
A. Syntax Diagrams A-1

Appendix A:
Syntax Diagrams

References:
• Kathleen Jensen/Niklaus Wirth: PASCAL — User Manual and Report, 4th Edition.

Springer, 1991.

• Niklaus Wirth: Compilerbau (in German). Teubner, 1986.

• Oracle8 SQL Reference, Oracle Corporation, 1997, Part No. A58225-01.
Appendix A is a short introduction to syntax diagrams.

• Don Chamberlin: A Complete Guide to DB2 Universal Database.
Morgan Kaufmann, 1998.
Section 1.1.2 is a very quick introduction to syntax diagrams.

Stefan Brass: Datenbanken I Universität Halle, 2004

A. Syntax Diagrams A-2

Overview

1. General Remarks about Syntax Formalisms

'

&

$

%

2. Syntax Diagrams

Stefan Brass: Datenbanken I Universität Halle, 2004

A. Syntax Diagrams A-3

Syntax Formalisms (1)

• An SQL query is a sequence of ASCII characters,

but not every sequence of ASCII characters is a

valid SQL query.
This is not quite precise: (1) The ASCII encoding is not required. The
Standard defines an SQL character set that includes letters a-zA-Z,
digits, the space, and these special characters: "%&’()*+,-./:;<=>?_|.
(2) Extended character sets (with national characters) can be used.

• There are various formalisms for specifying clear-

ly and unambiguously the subset of all character

sequences which are legal in a language like SQL.
Other character sequences are said to be syntactically incorrect / to
contain syntax errors.

Stefan Brass: Datenbanken I Universität Halle, 2004

A. Syntax Diagrams A-4

Syntax Formalisms (2)

• The most important syntax formalisms are:

� Regular Expressions

� Context-Free Grammars (CFGs)

� Syntax Diagrams

• Syntax Diagrams are equivalent in their expressive

power to context-free grammars.

• Both are more powerful than regular expressions.

I.e. every language which can be defined by a regular expression can
also be defined by a CFG/syntax diagram.

Stefan Brass: Datenbanken I Universität Halle, 2004

A. Syntax Diagrams A-5

Syntax Formalisms (3)

• In order to master a language like SQL, one of

course need examples, but one also should to be

able to read a formal specification of the language.

This can be used as a reference for doubtful cases, but it will also
improve the understanding of the language. E.g. syntactic categories
introduced in the formal definition are often useful concepts. If one
has only seen n examples and learnt nothing more general, all that
one can really do are these n examples.

• The Oracle SQL Reference Manual as well as many

other database books contain syntax diagrams.

• The standard uses a context free grammar.

Stefan Brass: Datenbanken I Universität Halle, 2004

A. Syntax Diagrams A-6

Lexical Syntax (1)

• The syntax of languages like SQL or Pascal is nor-

mally specified in two steps.

• One first defines how “words” (formally called to-

kens or lexical symbols) can be composed from sin-

gle characters.

This part of the definition is the lexical syntax of the language.

• Then the overall syntax of the language is defined

in terms of these tokens.

• This two-step approach reduces the complexity.

Stefan Brass: Datenbanken I Universität Halle, 2004

A. Syntax Diagrams A-7

Lexical Syntax (2)

• In case of SQL, such words/tokens are, e.g.

� Reserved words / keywords with a specific mea-

ning, e.g. SELECT.

� Identifiers used e.g. for table and column names,

e.g. STUDENTS.

� Datatype constants/literals, e.g. ’DBMS’ or 123.

� Comparison and datatype operators, e.g. =, <=,

+, ||.

� Punctation characters, e.g. parentheses and the

comma.

Stefan Brass: Datenbanken I Universität Halle, 2004

A. Syntax Diagrams A-8

Lexical Syntax (3)

• Simpler formalisms such as regular expressions can

be used for defining the lexical syntax.
In this course, syntax diagrams are used for the lexical syntax, too.
However, when implementing an SQL parser, one would use a tool
like lex (based on regular expressions) for the lexical syntax, because
it runs faster than a more powerful tool like yacc that is required for
the overall syntax. Since there are much more characters than tokens,
it makes sense to condensate the input first with a fast tool.

• Free-format languages like SQL or Pascal allow

white space (blanks, line breaks, etc.) and com-

ments between tokens.
The lexical analysis phase removes white space (including coments).
The overall syntax analysis sees a sequence of tokens as input.

Stefan Brass: Datenbanken I Universität Halle, 2004

A. Syntax Diagrams A-9

Overview

1. General Remarks about Syntax Formalisms

2. Syntax Diagrams

'

&

$

%

Stefan Brass: Datenbanken I Universität Halle, 2004

A. Syntax Diagrams A-10

Syntax Diagrams (1)

• Digit:
-

?

��
��
0

?

?

��
��
1

?

?

��
��
2

?

?

��
��
3

?

?

��
��
4

?

. . .
?

��
��
8

?

?

��
��
9

? -

• A syntax diagram consists of:

� A name, in this case “Digit”.

� A start (node): Arrow that enters the diagram.

� A finish (node): Arrow that leaves the diagram.

� Oval and rectangular boxes connected by direc-

ted edges.

Stefan Brass: Datenbanken I Universität Halle, 2004

A. Syntax Diagrams A-11

Syntax Diagrams (2)

• The formal language defined by this diagram is very

simple, it is the set of digits {0,1,2,3,4,5,6,7,8,9}.

• In order to check whether an input, e.g. “2”, really

belongs to the language “Digit” defined by this dia-

gram, one must trace a path through the diagram

that corresponds to the input:
-

?

��
��
0

?

?

��
��
1

?

?

��
��
2

?

?

��
��
3

?

?

��
��
4

?

. . .
?

��
��
8

?

?

��
��
9

? -

s sssssssssssssss s

Stefan Brass: Datenbanken I Universität Halle, 2004

A. Syntax Diagrams A-12

Syntax Diagrams (3)

• Such diagrams can be used in two ways:

� In order to generate legal words of the language

“Digit”, one follows a path through the diagram

from start to finish and prints every symbol in

each oval box through which one passes.

� In order to determine that a given input is syn-

tactically correct, one must find a path through

the diagram such that whenever one reaches an

oval, the character in the oval is the next input

character, which is then read away.

Stefan Brass: Datenbanken I Universität Halle, 2004

A. Syntax Diagrams A-13

Syntax Diagrams (4)

• Every edge has only one possible direction.
Sometimes it might be a bit difficult for the beginner to decide on
the direction of an edge.

• If all directions are made explicit, the diagram looks

as follows:
- - - - - - -

?

��
��
0

?

?

��
��
1

?

?

��
��
2

?

?

��
��
3

?

?

��
��
4

?

. . .
?

��
��
8

?

?

��
��
9

?- - - - - - -

• Since this looks complicated, the arrow heads are

normally not repeated on every segment of an edge.

Stefan Brass: Datenbanken I Universität Halle, 2004

A. Syntax Diagrams A-14

Syntax Diagrams (5)

• There are branching points in the diagram where

one can choose different paths.

E.g. after following the incoming arrow, one can choose to go down
and print/read the digit 0 or go to the right for digits 1 to 9.

• When analyzing a given input for correctness, loo-

king at the next input symbol will often determine

a unique path that must be chosen.

One tries to construct syntax diagrams such that at every branching,
the ovals that can be reached in the two directions contain disjoint
symbols.

• If one cannot find a path, the input is wrong.

Stefan Brass: Datenbanken I Universität Halle, 2004

A. Syntax Diagrams A-15

Syntax Diagrams (6)

• Syntax diagrams can contain cycles (e.g. there are

infinitely many different possible SQL queries).

• Digit Sequence:
- -

?

��
��
0

?

?

��
��
1

?

. . .
?

��
��
8

?

?

��
��
9

?

- -
6

• Exercise: Find a path to show that “81” is correct.

One can pass through the same edge several times.

Stefan Brass: Datenbanken I Universität Halle, 2004

A. Syntax Diagrams A-16

Syntax Diagrams (7)

• Previously defined syntax diagrams can be used as

modules in larger ones.

• This is symbolized by drawing a rectangular box

with the name of the syntax diagram in it.

• Digit Sequence:
- - Digit -

6

• I.e. a rectangular box stands for a syntactic variable

or category (like “verb” and “object”).

Stefan Brass: Datenbanken I Universität Halle, 2004

A. Syntax Diagrams A-17

Syntax Diagrams (8)

• A box can be replaced by the diagram it stands for.

A box has one incoming and one outgoing edge, as has the diagram.
So one can simply plug in the diagram for the box.

• Digit Sequence:

- - -

?

��
��
0

?

?

��
��
1

?

. . .
?

��
��
8

?

?

��
��
9

?

- - -
6

Digit

Stefan Brass: Datenbanken I Universität Halle, 2004

A. Syntax Diagrams A-18

Syntax Diagrams (9)

• One can view the boxes also like procedures:

� When a box is entered, one go to the correspon-

ding diagram,

� finds a path through it,

� and then returns back to the original diagram

where the arrow leaves the box.

• When syntax diagrams are used for analyzing input,

each such procedure reads part of the input.

E.g. when “digit” is called, it expects to see in the input a digit, and
it reads this away. Whatever comes after it remains in the input to
be analyzed by other procedures.

Stefan Brass: Datenbanken I Universität Halle, 2004

A. Syntax Diagrams A-19

Syntax Diagrams (10)

• Of course, after some time, one knows what e.g.

“Digit” stands for, and does not have to look up

the syntax diagram explicitly.

• Each diagram defines a formal language (set of

character strings).

• When passing through a box, one can read/print

any element of the language defined by the corre-

sponding syntax diagram.

Stefan Brass: Datenbanken I Universität Halle, 2004

A. Syntax Diagrams A-20

Syntax Diagrams (11)

• Ovals and boxes can be freely mixed in one dia-

gram.

• Integer:
- -

-��
��
-

6
- Digit Sequence -

• The diagram “Integer” describes a language con-

taining, e.g., 123, -45, 007.

• It does not contain, e.g., +89, --5, 23-42, 0.56.

Stefan Brass: Datenbanken I Universität Halle, 2004

A. Syntax Diagrams A-21

Syntax Diagrams (12)

• Syntax diagrams can be defined recursively, e.g. the

diagram for X can contain the a box labelled X.

Mutual recursion is also allowed. With recursion, one cannot expand all
boxes beforehand, but one can expand them “on demand” (whenever
the box is entered).

• Term:
- - Integer - -

- Term -"!

+ - Integer -

6

-"!

(- Term -"!

) -

Stefan Brass: Datenbanken I Universität Halle, 2004

A. Syntax Diagrams A-22

Syntax Diagrams (13)

• When defining the lexical syntax (possible words or

tokens), single characters appear in the ovals.

• Later, words/tokens like “SELECT” are used as the

basic building blocks:

-

#
"

!SELECT - Goal-List

-

#
"

!FROM - Source-List

?

?-

#
"

!WHERE - Condition - -

Stefan Brass: Datenbanken I Universität Halle, 2004

A. Syntax Diagrams A-23

Syntax Diagrams (14)

• In the Oracle SQL Manual, boxes are used for literal

symbols, and ovals for syntactic variables.
I followed the original notation, as e.g. in the Pascal reference.

• In the book by Chamerlin about DB2, a more com-

pact notation is used.
Ovals are used for syntactic variables that are defined by a syntax
diagram, uppercase (without any box) is used for key words that
must appear as written, lowercase (without box) is used for token
types such as “column name”. Furthermore, diagrams can extend
over multiple lines without explicit backward arrow (Special symbols
mark the start and the end of a diagram. If an arrow simply leaves
the diagram on the right side, continue in the next line). Finally, a
special notation is used for options that can be specified in any order.

Stefan Brass: Datenbanken I Universität Halle, 2004

A. Syntax Diagrams A-24

Exercise

• Define syntax diagrams for the command language

of a text advanture game.

• Typical commands consist of a verb and an object,

e.g. “take lamp”.

Verbs are e.g. “take”, “drop”, “examine”, “use”.
Objects are e.g. “lamp”, “sword”, “rope”.

• One can optionally use an article: “take the lamp”.

• A verb can be used with multiple objects, separated

by “and”: “take the lamp and the rope”.

This stands for “take lamp”, “take rope”.

Stefan Brass: Datenbanken I Universität Halle, 2004

