

other

triggers.

The

runtime

depth

level

of

trigger

cascading

supported

is

16.

If

a

trigger

at

level

17

is

activated,

SQLCODE

-724

(SQLSTATE

54038)

will

be

returned

and

the

triggering

statement

will

be

rolled

back.

Related

concepts:

v

“INSERT,

UPDATE,

and

DELETE

triggers”

on

page

310

v

“Trigger

granularity”

on

page

314

Chapter

9.

Triggers

309

v

“Trigger

activation

time”

on

page

315

v

“Trigger

interactions

with

referential

constraints”

on

page

311

v

“Trigger

creation

guidelines”

on

page

313

v

“INSTEAD

OF

triggers”

on

page

311

Related

tasks:

v

“Creating

triggers”

on

page

314

v

“Defining

business

rules

using

triggers”

on

page

327

Related

reference:

v

“CREATE

TRIGGER

statement”

in

the

SQL

Reference,

Volume

2

Related

samples:

v

“tbtrig.out

--

HOW

TO

USE

TRIGGERS

(C)”

v

“tbtrig.sqc

--

How

to

use

a

trigger

on

a

table

(C)”

v

“tbtrig.out

--

HOW

TO

USE

TRIGGERS

(C++)”

v

“tbtrig.sqC

--

How

to

use

a

trigger

on

a

table

(C++)”

v

“trigsql.sqb

--

How

to

use

a

trigger

on

a

table

(IBM

COBOL)”

v

“TbTrig.java

--

How

to

use

triggers

(JDBC)”

v

“TbTrig.out

--

HOW

TO

USE

TRIGGERS.

Connect

to

’sample’

database

using

JDBC

type

2

driver

(JDBC)”

v

“TbTrig.out

--

HOW

TO

USE

TRIGGERS.

Connect

to

’sample’

database

using

JDBC

type

2

driver

(SQLJ)”

v

“TbTrig.sqlj

--

How

to

use

triggers

(SQLj)”

INSERT,

UPDATE,

and

DELETE

triggers

Every

trigger

is

associated

with

an

event.

Triggers

are

activated

when

their

corresponding

event

occurs

in

the

database.

This

trigger

event

occurs

when

the

specified

action,

either

an

UPDATE,

INSERT,

or

DELETE

(including

those

caused

by

actions

of

referential

constraints),

is

performed

on

the

subject

table.

For

example:

CREATE

TRIGGER

NEW_HIRE

AFTER

INSERT

ON

EMPLOYEE

FOR

EACH

ROW

UPDATE

COMPANY_STATS

SET

NBEMP

=

NBEMP

+

1

The

above

statement

defines

the

trigger

new_hire,

which

activates

when

you

perform

an

insert

operation

on

table

employee.

You

associate

every

trigger

event,

and

consequently

every

trigger,

with

exactly

one

subject

table

and

exactly

one

modify

operation.

The

modify

operations

are:

Insert

operation

An

insert

operation

can

only

be

caused

by

an

INSERT

statement.

Therefore,

triggers

are

not

activated

when

data

is

loaded

using

utilities

that

do

not

use

INSERT,

such

as

the

LOAD

command.

Update

operation

An

update

operation

can

be

caused

by

an

UPDATE

statement

or

as

a

result

of

a

referential

constraint

rule

of

ON

DELETE

SET

NULL.

310

Programming

Server

Applications

|
|
|
|
|

|
|
|
|

Delete

operation

A

delete

operation

can

be

caused

by

a

DELETE

statement

or

as

a

result

of

a

referential

constraint

rule

of

ON

DELETE

CASCADE.

If

the

trigger

event

is

an

update

operation,

the

event

can

be

associated

with

specific

columns

of

the

subject

table.

In

this

case,

the

trigger

is

only

activated

if

the

update

operation

attempts

to

update

any

of

the

specified

columns.

This

provides

a

further

refinement

of

the

event

that

activates

the

trigger.

For

example,

the

following

trigger,

REORDER,

activates

only

if

you

perform

an

update

operation

on

the

columns

ON_HAND

or

MAX_STOCKED,

of

the

table

PARTS.

CREATE

TRIGGER

REORDER

AFTER

UPDATE

OF

ON_HAND,

MAX_STOCKED

ON

PARTS

REFERENCING

NEW

AS

N_ROW

FOR

EACH

ROW

WHEN

(N_ROW.ON_HAND

<

0.10

*

N_ROW.MAX_STOCKED)

BEGIN

ATOMIC

VALUES(ISSUE_SHIP_REQUEST(N_ROW.MAX_STOCKED

-

N_ROW.ON_HAND,

N_ROW.PARTNO));

END

Related

concepts:

v

“Trigger

granularity”

on

page

314

v

“Trigger

activation

time”

on

page

315

v

“Trigger

interactions

with

referential

constraints”

on

page

311

v

“Triggers

in

application

development”

on

page

307

v

“INSTEAD

OF

triggers”

on

page

311

Related

tasks:

v

“Creating

triggers”

on

page

314

Trigger

interactions

with

referential

constraints

A

trigger

event

can

occur

as

a

result

of

changes

due

to

referential

constraint

enforcement.

For

example,

given

two

tables

DEPT

and

EMP,

if

deleting

or

updating

DEPT

causes

propagated

deletes

or

updates

to

EMP

by

means

of

referential

integrity

constraints,

then

delete

or

update

triggers

defined

on

EMP

become

activated

as

a

result

of

the

referential

constraint

defined

on

DEPT.

The

triggers

on

EMP

are

run

either

BEFORE

or

AFTER

the

deletion

(in

the

case

of

ON

DELETE

CASCADE)

or

update

of

rows

in

EMP

(in

the

case

of

ON

DELETE

SET

NULL),

depending

on

their

activation

time.

Related

concepts:

v

“INSERT,

UPDATE,

and

DELETE

triggers”

on

page

310

v

“Trigger

granularity”

on

page

314

v

“Triggers

in

application

development”

on

page

307

INSTEAD

OF

triggers

INSTEAD

OF

triggers

describe

how

to

perform

insert,

update,

and

delete

operations

against

views

that

are

too

complex

to

support

these

operations

natively.

INSTEAD

OF

triggers

allow

applications

to

use

a

view

as

the

sole

interface

for

all

SQL

operations

(insert,

delete,

update

and

select).

Usually,

INSTEAD

OF

triggers

Chapter

9.

Triggers

311

|
|

|
|
|
|
|
|
|
|
|
|

contain

the

inverse

of

the

logic

applied

in

a

view

body.

For

example,

consider

a

view

that

decrypts

columns

from

its

source

table.

The

INSTEAD

OF

trigger

for

this

view

encrypts

data

and

then

inserts

it

into

the

source

table,

thus

performing

the

symmetrical

operation.

Using

an

INSTEAD

OF

trigger,

the

requested

modify

operation

against

the

view

gets

replaced

by

the

trigger

logic,

which

performs

the

operation

on

behalf

of

the

view.

From

the

perspective

of

the

application

this

happens

transparently,

as

it

perceives

that

all

operations

are

performed

against

the

view.

Only

one

INSTEAD

OF

trigger

is

allowed

for

each

kind

of

operation

on

a

given

subject

view.

The

view

itself

must

be

an

untyped

view

or

an

alias

that

resolves

to

an

untyped

view.

Also,

it

cannot

be

a

view

that

is

defined

using

WITH

CHECK

OPTION

(a

symmetric

view)

or

a

view

on

which

a

symmetric

view

has

been

defined

directly

or

indirectly.

The

following

example

presents

three

INSTEAD

OF

triggers

that

provide

logic

for

INSERTs,

UPDATEs,

and

DELETEs

to

the

defined

view

(EMPV).

The

view

EMPV

contains

a

join

in

its

from

clause

and

therefore

cannot

natively

support

any

modify

operations.

CREATE

VIEW

EMPV(EMPNO,

FIRSTNME,

MIDINIT,

LASTNAME,

PHONENO,

HIREDATE,

DEPTNAME)

AS

SELECT

EMPNO,

FIRSTNME,

MIDINIT,

LASTNAME,

PHONENO,

HIREDATE,

DEPTNAME

FROM

EMPLOYEE,

DEPARTMENT

WHERE

EMPLOYEE.WORKDEPT

=

DEPARTMENT.DEPTNO

CREATE

TRIGGER

EMPV_INSERT

INSTEAD

OF

INSERT

ON

EMPV

REFERENCING

NEW

AS

NEWEMP

FOR

EACH

ROW

INSERT

INTO

EMPLOYEE

(EMPNO,

FIRSTNME,

MIDINIT,

LASTNAME,

WORKDEPT,

PHONENO,

HIREDATE)

VALUES(EMPNO,

FIRSTNME,

MIDINIT,

LASTNAME,

COALESCE((SELECT

DEPTNO

FROM

DEPARTMENT

AS

D

WHERE

D.DEPTNAME

=

NEWEMP.DEPTNAME),

RAISE_ERROR(’70001’,

’Unknown

dept

name’)),

PHONENO,

HIREDATE)

CREATE

TRIGGER

EMPV_UPDATE

INSTEAD

OF

UPDATE

ON

EMPV

REFERENCING

NEW

AS

NEWEMP

OLD

AS

OLDEMP

FOR

EACH

ROW

BEGIN

ATOMIC

VALUES(CASE

WHEN

NEWEMP.EMPNO

=

OLDEMP.EMPNO

THEN

0

ELSE

RAISE_ERROR(’70002’,

’Must

not

change

EMPNO’)

END);

UPDATE

EMPLOYEE

AS

E

SET

(FIRSTNME,

MIDINIT,

LASTNAME,

WORKDEPT,

PHONENO,

HIREDATE)

=

(NEWEMP.FIRSTNME,

NEWEMP.MIDINIT,

NEWEMP.LASTNAME,

COALESCE((SELECT

DEPTNO

FROM

DEPARTMENT

AS

D

WHERE

D.DEPTNAME

=

NEWEMP.DEPTNAME),

RAISE_ERROR

(’70001’,

’Unknown

dept

name’)),

NEWEMP.PHONENO,

NEWEMP.HIREDATE)

WHERE

NEWEMP.EMPNO

=

E.EMPNO;

END

CREATE

TRIGGER

EMPV_DELETE

INSTEAD

OF

DELETE

ON

EMPV

REFERENCING

OLD

AS

OLDEMP

FOR

EACH

ROW

DELETE

FROM

EMPLOYEE

AS

E

WHERE

E.EMPNO

=

OLDEMP.EMPNO

Related

concepts:

v

“INSERT,

UPDATE,

and

DELETE

triggers”

on

page

310

v

“Triggers

in

application

development”

on

page

307

312

Programming

Server

Applications

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Related

tasks:

v

“Creating

triggers”

on

page

314

Related

reference:

v

“CREATE

TRIGGER

statement”

in

the

SQL

Reference,

Volume

2

Trigger

creation

guidelines

When

creating

a

trigger,

you

must

associate

it

with

a

table.

This

table

is

called

the

subject

table

of

the

trigger.

The

term

modify

operation

refers

to

any

change

in

the

state

of

the

subject

table.

A

modify

operation

is

initiated

by:

v

an

INSERT

statement

v

an

UPDATE

statement,

or

a

referential

constraint

which

performs

an

UPDATE

v

a

DELETE

statement,

or

a

referential

constraint

which

performs

a

DELETE

You

must

associate

each

trigger

with

one

of

these

three

types

of

modify

operations.

The

association

is

called

the

trigger

event

for

that

particular

trigger.

You

must

also

define

the

action,

called

the

triggered

action,

that

the

trigger

performs

when

its

trigger

event

occurs.

The

triggered

action

consists

of

one

or

more

SQL

statements

which

can

execute

either

before

or

after

the

database

manager

performs

the

trigger

event.

Once

a

trigger

event

occurs,

the

database

manager

determines

the

set

of

rows

in

the

subject

table

that

the

modify

operation

affects

and

executes

the

trigger.

When

creating

a

trigger,

you

must

declare

the

following

attributes

and

behavior:

v

The

name

of

the

trigger.

v

The

name

of

the

subject

table.

v

The

trigger

activation

time

(BEFORE

or

AFTER

the

modify

operation

executes).

v

The

trigger

event

(INSERT,

DELETE,

or

UPDATE).

v

The

old

values

transition

variable,

if

any.

v

The

new

values

transition

variable,

if

any.

v

The

old

values

transition

table,

if

any.

v

The

new

values

transition

table,

if

any.

v

The

granularity

(FOR

EACH

STATEMENT

or

FOR

EACH

ROW).

v

The

triggered

action

of

the

trigger

(including

a

triggered

action

condition

and

triggered

SQL

statement(s)).

v

If

the

trigger

event

is

UPDATE,

then

the

trigger

column

list

for

the

trigger

event

of

the

trigger,

as

well

as

an

indication

of

whether

the

trigger

column

list

was

explicit

or

implicit.

Related

concepts:

v

“INSERT,

UPDATE,

and

DELETE

triggers”

on

page

310

v

“Trigger

granularity”

on

page

314

v

“Trigger

activation

time”

on

page

315

v

“Triggers

in

application

development”

on

page

307

Related

tasks:

v

“Creating

triggers”

on

page

314

Related

reference:

Chapter

9.

Triggers

313

v

“CREATE

TRIGGER

statement”

in

the

SQL

Reference,

Volume

2

Creating

triggers

To

create

a

trigger

from

the

Control

Center,

use

the

Create

Trigger

dialogue.

The

Create

Trigger

dialogue

can

be

found

by

expanding

the

object

tree

and

right-clicking

the

Triggers

folder.

To

create

a

trigger

using

the

command

line,

use

the

following

template

of

the

CREATE

TRIGGER

statement:

CREATE

TRIGGER

<name>

<action>

ON

<table_name>

<operation>

<triggered_action>

The

following

SQL

statement

creates

a

trigger

that

increases

the

number

of

employees

each

time

a

new

person

is

hired,

by

adding

1

to

the

number

of

employees

(NBEMP)

column

in

the

COMPANY_STATS

table

each

time

a

row

is

added

to

the

EMPLOYEE

table.

CREATE

TRIGGER

NEW_HIRED

AFTER

INSERT

ON

EMPLOYEE

FOR

EACH

ROW

UPDATE

COMPANY_STATS

SET

NBEMP

=

NBEMP+1;

Related

concepts:

v

“INSERT,

UPDATE,

and

DELETE

triggers”

on

page

310

v

“Trigger

granularity”

on

page

314

v

“Trigger

activation

time”

on

page

315

v

“Triggers

in

application

development”

on

page

307

v

“Trigger

creation

guidelines”

on

page

313

Related

reference:

v

“CREATE

TRIGGER

statement”

in

the

SQL

Reference,

Volume

2

Related

samples:

v

“tbtrig.out

--

HOW

TO

USE

TRIGGERS

(C)”

v

“tbtrig.sqc

--

How

to

use

a

trigger

on

a

table

(C)”

v

“tbtrig.out

--

HOW

TO

USE

TRIGGERS

(C++)”

v

“tbtrig.sqC

--

How

to

use

a

trigger

on

a

table

(C++)”

v

“trigsql.sqb

--

How

to

use

a

trigger

on

a

table

(IBM

COBOL)”

v

“TbTrig.java

--

How

to

use

triggers

(JDBC)”

v

“TbTrig.out

--

HOW

TO

USE

TRIGGERS.

Connect

to

’sample’

database

using

JDBC

type

2

driver

(JDBC)”

v

“TbTrig.out

--

HOW

TO

USE

TRIGGERS.

Connect

to

’sample’

database

using

JDBC

type

2

driver

(SQLJ)”

v

“TbTrig.sqlj

--

How

to

use

triggers

(SQLj)”

Trigger

granularity

When

a

trigger

is

activated,

it

runs

according

to

its

granularity

as

follows:

314

Programming

Server

Applications

FOR

EACH

ROW

It

runs

as

many

times

as

the

number

of

rows

in

the

set

of

affected

rows.

If

you

need

to

refer

to

the

specific

rows

affected

by

the

triggered

action,

use

FOR

EACH

ROW

granularity.

An

example

of

this

is

the

comparison

of

the

new

and

old

values

of

an

updated

row

in

an

AFTER

UPDATE

trigger.

FOR

EACH

STATEMENT

It

runs

once

for

the

entire

trigger

event.

If

the

set

of

affected

rows

is

empty

(that

is,

in

the

case

of

a

searched

UPDATE

or

DELETE

in

which

the

WHERE

clause

did

not

qualify

any

rows),

a

FOR

EACH

ROW

trigger

does

not

run.

But

a

FOR

EACH

STATEMENT

trigger

still

runs

once.

For

example,

keeping

a

count

of

number

of

employees

can

be

done

using

FOR

EACH

ROW.

CREATE

TRIGGER

NEW_HIRED

AFTER

INSERT

ON

EMPLOYEE

FOR

EACH

ROW

UPDATE

COMPANY_STATS

SET

NBEMP

=

NBEMP

+

1

You

can

achieve

the

same

affect

with

one

update

by

using

a

granularity

of

FOR

EACH

STATEMENT.

CREATE

TRIGGER

NEW_HIRED

AFTER

INSERT

ON

EMPLOYEE

REFERENCING

NEW_TABLE

AS

NEWEMPS

FOR

EACH

STATEMENT

UPDATE

COMPANY_STATS

SET

NBEMP

=

NBEMP

+

(SELECT

COUNT(*)

FROM

NEWEMPS)

Note:

A

granularity

of

FOR

EACH

STATEMENT

is

not

supported

for

BEFORE

triggers.

Related

concepts:

v

“INSERT,

UPDATE,

and

DELETE

triggers”

on

page

310

v

“Trigger

activation

time”

on

page

315

v

“Triggers

in

application

development”

on

page

307

v

“Trigger

creation

guidelines”

on

page

313

Related

tasks:

v

“Creating

triggers”

on

page

314

Trigger

activation

time

The

trigger

activation

time

specifies

when

the

trigger

should

be

activated.

That

is,

either

BEFORE,

AFTER,

or

INSTEAD

OF

the

trigger

event

executes.

For

example,

the

activation

time

of

the

following

trigger

is

AFTER

the

INSERT

operation

on

employee.

CREATE

TRIGGER

NEW_HIRE

AFTER

INSERT

ON

EMPLOYEE

FOR

EACH

ROW

UPDATE

COMPANY_STATS

SET

NBEMP

=

NBEMP

+

1

If

the

activation

time

is

BEFORE,

the

triggered

actions

are

activated

for

each

row

in

the

set

of

affected

rows

before

the

trigger

event

executes.

Hence,

the

subject

table

will

only

be

modified

after

the

BEFORE

trigger

has

completed

execution

for

each

row.

Note

that

BEFORE

triggers

must

have

a

granularity

of

FOR

EACH

ROW.

Chapter

9.

Triggers

315

|
|

|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|

If

the

activation

time

is

AFTER,

the

triggered

actions

are

activated

for

each

row

in

the

set

of

affected

rows

or

for

the

statement,

depending

on

the

trigger

granularity.

This

occurs

after

the

trigger

event

executes,

and

after

the

database

manager

checks

all

constraints

that

the

trigger

event

might

affect,

including

actions

of

referential

constraints.

Note

that

AFTER

triggers

can

have

a

granularity

of

either

FOR

EACH

ROW

or

FOR

EACH

STATEMENT.

If

the

activation

time

is

INSTEAD

OF,

the

triggered

actions

for

each

row

in

the

set

of

affected

rows

are

activated

instead

of

executing

the

trigger

event.

INSTEAD

OF

triggers

must

have

a

granularity

of

FOR

EACH

ROW,

and

the

subject

table

must

be

a

view.

No

other

triggers

are

able

to

use

a

view

as

the

subject

table.

The

following

diagram

illustrates

the

execution

model

of

before

and

after

triggers:

For

a

given

table

with

both

before

and

after

triggers,

and

a

modifying

event

that

is

associated

with

these

triggers,

all

the

before

triggers

are

activated

first.

The

first

activated

before

trigger

for

a

given

event

takes

operates

on

the

set

of

rows

targeted

by

the

operation

and

makes

any

update

modifications

to

the

set

that

its

logic

prescribes.

The

output

of

this

before

trigger

is

accepted

as

input

by

the

next

before-trigger.

When

all

of

the

before

triggers

that

are

activated

by

the

event

have

been

fired,

the

intermediate

result

set,

the

result

of

the

before

trigger

modifications

to

the

rows

targeted

by

the

trigger

event

operation,

is

applied

to

the

base

table.

E-mail

A set-oriented
insert modification

Database tables

Base
table C

Base
table B

Base
table A

. . .

Before insert trigger-1
on table A

Set of rows specified
for the insert modification
on base table A

Before insert trigger-2
on table A

Before insert trigger-3
on table A

Intermediate
result set

Intermediate
result set

After insert trigger-1
on table A

After insert trigger-2
on table A

After insert trigger-3
on table A

Trigger
activated

Trigger
activated

Trigger
activated

Trigger modifies
table A

Trigger modifies
table B

Trigger modifies
table C

Trigger invokes a function
(UDF) that contains complex
logic, modifies table C,
and sends an e-mail.

The intermediate
result set rows are
inserted into table A.

Intermediate
result set

Figure

17.

Classifications

of

routines

316

Programming

Server

Applications

|

|
|
|

|

|
|
|
|
|
|
|
|

Then

each

after

trigger

associated

with

the

event

is

fired.

The

after

triggers

might

modify

the

same

table,

another

table,

or

perform

an

action

external

to

the

database.

The

different

activation

times

of

triggers

reflect

different

purposes

of

triggers.

Basically,

BEFORE

triggers

are

an

extension

to

the

constraint

subsystem

of

the

database

management

system.

Therefore,

you

generally

use

them

to:

v

Perform

validation

of

input

data,

v

Automatically

generate

values

for

newly

inserted

rows

v

Read

from

other

tables

for

cross-referencing

purposes.

BEFORE

triggers

are

not

used

for

further

modifying

the

database

because

they

are

activated

before

the

trigger

event

is

applied

to

the

database.

Consequently,

they

are

activated

before

integrity

constraints

are

checked.

Conversely,

you

can

view

AFTER

triggers

as

a

module

of

application

logic

that

runs

in

the

database

every

time

a

specific

event

occurs.

As

a

part

of

an

application,

AFTER

triggers

always

see

the

database

in

a

consistent

state.

Note

that

they

are

run

after

the

integrity

constraint

validations.

Consequently,

you

can

use

them

mostly

to

perform

operations

that

an

application

can

also

perform.

For

example:

v

Perform

follow

on

modify

operations

in

the

database

v

Perform

actions

outside

the

database,

for

example,

to

support

alerts.

Note

that

actions

performed

outside

the

database

are

not

rolled

back

if

the

trigger

is

rolled

back.

In

contrast,

you

can

view

an

INSTEAD

OF

trigger

as

a

description

of

the

inverse

operation

of

the

view

it

is

defined

on.

For

example,

if

the

select

list

in

the

view

contains

an

expression

over

a

base

table,

the

INSERT

statement

in

the

body

of

its

INSTEAD

OF

INSERT

trigger

will

contain

the

reverse

expression.

Because

of

the

different

nature

of

BEFORE,

AFTER,

and

INSTEAD

OF

triggers,

a

different

set

of

SQL

operations

can

be

used

to

define

the

triggered

actions

of

BEFORE

and

AFTER,

INSTEAD

OF

triggers.

For

example,

update

operations

are

not

allowed

in

BEFORE

triggers

because

there

is

no

guarantee

that

integrity

constraints

will

not

be

violated

by

the

triggered

action.

Similarly,

different

trigger

granularities

are

supported

in

BEFORE,

AFTER,

and

INSTEAD

OF

triggers.

For

example,

the

FOR

EACH

STATEMENT

is

not

allowed

in

BEFORE

triggers

because

there

is

no

guarantee

that

constraints

will

not

be

violated

by

the

triggered

action,

which

would,

in

turn,

result

in

the

operation’s

failure.

The

triggered

SQL

statement

of

all

triggers

can

be

a

dynamic

compound

statement.

However,

BEFORE

triggers

face

some

restrictions;

they

cannot

contain

the

following

SQL

statements:

v

UPDATE

v

DELETE

v

INSERT

Related

concepts:

v

“INSERT,

UPDATE,

and

DELETE

triggers”

on

page

310

v

“Trigger

granularity”

on

page

314

v

“Triggered

action

composed

of

SQL

statements”

on

page

321

v

“Triggers

in

application

development”

on

page

307

v

“Trigger

creation

guidelines”

on

page

313

Chapter

9.

Triggers

317

|
|

Related

tasks:

v

“Creating

triggers”

on

page

314

Transition

variables

When

you

implement

a

FOR

EACH

ROW

trigger,

it

might

be

necessary

to

refer

to

the

value

of

columns

of

the

row

in

the

set

of

affected

rows,

for

which

the

trigger

is

currently

executing.

Note

that

to

refer

to

columns

in

tables

in

the

database

(including

the

subject

table),

you

can

use

regular

SELECT

statements.

A

FOR

EACH

ROW

trigger

can

refer

to

the

columns

of

the

row

for

which

it

is

currently

executing

by

using

two

transition

variables

that

you

can

specify

in

the

REFERENCING

clause

of

a

CREATE

TRIGGER

statement.

There

are

two

kinds

of

transition

variables,

which

are

specified

as

OLD

and

NEW,

together

with

a

correlation-name.

They

have

the

following

semantics:

OLD

AS

correlation-name

Specifies

a

correlation

name

which

captures

the

original

state

of

the

row,

that

is,

before

the

triggered

action

is

applied

to

the

database.

NEW

AS

correlation-name

Specifies

a

correlation

name

which

captures

the

value

that

is,

or

was,

used

to

update

the

row

in

the

database

when

the

triggered

action

is

applied

to

the

database.

Consider

the

following

example:

CREATE

TRIGGER

REORDER

AFTER

UPDATE

OF

ON_HAND,

MAX_STOCKED

ON

PARTS

REFERENCING

NEW

AS

N_ROW

FOR

EACH

ROW

WHEN

(N_ROW.ON_HAND

<

0.10

*

N_ROW.MAX_STOCKED

AND

N_ROW.ORDER_PENDING

=

’N’)

BEGIN

ATOMIC

VALUES(ISSUE_SHIP_REQUEST(N_ROW.MAX_STOCKED

-

N_ROW.ON_HAND,

N_ROW.PARTNO));

UPDATE

PARTS

SET

PARTS.ORDER_PENDING

=

’Y’

WHERE

PARTS.PARTNO

=

N_ROW.PARTNO;

END

Based

on

the

definition

of

the

OLD

and

NEW

transition

variables

given

above,

it

is

clear

that

not

every

transition

variable

can

be

defined

for

every

trigger.

Transition

variables

can

be

defined

depending

on

the

kind

of

trigger

event:

UPDATE

An

UPDATE

trigger

can

refer

to

both

OLD

and

NEW

transition

variables.

INSERT

An

INSERT

trigger

can

only

refer

to

a

NEW

transition

variable

because

before

the

activation

of

the

INSERT

operation,

the

affected

row

does

not

exist

in

the

database.

That

is,

there

is

no

original

state

of

the

row

that

would

define

old

values

before

the

triggered

action

is

applied

to

the

database.

DELETE

A

DELETE

trigger

can

only

refer

to

an

OLD

transition

variable

because

there

are

no

new

values

specified

in

the

delete

operation.

318

Programming

Server

Applications

|

|
|
|
|
|
|
|
|
|
|
|
|
|

Note:

Transition

variables

can

only

be

specified

for

FOR

EACH

ROW

triggers.

In

a

FOR

EACH

STATEMENT

trigger,

a

reference

to

a

transition

variable

is

not

sufficient

to

specify

to

which

of

the

several

rows

in

the

set

of

affected

rows

the

transition

variable

is

referring.

Related

concepts:

v

“INSERT,

UPDATE,

and

DELETE

triggers”

on

page

310

v

“Trigger

granularity”

on

page

314

v

“Transition

tables”

on

page

319

Related

tasks:

v

“Creating

triggers”

on

page

314

Related

reference:

v

“CREATE

TRIGGER

statement”

in

the

SQL

Reference,

Volume

2

Transition

tables

In

both

FOR

EACH

ROW

and

FOR

EACH

STATEMENT

triggers,

it

might

be

necessary

to

refer

to

the

whole

set

of

affected

rows.

This

is

necessary,

for

example,

if

the

trigger

body

needs

to

apply

aggregations

over

the

set

of

affected

rows

(for

example,

MAX,

MIN,

or

AVG

of

some

column

values).

A

trigger

can

refer

to

the

set

of

affected

rows

by

using

two

transition

tables

that

can

be

specified

in

the

REFERENCING

clause

of

a

CREATE

TRIGGER

statement.

Just

like

the

transition

variables,

there

are

two

kinds

of

transition

tables,

which

are

specified

as

OLD_TABLE

and

NEW_TABLE

together

with

a

table-name,

with

the

following

semantics:

OLD_TABLE

AS

table-name

Specifies

the

name

of

the

table

which

captures

the

original

state

of

the

set

of

affected

rows

(that

is,

before

the

triggering

SQL

operation

is

applied

to

the

database).

NEW_TABLE

AS

table-name

Specifies

the

name

of

the

table

which

captures

the

value

that

is

used

to

update

the

rows

in

the

database

when

the

triggered

action

is

applied

to

the

database.

For

example:

CREATE

TRIGGER

REORDER

AFTER

UPDATE

OF

ON_HAND,

MAX_STOCKED

ON

PARTS

REFERENCING

NEW_TABLE

AS

N_TABLE

NEW

AS

N_ROW

FOR

EACH

ROW

WHEN

((SELECT

AVG

(ON_HAND)

FROM

N_TABLE)

>

35)

BEGIN

ATOMIC

VALUES(INFORM_SUPERVISOR(N_ROW.PARTNO,

N_ROW.MAX_STOCKED,

N_ROW.ON_HAND));

END

Note

that

NEW_TABLE

always

has

the

full

set

of

updated

rows,

even

on

a

FOR

EACH

ROW

trigger.

When

a

trigger

acts

on

the

table

on

which

the

trigger

is

defined,

NEW_TABLE

contains

the

changed

rows

from

the

statement

that

activated

the

trigger.

However,

NEW_TABLE

does

not

contain

the

changed

rows

that

were

caused

by

statements

within

the

trigger,

as

that

would

cause

a

separate

activation

of

the

trigger.

Chapter

9.

Triggers

319

|

|
|
|
|
|
|
|
|
|
|
|

The

transition

tables

are

read-only.

The

same

rules

that

define

the

kinds

of

transition

variables

that

can

be

defined

for

which

trigger

event,

apply

for

transition

tables:

UPDATE

An

UPDATE

trigger

can

refer

to

both

OLD_TABLE

and

NEW_TABLE

transition

tables.

INSERT

An

INSERT

trigger

can

only

refer

to

a

NEW_TABLE

transition

table

because

before

the

activation

of

the

INSERT

operation

the

affected

rows

do

not

exist

in

the

database.

That

is,

there

is

no

original

state

of

the

rows

that

defines

old

values

before

the

triggered

action

is

applied

to

the

database.

DELETE

A

DELETE

trigger

can

only

refer

to

an

OLD

transition

table

because

there

are

no

new

values

specified

in

the

delete

operation.

Note:

It

is

important

to

observe

that

transition

tables

can

be

specified

for

both

granularities

of

AFTER

triggers:

FOR

EACH

ROW

and

FOR

EACH

STATEMENT.

The

scope

of

the

OLD_TABLE

and

NEW_TABLE

table-name

is

the

trigger

body.

In

this

scope,

this

name

takes

precedence

over

the

name

of

any

other

table

with

the

same

unqualified

table-name

that

might

exist

in

the

schema.

Therefore,

if

the

OLD_TABLE

or

NEW_TABLE

table-name

is

for

example,

X,

a

reference

to

X

(that

is,

an

unqualified

X)

in

the

FROM

clause

of

a

SELECT

statement

will

always

refer

to

the

transition

table

even

if

there

is

a

table

named

X

in

the

in

the

schema

of

the

trigger

creator.

In

this

case,

the

user

has

to

make

use

of

the

fully

qualified

name

in

order

to

refer

to

the

table

X

in

the

schema.

Related

concepts:

v

“INSERT,

UPDATE,

and

DELETE

triggers”

on

page

310

v

“Trigger

granularity”

on

page

314

v

“Transition

variables”

on

page

318

Related

tasks:

v

“Creating

triggers”

on

page

314

Related

reference:

v

“CREATE

TRIGGER

statement”

in

the

SQL

Reference,

Volume

2

Triggered

action

Triggered

action

The

activation

of

a

trigger

results

in

the

running

of

its

associated

triggered

action.

Every

trigger

has

exactly

one

triggered

action

which,

in

turn,

has

two

components:

v

An

optional

triggered

action

condition

or

WHEN

clause

v

A

set

of

triggered

SQL

statement(s).

The

triggered

action

condition

defines

whether

or

not

the

set

of

triggered

statements

are

performed

for

the

row

or

for

the

statement

for

which

the

triggered

320

Programming

Server

Applications

action

is

executing.

The

set

of

triggered

statements

define

the

set

of

actions

performed

by

the

trigger

in

the

database

as

a

consequence

of

its

event

having

occurred.

For

example,

the

following

trigger

action

specifies

that

the

set

of

triggered

SQL

statements

should

only

be

activated

for

rows

in

which

the

value

of

the

on_hand

column

is

less

than

ten

per

cent

of

the

value

of

the

max_stocked

column.

In

this

case,

the

set

of

triggered

SQL

statements

is

the

invocation

of

the

issue_ship_request

function.

CREATE

TRIGGER

REORDER

AFTER

UPDATE

OF

ON_HAND,

MAX_STOCKED

ON

PARTS

REFERENCING

NEW

AS

N_ROW

FOR

EACH

ROW

WHEN

(N_ROW.ON_HAND

<

0.10

*

N_ROW.MAX_STOCKED)

BEGIN

ATOMIC

VALUES(ISSUE_SHIP_REQUEST(N_ROW.MAX_STOCKED

-

N_ROW.ON_HAND,

N_ROW.PARTNO));

END

Related

concepts:

v

“Triggered

actions

qualified

by

conditions”

on

page

321

v

“Triggered

action

composed

of

SQL

statements”

on

page

321

v

“Triggered

action

containing

a

procedure

or

function

reference”

on

page

322

Triggered

actions

qualified

by

conditions

The

triggered

action

condition

is

an

optional

clause

of

the

triggered

action

which

specifies

a

search

condition

that

must

evaluate

to

true

to

run

SQL

statements

within

the

triggered

action.

If

the

WHEN

clause

is

omitted,

then

the

SQL

statements

within

the

triggered

action

are

always

executed.

The

triggered

action

condition

is

evaluated

once

for

each

row

if

the

trigger

is

a

FOR

EACH

ROW

trigger,

and

once

for

the

statement

if

the

trigger

is

a

FOR

EACH

STATEMENT

trigger.

This

clause

provides

further

control

that

you

can

use

to

fine

tune

the

actions

activated

on

behalf

of

a

trigger.

An

example

of

the

usefulness

of

the

WHEN

clause

is

to

enforce

a

data

dependent

rule

in

which

a

triggered

action

is

activated

only

if

the

incoming

value

falls

inside

or

outside

of

a

certain

range.

Related

concepts:

v

“Triggered

action”

on

page

320

v

“Triggered

action

composed

of

SQL

statements”

on

page

321

v

“Triggered

action

containing

a

procedure

or

function

reference”

on

page

322

Triggered

action

composed

of

SQL

statements

The

set

of

triggered

SQL

statements

carries

out

the

real

actions

caused

by

activating

a

trigger.

Not

every

SQL

operation

is

meaningful

in

every

trigger.

Depending

on

whether

the

trigger

activation

time

is

BEFORE

or

AFTER,

different

kinds

of

operations

might

be

appropriate

as

a

triggered

SQL

statement.

Chapter

9.

Triggers

321

In

most

cases,

if

any

triggered

SQL

statement

returns

a

negative

return

code,

the

triggering

SQL

statement

together

with

all

trigger

and

referential

constraint

actions

are

rolled

back,

and

an

error

is

returned:

SQLCODE

-723

(SQLSTATE

09000).

The

trigger

name,

SQLCODE,

SQLSTATE

and

many

of

the

tokens

from

the

failing

triggered

SQL

statement

are

returned.

Error

conditions

occurring

when

triggers

are

running

that

are

critical

or

roll

back

the

entire

unit

of

work

are

not

returned

using

SQLCODE

-723

(SQLSTATE

09000).

The

triggered

SQL

statement

of

all

triggers

can

be

a

dynamic

compound

statement.

That

is,

they

can

contain

one

or

more

of

the

following:

v

DECLARE

variable

statement

v

SET

variable

statement

v

WHILE

loop

v

FOR

loop

v

IF

statement

v

SIGNAL

statement

v

ITERATE

statement

v

LEAVE

statement

v

GET

DIGNOSTIC

statement

v

fullselect

However,

only

AFTER

and

INSTEAD

of

triggers

can

contain

one

or

more

of

the

following:

v

UPDATE

SQL

statement

v

DELETE

SQL

statement

v

INSERT

SQL

statement

Related

concepts:

v

“Triggered

action”

on

page

320

v

“Triggered

actions

qualified

by

conditions”

on

page

321

v

“Triggered

action

containing

a

procedure

or

function

reference”

on

page

322

Triggered

action

containing

a

procedure

or

function

reference

Procedures

and

functions,

including

user-defined

functions

(UDFs),

can

be

invoked

from

within

the

triggered

action

of

a

trigger.

Procedures

can

be

invoked

using

the

CALL

statement.

Functions

can

be

invoked

within

any

triggered

SQL

statement.

Invoking

a

routine

from

a

trigger

enables

the

trigger

to

contain

complex

logic.

Consider

the

following

example

which

shows

the

definition

of

a

trigger

that

contains

an

invocation

of

an

SQL

procedure

named

TOTAL_SALES:

CREATE

TRIGGER

trig1

AFTER

UPDATE

ON

t1

REFERENCING

NEW

AS

n

FOR

EACH

ROW

MODE

DB2SQL

WHEN

(n.c1

>

100);

BEGIN

ATOMIC

DECLARE

rs

INTEGER

DEFAULT

0;

CALL

TOTAL_SALES(n.c1,

n.c2);

GET

DIANOSTICS

rs

=

RETURN_STATUS;

VALUES(CASE

WHEN

rc

<

0

THEN

RAISE_ERROR(’70001’,

’PROC

CALL

failed’));

END;

322

Programming

Server

Applications

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

The

procedure

can

be

considered

as

a

sub-routine

to

the

trigger.

After

the

SQL

procedure

has

been

invoked,

the

return

status

of

the

procedure

is

checked

by

executing

the

GET

DIAGNOSTICS

statement.

An

error

is

raised

if

the

return

status

indicates

an

error

occurred

in

the

procedure.

The

following

is

an

example

of

a

function

reference

within

the

body

of

a

trigger.

The

function

is

referenced

within

the

VALUES

clause.

CREATE

TRIGGER

REORDER

AFTER

UPDATE

OF

ON_HAND,

MAX_STOCKED

ON

PARTS

REFERENCING

NEW

AS

N_ROW

FOR

EACH

ROW

WHEN

(N_ROW.ON_HAND

<

0.10

*

N_ROW.MAX_STOCKED)

BEGIN

ATOMIC

VALUES

(ISSUE_SHIP_REQUEST

(N_ROW.MAX_STOCKED

-

N_ROW.ON_HAND,

N_ROW.PARTNO));

END

The

function

ISSUE_SHIP_REQUEST

could

be

an

external

function

that

sends

an

email

to

a

shipping

department

notifying

them

that

an

order

of

a

part

is

required.

The

function

takes

an

expression

containing

transition

variables

as

a

parameter.

When

a

triggered

action

contains

a

procedure

call

with

an

unqualified

procedure

name

or

a

triggered

action

SQL

statement

that

contains

a

function

reference

with

an

unqualified

function

name,

the

procedure

or

function

is

resolved

based

on

the

following:

v

the

SQL

path

at

the

time

of

creation

of

the

trigger.

v

the

EXECUTE

privilege

on

the

routine

held

by

creator

of

the

trigger.

Routines

can

be

written

in

SQL,

Java™,

C,

C++,

or

a

.NET

language.

This

enables

complex

control

of

logic

flows,

error

handling

and

recovery,

and

access

to

system

and

library

functions.

This

capability

allows

a

triggered

action

to

perform

non-SQL

types

of

operations

when

a

trigger

is

activated.

For

example,

a

UDF

called

from

a

trigger

could

send

an

electronic

mail

message

and

thereby

act

as

an

alert

mechanism.

External

actions,

such

as

messages,

are

not

under

commit

control

and

will

be

run

regardless

of

success

or

failure

of

the

rest

of

the

triggered

actions.

Also,

the

function

can

return

an

SQLSTATE

that

indicates

an

error

has

occurred

which

results

in

the

failure

of

the

triggering

SQL

statement.

This

is

one

method

of

implementing

user-defined

constraints.

(Using

a

SIGNAL

SQLSTATE

statement

is

the

other.)

In

order

to

use

a

trigger

as

a

means

to

check

complex

user-defined

constraints,

you

can

use

the

RAISE_ERROR

built-in

function

in

a

triggered

SQL

statement.

This

function

can

be

used

to

return

a

user-defined

SQLSTATE

(SQLCODE

-438)

to

applications.

For

example,

consider

some

rules

related

to

the

HIREDATE

column

of

the

EMPLOYEE

table,

where

HIREDATE

is

the

date

that

the

employee

starts

working.

v

HIREDATE

must

be

date

of

insert

or

a

future

date

v

HIREDATE

cannot

be

more

than

1

year

from

date

of

insert.

v

If

HIREDATE

is

between

6

and

12

months

from

date

of

insert,

notify

personnel

manager

using

a

UDF

called

send_note.

The

following

trigger

handles

all

of

these

rules

on

INSERT:

CREATE

TRIGGER

CHECK_HIREDATE

NO

CASCADE

BEFORE

INSERT

ON

EMPLOYEE

REFERENCING

NEW

AS

NEW_EMP

FOR

EACH

ROW

BEGIN

ATOMIC

Chapter

9.

Triggers

323

|
|
|
|

|
|
|

|
|
|
|

|

|

|
|
|
|
|
|
|

VALUES

CASE

WHEN

NEW_EMP.HIREDATE

-

CURRENT

DATE

>

600.

AND

NEW_EMP.HIREDATE

-

CURRENT

DATE

<eq;

10000.

THEN

SEND_NOTE(’persmgr’,

NEW_EMP.EMPNO,

’late.txt’)

WHEN

NEW_EMP.HIREDATE

<

CURRENT

DATE

THEN

RAISE_ERROR(’85001’,

’HIREDATE

has

passed’)

WHEN

NEW_EMP.HIREDATE

-

CURRENT

DATE

>

10000.

THEN

RAISE_ERROR(’85002’,

’HIREDATE

too

far

out’)

END;

END

Related

concepts:

v

“Triggered

action”

on

page

320

v

“Triggered

actions

qualified

by

conditions”

on

page

321

v

“Triggered

action

composed

of

SQL

statements”

on

page

321

v

“Routine

invocation”

on

page

193

Related

tasks:

v

“Invoking

user-defined

table

functions”

on

page

212

v

“Calling

procedures

from

triggers

or

SQL

routines”

on

page

202

Multiple

triggers

When

triggers

are

defined

using

the

CREATE

TRIGGER

statement,

their

creation

time

is

registered

in

the

database

in

form

of

a

timestamp.

The

value

of

this

timestamp

is

subsequently

used

to

order

the

activation

of

triggers

when

there

is

more

than

one

trigger

that

should

be

run

at

the

same

time.

For

example,

the

timestamp

is

used

when

there

is

more

than

one

trigger

on

the

same

subject

table

with

the

same

event

and

the

same

activation

time.

The

timestamp

is

also

used

when

there

are

one

or

more

AFTER

or

INSTEAD

OF

triggers

that

are

activated

by

the

trigger

event

and

referential

constraint

actions

caused

directly

or

indirectly

(that

is,

recursively

by

other

referential

constraints)

by

the

triggered

action.

Consider

the

following

two

triggers:

CREATE

TRIGGER

NEW_HIRED

AFTER

INSERT

ON

EMPLOYEE

FOR

EACH

ROW

BEGIN

ATOMIC

UPDATE

COMPANY_STATS

SET

NBEMP

=

NBEMP

+

1;

END

CREATE

TRIGGER

NEW_HIRED_DEPT

AFTER

INSERT

ON

EMPLOYEE

REFERENCING

NEW

AS

EMP

FOR

EACH

ROW

BEGIN

ATOMIC

UPDATE

DEPTS

SET

NBEMP

=

NBEMP

+

1

WHERE

DEPT_ID

=

EMP.DEPT_ID;

END

The

above

triggers

are

activated

when

you

run

an

INSERT

operation

on

the

employee

table.

In

this

case,

the

timestamp

of

their

creation

defines

which

of

the

above

two

triggers

is

activated

first.

324

Programming

Server

Applications

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

The

activation

of

the

triggers

is

conducted

in

ascending

order

of

the

timestamp

value.

Thus,

a

trigger

that

is

newly

added

to

a

database

runs

after

all

the

other

triggers

that

are

previously

defined.

Old

triggers

are

activated

before

new

triggers

to

ensure

that

new

triggers

can

be

used

as

incremental

additions

to

the

changes

that

affect

the

database.

For

example,

if

a

triggered

SQL

statement

of

trigger

T1

inserts

a

new

row

into

a

table

T,

a

triggered

SQL

statement

of

trigger

T2

that

is

run

after

T1

can

be

used

to

update

the

same

row

in

T

with

specific

values.

By

activating

triggers

in

ascending

order

of

creation,

you

can

ensure

that

the

actions

of

new

triggers

run

on

a

database

that

reflects

the

result

of

the

activation

of

all

old

triggers.

Related

concepts:

v

“Triggers

in

application

development”

on

page

307

Related

tasks:

v

“Extracting

information

from

UDTs,

UDFs,

and

LOBs

with

triggers”

on

page

325

v

“Preventing

operations

on

tables

using

triggers”

on

page

326

v

“Defining

business

rules

using

triggers”

on

page

327

v

“Defining

actions

using

triggers”

on

page

328

Related

reference:

v

“CREATE

TRIGGER

statement”

in

the

SQL

Reference,

Volume

2

Synergy

between

triggers,

constraints,

and

routines

Extracting

information

from

UDTs,

UDFs,

and

LOBs

with

triggers

You

could

write

an

application

that

stores

complete

electronic

mail

messages

as

a

LOB

value

within

the

column

MESSAGE

of

the

ELECTRONIC_MAIL

table.

To

manipulate

the

electronic

mail,

you

could

use

a

stored

procedure

or

UDF

to

extract

information

from

the

message

column

every

time

such

information

was

required

within

an

SQL

statement.

Notice

that

the

queries

do

not

extract

information

once

and

store

it

explicitly

as

columns

of

tables.

If

this

was

done,

it

would

increase

the

performance

of

the

queries,

not

only

because

the

stored

procedure

or

UDF

is

not

invoked

repeatedly,

but

also

because

you

can

then

define

indexes

on

the

extracted

information.

Using

triggers,

you

can

extract

this

information

whenever

new

electronic

mail

is

stored

in

the

database.

To

achieve

this,

define

a

BEFORE

trigger

to

extract

the

corresponding

information

as

follows:

CREATE

TRIGGER

EXTRACT_INFO

NO

CASCADE

BEFORE

INSERT

ON

ELECTRONIC_MAIL

REFERENCING

NEW

AS

N

FOR

EACH

ROW

BEGIN

ATOMIC

SET

(N.SENDER,

N.RECEIVER,

N.SENT_ON,

N.SUBJECT)

=

(SELECT

SENDER,

RECEIVER,

SENT_ON,

SUBJECT

FROM

TABLE(EMAIL_HEADER(N.MESSAGE))

AS

H)

END

Chapter

9.

Triggers

325

|
|
|

|
|
|
|
|
|
|
|
|

This

can

also

be

done

by

adding

generated

columns

to

the

ELECTRONIC_MAIL

table.

ALTER

TABLE

ELECTRONIC_MAIL

ADD

COLUMN

SENDER

VARCHAR(200)

GENERATED

ALWAYS

AS

(SENDER(N.MESSAGE))

ADD

COLUMN

RECEIVER

VARCHAR(200)

GENERATED

ALWAYS

AS

(RECEIVER(N.MESSAGE))

ADD

COLUMN

SENT_ON

DATE

GENERATED

ALWAYS

AS

(SENDING_DATE(N.MESSAGE))

ADD

COLUMN

SUBJECT

VARCHAR(200)

GENERATED

ALWAYS

AS

(SUBJECT(N.MESSAGE))

Now,

whenever

new

electronic

mail

is

inserted

into

the

MESSAGE

column,

its

sender,

its

receiver,

the

date

on

which

it

was

sent,

and

its

subject

are

extracted

from

the

message

and

stored

in

separate

columns.

Related

concepts:

v

“Triggered

action”

on

page

320

v

“Triggered

actions

qualified

by

conditions”

on

page

321

v

“Triggered

action

composed

of

SQL

statements”

on

page

321

v

“Triggered

action

containing

a

procedure

or

function

reference”

on

page

322

v

“Multiple

triggers”

on

page

324

Related

tasks:

v

“Preventing

operations

on

tables

using

triggers”

on

page

326

v

“Defining

business

rules

using

triggers”

on

page

327

v

“Defining

actions

using

triggers”

on

page

328

Related

reference:

v

“CREATE

TRIGGER

statement”

in

the

SQL

Reference,

Volume

2

Preventing

operations

on

tables

using

triggers

Suppose

you

want

to

prevent

mail

you

sent,

which

was

undelivered

and

returned

to

you

(perhaps

because

the

e-mail

address

was

incorrect),

from

being

stored

in

the

e-mail’s

table.

To

do

so,

you

need

to

prevent

the

execution

of

certain

SQL

INSERT

statements.

There

are

two

ways

to

do

this:

v

Define

a

BEFORE

trigger

that

raises

an

error

whenever

the

subject

of

an

e-mail

is

undelivered

mail:

CREATE

TRIGGER

BLOCK_INSERT

NO

CASCADE

BEFORE

INSERT

ON

ELECTRONIC_MAIL

REFERENCING

NEW

AS

N

FOR

EACH

ROW

WHEN

(SUBJECT(N.MESSAGE)

=

’undelivered

mail’)

BEGIN

ATOMIC

SIGNAL

SQLSTATE

’85101’

SET

MESSAGE_TEXT

=

(’Attempt

to

insert

undelivered

mail’);

END

v

Define

a

check

constraint

forcing

values

of

the

new

column

subject

to

be

different

from

undelivered

mail:

ALTER

TABLE

ELECTRONIC_MAIL

ADD

CONSTRAINT

NO_UNDELIVERED

CHECK

(SUBJECT

<>

’undelivered

mail’)

326

Programming

Server

Applications

|
|

|
|

|
|
|
|
|
|
|
|
|

|
|

|
|
|

Because

of

the

advantages

of

the

declarative

nature

of

constraints,

the

constraint

should

generally

be

defined

instead

of

the

trigger.

Related

concepts:

v

“Multiple

triggers”

on

page

324

v

“Triggers

in

application

development”

on

page

307

Related

tasks:

v

“Extracting

information

from

UDTs,

UDFs,

and

LOBs

with

triggers”

on

page

325

v

“Defining

business

rules

using

triggers”

on

page

327

v

“Defining

actions

using

triggers”

on

page

328

Related

reference:

v

“CREATE

TRIGGER

statement”

in

the

SQL

Reference,

Volume

2

Defining

business

rules

using

triggers

Suppose

your

company

has

the

policy

that

all

e-mail

dealing

with

customer

complaints

must

have

Mr.

Nelson,

the

marketing

manager,

in

the

carbon

copy

(CC)

list.

Because

this

is

a

rule,

you

might

want

to

express

it

as

a

constraint

such

as

one

of

the

following

(assuming

the

existence

of

a

CC_LIST

UDF

to

check

it):

ALTER

TABLE

ELECTRONIC_MAIL

ADD

CHECK

(SUBJECT

<>

’Customer

complaint’

OR

CONTAINS

(CC_LIST(MESSAGE),

’nelson@vnet.ibm.com’)

=

1)

However,

such

a

constraint

prevents

the

insertion

of

e-mail

dealing

with

customer

complaints

that

do

not

have

the

marketing

manager

in

the

cc

list.

This

is

certainly

not

the

intent

of

your

company’s

business

rule.

The

intent

is

to

forward

to

the

marketing

manager

any

e-mail

dealing

with

customer

complaints

that

were

not

copied

to

the

marketing

manager.

Such

a

business

rule

can

only

be

expressed

with

a

trigger

because

it

requires

taking

actions

that

cannot

be

expressed

with

declarative

constraints.

The

trigger

assumes

the

existence

of

a

SEND_NOTE

function

with

parameters

of

type

E_MAIL

and

character

string.

CREATE

TRIGGER

INFORM_MANAGER

AFTER

INSERT

ON

ELECTRONIC_MAIL

REFERENCING

NEW

AS

N

FOR

EACH

ROW

WHEN

(N.SUBJECT

=

’Customer

complaint’

AND

CONTAINS

(CC_LIST(MESSAGE),

’nelson@vnet.ibm.com’)

=

0)

BEGIN

ATOMIC

VALUES(SEND_NOTE(N.MESSAGE,

’nelson@vnet.ibm.com’));

END

Related

concepts:

v

“Multiple

triggers”

on

page

324

v

“Triggers

in

application

development”

on

page

307

Related

tasks:

v

“Extracting

information

from

UDTs,

UDFs,

and

LOBs

with

triggers”

on

page

325

v

“Preventing

operations

on

tables

using

triggers”

on

page

326

v

“Defining

actions

using

triggers”

on

page

328

Chapter

9.

Triggers

327

Defining

actions

using

triggers

Assume

that

your

general

manager

wants

to

keep

the

names

of

customers

who

have

sent

three

or

more

complaints

in

the

last

72

hours

in

a

separate

table.

The

general

manager

also

wants

to

be

informed

whenever

a

customer

name

is

inserted

in

this

table

more

than

once.

To

define

such

actions,

you

define:

v

An

UNHAPPY_CUSTOMERS

table:

CREATE

TABLE

UNHAPPY_CUSTOMERS

(

NAME

VARCHAR

(30),

EMAIL_ADDRESS

VARCHAR

(200),

INSERTION_DATE

DATE)

v

A

trigger

to

automatically

insert

a

row

in

UNHAPPY_CUSTOMERS

if

3

or

more

messages

were

received

in

the

last

3

days

(assumes

the

existence

of

a

CUSTOMERS

table

that

includes

a

NAME

column

and

an

E_MAIL_ADDRESS

column):

CREATE

TRIGGER

STORE_UNHAPPY_CUST

AFTER

INSERT

ON

ELECTRONIC_MAIL

REFERENCING

NEW

AS

N

FOR

EACH

ROW

MODE

DB2SQL

WHEN

(3

<=

(SELECT

COUNT(*)

FROM

ELECTRONIC_MAIL

WHERE

SENDER

=

N.SENDER

AND

SENDING_DATE(MESSAGE)

>

CURRENT

DATE

-

3

DAYS)

)

BEGIN

ATOMIC

INSERT

INTO

UNHAPPY_CUSTOMERS

VALUES

((SELECT

NAME

FROM

CUSTOMERS

WHERE

E_MAIL_ADDRESS

=

N.SENDER),

N.SENDER,

CURRENT

DATE);

END

v

A

trigger

to

send

a

note

to

the

general

manager

if

the

same

customer

is

inserted

in

UNHAPPY_CUSTOMERS

more

than

once

(assumes

the

existence

of

a

SEND_NOTE

function

that

takes

2

character

strings

as

input):

CREATE

TRIGGER

INFORM_GEN_MGR

AFTER

INSERT

ON

UNHAPPY_CUSTOMERS

REFERENCING

NEW

AS

N

FOR

EACH

ROW

WHEN

(1

<(SELECT

COUNT(*)

FROM

UNHAPPY_CUSTOMERS

WHERE

EMAIL_ADDRESS

=

N.EMAIL_ADDRESS)

)

BEGIN

ATOMIC

VALUES(SEND_NOTE(’Check

customer:’

CONCAT

N.NAME,

’bigboss@vnet.ibm.com’));

END

Related

concepts:

v

“Multiple

triggers”

on

page

324

v

“Triggers

in

application

development”

on

page

307

Related

tasks:

v

“Extracting

information

from

UDTs,

UDFs,

and

LOBs

with

triggers”

on

page

325

v

“Preventing

operations

on

tables

using

triggers”

on

page

326

v

“Defining

business

rules

using

triggers”

on

page

327

Related

reference:

328

Programming

Server

Applications

v

“CREATE

TRIGGER

statement”

in

the

SQL

Reference,

Volume

2

Chapter

9.

Triggers

329

330

Programming

Server

Applications

Part

3.

Appendixes

©

Copyright

IBM

Corp.

1993

-

2004

331

332

Programming

Server

Applications

Appendix

A.

DB2GENERAL

routines

DB2GENERAL

routines

.

.

.

.

.

.

.

.

.

. 333

DB2GENERAL

UDFs

.

.

.

.

.

.

.

.

.

.

. 334

Supported

SQL

data

types

in

DB2GENERAL

routines

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 336

Java

classes

for

DB2GENERAL

routines

.

.

.

. 337

Java

classes

for

DB2GENERAL

routines

.

.

. 337

DB2GENERAL

Java

class:

COM.IBM.db2.app.StoredProc

.

.

.

.

.

.

. 338

DB2GENERAL

Java

class:

COM.IBM.db2.app.UDF

.

.

.

.

.

.

.

.

. 339

DB2GENERAL

Java

class:

COM.IBM.db2.app.Lob

.

.

.

.

.

.

.

.

. 342

DB2GENERAL

Java

class:

COM.IBM.db2.app.Blob

.

.

.

.

.

.

.

.

. 342

DB2GENERAL

Java

class:

COM.IBM.db2.app.Clob

.

.

.

.

.

.

.

.

. 343

DB2GENERAL

routines

PARAMETER

STYLE

DB2GENERAL

routines

are

written

in

Java™.

Creating

DB2GENERAL

routines

is

very

similar

to

creating

routines

in

other

supported

programming

languages.

Once

you

have

created

and

registered

them,

you

can

call

them

from

programs

in

any

language.

Typically,

you

can

call

JDBC

APIs

from

your

stored

procedures,

but

you

cannot

call

them

from

UDFs.

When

developing

routines

in

Java,

it

is

strongly

recommended

that

you

register

them

using

the

PARAMETER

STYLE

JAVA

clause

in

the

CREATE

statement.

PARAMETER

STYLE

DB2GENERAL

is

still

available

to

enable

the

implementation

of

the

following

features

in

Java

routines:

v

table

functions

v

scratchpads

v

access

to

the

DBINFO

structure

v

the

ability

to

make

a

FINAL

CALL

(and

a

separate

first

call)

to

the

function

or

method

If

you

have

PARAMETER

STYLE

DB2GENERAL

routines

that

do

not

use

any

of

the

above

features,

it

is

recommended

that

you

migrate

them

to

PARAMETER

STYLE

JAVA

for

portability.

Related

concepts:

v

“DB2GENERAL

UDFs”

on

page

334

v

“Java

routines”

on

page

167

v

“Table

function

execution

model

for

Java”

on

page

59

Related

reference:

v

“Java

debug

table

DB2DBG.ROUTINE_DEBUG”

on

page

178

v

“JAR

file

administration

on

the

database

server”

on

page

173

v

“Supported

SQL

data

types

in

DB2GENERAL

routines”

on

page

336

v

“Java

classes

for

DB2GENERAL

routines”

on

page

337

v

“DB2GENERAL

Java

class:

COM.IBM.db2.app.StoredProc”

on

page

338

v

“DB2GENERAL

Java

class:

COM.IBM.db2.app.UDF”

on

page

339

v

“DB2GENERAL

Java

class:

COM.IBM.db2.app.Lob”

on

page

342

v

“DB2GENERAL

Java

class:

COM.IBM.db2.app.Blob”

on

page

342

v

“DB2GENERAL

Java

class:

COM.IBM.db2.app.Clob”

on

page

343

©

Copyright

IBM

Corp.

1993

-

2004

333

DB2GENERAL

UDFs

You

can

create

and

use

UDFs

in

Java™

just

as

you

would

in

other

languages,

with

only

a

few

minor

differences

when

compared

to

C

UDFs.

After

you

code

the

UDF,

you

register

it

with

the

database.

You

can

then

refer

to

it

in

your

applications.

In

general,

if

you

declare

a

UDF

taking

arguments

of

SQL

types

t1,

t2,

and

t3,

returning

type

t4,

it

will

be

called

as

a

Java

method

with

the

expected

Java

signature:

public

void

name

(

T1

a,

T2

b,

T3

c,

T4

d)

{

.....}

Where:

v

name

is

the

Java

method

name

v

T1

through

T4

are

the

Java

types

that

correspond

to

SQL

types

t1

through

t4.

v

a,

b,

and

c

are

variable

names

for

the

input

arguments.

v

d

is

an

variable

name

that

represents

the

output

argument.

For

example,

given

a

UDF

called

sample!test3

that

returns

INTEGER

and

takes

arguments

of

type

CHAR(5),

BLOB(10K),

and

DATE,

DB2®

expects

the

Java

implementation

of

the

UDF

to

have

the

following

signature:

import

COM.ibm.db2.app.*;

public

class

sample

extends

UDF

{

public

void

test3(String

arg1,

Blob

arg2,

String

arg3,

int

result)

{

...

}

}

Java

routines

that

implement

table

functions

require

more

arguments.

Beside

the

variables

representing

the

input,

an

additional

variable

appears

for

each

column

in

the

resulting

row.

For

example,

a

table

function

can

be

declared

as:

public

void

test4(String

arg1,

int

result1,

Blob

result2,

String

result3);

SQL

NULL

values

are

represented

by

Java

variables

that

are

not

initialized.

These

variables

have

a

value

of

zero

if

they

are

primitive

types,

and

Java

null

if

they

are

object

types,

in

accordance

with

Java

rules.

To

tell

an

SQL

NULL

apart

from

an

ordinary

zero,

you

can

call

the

function

isNull

for

any

input

argument:

{

....

if

(isNull(1))

{

/*

argument

#1

was

a

SQL

NULL

*/

}

else

{

/*

not

NULL

*/

}

}

In

the

above

example,

the

argument

numbers

start

at

one.

The

isNull()

function,

like

the

other

functions

that

follow,

are

inherited

from

the

COM.ibm.db2.app.UDF

class.

To

return

a

result

from

a

scalar

or

table

UDF,

use

the

set()

method

in

the

UDF,

as

follows:

{

....

set(2,

value);

}

Where

’2’

is

the

index

of

an

output

argument,

and

value

is

a

literal

or

variable

of

a

compatible

type.

The

argument

number

is

the

index

in

the

argument

list

of

the

selected

output.

In

the

first

example

in

this

section,

the

int

result

variable

has

an

index

of

4;

in

the

second,

result1

through

result3

have

indices

of

2

through

4.

334

Programming

Server

Applications

Like

C

modules

used

in

UDFs

and

stored

procedures,

you

cannot

use

the

Java

standard

I/O

streams

(System.in,

System.out,

and

System.err)

in

Java

routines.

Remember

that

all

the

Java

class

files

(or

the

JARs

that

contain

the

classes)

that

you

use

to

implement

a

routine

must

reside

in

the

sqllib/function

directory,

or

in

a

directory

specified

in

the

database

manager’s

CLASSPATH.

Typically,

DB2

calls

a

UDF

many

times,

once

for

each

row

of

an

input

or

result

set

in

a

query.

If

SCRATCHPAD

is

specified

in

the

CREATE

FUNCTION

statement

of

the

UDF,

DB2

recognizes

that

some

″continuity″

is

needed

between

successive

invocations

of

the

UDF,

and

therefore

the

implementing

Java

class

is

not

instantiated

for

each

call,

but

generally

speaking

once

per

UDF

reference

per

statement.

Generally

it

is

instantiated

before

the

first

call

and

used

thereafter,

but

can

for

table

functions

be

instantiated

more

often.

If,

however,

NO

SCRATCHPAD

is

specified

for

a

UDF,

either

a

scalar

or

table

function,

then

a

clean

instance

is

instantiated

for

each

call

to

the

UDF.

A

scratchpad

can

be

useful

for

saving

information

across

calls

to

a

UDF.

While

Java

and

OLE

UDFs

can

either

use

instance

variables

or

set

the

scratchpad

to

achieve

continuity

between

calls,

C

and

C++

UDFs

must

use

the

scratchpad.

Java

UDFs

access

the

scratchpad

with

the

getScratchPad()

and

setScratchPad()

methods

available

in

COM.ibm.db2.app.UDF.

For

Java

table

functions

that

use

a

scratchpad,

control

when

you

get

a

new

scratchpad

instance

by

using

the

FINAL

CALL

or

NO

FINAL

CALL

option

on

the

CREATE

FUNCTION

statement.

The

ability

to

achieve

continuity

between

calls

to

a

UDF

by

means

of

a

scratchpad

is

controlled

by

the

SCRATCHPAD

and

NO

SCRATCHPAD

option

of

CREATE

FUNCTION,

regardless

of

whether

the

DB2

scratchpad

or

instance

variables

are

used.

For

scalar

functions,

you

use

the

same

instance

for

the

entire

statement.

Note

that

every

reference

to

a

Java

UDF

in

a

query

is

treated

independently,

even

if

the

same

UDF

is

referenced

multiple

times.

This

is

the

same

as

what

happens

for

OLE,

C

and

C++

UDFs

as

well.

At

the

end

of

a

query,

if

you

specify

the

FINAL

CALL

option

for

a

scalar

function

then

the

object’s

close()

method

is

called.

For

table

functions

the

close()

method

will

always

be

invoked

as

indicated

in

the

subsection

which

follows

this

one.

If

you

do

not

define

a

close()

method

for

your

UDF

class,

then

a

stub

function

takes

over

and

the

event

is

ignored.

If

you

specify

the

ALLOW

PARALLEL

clause

for

a

Java

UDF

in

the

CREATE

FUNCTION

statement,

DB2

may

elect

to

evaluate

the

UDF

in

parallel.

If

this

occurs,

several

distinct

Java

objects

may

be

created

on

different

partitions.

Each

object

receives

a

subset

of

the

rows.

As

with

other

UDFs,

Java

UDFs

can

be

FENCED

or

NOT

FENCED.

NOT

FENCED

UDFs

run

inside

the

address

space

of

the

database

engine;

FENCED

UDFs

run

in

a

separate

process.

Although

Java

UDFs

cannot

inadvertently

corrupt

the

address

space

of

their

embedding

process,

they

can

terminate

or

slow

down

the

process.

Therefore,

when

you

debug

UDFs

written

in

Java,

you

should

run

them

as

FENCED

UDFs.

Related

concepts:

v

“DB2GENERAL

routines”

on

page

333

Appendix

A.

DB2GENERAL

routines

335

v

“Java

routines”

on

page

167

v

“Table

function

execution

model

for

Java”

on

page

59

Related

reference:

v

“Java

debug

table

DB2DBG.ROUTINE_DEBUG”

on

page

178

v

“Supported

SQL

data

types

in

DB2GENERAL

routines”

on

page

336

v

“Java

classes

for

DB2GENERAL

routines”

on

page

337

v

“DB2GENERAL

Java

class:

COM.IBM.db2.app.StoredProc”

on

page

338

v

“DB2GENERAL

Java

class:

COM.IBM.db2.app.UDF”

on

page

339

v

“DB2GENERAL

Java

class:

COM.IBM.db2.app.Lob”

on

page

342

v

“DB2GENERAL

Java

class:

COM.IBM.db2.app.Blob”

on

page

342

v

“DB2GENERAL

Java

class:

COM.IBM.db2.app.Clob”

on

page

343

Related

samples:

v

“UDFsqlsv.java

--

Provide

UDFs

to

be

called

by

UDFsqlcl.java

(JDBC)”

v

“UDFsrv.java

--

Provide

UDFs

to

be

called

by

UDFcli.java

(JDBC)”

v

“UDFsrv.java

--

Provide

UDFs

to

be

called

by

UDFcli.sqlj

(SQLj)”

Supported

SQL

data

types

in

DB2GENERAL

routines

When

you

call

PARAMETER

STYLE

DB2GENERAL

routines,

DB2

converts

SQL

types

to

and

from

Java

types

for

you.

Several

of

these

classes

are

provided

in

the

Java

package

COM.ibm.db2.app.

Table

37.

DB2

SQL

Types

and

Java

Objects

SQL

Column

Type

Java

Data

Type

SMALLINT

short

INTEGER

int

BIGINT

long

REAL1

float

DOUBLE

double

DECIMAL(p,s)

java.math.BigDecimal

NUMERIC(p,s)

java.math.BigDecimal

CHAR(n)

java.lang.String

CHAR(n)

FOR

BIT

DATA

COM.ibm.db2.app.Blob

VARCHAR(n)

java.lang.String

VARCHAR(n)

FOR

BIT

DATA

COM.ibm.db2.app.Blob

LONG

VARCHAR

java.lang.String

LONG

VARCHAR

FOR

BIT

DATA

COM.ibm.db2.app.Blob

GRAPHIC(n)

java.lang.String

VARGRAPHIC(n)

String

LONG

VARGRAPHIC2

String

BLOB(n)2

COM.ibm.db2.app.Blob

CLOB(n)2

COM.ibm.db2.app.Clob

DBCLOB(n)2

COM.ibm.db2.app.Clob

336

Programming

Server

Applications

Table

37.

DB2

SQL

Types

and

Java

Objects

(continued)

SQL

Column

Type

Java

Data

Type

DATE3

String

TIME3

String

TIMESTAMP3

String

Notes:

1.

The

difference

between

REAL

and

DOUBLE

in

the

SQLDA

is

the

length

value

(4

or

8).

2.

The

Blob

and

Clob

classes

are

provided

in

the

COM.ibm.db2.app

package.

Their

interfaces

include

routines

to

generate

an

InputStream

and

OutputStream

for

reading

from

and

writing

to

a

Blob,

and

a

Reader

and

Writer

for

a

Clob.

3.

SQL

DATE,

TIME,

and

TIMESTAMP

values

use

the

ISO

string

encoding

in

Java,

as

they

do

for

UDFs

coded

in

C.

Instances

of

classes

COM.ibm.db2.app.Blob

and

COM.ibm.db2.app.Clob

represent

the

LOB

data

types

(BLOB,

CLOB,

and

DBCLOB).

These

classes

provide

a

limited

interface

to

read

LOBs

passed

as

inputs,

and

write

LOBs

returned

as

outputs.

Reading

and

writing

of

LOBs

occur

through

standard

Java

I/O

stream

objects.

For

the

Blob

class,

the

routines

getInputStream()

and

getOutputStream()

return

an

InputStream

or

OutputStream

object

through

which

the

BLOB

content

can

be

processed

bytes-at-a-time.

For

a

Clob,

the

routines

getReader()

and

getWriter()

will

return

a

Reader

or

Writer

object

through

which

the

CLOB

or

DBCLOB

content

can

be

processed

characters-at-a-time.

If

such

an

object

is

returned

as

an

output

using

the

set()

method,

code

page

conversions

might

be

applied

in

order

to

represent

the

Java

Unicode

characters

in

the

database

code

page.

Related

concepts:

v

“DB2GENERAL

routines”

on

page

333

v

“DB2GENERAL

UDFs”

on

page

334

v

“Java

routines”

on

page

167

v

“Table

function

execution

model

for

Java”

on

page

59

Related

reference:

v

“Supported

SQL

data

types

in

Java”

on

page

170

v

“Java

classes

for

DB2GENERAL

routines”

on

page

337

v

“DB2GENERAL

Java

class:

COM.IBM.db2.app.StoredProc”

on

page

338

v

“DB2GENERAL

Java

class:

COM.IBM.db2.app.UDF”

on

page

339

v

“DB2GENERAL

Java

class:

COM.IBM.db2.app.Lob”

on

page

342

v

“DB2GENERAL

Java

class:

COM.IBM.db2.app.Blob”

on

page

342

v

“DB2GENERAL

Java

class:

COM.IBM.db2.app.Clob”

on

page

343

Java

classes

for

DB2GENERAL

routines

Java

classes

for

DB2GENERAL

routines

This

interface

provides

the

following

routine

to

fetch

a

JDBC

connection

to

the

embedding

application

context:

public

java.sql.Connection

getConnection()

Appendix

A.

DB2GENERAL

routines

337

You

can

use

this

handle

to

run

SQL

statements.

Other

methods

of

the

StoredProc

interface

are

listed

in

the

file

sqllib/samples/java/StoredProc.java.

There

are

five

classes/interfaces

that

you

can

use

with

Java

Stored

Procedures

or

UDFs:

v

COM.ibm.db2.app.StoredProc

v

COM.ibm.db2.app.UDF

v

COM.ibm.db2.app.Lob

v

COM.ibm.db2.app.Blob

v

COM.ibm.db2.app.Clob

Related

concepts:

v

“DB2GENERAL

routines”

on

page

333

v

“DB2GENERAL

UDFs”

on

page

334

v

“Java

routines”

on

page

167

Related

reference:

v

“Supported

SQL

data

types

in

DB2GENERAL

routines”

on

page

336

v

“DB2GENERAL

Java

class:

COM.IBM.db2.app.StoredProc”

on

page

338

v

“DB2GENERAL

Java

class:

COM.IBM.db2.app.UDF”

on

page

339

v

“DB2GENERAL

Java

class:

COM.IBM.db2.app.Lob”

on

page

342

v

“DB2GENERAL

Java

class:

COM.IBM.db2.app.Blob”

on

page

342

v

“DB2GENERAL

Java

class:

COM.IBM.db2.app.Clob”

on

page

343

DB2GENERAL

Java

class:

COM.IBM.db2.app.StoredProc

A

Java

class

that

contains

methods

intended

to

be

called

as

PARAMETER

STYLE

DB2GENERAL

stored

procedures

must

be

public

and

must

implement

this

Java

interface.

You

must

declare

such

a

class

as

follows:

public

class

user-STP-class

extends

COM.ibm.db2.app.StoredProc{

...

}

You

can

only

call

inherited

methods

of

the

COM.ibm.db2.app.StoredProc

interface

in

the

context

of

the

currently

executing

stored

procedure.

For

example,

you

cannot

use

operations

on

LOB

arguments,

result-setting

or

status-setting

calls

after

a

stored

procedure

returns.

A

Java

exception

will

be

thrown

if

you

violate

this

rule.

Argument-related

calls

use

a

column

index

to

identify

the

column

being

referenced.

These

start

at

1

for

the

first

argument.

All

arguments

of

a

PARAMETER

STYLE

DB2GENERAL

stored

procedure

are

considered

INOUT

and

thus

are

both

inputs

and

outputs.

Any

exception

returned

from

the

stored

procedure

is

caught

by

the

database

and

returned

to

the

caller

with

SQLCODE

-4302,

SQLSTATE

38501.

A

JDBC

SQLException

or

SQLWarning

is

handled

specially

and

passes

its

own

SQLCODE,

SQLSTATE

etc.

to

the

calling

application

verbatim.

The

following

methods

are

associated

with

the

COM.ibm.db2.app.StoredProc

class:

public

StoredProc()

[default

constructor]

This

constructor

is

called

by

the

database

before

the

stored

procedure

call.

public

boolean

isNull(int)

throws

Exception

338

Programming

Server

Applications

This

function

tests

whether

an

input

argument

with

the

given

index

is

an

SQL

NULL.

public

void

set(int,

short)

throws

Exception

public

void

set(int,

int)

throws

Exception

public

void

set(int,

double)

throws

Exception

public

void

set(int,

float)

throws

Exception

public

void

set(int,

java.math.BigDecimal)

throws

Exception

public

void

set(int,

String)

throws

Exception

public

void

set(int,

COM.ibm.db2.app.Blob)

throws

Exception

public

void

set(int,

COM.ibm.db2.app.Clob)

throws

Exception

This

function

sets

the

output

argument

with

the

given

index

to

the

given

value.

The

index

has

to

refer

to

a

valid

output

argument,

the

data

type

must

match,

and

the

value

must

have

an

acceptable

length

and

contents.

Strings

with

Unicode

characters

must

be

representable

in

the

database

code

page.

Errors

result

in

an

exception

being

thrown.

public

java.sql.Connection

getConnection()

throws

Exception

This

function

returns

a

JDBC

object

that

represents

the

calling

application’s

connection

to

the

database.

It

is

analogous

to

the

result

of

a

null

SQLConnect()

call

in

a

C

stored

procedure.

Related

concepts:

v

“DB2GENERAL

routines”

on

page

333

v

“DB2GENERAL

UDFs”

on

page

334

v

“Java

routines”

on

page

167

Related

reference:

v

“Supported

SQL

data

types

in

DB2GENERAL

routines”

on

page

336

v

“Java

classes

for

DB2GENERAL

routines”

on

page

337

v

“DB2GENERAL

Java

class:

COM.IBM.db2.app.UDF”

on

page

339

v

“DB2GENERAL

Java

class:

COM.IBM.db2.app.Lob”

on

page

342

v

“DB2GENERAL

Java

class:

COM.IBM.db2.app.Blob”

on

page

342

v

“DB2GENERAL

Java

class:

COM.IBM.db2.app.Clob”

on

page

343

DB2GENERAL

Java

class:

COM.IBM.db2.app.UDF

A

Java

class

that

contains

methods

intended

to

be

called

as

PARAMETER

STYLE

DB2GENERAL

UDFs

must

be

public

and

must

implement

this

Java

interface.

You

must

declare

such

a

class

as

follows:

public

class

user-UDF-class

extends

COM.ibm.db2.app.UDF{

...

}

You

can

only

call

methods

of

the

COM.ibm.db2.app.UDF

interface

in

the

context

of

the

currently

executing

UDF.

For

example,

you

cannot

use

operations

on

LOB

arguments,

result-

or

status-setting

calls,

etc.,

after

a

UDF

returns.

A

Java

exception

will

be

thrown

if

this

rule

is

violated.

Argument-related

calls

use

a

column

index

to

identify

the

column

being

set.

These

start

at

1

for

the

first

argument.

Output

arguments

are

numbered

higher

than

the

input

arguments.

For

example,

a

scalar

UDF

with

three

inputs

uses

index

4

for

the

output.

Any

exception

returned

from

the

UDF

is

caught

by

the

database

and

returned

to

the

caller

with

SQLCODE

-4302,

SQLSTATE

38501.

Appendix

A.

DB2GENERAL

routines

339

The

following

methods

are

associated

with

the

COM.ibm.db2.app.UDF

class:

public

UDF()

[default

constructor]

This

constructor

is

called

by

the

database

at

the

beginning

of

a

series

of

UDF

calls.

It

precedes

the

first

call

to

the

UDF.

public

void

close()

This

function

is

called

by

the

database

at

the

end

of

a

UDF

evaluation,

if

the

UDF

was

created

with

the

FINAL

CALL

option.

It

is

analogous

to

the

final

call

for

a

C

UDF.

For

table

functions,

close()

is

called

after

the

CLOSE

call

to

the

UDF

method

(if

NO

FINAL

CALL

is

coded

or

defaulted),

or

after

the

FINAL

call

(if

FINAL

CALL

is

coded).

If

a

Java

UDF

class

does

not

implement

this

function,

a

no-op

stub

will

handle

and

ignore

this

event.

public

int

getCallType()

throws

Exception

Table

function

UDF

methods

use

getCallType()

to

find

out

the

call

type

for

a

particular

call.

It

returns

a

value

as

follows

(symbolic

defines

are

provided

for

these

values

in

the

COM.ibm.db2.app.UDF

class

definition):

v

-2

FIRST

call

v

-1

OPEN

call

v

0

FETCH

call

v

1

CLOSE

call

v

2

FINAL

call
public

boolean

isNull(int)

throws

Exception

This

function

tests

whether

an

input

argument

with

the

given

index

is

an

SQL

NULL.

public

boolean

needToSet(int)

throws

Exception

This

function

tests

whether

an

output

argument

with

the

given

index

needs

to

be

set.

This

can

be

false

for

a

table

UDF

declared

with

DBINFO,

if

that

column

is

not

used

by

the

UDF

caller.

public

void

set(int,

short)

throws

Exception

public

void

set(int,

int)

throws

Exception

public

void

set(int,

double)

throws

Exception

public

void

set(int,

float)

throws

Exception

public

void

set(int,

java.math.BigDecimal)

throws

Exception

public

void

set(int,

String)

throws

Exception

public

void

set(int,

COM.ibm.db2.app.Blob)

throws

Exception

public

void

set(int,

COM.ibm.db2.app.Clob)

throws

Exception

This

function

sets

the

output

argument

with

the

given

index

to

the

given

value.

The

index

has

to

refer

to

a

valid

output

argument,

the

data

type

must

match,

and

the

value

must

have

an

acceptable

length

and

contents.

Strings

with

Unicode

characters

must

be

representable

in

the

database

code

page.

Errors

result

in

an

exception

being

thrown.

public

void

setSQLstate(String)

throws

Exception

This

function

can

be

called

from

a

UDF

to

set

the

SQLSTATE

to

be

returned

from

this

call.

A

table

UDF

should

call

this

function

with

″02000″

to

signal

the

end-of-table

condition.

If

the

string

is

not

acceptable

as

an

SQLSTATE,

an

exception

will

be

thrown.

public

void

setSQLmessage(String)

throws

Exception

340

Programming

Server

Applications

This

function

is

similar

to

the

setSQLstate

function.

It

sets

the

SQL

message

result.

If

the

string

is

not

acceptable

(for

example,

longer

than

70

characters),

an

exception

will

be

thrown.

public

String

getFunctionName()

throws

Exception

This

function

returns

the

name

of

the

executing

UDF.

public

String

getSpecificName()

throws

Exception

This

function

returns

the

specific

name

of

the

executing

UDF.

public

byte[]

getDBinfo()

throws

Exception

This

function

returns

a

raw,

unprocessed

DBINFO

structure

for

the

executing

UDF,

as

a

byte

array.

You

must

first

declare

it

with

the

DBINFO

option.

public

String

getDBname()

throws

Exception

public

String

getDBauthid()

throws

Exception

public

String

getDBtbschema()

throws

Exception

public

String

getDBtbname()

throws

Exception

public

String

getDBcolname()

throws

Exception

public

String

getDBver_rel()

throws

Exception

public

String

getDBplatform()

throws

Exception

public

String

getDBapplid()

throws

Exception

These

functions

return

the

value

of

the

appropriate

field

from

the

DBINFO

structure

of

the

executing

UDF.

public

int

getDBprocid()

throws

Exception

This

function

returns

the

routine

id

of

the

procedure

which

directly

or

indirectly

invoked

this

routine.

The

routine

id

matches

the

ROUTINEID

column

in

SYSCAT.ROUTINES

which

can

be

used

to

retrieve

the

name

of

the

invoking

procedure.

If

the

executing

routine

is

invoked

from

an

application,

getDBprocid()

returns

0.

public

int[]

getDBcodepg()

throws

Exception

This

function

returns

the

SBCS,

DBCS,

and

composite

code

page

numbers

for

the

database,

from

the

DBINFO

structure.

The

returned

integer

array

has

the

respective

numbers

as

its

first

three

elements.

public

byte[]

getScratchpad()

throws

Exception

This

function

returns

a

copy

of

the

scratchpad

of

the

currently

executing

UDF.

You

must

first

declare

the

UDF

with

the

SCRATCHPAD

option.

public

void

setScratchpad(byte[])

throws

Exception

This

function

overwrites

the

scratchpad

of

the

currently

executing

UDF

with

the

contents

of

the

given

byte

array.

You

must

first

declare

the

UDF

with

the

SCRATCHPAD

option.

The

byte

array

must

have

the

same

size

as

getScratchpad()

returns.

Related

concepts:

v

“DB2GENERAL

routines”

on

page

333

v

“DB2GENERAL

UDFs”

on

page

334

v

“Java

routines”

on

page

167

Related

reference:

v

“Supported

SQL

data

types

in

DB2GENERAL

routines”

on

page

336

v

“Java

classes

for

DB2GENERAL

routines”

on

page

337

Appendix

A.

DB2GENERAL

routines

341

v

“DB2GENERAL

Java

class:

COM.IBM.db2.app.StoredProc”

on

page

338

v

“DB2GENERAL

Java

class:

COM.IBM.db2.app.Lob”

on

page

342

v

“DB2GENERAL

Java

class:

COM.IBM.db2.app.Blob”

on

page

342

v

“DB2GENERAL

Java

class:

COM.IBM.db2.app.Clob”

on

page

343

DB2GENERAL

Java

class:

COM.IBM.db2.app.Lob

This

class

provides

utility

routines

that

create

temporary

Blob

or

Clob

objects

for

computation

inside

routines.

The

following

methods

are

associated

with

the

COM.ibm.db2.app.Lob

class:

public

static

Blob

newBlob()

throws

Exception

This

function

creates

a

temporary

Blob.

It

will

be

implemented

using

a

LOCATOR

if

possible.

public

static

Clob

newClob()

throws

Exception

This

function

creates

a

temporary

Clob.

It

will

be

implemented

using

a

LOCATOR

if

possible.

Related

concepts:

v

“DB2GENERAL

routines”

on

page

333

v

“DB2GENERAL

UDFs”

on

page

334

v

“Java

routines”

on

page

167

Related

reference:

v

“Supported

SQL

data

types

in

DB2GENERAL

routines”

on

page

336

v

“Java

classes

for

DB2GENERAL

routines”

on

page

337

v

“DB2GENERAL

Java

class:

COM.IBM.db2.app.StoredProc”

on

page

338

v

“DB2GENERAL

Java

class:

COM.IBM.db2.app.UDF”

on

page

339

v

“DB2GENERAL

Java

class:

COM.IBM.db2.app.Blob”

on

page

342

v

“DB2GENERAL

Java

class:

COM.IBM.db2.app.Clob”

on

page

343

DB2GENERAL

Java

class:

COM.IBM.db2.app.Blob

An

instance

of

this

class

is

passed

by

the

database

to

represent

a

BLOB

as

routine

input,

and

can

be

passed

back

as

output.

The

application

might

create

instances,

but

only

in

the

context

of

an

executing

routine.

Uses

of

these

objects

outside

such

a

context

will

throw

an

exception.

The

following

methods

are

associated

with

the

COM.ibm.db2.app.Blob

class:

public

long

size()

throws

Exception

This

function

returns

the

length

(in

bytes)

of

the

BLOB.

public

java.io.InputStream

getInputStream()

throws

Exception

This

function

returns

a

new

InputStream

to

read

the

contents

of

the

BLOB.

Efficient

seek/mark

operations

are

available

on

that

object.

public

java.io.OutputStream

getOutputStream()

throws

Exception

342

Programming

Server

Applications

This

function

returns

a

new

OutputStream

to

append

bytes

to

the

BLOB.

Appended

bytes

become

immediately

visible

on

all

existing

InputStream

instances

produced

by

this

object’s

getInputStream()

call.

Related

concepts:

v

“DB2GENERAL

routines”

on

page

333

v

“DB2GENERAL

UDFs”

on

page

334

v

“Java

routines”

on

page

167

Related

reference:

v

“Supported

SQL

data

types

in

DB2GENERAL

routines”

on

page

336

v

“Java

classes

for

DB2GENERAL

routines”

on

page

337

v

“DB2GENERAL

Java

class:

COM.IBM.db2.app.StoredProc”

on

page

338

v

“DB2GENERAL

Java

class:

COM.IBM.db2.app.UDF”

on

page

339

v

“DB2GENERAL

Java

class:

COM.IBM.db2.app.Lob”

on

page

342

v

“DB2GENERAL

Java

class:

COM.IBM.db2.app.Clob”

on

page

343

DB2GENERAL

Java

class:

COM.IBM.db2.app.Clob

An

instance

of

this

class

is

passed

by

the

database

to

represent

a

CLOB

or

DBCLOB

as

routine

input,

and

can

be

passed

back

as

output.

The

application

might

create

instances,

but

only

in

the

context

of

an

executing

routine.

Uses

of

these

objects

outside

such

a

context

will

throw

an

exception.

Clob

instances

store

characters

in

the

database

code

page.

Some

Unicode

characters

cannot

not

be

representede

in

this

code

page,

and

can

cause

an

exception

to

be

thrown

during

conversion.

This

can

happen

during

an

append

operation,

or

during

a

UDF

or

StoredProc

set()

call.

This

is

necessary

to

hide

the

distinction

between

a

CLOB

and

a

DBCLOB

from

the

Java

programmer.

The

following

methods

are

associated

with

the

COM.ibm.db2.app.Clob

class:

public

long

size()

throws

Exception

This

function

returns

the

length

(in

characters)

of

the

CLOB.

public

java.io.Reader

getReader()

throws

Exception

This

function

returns

a

new

Reader

to

read

the

contents

of

the

CLOB

or

DBCLOB.

Efficient

seek/mark

operations

are

available

on

that

object.

public

java.io.Writer

getWriter()

throws

Exception

This

function

returns

a

new

Writer

to

append

characters

to

this

CLOB

or

DBCLOB.

Appended

characters

become

immediately

visible

on

all

existing

Reader

instances

produced

by

this

object’s

GetReader()

call.

Related

concepts:

v

“DB2GENERAL

routines”

on

page

333

v

“DB2GENERAL

UDFs”

on

page

334

v

“Java

routines”

on

page

167

Related

reference:

v

“Supported

SQL

data

types

in

DB2GENERAL

routines”

on

page

336

v

“Java

classes

for

DB2GENERAL

routines”

on

page

337

Appendix

A.

DB2GENERAL

routines

343

v

“DB2GENERAL

Java

class:

COM.IBM.db2.app.StoredProc”

on

page

338

v

“DB2GENERAL

Java

class:

COM.IBM.db2.app.UDF”

on

page

339

v

“DB2GENERAL

Java

class:

COM.IBM.db2.app.Lob”

on

page

342

v

“DB2GENERAL

Java

class:

COM.IBM.db2.app.Blob”

on

page

342

344

Programming

Server

Applications

Appendix

B.

COBOL

procedures

COBOL

procedures

.

.

.

.

.

.

.

.

.

.

. 345

Supported

SQL

Data

Types

in

COBOL

.

.

.

.

. 347

COBOL

procedures

COBOL

procedures

are

to

be

written

in

a

similar

manner

as

COBOL

subprograms.

Handling

parameters

in

a

COBOL

procedure

Each

parameter

to

be

accepted

or

passed

by

a

procedure

must

be

declared

in

the

LINKAGE

SECTION.

For

example,

this

code

fragment

comes

from

a

procedure

that

accepts

two

IN

parameters

(one

CHAR(15)

and

one

INT),

and

passes

an

OUT

parameter

(an

INT):

LINKAGE

SECTION.

01

IN-SPERSON

PIC

X(15).

01

IN-SQTY

PIC

S9(9)

USAGE

COMP-5.

01

OUT-SALESSUM

PIC

S9(9)

USAGE

COMP-5.

Ensure

that

the

COBOL

data

types

you

declare

map

correctly

to

SQL

data

types.

For

a

detailed

list

of

data

type

mappings

between

SQL

and

COBOL,

see

″Supported

SQL

Data

Types

in

COBOL″.

Each

parameter

must

then

be

listed

in

the

PROCEDURE

DIVISION.

The

following

example

shows

a

PROCEDURE

DIVISION

that

corresponds

to

the

parameter

definitions

from

the

previous

LINKAGE

SECTION

example.

PROCEDURE

DIVISION

USING

IN-SPERSON

IN-SQTY

OUT-SALESSUM.

Exiting

a

COBOL

procedure

To

properly

exit

the

procedure

use

the

following

commands:

MOVE

SQLZ-HOLD-PROC

TO

RETURN-CODE.

GOBACK.

With

these

commands,

the

procedure

returns

correctly

to

the

client

application.

This

is

especially

important

when

the

procedure

is

called

by

a

local

COBOL

client

application.

When

building

a

COBOL

procedure,

it

is

strongly

recommended

that

you

use

the

build

script

written

for

your

operating

system

and

compiler.

Build

scripts

for

Micro

Focus

COBOL

are

found

in

the

sqllib/samples/cobol_mf

directory.

Build

scripts

for

IBM®

COBOL

are

found

in

the

sqllib/samples/cobol

directory.

The

following

is

an

example

of

a

COBOL

procedure

that

accepts

two

input

parameters,

and

then

returns

an

output

parameter

and

a

result

set:

IDENTIFICATION

DIVISION.

PROGRAM-ID.

"NEWSALE".

DATA

DIVISION.

WORKING-STORAGE

SECTION.

01

INSERT-STMT.

05

FILLER

PIC

X(24)

VALUE

"INSERT

INTO

SALES

(SALES".

05

FILLER

PIC

X(24)

VALUE

"_PERSON,SALES)

VALUES

(’".

05

SPERSON

PIC

X(16).

05

FILLER

PIC

X(2)

VALUE

"’,".

05

SQTY

PIC

S9(9).

©

Copyright

IBM

Corp.

1993

-

2004

345

||

|

|

|
|
|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|

|
|

|
|
|

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|

05

FILLER

PIC

X(1)

VALUE

")".

EXEC

SQL

BEGIN

DECLARE

SECTION

END-EXEC.

01

INS-SMT-INF.

05

INS-STMT.

49

INS-LEN

PIC

S9(4)

USAGE

COMP.

49

INS-TEXT

PIC

X(100).

01

SALESSUM

PIC

S9(9)

USAGE

COMP-5.

EXEC

SQL

END

DECLARE

SECTION

END-EXEC.

EXEC

SQL

INCLUDE

SQLCA

END-EXEC.

LINKAGE

SECTION.

01

IN-SPERSON

PIC

X(15).

01

IN-SQTY

PIC

S9(9)

USAGE

COMP-5.

01

OUT-SALESSUM

PIC

S9(9)

USAGE

COMP-5.

PROCEDURE

DIVISION

USING

IN-SPERSON

IN-SQTY

OUT-SALESSUM.

MAINLINE.

MOVE

0

TO

SQLCODE.

PERFORM

INSERT-ROW.

IF

SQLCODE

IS

NOT

EQUAL

TO

0

GOBACK

END-IF.

PERFORM

SELECT-ROWS.

PERFORM

GET-SUM.

GOBACK.

INSERT-ROW.

MOVE

IN-SPERSON

TO

SPERSON.

MOVE

IN-SQTY

TO

SQTY.

MOVE

INSERT-STMT

TO

INS-TEXT.

MOVE

LENGTH

OF

INSERT-STMT

TO

INS-LEN.

EXEC

SQL

EXECUTE

IMMEDIATE

:INS-STMT

END-EXEC.

GET-SUM.

EXEC

SQL

SELECT

SUM(SALES)

INTO

:SALESSUM

FROM

SALES

END-EXEC.

MOVE

SALESSUM

TO

OUT-SALESSUM.

SELECT-ROWS.

EXEC

SQL

DECLARE

CUR

CURSOR

WITH

RETURN

FOR

SELECT

*

FROM

SALES

END-EXEC.

IF

SQLCODE

=

0

EXEC

SQL

OPEN

CUR

END-EXEC

END-IF.

The

corresponding

CREATE

PROCEDURE

statement

for

this

procedure

is

as

follows:

CREATE

PROCEDURE

NEWSALE

(

IN

SALESPERSON

CHAR(15),

IN

SALESQTY

INT,

OUT

SALESSUM

INT)

RESULT

SETS

1

EXTERNAL

NAME

’NEWSALE!NEWSALE’

FENCED

LANGUAGE

COBOL

PARAMETER

STYLE

SQL

MODIFIES

SQL

DATA

The

preceding

statement

assumes

that

the

COBOL

function

exists

in

a

library

called

NEWSALE.

Note:

When

registering

a

COBOL

procedure

on

Windows®

operating

systems,

take

the

following

precaution

when

identifying

a

stored

procedure

body

in

the

346

Programming

Server

Applications

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|

|
|

|
|

CREATE

statement’s

EXTERNAL

NAME

clause.

If

you

use

an

absolute

path

id

to

identify

the

procedure

body,

you

must

append

the

.dll

extension.

For

example:

CREATE

PROCEDURE

NEWSALE

(

IN

SALESPERSON

CHAR(15),

IN

SALESQTY

INT,

OUT

SALESSUM

INT)

RESULT

SETS

1

EXTERNAL

NAME

’NEWSALE!NEWSALE’

FENCED

LANGUAGE

COBOL

PARAMETER

STYLE

SQL

MODIFIES

SQL

DATA

EXTERNAL

NAME

’d:\mylib\NEWSALE.dll’

Related

concepts:

v

“Procedures”

on

page

11

v

“Embedded

SQL

Statements

in

COBOL”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Host

Variables

in

COBOL”

in

the

Application

Development

Guide:

Programming

Client

Applications

Related

tasks:

v

“Building

IBM

COBOL

routines

on

AIX”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Building

UNIX

Micro

Focus

COBOL

routines”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Building

IBM

COBOL

routines

on

Windows”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Building

Micro

Focus

COBOL

routines

on

Windows”

in

the

Application

Development

Guide:

Building

and

Running

Applications

Related

reference:

v

“Supported

SQL

Data

Types

in

COBOL”

on

page

347

v

“CREATE

PROCEDURE

(External)

statement”

in

the

SQL

Reference,

Volume

2

v

“Syntax

for

passing

arguments

to

routines

written

in

C/C++,

OLE,

or

COBOL”

on

page

89

Supported

SQL

Data

Types

in

COBOL

Certain

predefined

COBOL

data

types

correspond

to

column

types.

Only

these

COBOL

data

types

can

be

declared

as

host

variables.

The

following

table

shows

the

COBOL

equivalent

of

each

column

type.

When

the

precompiler

finds

a

host

variable

declaration,

it

determines

the

appropriate

SQL

type

value.

The

database

manager

uses

this

value

to

convert

the

data

exchanged

between

the

application

and

itself.

Not

every

possible

data

description

for

host

variables

is

recognized.

COBOL

data

items

must

be

consistent

with

the

ones

described

in

the

following

table.

If

you

use

other

data

items,

an

error

can

result.

Note:

There

is

no

host

variable

support

for

the

DATALINK

data

type

in

any

of

the

DB2

host

languages.

Appendix

B.

COBOL

procedures

347

|
|
|

|
|
|
|
|
|
|
|
|
|

|

|

|
|

|
|

|

|
|

|
|

|
|

|
|

|

|

|

|
|

Table

38.

SQL

Data

Types

Mapped

to

COBOL

Declarations

SQL

Column

Type1

COBOL

Data

Type

SQL

Column

Type

Description

SMALLINT

(500

or

501)

01

name

PIC

S9(4)

COMP-5.

16-bit

signed

integer

INTEGER

(496

or

497)

01

name

PIC

S9(9)

COMP-5.

32-bit

signed

integer

BIGINT

(492

or

493)

01

name

PIC

S9(18)

COMP-5.

64-bit

signed

integer

DECIMAL(p,s)

(484

or

485)

01

name

PIC

S9(m)V9(n)

COMP-3.

Packed

decimal

REAL2

(480

or

481)

01

name

USAGE

IS

COMP-1.

Single-precision

floating

point

DOUBLE3

(480

or

481)

01

name

USAGE

IS

COMP-2.

Double-precision

floating

point

CHAR(n)

(452

or

453)

01

name

PIC

X(n).

Fixed-length

character

string

VARCHAR(n)

(448

or

449)

01

name.

49

length

PIC

S9(4)

COMP-5.

49

name

PIC

X(n).

1<=n<=32

672

Variable-length

character

string

LONG

VARCHAR

(456

or

457)

01

name.

49

length

PIC

S9(4)

COMP-5.

49

data

PIC

X(n).

32

673<=n<=32

700

Long

variable-length

character

string

CLOB(n)

(408

or

409)

01

MY-CLOB

USAGE

IS

SQL

TYPE

IS

CLOB(n).

1<=n<=2

147

483

647

Large

object

variable-length

character

string

CLOB

locator

variable4

(964

or

965)

01

MY-CLOB-LOCATOR

USAGE

IS

SQL

TYPE

IS

CLOB-LOCATOR.

Identifies

CLOB

entities

residing

on

the

server

CLOB

file

reference

variable4

(920

or

921)

01

MY-CLOB-FILE

USAGE

IS

SQL

TYPE

IS

CLOB-FILE.

Descriptor

for

file

containing

CLOB

data

BLOB(n)

(404

or

405)

01

MY-BLOB

USAGE

IS

SQL

TYPE

IS

BLOB(n).

1<=n<=2

147

483

647

Large

object

variable-length

binary

string

BLOB

locator

variable4

(960

or

961)

01

MY-BLOB-LOCATOR

USAGE

IS

SQL

TYPE

IS

BLOB-LOCATOR.

Identifies

BLOB

entities

residing

on

the

server

BLOB

file

reference

variable4

(916

or

917)

01

MY-CLOB-FILE

USAGE

IS

SQL

TYPE

IS

CLOB-FILE.

Descriptor

for

file

containing

CLOB

data

DATE

(384

or

385)

01

identifier

PIC

X(10).

10-byte

character

string

TIME

(388

or

389)

01

identifier

PIC

X(8).

8-byte

character

string

TIMESTAMP

(392

or

393)

01

identifier

PIC

X(26).

26-byte

character

string

Note:

The

following

data

types

are

only

available

in

the

DBCS

environment.

GRAPHIC(n)

(468

or

469)

01

name

PIC

G(n)

DISPLAY-1.

Fixed-length

double-byte

character

string

VARGRAPHIC(n)

(464

or

465)

01

name.

49

length

PIC

S9(4)

COMP-5.

49

name

PIC

G(n)

DISPLAY-1.

1<=n<=16

336

Variable

length

double-byte

character

string

with

2-byte

string

length

indicator

348

Programming

Server

Applications

Table

38.

SQL

Data

Types

Mapped

to

COBOL

Declarations

(continued)

SQL

Column

Type1

COBOL

Data

Type

SQL

Column

Type

Description

LONG

VARGRAPHIC

(472

or

473)

01

name.

49

length

PIC

S9(4)

COMP-5.

49

name

PIC

G(n)

DISPLAY-1.

16

337<=n<=16

350

Variable

length

double-byte

character

string

with

2-byte

string

length

indicator

DBCLOB(n)

(412

or

413)

01

MY-DBCLOB

USAGE

IS

SQL

TYPE

IS

DBCLOB(n).

1<=n<=1

073

741

823

Large

object

variable-length

double-byte

character

string

with

4-byte

string

length

indicator

DBCLOB

locator

variable4

(968

or

969)

01

MY-DBCLOB-LOCATOR

USAGE

IS

SQL

TYPE

IS

DBCLOB-LOCATOR.

Identifies

DBCLOB

entities

residing

on

the

server

DBCLOB

file

reference

variable4

(924

or

925)

01

MY-DBCLOB-FILE

USAGE

IS

SQL

TYPE

IS

DBCLOB-FILE.

Descriptor

for

file

containing

DBCLOB

data

Notes:

1.

The

first

number

under

SQL

Column

Type

indicates

that

an

indicator

variable

is

not

provided,

and

the

second

number

indicates

that

an

indicator

variable

is

provided.

An

indicator

variable

is

needed

to

indicate

NULL

values,

or

to

hold

the

length

of

a

truncated

string.

These

are

the

values

that

would

appear

in

the

SQLTYPE

field

of

the

SQLDA

for

these

data

types.

2.

FLOAT(n)

where

0

<

n

<

25

is

a

synonym

for

REAL.

The

difference

between

REAL

and

DOUBLE

in

the

SQLDA

is

the

length

value

(4

or

8).

3.

The

following

SQL

types

are

synonyms

for

DOUBLE:

v

FLOAT

v

FLOAT(n)

where

24

<

n

<

54

is

v

DOUBLE

PRECISION

4.

This

is

not

a

column

type

but

a

host

variable

type.

The

following

are

additional

rules

for

supported

COBOL

data

types:

v

PIC

S9

and

COMP-3/COMP-5

are

required

where

shown.

v

You

can

use

level

number

77

instead

of

01

for

all

column

types

except

VARCHAR,

LONG

VARCHAR,

VARGRAPHIC,

LONG

VARGRAPHIC

and

all

LOB

variable

types.

v

Use

the

following

rules

when

declaring

host

variables

for

DECIMAL(p,s)

column

types.

See

the

following

sample:

01

identifier

PIC

S9(m)V9(n)

COMP-3

–

Use

V

to

denote

the

decimal

point.

–

Values

for

n

and

m

must

be

greater

than

or

equal

to

1.

–

The

value

for

n

+

m

cannot

exceed

31.

–

The

value

for

s

equals

the

value

for

n.

–

The

value

for

p

equals

the

value

for

n

+

m.

–

The

repetition

factors

(n)

and

(m)

are

optional.

The

following

examples

are

all

valid:

01

identifier

PIC

S9(3)V

COMP-3

01

identifier

PIC

SV9(3)

COMP-3

01

identifier

PIC

S9V

COMP-3

01

identifier

PIC

SV9

COMP-3

–

PACKED-DECIMAL

can

be

used

instead

of

COMP-3.
v

Arrays

are

not

supported

by

the

COBOL

precompiler.

Related

concepts:

v

“SQL

Declare

Section

with

Host

Variables

for

COBOL”

in

the

Application

Development

Guide:

Programming

Client

Applications

Appendix

B.

COBOL

procedures

349

350

Programming

Server

Applications

Appendix

C.

DB2

Universal

Database

technical

information

DB2

documentation

and

help

DB2®

technical

information

is

available

through

the

following

tools

and

methods:

v

DB2

Information

Center

–

Topics

–

Help

for

DB2

tools

–

Sample

programs

–

Tutorials
v

Downloadable

PDF

files,

PDF

files

on

CD,

and

printed

books

–

Guides

–

Reference

manuals
v

Command

line

help

–

Command

help

–

Message

help

–

SQL

state

help
v

Installed

source

code

–

Sample

programs

You

can

access

additional

DB2

Universal

Database™

technical

information

such

as

technotes,

white

papers,

and

Redbooks™

online

at

ibm.com®.

Access

the

DB2

Information

Management

software

library

site

at

www.ibm.com/software/data/pubs/.

DB2

documentation

updates

IBM®

may

periodically

make

documentation

FixPaks

and

other

documentation

updates

to

the

DB2

Information

Center

available.

If

you

access

the

DB2

Information

Center

at

http://publib.boulder.ibm.com/infocenter/db2help/,

you

will

always

be

viewing

the

most

up-to-date

information.

If

you

have

installed

the

DB2

Information

Center

locally,

then

you

need

to

install

any

updates

manually

before

you

can

view

them.

Documentation

updates

allow

you

to

update

the

information

that

you

installed

from

the

DB2

Information

Center

CD

when

new

information

becomes

available.

The

Information

Center

is

updated

more

frequently

than

either

the

PDF

or

the

hardcopy

books.

To

get

the

most

current

DB2

technical

information,

install

the

documentation

updates

as

they

become

available

or

go

to

the

DB2

Information

Center

at

the

www.ibm.com

site.

Related

concepts:

v

“CLI

sample

programs”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Java

sample

programs”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“DB2

Information

Center”

on

page

352

Related

tasks:

v

“Invoking

contextual

help

from

a

DB2

tool”

on

page

369

©

Copyright

IBM

Corp.

1993

-

2004

351

|

|
|
|
|
|
|
|
|

|
|
|
|

http://www.ibm.com/software/data/pubs/
http://publib.boulder.ibm.com/infocenter/db2help/

v

“Updating

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server”

on

page

361

v

“Invoking

message

help

from

the

command

line

processor”

on

page

370

v

“Invoking

command

help

from

the

command

line

processor”

on

page

370

v

“Invoking

SQL

state

help

from

the

command

line

processor”

on

page

371

Related

reference:

v

“DB2

PDF

and

printed

documentation”

on

page

363

DB2

Information

Center

The

DB2®

Information

Center

gives

you

access

to

all

of

the

information

you

need

to

take

full

advantage

of

DB2

family

products,

including

DB2

Universal

Database™,

DB2

Connect™,

DB2

Information

Integrator

and

DB2

Query

Patroller™.

The

DB2

Information

Center

also

contains

information

for

major

DB2

features

and

components

including

replication,

data

warehousing,

and

the

DB2

extenders.

The

DB2

Information

Center

has

the

following

features

if

you

view

it

in

Mozilla

1.0

or

later

or

Microsoft®

Internet

Explorer

5.5

or

later.

Some

features

require

you

to

enable

support

for

JavaScript™:

Flexible

installation

options

You

can

choose

to

view

the

DB2

documentation

using

the

option

that

best

meets

your

needs:

v

To

effortlessly

ensure

that

your

documentation

is

always

up

to

date,

you

can

access

all

of

your

documentation

directly

from

the

DB2

Information

Center

hosted

on

the

IBM®

Web

site

at

http://publib.boulder.ibm.com/infocenter/db2help/

v

To

minimize

your

update

efforts

and

keep

your

network

traffic

within

your

intranet,

you

can

install

the

DB2

documentation

on

a

single

server

on

your

intranet

v

To

maximize

your

flexibility

and

reduce

your

dependence

on

network

connections,

you

can

install

the

DB2

documentation

on

your

own

computer

Search

You

can

search

all

of

the

topics

in

the

DB2

Information

Center

by

entering

a

search

term

in

the

Search

text

field.

You

can

retrieve

exact

matches

by

enclosing

terms

in

quotation

marks,

and

you

can

refine

your

search

with

wildcard

operators

(*,

?)

and

Boolean

operators

(AND,

NOT,

OR).

Task-oriented

table

of

contents

You

can

locate

topics

in

the

DB2

documentation

from

a

single

table

of

contents.

The

table

of

contents

is

organized

primarily

by

the

kind

of

tasks

you

may

want

to

perform,

but

also

includes

entries

for

product

overviews,

goals,

reference

information,

an

index,

and

a

glossary.

v

Product

overviews

describe

the

relationship

between

the

available

products

in

the

DB2

family,

the

features

offered

by

each

of

those

products,

and

up

to

date

release

information

for

each

of

these

products.

v

Goal

categories

such

as

installing,

administering,

and

developing

include

topics

that

enable

you

to

quickly

complete

tasks

and

develop

a

deeper

understanding

of

the

background

information

for

completing

those

tasks.

352

Programming

Server

Applications

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

http://publib.boulder.ibm.com/infocenter/db2help/

v

Reference

topics

provide

detailed

information

about

a

subject,

including

statement

and

command

syntax,

message

help,

and

configuration

parameters.

Show

current

topic

in

table

of

contents

You

can

show

where

the

current

topic

fits

into

the

table

of

contents

by

clicking

the

Refresh

/

Show

Current

Topic

button

in

the

table

of

contents

frame

or

by

clicking

the

Show

in

Table

of

Contents

button

in

the

content

frame.

This

feature

is

helpful

if

you

have

followed

several

links

to

related

topics

in

several

files

or

arrived

at

a

topic

from

search

results.

Index

You

can

access

all

of

the

documentation

from

the

index.

The

index

is

organized

in

alphabetical

order

by

index

term.

Glossary

You

can

use

the

glossary

to

look

up

definitions

of

terms

used

in

the

DB2

documentation.

The

glossary

is

organized

in

alphabetical

order

by

glossary

term.

Integrated

localized

information

The

DB2

Information

Center

displays

information

in

the

preferred

language

set

in

your

browser

preferences.

If

a

topic

is

not

available

in

your

preferred

language,

the

DB2

Information

Center

displays

the

English

version

of

that

topic.

For

iSeries™

technical

information,

refer

to

the

IBM

eServer™

iSeries

information

center

at

www.ibm.com/eserver/iseries/infocenter/.

Related

concepts:

v

“DB2

Information

Center

installation

scenarios”

on

page

353

Related

tasks:

v

“Updating

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server”

on

page

361

v

“Displaying

topics

in

your

preferred

language

in

the

DB2

Information

Center”

on

page

362

v

“Invoking

the

DB2

Information

Center”

on

page

360

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(UNIX)”

on

page

356

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(Windows)”

on

page

358

DB2

Information

Center

installation

scenarios

Different

working

environments

can

pose

different

requirements

for

how

to

access

DB2®

information.

The

DB2

Information

Center

can

be

accessed

on

the

IBM®

Web

site,

on

a

server

on

your

organization’s

network,

or

on

a

version

installed

on

your

computer.

In

all

three

cases,

the

documentation

is

contained

in

the

DB2

Information

Center,

which

is

an

architected

web

of

topic-based

information

that

you

view

with

a

browser.

By

default,

DB2

products

access

the

DB2

Information

Center

on

the

IBM

Web

site.

However,

if

you

want

to

access

the

DB2

Information

Center

on

an

intranet

server

or

on

your

own

computer,

you

must

install

the

DB2

Information

Center

using

the

DB2

Information

Center

CD

found

in

your

product

Media

Pack.

Refer

to

the

summary

of

options

for

accessing

DB2

documentation

which

follows,

along

with

the

three

installation

scenarios,

to

help

determine

which

Appendix

C.

DB2

Universal

Database

technical

information

353

|
|
|

|
|
|
|
|
|

|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

http://www.ibm.com/eserver/iseries/infocenter/

method

of

accessing

the

DB2

Information

Center

works

best

for

you

and

your

work

environment,

and

what

installation

issues

you

might

need

to

consider.

Summary

of

options

for

accessing

DB2

documentation:

The

following

table

provides

recommendations

on

which

options

are

possible

in

your

work

environment

for

accessing

the

DB2

product

documentation

in

the

DB2

Information

Center.

Internet

access

Intranet

access

Recommendation

Yes

Yes

Access

the

DB2

Information

Center

on

the

IBM

Web

site,

or

access

the

DB2

Information

Center

installed

on

an

intranet

server.

Yes

No

Access

the

DB2

Information

Center

on

the

IBM

Web

site.

No

Yes

Access

the

DB2

Information

Center

installed

on

an

intranet

server.

No

No

Access

the

DB2

Information

Center

on

a

local

computer.

Scenario:

Accessing

the

DB2

Information

Center

on

your

computer:

Tsu-Chen

owns

a

factory

in

a

small

town

that

does

not

have

a

local

ISP

to

provide

him

with

Internet

access.

He

purchased

DB2

Universal

Database™

to

manage

his

inventory,

his

product

orders,

his

banking

account

information,

and

his

business

expenses.

Never

having

used

a

DB2

product

before,

Tsu-Chen

needs

to

learn

how

to

do

so

from

the

DB2

product

documentation.

After

installing

DB2

Universal

Database

on

his

computer

using

the

typical

installation

option,

Tsu-Chen

tries

to

access

the

DB2

documentation.

However,

his

browser

gives

him

an

error

message

that

the

page

he

tried

to

open

cannot

be

found.

Tsu-Chen

checks

the

installation

manual

for

his

DB2

product

and

discovers

that

he

has

to

install

the

DB2

Information

Center

if

he

wants

to

access

DB2

documentation

on

his

computer.

He

finds

the

DB2

Information

Center

CD

in

the

media

pack

and

installs

it.

From

the

application

launcher

for

his

operating

system,

Tsu-Chen

now

has

access

to

the

DB2

Information

Center

and

can

learn

how

to

use

his

DB2

product

to

increase

the

success

of

his

business.

Scenario:

Accessing

the

DB2

Information

Center

on

the

IBM

Web

site:

Colin

is

an

information

technology

consultant

with

a

training

firm.

He

specializes

in

database

technology

and

SQL

and

gives

seminars

on

these

subjects

to

businesses

all

over

North

America

using

DB2

Universal

Database.

Part

of

Colin’s

seminars

includes

using

DB2

documentation

as

a

teaching

tool.

For

example,

while

teaching

courses

on

SQL,

Colin

uses

the

DB2

documentation

on

SQL

as

a

way

to

teach

basic

and

advanced

syntax

for

database

queries.

Most

of

the

businesses

at

which

Colin

teaches

have

Internet

access.

This

situation

influenced

Colin’s

decision

to

configure

his

mobile

computer

to

access

the

DB2

Information

Center

on

the

IBM

Web

site

when

he

installed

the

latest

version

of

DB2

Universal

Database.

This

configuration

allows

Colin

to

have

online

access

to

the

latest

DB2

documentation

during

his

seminars.

354

Programming

Server

Applications

|
|

|

|
|
|

||||

|||
|
|

|||
|

|||
|

|||
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|

|
|
|
|
|
|

|
|
|
|
|

However,

sometimes

while

travelling

Colin

does

not

have

Internet

access.

This

posed

a

problem

for

him,

especially

when

he

needed

to

access

to

DB2

documentation

to

prepare

for

seminars.

To

avoid

situations

like

this,

Colin

installed

a

copy

of

the

DB2

Information

Center

on

his

mobile

computer.

Colin

enjoys

the

flexibility

of

always

having

a

copy

of

DB2

documentation

at

his

disposal.

Using

the

db2set

command,

he

can

easily

configure

the

registry

variables

on

his

mobile

computer

to

access

the

DB2

Information

Center

on

either

the

IBM

Web

site,

or

his

mobile

computer,

depending

on

his

situation.

Scenario:

Accessing

the

DB2

Information

Center

on

an

intranet

server:

Eva

works

as

a

senior

database

administrator

for

a

life

insurance

company.

Her

administration

responsibilities

include

installing

and

configuring

the

latest

version

of

DB2

Universal

Database

on

the

company’s

UNIX®

database

servers.

Her

company

recently

informed

its

employees

that,

for

security

reasons,

it

would

not

provide

them

with

Internet

access

at

work.

Because

her

company

has

a

networked

environment,

Eva

decides

to

install

a

copy

of

the

DB2

Information

Center

on

an

intranet

server

so

that

all

employees

in

the

company

who

use

the

company’s

data

warehouse

on

a

regular

basis

(sales

representatives,

sales

managers,

and

business

analysts)

have

access

to

DB2

documentation.

Eva

instructs

her

database

team

to

install

the

latest

version

of

DB2

Universal

Database

on

all

of

the

employee’s

computers

using

a

response

file,

to

ensure

that

each

computer

is

configured

to

access

the

DB2

Information

Center

using

the

host

name

and

the

port

number

of

the

intranet

server.

However,

through

a

misunderstanding

Migual,

a

junior

database

administrator

on

Eva’s

team,

installs

a

copy

of

the

DB2

Information

Center

on

several

of

the

employee

computers,

rather

than

configuring

DB2

Universal

Database

to

access

the

DB2

Information

Center

on

the

intranet

server.

To

correct

this

situation

Eva

tells

Migual

to

use

the

db2set

command

to

change

the

DB2

Information

Center

registry

variables

(DB2_DOCHOST

for

the

host

name,

and

DB2_DOCPORT

for

the

port

number)

on

each

of

these

computers.

Now

all

of

the

appropriate

computers

on

the

network

have

access

to

the

DB2

Information

Center,

and

employees

can

find

answers

to

their

DB2

questions

in

the

DB2

documentation.

Related

concepts:

v

“DB2

Information

Center”

on

page

352

Related

tasks:

v

“Updating

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server”

on

page

361

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(UNIX)”

on

page

356

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(Windows)”

on

page

358

Related

reference:

v

“db2set

-

DB2

Profile

Registry

Command”

in

the

Command

Reference

Appendix

C.

DB2

Universal

Database

technical

information

355

|
|
|
|

|
|
|
|

|

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|

|

|

|
|

|
|

|
|

|

|

Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(UNIX)

DB2

product

documentation

can

be

accessed

in

three

ways:

on

the

IBM

Web

site,

on

an

intranet

server,

or

on

a

version

installed

on

your

computer.

By

default,

DB2

products

access

DB2

documentation

on

the

IBM

Web

site.

If

you

want

to

access

the

DB2

documentation

on

an

intranet

server

or

on

your

own

computer,

you

must

install

the

documentation

from

the

DB2

Information

Center

CD.

Using

the

DB2

Setup

wizard,

you

can

define

your

installation

preferences

and

install

the

DB2

Information

Center

on

a

computer

that

uses

a

UNIX

operating

system.

Prerequisites:

This

section

lists

the

hardware,

operating

system,

software,

and

communication

requirements

for

installing

the

DB2

Information

Center

on

UNIX

computers.

v

Hardware

requirements

You

require

one

of

the

following

processors:

–

PowerPC

(AIX)

–

HP

9000

(HP-UX)

–

Intel

32–bit

(Linux)

–

Solaris

UltraSPARC

computers

(Solaris

Operating

Environment)
v

Operating

system

requirements

You

require

one

of

the

following

operating

systems:

–

IBM

AIX

5.1

(on

PowerPC)

–

HP-UX

11i

(on

HP

9000)

–

Red

Hat

Linux

8.0

(on

Intel

32–bit)

–

SuSE

Linux

8.1

(on

Intel

32–bit)

–

Sun

Solaris

Version

8

(on

Solaris

Operating

Environment

UltraSPARC

computers)

Note:

The

DB2

Information

Center

runs

on

a

subset

of

the

UNIX

operating

systems

on

which

DB2

clients

are

supported.

It

is

therefore

recommended

that

you

either

access

the

DB2

Information

Center

from

the

IBM

Web

site,

or

that

you

install

and

access

the

DB2

Information

Center

on

an

intranet

server.

v

Software

requirements

–

The

following

browser

is

supported:

-

Mozilla

Version

1.0

or

greater
v

The

DB2

Setup

wizard

is

a

graphical

installer.

You

must

have

an

implementation

of

the

X

Window

System

software

capable

of

rendering

a

graphical

user

interface

for

the

DB2

Setup

wizard

to

run

on

your

computer.

Before

you

can

run

the

DB2

Setup

wizard

you

must

ensure

that

you

have

properly

exported

your

display.

For

example,

enter

the

following

command

at

the

command

prompt:

export

DISPLAY=9.26.163.144:0.

v

Communication

requirements

–

TCP/IP

Procedure:

To

install

the

DB2

Information

Center

using

the

DB2

Setup

wizard:

356

Programming

Server

Applications

|

|

|
|
|
|
|
|
|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|
|
|
|
|

|

|

|

|
|
|
|
|

|

|

|

|

|

1.

Log

on

to

the

system.

2.

Insert

and

mount

the

DB2

Information

Center

product

CD

on

your

system.

3.

Change

to

the

directory

where

the

CD

is

mounted

by

entering

the

following

command:

cd

/cd

where

/cd

represents

the

mount

point

of

the

CD.

4.

Enter

the

./db2setup

command

to

start

the

DB2

Setup

wizard.

5.

The

IBM

DB2

Setup

Launchpad

opens.

To

proceed

directly

to

the

installation

of

the

DB2

Information

Center,

click

Install

Product.

Online

help

is

available

to

guide

you

through

the

remaining

steps.

To

invoke

the

online

help,

click

Help.

You

can

click

Cancel

at

any

time

to

end

the

installation.

6.

On

the

Select

the

product

you

would

like

to

install

page,

click

Next.

7.

Click

Next

on

the

Welcome

to

the

DB2

Setup

wizard

page.

The

DB2

Setup

wizard

will

guide

you

through

the

program

setup

process.

8.

To

proceed

with

the

installation,

you

must

accept

the

license

agreement.

On

the

License

Agreement

page,

select

I

accept

the

terms

in

the

license

agreement

and

click

Next.

9.

Select

Install

DB2

Information

Center

on

this

computer

on

the

Select

the

installation

action

page.

If

you

want

to

use

a

response

file

to

install

the

DB2

Information

Center

on

this

or

other

computers

at

a

later

time,

select

Save

your

settings

in

a

response

file.

Click

Next.

10.

Select

the

languages

in

which

the

DB2

Information

Center

will

be

installed

on

Select

the

languages

to

install

page.

Click

Next.

11.

Configure

the

DB2

Information

Center

for

incoming

communication

on

the

Specify

the

DB2

Information

Center

port

page.

Click

Next

to

continue

the

installation.

12.

Review

the

installation

choices

you

have

made

in

the

Start

copying

files

page.

To

change

any

settings,

click

Back.

Click

Install

to

copy

the

DB2

Information

Center

files

onto

your

computer.

You

can

also

install

the

DB2

Information

Center

using

a

response

file.

The

installation

logs

db2setup.his,

db2setup.log,

and

db2setup.err

are

located,

by

default,

in

the

/tmp

directory.

The

db2setup.log

file

captures

all

DB2

product

installation

information,

including

errors.

The

db2setup.his

file

records

all

DB2

product

installations

on

your

computer.

DB2

appends

the

db2setup.log

file

to

the

db2setup.his

file.

The

db2setup.err

file

captures

any

error

output

that

is

returned

by

Java,

for

example,

exceptions

and

trap

information.

When

the

installation

is

complete,

the

DB2

Information

Center

will

be

installed

in

one

of

the

following

directories,

depending

upon

your

UNIX

operating

system:

v

AIX:

/usr/opt/db2_08_01

v

HP-UX:

/opt/IBM/db2/V8.1

v

Linux:

/opt/IBM/db2/V8.1

v

Solaris

Operating

Environment:

/opt/IBM/db2/V8.1

Related

concepts:

v

“DB2

Information

Center”

on

page

352

v

“DB2

Information

Center

installation

scenarios”

on

page

353

Appendix

C.

DB2

Universal

Database

technical

information

357

|

|

|
|

|

|

|

|
|
|
|

|

|
|

|
|
|

|
|
|
|

|
|

|
|
|

|
|
|

|

|
|

|
|
|
|
|

|
|

|

|

|

|

|

|

|

Related

tasks:

v

“Installing

DB2

using

a

response

file

(UNIX)”

in

the

Installation

and

Configuration

Supplement

v

“Updating

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server”

on

page

361

v

“Displaying

topics

in

your

preferred

language

in

the

DB2

Information

Center”

on

page

362

v

“Invoking

the

DB2

Information

Center”

on

page

360

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(Windows)”

on

page

358

Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(Windows)

DB2

product

documentation

can

be

accessed

in

three

ways:

on

the

IBM

Web

site,

on

an

intranet

server,

or

on

a

version

installed

on

your

computer.

By

default,

DB2

products

access

DB2

documentation

on

the

IBM

Web

site.

If

you

want

to

access

the

DB2

documentation

on

an

intranet

server

or

on

your

own

computer,

you

must

install

the

DB2

documentation

from

the

DB2

Information

Center

CD.

Using

the

DB2

Setup

wizard,

you

can

define

your

installation

preferences

and

install

the

DB2

Information

Center

on

a

computer

that

uses

a

Windows

operating

system.

Prerequisites:

This

section

lists

the

hardware,

operating

system,

software,

and

communication

requirements

for

installing

the

DB2

Information

Center

on

Windows.

v

Hardware

requirements

You

require

one

of

the

following

processors:

–

32-bit

computers:

a

Pentium

or

Pentium

compatible

CPU
v

Operating

system

requirements

You

require

one

of

the

following

operating

systems:

–

Windows

2000

–

Windows

XP

Note:

The

DB2

Information

Center

runs

on

a

subset

of

the

Windows

operating

systems

on

which

DB2

clients

are

supported.

It

is

therefore

recommended

that

you

either

access

the

DB2

Information

Center

on

the

IBM

Web

site,

or

that

you

install

and

access

the

DB2

Information

Center

on

an

intranet

server.

v

Software

requirements

–

The

following

browsers

are

supported:

-

Mozilla

1.0

or

greater

-

Internet

Explorer

Version

5.5

or

6.0

(Version

6.0

for

Windows

XP)
v

Communication

requirements

–

TCP/IP

Restrictions:

v

You

require

an

account

with

administrative

privileges

to

install

the

DB2

Information

Center.

358

Programming

Server

Applications

|

|
|

|
|

|
|

|

|
|

|

|

|
|
|
|
|
|
|

|

|
|

|

|

|

|

|

|

|

|
|
|
|
|

|

|

|

|

|

|

|

|
|

Procedure:

To

install

the

DB2

Information

Center

using

the

DB2

Setup

wizard:

1.

Log

on

to

the

system

with

the

account

that

you

have

defined

for

the

DB2

Information

Center

installation.

2.

Insert

the

CD

into

the

drive.

If

enabled,

the

auto-run

feature

starts

the

IBM

DB2

Setup

Launchpad.

3.

The

DB2

Setup

wizard

determines

the

system

language

and

launches

the

setup

program

for

that

language.

If

you

want

to

run

the

setup

program

in

a

language

other

than

English,

or

the

setup

program

fails

to

auto-start,

you

can

start

the

DB2

Setup

wizard

manually.

To

start

the

DB2

Setup

wizard

manually:

a.

Click

Start

and

select

Run.

b.

In

the

Open

field,

type

the

following

command:

x:\setup.exe

/i

2-letter

language

identifier

where

x:

represents

your

CD

drive,

and

2-letter

language

identifier

represents

the

language

in

which

the

setup

program

will

be

run.

c.

Click

OK.

4.

The

IBM

DB2

Setup

Launchpad

opens.

To

proceed

directly

to

the

installation

of

the

DB2

Information

Center,

click

Install

Product.

Online

help

is

available

to

guide

you

through

the

remaining

steps.

To

invoke

the

online

help,

click

Help.

You

can

click

Cancel

at

any

time

to

end

the

installation.

5.

On

the

Select

the

product

you

would

like

to

install

page,

click

Next.

6.

Click

Next

on

the

Welcome

to

the

DB2

Setup

wizard

page.

The

DB2

Setup

wizard

will

guide

you

through

the

program

setup

process.

7.

To

proceed

with

the

installation,

you

must

accept

the

license

agreement.

On

the

License

Agreement

page,

select

I

accept

the

terms

in

the

license

agreement

and

click

Next.

8.

Select

Install

DB2

Information

Center

on

this

computer

on

the

Select

the

installation

action

page.

If

you

want

to

use

a

response

file

to

install

the

DB2

Information

Center

on

this

or

other

computers

at

a

later

time,

select

Save

your

settings

in

a

response

file.

Click

Next.

9.

Select

the

languages

in

which

the

DB2

Information

Center

will

be

installed

on

Select

the

languages

to

install

page.

Click

Next.

10.

Configure

the

DB2

Information

Center

for

incoming

communication

on

the

Specify

the

DB2

Information

Center

port

page.

Click

Next

to

continue

the

installation.

11.

Review

the

installation

choices

you

have

made

in

the

Start

copying

files

page.

To

change

any

settings,

click

Back.

Click

Install

to

copy

the

DB2

Information

Center

files

onto

your

computer.

You

can

install

the

DB2

Information

Center

using

a

response

file.

You

can

also

use

the

db2rspgn

command

to

generate

a

response

file

based

on

an

existing

installation.

For

information

on

errors

encountered

during

installation,

see

the

db2.log

and

db2wi.log

files

located

in

the

’My

Documents’\DB2LOG\

directory.

The

location

of

the

’My

Documents’

directory

will

depend

on

the

settings

on

your

computer.

The

db2wi.log

file

captures

the

most

recent

DB2

installation

information.

The

db2.log

captures

the

history

of

DB2

product

installations.

Appendix

C.

DB2

Universal

Database

technical

information

359

|

|

|
|

|
|

|
|
|
|

|

|

|

|

|
|

|

|
|
|
|

|

|
|

|
|
|

|
|
|
|

|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|

Related

concepts:

v

“DB2

Information

Center”

on

page

352

v

“DB2

Information

Center

installation

scenarios”

on

page

353

Related

tasks:

v

“Installing

a

DB2

product

using

a

response

file

(Windows)”

in

the

Installation

and

Configuration

Supplement

v

“Updating

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server”

on

page

361

v

“Displaying

topics

in

your

preferred

language

in

the

DB2

Information

Center”

on

page

362

v

“Invoking

the

DB2

Information

Center”

on

page

360

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(UNIX)”

on

page

356

Related

reference:

v

“db2rspgn

-

Response

File

Generator

Command

(Windows)”

in

the

Command

Reference

Invoking

the

DB2

Information

Center

The

DB2

Information

Center

gives

you

access

to

all

of

the

information

that

you

need

to

use

DB2

products

for

Linux,

UNIX,

and

Windows

operating

systems

such

as

DB2

Universal

Database,

DB2

Connect,

DB2

Information

Integrator,

and

DB2

Query

Patroller.

You

can

invoke

the

DB2

Information

Center

from

one

of

the

following

places:

v

Computers

on

which

a

DB2

UDB

client

or

server

is

installed

v

An

intranet

server

or

local

computer

on

which

the

DB2

Information

Center

installed

v

The

IBM

Web

site

Prerequisites:

Before

you

invoke

the

DB2

Information

Center:

v

Optional:

Configure

your

browser

to

display

topics

in

your

preferred

language

v

Optional:

Configure

your

DB2

client

to

use

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server

Procedure:

To

invoke

the

DB2

Information

Center

on

a

computer

on

which

a

DB2

UDB

client

or

server

is

installed:

v

From

the

Start

Menu

(Windows

operating

system):

Click

Start

—�

Programs

—�

IBM

DB2

—�

Information

—�

Information

Center.

v

From

the

command

line

prompt:

–

For

Linux

and

UNIX

operating

systems,

issue

the

db2icdocs

command.

–

For

the

Windows

operating

system,

issue

the

db2icdocs.exe

command.

To

open

the

DB2

Information

Center

installed

on

an

intranet

server

or

local

computer

in

a

Web

browser:

360

Programming

Server

Applications

|

|

|

|

|
|

|
|

|
|

|

|
|

|

|
|

|
|
|
|

|

|
|

v

Open

the

Web

page

at

http://<host-name>:<port-number>/,

where

<host-name>

represents

the

host

name

and

<port-number>

represents

the

port

number

on

which

the

DB2

Information

Center

is

available.

To

open

the

DB2

Information

Center

on

the

IBM

Web

site

in

a

Web

browser:

v

Open

the

Web

page

at

publib.boulder.ibm.com/infocenter/db2help/.

Related

concepts:

v

“DB2

Information

Center”

on

page

352

Related

tasks:

v

“Displaying

topics

in

your

preferred

language

in

the

DB2

Information

Center”

on

page

362

v

“Invoking

contextual

help

from

a

DB2

tool”

on

page

369

v

“Updating

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server”

on

page

361

v

“Invoking

message

help

from

the

command

line

processor”

on

page

370

v

“Invoking

command

help

from

the

command

line

processor”

on

page

370

v

“Invoking

SQL

state

help

from

the

command

line

processor”

on

page

371

Updating

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server

The

DB2

Information

Center

available

from

http://publib.boulder.ibm.com/infocenter/db2help/

will

be

periodically

updated

with

new

or

changed

documentation.

IBM

may

also

make

DB2

Information

Center

updates

available

to

download

and

install

on

your

computer

or

intranet

server.

Updating

the

DB2

Information

Center

does

not

update

DB2

client

or

server

products.

Prerequisites:

You

must

have

access

to

a

computer

that

is

connected

to

the

Internet.

Procedure:

To

update

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server:

1.

Open

the

DB2

Information

Center

hosted

on

the

IBM

Web

site

at:

http://publib.boulder.ibm.com/infocenter/db2help/

2.

In

the

Downloads

section

of

the

welcome

page

under

the

Service

and

Support

heading,

click

the

DB2

Universal

Database

documentation

link.

3.

Determine

if

the

version

of

your

DB2

Information

Center

is

out

of

date

by

comparing

the

latest

refreshed

documentation

image

level

to

the

documentation

level

you

have

installed.

The

documentation

level

you

have

installed

is

listed

on

the

DB2

Information

Center

welcome

page.

4.

If

a

more

recent

version

of

the

DB2

Information

Center

is

available,

download

the

latest

refreshed

DB2

Information

Center

image

applicable

to

your

operating

system.

5.

To

install

the

refreshed

DB2

Information

Center

image,

follow

the

instructions

provided

on

the

Web

page.

Appendix

C.

DB2

Universal

Database

technical

information

361

http://publib.boulder.ibm.com/infocenter/db2help/
http://publib.boulder.ibm.com/infocenter/db2help/
http://publib.boulder.ibm.com/infocenter/db2help/

Related

concepts:

v

“DB2

Information

Center

installation

scenarios”

on

page

353

Related

tasks:

v

“Invoking

the

DB2

Information

Center”

on

page

360

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(UNIX)”

on

page

356

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(Windows)”

on

page

358

Displaying

topics

in

your

preferred

language

in

the

DB2

Information

Center

The

DB2

Information

Center

attempts

to

display

topics

in

the

language

specified

in

your

browser

preferences.

If

a

topic

has

not

been

translated

into

your

preferred

language,

the

DB2

Information

Center

displays

the

topic

in

English.

Procedure:

To

display

topics

in

your

preferred

language

in

the

Internet

Explorer

browser:

1.

In

Internet

Explorer,

click

the

Tools

—>

Internet

Options

—>

Languages...

button.

The

Language

Preferences

window

opens.

2.

Ensure

your

preferred

language

is

specified

as

the

first

entry

in

the

list

of

languages.

v

To

add

a

new

language

to

the

list,

click

the

Add...

button.

Note:

Adding

a

language

does

not

guarantee

that

the

computer

has

the

fonts

required

to

display

the

topics

in

the

preferred

language.

v

To

move

a

language

to

the

top

of

the

list,

select

the

language

and

click

the

Move

Up

button

until

the

language

is

first

in

the

list

of

languages.
3.

Refresh

the

page

to

display

the

DB2

Information

Center

in

your

preferred

language.

To

display

topics

in

your

preferred

language

in

the

Mozilla

browser:

1.

In

Mozilla,

select

the

Edit

—>

Preferences

—>

Languages

button.

The

Languages

panel

is

displayed

in

the

Preferences

window.

2.

Ensure

your

preferred

language

is

specified

as

the

first

entry

in

the

list

of

languages.

v

To

add

a

new

language

to

the

list,

click

the

Add...

button

to

select

a

language

from

the

Add

Languages

window.

v

To

move

a

language

to

the

top

of

the

list,

select

the

language

and

click

the

Move

Up

button

until

the

language

is

first

in

the

list

of

languages.
3.

Refresh

the

page

to

display

the

DB2

Information

Center

in

your

preferred

language.

Related

concepts:

v

“DB2

Information

Center”

on

page

352

362

Programming

Server

Applications

|

|

|
|
|

|

|

|
|

|
|

|

|
|

|
|

|
|

|

|
|

|
|

|
|

|
|

|
|

|

|

DB2

PDF

and

printed

documentation

The

following

tables

provide

official

book

names,

form

numbers,

and

PDF

file

names.

To

order

hardcopy

books,

you

must

know

the

official

book

name.

To

print

a

PDF

file,

you

must

know

the

PDF

file

name.

The

DB2

documentation

is

categorized

by

the

following

headings:

v

Core

DB2

information

v

Administration

information

v

Application

development

information

v

Business

intelligence

information

v

DB2

Connect

information

v

Getting

started

information

v

Tutorial

information

v

Optional

component

information

v

Release

notes

The

following

tables

describe,

for

each

book

in

the

DB2

library,

the

information

needed

to

order

the

hard

copy,

or

to

print

or

view

the

PDF

for

that

book.

A

full

description

of

each

of

the

books

in

the

DB2

library

is

available

from

the

IBM

Publications

Center

at

www.ibm.com/shop/publications/order

Core

DB2

information

The

information

in

these

books

is

fundamental

to

all

DB2

users;

you

will

find

this

information

useful

whether

you

are

a

programmer,

a

database

administrator,

or

someone

who

works

with

DB2

Connect,

DB2

Warehouse

Manager,

or

other

DB2

products.

Table

39.

Core

DB2

information

Name

Form

Number

PDF

File

Name

IBM

DB2

Universal

Database

Command

Reference

SC09-4828

db2n0x81

IBM

DB2

Universal

Database

Glossary

No

form

number

db2t0x81

IBM

DB2

Universal

Database

Message

Reference,

Volume

1

GC09-4840,

not

available

in

hardcopy

db2m1x81

IBM

DB2

Universal

Database

Message

Reference,

Volume

2

GC09-4841,

not

available

in

hardcopy

db2m2x81

IBM

DB2

Universal

Database

What’s

New

SC09-4848

db2q0x81

Administration

information

The

information

in

these

books

covers

those

topics

required

to

effectively

design,

implement,

and

maintain

DB2

databases,

data

warehouses,

and

federated

systems.

Table

40.

Administration

information

Name

Form

number

PDF

file

name

IBM

DB2

Universal

Database

Administration

Guide:

Planning

SC09-4822

db2d1x81

Appendix

C.

DB2

Universal

Database

technical

information

363

|

|
|
|
|

||

|||

|
|
||

|
|
||

|
|
|
|
|

|
|
|
|
|

|
|
||

|

|

http://www.ibm.com/shop/publications/order

Table

40.

Administration

information

(continued)

Name

Form

number

PDF

file

name

IBM

DB2

Universal

Database

Administration

Guide:

Implementation

SC09-4820

db2d2x81

IBM

DB2

Universal

Database

Administration

Guide:

Performance

SC09-4821

db2d3x81

IBM

DB2

Universal

Database

Administrative

API

Reference

SC09-4824

db2b0x81

IBM

DB2

Universal

Database

Data

Movement

Utilities

Guide

and

Reference

SC09-4830

db2dmx81

IBM

DB2

Universal

Database

Data

Recovery

and

High

Availability

Guide

and

Reference

SC09-4831

db2hax81

IBM

DB2

Universal

Database

Data

Warehouse

Center

Administration

Guide

SC27-1123

db2ddx81

IBM

DB2

Universal

Database

SQL

Reference,

Volume

1

SC09-4844

db2s1x81

IBM

DB2

Universal

Database

SQL

Reference,

Volume

2

SC09-4845

db2s2x81

IBM

DB2

Universal

Database

System

Monitor

Guide

and

Reference

SC09-4847

db2f0x81

Application

development

information

The

information

in

these

books

is

of

special

interest

to

application

developers

or

programmers

working

with

DB2

Universal

Database

(DB2

UDB).

You

will

find

information

about

supported

languages

and

compilers,

as

well

as

the

documentation

required

to

access

DB2

UDB

using

the

various

supported

programming

interfaces,

such

as

embedded

SQL,

ODBC,

JDBC,

SQLJ,

and

CLI.

If

you

are

using

the

DB2

Information

Center,

you

can

also

access

HTML

versions

of

the

source

code

for

the

sample

programs.

Table

41.

Application

development

information

Name

Form

number

PDF

file

name

IBM

DB2

Universal

Database

Application

Development

Guide:

Building

and

Running

Applications

SC09-4825

db2axx81

IBM

DB2

Universal

Database

Application

Development

Guide:

Programming

Client

Applications

SC09-4826

db2a1x81

IBM

DB2

Universal

Database

Application

Development

Guide:

Programming

Server

Applications

SC09-4827

db2a2x81

IBM

DB2

Universal

Database

Call

Level

Interface

Guide

and

Reference,

Volume

1

SC09-4849

db2l1x81

364

Programming

Server

Applications

Table

41.

Application

development

information

(continued)

Name

Form

number

PDF

file

name

IBM

DB2

Universal

Database

Call

Level

Interface

Guide

and

Reference,

Volume

2

SC09-4850

db2l2x81

IBM

DB2

Universal

Database

Data

Warehouse

Center

Application

Integration

Guide

SC27-1124

db2adx81

IBM

DB2

XML

Extender

Administration

and

Programming

SC27-1234

db2sxx81

Business

intelligence

information

The

information

in

these

books

describes

how

to

use

components

that

enhance

the

data

warehousing

and

analytical

capabilities

of

DB2

Universal

Database.

Table

42.

Business

intelligence

information

Name

Form

number

PDF

file

name

IBM

DB2

Warehouse

Manager

Standard

Edition

Information

Catalog

Center

Administration

Guide

SC27-1125

db2dix81

IBM

DB2

Warehouse

Manager

Standard

Edition

Installation

Guide

GC27-1122

db2idx81

IBM

DB2

Warehouse

Manager

Standard

Edition

Managing

ETI

Solution

Conversion

Programs

with

DB2

Warehouse

Manager

SC18-7727

iwhe1mstx80

DB2

Connect

information

The

information

in

this

category

describes

how

to

access

data

on

mainframe

and

midrange

servers

using

DB2

Connect

Enterprise

Edition

or

DB2

Connect

Personal

Edition.

Table

43.

DB2

Connect

information

Name

Form

number

PDF

file

name

IBM

Connectivity

Supplement

No

form

number

db2h1x81

IBM

DB2

Connect

Quick

Beginnings

for

DB2

Connect

Enterprise

Edition

GC09-4833

db2c6x81

IBM

DB2

Connect

Quick

Beginnings

for

DB2

Connect

Personal

Edition

GC09-4834

db2c1x81

IBM

DB2

Connect

User’s

Guide

SC09-4835

db2c0x81

Getting

started

information

The

information

in

this

category

is

useful

when

you

are

installing

and

configuring

servers,

clients,

and

other

DB2

products.

Appendix

C.

DB2

Universal

Database

technical

information

365

Table

44.

Getting

started

information

Name

Form

number

PDF

file

name

IBM

DB2

Universal

Database

Quick

Beginnings

for

DB2

Clients

GC09-4832,

not

available

in

hardcopy

db2itx81

IBM

DB2

Universal

Database

Quick

Beginnings

for

DB2

Servers

GC09-4836

db2isx81

IBM

DB2

Universal

Database

Quick

Beginnings

for

DB2

Personal

Edition

GC09-4838

db2i1x81

IBM

DB2

Universal

Database

Installation

and

Configuration

Supplement

GC09-4837,

not

available

in

hardcopy

db2iyx81

IBM

DB2

Universal

Database

Quick

Beginnings

for

DB2

Data

Links

Manager

GC09-4829

db2z6x81

Tutorial

information

Tutorial

information

introduces

DB2

features

and

teaches

how

to

perform

various

tasks.

Table

45.

Tutorial

information

Name

Form

number

PDF

file

name

Business

Intelligence

Tutorial:

Introduction

to

the

Data

Warehouse

No

form

number

db2tux81

Business

Intelligence

Tutorial:

Extended

Lessons

in

Data

Warehousing

No

form

number

db2tax81

Information

Catalog

Center

Tutorial

No

form

number

db2aix81

Video

Central

for

e-business

Tutorial

No

form

number

db2twx81

Visual

Explain

Tutorial

No

form

number

db2tvx81

Optional

component

information

The

information

in

this

category

describes

how

to

work

with

optional

DB2

components.

Table

46.

Optional

component

information

Name

Form

number

PDF

file

name

IBM

DB2

Cube

Views

Guide

and

Reference

SC18–7298

db2aax81

IBM

DB2

Query

Patroller

Guide:

Installation,

Administration

and

Usage

Guide

GC09–7658

db2dwx81

IBM

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

SC27-1226

db2sbx81

366

Programming

Server

Applications

Table

46.

Optional

component

information

(continued)

Name

Form

number

PDF

file

name

IBM

DB2

Universal

Database

Data

Links

Manager

Administration

Guide

and

Reference

SC27-1221

db2z0x82

DB2

Net

Search

Extender

Administration

and

User’s

Guide

Note:

HTML

for

this

document

is

not

installed

from

the

HTML

documentation

CD.

SH12-6740

N/A

Release

notes

The

release

notes

provide

additional

information

specific

to

your

product’s

release

and

FixPak

level.

The

release

notes

also

provide

summaries

of

the

documentation

updates

incorporated

in

each

release,

update,

and

FixPak.

Table

47.

Release

notes

Name

Form

number

PDF

file

name

DB2

Release

Notes

See

note.

See

note.

DB2

Installation

Notes

Available

on

product

CD-ROM

only.

Not

available.

Note:

The

Release

Notes

are

available

in:

v

XHTML

and

Text

format,

on

the

product

CDs

v

PDF

format,

on

the

PDF

Documentation

CD

In

addition

the

portions

of

the

Release

Notes

that

discuss

Known

Problems

and

Workarounds

and

Incompatibilities

Between

Releases

also

appear

in

the

DB2

Information

Center.

To

view

the

Release

Notes

in

text

format

on

UNIX-based

platforms,

see

the

Release.Notes

file.

This

file

is

located

in

the

DB2DIR/Readme/%L

directory,

where

%L

represents

the

locale

name

and

DB2DIR

represents:

v

For

AIX

operating

systems:

/usr/opt/db2_08_01

v

For

all

other

UNIX-based

operating

systems:

/opt/IBM/db2/V8.1

Related

concepts:

v

“DB2

documentation

and

help”

on

page

351

Related

tasks:

v

“Printing

DB2

books

from

PDF

files”

on

page

368

v

“Ordering

printed

DB2

books”

on

page

368

v

“Invoking

contextual

help

from

a

DB2

tool”

on

page

369

Appendix

C.

DB2

Universal

Database

technical

information

367

Printing

DB2

books

from

PDF

files

You

can

print

DB2

books

from

the

PDF

files

on

the

DB2

PDF

Documentation

CD.

Using

Adobe

Acrobat

Reader,

you

can

print

either

the

entire

book

or

a

specific

range

of

pages.

Prerequisites:

Ensure

that

you

have

Adobe

Acrobat

Reader

installed.

If

you

need

to

install

Adobe

Acrobat

Reader,

it

is

available

from

the

Adobe

Web

site

at

www.adobe.com

Procedure:

To

print

a

DB2

book

from

a

PDF

file:

1.

Insert

the

DB2

PDF

Documentation

CD.

On

UNIX

operating

systems,

mount

the

DB2

PDF

Documentation

CD.

Refer

to

your

Quick

Beginnings

book

for

details

on

how

to

mount

a

CD

on

UNIX

operating

systems.

2.

Open

index.htm.

The

file

opens

in

a

browser

window.

3.

Click

on

the

title

of

the

PDF

you

want

to

see.

The

PDF

will

open

in

Acrobat

Reader.

4.

Select

File

→

Print

to

print

any

portions

of

the

book

that

you

want.

Related

concepts:

v

“DB2

Information

Center”

on

page

352

Related

tasks:

v

“Mounting

the

CD-ROM

(AIX)”

in

the

Quick

Beginnings

for

DB2

Servers

v

“Mounting

the

CD-ROM

(HP-UX)”

in

the

Quick

Beginnings

for

DB2

Servers

v

“Mounting

the

CD-ROM

(Linux)”

in

the

Quick

Beginnings

for

DB2

Servers

v

“Ordering

printed

DB2

books”

on

page

368

v

“Mounting

the

CD-ROM

(Solaris

Operating

Environment)”

in

the

Quick

Beginnings

for

DB2

Servers

Related

reference:

v

“DB2

PDF

and

printed

documentation”

on

page

363

Ordering

printed

DB2

books

If

you

prefer

to

use

hardcopy

books,

you

can

order

them

in

one

of

three

ways.

Procedure:

Printed

books

can

be

ordered

in

some

countries

or

regions.

Check

the

IBM

Publications

website

for

your

country

or

region

to

see

if

this

service

is

available

in

your

country

or

region.

When

the

publications

are

available

for

ordering,

you

can:

v

Contact

your

IBM

authorized

dealer

or

marketing

representative.

To

find

a

local

IBM

representative,

check

the

IBM

Worldwide

Directory

of

Contacts

at

www.ibm.com/planetwide

v

Phone

1-800-879-2755

in

the

United

States

or

1-800-IBM-4YOU

in

Canada.

368

Programming

Server

Applications

|
|
|

|
|
|

|

http://www.adobe.com/
http://www.ibm.com/planetwide

v

Visit

the

IBM

Publications

Center

at

http://www.ibm.com/shop/publications/order.

The

ability

to

order

books

from

the

IBM

Publications

Center

may

not

be

available

in

all

countries.

At

the

time

the

DB2

product

becomes

available,

the

printed

books

are

the

same

as

those

that

are

available

in

PDF

format

on

the

DB2

PDF

Documentation

CD.

Content

in

the

printed

books

that

appears

in

the

DB2

Information

Center

CD

is

also

the

same.

However,

there

is

some

additional

content

available

in

DB2

Information

Center

CD

that

does

not

appear

anywhere

in

the

PDF

books

(for

example,

SQL

Administration

routines

and

HTML

samples).

Not

all

books

available

on

the

DB2

PDF

Documentation

CD

are

available

for

ordering

in

hardcopy.

Note:

The

DB2

Information

Center

is

updated

more

frequently

than

either

the

PDF

or

the

hardcopy

books;

install

documentation

updates

as

they

become

available

or

refer

to

the

DB2

Information

Center

at

http://publib.boulder.ibm.com/infocenter/db2help/

to

get

the

most

current

information.

Related

tasks:

v

“Printing

DB2

books

from

PDF

files”

on

page

368

Related

reference:

v

“DB2

PDF

and

printed

documentation”

on

page

363

Invoking

contextual

help

from

a

DB2

tool

Contextual

help

provides

information

about

the

tasks

or

controls

that

are

associated

with

a

particular

window,

notebook,

wizard,

or

advisor.

Contextual

help

is

available

from

DB2

administration

and

development

tools

that

have

graphical

user

interfaces.

There

are

two

types

of

contextual

help:

v

Help

accessed

through

the

Help

button

that

is

located

on

each

window

or

notebook

v

Infopops,

which

are

pop-up

information

windows

displayed

when

the

mouse

cursor

is

placed

over

a

field

or

control,

or

when

a

field

or

control

is

selected

in

a

window,

notebook,

wizard,

or

advisor

and

F1

is

pressed.

The

Help

button

gives

you

access

to

overview,

prerequisite,

and

task

information.

The

infopops

describe

the

individual

fields

and

controls.

Procedure:

To

invoke

contextual

help:

v

For

window

and

notebook

help,

start

one

of

the

DB2

tools,

then

open

any

window

or

notebook.

Click

the

Help

button

at

the

bottom

right

corner

of

the

window

or

notebook

to

invoke

the

contextual

help.

You

can

also

access

the

contextual

help

from

the

Help

menu

item

at

the

top

of

each

of

the

DB2

tools

centers.

Within

wizards

and

advisors,

click

on

the

Task

Overview

link

on

the

first

page

to

view

contextual

help.

v

For

infopop

help

about

individual

controls

on

a

window

or

notebook,

click

the

control,

then

click

F1.

Pop-up

information

containing

details

about

the

control

is

displayed

in

a

yellow

window.

Appendix

C.

DB2

Universal

Database

technical

information

369

|
|
|

|
|
|
|

|
|

|
|
|

|
|

http://www.ibm.com/shop/publications/order
http://publib.boulder.ibm.com/infocenter/db2help/

Note:

To

display

infopops

simply

by

holding

the

mouse

cursor

over

a

field

or

control,

select

the

Automatically

display

infopops

check

box

on

the

Documentation

page

of

the

Tool

Settings

notebook.

Similar

to

infopops,

diagnosis

pop-up

information

is

another

form

of

context-sensitive

help;

they

contain

data

entry

rules.

Diagnosis

pop-up

information

is

displayed

in

a

purple

window

that

appears

when

data

that

is

not

valid

or

that

is

insufficient

is

entered.

Diagnosis

pop-up

information

can

appear

for:

–

Compulsory

fields.

–

Fields

whose

data

follows

a

precise

format,

such

as

a

date

field.

Related

tasks:

v

“Invoking

the

DB2

Information

Center”

on

page

360

v

“Invoking

message

help

from

the

command

line

processor”

on

page

370

v

“Invoking

command

help

from

the

command

line

processor”

on

page

370

v

“Invoking

SQL

state

help

from

the

command

line

processor”

on

page

371

v

“How

to

use

the

DB2

UDB

help:

Common

GUI

help”

v

“Setting

up

access

to

DB2

contextual

help

and

documentation:

Common

GUI

help”

Invoking

message

help

from

the

command

line

processor

Message

help

describes

the

cause

of

a

message

and

describes

any

action

you

should

take

in

response

to

the

error.

Procedure:

To

invoke

message

help,

open

the

command

line

processor

and

enter:

?

XXXnnnnn

where

XXXnnnnn

represents

a

valid

message

identifier.

For

example,

?

SQL30081

displays

help

about

the

SQL30081

message.

Related

concepts:

v

“Introduction

to

messages”

in

the

Message

Reference

Volume

1

Related

reference:

v

“db2

-

Command

Line

Processor

Invocation

Command”

in

the

Command

Reference

Invoking

command

help

from

the

command

line

processor

Command

help

explains

the

syntax

of

commands

in

the

command

line

processor.

Procedure:

To

invoke

command

help,

open

the

command

line

processor

and

enter:

?

command

where

command

represents

a

keyword

or

the

entire

command.

370

Programming

Server

Applications

|
|
|
|
|

|

|

|

|
|

|

|

|

|

|

|

|

|

|
|

|

|

|

|

|

|

For

example,

?

catalog

displays

help

for

all

of

the

CATALOG

commands,

while

?

catalog

database

displays

help

only

for

the

CATALOG

DATABASE

command.

Related

tasks:

v

“Invoking

contextual

help

from

a

DB2

tool”

on

page

369

v

“Invoking

the

DB2

Information

Center”

on

page

360

v

“Invoking

message

help

from

the

command

line

processor”

on

page

370

v

“Invoking

SQL

state

help

from

the

command

line

processor”

on

page

371

Related

reference:

v

“db2

-

Command

Line

Processor

Invocation

Command”

in

the

Command

Reference

Invoking

SQL

state

help

from

the

command

line

processor

DB2

Univerrsal

Database

returns

an

SQLSTATE

value

for

conditions

that

could

be

the

result

of

an

SQL

statement.

SQLSTATE

help

explains

the

meanings

of

SQL

states

and

SQL

state

class

codes.

Procedure:

To

invoke

SQL

state

help,

open

the

command

line

processor

and

enter:

?

sqlstate

or

?

class

code

where

sqlstate

represents

a

valid

five-digit

SQL

state

and

class

code

represents

the

first

two

digits

of

the

SQL

state.

For

example,

?

08003

displays

help

for

the

08003

SQL

state,

and

?

08

displays

help

for

the

08

class

code.

Related

tasks:

v

“Invoking

the

DB2

Information

Center”

on

page

360

v

“Invoking

message

help

from

the

command

line

processor”

on

page

370

v

“Invoking

command

help

from

the

command

line

processor”

on

page

370

DB2

tutorials

The

DB2®

tutorials

help

you

learn

about

various

aspects

of

DB2

Universal

Database.

The

tutorials

provide

lessons

with

step-by-step

instructions

in

the

areas

of

developing

applications,

tuning

SQL

query

performance,

working

with

data

warehouses,

managing

metadata,

and

developing

Web

services

using

DB2.

Before

you

begin:

You

can

view

the

XHTML

versions

of

the

tutorials

from

the

Information

Center

at

http://publib.boulder.ibm.com/infocenter/db2help/.

Some

tutorial

lessons

use

sample

data

or

code.

See

each

tutorial

for

a

description

of

any

prerequisites

for

its

specific

tasks.

DB2

Universal

Database

tutorials:

Appendix

C.

DB2

Universal

Database

technical

information

371

|
|

|

|

|

|

|

|

|
|

|

|
|
|

|

|

|

|
|

|
|

|

|

|

|

http://publib.boulder.ibm.com/infocenter/db2help/

Click

on

a

tutorial

title

in

the

following

list

to

view

that

tutorial.

Business

Intelligence

Tutorial:

Introduction

to

the

Data

Warehouse

Center

Perform

introductory

data

warehousing

tasks

using

the

Data

Warehouse

Center.

Business

Intelligence

Tutorial:

Extended

Lessons

in

Data

Warehousing

Perform

advanced

data

warehousing

tasks

using

the

Data

Warehouse

Center.

Information

Catalog

Center

Tutorial

Create

and

manage

an

information

catalog

to

locate

and

use

metadata

using

the

Information

Catalog

Center.

Visual

Explain

Tutorial

Analyze,

optimize,

and

tune

SQL

statements

for

better

performance

using

Visual

Explain.

DB2

troubleshooting

information

A

wide

variety

of

troubleshooting

and

problem

determination

information

is

available

to

assist

you

in

using

DB2®

products.

DB2

documentation

Troubleshooting

information

can

be

found

throughout

the

DB2

Information

Center,

as

well

as

throughout

the

PDF

books

that

make

up

the

DB2

library.

You

can

refer

to

the

″Support

and

troubleshooting″

branch

of

the

DB2

Information

Center

navigation

tree

(in

the

left

pane

of

your

browser

window)

to

see

a

complete

listing

of

the

DB2

troubleshooting

documentation.

DB2

Technical

Support

Web

site

Refer

to

the

DB2

Technical

Support

Web

site

if

you

are

experiencing

problems

and

want

help

finding

possible

causes

and

solutions.

The

Technical

Support

site

has

links

to

the

latest

DB2

publications,

TechNotes,

Authorized

Program

Analysis

Reports

(APARs),

FixPaks

and

the

latest

listing

of

internal

DB2

error

codes,

and

other

resources.

You

can

search

through

this

knowledge

base

to

find

possible

solutions

to

your

problems.

Access

the

DB2

Technical

Support

Web

site

at

http://www.ibm.com/software/data/db2/udb/winos2unix/support

DB2

Problem

Determination

Tutorial

Series

Refer

to

the

DB2

Problem

Determination

Tutorial

Series

Web

site

to

find

information

on

how

to

quickly

identify

and

resolve

problems

you

might

encounter

while

working

with

DB2

products.

One

tutorial

introduces

you

to

the

DB2

problem

determination

facilities

and

tools

available,

and

helps

you

decide

when

to

use

them.

Other

tutorials

deal

with

related

topics,

such

as

″Database

Engine

Problem

Determination″,

″Performance

Problem

Determination″,

and

″Application

Problem

Determination″.

See

the

full

set

of

DB2

problem

determination

tutorials

on

the

DB2

Technical

Support

site

at

http://www.ibm.com/software/data/support/pdm/db2tutorials.html

Related

concepts:

v

“DB2

Information

Center”

on

page

352

v

“Introduction

to

problem

determination

-

DB2

Technical

Support

tutorial”

in

the

Troubleshooting

Guide

372

Programming

Server

Applications

http://www.ibm.com/software/data/db2/udb/support.html
http://www.ibm.com/software/data/support/pdm/db2tutorials.html

Accessibility

Accessibility

features

help

users

with

physical

disabilities,

such

as

restricted

mobility

or

limited

vision,

to

use

software

products

successfully.

The

following

list

specifies

the

major

accessibility

features

in

DB2®

Version

8

products:

v

All

DB2

functionality

is

available

using

the

keyboard

for

navigation

instead

of

the

mouse.

For

more

information,

see

“Keyboard

input

and

navigation.”

v

You

can

customize

the

size

and

color

of

the

fonts

on

DB2

user

interfaces.

For

more

information,

see

“Accessible

display.”

v

DB2

products

support

accessibility

applications

that

use

the

Java™

Accessibility

API.

For

more

information,

see

“Compatibility

with

assistive

technologies”

on

page

374.

v

DB2

documentation

is

provided

in

an

accessible

format.

For

more

information,

see

“Accessible

documentation”

on

page

374.

Keyboard

input

and

navigation

Keyboard

input

You

can

operate

the

DB2

tools

using

only

the

keyboard.

You

can

use

keys

or

key

combinations

to

perform

operations

that

can

also

be

done

using

a

mouse.

Standard

operating

system

keystrokes

are

used

for

standard

operating

system

operations.

For

more

information

about

using

keys

or

key

combinations

to

perform

operations,

see

Keyboard

shortcuts

and

accelerators:

Common

GUI

help.

Keyboard

navigation

You

can

navigate

the

DB2

tools

user

interface

using

keys

or

key

combinations.

For

more

information

about

using

keys

or

key

combinations

to

navigate

the

DB2

Tools,

see

Keyboard

shortcuts

and

accelerators:

Common

GUI

help.

Keyboard

focus

In

UNIX®

operating

systems,

the

area

of

the

active

window

where

your

keystrokes

will

have

an

effect

is

highlighted.

Accessible

display

The

DB2

tools

have

features

that

improve

accessibility

for

users

with

low

vision

or

other

visual

impairments.

These

accessibility

enhancements

include

support

for

customizable

font

properties.

Font

settings

You

can

select

the

color,

size,

and

font

for

the

text

in

menus

and

dialog

windows,

using

the

Tools

Settings

notebook.

For

more

information

about

specifying

font

settings,

see

Changing

the

fonts

for

menus

and

text:

Common

GUI

help.

Non-dependence

on

color

You

do

not

need

to

distinguish

between

colors

in

order

to

use

any

of

the

functions

in

this

product.

Appendix

C.

DB2

Universal

Database

technical

information

373

|
|
|
|

|
|

Compatibility

with

assistive

technologies

The

DB2

tools

interfaces

support

the

Java

Accessibility

API,

which

enables

you

to

use

screen

readers

and

other

assistive

technologies

with

DB2

products.

Accessible

documentation

Documentation

for

DB2

is

provided

in

XHTML

1.0

format,

which

is

viewable

in

most

Web

browsers.

XHTML

allows

you

to

view

documentation

according

to

the

display

preferences

set

in

your

browser.

It

also

allows

you

to

use

screen

readers

and

other

assistive

technologies.

Syntax

diagrams

are

provided

in

dotted

decimal

format.

This

format

is

available

only

if

you

are

accessing

the

online

documentation

using

a

screen-reader.

Related

concepts:

v

“Dotted

decimal

syntax

diagrams”

on

page

374

Dotted

decimal

syntax

diagrams

Syntax

diagrams

are

provided

in

dotted

decimal

format

for

users

accessing

the

Information

Center

using

a

screen

reader.

In

dotted

decimal

format,

each

syntax

element

is

written

on

a

separate

line.

If

two

or

more

syntax

elements

are

always

present

together

(or

always

absent

together),

they

can

appear

on

the

same

line,

because

they

can

be

considered

as

a

single

compound

syntax

element.

Each

line

starts

with

a

dotted

decimal

number;

for

example,

3

or

3.1

or

3.1.1.

To

hear

these

numbers

correctly,

make

sure

that

your

screen

reader

is

set

to

read

out

punctuation.

All

the

syntax

elements

that

have

the

same

dotted

decimal

number

(for

example,

all

the

syntax

elements

that

have

the

number

3.1)

are

mutually

exclusive

alternatives.

If

you

hear

the

lines

3.1

USERID

and

3.1

SYSTEMID,

you

know

that

your

syntax

can

include

either

USERID

or

SYSTEMID,

but

not

both.

The

dotted

decimal

numbering

level

denotes

the

level

of

nesting.

For

example,

if

a

syntax

element

with

dotted

decimal

number

3

is

followed

by

a

series

of

syntax

elements

with

dotted

decimal

number

3.1,

all

the

syntax

elements

numbered

3.1

are

subordinate

to

the

syntax

element

numbered

3.

Certain

words

and

symbols

are

used

next

to

the

dotted

decimal

numbers

to

add

information

about

the

syntax

elements.

Occasionally,

these

words

and

symbols

might

occur

at

the

beginning

of

the

element

itself.

For

ease

of

identification,

if

the

word

or

symbol

is

a

part

of

the

syntax

element,

it

is

preceded

by

the

backslash

(\)

character.

The

*

symbol

can

be

used

next

to

a

dotted

decimal

number

to

indicate

that

the

syntax

element

repeats.

For

example,

syntax

element

*FILE

with

dotted

decimal

number

3

is

given

the

format

3

*

FILE.

Format

3*

FILE

indicates

that

syntax

element

FILE

repeats.

Format

3*

*

FILE

indicates

that

syntax

element

*

FILE

repeats.

Characters

such

as

commas,

which

are

used

to

separate

a

string

of

syntax

elements,

are

shown

in

the

syntax

just

before

the

items

they

separate.

These

characters

can

appear

on

the

same

line

as

each

item,

or

on

a

separate

line

with

the

same

dotted

decimal

number

as

the

relevant

items.

The

line

can

also

show

another

symbol

giving

information

about

the

syntax

elements.

For

example,

the

lines

5.1*,

5.1

LASTRUN,

and

5.1

DELETE

mean

that

if

you

use

more

than

one

of

the

374

Programming

Server

Applications

|

|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

LASTRUN

and

DELETE

syntax

elements,

the

elements

must

be

separated

by

a

comma.

If

no

separator

is

given,

assume

that

you

use

a

blank

to

separate

each

syntax

element.

If

a

syntax

element

is

preceded

by

the

%

symbol,

this

indicates

a

reference

that

is

defined

elsewhere.

The

string

following

the

%

symbol

is

the

name

of

a

syntax

fragment

rather

than

a

literal.

For

example,

the

line

2.1

%OP1

means

that

you

should

refer

to

separate

syntax

fragment

OP1.

The

following

words

and

symbols

are

used

next

to

the

dotted

decimal

numbers:

v

?

means

an

optional

syntax

element.

A

dotted

decimal

number

followed

by

the

?

symbol

indicates

that

all

the

syntax

elements

with

a

corresponding

dotted

decimal

number,

and

any

subordinate

syntax

elements,

are

optional.

If

there

is

only

one

syntax

element

with

a

dotted

decimal

number,

the

?

symbol

is

displayed

on

the

same

line

as

the

syntax

element,

(for

example

5?

NOTIFY).

If

there

is

more

than

one

syntax

element

with

a

dotted

decimal

number,

the

?

symbol

is

displayed

on

a

line

by

itself,

followed

by

the

syntax

elements

that

are

optional.

For

example,

if

you

hear

the

lines

5

?,

5

NOTIFY,

and

5

UPDATE,

you

know

that

syntax

elements

NOTIFY

and

UPDATE

are

optional;

that

is,

you

can

choose

one

or

none

of

them.

The

?

symbol

is

equivalent

to

a

bypass

line

in

a

railroad

diagram.

v

!

means

a

default

syntax

element.

A

dotted

decimal

number

followed

by

the

!

symbol

and

a

syntax

element

indicates

that

the

syntax

element

is

the

default

option

for

all

syntax

elements

that

share

the

same

dotted

decimal

number.

Only

one

of

the

syntax

elements

that

share

the

same

dotted

decimal

number

can

specify

a

!

symbol.

For

example,

if

you

hear

the

lines

2?

FILE,

2.1!

(KEEP),

and

2.1

(DELETE),

you

know

that

(KEEP)

is

the

default

option

for

the

FILE

keyword.

In

this

example,

if

you

include

the

FILE

keyword

but

do

not

specify

an

option,

default

option

KEEP

will

be

applied.

A

default

option

also

applies

to

the

next

higher

dotted

decimal

number.

In

this

example,

if

the

FILE

keyword

is

omitted,

default

FILE(KEEP)

is

used.

However,

if

you

hear

the

lines

2?

FILE,

2.1,

2.1.1!

(KEEP),

and

2.1.1

(DELETE),

the

default

option

KEEP

only

applies

to

the

next

higher

dotted

decimal

number,

2.1

(which

does

not

have

an

associated

keyword),

and

does

not

apply

to

2?

FILE.

Nothing

is

used

if

the

keyword

FILE

is

omitted.

v

*

means

a

syntax

element

that

can

be

repeated

0

or

more

times.

A

dotted

decimal

number

followed

by

the

*

symbol

indicates

that

this

syntax

element

can

be

used

zero

or

more

times;

that

is,

it

is

optional

and

can

be

repeated.

For

example,

if

you

hear

the

line

5.1*

data

area,

you

know

that

you

can

include

one

data

area,

more

than

one

data

area,

or

no

data

area.

If

you

hear

the

lines

3*,

3

HOST,

and

3

STATE,

you

know

that

you

can

include

HOST,

STATE,

both

together,

or

nothing.

Notes:

1.

If

a

dotted

decimal

number

has

an

asterisk

(*)

next

to

it

and

there

is

only

one

item

with

that

dotted

decimal

number,

you

can

repeat

that

same

item

more

than

once.

2.

If

a

dotted

decimal

number

has

an

asterisk

next

to

it

and

several

items

have

that

dotted

decimal

number,

you

can

use

more

than

one

item

from

the

list,

but

you

cannot

use

the

items

more

than

once

each.

In

the

previous

example,

you

could

write

HOST

STATE,

but

you

could

not

write

HOST

HOST.

3.

The

*

symbol

is

equivalent

to

a

loop-back

line

in

a

railroad

syntax

diagram.
v

+

means

a

syntax

element

that

must

be

included

one

or

more

times.

A

dotted

decimal

number

followed

by

the

+

symbol

indicates

that

this

syntax

element

must

be

included

one

or

more

times;

that

is,

it

must

be

included

at

least

once

Appendix

C.

DB2

Universal

Database

technical

information

375

|
|
|

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|

|
|
|

|
|
|
|

|

|
|
|

and

can

be

repeated.

For

example,

if

you

hear

the

line

6.1+

data

area,

you

must

include

at

least

one

data

area.

If

you

hear

the

lines

2+,

2

HOST,

and

2

STATE,

you

know

that

you

must

include

HOST,

STATE,

or

both.

Similar

to

the

*

symbol,

the

+

symbol

can

only

repeat

a

particular

item

if

it

is

the

only

item

with

that

dotted

decimal

number.

The

+

symbol,

like

the

*

symbol,

is

equivalent

to

a

loop-back

line

in

a

railroad

syntax

diagram.

Related

concepts:

v

“Accessibility”

on

page

373

Related

tasks:

v

“Contents

:

Common

help”

Related

reference:

v

“How

to

read

the

syntax

diagrams”

in

the

SQL

Reference,

Volume

2

Common

Criteria

certification

of

DB2

Universal

Database

products

DB2

Universal

Database

is

being

evaluated

for

certification

under

the

Common

Criteria

at

evaluation

assurance

level

4

(EAL4).

For

more

information

about

Common

Criteria,

see

the

Common

Criteria

web

site

at:

http://niap.nist.gov/cc-
scheme/.

376

Programming

Server

Applications

|
|
|
|
|
|

|

|

|

|

|

|

|

|
|
|
|

http://niap.nist.gov/cc-scheme/
http://niap.nist.gov/cc-scheme/

Appendix

D.

Notices

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

all

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

For

license

inquiries

regarding

double-byte

(DBCS)

information,

contact

the

IBM

Intellectual

Property

Department

in

your

country/region

or

send

inquiries,

in

writing,

to:

IBM

World

Trade

Asia

Corporation

Licensing

2-31

Roppongi

3-chome,

Minato-ku

Tokyo

106,

Japan

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country/region

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

“AS

IS”

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY,

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions;

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product,

and

use

of

those

Web

sites

is

at

your

own

risk.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

IBM

Corp.

1993

-

2004

377

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

that

has

been

exchanged,

should

contact:

IBM

Canada

Limited

Office

of

the

Lab

Director

8200

Warden

Avenue

Markham,

Ontario

L6G

1C7

CANADA

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases

payment

of

a

fee.

The

licensed

program

described

in

this

document

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement,

or

any

equivalent

agreement

between

us.

Any

performance

data

contained

herein

was

determined

in

a

controlled

environment.

Therefore,

the

results

obtained

in

other

operating

environments

may

vary

significantly.

Some

measurements

may

have

been

made

on

development-level

systems,

and

there

is

no

guarantee

that

these

measurements

will

be

the

same

on

generally

available

systems.

Furthermore,

some

measurements

may

have

been

estimated

through

extrapolation.

Actual

results

may

vary.

Users

of

this

document

should

verify

the

applicable

data

for

their

specific

environment.

Information

concerning

non-IBM

products

was

obtained

from

the

suppliers

of

those

products,

their

published

announcements,

or

other

publicly

available

sources.

IBM

has

not

tested

those

products

and

cannot

confirm

the

accuracy

of

performance,

compatibility,

or

any

other

claims

related

to

non-IBM

products.

Questions

on

the

capabilities

of

non-IBM

products

should

be

addressed

to

the

suppliers

of

those

products.

All

statements

regarding

IBM’s

future

direction

or

intent

are

subject

to

change

or

withdrawal

without

notice,

and

represent

goals

and

objectives

only.

This

information

may

contain

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious,

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

COPYRIGHT

LICENSE:

This

information

may

contain

sample

application

programs,

in

source

language,

which

illustrate

programming

techniques

on

various

operating

platforms.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM

for

the

purposes

of

developing,

using,

marketing,

or

distributing

application

programs

conforming

to

the

application

programming

interface

for

the

operating

platform

for

which

the

sample

programs

are

written.

These

examples

have

not

been

thoroughly

tested

under

all

conditions.

IBM,

therefore,

cannot

guarantee

or

imply

reliability,

serviceability,

or

function

of

these

programs.

Each

copy

or

any

portion

of

these

sample

programs

or

any

derivative

work

must

include

a

copyright

notice

as

follows:

378

Programming

Server

Applications

©

(your

company

name)

(year).

Portions

of

this

code

are

derived

from

IBM

Corp.

Sample

Programs.

©

Copyright

IBM

Corp.

_enter

the

year

or

years_.

All

rights

reserved.

Trademarks

The

following

terms

are

trademarks

of

International

Business

Machines

Corporation

in

the

United

States,

other

countries,

or

both,

and

have

been

used

in

at

least

one

of

the

documents

in

the

DB2

UDB

documentation

library.

ACF/VTAM

AISPO

AIX

AIXwindows

AnyNet

APPN

AS/400

BookManager

C

Set++

C/370

CICS

Database

2

DataHub

DataJoiner

DataPropagator

DataRefresher

DB2

DB2

Connect

DB2

Extenders

DB2

OLAP

Server

DB2

Information

Integrator

DB2

Query

Patroller

DB2

Universal

Database

Distributed

Relational

Database

Architecture

DRDA

eServer

Extended

Services

FFST

First

Failure

Support

Technology

IBM

IMS

IMS/ESA

iSeries

LAN

Distance

MVS

MVS/ESA

MVS/XA

Net.Data

NetView

OS/390

OS/400

PowerPC

pSeries

QBIC

QMF

RACF

RISC

System/6000

RS/6000

S/370

SP

SQL/400

SQL/DS

System/370

System/390

SystemView

Tivoli

VisualAge

VM/ESA

VSE/ESA

VTAM

WebExplorer

WebSphere

WIN-OS/2

z/OS

zSeries

The

following

terms

are

trademarks

or

registered

trademarks

of

other

companies

and

have

been

used

in

at

least

one

of

the

documents

in

the

DB2

UDB

documentation

library:

Microsoft,

Windows,

Windows

NT,

and

the

Windows

logo

are

trademarks

of

Microsoft

Corporation

in

the

United

States,

other

countries,

or

both.

Intel

and

Pentium

are

trademarks

of

Intel

Corporation

in

the

United

States,

other

countries,

or

both.

Java

and

all

Java-based

trademarks

are

trademarks

of

Sun

Microsystems,

Inc.

in

the

United

States,

other

countries,

or

both.

Appendix

D.

Notices

379

UNIX

is

a

registered

trademark

of

The

Open

Group

in

the

United

States

and

other

countries.

Other

company,

product,

or

service

names

may

be

trademarks

or

service

marks

of

others.

380

Programming

Server

Applications

Index

Special

characters
.NET

common

language

runtime
routines

106

A
accessibility

dotted

decimal

syntax

diagrams

374

features

373

activation

time
tigger

activation

time

315

ADD

METHOD

clause

on

ALTER

TYPE

statement

251

ALLOCATE

CURSOR

statement
caller

routine

47

ALTER

VIEW

statement
structured

types

271

ASSOCIATE

RESULT

SET

LOCATOR

statement

47

auditing
transactions

using

SQL

functions

83

authorization
for

external

routines

35

B
BASIC

data

types

183

BASIC

language

180

before

triggers
using

to

prevent

operations

on

tables

326

BigDecimal

Java

data

type

170

BIGINT

data

type
OLE

DB

table

function

190

routines
Java

(DB2GENERAL)

336

user-defined

functions

(UDFs)
C/C

158

BIGINT

SQL

data

type
COBOL

347

Java

170

bind

behavior,

DYNAMICRULES

104

binding
routines

35

BLOB

data

type
COBOL

347

Java

170

OLE

DB

table

function

190

routines
C/C++

158

Java

(DB2GENERAL)

336

BLOB-FILE

COBOL

type

347

BLOB-LOCATOR

COBOL

type

347

C
C

routines
include

file

154

performance

22

supported

SQL

data

types

in

155

syntax

for

passing

arguments

89

stored

procedures,

parameter

handling

51

C/C++

language
routines

151

C++
data

types,

OLE

automation

183

routines
include

file

154

supported

SQL

data

types

in

155

type

decoration

for

routine

bodies

165

CALL

procedures
from

applications

200

from

external

routines

200

from

SQL

routines

202

from

the

COmmand

LIne

Processor

(CLP)

204

from

triggers

202

CALL

statements
stored

procedures

204

CAST

FROM

clause
data

type

handling

158

CHAR

data

type
COBOL

347

Java

170

OLE

DB

table

function

190

routines,

Java

(DB2GENERAL)

336

user-defined

functions

(UDFs)

158

CHAR

FOR

BIT

DATA

data

type

336

CLASSPATH

environment

variable

172

client

transforms
binding

in

instances

from

a

client

application

296

converting

data

types

297

implemented

using

external

UDFs

296

overview

294

CLOB

(character

large

object)
data

type
COBOL

347

Java

170

OLE

DB

table

function

190

routines,

Java

(DB2GENERAL)

336

user-defined

functions

(UDFs),

C/C++

158

examples
Inserting

data

from

a

text

file

into

a

CLOB

column

226

writing

data

from

a

CLOB

column

to

a

file

225

CLOB

data

types
creating

a

distinct

type

based

on

a

CLOB

235

clob_file

C/C++

type
example

of
writing

data

from

a

CLOB

column

to

a

file

225

CLOB-FILE

COBOL

type

347

CLOB-LOCATOR

COBOL

type

347

CLP

(command

line

processor)
terminating

character

66

CLR
routines

creating

107

examples

of

CLR

procedures

in

C#

119

examples

of

CLR

UDFs

in

C#

139

CLR

(common

language

runtime)
routines

106

COBOL

data

types
BLOB

347

BLOB-FILE

347

BLOB-LOCATOR

347

CLOB

347

CLOB-FILE

347

CLOB-LOCATOR

347

COMP-1

347

COMP-3

347

COMP-5

347

DBCLOB

347

DBCLOB-FILE

347

DBCLOB-LOCATOR

347

PICTURE

(PIC)

clause

347

USAGE

clause

347

COBOL

language
data

types

347

stored

procedures

345

code

pages
routines,

conversion

197

column

types
creating

COBOL

347

COM.ibm.db2.app.Blob

336,

342

COM.ibm.db2.app.Clob

336,

343

COM.ibm.db2.app.Lob

342

COM.ibm.db2.app.StoredProc

338

COM.ibm.db2.app.UDF

334,

339

command

help
invoking

370

common

language

runtime
routines

106

creating

107

Dbinfo

structure

usage

111

errors

related

to

117

examples

of

CLR

functions

in

C#

139

examples

of

CLR

procedures

in

C#

119

parameters

in

common

language

runtime

routines

111

restrictions

116

scratchpad

111

supported

SQL

data

types

in

110

COMP-1

data

types,

in

COBOL

347

©

Copyright

IBM

Corp.

1993

-

2004

381

COMP-3

data

types,

in

COBOL

347

COMP-5

data

types,

in

COBOL

347

condition

handlers
CONTINUE

clause

74

example

71

RESIGNAL

statement

74

SIGNAL

statement

74

SQL

procedures
declaration

71

description

71

configuration

parameters
javaheapsz

configuration

parameter

172

jdk11path

configuration

parameter

172

constants
comparison

with

distinct

types

240

constraints
triggers,

interaction

311

constructor

functions

254

CONTAINS

SQL

clause
routines

containing

SQL

101

contexts
setting

in

multithreaded

DB2

applications
SQLJ

routines

174

CREATE

FUNCTION

statement
CAST

FROM

clause

158

LANGUAGE

OLE

clause

180

OLE

automation

routines

180

RETURNS

clause

158

CREATE

METHOD

statement
examples

251

CREATE

TABLE

statement
defining

column

options

255

CREATE

TRANSFORM

statement
using

288

CREATE

TRIGGER

statement

314

AFTER

clause

311,

315

BEFORE

clause

311,

315

INSTEAD

OF

clause

311,

315

REFERENCING

clause

319

CREATE

TYPE

statement
REF

USING

clause

264

structured

types

249

creating
routines

common

language

runtime

107

cross-platform

support
Invoking

32-bit

routines

on

a

64-bit

database

server

197

currency
Defining

currency-based

distinct

types

235

tables

that

track

sales

in

different

currencies

236

cursors
routines

101

D
data

types
COBOL

347

conversion
between

DB2

and

COBOL

347

OLE

automation

types

182

transform

functions

297

data

types

(continued)
distinct

creating

distinct

types

231

manipulating

237

Java

170

structured
accessing

structured

type

attributes

282

creating

structured

types

246

user-defined

structured

type

245

supported
COBOL,

rules

347

DATE

data

type
COBOL

347

Java

170

OLE

DB

table

function

190

routines
Java

(DB2GENERAL)

336

DB2

books
printing

PDF

files

368

DB2

Information

Center

352

invoking

360

DB2

tutorials

371

DB2DBG.ROUTINE_DEBUG

debug

table

178

DB2GENERAL

parameter

style

for

external

routines

87

DB2GENERAL

routines

333

Java

classes

337

COM.ibm.db2.app.Blob

342

COM.ibm.db2.app.Clob

343

COM.ibm.db2.app.Lob

342

COM.ibm.db2.app.StoredProc

338

COM.ibm.db2.app.UDF

339

stored

procedures

338

user-defined

functions

334,

339

DB2SQL

parameter

style

for

external

routines

87

DBCLOB

data

type
COBOL

347

Java

170

OLE

DB

table

function

190

routines
Java

(DB2GENERAL)

336

user-defined

functions

(UDFs)
C/C

158

DBCLOB-FILE

COBOL

type

347

DBCLOB-LOCATOR

COBOL

type

347

dbinfo

argument
table

functions

57

DBINFO

option
code

pages

197

debug

table
populating

177

debugging
routines

38

stored

procedures

175

DECIMAL

data

type
COBOL

347

external

routines

parameter

158

Java

170

OLE

DB

table

function

190

routines
Java

(DB2GENERAL)

336

define

behavior,

DYNAMICRULES

104

delete

triggers

318

DEREF

function

272

DEREF

function

(continued)
privileges

required

272

dereference

operators

265

queries

using

272

DESCRIBE

statement
structured

types

305

Development

Center
debug

table

177

debugging

Java

stored

procedures

175,

177

environment

settings

175

disability

373

distinct

data

types
creating

231

a

distinct

type

based

on

a

CLOB

235

creating

tables

with

distinct

type

columns

233

distinct

types
assigning

comparison

types

240

comparing

with

constant

values

238,

240

comparing

with

other

distinct

types

239,

241

creating
currency

based

distinct-types

235

creating

sourced

UDFs

for

243

examples

of
creating

a

table

to

store

completed

job

applications

237

joins

242

manipulating

237

passing

to

routines

209

strong

typing

of

user-defined

distinct

types

231

UNION

clauses

242

user-defined

229

using

distinct

types
in

tables

to

store

multiple

currencies

236

to

store

complex

data

237

documentation
displaying

360

dotted

decimal

syntax

diagrams

374

double

data

type
Java

programs

170

DOUBLE

data

type
external

routines

158

user-defined

functions

(UDFs)
C/C

158

DROP

statement
structured

types

in

tables

258

views
structured

types

272

dynamic

SQL
assigning

types

241

effects

of

DYNAMICRULES

104

SQL

procedures

63

dynamic

types

259

DYNAMICRULES

precompile/bind

option
effects

on

dynamic

SQL

104

E
error

messages
displaying

for

SQL

procedures

70

382

Programming

Server

Applications

errors
routines

related

to

common

language

runtime

routines

117

examples
distinct

types
assigning

comparison

type

241

assigning

comparison

types

240

comparing

with

constant

values

238

comparing

with

distinct

types

239

in

UNION

242

dynamic

SQL,

assigning

types

241

EXECUTE

privilege
routines

35

EXECUTE

statement
dynamic

SQL

63

EXTERNAL

NAME

clause
CREATE

FUNCTION

statement

189

external

routines

87

F
files

reading

from

a

file

into

a

CLOB

226

FLOAT

data

type
COBOL

347

Java

170

OLE

DB

table

function

190

routines,

Java

(DB2GENERAL)

336

user-defined

functions

(UDFs)

158

floating

point

parameter

158

function

transforms
implemented

as

SQL-bodied

routines

291

overview

289

passing

parameters

to

external

routines

292

functions
invoking

206

references

to,

syntax

206

scalar
DEREF

272

TYPE_ID

272

TYPE_NAME

272

TYPE_SCHEMA

272

selection

208

selection

algorithm

208

table
SQL

table

functions

that

modify

SQL

data

80

G
GENERAL

parameter

style

for

external

routines

87

GENERAL

WITH

NULLS

parameter

style

for

external

routines

87

GRANT

statement
issuing

on

table

hierarchies

255

granularity

314

GRAPHIC

data

type
COBOL

347

Java

170

OLE

DB

table

function

190

GRAPHIC

data

type

(continued)
routines

Java

(DB2GENERAL)

336

graphic

host

variables
routines

165

GRAPHIC

parameter

158

H
handlers

example

71

help
displaying

360,

362

for

commands
invoking

370

for

messages
invoking

370

for

SQL

statements
invoking

371

hierarchy

248,

249

host

variables
COBOL

data

types

347

declaring
structured

types

305

HTML

documentation
updating

361

I
infix

notation
user-defined

functions

(UDFs)

208

Information

Center
installing

353,

356,

358

INHERIT

SELECT

PRIVILEGES

clause

255

installing
Information

Center

353,

356,

358

Int

Java

data

type

170

INTEGER

data

type
COBOL

347

Java

170

OLE

DB

table

function

190

routines
Java

(DB2GENERAL)

336

user-defined

functions

(UDFs)
C/C

158

invoke

behavior,

DYNAMICRULES

104

invoking
command

help

370

message

help

370

routines

193

SQL

statement

help

371

UDFs

211

user-defined

table

functions

212

IS

OF

predicate
restricting

returned

types

with

275

isolation

levels
routines

101

J
Java

class

files,

placement

172

CLASSPATH

environment

variable

172

COM.ibm.db2.app.

StoredProc

338

Java

(continued)
COM.ibm.db2.app.Blob

342

COM.ibm.db2.app.Clob

343

COM.ibm.db2.app.Lob

342

COM.ibm.db2.app.UDF

339

COM.ibm.db2.app.UDF

methods

334

data

types
BigDecimal

170

Blob

170

Double

170

Int

170

java.math.BigDecimal

170

Short

170

String

170

JAR

files

173

javaheapsz

configuration

parameter

172

jdk11path

configuration

parameter

172

packages

and

classes,

COM.ibm.db2.app

170

parameter

style

for

external

routines

87

routines

167

DB2GENERAL

333

performance

22

stored

procedures

167

DB2DBG.ROUTINE_DEBUG

debug

table

178

debugging

175

for

warehouse

transformers

173

invoking

debugger

177

parameter

handling

51

preparing

to

debug

175

table

functions

execution

model

59

UDFs

(user-defined

functions)

334

CALL

statement

for

JAR

files

173

FENCED

334

NOT

FENCED

334

scratchpads

334

updating

classes

173

java.math.BigDecimal

Java

data

type

170

javaheapsz

configuration

parameter

172

JDBC

stored

procedures
returning

result

sets

46

jdk11path

configuration

parameter

172

joins
distinct

types

242

K
keyboard

shortcuts
support

for

373

L
LANGUAGE

OLE

clause
CREATE

FUNCTION

statement

180

large

object

(LOB)

data

types

221

file

reference

variables

223

passing

to

routines

210

using
examples

of

217

large

objects

(LOBs)
locators

218

Index

383

LOB

(large

object)

data

types
extracting

infromation

from
Extracting

information

from

LOBs

with

triggers

325

file

reference

variables

223

passing

to

routines

210

usage

of

217

LOB

data

types

221

locators

218

retrieving

LOB

values
with

a

LOB

locator

220

LOB

locators
retrieving

a

LOB

value

with

a

lob

locator

220

log

file

directory

for

SQL

procedures

70

LONG

VARCHAR

data

type
COBOL

347

Java

170

OLE

DB

table

function

190

routines
Java

(DB2GENERAL)

336

user-defined

functions

(UDFs)
C/C

158

LONG

VARCHAR

FOR

BIT

DATA

data

type
routines

Java

(DB2GENERAL)

336

LONG

VARGRAPHIC
parameter

to

UDF

158

LONG

VARGRAPHIC

data

type
COBOL

347

Java

170

OLE

DB

table

function

190

routines
Java

(DB2GENERAL)

336

M
message

help
invoking

370

methods
dynamic

dispatch

of

251

for

structured

types
mutator

methods

254

overriding

method

251

overview

16

routines

3

MODIFIES

SQL

DATA

clause
external

routines

101

SQL

access

levels

in

SQL

routines

63

multi-threaded

applications
SQLJ

routines

174

N
NO

SQL

clause
external

routines

101

NOT

FENCED

routines

24

NUMERIC

parameter

158

NUMERIC

SQL

data

type
COBOL

347

Java

170

OLE

DB

table

function

190

routines
Java

(DB2GENERAL)

336

O
object

identifier

columns
description

264

naming

255

object

identifiers
creating

constraints

263

generating

automatically

261

object

instances
OLE

automation

routines

181

Object

Linking

and

Embedding

(OLE)

179

observer

methods

254

OLE

automation
BSTR

data

type

183

class

identifier

(CLSID)

180

controllers

179

methods

179

OLECHAR

data

type

183

programmatic

identifier

(progID)

180

routines
defining

180

invoking

methods

181

object

instances

181

SCRATCHPAD

option

181

servers

179

string

data

types

183

OLE

automation

routines
design

179

OLE

DB
rowset

names,

fully

qualified

189

table

functions
connection

string

in

EXTERNAL

NAME

clause

187

CONNECTSTRING

option

187

creating

187

user-defined

186

using

server

name

187

OLE

DB

data

types
converting

to

SQL

data

types

190

OLE

routines
syntax

for

passing

arguments

89

online
help,

accessing

369

ONLY

clause
restricting

returned

types

with

274

ordering

DB2

books

368

OUTER

keyword
returning

subtype

attributes

275

overloading
routine

names

195

P
PARAMETER

STYLE

JAVA

routines

167

parameter

styles

for

external

routines

87

passing

distinct

types

to

routines

209

passing

LOBs

to

routines

210

performance
routines

22

tuning
with

routines

5

PICTURE

(PIC)

clause

in

COBOL

types

347

PREPARE

statement
dynamic

SQL
SQL

procedures

63

printed

books,

ordering

368

printing
PDF

files

368

problem

determination
online

information

372

tutorials

372

procedure
calling

from

applications

and

external

routines

200

from

SQL

routines

202

from

the

Command

Line

Processor

(CLP)

204

from

triggers

202

references

(syntax

of

call

references)

199

returning

result

sets

from
returning

result

sets

from

CLR

procedures

114

procedures
common

language

runtime
examples

of

C#

CLR

procedures

119

parameter

handling

51

receiving

result

sets

47

examples

of

CLR

procedure

in

C#

119

routines

3

PROGRAM

TYPE

MAIN

clause
stored

procedures
parameter

handling

51

PROGRAM

TYPE

SUB

clause
stored

procedures
parameter

handling

51

programming

considerations
routines,

supported

languages

19

R
RAISE_ERROR

scalar

function
description

322

READS

SQL

DATA

clause
external

routines

101

REAL

data

type
COBOL

347

Java

170

OLE

DB

table

function

190

routines
Java

(DB2GENERAL)

336

user-defined

functions

(UDFs)
C/C

158

receiving

result

sets
as

caller

routine

47

in

JDBC

applications

and

routines

49

in

SQLJ

applications

and

routines

48

REF

USING

clause
reference

to

a

structured

type

264

reference

types
casting

253

comparing

253

comparison

with

referential

constraints

265

dereference

operator

265

description

264

references
columns

255,

269

defining

relationships

265

384

Programming

Server

Applications

REFERENCING

clause
CREATE

TRIGGER

statement

319

referential

integrity
comparison

to

scoped

references

268

registering
routines

31

representation

types

264

restrictions
routines

29

result

sets
from

stored

procedures

42

receiving

in

JDBC

applications

and

routines

49

receiving

in

SQLJ

applications

and

routines

48

returning

from

a

JDBC

stored

procedure

46

returning

from

a

SQL

procedure

44

returning

from

a

SQLJ

stored

procedure

45

returning

result

sets

from

a

procedure
returning

result

sets

from

a

CLR

procedure

114

returning

result

sets
from

JDBC

stored

procedures

46

from

SQL

procedures

44

from

SQLJ

stored

procedures

45

RETURNS

clause
CREATE

FUNCTION

statement

158

REVOKE

statement
issuing

on

table

hierarchies

255

root

types

248

routines
altering

27

benefits

5

C/C++

151

supported

SQL

data

types

in

155

classes

27

CLR
errors

related

to

117

code

pages
conversion

197

common

language

runtime

routines

106

Dbinfo

structure

usage

111

errors

related

to

117

examples

of

CLR

functions

(UDFs)

139

Examples

of

CLR

procedures

in

C#

119

restrictions

116

returning

result

sets

from

CLR

procedures

114

scrathpad

usage

111

supported

SQL

data

types

in

110

cursors

101

DB2GENERAL

333

COM.ibm.db2.app.Blob

342

COM.ibm.db2.app.Clob

343

COM.ibm.db2.app.Lob

342

Java

classes

337

debugging

38

defining

scratchpad

structure

55

EXECUTE

privilege

35

external
authorizations

for

35

common

lanaguage

runtime

106

routines

(continued)
external

(continued)
common

language

runtime

107

overview

3

parameter

styles

87

SQL

in

101

updating

Java

routines

173

function

path

195

graphic

host

variables

165

invoking

193

32-bit

routines

on

a

64-bit

database

server

197

isolation

levels

101

issuing

CREATE

statements

66

Java

167

libraries

27

methods

16

name

195

nested

196

NOT

FENCED
performance

22

security

24

OLE

automation
defining

180

overloading

195

passing

distinct

types

to

209

passing

LOBs

to

210

performance

22

portability

between

32-bit

and

64-bit

platforms

55

programming

languages

supported

19

reading

conflicts

40

receiving

result

sets

47

recursive

196

registering

31

restrictions

29

scalar

UDFs
overview

13

security

24

SQL

3

stored

procedures
overview

11

syntax

for

passing

arguments

89

THREADSAFE
performance

22

security

24

user-defined

routines

9

user-defined

table

functions
overview

15

WCHARTYPE

precompiler

option

165

writing

33

writing

conflicts

40

row

sets
fully

qualified

names,

OLE

DB

189

run

behavior,

DYNAMICRULES

104

S
savepoints

procedures

101

scalar

functions
overview

13

processing

model

56

scope
in

typed

tables

255

scoped

references
comparison

to

referential

integrity

268

SCRATCHPAD

option
OLE

automation

routines

181

preserving

state

52

user-defined

functions

(UDFs)

52

scratchpads

22

32-bit

and

64-bit

platforms

55

for

UDFs

and

methods

52

Java

UDFs

334

SELECT

statement
dereference

operators

272

inheriting

privileges

from

supertables

255

scoped

references

272

short

Java

data

type

170

SIGNAL

SQLSTATE
used

in

triggers

307

SMALLINT

data

type
COBOL

347

Java

170

OLE

DB

table

function

190

routines
Java

(DB2GENERAL)

336

user-defined

functions

(UDFs)
C/C

158

sourced

functions
for

distinct

types
creating

sourced

UDFs

for

distinct

types

243

SQL

(Structured

Query

Language)
in

external

routines

101

in

routines
SQL

access

levels

in

SQL-bodied

routines

63

parameter

style

for

external

routines

87

routines,

performance

22

SQL

data

types
COBOL

347

converting

to

OLE

DB

data

types

190

Java

170

routines
Java

(DB2GENERAL)

336

supported

in

OLE

automation

182

user-defined

functions

(UDFs)

158

SQL

functions
table

functions
that

modify

SQL

data

83

SQL

procedures
CALL

statement

204

condition

handlers
declaration

71

condition

handling

71

displaying

error

messages

70

dynamic

SQL

63

returning

result

sets

44

SQLCODE

and

SQLSTATE

variables

74

SQL

routines
examples

Implementing

function

transforms

using

SQL

routines

291

SQL

statement

help
invoking

371

Index

385

SQL-result

argument
table

functions

57

SQL-result-ind

argument
table

functions

57

SQLCODE
variables

in

SQL

procedures

74

sqldbchar

data

type
in

C/C++

routines

158

SQLJ

(embedded

SQL

for

Java)
routines

connection

contexts

174

stored

procedures
returning

result

sets

45

SQLSTATE
raising

with

SIGNAL

and

RESIGNAL

statements

74

variables

in

SQL

procedures

74

SQLUDF

include

file
C/C++

routines

154

statements
CREATE

FUNCTION

180

static

SQL
transform

groups

for

structured

types,

bind

options

287

static

types
structured

types

based

on

static

types

259

stored

procedures
COBOL

345

debugging
development

center

175

overview

11

parameters
IN

42

INOUT

42

OUT

42

references

(syntax

of

call

references)

199

returning

result

sets

42

selection

200

selection

algorithm

200

String

Java

data

type

170

structured

types
as

parameters

to

routines
Passing

structured

type

parameters

to

external

routines

292

attributes
accessing

structured

type

attributes

282

retrieving

structured

type

attributes

282

updating

283

columns

of
altering

tables

with

structured

type

columns

279

comparing

instances

with

275

constructor

functions

254

creating

a

table

with

structured

type

columns

279

creating

an

instance

of

254

creating

structured

types

246

creating

typed

views

269

declaring

host

variables

305

defining

attributes

279

defining

behavior
ADD

METHOD

clause

251

CREATE

METHOD

statement

251

structured

types

(continued)
DESCRIBE

statement

305

dynamic

types

259

exchanging

structured

type

values

with

host

language

programs

284

exchanging

values

with

an

external

routine
using

transform

functions

298

FROM

SQL

function

transforms

289,

294

hierarchy

248,

249

examples

of

276

inheritance

248

inheritance,

controlling

with

ONLY

clause

255

inserting

instances

into

columns

278,

280

instantiable

types

248

invoking

methods

280

methods

for

254

noninstantiable

types

248

object

identifiers
creating

constraints

263

generating

automatically

261

observer

methods

254

passing

instances

to

client

applications

294

passing

instances

to

external

routines

289

querying
selecting

objects

of

a

type

and

not

the

subtypes

274

using

the

ONLY

clause

274

using

TYPE_NAME

284

reference

columns
defining

scope

255

references
comparison

with

referential

constraints

265

dereference

operator

265

referring

to

row

objects

264

representation

types

264

restrictions,

dropping

234

retrieving

instances
as

attribute

values

254

as

single

values

281

retrieving

internal

ID

272

retrieving

schema

name

272

retrieving

subtype

attributes

283

retrieving

type

name

272

returning

information

about

284

static

types

259

stored

in

table

columns

276

storing

247

as

a

value

in

a

column

247

storing

instances

as

rows

260

subtypes
returning

attributes

using

OUTER

275

transform

function

requirements

298

transform

functions

302

transform

groups
naming

285

specifying

a

transform

group

286

specifying

transform

groups

for

dynamic

SQL

287

structured

types

(continued)
transform

groups

(continued)
specifying

transform

groups

for

external

routines

287

typed

tables
accessing

subtypes

260

accessing

subtypes

in

type

hierarchy

259

column

options

255

controlling

privileges

255

creating

260

defining

relationships

265

object

identifier

columns

255

self-referencing

266

updating

attributes

281,

283

user-defined

structure

type

245

using
inserting

structured

type

attribute

into

columns

278

subtables
creating

260

inheriting

attributes

255

subtypes
example

249

inheritance

248

returning

attributes

using

OUTER

275

transform

functions

299,

302

supertypes
columns

249

in

structured

type

hierarchies

248

system

catalogs
dropping

view

implications

272

T
table

typed

table

255

table

functions
Java

execution

model

59

SQL

table

functions
SQL

table

functions

that

modify

SQL

data

80

user-defined

table

functions

57

table

user-defined

functions

(UDFs)
processing

model

57

tables
access

routines

reading

and

writing

conflicts

40

creating

tables

with

distinct

type

columns

233

THREADSAFE

routines

24

TIME

data

type
COBOL

347

Java

170

OLE

DB

table

function

190

routines
Java

(DB2GENERAL)

336

TIME

parameter

158

TIMESTAMP

data

type
COBOL

347

Java

170

OLE

DB

table

function

190

routines
Java

(DB2GENERAL)

336

386

Programming

Server

Applications

TIMESTAMP

parameter

158

transform

functions

288

transform

groups
specifying

a

transform

group

for

a

structured

type

286

transformations
functions

associating

with

structured

types

284

binding

in

subtypes

302

passing

objects

to

external

routines

289

passing

structured

types

to

client

applications

294

requirements

298

subtype

parameters

299

groups
dynamic

SQL

287

external

routines

287

naming

285

static

SQL

287

transition

tables

319

TREAT

expression

283

triggered

action

condition

320,

321

triggers
accessing

column

values

in

319

actions

328

composed

of

SQL

statements

321

qualified

by

conditions

321

activation

time

315

after

updates

315

before

updates

315

constraints,

interaction

311

creating

314

guidelines

for

313

deleting

310

examples

of
defining

business

rules

using

trigger

327

example

of

a

trigger

action

328

extracting

information

from

UDTs,

UDFs,

and

LOBS

with

325

FOR

EACH

ROW

clause

314

FOR

EACH

STATEMENT

clause

314

granularity

314

INSERT

operation

310

INSTEAD

OF

activation

311,

315

multiple,

ordering

324

RAISE_ERROR

function

322

referential

constraints,

interaction

311

returning

SQLSTATE

307

sequencing

324

transition

tables

319

transition

variables
description

318

NEW

AS

correlation

name

318

OLD

AS

correlation

name

318

triggered

action

composed

of

SQL

statements

321

triggered

action

condition

320

triggered

SQL

statements

320

updates
UPDATE

operation

310

using

triggers
preventing

operations

on

tables

using

triggers

326

to

define

business

rules

327

triggers

(continued)
WHEN

clause

320

troubleshooting
online

information

372

tutorials

372

tutorials

371

troubleshooting

and

problem

determination

372

type

decoration
C++

routine

bodies

165

type

mapping
OLE

automation
BASIC

types

183

TYPE

predicate
restricting

returned

types

with

275

TYPE_ID

function
dereferencing

references

272

TYPE_NAME

function
dereferencing

references

272

TYPE_SCHEMA

function
dereferencing

references

272

typed

tables
accessing

subtypes

in

type

hierarchy

260

column

options

255

controlling

privileges

255

creating

255

creating

subtables

260

defining

relationships

265,

266

defining

scope

255

description

260

determining

hierarchy

position

255

dropping
DROP

TABLE

statement

258

implications

for

system

catalogs

258

object

identifier

columns

255

overview

of

255

restrictions

258

returning

subtype

attributes

275

self-referencing

266

structured

types

258

substitution

of

structured

types

259

typed

views

269

assigning

scope

to

reference

columns

269

body

269

creating
on

root

types

269

on

subtypes

269

types
distinct

creating

distinct

types

231

structured
creating

structured

types

246

user-defined

structured

type

245

user-defined

types

229

U
UDF

user-defined

table

functions

57

UDFs

(user-defined

functions)
examples

of
Implementing

client

transforms

for

binding

in

from

a

client

using

external

UDFs

296

UDFs

(user-defined

functions)

(continued)
examples

of

(continued)
Implementing

client

transforms

using

external

UDFs

296

invoking

211

scalar,

FINAL

CALL

56

scratchpad

portability

between

32-bit

and

64-bit

platforms

55

table
FINAL

CALL

57

NO

FINAL

CALL

57

table,

processing

model

57

union
on

distinctly

typed

columns

242

Updating
HMTL

documentation

361

USAGE

clause

in

COBOL

types

347

user-defined

data

types
creating

with

structured

type

attributes

279

distinct

types
strong

typing

231

user-defined

functions

(UDFs)
C/C++

arguments

158

BIGINT

data

type

158

BLOB

data

type

158

CHAR

data

type

158

CLOB

data

type

158

DBCLOB

data

type

158

DOUBLE

data

type

158

FLOAT

data

type

158

INTEGER

data

type

158

LONG

VARCHAR

data

type

158

parameters

158

REAL

data

type

158

SMALLINT

data

type

158

VARCHAR

FOR

BIT

DATA

data

type

158

VARGRAPHIC

data

type

158

common

language

runtime

UDFs
examples

in

C#

139

date

parameters

158

DETERMINISTIC

52

FOR

BIT

DATA

modifier

158

infix

notation

208

Java
I/O

restrictions

334

NOT

DETERMINISTIC

52

OLE

DB

table

functions

186

re-entrant

52

returning

data

158

routines

3

saving

state

52

SCRATCHPAD

option

52

table
invoking

212

overview

15

SQL-result

argument

57

SQL-result-ind

argument

57

user-defined

routines

9

user-defined

types

(UDTs)

229

distinct

types

229

strong

typying

231

restrictions,

dropping

234

Index

387

V
VARCHAR

data

type
COBOL

347

Java

170

OLE

DB

table

function

190

routines,

Java

(DB2GENERAL)

336

VARCHAR

FOR

BIT

DATA

data

type
routines,

Java

(DB2GENERAL)

336

user-defined

functions

(UDFs),

C/C++

158

VARGRAPHIC

data

type
COBOL

347

Java

170

OLE

DB

table

function

190

routines,

Java

(DB2GENERAL)

336

user-defined

functions

(UDFs),

C/C++

158

view
typed

view

269

views
dropping

271,

272

dropping,

implications

for

system

catalogs

272

restrictions

271,

272

structured

types

272

W
wchart

data

type

158

WCHARTYPE

NOCONVERT

precompiler

option

165

WITH

OPTIONS

clause
defining

column

options

255

defining

reference

column

scope

255

writing

data

from

a

CLOB

column

to

a

text

file

225

writing

routines

33

388

Programming

Server

Applications

Contacting

IBM

In

the

United

States,

call

one

of

the

following

numbers

to

contact

IBM:

v

1-800-IBM-SERV

(1-800-426-7378)

for

customer

service

v

1-888-426-4343

to

learn

about

available

service

options

v

1-800-IBM-4YOU

(426-4968)

for

DB2

marketing

and

sales

In

Canada,

call

one

of

the

following

numbers

to

contact

IBM:

v

1-800-IBM-SERV

(1-800-426-7378)

for

customer

service

v

1-800-465-9600

to

learn

about

available

service

options

v

1-800-IBM-4YOU

(1-800-426-4968)

for

DB2

marketing

and

sales

To

locate

an

IBM

office

in

your

country

or

region,

check

IBM’s

Directory

of

Worldwide

Contacts

on

the

web

at

http://www.ibm.com/planetwide

Product

information

Information

regarding

DB2

Universal

Database

products

is

available

by

telephone

or

by

the

World

Wide

Web

at

http://www.ibm.com/software/data/db2/udb

This

site

contains

the

latest

information

on

the

technical

library,

ordering

books,

product

downloads,

newsgroups,

FixPaks,

news,

and

links

to

web

resources.

If

you

live

in

the

U.S.A.,

then

you

can

call

one

of

the

following

numbers:

v

1-800-IBM-CALL

(1-800-426-2255)

to

order

products

or

to

obtain

general

information.

v

1-800-879-2755

to

order

publications.

For

information

on

how

to

contact

IBM

outside

of

the

United

States,

go

to

the

IBM

Worldwide

page

at

www.ibm.com/planetwide

©

Copyright

IBM

Corp.

1993

-

2004

389

http://www.ibm.com/planetwide
http://www.ibm.com/planetwide

390

Programming

Server

Applications

����

Printed

in

USA

SC09-4827-01

Sp
in
e

in
fo
rm
at
io
n:

 �
�

�

IB
M

®

D
B

2

U
ni

ve
rs

al

D
at

ab
as

e™

Pr
og

ra
m

m
in

g

Se
rv

er

Ap
pl

ic
at

io
ns

Ve
rs

io
n

8.
2

	Contents
	About this book
	Part 1. Routines
	Chapter 1. Introduction to routines
	Routines in application development
	Types of routines (procedures, functions, methods)
	User-defined routines
	Comparison of procedures, functions, and methods
	Procedures
	User-defined scalar functions
	User-defined scalar functions
	Methods

	Chapter 2. Developing routines
	Supported routine programming languages
	Best practices for developing routines
	Performance considerations for developing routines
	Security considerations for routines
	Library and class management considerations
	Restrictions on using routines

	Creating routines in the database
	Writing routines
	Authorizations and binding of routines that contain SQL
	Debugging routines
	Data conflicts when procedures read from or write to tables
	Procedure features
	Procedure parameter modes
	Procedure result sets
	Procedure result sets
	Returning result sets from SQL and embedded SQL procedures
	Returning result sets from SQLJ procedures
	Returning result sets from JDBC procedures
	Receiving procedure result sets in SQL routines
	Receiving procedure result sets in SQLJ applications and routines
	Receiving procedure result sets in JDBC applications and routines

	Parameter handling in PROGRAM TYPE MAIN or PROGRAM TYPE SUB procedures

	UDF and method features
	Scratchpads for UDFs and methods
	Scratchpads on 32-bit and 64-bit operating systems
	Method and scalar function processing model

	User-defined table functions
	User-defined table functions
	Table function processing model
	Table function execution model for Java

	Chapter 3. SQL routines
	SQL Procedural Language (SQL PL) in DB2
	CREATE statements for SQL routines
	SQL access levels in SQL routines
	Dynamic SQL in SQL routines
	SQL/ SQL PL procedures
	Design considerations for SQL procedures
	Creating SQL procedures from the command line
	Parameters in SQL procedures
	Variables in SQL procedures (DECLARE, DEFAULT, SET statements)
	Compound blocks and scope of variables in SQL procedures
	Returning error messages from SQL procedures
	Condition handlers in SQL procedures
	Condition handlers in SQL procedures
	Condition handler declarations
	SIGNAL and RESIGNAL statements in condition handlers
	SQLCODE and SQLSTATE variables in SQL procedures

	Improving the performance of SQL procedures

	SQL table functions
	SQL table functions that modify SQL data
	Auditing using SQL table functions

	Chapter 4. External routines
	Parameter styles for external routines
	Syntax for passing arguments to routines written in C/C++, OLE, or COBOL
	SQL in external routines
	Effect of DYNAMICRULES bind option on dynamic SQL
	.NET common language runtime routines
	Common language runtime (CLR) routines
	Creating CLR routines
	Supported SQL data types for the DB2 .NET Data Provider
	Parameters in CLR routines
	Returning result sets from CLR procedures
	Restrictions on CLR routines
	Errors related to CLR routines
	Examples of CLR procedures in C#
	Examples of CLR procedures in Visual Basic
	Examples of CLR user-defined functions in C#
	Examples of CLR user-defined functions in Visual Basic

	C/C++ routines
	C/C++ routines
	Include file for C/C++ routines (sqludf.h)
	Supported SQL data types in C/C++
	SQL data type handling in C/C++ routines
	Graphic host variables in C/C++ routines
	C++ type decoration

	Java routines
	Java routines
	Supported SQL data types in Java
	Where to put Java classes
	Updating Java routines (stored procedures, UDFs, and methods) for runtime
	JAR file administration on the database server
	Connection contexts in SQLJ routines
	Debugging stored procedures in Java
	Debugging Java stored procedures
	Preparing to debug Java stored procedures
	Invoking the debug program
	Populating the debug table
	Java debug table DB2DBG.ROUTINE_DEBUG

	OLE automation routines
	OLE automation routine design
	Creating OLE automation routines
	Object instance and scratchpad considerations and OLE routines
	Supported SQL data types in OLE automation
	OLE automation routines in BASIC and C++

	OLE DB user-defined table functions
	OLE DB user-defined table functions
	Creating an OLE DB table UDF
	Fully qualified rowset names
	Supported SQL data types in OLE DB

	Chapter 5. Invoking routines
	Routine invocation
	Routine names and paths
	Nested routine invocations
	Invoking 32-bit routines on a 64-bit database server
	Routine code page considerations
	Procedure invocation
	References to procedures
	Procedure selection
	Calling procedures from applications or external routines
	Calling procedures from triggers or SQL routines
	Calling procedures from the Command Line Processor (CLP)

	Function and method invocation
	References to functions
	Function selection
	Distinct types as UDF or method parameters
	LOB values as UDF parameters
	Invoking scalar functions or methods
	Invoking user-defined table functions

	Part 2. Large objects, user-defined distinct types, and triggers
	Chapter 6. Large objects
	Large object usage
	Large object locators
	Retrieving a LOB value with a LOB locator
	Deferring the evaluation of LOB expressions
	Large object file reference variables
	Writing data from a CLOB column to a text file
	Inserting data from a text file into a CLOB column

	Chapter 7. User-defined distinct types
	User-defined types
	User-defined distinct types
	Strong typing in user-defined distinct types
	Creating distinct types
	Creating tables with columns based on distinct types
	Dropping user-defined types
	Creating currency-based distinct types
	Creating a distinct type for completed job application forms
	Creating tables to track international sales
	Creating a table to store completed job application forms
	Manipulating distinct types
	Manipulating distinct types
	Casting between distinct types
	Performing comparisons involving distinct types
	Performing comparisons between distinct types and constants
	Performing assignments involving distinct types in embedded SQL
	Performing assignments involving distinct types in dynamic SQL
	Performing assignments involving different distinct types
	Performing UNION operations on distinctly typed columns
	Defining sourced UDFs for distinct types

	Chapter 8. User-defined structured types
	User-defined structured types
	Creating structured types
	Storing instances of structured types
	Instantiability in structured types
	Structured type hierarchies
	Creating a structured type hierarchy
	Defining behavior for structured types
	Dynamic dispatch of methods
	System-generated routines for structured types
	Comparison and casting functions for structured types
	Constructor functions for structured types
	Mutator methods for structured types
	Observer methods for structured types

	Typed tables
	Typed tables
	Creating typed tables
	Dropping typed tables
	Substitutability in typed tables
	Storing objects in typed table rows
	Defining system-generated object identifiers
	Defining constraints on object identifier columns
	Reference types
	Reference types
	Relationships between objects in typed tables
	Defining semantic relationships with references
	Referential integrity versus scoped references

	Typed views
	Typed views
	Creating typed views
	Altering typed views
	Dropping typed views

	Querying typed tables and typed views
	Issuing queries to dereference references
	Returning objects of a particular type using ONLY
	Restricting returned types using a TYPE predicate
	Returning all possible types using OUTER

	Structured types as column types
	Storing structured type objects in table columns
	Inserting structured type attributes into columns
	Defining and altering tables with structured type columns
	Defining types with structured type attributes
	Inserting rows that contain structured type values
	Modifying structured type values in columns
	Retrieving and modifying structured type values in columns
	Retrieving structured type attributes
	Accessing the attributes of subtypes
	Modifying structured type attributes
	Returning information about a structured type

	Transform functions and transform groups
	Transform functions and transform groups
	Recommendations for naming transform groups
	Specification of transform groups
	Specification of transform groups
	Specifying transform groups for external routines
	Specifying transform groups for dynamic SQL
	Specifying transform groups for static SQL

	Creating the mapping to the host language program
	Host language program mappings with transform functions
	Function transforms
	Implementing function transforms using SQL-bodied routines
	Passing structured type parameters to external routines
	Client transforms
	Implementing client transforms using external UDFs
	Implementing client transforms for binding in from a client using external UDFs
	Data conversion considerations
	Transform function requirements
	Retrieving subtype data from DB2
	Returning subtype data to DB2

	Structured type host Variables
	Declaring structured type host variables
	Describing a structured type

	Chapter 9. Triggers
	Triggers in application development
	INSERT, UPDATE, and DELETE triggers
	Trigger interactions with referential constraints
	INSTEAD OF triggers
	Trigger creation guidelines
	Creating triggers
	Trigger granularity
	Trigger activation time
	Transition variables
	Transition tables
	Triggered action
	Triggered action
	Triggered actions qualified by conditions
	Triggered action composed of SQL statements
	Triggered action containing a procedure or function reference

	Multiple triggers
	Synergy between triggers, constraints, and routines
	Extracting information from UDTs, UDFs, and LOBs with triggers
	Preventing operations on tables using triggers
	Defining business rules using triggers
	Defining actions using triggers

	Part 3. Appendixes
	Appendix A. DB2GENERAL routines
	DB2GENERAL routines
	DB2GENERAL UDFs
	Supported SQL data types in DB2GENERAL routines
	Java classes for DB2GENERAL routines
	Java classes for DB2GENERAL routines
	DB2GENERAL Java class: COM.IBM.db2.app.StoredProc
	DB2GENERAL Java class: COM.IBM.db2.app.UDF
	DB2GENERAL Java class: COM.IBM.db2.app.Lob
	DB2GENERAL Java class: COM.IBM.db2.app.Blob
	DB2GENERAL Java class: COM.IBM.db2.app.Clob

	Appendix B. COBOL procedures
	COBOL procedures
	Supported SQL Data Types in COBOL

	Appendix C. DB2 Universal Database technical information
	DB2 documentation and help
	DB2 documentation updates

	DB2 Information Center
	DB2 Information Center installation scenarios
	Installing the DB2 Information Center using the DB2 Setup wizard (UNIX)
	Installing the DB2 Information Center using the DB2 Setup wizard (Windows)
	Invoking the DB2 Information Center
	Updating the DB2 Information Center installed on your computer or intranet server
	Displaying topics in your preferred language in the DB2 Information Center
	DB2 PDF and printed documentation
	Core DB2 information
	Administration information
	Application development information
	Business intelligence information
	DB2 Connect information
	Getting started information
	Tutorial information
	Optional component information
	Release notes

	Printing DB2 books from PDF files
	Ordering printed DB2 books
	Invoking contextual help from a DB2 tool
	Invoking message help from the command line processor
	Invoking command help from the command line processor
	Invoking SQL state help from the command line processor
	DB2 tutorials
	DB2 troubleshooting information
	Accessibility
	Keyboard input and navigation
	Keyboard input
	Keyboard navigation
	Keyboard focus

	Accessible display
	Font settings
	Non-dependence on color

	Compatibility with assistive technologies
	Accessible documentation

	Dotted decimal syntax diagrams
	Common Criteria certification of DB2 Universal Database products

	Appendix D. Notices
	Trademarks

	Index
	Contacting IBM
	Product information

