Dr. Stefan Brass 2. Juli 2002
Institut fiir Informatik
Universitat Giessen

Introduction to Databases (Summer 2002)
— Exam Solution —

The exam was written by 10 students. There were 90 minutes time.

Exercise | Correct | Small Error | Big Error | Not Done | Avg Points
la 9 1 0 01]2.95/3 [98%)]
1b 6 3 1 01]2.65/3 [88%)]
1lc 6 2 2 01]2.63/3 [87%)]
1d 6 1 3 01]2.50/3 [83%)]
le 4 3 3 01]2.60/3 [87%]
1f 0 2 8 0] 1.88/3 [62%)]
2 9 1 0 01]5.95/6 [99%)]
3 4 1 5 015.35/6 [89%)]
4 0 1 7 2| 2.35/4 [59%)]

Introduction to Databases (Summer 2002) — Exam Solution

Example Database

An German online shop for DVDs (video films) uses the following three tables:

e The first table contains the most important data of the DVDs. Each DVD has a
unique number. The database does not contain any null values.

| DVD
NO | TITLE CATEGORY PRICE
1 | Snow White and the Seven Dwarfs Animated Cartoon | 27.99
2 | Hot Shots! Part Deux Comedy 25.99
3 | Die Feuerzangenbowle (Fire Tongs Punch) | Comedy 24.99
4 | Spaceballs Comedy 19.99

e In contrast to VHS video tapes, DVDs often contain several audio tracks in different
languages. The second table contains this information. NO is a foreign key that refers
to DVD. Because this shop is in Germany, all DVDs in the database actually have a

German audio track.

| AUDIOTRACK |

LANGUAGE
German
English
German
English
Spanisch
German
German
English
French
Italian

=
rl>rl>rl>rl>00l\)[\)[\)l—‘i—“o

e Finally, there is a table with evaluations of the DVDs by customers or users of the
website. A user can rate a DVD by giving between one and five stars. NO is again a

foreign key that refers to the table DVD.

| EVALUATION
UID | STARS | TEXT
sb sweet
Nina nice

funny

very funny
well, ok

‘Z
S W NN R R o
[

’_J.

n
[

n
o
W oW 01w

Nina

I watched it already 50 times.

funny, but picture and sound quality not good.

Introduction to Databases (Summer 2002) — Exam Solution 3

Exercise 1 (SQL Queries) 18 Points

a) Print title and price of all DVDs in the category “Comedy”, which cost less than
$ 25. Sort the output by the price (lowest price first). In the example, the query result
should look as follows:

TITLE PRICE
Spaceballs 19.99
Die Feuerzangenbowle (Fire Tongs Punch) | 24.99

A correct solution is:
SELECT TITLE, PRICE
FROM DVD
WHERE CATEGORY = ’Comedy’ AND PRICE < 25
ORDER BY PRICE

e Of course, outside quotes, the case is not important. Three students used all
lowercase, three students all uppercase, two wrote keywords in lowercase and
column names in uppercase, and two used the natural German case: “Select
Title, Price ...”.

e One can also write “ORDER BY PRICE ASC” (three students did that), but “ASC”
is default.

e All solutions were correct, however one student wrote all string constants in the
form (Comedy’ (with two different quotes). I took half a point off for this.

Introduction to Databases (Summer 2002) — Exam Solution 4

b) Print number and title of all films (DVDs) that have an English audio track and got
5 stars from the user “sb”. In the example, the result should look as follows:

NO | TITLE
4 | Spaceballs

e A correct solution is:

SELECT E.NO, TITLE

FROM EVALUATION E, AUDIOTRACK A, DVD D
WHERE D.NO = E.NO AND E.NO = A.NO

AND UID = ’sb’

AND LANGUAGE = ’English’

AND STARS = b

Note that the tuple variable in E.NO (in the SELECT-clause) is necessary, although
A.NO and D.NO would be equally correct. One student forgot the tuple variable.

e Of course, the names and sequence of the tuple variables declared under FROM is
not important.

e In the above example, attribute references use tuple variables only when neces-
sary (because the reference would otherwise not be unique). However, one can
also use always tuple variables if this is clearer. Six students always used a tuple
variable in attribute references, one only when necessary, one had an ambiguous
reference (tuple variable missing), two had mixtures.

SELECT D.NO, D.TITLE

FROM DVD D, AUDIOTRACK A, EVALUATION E
WHERE D.NO = A.NO AND D.NO = E.NO

AND A.LANGUAGE = ’English’

AND E.UID = ’sb’ AND E.STARS =5

e One student used subqueries for the joins. I think that this looks unnecessarily
complicated, but it is nevertheless correct:

SELECT NO, TITLE
FROM DVD D
WHERE EXISTS(SELECT * FROM AUDIOTRACK A
WHERE A.NO=D.NO
AND A LANGUAGE = ’English’)
AND EXISTS(SELECT * FROM EVALUATION E
WHERE E.NO=D.NO
AND E.UID = ’sb’ AND E.STARS=5)

e One student forgot the condition UID = ’sb’. I took half a point off for this.

e One student used a wrong tuple variable in an attribute reference: D.UID = ’sb’,
where D is declared as DVD D. I took half a point off for this.

Introduction to Databases (Summer 2002) — Exam Solution 5

e One solution contained severe syntax errors:

SELECT D.NO, D.TITLE

FROM DVD D, AUDIOTRACK A, (SELECT X.NO
FROM EVALUATION X
WHERE X.NO = D.NO
AND X.UID = ’sb’
AND X.STARS = 5) Y

WHERE A.NO = D.NO

AND A.LANGUAGE = ’English’

AND D.NO IN Y

It is not legal to formulate the subquery as in D.NO IN Y, where the subquery
itself is declared under FROM. If the student had moved the subquery from the
FROM-clause to the right hand side of IN, the query would have worked. However,
the condition X.NO = D.NO in the subquery would be superfluous, since the join
is already done via IN. At least Oracle also forbids accesses to tuple variables of
the same FROM-clause in subqueries used under FROM.

Introduction to Databases (Summer 2002) — Exam Solution 6

c¢) Print the title of all DVDs with an audio track in English and in Spanisch (both
languages on the same DVD). In the example, the result would look as follows:

TITLE
Hot Shots! Part Deux

e In this exercise, one needs two tuple variables over the relation AUDIOTRACK. A
correct solution is:

SELECT TITLE

FROM DVD D, AUDIOTRACK X, AUDIOTRACK Y
WHERE X.NO = Y.NO AND D.NO = X.NO

AND X.LANGUAGE = ’Spanisch’

AND Y.LANGUAGE = ’English’

Five students used a solution of this type.

e Four students used a solution with a subquery under FROM. One was correct, two
of them contained small errors, one a severe error. The correct solution is:

SELECT X.NO, TITLE
FROM (SELECT NO, TITLE
FROM DVD D, AUDIOTRACK EN
WHERE D.NO = EN.NO
AND EN.LANGUAGE = ’English’) X,
AUDIOTRACK SP
WHERE X.NO = SP.NO
AND SP.LANGUAGE = ’Spanisch’

In my view, subqueries under FROM are a complication that should be avoided if
possible. E.g. they are not contained in the SQL-86 standard, so older/smaller
DBMS might not support them. Even if they are supported, they might be
evaluated in a slightly less efficient way than the standard solution above.

Of course, subqueriesunder FROM are similar to views. If one wants to use views
to construct the query step-by-step, the greater clearity might be worth a slight
efficiency penalty. Also, views were already contained in the SQL-86 standard.

e The next two students had nearly the same solution, a correct version of it is:

SELECT TITLE
FROM DVD D,

(SELECT A1.NO

FROM AUDIOTRACK A1, AUDIOTRACK A2

WHERE A1.NO = A2.NO

AND A1.LANGUAGE = ’English’

AND A2.LANGUAGE = ’Spanisch’) X
WHERE D.NO = X.NO

Introduction to Databases (Summer 2002) — Exam Solution 7

e One of the two students wrote in the subquery “SELECT A1.NO, A1.LANGUAGE”.
I took half a point off for an unnecessary complication: “A1.LANGUAGE” is not
used in the outer query, and furthermore it is constant, it can only have the value
“English”. Such result columns are normally not useful.

e The other sudent wrote “SELECT NO” in the subquery. This is an ambiguous tuple
variable reference. It is not clear whether “A1.N0” or “A2.NQ” is meant (although
both have the same value, SQL requires that one specifies a tuple variable in this
case).

e One student had a query that only checked for Spanisch. Since the two tuple
variables over the same relation was the main complication of this query, I took
off 1.5 points (maybe I even should have taken off two points).

Introduction to Databases (Summer 2002) — Exam Solution 8

d) Which DVDs have only a German audio track? Since this is a German online shop,
you can assume that all DVDs on sale have a German audio track. You only have to
test that it contains no other language besides German. Please print the title of all
such DVDs. In the example, the result is:

TITLE
Die Feuerzangenbowle (Fire Tongs Punch)

e [would have used the following solution, which seems simplest to me. However,
only three students tried it this way, and only two of them got it right:

SELECT TITLE
FROM DVD D
WHERE NO NOT IN (SELECT NO
FROM AUDIOTRACK
WHERE LANGUAGE <> ’German’)

e One of the two students wrote “DISTINCT” in the subquery. This is not necessary
for the correctness of the query. The effect on the performance is unclear to me.
Depending on the DBMS, the query might run faster or might run slower. In
general, I would expect that a good optimizer automatically eliminates duplicates
in “NOT IN” subqueries, if it thinks that this is advantageous. I would agree
that current optimizers are less intelligent than one would expect, but still the
“DISTINCT” there has more the effect of a hint to the optimizer (to be used by
very experienced DB programmers in case of performance problems). In a first
database course, one should use the simplest logically equivalent solution, which
means that the “DISTINCT” should be left out.

e One student wrote “!=" for not equals. This works e.g. in Oracle, but it does not
conform with the SQL standard. One should use “<>”. But I did not take any
points off.

e Seven students tried to solve this task with an aggregation. Four had a correct
solution, three of which used this version:

SELECT TITLE

FROM DVD D, AUDIOTRACK A
WHERE A.NO = D.NO

GROUP BY A.NO, TITLE

HAVING COUNT(*) = 1

e One of the incorrect solutions used only GROUP BY A.NO. Then it is a syntax error
to list TITLE under SELECT. Although the TITLE actually is unique within the
groups, SQL requires that all attributes used outside aggregations under SELECT
must appear under GROUP BY. In order to understand that TITLE is unique, the
SQL parser would have to analyze the WHERE-condition, find the A.NO = D.NO,

Introduction to Databases (Summer 2002) — Exam Solution 9

and then get the information that D.NO is a key of DVD. When SQL was designed,
this was probably considered as too difficult.

e The last correct solution used again a subquery under FROM. If one has understood
how a hammer works, one is first temped to solve all tasks with a hammer, but
this might not be the best solution:

SELECT TITLE
FROM (SELECT NO, COUNT(*) NUM_LANG

FROM AUDIOTRACK
GROUP BY NO) X,
DVD D

WHERE D.NO = X.NO
AND X.NUM_LANG = 1

To be fair, if the subquery would be a view that already exists, it might be a good
(or at least simple) solution to use this view. In general, the simplest/shortest
solution is usually best.

e One wrong solution using an aggregation was:

SELECT TITLE

FROM DVD

WHERE NO IN (SELECT NO
FROM AUDIOTRACK
WHERE LANGUAGE = ’German’
GROUP BY NO

HAVING COUNT(x*) = 1)

Since LANGUAGE and NO together is a key of AUDIOTRACK, the WHERE-condition and
the GROUP BY together imply that all groups consist of a single row, so the HAVING
condition is automatically satisfied. The result will be that all DVDs are listed
(assuming that all have a German audio track). Without the WHERE-condition,
this solution would have worked.

Unfortunately, it also contained a syntax error: The subquery selected the two
reuslt columns NO and LANGUAGE. This is wrong for two reasons: If there is only
one column on the left hand side of IN (the normal case), the subquery must
have a single result column. IN tests whether the subquery has a result row that
is equal to the left hand side. This works only if the two rows have the same
number of columns (one). Second, one cannot list LANGUAGE there because it is
not listed under GROUP BY (see above). Furthermore it would be wrong to add it
to the GROUP BY clause, because then one has again groups consisting only of a
single row each (one would group by a key).

Finally, the solution contained an unnecessary join. If one corrects the other
errors, the query looks as follows:

Introduction to Databases (Summer 2002) — Exam Solution 10

SELECT TITLE
FROM DVD D, AUDIOTRACK A
WHERE D.NO = A.NO

AND D.NO IN (SELECT NO
FROM AUDIOTRACK
GROUP BY NO
HAVING COUNT(x*) = 1)

The join D.NO = A.NO only ensures that there is an entry for the DVD in the re-
lation AUDIOTRACK. However, if the IN condition is satisfied, this is automatically
true. Therefore, the following query is provably equivalent:

SELECT TITLE

FROM DVD

WHERE NO IN (SELECT NO
FROM AUDIOTRACK
GROUP BY NO
HAVING COUNT(x) = 1)

Very probably this query will run slightly faster (e.g. the Oracle8 optimizer is
not intelligent enough to discover the unnecessary join).

By the way, even without the IN condition, the join would be unnecessary if
we have the integrity constraint that every DVD has at least one audio track.
Above, it was stated that one can assume that there is a German audio track for
every DVD in this store.

e A wrong solution using NOT IN was:
SELECT TITLE

FROM DVD D, AUDIOTRACK A

WHERE D.NO = A.NO

AND LANGUAGE NOT IN (SELECT
FROM
WHERE

This would give all DVDs that have an

LANGUAGE
AUDIOTRACK
LANGUAGE <> ’German’)

audio track in German, i.e. all DVDs

in this store. The query does not check that there is no other audio track. The
query is equivalent to

SELECT TITLE
FROM DVD D, AUDIOTRACK A
WHERE D.NO = A.NO
AND LANGUAGE =

In general, if there is an equivalent query that is significantly simpler, this is an
indication for an error (or at least some misconception).

’German’

The query also contained two syntax errors that were corrected above: First, the
student wrote “SELECT *” in the subquery. But then it has two result columns

Introduction to Databases (Summer 2002) — Exam Solution 11

and is not comparable with a single column on the left hand side, see above.
Second, the student wrote “not” instead of “<>”.

Introduction to Databases (Summer 2002) — Exam Solution 12

e) Print for each DVD that was evaluated by at least two customers the title, the catego-
ry, and the average evaluation (number of stars). The output column for the average
evaluation should have the name “GRADE”. In the example, the result would be:

TITLE CATEGORY GRADE
Snow White and the Seven Dwarfs | Animated Cartoon 4
Spaceballs Comedy 4

e Six students had basically the following solution, but only two got it completely

correct:
SELECT TITLE, CATEGORY, AVG(STARS) AS GRADE
FROM DVD D, EVALUATION E

WHERE D.NO = E.NO
GROUP BY D.NO, TITLE, CATEGORY
HAVING COUNT(*) >= 2

The keyword “AS” in the SELECT-list ist not required (it is only “syntactic sugar”
or a “noise word”). Also, one can use double quotes around column names,
e.g. write "GRADE". However, the quotes are only required if the column name
contains otherwise illegal characters (like a space) or is not all uppercase.

e Three students used only:
GROUP BY TITLE, CATEGORY

This solution is not quite correct, since there can be several films with the same
title in the same category. Then the evaluations of both are merged, which is
not very fair. E.g. in Germany there are two films “Snow White and the Seven
Dwarfs”, both in the category “Animated Cartoon” (the Disney classic and one
other film). I took off half a point in this case. Probably I should have mentioned
this explicitly in the exercise. But there are always remakes of classic films.

e One student used
GROUP BY B.NO
Then it is illegal to use TITLE and CATEGORY in the SELECT clause (outside of
aggregations).
e One student listed the HAVING-clause before the GROUP BY-clause. This is syn-
tactically not correct. However, I was surprised to note that Oracle accepts this.
e One student wrote

HAVING COUNT(B.STARS) >= 2

This is not wrong: It actually does not matter what one counts, unless there are
null values or one elminiates duplicates. But I believe that it is not very good
style to explicitly list an attribute if it does not matter which one. The reader
starts thinking why this attribute was chosen. Also, with duplicate elimination,

Introduction to Databases (Summer 2002) — Exam Solution 13

i.e. COUNT(DISTINCT B.STARS), it would not be correct. If a film gets 5 stars
from two different users, it should of course be listed.

e Two students used a subquery under FROM. As mentioned before, I believe that
this is unnecessarily complicated, but nevertheless, there solution was correct:

SELECT TITLE, CATEGORY, GRADE
FROM (SELECT NO, AVG(STARS) "GRADE"

FROM EVALUATION E
GROUP BY NO

HAVING COUNT(x*) >= 2) X,
DVD D

WHERE D.NO = X.NO
At least, this makes the GROUP BY-clause slightly simpler.

e One additional student used a similar solution, but checked the HAVING-condition
in the outer query:

SELECT D.TITLE, D.CATEGORY, X.EY GRADE
FROM (SELECT NO, COUNT(*) EX, AVG(E.STARS) EY

FROM EVALUATION E
GROUP BY NO) X
DVD D

WHERE D.NO = X.NO
AND X.EX >= 2

Actually, the student did the join D.NO = X.NO inside the subquery, which is not
correct.

e Finally, a fourth student also tried to use a subquery under FROM, but the solution
contains several severe mistakes and seems incomplete:

SELECT TITLE, CATEGORY, AVG(X.M) "GRADE"

FROM DVD,
(SELECT UID, COUNT(x*), SUM(STARS)
FROM EVALUATION

GROUP BY UID
HAVING COUNT (%) >= 2)

Introduction to Databases (Summer 2002) — Exam Solution 14

f) Please print a list of all DVDs that shows title and price plus an additional column
“ENGLISCH”, that contains “X”, if the DVD contains an English audio track, and a
space otherwise. The list should be sorted by price.

TITLE PRICE | ENGLISH
Spaceballs 19.99 | X

Die Feuerzangenbowle (Fire Tongs Punch) | 24.99

Hot Shots! Part Deux 25.99 | X

Snow White and the Seven Dwarfs 27.99 | X

e No student got this exercise completely right. Two students had only small mi-
stakes. This exercise needs a UNION of two parts, one for the DVDs with English
language audio track, and one for those without. Eight students discovered this
and tried a solution with UNION. The following is a correct solution:

SELECT TITLE, PRICE, ’X’ ENGLISH

FROM DVD D, AUDIOTRACK A
WHERE D.NO = A.NO

AND LANGUAGE = ’English’
UNION ALL

SELECT TITLE, PRICE, ’ ’ ENGLISH
FROM DVD D

WHERE D.NO NO IN (SELECT NO

FROM AUDIOTRACK

WHERE LANGUAGE = ’English’)
ORDER BY PRICE

e One can use UNION instead of UNION ALL, but that would be less efficient. Most
DBMS will probably not notice that because the last column contains distinct
values in the two queries, the operands to the UNION are disjoint. Then the DBMS
will do a duplicate elimination, which is unnecessary, and can be avoided by
writing UNION ALL. Seven students wrote UNION ALL, one student wrote UNION,
and two students tried a solution without UNION (which was wrong).

e Of course one can also use NOT EXISTS in the second half:

UNION ALL
SELECT TITLE, PRICE, ’ ’> ENGLISH
FROM DVD D
WHERE NOT EXISTS (SELECT *
FROM AUDIOTRACK A
WHERE D.NO = A.NO
AND LANGUAGE = ’English’)

e One student did a join in the second half that was not required:

Introduction to Databases (Summer 2002) — Exam Solution 15

SELECT TITLE, PRICE, ’ ’ ENGLISH
FROM DVD D, AUDIOTRACK A
WHERE D.NO = A.NO
AND D.NO NOT IN (SELECT NO
FROM AUDIOTRACK
WHERE AUDIOTRACK = ’English’)

The join with AUDIOTRACK A in the main query is not required. Of course, it might
make sense to exclude DVDs from the list that have no soundtrack entered into
the database. However, in d) it is explicitly stated that one can assume that all
DVDs have German sound. Then the join simply does nothing. Also the exercise
did not mention that one should check that the DVD appears in AUDIOTRACK. I
took off half a point in this case.

e One student tried the following in the second half:

SELECT TITLE, PRICE, ’ ’> ENGLISH
FROM DVD D, AUDIOTRACK A
WHERE D.NO = A.NO

AND A .LANGUAGE <> ’English’

This query returns all DVDs that contain an audio track in a language dif-
ferent from English. Since all DVDs in the database contain a German audio
track, this are simply all DVDs. One can also understand that one needs NOT 1IN,
NOT EXISTS, or maybe an aggregation by thinking about monotonic and nonmo-
notonic behaviour. This query behaves monotonically: If more rows are entered
into the relation AUDIOTRACK, the old answers remain correct. Here one needs a
constuct that behaves nonmonotonically: If there was no English audio track in
the database, the DVD should be selected, but after one inserts such an audio
track, the solution becomes wrong.

e The following query (used by three other students) has the same problem, but
is significantly more complicated:

SELECT TITLE, PRICE, ’ ’> ENGLISH
FROM DVD D, AUDIOTRACK A
WHERE D.NO = A.NO
AND A .LANGUAGE NOT IN (SELECT A.LANGUAGE
FROM AUDIOTRACK A
WHERE A.LANGUAGE = ’English’)

The subquery can actually return only the value ’English’, and if the table
contains at least one DVD with English language audio track, it will return
this value. In general, I would say that using NOT IN with a subquery that can
provably return only one value is at least strange (bad style).

e The following complicated version actually works (but is at least bad style):

Introduction to Databases (Summer 2002) — Exam Solution 16

SELECT TITLE, PRICE, ’ ’ ENGLISH

FROM DVD D

WHERE D.NO NOT IN (SELECT A.NO
FROM AUDIOTRACK A
WHERE A.LANGUAGE = ’English’
AND A.NO = D.NO)

Because of the condition A.NO = D.NO in the subquery, the subquery can return
only D.NO. So the result of the subquery can either be empty (if the DVD D
has no Englisch audio track) or be the set consisting of the single element D.NO
(if it has an English audio track). This is a bit strange for a NOT IN subquery.
In general, correlated subqueries with NOT IN are normally bad style. In the
example, the join condition is actually written wto times: Once in the subquery
(A.NO = D.NO), and once with the NOT IN. This becomes even clearer when one
translates the NOT IN into NOT EXISTS:

SELECT TITLE, PRICE, ’ ’ ENGLISH

FROM DVD D

WHERE NOT EXISTS
(SELECT A.NO
FROM AUDIOTRACK A
WHERE A.LANGUAGE = ’English’
AND A.NO = D.NO -- given in the subquery
AND A.NO = D.NO -- Translation of NOT IN
)

e One student forgot the ORDER BY. One student wrote the ORDER BY-clause in
both parts of the query. That is a syntax error, ORDER BY is allowed only at the
very end. It would also make little sense to order both parts separately.

Introduction to Databases (Summer 2002) — Exam Solution 17

Exercise 2 (SQL CREATE TABLE) 6 Points

Please write a CREATE TABLE statement for the table “EVALUATION”.

Declare the usual constraints (keys, foreign keys, NOT NULL).

Use a CHECK-constraint to ensure that the attribute “STARS” can only take the values
1,2, 3,4, 5.

The attribute NO is a decimal number of up to five digits. UID is a string up to
length 20. TEXT is a string of maximal length 2000. You can assume that your DBMS
supports variable-length strings of this size.

Null values are not allowed in any column.

All students performed very well on this exercise. Only one student lost half a point, all
other students had a completely correct solution. One correct solution is:

CREATE TABLE EVALUATION(
NO NUMERIC(5) NOT NULL
REFERENCES DVD,
UID VARCHAR(20) NOT NULL,
STARS NUMERIC(1) NOT NULL,
TEXT VARCHAR(2000) NOT NULL,
PRIMARY KEY(NO, UID),
CONSTRAINT STARS_VALID
CHECK (STARS BETWEEN 1 AND 5))

e [t was not required that the CHECK-constraint is given a name, so

CONSTRAINT STARS_VALID

can be left out. However, the DBMS will probably give better error messages with
it. Seven students gave the constraint a name, three did not. The constraint na-
mes used were: “VALID_STARS”, “STARS_RANGE”, “STARS_OK”, “STARS_VALUES”,
“STARS_VALUE”, “CHECK_S”, “STARS_EVALUATION”. Not all names give equally un-
derstandable error messages.

Of course, it is also possible to give the key and the foreign key names. Since the
error messages for constraint violations are normally understandable, this is not
very important. However, for later ALTER TABLE statements, it might be useful.
Four students assigned a name to all constraints.

e Of course, the constraint condition can also be written e.g. as

CHECK (STARS <= 5 AND STARS > 0)

Introduction to Databases (Summer 2002) — Exam Solution 18

Still another possibility is

CHECK(STARS IN (1,2,3,4,5)).

Also, in the above solution, the CHECK-constraint was formulated as a table cons-
traint. Since it refers only to a single attribute, it can also be formulated as a column
constraint.

Of course, one can write the foreign key also as table constraint:

FOREIGN KEY (NO) REFERENCES DVD.

Instead of e.g. NUMERIC(5), one can also write NUMERIC(5,0).

The only case where I took off half a point was when a student added a CHECK-
constraint for the column NO:

CHECK(NO > 0).

It is of course true that the DVD numbers must be greater than 0, but this is
already tested in the CREATE TABLE statement for the relation DVD. Because of the
foreign key, the table EVALUATION can contain only DVD numbers that appear
also in DVD. Then it logically follows that EVALUATION contains only positive DVD
numbers. The CHECK constraint in EVALUATION is therefore unnecessary. Since it
decreases performance and makes modifications more difficult (e.g. when somebody
decides that valid DVD numbers must not start with a 0), one should not write this
constraint.

Introduction to Databases (Summer 2002) — Exam Solution 19

Exercise 3 (ER-Diagram) 6 Points

Draw an Entity-Relationship-Diagram for storing information about DVDs (number, title,
price, category) and their audio tracks (available languages). L.e. the same information as
in the first two example tables should be recorded in this database. In order to simplify
the exercise, no evaluations (third table) have to be stored. Please define the key for each
entity type. Also specify cardinalities for the relationship(s).

Each DVD must contain at least one language. If you want, you can permit to store
languages or categories in the database that do not yet occur on any DVD. die noch auf
keiner DVD vorhanden sind.

It is not required that if your ER-schema is translated back into the relational model,
one gets exactly the two given tables (e.g. there could be one or two additional tables).
You do not have to do the translation into the relational model (i.e. it suffices to draw an
ER-diagram, CREATE TABLE statements are not required).

If it is not obvious what you meant with an attribute or another construct, please
write a short explanation. Especially, an explanation would be important if you should
modify the given information contents of the database.

e A correct solution is the following. It introduces “Language” as entity. The infor-
mation of the table AUDIOTRACK corresponds then to the relationship “contains”.
The standard translation into the relational model would create an additional table
“LANGUAGES” that lists all valid languages. This seems very reasonable.

No

: 1
-& S ovp P @ O I Language | Tang
rice

Category

Five students used this solution, of which only two were completely correct.

e In the same way, one could view the possibile categories as entities. Three students
did this, of which two were completely correct.

Category |—(Name)

No

Price

L? '
o
=

Language

Introduction to Databases (Summer 2002) — Exam Solution 20

One student added numbers as keys of Category and Language. This is possible, but
means that later one will need more joins in the queries. E.g. the DVD table will
then contain the category number as a foreign key referencing CATEGORIES. If one
wants the category name, one must do a join with the table CATEGORIES. This will
make the query more complicated and less efficient. However, since the CATEGRIES
table is small and will soon be cached, the performance penality is probably not big.

e The following solution (used by two students) is incorrect:

No

(1,%) (0%) [
DVD Audio Track T noname

Category

First, an “Audio Track” entity obviously belongs to a single DVD (identified by the
DVD number that is part of the entity). Therefore, the correct cardinality of the
relationship “contains” on the “Audio Track” side is “(1,1)”.

Second, one needs in this case a constraint that if an DVD entity and an Audio
Track entity are linked by the relationship “contains”, their attributes “No” must
have the same value. So the relationship would actually be redundant. Of course,
in the ER-model, relationships are important, and one should not use attributes to
reference other entities. It is a common error to use “foreign key” attributes in the
ER-model (although one can declare any constraint, the ER-model has no special
support for foreign keys). However, in this special case, “No” must be part of the key
of “Audio Track” if one wants to map the given relation directly into the ER-model.
Extended ER-models have the notion of a weak entity, which would have been the
right solution in this case. Unfortunately, weak entities were not discussed in this
course. I now believe that even a basic database course should treat them. It is also
unfortunate that the exercise did not explicitly require constraints.

Probably it would also have been better if I had called the column “DNO” or “DVD-
NO” instead of “NO”. In one additional solution it was not clear to me whether an
attribute “No” was a DVD-No or a Language-No.

e One student used the first solution with a wrong cardinality:

No

- 1 1
DVD (1,%) @ (0.1) | Language Lang
-’-rlce

Category

Introduction to Databases (Summer 2002) — Exam Solution 21

The same language can be on several DVDs, therefore the maximum cardinality 1
on the “Language” side is wrong.

e One student used a cardinality that permits one DVD to be contained in several
categories. This might be reasonable (there are always mixtures of different catego-
ries of films), but the student would have had to explicitly state that he improved
the given schema in this way. Without explanation, I counted it simply as a wrong
cardinality.

e One student had this solution:

No

—— (1 0 [(Tl)

Category

I did not understand the meaning of the attribute “Title” of the entity type “Au-
dio Track”. Is it the DVD title? That would be wrong, and it would also be not
reasonable to use the title here when DVDs are otherwise identified by number.

Introduction to Databases (Summer 2002) — Exam Solution 22

Exercise 4 (XML) 4 Points

Encode the information about the first two DVDs in XML. Again, only the basic data and

the audio track information is required, not the evaluations. You do not have to specify a
DTD.

e A possible solution is:

<?xml version="1.0" 7>
<DVDLIST>
<DVD no="1" title="Snow White and the Seven Dwarfs"
category="Animated Cartoon" price="27.99">
<AUDIOTRACK language="German" />
<AUDIOTRACK language="English" />
</DVD>
<DVD no="2" title="Hot Shots! Part Deux"
category="Comedy" price="25.99">
<AUDIOTRACK language="German" />
<AUDIOTRACK language="English" />
<AUDIOTRACK language="Spanish" />
</DVD>
</DVDLIST>

e Equally correct, but much longer is to use elements instead of attributes:

<?xml version="1.0" 7>
<DVDLIST>
<DVD>
<NO>1</N0O>
<TITLE>Snow White and the Seven Dwarfs</TITLE>
<CATEGORY>Animated Cartoon</CATEGORY>
<PRICE>27.99</PRICE>
<AUDIOTRACK>German</AUDIOTRACK>
<AUDIOTRACK>English</AUDIOTRACK>
</DVD>
<DVD>
<N0>2</N0O>
<TITLE>Hot Shots! Part Deux</TITLE>
<CATEGORY>Comedy</CATEGORY>
<PRICE>25.99</PRICE>
<AUDIOTRACK>German</AUDIOTRACK>
<AUDIOTRACK>English</AUDIOTRACK>
<AUDIOTRACK>Spanish</AUDIOTRACK>
</DVD>
</DVDLIST>

Introduction to Databases (Summer 2002) — Exam Solution 23

e Only two students wrote the XML declaration. They got an extra half point. It
is not a mistake to write no XML declaration, but it is better style to do it. One
should also specify the character encoding there.

e Six students used no root element, i.e. they simply wrote the two DVD elements,
but no enclosing container. I took off half a point for this error.

e One student wrote
<AUDIOTRACKS>German, English, Spanish</AUDIOTRACKS>

This is not good and violates the spirit of XML because one must parse the string
(search substrings) in order to find specific audio tracks. While the “sequence of
words” structure as required here is probably supported in XML query languages,
database people would try to use a markup that describes the complete structure.
This corresponds to the idea that attribute values should be atomic in the relational
model.

e Five students wrote something like

<AUDIOTRACKS>
<A1>German</A1>
<A2>English</A2>
<A3>Spanish</A3>

</AUDIOTRACKS>

Normally, element types such as A1, A2, A3 must be declared in a DTD. In this case,
it is not clear (at least not to me) what is a reasonable limit for the number of audio
tracks on a DVD, i.e. how many of these elements one should declare. Also, queries
will be complicated, because if will often be necessary to test each of these elements.

e One of the five students wrote:

<AUDIOTRACKS>
<1>German</1>
<2>English</2>
<3>Spanish</3>

</AUDIOTRACKS>

This is a syntax error. Element names must start with a letter (uppercase or lower-
case) or an underscore or a colon.

e One student also wrote:

Introduction to Databases (Summer 2002) — Exam Solution 24

<AUDIOTRACKS>
German
English
Spanish
</AUDIOTRACKS>

This is also a syntax error. Attribute values must always be enclosed in quotes
(single or double quotes).

e Furthermore, XML defines a sequence on the child elements of an element node,
namely the document sequence (from top to bottom). Therefore, it is not necessary
to explicitly use numbers to define the first, second, etc. audio track. On the contrary,
the given relational database does not define what is the first, second, etc. audio
track.

