
8. SQL II 8-1

Part 8: SQL II
References:

• Elmasri/Navathe:Fundamentals of Database Systems, 3rd Edition, 1999.
Chap. 8, “SQL — The Relational Database Standard” (Sect. 8.2, 8.3.3, part of 8.3.4.)

• Silberschatz/Korth/Sudarshan: Database System Concepts, 3rd Edition.
McGraw-Hill, 1999: Chapter 4: “SQL”.

• Kemper/Eickler: Datenbanksysteme (in German), Ch. 4, Oldenbourg, 1997.

• Lipeck: Skript zur Vorlesung Datenbanksysteme (in German), Univ. Hannover, 1996.

• Heuer/Saake: Datenbanken, Konzepte und Sprachen (in German), Thomson, 1995.

• Date/Darwen: A Guide to the SQL Standard, Fourth Edition, Addison-Wesley, 1997.

• Date: A Guide to the SQL Standard, First Edition, Addison-Wesley, 1987.

• van der Lans: SQL, Der ISO-Standard (in German). Hanser, 1990.

• Sunderraman: Oracle Programming, A Primer. Addison-Wesley, 1999.

• Oracle 8i SQL Reference, Release 2 (8.1.6), Dec. 1999, Part No. A76989-01.

• Chamberlin: A Complete Guide to DB2 Universal Database. Morgan Kaufmann, 1998.

• Microsoft SQL Server Books Online: Accessing and Changing Data.

• Microsoft Jet Database Engine Programmer’s Guide, 2nd Edition (Part of MSDN Library
Visual Studio 6.0).

• DuBois: MySQL. New Riders Publishing, 2000, ISBN 0-7357-0921-1, 756 pages.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-2

Objectives

After completing this chapter, you should be able to:

• write advanced queries in SQL including

aggregations, subqueries, and UNION.

• enumerate and explain the clauses of an SQL query.

SELECT, FROM, WHERE, GROUP BY, HAVING, . . . , ORDER BY

• explain joins in SQL-92.

• evaluate the correctness of a given query.

• evaluate the portability of certain constructs.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-3

Overview

1. Subqueries, Nonmonotonic Constructs

'

&

$

%
2. Aggregations I: Aggregation Functions

3. Aggregations II: GROUP BY, HAVING

4. UNION, Conditional Expressions

5. Sorting Output: ORDER BY

6. SQL-92 Joins, Outer Join in Oracle

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-4

Example Database (again)

STUDENTS

SID FIRST LAST EMAIL

101 Ann Smith · · ·
102 Michael Jones (null)
103 Richard Turner · · ·
104 Maria Brown · · ·

EXERCISES

CAT ENO TOPIC MAXPT

H 1 Rel. Algeb. 10
H 2 SQL 10
M 1 SQL 14

RESULTS

SID CAT ENO POINTS

101 H 1 10
101 H 2 8
101 M 1 12
102 H 1 9
102 H 2 9
102 M 1 10
103 H 1 5
103 M 1 7

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-5

Nonmonotonic Behaviour (1)

• SQL queries using only the constructs introduced

above compute monotonic functions on the existing

tables: If further rows are inserted, one gets at least

the same answers as before, and maybe more.

• However, not all queries behave monotonically in

this way: E.g. print students who have not yet sub-

mitted any homework.
Currently Maria Brown would be a correct answer. But if a homework
result were inserted for her, she would no longer qualify.

• Therefore, this query cannot be formulated with

the SQL constructs that were introduced so far.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-6

Nonmonotonic Behaviour (2)

• In the natural language version of queries, formu-

lations like “there is no”, “does not exist” indicate

nonmonotonic behaviour.

• Furthermore, “for all”, “the minimal/maximal”, al-

so indicate nonmonotonic behaviour: In this case a

violation of the “for all” condition must not exist.
For some such queries, a formulation with aggregations (HAVING)
might be natural, see below.

• When formulating queries in SQL, it is important

to check whether the query requires that certain

tuples do not exist.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-7

NOT IN (1)

• With IN (∈) and NOT IN (6∈) it is possible to check

whether an attribute value appears in a set that is

computed by another SQL query.

• E.g. students without any homework result:

SELECT FIRST, LAST

FROM STUDENTS

WHERE SID NOT IN (SELECT SID

FROM RESULTS

WHERE CAT = ’H’)

FIRST LAST

Maria Brown

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-8

NOT IN (2)

• At least conceptually, the subquery is evaluated,

before the execution of the main query starts:

STUDENTS

SID FIRST LAST EMAIL

101 Ann Smith · · ·
102 Michael Jones (null)
103 Richard Turner · · ·
104 Maria Brown · · ·

Result of Subquery

SID

101

101

102

102

103

• Then for every STUDENTS tuple, a matching SID is

searched in the subquery result. If there is none,

the student name is printed.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-9

NOT IN (3)

• It is possible to use DISTINCT in the subquery:

SELECT FIRST, LAST

FROM STUDENTS

WHERE SID NOT IN (SELECT DISTINCT SID ?
FROM RESULTS

WHERE CAT = ’H’)

• This is logically equivalent, and the effect on the

performance depends on the data and the DBMS.

I would expect that a reasonable optimizer knows that duplicates are
not important in this case and that conversely writing DISTINCT might
have the effect that the optimizer does not consider certain evaluation
stragegies that do not really materialize the result of the subquery.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-10

NOT IN (4)

• It is also possible to use IN (without NOT) for an

element test.

• This is relatively seldom done, since it is equiva-

lent to a join, which could be written without a

subquery.

• But sometimes this formulation is more elegant.

It might also help to avoid duplicates.

Or to get exactly the required duplicates (see example on next page).

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-11

NOT IN (5)

• E.g. topics (“names”) of homeworks that were al-

ready solved by at least one student:
SELECT TOPIC
FROM EXERCISES
WHERE CAT=’H’ AND ENO IN (SELECT ENO

FROM RESULTS
WHERE CAT=’H’)

• Exercise: Is there a difference to this query (with

or without DISTINCT)?

SELECT DISTINCT TOPIC
FROM EXERCISES E, RESULTS R
WHERE E.CAT=’H’ AND E.ENO=R.ENO AND R.CAT=’H’

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-12

NOT IN (6)

• In SQL-86, the subquery on the right-hand side of

IN must have a single output column.
So that the subquery result is really a set (or multiset), and not an
arbitrary relation.

• In SQL-92, comparisons were extended to the tuple

level, and therefore it is possible to write e.g.

WHERE (FIRST, LAST) NOT IN (SELECT FIRST, LAST

FROM ...)

But is not very portable. E.g. SQL Server and Access do not support it
(and MySQL does not permit any subqueries, see below). An EXISTS

subquery (see below) might be better if one has to compare more
than one column. Oracle and DB2 do allow IN with multiple columns.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-13

NOT IN (7)

Atomic Formula (Form 6):

- Term -

#
"

!IN

-

#
"

!NOT

6

-

#
"

!(Subquery

#
"

!) -

• The Subquery must result in a table with a single column (a set).

• However, in SQL-92, Oracle, and DB2 it is possible to write a tuple on
the left hand side in the form (Term1, ..., Termn). Then the subquery
must result in a table with exactly n columns.

• MySQL does not support subqueries.

• The column names on the left and right hand side of IN do not have to
match, but the data types must be compatible.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-14

NOT EXISTS (1)

• It is possible to check in the outer query whether

the result of the subquery is empty (NOT EXISTS).

• In the inner query, tuple variables declared in the

FROM clause of the outer query can be accessed.

This is actually also possible for IN subqueries, but there it is an
unnecessary and unexpected complication (bad style).

• This means that the subquery has to be evaluated

once for every assignment of values to the accessed

tuple variables in the outer query. The subquery can

be seen as parameterized.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-15

NOT EXISTS (2)

• Students that have not submitted any homework:

SELECT FIRST, LAST

FROM STUDENTS S

WHERE NOT EXISTS (SELECT * FROM RESULTS R

WHERE R.CAT = ’H’

AND R.SID = S.SID)

• The tuple variable S loops over the four rows in

STUDENTS. Conceptually, the subquery is evaluated

four times. Each time, S.SID is replaced by the SID

value of the current tuple S.
The DBMS is free to choose another, more efficient evaluation stra-
tegy if that evaluation strategy is guaranteed to give the same result.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-16

NOT EXISTS (3)

• First, S points to the STUDENTS tuple

SID FIRST LAST EMAIL

101 Ann Smith · · ·

• S.SID in the subquery is conceptually replaced by

101 and the following query is executed:

SELECT * FROM RESULTS R

WHERE R.CAT = ’H’

AND R.SID = 101

SID CAT ENO POINTS

101 H 1 10

101 H 2 8

• The result is not empty. Thus, the NOT EXISTS con-

dition in the outer query is not satisfied for this S.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-17

NOT EXISTS (4)

• The same happens for the second row in STUDENTS.

The subquery is executed for S.SID=102:

SELECT * FROM RESULTS R

WHERE R.CAT = ’H’

AND R.SID = 102

SID CAT ENO POINTS

102 H 1 9

102 H 2 9

• The result is not empty, therefore the NOT EXISTS

condition is not satisfied.

• Also for the third row in STUDENTS, the condition is

not satisfied.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-18

NOT EXISTS (5)

• Finally, S points to the STUDENTS tuple

SID FIRST LAST EMAIL

104 Maria Brown · · ·

• For S.SID=104, the result of the subquery is empty:

SELECT * FROM RESULTS R

WHERE R.CAT = ’H’

AND R.SID = 104

no rows selected

• Thus, the NOT EXISTS condition is satisfied for this

tuple S. Maria Brown is printed as the query result.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-19

NOT EXISTS (6)

• While in the inner query, tuple variables from the

outer query can be accessed, the converse is illegal:

SELECT FIRST, LAST, R.ENO Wrong!
FROM STUDENTS S

WHERE NOT EXISTS (SELECT * FROM RESULTS R

WHERE R.CAT = ’H’

AND R.SID = S.SID)

• This works like global and local variables: Variables

defined in the outer query are valid for the entire

query, variables defined in the subquery are valid

only in the subquery (∼ block structure in Pascal).

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-20

NOT EXISTS (7)

• Subqueries that access variables from the outer

query are called “correlated subqueries”.

Correlated subqueries can be understood as being parameterized with
the tuples chosen in the outer query. There can be optimizations, but
conceptually they are executed once for every assignment of tuples
to the tuple variables in the outer query.

• Subqueries that do not access variables from the

outer query are called “non-correlated subqueries”.

It suffices to evaluate a non-correlated subquery only once (since the
result does not depend on the tuples chosen for the tuple variables of
the outer query).

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-21

NOT EXISTS (8)

• Non-correlated subqueries with NOT EXISTS are al-

most always an error (but they are ok with IN):

SELECT FIRST, LAST Wrong!
FROM STUDENTS S

WHERE NOT EXISTS (SELECT * FROM RESULTS R

WHERE CAT = ’H’)

Here the join-condition in the subquery was forgotten, and it became
a non-correlated subquery.

• If there is at least one homework entry in RESULTS,

no matter for what student, the NOT EXISTS will be

false, and the query result empty.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-22

NOT EXISTS (9)

• Until now, for attribute references without tuple

variable (“unqualified attribute name”), there had

to be a unique tuple varible to which it can refer.

• For subqueries, SQL only requires that there is a

unique nearest tuple variable which has this attri-

bute, e.g. this is legal (but bad style):

SELECT FIRST, LAST

FROM STUDENTS S

WHERE NOT EXISTS (SELECT * FROM RESULTS R

WHERE CAT = ’H’

AND SID = S.SID)

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-23

NOT EXISTS (10)

• In general, for attribute reference without tuple va-

riables, the SQL parser searches the FROM-clauses

beginning from the current subquery towards outer

queries (there can be several nesting levels).

• The first FROM-clause that declares a tuple varia-

ble with this attribute must have exactly one such

variable. Then the attribute refers to this variable.

• This rule helps that non-correlated subqueries can

be developed independently and inserted into ano-

ther query without any change (so it makes sense).

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-24

NOT EXISTS (11)

• It is also legal to declare tuple variables in the sub-

query that have the same name as tuple variables

in the outer query.

SELECT FIRST, LAST

FROM STUDENTS X

WHERE NOT EXISTS (SELECT * FROM RESULTS X

WHERE ???)

• References to X in the subquery mean RESULTS X.

The variable declared in the outer query becomes

“shadowed”: It cannot be accessed in the subquery.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-25

NOT EXISTS (12)

• It is legal to specify a SELECT-list in the subquery,

but since for NOT EXISTS the returned columns do

not matter, “SELECT *” should be used.

• Some authors say that in some systems SELECT null

or SELECT 1 is actually faster than SELECT *.

“SELECT null” is used by Oracle’s programmers (in “catalog.sql”).
But this does not work in DB2 (null cannot be used as a term here).
Today, resonably good optimizers should know that the column values
are not really needed, and the SELECT-list should not matter, not even
for performance.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-26

NOT EXISTS (13)

Atomic Formula (Form 7):

-

#
"

!EXISTS -

#
"

!(Subquery

#
"

!) -

• A subquery is an expression of the form SELECT ...

FROM ... [WHERE ...] [GROUP BY ...] [HAVING ...].
[...] means that these parts are optional. SQL-92 also allows UNION

(see below) in subqueries (as do Oracle, DB2, and SQL Server),
SQL-86 does not (and Access really does not support it).

• ORDER BY is not allowed in subqueries.
It would make no sense there, it is only for the final output.

• Subqueries must be enclosed in parentheses (...).

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-27

NOT EXISTS (14)

• It is possible to use EXISTS without negation.

• Who has submitted at least one homework?

SELECT SID, FIRST, LAST

FROM STUDENTS S

WHERE EXISTS (SELECT * FROM RESULTS R

WHERE R.SID = S.SID

AND R.CAT = ’H’)

• But the same query can be done with a usual join:

SELECT DISTINCT S.SID, FIRST, LAST

FROM STUDENTS S, RESULTS R

WHERE S.SID = R.SID AND R.CAT = ’H’

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-28

“For all” (1)

• Who got the best result for Homework 1?

SELECT FIRST, LAST, POINTS

FROM STUDENTS S, RESULTS X

WHERE S.SID = X.SID

AND X.CAT = ’H’ AND X.ENO = 1

AND NOT EXISTS

(SELECT * FROM RESULTS Y

WHERE Y.CAT = ’H’ AND Y.ENO = 1

AND Y.POINTS > X.POINTS)

• I.e. a result X for Homework 1 is selected if there is

no result Y for this exercise with more points than X.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-29

“For all” (2)

• In mathematical logic, there are two quantifiers:

� ∃sX:F : There is an X that satisfies F .

(existential quantifier)

� ∀sX:F): For all X, F is true.

(universal quantifier)

• In tuple relational calculus, the maximal number of

points for Homework 1 is expressed e.g. as follows:

{X.POINTS [RESULTS X] | X.CAT = ’H’ ∧ X.ENO = 1 ∧
∀ RESULTS Y: Y.CAT = ’H’ ∧ Y.ENO = 1

→ Y.POINTS ≤ X.POINTS)}

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-30

“For all” (3)

• The pattern ∀s X: (F1 → F2) is very typical:

F2 must be true for all X that satisfy F1.

• SQL has only an existential quantifier (“EXISTS”),

but not a universal quantifier.

However, see “>= ALL” below.

• This is no problem, because ∀s X:F is equivalent

to ¬∃s X:¬F . One type of quantifier suffices.

“F is true for all X” is the same as “F is false for no X”.

• The above pattern is equivalent to ¬∃sX:F1∧¬F2.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-31

“For all” (4)

• The above example is logically equivalent to:

{X.POINTS [RESULTS X] | X.CAT = ’H’ ∧ X.ENO = 1 ∧
¬∃ RESULTS Y: Y.CAT = ’H’ ∧ Y.ENO = 1

∧ Y.POINTS > X.POINTS)}
• In SQL, this is written as:

SELECT X.POINTS
FROM RESULTS X
WHERE X.CAT = ’H’ AND X.ENO = 1
AND NOT EXISTS

(SELECT * FROM RESULTS Y
WHERE Y.CAT = ’H’ AND Y.ENO = 1
AND Y.POINTS > X.POINTS)

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-32

Nested Subqueries

• Subqueries can be nested to any reasonable depth.

• List the students who solved all homeworks:

SELECT FIRST, LAST

FROM STUDENTS S

WHERE NOT EXISTS

(SELECT * FROM EXERCISES E

WHERE CAT = ’H’

AND NOT EXISTS

(SELECT * FROM RESULTS R

WHERE R.SID = S.SID

AND R.ENO = E.ENO

AND R.CAT = ’H’))

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-33

Common Errors (1)

Exercises:

• Would this query find students without homeworks

in the database? If not, what does it compute?

SELECT DISTINCT S.SID, FIRST, LAST
FROM STUDENTS S, RESULTS R
WHERE S.SID <> R.SID AND R.CAT = ’H’

• Would this query find exercises that were not yet

solved?

SELECT DISTINCT E.CAT, E.ENO
FROM EXERCISES E, RESULTS R
WHERE E.CAT = R.CAT AND E.ENO = R.ENO
AND R.SID IS NULL

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-34

Common Errors (2)

• It is important to understand that the absence/non-

existence of a row is very different than the exi-

stence of a row with a different value.

If the requested query behaves in a non-monotonic fashion (i.e. in-
sertion of a row could invalidate an answer), then NOT EXISTS, NOT IN,
<> ALL etc. are required.

• There is no way to write it without a subquery.

Except possibly using an outer join. Aggregations also change when
tuples are inserted, but without subquery, they cannot express “for
all” or “not exists”.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-35

Common Errors (3)

• Does this query compute the student with the best

result for Homework 1?

SELECT DISTINCT S.FIRST, S.LAST, X.POINTS

FROM STUDENTS S, RESULTS X, RESULTS Y

WHERE S.SID = X.SID

AND X.CAT = ’H’ AND X.ENO = 1

AND Y.CAT = ’H’ AND Y.ENO = 1

AND X.POINTS > Y.POINTS

• If not, what does it compute?

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-36

Common Errors (4)

• As mentioned above, using a non-correlated sub-

query with NOT EXISTS is normally an error.

• Does this also apply in this case (there is a join

condition in the subquery)?

SELECT FIRST, LAST

FROM STUDENTS S

WHERE NOT EXISTS Wrong!
(SELECT *

FROM RESULTS R, STUDENTS S

WHERE R.SID = S.SID

AND R.CAT = ’H’ AND R.ENO = 1)

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-37

Common Errors (5)

• What is the error in this query? It is supposed to

find students that have neither submitted a home-

work nor participated in an exam.

SELECT FIRST, LAST Wrong!
FROM STUDENTS S

WHERE SID NOT IN (SELECT SID

FROM EXERCISES)

• This query is syntactically correct SQL. Why?

• What is the output of the query?

Under the assumption that EXERCISES is not empty.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-38

Common Errors (6)

• Is there any problem with this query?

The task is to list all students who did not yet

actively participated in the course, i.e. neither sub-

mitted a homework nor took the exam.

SELECT S.FIRST, S.LAST

FROM STUDENTS S, RESULTS R

WHERE S.SID = R.SID

AND NOT EXISTS (SELECT *

FROM RESULTS R

WHERE S.SID = R.SID)

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-39

ALL, ANY, SOME (1)

• It is possible to compare a value with all values in

a set (computed by a subquery).

• One can require that the comparison returns true

for all set elements (ALL) or for at least one (ANY):

SELECT S.FIRST, S.LAST, X.POINTS
FROM STUDENTS S, RESULTS X
WHERE S.SID=X.SID AND X.CAT=’H’ AND X.ENO=1
AND X.POINTS >= ALL (SELECT Y.POINTS

FROM RESULTS Y
WHERE Y.CAT = ’H’
AND Y.ENO = 1)

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-40

ALL, ANY, SOME (2)

• The following is logically equivalent to the above

query:

SELECT S.FIRST, S.LAST, X.POINTS

FROM STUDENTS S, RESULTS X

WHERE S.SID=X.SID AND X.CAT=’H’ AND X.ENO=1

AND NOT X.POINTS < ANY (SELECT Y.POINTS

FROM RESULTS Y

WHERE Y.CAT = ’H’

AND Y.ENO = 1)

• Again, “for all” can be replaced by “not exists not”.

Of course, also conversely “exists” is equivalent to “not for all not”.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-41

ALL, ANY, SOME (3)

• This construct is not strictly necessary, since e.g.

T1 < ANY (SELECT T2 FROM ... WHERE ...)

is equivalent to

EXISTS (SELECT * FROM ... WHERE ... AND T1 < T2)

This requires that T1 explicitly mentions a tuple variable which is not
redeclared in the subquery (so that the meaning of T1 is not changed
by moving it into the subquery).

• E.g. Oracle internally does such transformations so

that the query optimizer does not have to handle

too many different cases (syntactic variants).

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-42

ALL, ANY, SOME (4)

Atomic Formula (Form 8):

- Term - Comparison Op.
-

#
"

!ALL -

-

#
"

!ANY -

-

#
"

!SOME -

-

#
"

!(Subquery

#
"

!) -

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-43

ALL, ANY, SOME (5)

Syntactic Remarks:

• ANY and SOME are synonyms.

• “x IN S” is equivalent to “x = ANY S”.

• The subquery must have a single result column.

SQL92 allows comparisons also on a tuple basis. Oracle supports this
only with <> and =, DB2 supports only =ANY (which is equivalent to IN).
SQL86, SQL Server, and Access do not support tuple comparisons.

• If none of the keywords ALL, ANY, SOME are present,

the subquery must yield at most one row.

Since there is also only one column, this means the subquery gives a
single data value. If the subqery result is empty, the null value is used.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-44

Single Value Subqueries (1)

• Who got full points for Homework 1?

SELECT S.FIRST, S.LAST
FROM STUDENTS S, RESULTS R
WHERE S.SID=R.SID AND R.CAT=’H’ AND R.ENO=1
AND R.POINTS = (SELECT MAXPT

FROM EXERCISES
WHERE CAT=’H’ AND ENO=1)

• It is only possible to leave out ANY/ALL when the

subquery is guaranteed to return at most one row.
In the example, a key of EXERCISES is specified. But in general, this may
depend on the data. The query might run during testing, but later
give an error. Use constraints to ensure that the necessary assumtions
are really satisfied.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-45

Single Value Subqueries (2)

• In SQL92, DB2, SQL Server, and Access, a sub-

query returning a single data element can be used

as a term/expression. Thus, this is equally legal:

(SELECT MAXPT FROM ...) = R.POINTS

• In Oracle8 and SQL86, the subquery must be on

the right hand side.

• One can even do further computations with the

result of a subquery, e.g. (not in SQL86, Oracle8):

R.POINTS >= (SELECT MAXPT FROM ...) * 0.9

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-46

Single Value Subqueries (3)

• If the subquery has an empty result, the null value

is used instead.

• E.g. this is a strange way to ask for students that

have not yet solved Homework 1:

SELECT FIRST, LAST

FROM STUDENTS S

WHERE (SELECT 1 Bad Style!
FROM RESULTS R

WHERE R.SID = S.SID

AND R.CAT = ’H’ AND R.ENO = 1) IS NULL

• In SQL86 and Oracle8, this is a syntax error.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-47

Subqueries under FROM (1)

• Since the result of an SQL-query is a table, it is

natural that one can write a subquery instead of a

table name in the FROM-clause.

• This was not allowed in SQL-86, and at that time

SQL was often criticized as having “not orthogonal

constructs”, which cannot be combined arbitrarily.

In relational algebra, wherever one can write a relation name, one can
also write a subquery (relational algebra expression).

• Subqueries under FROM are really needed only sel-

dom, and might make the query more complex.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-48

Subqueries under FROM (2)

• Subqueries under FROM are needed e.g. for nested

aggregations, see below.

• In the following example, the join of RESULTS and

EXERCISES is computed in a subquery (that might

result from a view definition, see below):

SELECT X.SID, ROUND(X.POINTS*100/X.MAXPT) AS PCT

FROM (SELECT E.CAT, E.ENO, R.SID, R.POINTS,

E.MAXPT

FROM EXERCISES E, RESULTS R

WHERE E.CAT=R.CAT AND E.ENO=R.ENO) X

WHERE X.CAT = ’H’ AND X.ENO = 1

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-49

Subqueries under FROM (3)

• SQL92, SQL Server, and DB2 require declaring a

tuple variable for the subquery; in Oracle and Ac-

cess this is optional.

• SQL92, DB2, and SQL Server (but not Oracle8

and Access) permit to rename columns in this way:

FROM (...) X(CATEGORY, EX_NO, ...)

• In Oracle and Access, columns can only be renamed

inside the subquery.

All systems support the specification of new column names in the
SELECT-clause, so that is the more portable way.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-50

Subqueries under FROM (4)

• Inside the subquery, one cannot refer to other tuple

variables introduced in the same FROM-clause:

SELECT S.FIRST, S.LAST, X.ENO, X.POINTS Wrong!
FROM STUDENTS S, (SELECT R.ENO, R.POINTS

FROM RESULTS R

WHERE R.CAT = ’H’

AND R.SID = S.SID) X

• In addition, subqueries under FROM should only be

used if needed. They can make queries much more

difficult to understand.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-51

Subqueries under FROM (5)

• A view declaration stores a query under a name in

the database:

CREATE VIEW HW_POINTS AS

SELECT S.FIRST, S.LAST, R.ENO, R.POINTS

FROM STUDENTS S, RESULTS R

WHERE S.SID=R.SID AND R.CAT = ’H’

• Views can be used in queries like stored tables:

SELECT ENO, POINTS

FROM HW_POINTS

WHERE FIRST=’Michael’ AND LAST=’Jones’

• A view is an abbreviation for the subquery (macro).

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-52

Subqueries under FROM (6)

• When a view used in a query, the DBMS simply

replaces the view name by the query it stands for.

Views existed already in SQL-86. However, since SQL-86 did not
contain subqueries under FROM, there were complex restrictions for
using views.

• By using views, one can build complex queries step

by step.

If the optimizer is not very good, it might be possible that a query
built in this way runs slightly slower than a single “monolithic” query.
However, there should be no difference to using subqueries under FROM.
A performance improvement is only possible if one can formulate the
query without such subqueries.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-53

Overview

1. Subqueries, Nonmonotonic Constructs

2. Aggregations I: Aggregation Functions

'

&

$

%
3. Aggregations II: GROUP BY, HAVING

4. UNION, Conditional Expressions

5. Sorting Output: ORDER BY

6. SQL-92 Joins, Outer Join in Oracle

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-54

Aggregations (1)

• Aggregation functions are functions from a set or

multiset to a single value (usually a number).

E.g.: min{41,57,19,23,27} = 19

• Aggregation functions aggregate or summarize an

entire set of values to a single value.

Aggregation functions are also called “set functions”, “group functi-
ons” or “column functions”. They take not a single value as input, but
an entire column (a set). The column can be constructed by means
of a query (it does not have to be a column of a stored table).

• Aggregation functions are often used for statistical

evaluations (e.g. average).

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-55

Aggregations (2)

• SQL-86/92 has the five aggregation functions

COUNT, SUM, AVG, MAX, MIN.
Additional aggregation functions in certain systems:
Oracle 8i: CORR (correlation, works on a set of pairs),

COVAR_POP, COVAR_SAMP, linear regression functions,
STDDEV, STDDEV_POP, STDEV_SAMP, VARIANCE, VAR_POP, VAR_SAMP.

DB2: CORRELATION, COUNT_BIG, COVARIANCE, regression functions, STDDEV,
VARIANCE.

SQL Server: VAR, VARP, STDEV, STDEVP.
Access: VAR, VARP, STDEV, STDEVP, FIRST, LAST.
MySQL: STD. However, MySQL supports DISTINCT only for COUNT.

• Any commutative and associative binary operator

with a neutral element can be extended to work on

sets. E.g. sum is the set-version of +.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-56

Aggregations (3)

• Some aggregation functions are sensitive to dupli-

cates (e.g. sum), others are not (e.g. minimum).

E.g. the sum of all items of an invoice. If two items cost the same
amount, nevertheless both must be added.

• In SQL, one can request duplicate elimination

(input is a set) or not (input is a multiset).

A multiset is a set where each element has a multiplicity, e.g. an
element can be contained in a multiset two times. In contrast to a
list, there is still no specific order. Also the name “bag” is used.

• SUM(DISTINCT X) and AVG(DISTINCT X) are most likely

an error. Some students mix up SUM and COUNT.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-57

Simple Aggregations (1)

• First, aggregations over all result rows of the query

will be explained.
Aggregations over several groups of rows are treated below.

• How many students are in the database?

SELECT COUNT(*)

FROM STUDENTS
COUNT(*)

4

• What is the best result for Homework 1?

SELECT MAX(POINTS)

FROM RESULTS

WHERE CAT = ’H’ AND ENO = 1

MAX(POINTS)

10

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-58

Simple Aggregations (2)

• How many students have submitted a homework?

SELECT COUNT(DISTINCT SID)

FROM RESULTS

WHERE CAT = ’H’

COUNT(DISTINCT SID)

3

• What is the total number of points student 101 got

for her homeworks?

SELECT SUM(POINTS) "Total Points"

FROM RESULTS

WHERE SID = 101 AND CAT = ’H’

Total Points

18

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-59

Simple Aggregations (3)

• What average percentage of the maximal points

did the students reach in Homework 1?

SELECT AVG((R.POINTS/E.MAXPT)*100)

FROM RESULTS R, EXERCISES E

WHERE R.CAT = ’H’ AND E.CAT = ’H’

AND R.ENO = 1 AND E.ENO = 1

• E.g. homework points for student 101 plus 3 extra

points:
SELECT SUM(POINTS) + 3 "Total Homework Points"

FROM RESULTS

WHERE SID = 101 AND CAT = ’H’

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-60

Simple Aggregations (4)

• It is possible to compute more than one aggrega-

tion in the SELECT list, e.g.: What is the minimum

and maximum number of points for Homework 1?

SELECT MIN(POINTS), MAX(POINTS)

FROM RESULTS

WHERE CAT = ’H’ AND ENO = 1

• The aggregations can refer to different columns:

SELECT COUNT(DISTINCT TOPIC), AVG(MAXPT)

FROM EXERCISES E

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-61

Aggregation Queries

• There are three different types of queries in SQL:

� Queries without aggregation functions and wi-

thout GROUP BY and HAVING: See above.

� Queries with aggregation functions under SELECT,

but no GROUP BY (called “simple aggregations”

above): Result is always exactly one row.

� Queries with GROUP BY.

• Each type has different syntax restrictions and is

evaluated in a different way.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-62

Evaluation (1)

• First, the FROM-clause is evaluated.

Theoretically, all possible tuple combinations of the source tables are
constructed (cartesian product, nested loops).

• Second, the WHERE-clause is evaluated.

Only those tuple combinations that satisfy the condition are further
considered (selection, filter, if). Of course, in real systems the first
and second step may be combined to allow a more efficient evaluation.

• Third, if there is no aggregation, GROUP BY, and

HAVING, the SELECT-clause is evaluated by printing

the values of the terms/scalar expressions in the

SELECT-list for every remaining tuple combination.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-63

Evaluation (2)

• When the SELECT-list contains an aggregation term,

and there is no GROUP BY, only a single output row is

computed by applying the aggregation operators.

• Instead of printing the values of columns as usual,

the values are added to a set/multiset that is the

input to the aggregation function.
If the SELECT-list contains multiple aggregations, multiple such sets
must be managed.

• If no DISTINCT is used, the aggregated values can be

incrementally computed without explicitly storing a

temporary set of values (see next slide).

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-64

Evaluation (3)

• E.g. consider the query:

SELECT SUM(MAXPT), COUNT(*)

FROM EXERCISES E

WHERE CAT = ’H’

• This is evaluated as:
out1 = 0; out2 = 0;

foreach row E in EXERCISES do
if E.CAT = ’H’ then begin

out1 = out1 + E.MAXPT;

out2 = out2 + 1;

end;
print out1, out2;

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-65

Syntax

Aggregation Term:

-

#
"

!AVG -

-

#
"

!MIN -

-

#
"

!MAX -

-

#
"

!SUM -

-

#
"

!COUNT -

6

#
"

!(-

-

#
"

!DISTINCT -

-

#
"

!ALL -

6 Term -

#
"

!) -

-

#
"

!COUNT -

#
"

!(-

#
"

!* -

#
"

!)

6

• MySQL supports DISTINCT only for COUNT (and does not understand ALL).

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-66

Syntax / Restrictions (1)

• The arguments of SUM and AVG must be numeric.

COUNT, MIN, and MAX accept any datatype.

• Aggregations cannot be nested, e.g. the following

is illegal:

AVG(COUNT(*)) Wrong!

After the COUNT only a single value remains. Thus,

applying another aggregation makes no sense.

It is possible that aggregations are first applied to groups of rows,
and then the result is input to another aggregation. E.g. what is
the average over the total number of points students got for their
homeworks? This is done with GROUP BY and subqueries (see below).

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-67

Syntax / Restrictions (2)

• Aggregations cannot be used in the WHERE-clause.
The WHERE-condition is evaluated before aggregations are computed
(it determines which tuples enter the aggregation). Conditions with
aggregations can be specified under HAVING (see below). Of course,
also subqueries nested in the WHERE-clause may contain aggregations.

WHERE COUNT(*) > 1 Wrong!

• If an aggregation function and no GROUP BY is used,

no normal attributes can appear in the SELECT-list.
Only a single output tuple is produced, and an attribute outside ag-
gregations would not have a unique output value. But see GROUP BY.

SELECT CAT, ENO, AVG(POINTS) Wrong!
FROM RESULTS

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-68

Syntax / Restrictions (3)

• Every aggregation operator needs an argument

(which specifies input values).

SELECT SID

FROM RESULTS

WHERE CAT = ’H’ AND ENO = 1

AND POINTS = MAX Wrong! Wrong!

Aggregations are also not allowed under WHERE.

• A subquery is required to find the student(s) with

the best result for Homework 1 (see below).

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-69

Null Values in Aggregations

• Usually, null values are ignored (filtered out) before

the aggregation function is applied.

• Only COUNT(*) includes null values (it counts rows,

not attribute values).

• The difference between COUNT(EMAIL) and COUNT(*)

is that the first counts only those rows where EMAIL

is not null, whereas the second counts all rows.

Otherwise, the actual attribute value is not important for COUNT, and
one probably should use COUNT(*). Of course, if duplicates are elimi-
nated as in COUNT(DISTINCT CAT), the attribute is obviously important.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-70

Empty Aggregations

• If the input set is empty, most aggregations yield a

null value, only COUNT returns 0.

This is counter-intuitive at least for the SUM. One would expect that
the SUM over the empty set is 0, but in SQL it returns NULL. (One
reason for this behaviour might be that the SUM aggregation function
cannot detect a difference between the empty input set because there
was no qualifying tuple and the empty input set because all qualifying
tuples had a null value in this argument.)

• Since it may happen that no row satisfies the WHERE-

condition, programs must be prepared to process

the resulting null value.

Alternative: Use e.g. NVL(SUM(POINTS),0) in Oracle to replace the null.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-71

Overview

1. Subqueries, Nonmonotonic Constructs

2. Aggregations I: Aggregation Functions

3. Aggregations II: GROUP BY, HAVING

'

&

$

%
4. UNION, Conditional Expressions

5. Sorting Output: ORDER BY

6. SQL-92 Joins, Outer Join in Oracle

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-72

GROUP BY (1)

• The above SQL constructs can produce a single

aggregated output row only.

• The GROUP BY clause allows one to aggregate in

groups rather than aggregate all tuples.

• Compute the average points for each homework:

SELECT ENO, AVG(POINTS)

FROM RESULTS

WHERE CAT = ’H’

GROUP BY ENO

ENO AVG(POINTS)

1 8

2 8.5

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-73

GROUP BY (2)

• The GROUP BY clause splits the resulting table after

evaluation of FROM and WHERE into groups that have

the same value in the GROUP BY columns.

SID CAT ENO POINTS

101 H 1 10
102 H 1 9
103 H 1 5

101 H 2 8
102 H 2 9

• The aggregation is then done over every group.

So there will be one output row for every group.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-74

GROUP BY (3)

• This construction can never produce empty groups.

So it is impossible that a COUNT(*) results in the

value 0.

The value 0 can be produced with COUNT(A) where the attribute A is
null. If a query must produce groups with count 0, probably an outer
join is needed (see below).

• On the other hand, simple aggregations (without

GROUP BY) will always produce exactly one output

row, and it is possible that their input set is empty

(then COUNT(*) can be 0).

A GROUP BY query can result in none, one, or many output rows.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-75

GROUP BY (4)

• Since the GROUP BY attributes have a unique value

for every group, they can be used in the SELECT-list.

Other attributes can be used under SELECT only inside aggregations.

• E.g. this is illegal:

SELECT E.ENO, E.TOPIC, AVG(R.POINTS) Wrong!
FROM EXERCISES E, RESULTS R

WHERE E.CAT=’H’ AND R.CAT=’H’ AND E.ENO=R.ENO

GROUP BY E.ENO

E.TOPIC does not appear under GROUP BY, therefore it cannot be used
in the SELECT-list outside an aggregation function. This is especially
strange since ENO is a key of EXERCISES, so that TOPIC is actually unique
in the groups. But the SQL rule is purely syntactic.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-76

GROUP BY (5)

• Thus, one must group by E.ENO and E.TOPIC:

SELECT E.ENO, E.TOPIC, AVG(R.POINTS)

FROM EXERCISES E, RESULTS R

WHERE E.CAT=’H’ AND R.CAT=’H’ AND E.ENO=R.ENO

GROUP BY E.ENO, E.TOPIC

E.ENO E.TOPIC AVG(POINTS)

1 Rel. Algeb. 8

2 SQL 8.5

• Adding E.TOPIC to the GROUP BY attributes does not

change the groups, but now one can print it.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-77

GROUP BY (6)

• Exercise: Is there any semantical difference between

SELECT TOPIC, AVG(POINTS/MAXPT)

FROM EXERCISES E, RESULTS R

WHERE E.CAT=’H’ AND R.CAT=’H’ AND E.ENO=R.ENO

GROUP BY TOPIC

and the query which additionally groups by E.ENO,

but does not print it?

SELECT TOPIC, AVG(POINTS/MAXPT)

FROM EXERCISES E, RESULTS R

WHERE E.CAT=’H’ AND R.CAT=’H’ AND E.ENO=R.ENO

GROUP BY TOPIC, E.ENO

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-78

GROUP BY (7)

• GROUP BY is evaluated before the SELECT clause.

Thus, one cannot refer to new attribute names:

SELECT FLOOR((POINTS/MAXPT)*10+0.5) PCT_RANGE,
COUNT(*)

FROM EXERCISES E, RESULTS R
WHERE E.CAT = R.CAT AND E.ENO = R.ENO
GROUP BY PCT_RANGE Wrong!

• Oracle, SQL Server, DB2, MySQL, and Access

support GROUP BY with arbitrary terms. The SQL92

standard permits GROUP BY only with column names.
I.e. GROUP BY FLOOR(...) works in these systems.
Portable alternative: Subquery under FROM or using a view.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-79

GROUP BY (8)

• The sequence of attributes in the GROUP BY clause

is not important.

GROUP BY A, B means that two tuples t, u belong into the same group
if t.A = u.A and t.B = u.B.
GROUP BY B, A means that two tuples t, u belong into the same group
if t.B = u.B and t.A = u.A.

• Note that it makes no sense to group by a key

(if only one table is listed under FROM): Then every

group will consist of only a single row.

• In the same way, GROUP BY is not useful if there can

be only a single group.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-80

GROUP BY (9)

Warning:

• Many students mix up “GROUP BY” and “ORDER BY”:

� GROUP BY is important for the query result.

� ORDER BY is only cosmetic (for a nice printout).

• GROUP BY usually internally sorts the tuples (so that

tuples with the same values are adjacent).

• But then GROUP BY does the grouping, whereas the

sort for the ORDER BY is done at the very end.

• Sometimes, the DBMS may evaluate the GROUP BY

in more efficient ways without sorting.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-81

Syntax (1)

SELECT-Expression:

-

�
�

�
�SELECT - Goal-List

-

�
�

�
�FROM - Source-List

?

?-

�
�

�
�WHERE - Condition -

?

?-

�
�

�
�GROUP BY - Grouping -

?

?-

�
�

�
�HAVING - Condition - -

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-82

Syntax (2)

Grouping:

- Attribute-Reference -

�

#
"

!,

6

• E.g. GROUP BY TITLE, C.CRN

• Oracle, SQL Server, DB2, Access, and MySQL support the more gene-
ral “Term” instead of “Attribute-Reference”. Of course, no aggregation
functions are permitted under GROUP BY.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-83

HAVING (1)

• Aggregations cannot be used in the WHERE-clause.

• But sometimes aggregations are needed to filter

output rows, not only for computing output values.

• For this reason, SQL has a second kind of condi-

tion, the HAVING clause. The purpose of the HAVING

clause is to eliminate whole groups.

• Aggregation operators can be used in the HAVING-

condition. But as under SELECT, outside aggregati-

ons, only GROUP BY attributes can be used.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-84

HAVING (2)

• Which students got at least 18 homework points?

SELECT FIRST, LAST

FROM STUDENTS S, RESULTS R

WHERE S.SID=R.SID AND R.CAT=’H’

GROUP BY S.SID, FIRST, LAST

HAVING SUM(POINTS) >= 18

FIRST LAST

Ann Smith
Michael Jones

• The WHERE condition refers to single tuple combina-

tions, the HAVING condition to entire groups.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-85

Evaluation

1. All combinations of rows from tables under FROM

are considered.

2. The WHERE-condition selects a subset of these.

3. The remaining joined tuples are split into groups

having equal values for the GROUP BY-attributes.

4. Groups of tuples which do not satisfy the condition

in the HAVING-clause are eliminated.

5. One output tuple for every group is produced by

evaluating the terms in the SELECT-clause.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-86

Syntax: Restrictions

• An aggregation is done if

� an aggregation function is used in the SELECT-list,

� or the GROUP BY or HAVING-clause is present.

• If an aggregation is done, then: Only GROUP BY at-

tributes can be used under SELECT or HAVING outside

aggregation functions.
Inside aggregation functions, i.e. as their arguments, all attributes can
be used. E.g. AVG(A)/B: The attribute A appars inside an aggregation
function, B outside.

• HAVING without GROUP BY is legal, but uncommon:

The query could only return 0 or 1 output rows.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-87

WHERE vs. HAVING

• Normally, the restrictions uniquely define whether a

condition must be put under WHERE or under HAVING.
Only if a condition contains only GROUP BY-attributes, but no aggre-
gations, it would be allowed in both clauses.

• If both is possible, it is much more efficient to put

it under WHERE. E.g. this query is legal, but slow and

needs lots of memory:

SELECT FIRST, LAST

FROM STUDENTS S, RESULTS R

GROUP BY S.SID, R.SID, FIRST, LAST

HAVING S.SID = R.SID AND SUM(POINTS) >= 18

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-88

Aggregation Subqueries (1)

• Who has the best result for Homework 1?

SELECT S.FIRST, S.LAST, R.POINTS
FROM STUDENTS S, RESULTS R
WHERE S.SID=R.SID AND R.CAT=’H’ AND R.ENO=1
AND R.POINTS = (SELECT MAX(POINTS)

FROM RESULTS
WHERE CAT=’H’ AND ENO=1)

• For an aggregation query without GROUP BY, it is

guaranteed that it will return exactly one row.

Thus ANY/ALL is not necessary here.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-89

Aggregation Subqueries (2)

• Since in SQL92, DB2, SQL Server, and Access a

subquery returning a single data element can be

used as a term, subqueries are also allowed in the

SELECT-clause. Oracle 8.0 does not support this.

• This can replace GROUP BY. E.g. print for every stu-

dent the sum of the homework points (null if none):

SELECT FIRST, LAST, (SELECT SUM(POINTS)

FROM RESULTS R

WHERE R.SID = S.SID

AND R.CAT = ’H’)
FROM STUDENTS S

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-90

Nested Aggregations (1)

• Nested aggregations require a subquery under FROM.

• What is the average number of homework points?

(counting only students who submitted homeworks)

SELECT AVG(X.HW_PT)

FROM (SELECT SID, SUM(POINTS) AS HW_PT

FROM RESULTS

WHERE CAT = ’H’

GROUP BY SID) X
X

SID HW_PT

101 18
102 18
103 5

AVG(X.HW_PT)

13.67

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-91

Nested Aggregations (2)

• Oracle also supports nested aggregations written

in this way:

SELECT AVG(SUM(POINTS)) Only Oracle!
FROM RESULTS

WHERE CAT = ’H’

GROUP BY SID

This is completely non-standard (not supported in

SQL92, DB2, SQL Server, Access).

Since it is much shorter than the equivalent standard query, it might be
handy to use this when writing ad-hoc queries. However, in application
programs, one should not create unnecessary portability problems.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-92

Aggregating Different Sets (1)

• Subqueries under FROM make it possible to aggrega-

te over different sets:

SELECT FIRST, LAST, H.PT AS HOMEWORK, M.PT AS MID
FROM STUDENTS S,

(SELECT SID, SUM(POINTS) AS PT
FROM RESULTS
WHERE CAT = ’H’
GROUP BY SID) H,

(SELECT SID, SUM(POINTS) AS PT
FROM RESULTS
WHERE CAT = ’M’
GROUP BY SID) M

WHERE S.SID = H.SID AND S.SID = M.SID

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-93

Aggregating Different Sets (2)

• This is also possible with conditional expressions,

e.g. in Oracle:

SELECT FIRST, LAST,

SUM(DECODE(R.CAT, ’H’, R.POINTS, 0)) HW

SUM(DECODE(R.CAT, ’M’, R.POINTS, 0)) MID

FROM STUDENTS S, RESULTS R

WHERE S.SID = R.SID

• E.g. the conditional expression

DECODE(R.CAT, ’H’, R.POINTS, 0)

returns R.POINTS if R.CAT = ’H’ and 0 otherwise.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-94

Maximizing Aggregations (1)

• Who has the best results in the homeworks (maxi-

mal sum of homework points)?

SELECT FIRST, LAST, SUM(POINTS) AS TOTAL

FROM STUDENTS S, RESULTS R

WHERE S.SID = R.SID AND R.CAT = ’H’

GROUP BY S.SID, FIRST, LAST

HAVING SUM(POINTS) >= ALL(SELECT SUM(POINTS)

FROM RESULTS

WHERE CAT = ’H’

GROUP BY SID)

• Alternative solution with view: See next slide.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-95

Maximizing Aggregations (2)

• Total number of HW points for every student:

CREATE VIEW HW_TOTALS AS

SELECT SID, SUM(POINTS) AS TOTAL

FROM RESULTS

WHERE CAT = ’H’

GROUP BY SID

• Then one can use this as follows:

SELECT S.FIRST, S.LAST, H.TOTAL

FROM STUDENTS S, HW_TOTALS H

WHERE S.SID = H.SID

AND H.TOTAL = (SELECT MAX(TOTAL)

FROM HW_TOTALS)

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-96

Exercise: Possible Errors (1)

• What do you think about this query? Its task is

to list all students who have solved at least two

homeworks.

SELECT FIRST, LAST

FROM STUDENTS S

WHERE 2 <= (SELECT COUNT(S.SID)

FROM RESULTS R

WHERE R.SID = S.SID

AND R.CAT = ’H’)

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-97

Exercise: Possible Errors (2)

• And what about this query? Again, the task is to list

students who have solved at least two homeworks.

SELECT FIRST, LAST

FROM STUDENTS S, RESULTS R

WHERE S.SID = R.SID

AND R.CAT = ’H’

AND COUNT(R.ENO) >= 2

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-98

Exercise: Possible Errors (3)

• And what about this query? Here the task is to list

the number of homeworks per student.

SELECT S.SID, S.FIRST, S.LAST, SUM(R.ENO)

FROM STUDENTS S, RESULTS R

WHERE S.SID = R.SID

AND R.CAT = ’H’

GROUP BY S.SID, S.FIRST, S.LAST, R.ENO

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-99

Overview

1. Subqueries, Nonmonotonic Constructs

2. Aggregations I: Aggregation Functions

3. Aggregations II: GROUP BY, HAVING

4. UNION, Conditional Expressions

'

&

$

%
5. Sorting Output: ORDER BY

6. SQL-92 Joins, Outer Join in Oracle

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-100

UNION (1)

• In SQL it is possible to combine the results of two

queries by UNION.
R ∪ S is the set of all tuples contained in R, in S, or in both.

• UNION is needed since otherwise there is no way to

construct one result column that contains values

drawn from different tables/columns.
This is necessary e.g. when subclasses are represented by different
tables. For instance, there may be one table GRADUATE_COURSES and
another table UNDERGRADUATE_COURSES.

• UNION is also very useful for case analysis

(to code an if . . . then . . . else . . .).

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-101

UNION (2)

• The subqueries which are operands to UNION must

return tables with the same number of columns.

The data types of corresponding columns must be

compatible.
The attribute names do not have to be equal. Oracle and SQL Server
use the attribute names from the first operand in the result. DB2 uses
artificial column names (1, 2, . . .) if the input column names differ.

• SQL distinguishes between

� UNION: ∪ with duplicate elimination, and

� UNION ALL: concatenation (retains duplicates).

Duplicate elimination is quite expensive.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-102

UNION (3)

• Print for every student his/her total number of ho-

mework points (0 if no homework submitted).

SELECT S.FIRST, S.LAST, SUM(R.POINTS) AS TOTAL
FROM STUDENTS S, RESULTS R
WHERE S.SID = R.SID AND R.CAT = ’H’
GROUP BY S.SID, S.FIRST, S.LAST

UNION ALL

SELECT S.FIRST, S.LAST, 0 AS TOTAL
FROM STUDENTS S
WHERE S.SID NOT IN (SELECT SID

FROM RESULTS
WHERE CAT = ’H’)

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-103

UNION (4)

• Assign student grades based on Homework 1:

SELECT S.SID, S.FIRST, S.LAST, ’A’ GRADE

FROM STUDENTS S, RESULTS R

WHERE S.SID=R.SID AND R.CAT=’H’ AND R.ENO=1

AND R.POINTS >= 9

UNION ALL

SELECT S.SID, S.FIRST, S.LAST, ’B’ GRADE

FROM STUDENTS S, RESULTS R

WHERE S.SID=R.SID AND R.CAT=’H’ AND R.ENO=1

AND R.POINTS >= 7 AND R.POINTS < 9

UNION ALL

...

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-104

Other Set Operations in SQL

• SQL-86 contained only UNION [ALL].

• The SQL-92 standard also contains EXCEPT (set dif-

ference, −) and INTERSECT (∩).
SQL-86, SQL Server and Access support only UNION [ALL]. MySQL
does not support any of these operations. DB2 supports all SQL-92
set operators. In Oracle 8.0, the − operator is called MINUS instead of
EXCEPT. ALL for MINUS and INTERSECT is not supported in Oracle.

• These operations add nothing to the expressivity

to the language.
Queries containing EXCEPT/MINUS and INTERSECT can be transformed
into equivalent SQL-queries without these constructs, but queries
containing UNION in general cannot. So only UNION is really important.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-105

UNION: Syntax

Table Expression:

- SELECT Query -

-

#
"

!(- Table Expression -

#
"

!)

6

�

�

#
"

!UNION�

�

#
"

!UNION ALL�

6

• MySQL does not support union. SQL-86 contains UNION and UNION ALL.

• SQL-92 and DB2 support in addition INTERSECT, INTERSECT ALL, EXCEPT,
and EXCEPT ALL. Oracle 8 supports UNION, UNION ALL, INTERSECT and MINUS.

• In Access, it is not possible to put parentheses around the entire query.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-106

Union vs. Join

Exercise:

• Two alternatives for respresenting the homework,

midterm, and final results of the students are:

Results_1

STUDENT H M F

Jim Ford 95 60 75
Ann Lloyd 80 90 95

Results_2

STUDENT CAT PCT

Jim Ford H 95
Jim Ford M 60
Jim Ford F 75
Ann Lloyd H 80
Ann Lloyd M 90
Ann Lloyd F 95

• Write SQL queries to translate between the two.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-107

Conditional Expressions (1)

• Whereas using UNION is the portable way to make

a case analysis, sometimes a conditional expression

suffices, and is more efficient.

Conditional expressions look differently in each DBMS.

• E.g. Oracle has expressions of the form:

DECODE(X, X1, Y1, X2, Y2, ..., Z)

• This is evaluated by comparing X first to X1, then

to X2, and so on. If Xi is the first value with X = Xi,

then Yi is returned. If no Xi matches, Z is returned.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-108

Conditional Expressions (2)

• E.g. print the exercise category in full for the results

of Ann Smith (Oracle Version):

SELECT DECODE(CAT, ’H’, ’Homework’,

’M’, ’Midterm Exam’,

’F’, ’Final Exam’,

’Unknown Category’),

ENO, POINTS

FROM STUDENTS S, RESULTS R

WHERE S.SID = R.SID

AND S.FIRST = ’Ann’ AND S.LAST = ’Smith’

ORDER BY DECODE(CAT, ’H’, 1, ’M’, 2, ’F’, 3, 4)

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-109

Conditional Expressions (3)

• In the SQL-92 standard (and e.g. DB2), this is

written as follows:

SELECT CASE WHEN CAT=’H’ THEN ’Homework’

WHEN CAT=’M’ THEN ’Midterm Exam’

WHEN CAT=’F’ THEN Final Exam’

ELSE ’Unknown Category’ END

ENO, POINTS

FROM STUDENTS S, RESULTS R

WHERE S.SID = R.SID

AND S.FIRST = ’Ann’ AND S.LAST = ’Smith’

• Oracle 8i (not 8.0) supports a similar syntax, but

requires a comma between the WHEN clauses.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-110

Conditional Expressions (4)

• The SQL-92 standard (and DB2, but not Oracle 8i)

supports also the following abbreviation which is

very similar to Oracle’s DECODE:

SELECT CASE CAT WHEN ’H’ THEN ’Homework’,

WHEN ’M’ THEN ’Midterm Exam’,

WHEN ’F’ THEN Final Exam’,

ELSE ’Unknown Category’ END,

ENO, POINTS

FROM STUDENTS S, RESULTS R

WHERE S.SID = R.SID

AND S.FIRST = ’Ann’ AND S.LAST = ’Smith’

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-111

Conditional Expressions (5)

• A typical application of condtional expressions is to

replace a null value by something else.

• In Oracle NVL(X, Y) is equivalent to

DECODE(X, NULL, Y , X)

I.e. if X is not null, then X is the result.

If X is null, then Y is the result.

• COALESCE(X, Y) is the same in standard SQL-92.

There it abbreviates

CASE WHEN X IS NOT NULL THEN X ELSE Y END

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-112

Conditional Expressions (6)

• E.g. list the email address of all students, and write

“(none)” if the column is null:

SELECT FIRST, LAST, NVL(EMAIL, ’(none)’)

FROM STUDENTS

• Finally note that conditional expressions are nor-

mal terms, so they can be input for other datatype

functions or e.g. aggregation functions.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-113

Overview

1. Subqueries, Nonmonotonic Constructs

2. Aggregations I: Aggregation Functions

3. Aggregations II: GROUP BY, HAVING

4. UNION, Conditional Expressions

5. Sorting Output: ORDER BY

'

&

$

%
6. SQL-92 Joins, Outer Join in Oracle

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-114

Sorting Output (1)

• Output that is longer than a few lines should be

sorted in some understandable way.
It is much easier to search a specific value in a sorted table. Without
“ORDER BY” the sequence of output rows means nothing (it depends on
the algorithms used in the DBMS and may change between versions).

• However, it is important to understand that deve-

loping the logic of the query and nicely formatting

the output are two separate things.
Whereas sorting is the only formatting command that found its way
into the SQL standard, DBMS tools usually offer more options. E.g. to
have a pagebreak when the value in a specific column changes, to
show negative values in red ink, etc. However, sorting may also be
important when an application program retrieves the data.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-115

Sorting Output (2)

• E.g. print the students who solved homework 1.

Order the list alphabetically by last name:

SELECT S.FIRST, S.LAST

FROM STUDENTS S, RESULTS R

WHERE S.SID = R.SID

AND R.CAT = ’H’ AND R.ENO = 1

ORDER BY S.LAST

FIRST LAST

Michael Jones

Ann Smith

Richard Turner

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-116

Sorting Output (3)

• One can specify a prioritized list of sorting criteria.
The “ORDER BY” list can contain multiple columns. The second column
is only used for ordering two tuples which have the same value in the
first column, and so on. Additional sorting criteria are only useful if
there can still be duplicates in the previous columns.

• E.g.: Print the homework results sorted by exercise,

and for each exercise by points (best result first),

and if there is still a tie, alphabetically by name:

SELECT R.ENO, R.POINTS, S.FIRST, S.LAST

FROM STUDENTS S, RESULTS R

WHERE S.SID = R.SID AND R.CAT = ’H’

ORDER BY R.ENO, R.POINTS DESC, S.LAST, S.FIRST

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-117

Sorting Output (4)

• Result of the example query on the previous page:

ENO POINTS FIRST LAST

1 10 Ann Smith
1 9 Michael Jones
1 5 Richard Turner
2 9 Michael Jones
2 8 Ann Smith

• E.g. the first two tuples have the same value in the

highest priority sort criterion (ENO), and the second

criterion (POINTS DESC) determines their sequence.
It does not matter that according to the criterion of third priority
(LAST) the sequence would be the other way round.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-118

Sorting Output (5)

• According to the SQL-92 standard, one can only

sort by columns that appear in the output.

E.g. it is impossible to print a list of student names ordered by total
points without printing these points. But tools like SQL*Plus can
suppress output columns from the query result.

• However, in all five systems (Oracle 8, DB2, SQL

Server, Access, MySQL) one can sort by any term

that would be allowed in the SELECT-clause.

In these systems, it is not necessary that the term really appears in
the SELECT-clause. E.g. one can sort by UPPER(LAST), but print LAST.
With DISTINCT, one can only sort by result columns (in Oracle one
can still use them in terms and MySQL has no restriction).

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-119

Sorting Output (6)

• Sometimes it is necessary to add columns to data-

base tables to get a sort value, e.g.

� The results should be printed in the sequence:

Homeworks, Midterm, Final (not alphabetically).

� The “University of Pittsburgh” should appear in

a list of universities under “P”, not under “U”.

• If the student names were stored as a single string

in the form “FIRST LAST”, it would be (more or

less) impossible to sort by last name.

Important DB design question: What do I want to do with the data?

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-120

Sorting Output (7)

• “DESC” means descending (inverse order from high

to low values), the default is “ASC” (ascending).

• It is also possible to refer to columns by number,

e.g.: ORDER BY 2, 4 DESC, 1

Column numbers refer to the sequence in the SELECT-list. They were
important in earlier SQL versions, where one could not explicitly name
the result columns. Today, one probably should use column names.

• Null values are all listed first or all listed last in the

sort sequence (depending on the DBMS).

In Oracle, one can specify NULLS FIRST or NULLS LAST.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-121

Sorting Output (8)

• The effect of “ORDER BY” is purely cosmetic. It does

not change the set of output tuples in any way.

• Thus, “ORDER BY” can only be applied at the very

end of the query. It cannot be used in subqueries.

• Even when multiple SELECT-expressions are combi-

ned with UNION, the ORDER BY can only be placed at

the very end (it refers to all result tuples).

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-122

Sorting Output (9)

SQL Query:

- Table Expression

?

?-

#
"

!ORDER BY - Order Specification -

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-123

Sorting Output (10)

Order Specification:

- Attribute-Reference -

- Column No

6

-

#
"

!ASC

-

#
"

!DESC

6

�

#
"

!,

6

• Most DBMS permit “Term” instead of “Attribute Reference” (except if
DISTINCT or UNION etc. are specified). Then basically the same restrictions
apply as for terms in the SELECT-list (there might be additional restrictions
for the use of aggregation functions).

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-124

Overview

1. Subqueries, Nonmonotonic Constructs

2. Aggregations I: Aggregation Functions

3. Aggregations II: GROUP BY, HAVING

4. UNION, Conditional Expressions

5. Sorting Output: ORDER BY

6. SQL-92 Joins, Outer Join in Oracle

'

&

$

%
Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-125

Example Database (again)

STUDENTS

SID FIRST LAST EMAIL

101 Ann Smith · · ·
102 Michael Jones (null)
103 Richard Turner · · ·
104 Maria Brown · · ·

EXERCISES

CAT ENO TOPIC MAXPT

H 1 Rel. Algeb. 10
H 2 SQL 10
M 1 SQL 14

RESULTS

SID CAT ENO POINTS

101 H 1 10
101 H 2 8
101 M 1 12
102 H 1 9
102 H 2 9
102 M 1 10
103 H 1 5
103 M 1 7

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-126

Joins in SQL-92 (1)

• An important and useful operation of relational al-

gebra is the join (in several variants).

• In SQL-86, one cannot directly specify a join. One

writes a cartesian product (FROM) and then does a

selection (WHERE). This is still the usual case.

• E.g. the natural join of RESULTS and EXERCISES is:

SELECT R.CAT AS CAT, R.ENO AS ENO, SID,

POINTS, TOPIC, MAXPT

FROM RESULTS R, EXERCISES E

WHERE R.CAT = E.CAT AND R.ENO = E.ENO

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-127

Joins in SQL-92 (2)

• In SQL-92 one can write e.g.

SELECT SID, ENO, (POINTS/MAXPT)*100

FROM RESULTS R NATURAL JOIN EXERCISES E

WHERE CAT = ’H’

• Because of the keywords “NATURAL JOIN” the system

automatically adds the join condition

R.CAT = E.CAT AND R.ENO = E.ENO

• SQL-92 permits to use joins in the FROM-clause and

even on the outer query level (like UNION).
So one can write quite a lot in “relational algebra style”.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-128

Joins in SQL-92 (3)

• Current systems support the standard only partially:

� SQL-92 joins are not supported in Oracle 8i.

But Oracle 9i supports nearly the complete set.

� Some types of joins are supported in DB2, SQL

Server, and Access, but the above “natural join”

is not. A join with explicit condition is possible:

SELECT SID, R.ENO, (POINTS/MAXPT)*100

FROM RESULTS R INNER JOIN EXERCISES E

ON R.CAT = E.CAT AND R.ENO = E.ENO

WHERE R.CAT = ’H’

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-129

Joins in SQL-92 (4)

• With the explicit join condition, the query is not

shorter than the equivalent one with the standard

WHERE condition.

• The power of SQL is not increased by adding the

new join constructs.

Every query with the new join constructs can be translated in an
equivalent one that does not use these constructs.

• The reason why joins where added to SQL is pro-

bably the “outer join”: For the outer join, the equi-

valent formulation in SQL-86 is significantly longer.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-130

Outer Join: Repetition

• The usual join eliminates tuples without partner:

A B
a1 b1
a2 b2

��@@

B C
b2 c2
b3 c3

=
A B C
a2 b2 c2

• The left outer join guarantees that tuples from the

left table will appear in the result:

A B
a1 b1
a2 b2

��@@

B C
b2 c2
b3 c3

=
A B C
a1 b1
a2 b2 c2

Rows from the left table are filled with “null” if necessary.
There are also a right outer join and a full outer join.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-131

Outer Join in SQL-92 (1)

• E.g. number of submissions per homework. If there

is no submission, the number 0 should be printed:

SELECT E.ENO, COUNT(SID)
FROM EXERCISES E LEFT OUTER JOIN RESULTS R

ON E.CAT = R.CAT AND E.ENO = R.ENO
WHERE E.CAT = ’H’
GROUP BY E.ENO

• All exercises are present in the result of the left

outer join. In exercises without solutions, the attri-

butes of SID and POINTS are filled with null values.

• COUNT(SID) does not count rows where SID is null.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-132

Outer Join in SQL-92 (2)

• Equivalent query without outer join (12 vs. 5 lines):

SELECT E.ENO, COUNT(*)
FROM EXERCISES E, RESULTS R
WHERE E.CAT = ’H’ AND R.CAT = ’H’
AND E.ENO = R.ENO
GROUP BY E.ENO

UNION ALL

SELECT E.ENO, 0
FROM EXERCISES E
WHERE E.CAT = ’H’
AND E.ENO NOT IN (SELECT R.ENO

FROM RESULTS R
WHERE R.CAT = ’H’)

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-133

Outer Join in SQL-92 (3)

• E.g. print for every student the number of home-

works he/she has solved (including 0).

• The following query does not work:

Students without homework are not listed.

SELECT FIRST, LAST, COUNT(ENO) Wrong!
FROM STUDENTS S LEFT OUTER JOIN RESULTS R

ON S.SID = R.SID

WHERE R.CAT = ’H’

GROUP BY S.SID, FIRST, LAST

• The outer join is constructed before the WHERE-

condition is evaluated.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-134

Outer Join in SQL-92 (4)

• In general, one must be careful not to eliminate

possible join partners after the outer join is done.

• One has to select the homework results before the

outer join is done:

SELECT FIRST, LAST, COUNT(R.ENO)

FROM STUDENTS S LEFT OUTER JOIN

(SELECT SID, ENO

FROM RESULTS

WHERE CAT = ’H’) R

ON S.SID = R.SID

GROUP BY S.SID, FIRST, LAST

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-135

Outer Join in SQL-92 (5)

• One can also put the condition on the right table

into the join condition:

SELECT FIRST, LAST, COUNT(R.ENO)

FROM STUDENTS S LEFT OUTER JOIN RESULTS R

ON S.SID = R.SID AND R.CAT = ’H’

GROUP BY S.SID, FIRST, LAST

• The SQL-92 permits any WHERE-condition that re-

fers only to the tuple variables on the left and right

side of the join. (But don’t abuse this.)

It seems that DB2 and Access permit no subqueries in the ON-clause.
More complex conditions must be enclosed in parentheses in Access.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-136

Outer Join in SQL-92 (6)

• Conditions on the left table make little sense in the

condition of the left outer join.

• E.g. consider this query:

SELECT E.CAT, E.ENO, R.SID, R.POINTS

FROM EXERCISES E LEFT OUTER JOIN RESULTS R

ON E.CAT = ’H’ AND R.CAT = ’H’

AND E.ENO = R.ENO

• Exercise: Will E.CAT = ’M’ appear in the output?

yes no

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-137

Outer Join in SQL-92 (7)

• MySQL has no subqueries, but sometimes one can

use the outer join instead.

• E.g. students who did not submit any homework:

SELECT S.SID. S.FIRST, S.LAST

FROM STUDENTS S LEFT OUTER JOIN RESULTS R

ON S.SID = R.SID AND R.CAT = ’H’

WHERE R.CAT IS NULL

• Of course, instead of R.CAT one can test any attri-

bute of RESULTS for the null value.
The test for the null value checks whether the current STUDENTS tuple
did not find a join partner.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-138

Join Syntax in SQL-92 (1)

• SQL-92 has the following join types:

� [INNER] JOIN: Usual Join.

� LEFT [OUTER] JOIN: Preserves rows from left table.

� RIGHT [OUTER] JOIN: Preserves right table tuples.

� FULL [OUTER] JOIN: All input tuples are preserved.

� CROSS JOIN: Cartesian product ×.

� UNION JOIN: This is a union that fills the columns

of the other table with null values.

• The brackets mean that INNER/OUTER are optional.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-139

Join Syntax in SQL-92 (2)

• The join condition can be specified as follows:

� The keyword NATURAL in front of the join name.

� “ON 〈Condition〉” follows the join.

� “USING (A1, . . . , An)” follows the join.

USING lists join attributes (e.g. for specifying the natural join).
Attributes with the names A1, . . . , An must appear in both tables
and the join condition is R.A1 = S.A1∧· · ·∧R.An = S.An. NATURAL is
equivalent to specifying USING with all common attribute names.

• Only one of these constructs can be used.

• CROSS JOIN and UNION JOIN have no join condition.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-140

Join Syntax in SQL-92 (3)

• According to the standard, the NATURAL join and the

join with USING produce a table with only one copy

of the common attributes.

• Furthermore, the common attributes are listed first

and cannot be referenced with a tuple variable.

SELECT *

FROM RESULTS R NATURAL JOIN EXERCISES E

• The result columns are CAT, ENO, R.SID, R.POINTS,

E.TOPIC, E.MAXPT (in this sequence).

It is illegal to refer to R.CAT or E.CAT, only CAT can be used (and the
same for ENO).

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-141

Join Syntax in SQL-92 (4)

• Oracle 9i supports the SQL-92 joins.

Including the natural join, but except UNION JOIN (which was removed
in SQL:1999). Oracle 8i did not support any SQL-92 joins.

• Inner and outer join with ON work also in DB2,

SQL Server, Access, and MySQL.

In Access and MySQL, the keyword INNER is not optional.

• USING and NATURAL work only in Oracle 9i.

NATURAL exists also in MySQL, but MySQL does not merge the com-
mon columns. This violates the SQL-92 standard.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-142

Join Syntax in SQL-92 (5)

• CROSS JOIN is supported only in Oracle 9i, SQL Ser-

ver and MySQL, not Access and DB2.

One can write a comma for CROSS JOIN, so it is not very useful.

• UNION JOIN is supported in none of the five systems.

However, in SQL-92 (and e.g. Oracle, DB2, SQL Server, not Access),
one can write a subquery containing UNION or UNION ALL also in the
FROM-clause. So with a bit more keystrokes, one can simulate the union
join. By the way, it is a bit strange that e.g. “FROM A NATURAL JOIN B”
is legal in SQL-92, but “FROM A UNION B” is not. Also, SQL-92 per-
mits to write “FROM (SELECT * FROM A UNION SELECT * FROM B) X”, but
the same with “NATURAL JOIN” instead of “UNION” is a syntax error
[Date/Darwen, 1997, p. 148].

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-143

Join Syntax in SQL-92 (6)

• In the FROM clause, one can also combine joins and

the declaration of further tuple variables (separated

by “,” as usual).

• One can also join the result of joining two tables

with a third one (and so on). The syntax is:

SELECT ...

FROM R LEFT JOIN S ON R.A=S.B

LEFT JOIN T ON S.C=T.D

• It is also possible to use parentheses, but then one

has to declare a new tuple variable after the (...).

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-144

Outer Join in Oracle (1)

• In Oracle, the outer join is traditionally specified

under WHERE (no longer necessary in 9i).

• Instead of the join condition R.A = S.B one writes

� R.A = S.B(+) for the left outer join of R and S,

� R.A(+) = S.B for the right outer join of R and S.

I.e. the special marker “(+)” is appended to attri-

butes of the table which can be replaced with nulls.
I.e. this protects the tuples of the other table (not marked with “(+)”).
There are many syntactic restrictions which ensure that this is really
an outer join. If the join is done on several attributes, all must be
marked. It is possible to write also S.B(+) = c with a constant c or
e.g. R.A = S.B(+)+ 1.

Stefan Brass: Datenbanken I Universität Halle, 2004

8. SQL II 8-145

Outer Join in Oracle (2)

• E.g. number of submissions per exercise (can be 0):

SELECT E.CAT, E.ENO, COUNT(SID)

FROM EXERCISES E, RESULTS R

WHERE E.CAT = R.CAT(+) AND E.ENO = R.ENO(+)

GROUP BY E.CAT, E.ENO

• As in the SQL-92 outer join, the outer join is con-

structed before any other conditions in the WHERE-

clause are applied.

No matter in what sequence the conditions are written. But as shown
above, one can use a subquery under FROM to do a selection before
the outer join.

Stefan Brass: Datenbanken I Universität Halle, 2004

