
17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-1

Part 17: Application
Programming I

References:
• Elmasri/Navathe: Fundamentals of Database Systems, 2nd Edition.

Section 10.5, “Programming Oracle Applications”

• R. Sunderraman: Oracle Programming — A Primer, Addison-Wesley, 1999.
Chapter 3, “Embedded SQL”, Chapter 5, “Oracle JDBC”.

• Michael Gertz: Oracle/SQL Tutorial, 1999.
[http://www.db.cs.ucdavis.edu/teaching/sqltutorial/]

• Oracle8 Application Developer’s Guide, Oracle Corporation, 1997, Part No. A58241-01.

• Pro*C/C++ Precompiler Programmer’s Guide, Release 8.0, Oracle Corporation, 1997,
Part No. A58233-01.

• Kernighan/Ritchie: The C Programming Language, 2nd Edition, Prentice Hall, 1988.

• Harbison/Steele Jr.: C — A Reference Manual, 4th Ed. Prentice Hall, 1995.

• Chamberlin: A Complete Guide to DB2 Universal Database. Morgan Kaufmann, 1998.

• Microsoft ODBC 3.0, Programmers Reference and SDK Guide, Microsoft Press, 1997.

• Microsoft Open Database Connectivity (Part of MSDN Library Visual Studio 6.0)

• Roger E. Sanders: ODBC 3.5 Developer’s Guide. McGraw-Hill, 1999.

• SQL Server Books Online, “Building SQL Server Applications”.

• Art Taylor: JDBC Developer’s Resource, 2nd Edition. Prentice Hall, 1999.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-2

Objectives

After completing this chapter, you should be able to:

• name a few languages/interfaces/tools which can

be used for application program development.

• develop programs that use Embedded SQL.

You should know the steps to translate a C-program with Embedded
SQL to an executable program. You should be able to explain how
host variables can be used in embedded SQL statements, and when
an indicator variable is needed.

• explain the notion of a cursor and the steps involved

in using a cursor.

• write application programs using ODBC and JDBC.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-3

Overview

1. Introduction and Overview

2. Embedded SQL

3. ODBC

4. JDBC

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-4

Introduction (1)

• SQL is a database language, but not a program-

ming language:

� Powerful queries and updates can be written as

short SQL-commands.

Writing something similar in C would take much more time.

� However, one cannot define user interfaces or

complex computations on the data in SQL.

� SQL is not computationally complete.

Not every computable function on the database states can be ex-
pressed in SQL. Otherwise termination of query evaluation could
not be guaranteed.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-5

Introduction (2)

• SQL is used directly for ad-hoc queries or one-time

updates of the data.

• Repeating tasks have to be supported by applicati-

on programs written in a programming language.

These programs do use SQL internally for data access.

• Not all database users know SQL.

• Even if a user knows SQL, it might be easier and

faster to use an application program.

The application program might also display the query result in a better
way, or perform additional checks on the input data.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-6

Introduction (3)

Mark Kathy Jim John Kim

SQL*Plus
Application

using Pro*C

Application
using

Oracle Forms

Oracle Server
Stored

Procedures
PL/SQL, Java

Data

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-7

Introduction (4)

Some Languages/Tools for Application Programming:

• SQL*Plus Scripts

• C with Embedded SQL (Pro*C)

• C with procedure calls (OCI, ODBC)

• Java with procedure calls (JDBC)

• Form-based applications (Oracle Forms)
Simple Oracle Forms applications are basically editors for relations.
Developed in a graphical enviromentment, without real programming.

• Web Interface: CGI-Program, PL/SQL-Procedures,

Java Servlet, HTML with embedded Perl code, . . .

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-8

Introduction (5)

• Often one has to work with more than one language

(e.g. C and SQL) to develop the application. This

leads to several problems:

� The interface is often not smooth: E.g. different

type systems, “impedance mismatch problem”.
“Impedance mismatch”: SQL is a declarative, set-oriented langua-
ge. Most programming languages are imperative, tuple-oriented.

� Only local optimization of single SQL commands.

� Query evaluation plans for the SQL statements

in the program should be kept between program

executions, but programs are external to the DB.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-9

Introduction (6)

• These problems could be avoided with integrated

systems consisting of a programming language and

a database. Proposed solutions are, e.g.

� Persistant programming languages.

� Pascal/R: Pascal with the type “relation”.

� 4GLs: Fourth Generation Languages
4GL (Fourth Generation Language): GUI + DB + Rules(?)
Visual development environment, “real code” is written seldom.

� Procedures stored in the DB Server.

� Object-oriented databases.

� Deductive databases.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-10

Making Good Use of SQL

• Quite often, application programs use a relational

DBMS only to make objects/records persistent, but

do all computation in the programming language.

I.e. queries retrieve only single rows, and do not perform joins or
aggregations.

• Using more powerful SQL commands might

� simplify the program, and

� significantly improve the performance.
There is an overhead for executing an SQL statement: It must
be sent over the network to the server, and the result sent back.
Thus, the fewer SQL statements are needed to solve the task,
the better. Also query optimization is little used in this style.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-11

Example Database

STUDENTS

SID FIRST LAST EMAIL

101 Ann Smith · · ·
102 Michael Jones (null)
103 Richard Turner · · ·
104 Maria Brown · · ·

EXERCISES

CAT ENO TOPIC MAXPT

H 1 Rel. Algeb. 10
H 2 SQL 10
M 1 SQL 14

RESULTS

SID CAT ENO POINTS

101 H 1 10
101 H 2 8
101 M 1 12
102 H 1 9
102 H 2 9
102 M 1 10
103 H 1 5
103 M 1 7

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-12

Overview

1. Introduction and Overview

2. Embedded SQL

3. ODBC

4. JDBC

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-13

Embedded SQL (1)

• Embedded SQL means that SQL commands are

inserted as specially marked statements in programs

written in C, C++, Cobol, and other languages.

• Inside SQL, variables of the programming language

can be used where SQL allows a constant.

• E.g., insert a new row into the table “RESULTS”:

EXEC SQL INSERT INTO RESULTS(SID,CAT,ENO, POINTS)

VALUES (:sid, :cat, :eno, :points);

• Here sid and so on are “C” variables, and these

lines can be in between normal “C” statements.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-14

Embedded SQL (2)

C-Program with Embedded SQL (*.pc)

Precompiler (Pro*C: proc)

C-Program with Procedure Calls (*.c)

Standard C-Compiler (e.g. gcc)

Object Program (*.o) Oracle Libraries

(Dynamic) Linker

Executable Program

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-15

A Short “C” Repetition (1)

• The programming language “C” was designed by

Dennis Ritchie around 1972 in Bell Labs.
The first textbook was Kernighan/Ritchie, 1978. C is an ANSI Stan-
dard since 1989.

• The traditional first program is:

(1) #include <stdio.h>
(2) int main(void)
(3) {
(4) printf("Hello, world!\n");
(5) /* Comment: \n means newline */
(6) return 0;
(7) }

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-16

A Short “C” Repetition (2)

• The above program declares a procedure “main”

without parameters. It returns an integer.
Every program must have a procedure “main”. This is where the exe-
cution starts (there might be some initialization before it, but the
user cannot influence that). The return value 0 means that the pro-
gram terminated successfully. It is not clear that it is really used. If
something is wrong, it might be better to call exit(i) with a small
positive error code i.

• The file “stdio.h” contains the declaration of the

library function “printf” used for output.

• The braces “{” and “}” are used as “BEGIN” and

“END”. In general, C has a very concise syntax.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-17

A Short “C” Repetition (3)

• In C, a variable declaration is written as

〈Type〉 〈Variable〉;
But e.g. for array types, on the right hand side something like an
expression is written, which would give the type on the left.

• E.g., a variable sid for integers is declared as:

int sid; /* Student ID */

• There are integer types of different size, e.g. short.
The type “short” (or “short int”) is typically 16 bit: -32768..+32767.
The type “int” is the natural word size of the machine (today 32 bit is
normal, which is more than NUMERIC(9), but earlier, it could be 16 bit).
The type “long” is at least 32 bit. Integer types can be modified with
the prefix “unsigned”, e.g. “unsigned short” has the range 0..65535.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-18

A Short “C” Repetition (4)

• The type “char” is typically used for storing cha-

racters, but it is really a byte (small numbers).

It depends on the hardware whether the number is signed or not. One
can use unsigned char if this is important (range 0..255).

• Declaration of an array of 20 characters a[0]..a[19]:

char a[20];

• In C, strings are represented in such character ar-

rays. A null byte is used to mark the string end.

E.g. "xyz" is represented as a[0]=’x’, a[1]=’y’, a[2]=’z’, a[3]=’\0’.
An array of size 20 can contain strings up to only 19 characters.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-19

A Short “C” Repetition (5)

• A value is assigned to a variable in the form:

sid = 101;

• A conditional statement is written as:

if(retcode == 0) /* == means equals */

printf("Ok!\n");

else

printf("Error!\n");

• If more than one statement is needed in the “if”

part or the “else” part, one must use “{...}”.

• C has no boolean type, but uses int instead: 0 is

treated as false, everything else counts as true.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-20

A Short “C” Repetition (6)

• One can print an integer e.g. with:

printf("The current student ID is: %d\n", sid);

The first argument is the format string. Normal characters in it are
literally printed, but “%d” is a format element that prints the value of
an additional “int” argument in decimal notation. Number and type
of additional arguments are determined by the format string.

• One can read an integer in decimal notation with

ok = scanf("%d", &sid);

“&sid” denotes a pointer to sid. C has only “call by value”, but here
one must pass the address of sid to scanf, because it must set the
variable. “scanf” returns the number of converted format elements,
i.e. here “1” would mean “ok”. “scanf” leaves a line end in the input.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-21

A Short “C” Repetition (7)

• Suppose that name is declared as

char name[21];

• In C, one can assign only single characters with “=”,

but there is a library function to copy strings:

strcpy(name, "Smith");

The philosophy is that “=” should correspond to a single machine in-
struction. One must use #include <string.h> to declare this function.
The programmer is responsible that there is never a “buffer overflow”.
If one should assign a string longer than 20 characters, other variables
on the stack are overwritten. C as no built-in protection against the
violation of array limits. Hackers might be able to execute arbitrary
code because of this error.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-22

A Short “C” Repetition (8)

• Strings can be read e.g. with

scanf("%s", name);

For arrays, the memory address is passed, thus no “&” is needed.

• This command will read only a string consisting of

non-blank characters (a word). To read an entire

line use “gets(name);” or

fgets(name, 21, stdin);

name[strlen(name)-1]=’\0’;

• Strings can be printed e.g. with

printf("%s", name);

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-23

Host Variables (1)

• If SQL is embedded in C, then C is the “host lan-

guage”. C-variables which should be used in SQL

statements are called “host variables”.

• Note that the database has a type system which is

quite different from the “C” type system.
E.g. C has no type “DATE”, no C type corresponds to “NUMERIC(30)”.

• In addition, “C” has no notion of null values.

• Even if there is a natural correspondence between

an SQL type and a C type, the storage format

Oracle uses can differ from the C representation.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-24

Host Variables (2)

• E.g. Oracle stores strings (VARCHAR) with the length

followed by an array of characters. C uses an array

of characters with a null character at the end.
Also Oracle stores numbers with mantissa and exponent (scientific
notation), where the mantissa is stored in a kind of BCD format
(4 bits for every digit). But C uses a binary representation.

• So some sort of type / memory format conversion

has to take place whenever data values are passed

from the database to the program or vice versa.

• The precompiler can do quite a lot, but some work

remains for the programmer.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-25

Host Variables (3)

• Oracle has a list of “internal types” (Oracle types)

and “external types” (types of C and other host

languages) and possible conversions between them.

• Many conversions are done automatically, e.g. from

NUMERIC(p), p not big, into the C-type “int”.
Also NUMERIC(p,s) can be converted to and from the C-type “float”,
although precision may be lost.

• But for VARCHAR, one must either declare variables

with an unusual C-type corresponding to Oracle’s

representation, or explicitly state that one wants to

use the C convention for marking the string end.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-26

Host Variables (4)

• The precompiler must be able to understand the

declaration of the host variables.

• The precompiler does not necessarily understand

the full “C” syntax.

In general it can do its job by looking only at the statements specially
marked with the prefix “EXEC SQL”. It is also not really desirable that
the precompiler checks the complete C syntax. Then one would have
to write “C” which is acceptable to two compilers.

• Thus, variable declarations relevant to the precom-

piler must be enclosed in “EXEC SQL BEGIN DECLARE

SECTION” and “EXEC SQL END DECLARE SECTION”.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-27

Host Variables (5)

• E.g. the declare section can look as follows:

EXEC SQL BEGIN DECLARE SECTION;
int sid; /* Student ID */
varchar first[20]; /* Student first name */
char last[21]; /* Student last name */
EXEC SQL VAR last IS STRING(21);

EXEC SQL END DECLARE SECTION;

• “sid” is a standard C integer variable, and Oracle

can convert it automatically to and from NUMERIC(p).

• “last” is a standard C string variable.
Here an explicit type-declaration for the precompiler is required (or
the option CHAR_MAP=STRING). Note that the max. string length is 20.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-28

Host Variables (6)

• “varchar first[20]” is not a standard C data type.

• The precompiler translates it into
struct {

unsigned short len;
unsigned char arr[20];

} first;

• One possibility to read this is by

scanf("%s", first.arr);
first.len = strlen(first.arr);

Only strings up to 19 characters can be read since scanf places the null
byte at the end. If the input is longer, other variables are overwritten!
In real projects one needs protection against such “buffer overflows”.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-29

Host Variables (7)

• In the same way, Oracle strings can be printed by

transforming them first into C strings:
first.arr[first.len] = ’\0’;

printf("%s", first.arr);

• A string can be assigned/copied in this way:

strcpy(first.arr, "Ann");

first.len = strlen(first.arr);

• Space for the additional null byte is needed in each

of these operations.
One can declare the host variable longer than the corresponding data-
base column. E.g. it would be better to declare “varchar first[21];”.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-30

Host Variables (8)

• The variables in the DECLARE SECTION can be global

or local.

• The types of these variables must be such that the

precompiler can understand them.

• Especially, no non-standard types (defined by the

programmer with typedef) are allowed.

• Host variables can have the same name as data-

base columns since they are marked in the SQL

commands with a “:”.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-31

Error Checking (1)

• After every execution of an SQL command, one

must check whether an error happened.

• One possibilities for this is to declare a variable

char SQLSTATE[6];

• As required by the SQL-92 standard, if such a va-

riable is declared, Oracle stores a “Return Code”

in it after executing an SQL command.
The SQL State has five characters, SQLSTATE[5] should be set to 0.
The first two characters contain a “class code”, e.g. ’00’ means “ok”
and ’02’ means that there are no more tuples to be returned by the
query. The following three characters can contain a “subclass code”.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-32

Error Checking (2)

• Another possibility, only retained for compatibility

with the SQL-86 standard, is to declare a variable

long SQLCODE;

Here 0 means successful execution, 100 means that there are no
further tuples, and negative values denote errors.

• Oracle (but not the standard) also offers a da-

ta structure called “SQL Communications Area”,

containing various information including a return

code. This structure “sqlca” is declared with

EXEC SQL INCLUDE SQLCA;

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-33

Error Checking (3)

• The component “sqlca.sqlcode” contains the re-

turn code: E.g. 0: ok, 1403: no further tuples.

• The component “sqlca.sqlerrm.sqlerrmc” contains

the text of an error message (not null terminated),

“sqlca.sqlerrm.sqlerrml” is its length:

printf("%.*s\n", sqlca.sqlerrm.sqlerrml,

sqlca.sqlerrm.sqlerrmc);

• The error message can also be obtained with the

procedure sqlglm.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-34

Error Checking (4)

• One can tell the precompiler to automatically insert

an error check after every “EXEC SQL” command:

EXEC SQL WHENEVER SQLERROR GOTO 〈Label〉;

• The DO clause allows to execute any C-statement:

EXEC SQL WHENEVER SQLERROR DO error();

This is an Oracle extension, otherwise WHENEVER is part of SQL-86/92.

• One can cancel previous WHENEVER-declarations with

EXEC SQL WHENEVER SQLERROR CONTINUE;

A WHENEVER declaration applies to all EXEC SQL statements which follow
in in the program text, until the next WHENEVER declaration.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-35

Example (1)

(1) /* Program to enter a new exercise */
(2)
(3) #include <stdio.h>
(4) EXEC SQL INCLUDE SQLCA;
(5) EXEC SQL BEGIN DECLARE SECTION;
(6) VARCHAR user[128];
(7) VARCHAR pw[32]; /* Password */
(8) VARCHAR cat[1];
(9) int eno;

(10) int points;
(11) VARCHAR topic[42]; /* column: size 40 */
(12) EXEC SQL END DECLARE SECTION;
(13)

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-36

Example (2)

(14) /* Procedure called in case of errors: */
(15) void error(const char msg[])
(16) {
(17) /* Print error message: */
(18) fprintf(stderr, "Error: %s\n", msg);
(19)
(20) /* Close database connection: */
(21) EXEC SQL ROLLBACK WORK RELEASE;
(22)
(23) /* Terminate Program: */
(24) exit(1);
(25) }
(26)

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-37

Example (3)

(27) int main(void)
(28) {
(29) char line[80];
(30)
(31) /* Catch errors: */
(32) EXEC SQL WHENEVER SQLERROR GOTO error;
(33)
(34) /* Log into Oracle: */
(35) strcpy(user.arr, "SCOTT");
(36) user.len = strlen(user.arr);
(37) strcpy(pw.arr, "TIGER");
(38) pw.len = strlen(pw.arr);
(39) EXEC SQL CONNECT :user IDENTIFIED BY :pw;

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-38

Example (4)

(40) /* Read CAT, ENO of new exercise: */
(41) printf("Enter data of new exercise:\n");
(42) printf("Category (H,M,F) and number: ");
(43) fgets(line, 80, stdin);
(44) if(line[0]!=’H’ && line[0]!=’M’ &&
(45) line[0]!=’F’)
(46) error("Invalid Category");
(47) cat.arr[0] = line[0];
(48) cat.len = 1;
(49) if(sscanf(line+1, "%d", &eno) != 1)
(50) error("Invalid number");
(51)

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-39

Example (5)

(52) /* Read topic of new exercise: */
(53) printf("Topic of the exercise: ");
(54) fgets((char*) topic.arr, 42, stdin);
(55) topic.len = strlen(topic.arr) - 1;
(56) /* -1 removes line end ’\n’ */
(57)
(58) /* Read maximal number of points: */
(59) printf("Maximal number of points: ");
(60) fgets(line, 80, stdin);
(61) if(sscanf(line, "%d", &points) != 1)
(62) error("Invalid number");
(63)

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-40

Example (6)

(64) /* Show exercise data: */
(65) printf("%c %d [%s]: %d points\n"
(66) cat.arr[0], eno, title.arr, maxpt);
(67)
(68) /* Execute INSERT statement: */
(69) EXEC SQL INSERT INTO
(70) EXERCISES(CAT, ENO, TOPIC, MAXPT)
(71) VALUES(:cat, :eno, :topic, :points);
(72)
(73) /* End transaction, Log off: */
(74) EXEC SQL COMMIT WORK RELEASE;
(75)

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-41

Example (7)

(76) /* Terminate Program: */
(77) return(0);
(78)
(79) /* In case of errors: */
(80) error:
(81) EXEC SQL WHENEVER SQLERROR CONTINUE;
(82) printf("Oracle Error: %.*s\n",
(83) sqlca.sqlerrm.sqlerrml,
(84) sqlca.sqlerrm.sqlerrmc);
(85) EXEC SQL ROLLBACK WORK RELEASE;
(86) exit(2);
(87) }

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-42

Practical Hints (1)

• Example programs are available in

$ORACLE_HOME/precomp/demo/proc

• There is also a makefile “demo_proc.mk” which calls

the precompiler, the compiler, and the linker.
The number of libraries which must be linked to the program is large.

• When the final program is executed, the environ-

ment variables need to be correctly set.
If one executes the program directly, this should be no problem: When
e.g. SQL*Plus works, also one’s own Oracle application should work.
But when it is a cgi-program started by the web server, one must
ensure that the environment variables (e.g. LD_LIBRARY_PATH) are set.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-43

Practical Hints (2)

• The result of the precompilation is a standard C

program with the EXEC SQL replaced by initializati-

ons of data structures and procedure calls.
The original EXEC SQL statement is preserved in comments.

• Error messages of the C-compiler contain the line

number in the “*.c” file, not in the “*.pc” file.
That is bad, because the error must be corrected in the “*.pc-file. C
has a mechanism for avoiding this (#line), but Pro*C doesn’t use it.

• If the program becomes larger and is split into se-

veral modules, one probably wants only one “*.pc-

module, and otherwise standard C modules.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-44

Simple Queries (1)

• The above example shows how to pass values from

the program into the database (e.g. for INSERT).

• Now the task is to get values out of the database

into program variables.

• If it is known that a query can return at most one

tuple, the following format can be used:
EXEC SQL SELECT FIRST, LAST

INTO :first, :last

FROM STUDENTS

WHERE SID = :sid;

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-45

Simple Queries (2)

• It is an error if the SELECT yields more than one row.

• E.g. the following query is only safe if FIRST, LAST

is declared as an alternative key of STUDENTS:

EXEC SQL SELECT SID

INTO :sid

FROM STUDENTS

WHERE FIRST = :first

AND LAST = :last;

If it is not declared as key, Oracle will still execute the query wi-
thout warning as long as there is at most one SID returned. However,
when the query should ever return two SIDs, the program will brake
(terminate with an Oracle error).

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-46

Simple Queries (3)

• After the SELECT-query, one must check whether a

row was found. It is no error if the query result is

empty, but then the INTO variables are not set.

• One possibility is to check the status code:
if(sqlca.sqlcode == 0)

... process the returned data ...

• Alternative (conforms to SQL-86/92 standard):

EXEC SQL WHENEVER NOT FOUND GOTO empty;

EXEC SQL SELECT ... INTO ...;

... process the returned data ...

empty: ...

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-47

General Queries (1)

• If the query can yield more than one tuple, the

tuples must be read one after the other in a loop.

• In order to do this, one must first declare a “cursor”

for the query:

EXEC SQL DECLARE c1 CURSOR FOR

SELECT CAT, ENO, POINTS

FROM RESULTS

WHERE SID = :sid;

• At this point, the query is not yet executed, and

the value of “:sid” is not important.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-48

General Queries (2)

• The second step is to open the cursor:

EXEC SQL OPEN c1;

• At the OPEN, the query is evaluated, and the then

current value of the query parameter “:sid” is used.

• It is possible to close the cursor and open it again

with a different value of “:sid”.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-49

General Queries (3)

• The third step is to read the query result a tuple

at a time into the host variables.

• This is done by using “FETCH” in a loop:

EXEC SQL WHENEVER NOT FOUND GOTO done;

while(1) { /* 1 is true, i.e. while(forever) */

EXEC SQL FETCH c1 INTO :cat, :eno, :points;

... Process result tuple ...

}

done: ...

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-50

General Queries (4)

• The GOTO can be avoided by using the DO clause.

However, this is part of the standard:

EXEC SQL WHENEVER NOT FOUND DO break;

The C statement “break” terminates the nearest enclosing loop.

• One can also watch the return code directly, but

then the FETCH-statement must be duplicated:

EXEC SQL FETCH c1 INTO :cat, :eno, :points;

while(sqlca.sqlcode == 0) {

... Process result tuple ...

EXEC SQL FETCH c1 INTO :cat, :eno, :points;

}

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-51

General Queries (5)

• “sqlca.sqlcode == 0” works only in Oracle.

• In SQL-86, one would write “SQLCODE == 0”.

• In SQL-92, one should use “SQLSTATE”:

while(SQLSTATE[0] == ’0’ and SQLSTATE[1] == ’0’)

• The last (fourth) step is to close the cursor:

EXEC SQL CLOSE c1;

• Open cursors need memory and might retain locks

on the data, therefore one should not forget to

close the cursor.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-52

Positioned Updates/Deletes

• One can refer to the tuple last FETCHed in UPDATE

and DELETE commands:

EXEC SQL UPDATE RESULTS SET POINTS = :points

WHERE CURRENT OF c1;

• This is helpful if one has to ask the user or if the

new attribute value is computed in C (not in SQL).

• In this case one should add the “FOR UPDATE” clause

to the query (this locks the current tuple).

Of course, this works only with queries where every result tuple is
derived from a single source tuple. One cannot use positioned updates
with join or aggregation queries.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-53

Null Values (1)

• If a query can yield a null value, one must use two

variables: One for the data value, and one for indi-

cating whether the value is null.

• Such variables are called “Indicator-Variables”.

They must be declared as “short” in Oracle.

• The indicator variable will be set to -1 if a null value

was returned, and 0 if a normal value was returned.

Oracle uses other codes besides these two, but this does not agree
with the standard.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-54

Null Values (2)

• E.g. consider a cursor to fetch student data:

EXEC SQL DECLARE stud CURSOR FOR

SELECT FIRST, LAST, EMAIL

FROM STUDENTS;

• An indicator-variable can be attached to any varia-

ble in an SQL statement, e.g.

EXEC SQL FETCH stud INTO :first, :last,

:email INDICATOR :ind;

• In Oracle, the keyword “INDICATOR” is not needed.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-55

Null Values (3)

• It is an error if a column should be null and one

tries to FETCH it into a variable without indicator.

• In the above example, the columns FIRST and LAST

are declared NOT NULL, therefore no indicator varia-

ble is needed when they are fetched.

• Do not forget that aggregation functions (except

COUNT) can return a null value if their input is empty!

• Indicator variables can e.g. also be used in an INSERT

statement to set columns to null.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-56

Using Arrays (1)

• It is not very efficient to exchange a large number of

tuples one by one between database and application

program.

• Oracle allows to use arrays as host variables for

exchanging larger chunks of data in one step.

• However, this is not part of the SQL-92 standard.

• The number of tuples returned can be found in

sqlca.sqlerrd[2].

This counts tuples fetched until now after cursor was opened.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-57

Using Arrays (2)

• When inserting an array of values into a relation,

one must specify the number of values as

FOR :n INSERT INTO ...

• In one application, using arrays did significantly im-

prove the performance of the program.

• Oracle also supports records as host variables.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-58

Dynamic SQL (1)

• Above, table and column names were already known

when the program was written, only some constants

(data values) were not known until runtime.

• In this case, the precompiler can check the exi-

stence of the tables and columns.

Oracle Pro*C has an option for this. It is not the default. One must
specify a username and password already during the precompiler run.
However, at least the SQL syntax is checked.

• In some systems (e.g. DB2), the queries are already

optimized and a “query evaluation plan” (program

for executing the query) is stored in the database.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-59

Dynamic SQL (2)

• It is possible to compose SQL commands at runti-

me in string variables and then to submit the string

to the database for execution.
E.g. SQL interpreters like SQL*Plus work this way, because tables and
columns depend on the input from the user. Also a database interface
library like ODBC is typically implemented with dynamic SQL.

• If the SQL command is not a query, it can be exe-

cuted in this way:

EXEC SQL EXECUTE IMMEDIATE :sql_cmd;

In this form, the SQL command cannot contain host variables, but
that is no restriction, since one can drectly insert their values into the
command string.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-60

Dynamic SQL (3)

• One of the problems of Dynamic SQL is that the

command is compiled (into a QEP) every time it

is executed. Query optimization needs runtime.

Normally, it is compiled at precompilation time or only once when
it is executed for the first time. Oracle does not compute QEPs
at precompilation time, but it cashes them for the most recently
executed queries. This reduces the problems, but only when one uses
host variables in the strings. If one simply copies data values in the
SQL command strings, the SQL commands are always different.

• If an SQL statement is executed several times with

different parameter values, one can compile it with

PREPARE and then use “EXECUTE...USING 〈Variables〉”.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-61

Dynamic SQL (4)

• Dynamic queries are quite complicated, because the

result columns are not known until runtime.

• In this case, an “SQL Descriptor Area” (SQLDA)

is used to get information about the result columns.
Oracle uses the function sqlald followed by several calls to malloc,
the SQL-92 standard contains a command ALLOCATE DESCRIPTOR.

• The DESCRIBE statement stores the number, names,

and datatypes of the result columns of a dynamic

query into the SQLDA.
The SQLDA also contains place for pointers to variables which will
contain the retrieved data elements (the “FETCH” host variables).

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-62

Dynamic SQL (5)

• The sequence of steps is:

� An SQLDA is allocated (with sqlald/malloc in

Oracle and ALLOCATE DESCRIPTOR in SQL-92).

� The string with the query is composed.

� PREPARE is used to compile the SQL query.

� OPEN is used to execute the query and open a

cursor for the query result.

� DESCRIBE is used to fill the SQLDA.

� Variables for the query result are allocated.

� FETCH is called in a loop to get the result tuples.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-63

Portability Issues (1)

• The SQL standard is mainly for Embedded SQL,

so that application programs become portable.

For ad-hoc queries, a standard is not so important.

• The CASCADE project at the university of Pitts-

burgh was ported from Oracle Pro*C to Microsoft

ESQL (running on MS SQL Server).

ESQL is no longer supported by Microsoft. Microsoft wants everbo-
dy to use ODBC, ADO, or OLE DB. CASCADE is a collaborative
authoring system developed by Michael Spring and his research group.

• In general, the port was more work than expected.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-64

Portability Issues (2)

• One problem was that the SQL commands con-

tained non-standard constructs, only supported by

Oracle, e.g.

� the strange outer join syntax,

� the “START WITH ... CONNECT BY ...” construct.
This is intended for processing tree-structured data. In particular,
Oracle supports the transitive closure in this way.

• If one anticipates that a port will be necessary, one

can in part avoid this. But the price is: (1) less work

done in SQL, more in C, (2) more complicated SQL

statements, (3) non-optimal performance.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-65

Portability Issues (3)

• Another problem was that the type conversion with

the host variables was different:

� MS ESQL does not have the VARCHAR type for

host variables (with length and character array).

� It might be more portable to use char x[n], but

then x will be filled with spaces until the length n.
One can have standard C strings in MS ESQL, but only if the host
variable is a character pointer (pointing to a memory buffer).

� Elements of the DATE type were converted very

differently into character arrays.
It was already lucky that the DATE type is supported.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-66

Portability Issues (4)

• Using the return codes for executed SQL comman-

ds also caused problems:

� One must use SQLCODE in MS ESQL (Oracle’s

sqlca is not contained in the Standard).

� “WHENEVER NOT FOUND DO break;” does not work

in MS ESQL (it is not contained in SQL-92).

MS ESQL allows “WHENEVER ... CALL 〈Procedure〉”, but also that
is not contained in the standard (and is not supported in Oracle).

• Also the data dictionary is structured differently in

Oracle and MS SQL Server.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-67

Overview

1. Introduction and Overview

2. Embedded SQL

3. ODBC

4. JDBC

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-68

Introduction (1)

• ODBC (Open Database Connectivity) is an inter-

face for application programs (API) to send SQL

commands to a DBMS and get back the results.

• ODBC was developed by Microsoft.
Microsoft ODBC website: [http://www.microsoft.com/data/odbc/]

• An SQL Call Level Interface (CLI), which is a sub-

set of ODBC 3.x, was standardized by X/OPEN

and ISO/IEC in 1995.

• Since only procedure calls are used, no precompiler

is needed.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-69

Introduction (2)

• The goal of ODBC is to make application programs

portable: ODBC drivers are available for many dif-

ferent DBMS.

Like printer drivers implement a common interface for printers, so
that word processing software can print on any printer, an ODBC-
application can work with any DBMS which has an ODBC driver.

• ODBC drivers are also available for non-relational

data sources, e.g. spreadsheets and flat files.

These drivers must implement some SQL themselves.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-70

Introduction (3)

• ODBC does not make the differences between sy-

stems completely invisible, but it

� guarantees a minimal set of SQL constructs,
Only few constructs are guaranteed, e.g. no subqueries, no aggre-
gations, no explicit tuple variables, and no LIKE. But the minimal
syntax does contain joins and ORDER BY.

� has many functions for checking which features

a DBMS supports,

� defines escape sequences in SQL commands that

the driver replaces by a DBMS-specific syntax.
E.g. for date etc. constants, for the ESCAPE clause of the LIKE

predicate, for outer joins, and for procedure calls.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-71

Introduction (4)

• ODBC uses dynamic SQL: SQL queries are pas-

sed as strings to the DBMS. Thus, queries can be

constructed at runtime.

When not using a precompiler, there is basically no alternative to
this. It might a bit slower than static embedded SQL, where already
the precompiler can generate a query evaluation plan (in DB2). Also,
a precompiler can check SQL syntax for static SQL, whereas here
errors are only detected when the faulty statements are executed.

• It is possible with ODBC to optimize a statement

only once and then execute it for different parame-

ter values (improves the performance).

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-72

Introduction (5)

• ODBC is naturally very common on Windows plat-

forms: There Oracle and DB2 come also with an

ODBC driver.

Of course, SQL Server has an ODBC driver.

• But e.g. ODBC drivers for Oracle on Solaris are

available from a number of third-party vendors.

E.g. Merant, Intersolv. Microsoft states that it works together with Vi-
sigenic Software to port its SDK to the Apple Macintosh and a variety
of UNIX platforms. In general, if one has a precompiler for embedded
SQL that supports dynamic SQL, one could write an ODBC interface
oneself. But depending on how much of ODBC one really uses, that
could be a lot of work.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-73

Other APIs

• Microsoft has developed newer object-oriented DB

interfaces [http://www.microsoft.com/data/]:

� ADO: Microsoft AcitiveX Data Objects:

Easier, language-neutral interface to OLE DB.

� OLE DB: COM API for accessing data.

• Although both are intended to be open interfaces

and support other data sources than Microsoft SQL

Server, there is no independent standard for them

(whereas ODBC is compatible with SQL CLI).
However, there is an “OLE DB Provider” which can use an ODBC
driver to access data. Thus, it is upward compatible to ODBC.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-74

Using ODBC (1)

• In order to use ODBC, the following is needed:

� An ODBC driver for the DBMS.
Most DBMS for Windows come with such a driver.

� Header files (.h) that define constants and types

needed for calling the ODBC procedures.
These are part of the Microsoft ODBC Software Development Kit
(SDK) and should come e.g. with Microsoft Visual C++.

� The driver manager, a library (DLL), to which

the ODBC application is linked.
It is responsible for loading the correct driver and forwarding the
ODBC function calls to the driver. It should already come with
the Windows operating system.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-75

Using ODBC (2)

• Under Windows, an ODBC data source for the DB

should be configured in the control panel.

This is simply a name for the database connection information. One
must specify e.g. what ODBC driver should be used and to which
database it should connect. Username and password can be defined
either here or in the application program. There are also many options
that can be set, e.g. whether there should be an automatic COMMIT

after every update.
In this way, it is possible to distribute application programs in bina-
ry form that can work e.g. with an Oracle database or an Access
database without any change.

• Alternatively, the database connection information

can be hardcoded in the application program.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-76

ODBC: Handles (1)

• “Handles” are opaque pointers to data structures

in the driver. The data structures are only accessed

via ODBC functions. There are 4 types of handles:

� Environment Handles (e.g. ODBC version).

� DB Connection Handles (filled by logging into a

DBMS, necessary to submit SQL commands)

� Statement Handles (for SQL statements in exe-

cution, contains e.g. a cursor)

� Descriptor Handles (e.g. for data about result

columns)

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-77

ODBC: Handles (2)

• The data structures are allocated with the function

SQLAllocHandle(HandleType, HandleIn, HandleOut)

• HandleType is one of the constants SQL_HANDLE_ENV,

SQL_HANDLE_DBC, SQL_HANDLE_STMT, SQL_HANDLE_DESC.

• HandleIn (of type SQLHANDLE) defines a context:

� For environment handles: SQL_NULL_HANDLE.

� For connection handles: an environment handle.

� For statement handles: a connection handle.
Descriptor handles are seldom explicitly allocated.

• HandleOut must point to a variable of type SQLHANDLE.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-78

ODBC: String Parameters

• Strings are passed to ODBC functions with two

arguments: a character array and the length.

• The special constant SQL_NTS for the length means

that the character array is a null-terminated string.

• E.g. for opening a database connection, one must

specify a connection handle, the data source name,

user and password (if not set in the data source):

SQLConnect(conn,
(SQLCHAR*) "MyOracleDB", SQL_NTS,
(SQLCHAR*) "SCOTT", SQL_NTS,
(SQLCHAR*) "TIGER", SQL_NTS);

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-79

ODBC: Return Codes (1)

• Every ODBC function returns a result code (of type

SQLRETURN). It should normally be SQL_SUCCESS.

• The value SQL_SUCCESS_WITH_INFO means that the

request was executed, but a warning was generated.

It is good programming practice to check these result codes. This was
not done in most program examples shown here for space reasons.

• If an ODBC call fails, one can get more information

with SQLGetDiagRec. E.g. if the SQLConnect above

fails, one could execute the code on the next page.

With every handle, a sequence of zero or more diagnostic records is
associated (error message stack of the last command for this handle).

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-80

ODBC: Return Codes (2)

(1) SQLCHAR sqlstate[6], msg[256];
(2) SQLINTEGER native_err;
(3) SQLSMALLINT i = 1, len;
(4) while(SQLGetDiagRec(SQL_HANDLE_DBC, conn,
(5) i, sqlstate, &native_err,
(6) msg, (SQLSMALLINT)256, &len)
(7) == SQL_SUCCESS) {
(8) printf("Error %d ", (int)native_err);
(9) sqlstate[5] = ’\0’;

(10) printf("(SQLSTATE = %s):\n", sqlstate);
(11) printf(" %.*s\n", (int)len, msg);
(12) i = i + 1;
(13) }

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-81

ODBC: Executing SQL (1)

• The easiest way to execute an SQL statement is

to pass the string to SQLExecDirect:

SQLExecDirect(stmt,

(SQLCHAR*) "SELECT EMAIL, SID FROM STUDENTS",

SQL_NTS)

• Here, stmt is a statement handle that was allocated

with SQLAllocHandle.

In particular, it contains a link to the connection handle that was
specified in the call to SQLAllocHandle.

• SQLExecDirect creates a cursor in the statement

handle that is positioned before the first result row.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-82

ODBC: Executing SQL (2)

• In order to fetch result rows, one must bind C varia-

bles to columns. ODBC can do a type conversion,

one only has to specify the type of the C variable.

SQLCHAR email[80]; /* unsigned char */

SQLINTEGER ind; /* long int */

SQLBindCol(stmt, 1, SQL_C_CHAR,

(SQLPOINTER) email, (SQLINTEGER) 80, &ind);

The parameters of SQLBindCol are (1) a statement handle, (2) the
output column number, (3) an identification of the C type of the
variable to be bound, (4) a pointer to the output variable, (5) its size
if it is an array, (6) a pointer to a length and indicator variable.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-83

ODBC: Executing SQL (3)

• An integer variable can be bound to the numeric

column SID (the second result column) as follows:

SQLINTEGER sid; /* (signed) long int */

SQLBindCol(stmt, 2, SQL_C_SLONG,

(SQLPOINTER) &sid, (SQLINTEGER) 0, &ind);

• The buffer length is not needed, since the variable

is not an array. Thus “(SQLINTEGER) 0” is passed.
SID can never be null, thus one could also use “(SQLPOINTER) 0” for
the length/indicator variable.

• The ODBC reference contains a list of C types (in-

cluding structures for DATE values) and their codes.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-84

ODBC: Executing SQL (4)

• The following call retrieves the next result row and

stores it in the C variables bound to the columns:

SQLFetch(stmt);

• SQL_NO_DATA is returned at the end.

• The value stored in the array email will be null-

terminated. The variable ind is set to the string

length of the result or SQL_NULL_DATA for a null value.
If the buffer email should be too small, ind still contains the length
of the complete result string, although the value in email is trunca-
ted. Even in this case, email is null-terminated. The return code is
then SQL_SUCCESS_WITH_INFO. For long object types, the total length is
difficult to determine, in this case SQL_NO_TOTAL is stored in ind.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-85

ODBC: Parameters (1)

• The parameter marker “?” can be used to introduce

placeholders in an SQL statement, for which later

values of program variables will be inserted:

SQLPrepare(stmt, (SQLCHAR*)

"SELECT FIRST,LAST FROM STUDENTS WHERE SID = ?",

SQL_NTS)

• This corresponds to using “:〈Variable〉” in Embed-

ded SQL.

• Parameters are especially useful if an SQL state-

ment must be executed several times with different

parameter values (it is optimized only once).

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-86

ODBC: Parameters (2)

• However, even for a one-time execution, parame-

ters can be useful: One can avoid in this way to

construct an SQL statement at runtime.
E.g. if one is not careful, the generated SQL statement will give a
syntax error when a string variable contains a quotation mark ’.

• Of course, an SQL statement can have more than

one parameter “?”. The parameters are identified

by position (1st, 2nd, etc.).
Parameters are not permitted in the SELECT-list. It is also not possible
that both sides of a comparison operator are a parameter: Even when
the parameter is not yet bound to a variable, it must be known whether
the comparison is numeric or lexicographic.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-87

ODBC: Parameters (3)

• SQLBindParameter is used to bind C variables to pa-

rameters in SQL statements.

• One must specify the type of the C variable and

the SQL type to which is should be converted:

SQLBindParameter(stmt, 1, SQL_PARAM_INPUT,

SQL_C_SLONG, SQL_NUMERIC,3,0,/*NUMERIC(3,0)*/

&sid, 0, NULL)

• All parameters in normal SQL statements are input

parameters (SQL_PARAM_INPUT).

However, when stored procedures (executed in the DBMS server) are
called, output and input/output parameters are supported.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-88

ODBC: Parameters (4)

• E.g. if the statement had a second parameter of

type VARCHAR(20) one could bind this as follows:

SQLCHAR name[20]; /* unsigned char */

SQLINTEGER len = SQL_NTS;

SQLBindParameter(stmt, 2, SQL_PARAM_INPUT,

SQL_C_CHAR, SQL_VARCHAR,20,0,/*VARCHAR(20)*/

name, 0, &len)

• The prepared statement is executed with

SQLExecute(stmt);

Only at this point, the parameter variables must

contain values.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-89

ODBC Example (1)

(1) #include <stdio.h>
(2) #include <windows.h>
(3) #include <Sql.h>
(4) #include <Sqlext.h>
(5) #include <Sqltypes.h>
(6)
(7) int main(void)
(8) {
(9) SQLRETURN rc; /* Return Code */

(10) SQLHENV env; /* Environment Handle */
(11) SQLHDBC conn; /* DB Connection Handle*/
(12) SQLHSTMT stmt; /* Statement Handle */

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-90

ODBC Example (2)

(13) SQLINTEGER prod_id;
(14) SQLINTEGER id_null;
(15) SQLCHAR prod_name[50];
(16) SQLINTEGER name_null;
(17)
(18) /* Allocate Environment Handle: */
(19) SQLAllocHandle(SQL_HANDLE_ENV,
(20) SQL_NULL_HANDLE, &env);
(21) SQLSetEnvAttr(env, SQL_ATTR_ODBC_VERSION,
(22) (SQLPOINTER) SQL_OV_ODBC3,
(23) (SQLINTEGER) 0);

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-91

ODBC Example (3)

(24) /* Allocate Connection Handle: */
(25) SQLAllocHandle(SQL_HANDLE_DBC,
(26) env, &conn);
(27)
(28) /* Connect to Database: */
(29) rc = SQLConnect(conn,
(30) (SQLCHAR*) "Northwind", SQL_NTS,
(31) (SQLCHAR*) "", SQL_NTS, /* User */
(32) (SQLCHAR*) "", SQL_NTS); /* Pwd */
(33) if(rc != SQL_SUCCESS
(34) && rc != SQL_SUCCESS_WITH_INFO)
(35) ...

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-92

ODBC Example (4)

(36) /* Allocate Statement Handle: */
(37) SQLAllocHandle(SQL_HANDLE_STMT,
(38) conn, &stmt);
(39)
(40) /* Execute a Query: */
(41) rc = SQLExecDirect(stmt, (SQLCHAR*)
(42) "SELECT ProductID, ProductName "
(43) "FROM Products ORDER BY 1",
(44) SQL_NTS);
(45) if(rc != SQL_SUCCESS)
(46) ...

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-93

ODBC Example (5)

(47) /* Bind Variables to Output Columns: */
(48) SQLBindCol(stmt, 1, SQL_C_SLONG,
(49) (SQLPOINTER) &prod_id,0,
(50) &id_null);
(51) SQLBindCol(stmt, 2, SQL_C_CHAR,
(52) (SQLPOINTER) &prod_name,
(53) (SQLINTEGER) sizeof(prod_name),
(54) &name_null);
(55)
(56) /* Print Query Result: */
(57) rc = SQLFetch(stmt); /* Get first row */
(58) if(rc == SQL_NO_DATA)
(59) printf("Query result is empty\n");

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-94

ODBC Example (6)

(60) else {
(61) while(rc == SQL_SUCCESS ||
(62) rc == SQL_SUCCESS_WITH_INFO) {
(63) printf("%6d ", prod_id);
(64) if(name_null == SQL_NULL_DATA)
(65) printf("(null)\n");
(66) else
(67) printf("%s\n", prod_name);
(68) rc = SQLFetch(stmt);
(69) }
(70) }

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-95

ODBC Example (7)

(71) /* Free Handles, Close DB Connection: */
(72) SQLFreeHandle(SQL_HANDLE_STMT, stmt);
(73) SQLDisconnect(conn);
(74) SQLFreeHandle(SQL_HANDLE_DBC, conn);
(75) SQLFreeHandle(SQL_HANDLE_ENV, env);
(76)
(77) /* We are done: */
(78) printf("Query successfully executed\n");
(79) return(0);
(80) }

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-96

Overview

1. Introduction and Overview

2. Embedded SQL

3. ODBC

4. JDBC

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-97

Introduction (1)

• JDBC is an API for accessing databases from Java

Programs.

• It based on the SQL CLI (ODBC), but adds a nice

object-oriented interface.

• See [http://java.sun.com/products/jdbc/].

• An alternative is SQLJ (Embedded SQL in Java).

• Thanks to Kevin Ho for the example and to Jan

Grau for many suggestions for improvements.

I slightly modified the example and may have introduced errors.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-98

Introduction (2)

• There are currently four different ways to access a

database via JDBC from a Java program:

� JDBC-ODBC Bridge: An existing ODBC driver

is used.
Problem: The ODBC driver must be installed on every client. Also
not very efficient.

� Native-API Driver: JDBC calls are translated to

the native API on the client machine.
Then the DBMS client software must be installed on every client.
The network connection to the server is now done entirely by the
existing DBMS software. The Oracle-OCI JDBC driver is of this
type.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-99

Introduction (3)

• JDBC driver types, continued:

� JDBC-Net Driver: JDBC calls are converted to

a DBMS-independent network protocol.

A program on the server machine (middleware server) translates
this to calls of the DBMS.

� Native Protocol Java Driver: Converts JDBC calls

to the network protocol of the chosen DBMS.

This type usually gives fast access to the database from Java pro-
grams. The Oracle Thin JDBC driver is of this type. The Oracle
JDBC drivers (and example programs) are in $ORACLE_HOME/jdbc.
OTN members (membership is free) can also download the drivers
from [http://technet.oracle.com/software/].

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-100

Introduction (4)

• Important classes are:

� DriverManager: Provides access to JDBC.

� Connection: Result of logging into a DB.

� Statement: SQL Statement (e.g. query, update).

Subclass PreparedStatement: Statements with parameters.

� ResultSet: Result of a query.

• When one has a Connection object, one can call its

method createStatement() to create a Statement ob-

ject. This is needed for executing SQL statements.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-101

Introduction (5)

• The Statement object then has the methods

� executeQuery(String) to execute an SQL query.

It returns a ResultSet object.

� executeUpdate(String) to execute an SQL state-

ment that is not a query.
It returns the number of rows affected by the update.

• For a ResultSet object, the method next moves the

cursor to the next row.

It must be called also before the first row. It returns false if there
are no more rows. A ResultSet object must be closed (with method
close() before it can be used for another query.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-102

Introduction (6)

• Once the cursor is positioned on a row with next,

the get...-methods of the ResultSet object can be

used to retrieve a column value.

� They take the column number (1, 2, . . .) or

name as argument.

� One uses the method getString, getInt, etc. de-

pending on the result type.

These methods automatically perform type conversions if nee-
ded. E.g. one can use getString even when the result column is
numeric.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-103

Introduction (7)

• The class ResultSet has a method getMetaData()

that returns an object of the type ResultSetMetaData.

• This has e.g. the following methods:

� getColumnCount(): Number of columns in answer.

� getColumnName(int col):

Name of column at position col (1, 2, . . .).

� getColumnDisplaySize(int col):

Normal maximum width in characters.

� getColumnType(int col): Column datatype.
See list in java.sql.Types. Alternative getColumnTypeName.

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-104

Introduction (8)

• If a statement must be executed several times with

different values, one uses the method

prepareStatement(String)

of the class Connection to create an object of the

class PreparedStatement.

• This class has methods setString, setInt, etc. for

setting the parameters.

• Then one can call executeQuery or executeUpdate

(without parameter).

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-105

Introduction (9)

• Common steps to establish a database connection:

� Load a driver with Class.forName(〈drivername〉).
This driver has to be installed in the ext directory of the Java
installation first. Class.forName throws a ClassNotFoundException if
the driver was not properly installed.

� Get a Connection-object by calling

DriverManager.getConnection(...)

There are three different versions of this method:
(1) getConnection(〈url〉),
(2) getConnection(〈url〉, 〈info〉),
(3) getConnection(〈url〉, 〈user〉, 〈password〉).
〈url〉) is a database URL of the type jdbc:subprotocol:subname,
where subprotocol is e.g. oracle, and subname is driver-specific.
〈info〉) is a string of attribute/value pairs (e.g. user, password).

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-106

JDBC Example (1)

(1) import java.sql.*;
(2) import java.net.URL;
(3)
(4) class JdbcExample
(5) {
(6)
(7) public static void main (String args [])
(8) {
(9) String driver =

(10) "oracle.jdbc.driver.OracleDriver";
(11) String url = "jdbc:oracle:thin:" +
(12) "@vsam.sis.pitt.edu:1521:sis";

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-107

JDBC Example (2)

(13) String username = "scott";
(14) String password = "tiger";
(15) String query = "SELECT ENAME FROM EMP";
(16) String ename;
(17)
(18) try {
(19) // Load driver:
(20) Class.forName(driver);
(21)
(22) // Get connection:
(23) Connection con =
(24) DriverManager.getConnection
(25) (url, username, password);

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-108

JDBC Example (3)

(26) // Execute statement:
(27) Statement stm = con.createStatement();
(28) ResultSet rs =
(29) stm.executeQuery(query);
(30)
(31) // Print results:
(32) while (rs.next()) {
(33) ename = rs.getString(1);
(34) System.out.println(ename);
(35) }

Stefan Brass: Datenbanken I Universität Halle, 2011

17. Application Programming I (Embedded SQL, ODBC, JDBC) 17-109

JDBC Example (4)

(36) rs.close();
(37) stm.close();
(38) con.close();
(39) }
(40) catch(Exception e) {
(41) System.out.println(e);
(42) }
(43) }
(44) }

Stefan Brass: Datenbanken I Universität Halle, 2011

