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Part 6: Relational Algebra
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Objectives

After completing this chapter, you should be able to:

• enumerate and explain the operations of relational

algebra.

Especially, you should know the five basic operations.

• write relational algebra queries of the type “join-

select-project”.

Plus simple queries involving set difference and union.

• discuss correctness and equivalence of given rela-

tional algebra queries.
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Overview

1. Introduction, Selection, Projection

'

&

$

%
2. Cartesian Product, Join

3. Set Operations

4. Outer Join

5. Formal Definitions, A Bit of Theory
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Example Database (1)

STUDENTS

SID FIRST LAST EMAIL

101 Ann Smith · · ·
102 Michael Jones (null)
103 Richard Turner · · ·
104 Maria Brown · · ·

EXERCISES

CAT ENO TOPIC MAXPT

H 1 Rel. Algeb. 10
H 2 SQL 10
M 1 SQL 14

RESULTS

SID CAT ENO POINTS

101 H 1 10
101 H 2 8
101 M 1 12
102 H 1 9
102 H 2 9
102 M 1 10
103 H 1 5
103 M 1 7
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Example Database (2)

• STUDENTS: one row for each student in the course.

� SID: “Student ID” (primary key).

� FIRST, LAST: First and last name.

� EMAIL: Email address (can be null).

• EXERCISES: one row for each graded exercise.

� CAT: Exercise category (key together with ENO).
E.g. ’H’: homework, ’M’: midterm exam, ’F’: final exam.

� ENO: Exercise number (within category).

� TOPIC: Topic of the exercise.

� MAXPT: Max. no. of points (How many points is it worth?).
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Example Database (3)

• RESULTS: one row for each submitted solution to an

exercise.

� SID: Student who wrote the solution.
This is a foreign key referencing STUDENTS.

� CAT, ENO: Identification of the exercise.
This is a foreign key referencing EXERCISES.
Together with SID it forms the primary key of the table.

� POINTS: Number of points the student got for the

solution.

� A missing row means that the student did not

yet hand in a solution to the exercise.
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Relational Algebra (1)

• Relational algebra (RA) is a theoretical query lan-

guage for the relational model.

• Relational algebra is not used in any commerical

system on the user interface level.

• However, variants of it are used to represent queries

internally (for query optimization and execution).

• Knowledge of relational algebra will help in under-

standing SQL and relational database systems.

E.g. one talks about “joins” (a relational algebra operation) even
when discussing SQL queries. Explicit joins were added in SQL-92.
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Relational Algebra (2)

• An algebra is a set together with operations on this

set.

• For instance, the set of integers together with the

operations + and ∗ forms an algebra.

• In the case of relational algebra, the set is the set

of all finite relations.

• One operation of relational algebra is ∪ (union).

This is natural since relations are sets.
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Relational Algebra (3)

• Another operation of relational algebra is selection.
In contrast to operations like + for integers, the selection σ is para-
meterized by a simple condition.

• E.g. σSID=101 selects all tuples in the input relation

that have the value “101” in column “SID”:

σSID=101



RESULTS
SID CAT ENO POINTS

101 H 1 10
101 H 2 8
101 M 1 12
102 H 1 9
102 H 2 9
102 M 1 10
103 H 1 5
103 M 1 7


=

SID CAT ENO POINTS

101 H 1 10
101 H 2 8
101 M 1 12
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Relational Algebra (4)

• Since the output of a relational algebra operation

is again a relation, it can be input for another re-

lational algebra operation.

And so on, until the query result is computed (again a relation). The
relational algebra is so simple because the relational model has only
a single construct: The relation.

• A query is then a term/expression in this algebra.

• Arithmetic expressions like (x + 2) ∗ y are familiar.

• In relational algebra, relations are connected:

πFIRST, LAST(STUDENTS ��@@ σCAT=’M’(RESULTS)).
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Relational Algebra (5)

Minor Data Model Differences to SQL:

• Null values are usually excluded in the definition of

relational algebra, except when operations like the

outer join are defined (last section of this chapter).

Even for the outer join, the null value is treated simply like an addi-
tional value added to every data type. Using a three-valued logic as
in SQL would make the definitions significantly more complicated.

• Relational algebra treats relations as sets, i.e. any

duplicate tuples are automatically eliminated.

In SQL, relations are multisets and can contain duplicates. If neces-
sary, one has to request duplicate elimination explicitly (“DISTINCT”).
In relational algebra, one does not have to think about duplicates.
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Relational Algebra (6)

Importance of Relational Algebra for DB Theory:

• Relational algebra is much simpler than SQL, it has

only five basic operations and can be completely

defined on one page.

• Relational algebra is also a yardstick for measuring

the expressiveness of query languages.

• E.g., every query that can be formulated in relatio-

nal algebra can also be formulated in SQL.

I.e. SQL is at least as powerful as relational algebra. Vice versa, every
SQL query (without null values, aggregations, and duplicates) can
also be written in relational algebra. See also Slide 6-115.
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Selection (1)

• The operation σϕ selects a subset of the tuples of

a relation, namely those which satisfy the conditi-

on ϕ. Selection acts like a filter on the input set.

σ is the greek letter sigma, ϕ is the greek letter phi.
All textbooks use σ for selection, but ϕ is not standard.
In ASCII, write e.g. SELECT[condition](Relation).

• Example:

σA=1


A B

1 3
1 4
2 5

 =
A B

1 3
1 4
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Selection (2)

• The selection condition has the following form:

〈Term〉 〈Comparison-Operator〉 〈Term〉

• The selection condition returns a boolean value

(true or false) for a given input tuple.

• 〈Term〉 (or “expression”) is something that can be

evaluated to a data type element for a given tuple:

� an attribute name,

� a data type constant, or

� an expression composed from attributes and con-

stants by data type operations like +, −, ∗, /.

Stefan Brass: Datenbanken I Universität Halle, 2004
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Selection (3)

• 〈Comparison-Operator〉 is

� = (equals), 6= (not equals),
One can also write “<>” instead of 6=.

� < (less than), > (greater than), ≤, ≥,
One can also write <= instead of ≤ and >= instead of ≥.

� or other data type predicates (e.g. LIKE).

• Examples for Conditions:

� LAST = ’Smith’

� POINTS >= 8

� POINTS = MAXPT (the input relation must have both attributes).

Stefan Brass: Datenbanken I Universität Halle, 2004
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Selection (4)

• σϕ(R) can be implemented as:

(1) Create new temporary relation T ;
(2) foreach tuple t from input relation R do
(3) Evaluate condition ϕ for tuple t;
(4) if true then
(5) insert t into T ;
(6) fi
(7) od;
(8) return T ;

• With other data structures (e.g. a B-tree index), it

might be possible to compute σϕ(R) without rea-

ding each tuple of the input relation.
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Selection (5)

• Of course, the attributes used in the selection con-

dition must appear in the input table:

σC=1


A B

1 3
2 4

 = Error

• The following is legal, but the selection is super-

fluous, because the condition is always true:

σA=A


A B

1 3
2 4

 =
A B

1 3
2 4

Stefan Brass: Datenbanken I Universität Halle, 2004
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Selection (6)

• It is no error if the result of a relational algebra

expression happens to be empty in a specific state:

σA=3


A B

1 3
2 4

 = ∅

• It is legal, but most probably an error, to use a

condition that is always false (inconsistent):

σ1=2


A B

1 3
2 4

 = ∅

Stefan Brass: Datenbanken I Universität Halle, 2004
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Selection (7)

• σϕ(R) corresponds to the following SQL query:

SELECT *

FROM R
WHERE ϕ

• I.e. selection corresponds to the WHERE-clause.

• A different relational algebra operation called “pro-

jection” corresponds to the SELECT-clause in SQL.

This can be slightly confusing.

Stefan Brass: Datenbanken I Universität Halle, 2004



6. Relational Algebra 6-20

Extended Selection (1)

• In the basic selection operation, only simple con-

ditions consisting of a single comparison (“atomic

formula”) are possible.

• However, one can extend the possible conditions by

permitting to combine the single conditions by the

logical operators ∧ (and), ∨ (or), and ¬ (not):

ϕ1 ϕ2 ϕ1 ∧ ϕ2 ϕ1 ∨ ϕ2 ¬ϕ1

false false false false true
false true false true true
true false false true false
true true true true false

Stefan Brass: Datenbanken I Universität Halle, 2004
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Extended Selection (2)

• ϕ1 ∧ ϕ2 is called the “conjunction of ϕ1 and ϕ2”

• ϕ1 ∨ ϕ2 is called the “disjunction of ϕ1 and ϕ2”

• ¬ϕ1 is called the “negation of ϕ1”.

• One can write “and”, “or” and “not” instead of the

symbols “∧”, “∨”, “¬” used in mathematical logic.

“∧” is similar to the intersection symbol “∩”, and indeed the tuples
satisfying the conjunction “∧” are the intersection of the tuples that
satisfy the two subconditions. In the same way is “∨” similar to the
“∪” (set union) symbol.
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Extended Selection (3)

• The selection condition must permit evaluation for

each input tuple in isolation.

Thus, “exists” (∃) and “for all” (∀) and nested relational algebra
queries are not permitted in selection conditions.

• This extended form of selection is not necessary,

since it can always be expressed with the basic ope-

rations of relational algebra. But it is convenient.

• E.g. σϕ1∧ϕ2(R) is equivalent to σϕ1(σϕ2(R)).

∨ and ¬ need ∪ (union) and − (set difference), which are also basic
operations of relational algebra (see below): σϕ1∨ϕ2(R) is equivalent
to σϕ1(R) ∪ σϕ2(R) and σ¬ϕ(R) is equivalent to R− σϕ(R).

Stefan Brass: Datenbanken I Universität Halle, 2004
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Exercise

Write the following queries in relational algebra:

• Which exercises are about “SQL”?
Print the entire row of the table. Eiminating columns is treated below.

• List all entries for Homework 1 (requires CAT=’H’)

in the table RESULTS that have less than 10 points.

This refers to the schema on Slide 6-4:

• STUDENTS(SID, FIRST, LAST, EMAILo)

• EXERCISES(CAT, ENO, TOPIC, MAXPT)

• RESULTS(SID→STUDENTS, (CAT, ENO)→EXERCISES,

POINTS)

Stefan Brass: Datenbanken I Universität Halle, 2004
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Projection (1)

• The projection π eliminates attributes (columns)

from the input relation.

π is the greek letter “pi”.
In databases it always means “projection”, and not 3.14. . . .
Some authors use a capital Π for distinction.
To use ASCII characters, write PROJECT[Columns](Relation).

• Example:

πA,C


A B C

1 4 7
2 5 8
3 6 9

 =

A C

1 7
2 8
3 9

Stefan Brass: Datenbanken I Universität Halle, 2004
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Projection (2)

• In general, the projection πAi1
,...,Aik

(R) produces for

each input tuple (A1: d1, . . . , An: dn) an output tuple

(Ai1: di1, . . . , Aik: dik).

While σ selects certain rows from the input relation, and discards the
others, π selects certain columns, and discards the others.

• I.e. the attribute values are not changed, but only

the explicitly mentioned attributes are retained. All

other attributes are “projected away”.

Note: “to project a column away” is database slang. Normally, things
are projected onto or into something else.

Stefan Brass: Datenbanken I Universität Halle, 2004
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Projection (3)

• Normally, there is one output tuple for every input

tuple. However, if two input tuples lead to the same

output tuple, the duplicate will be eliminated.

DBMS use an explicit duplicate elimination when needed. But in theo-
ry, relations are sets.

• Example:

πB


A B

1 4
2 5
3 4

 =
B

4
5

Stefan Brass: Datenbanken I Universität Halle, 2004
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Projection (4)

• πAi1
,...,Aik

(R) can be implemented as follows:

(1) Create new temporary relation T ;
(2) foreach t = (A1: d1, . . . , An: dn) in R do
(3) Compute u = (Ai1: di1, . . . , Aik: dik);
(4) insert u into T ;
(5) od;
(6) return T ;

• This program fragment assumes that “insert” does

the duplicate elimination which might be necessary.

Stefan Brass: Datenbanken I Universität Halle, 2004
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Projection (5)

• The projection can be more general:

� Attributes can be renamed: πB1←Ai1
,...,Bk←Aik

(R)

transforms the input tuple (A1: d1, . . . , An: dn)

into the output tuple (B1: di1, . . . , Bk: dik).

� Return values can be computed by datatype ope-

rations such as + or || (string concatenation):

πSID, NAME← FIRST || ’ ’ || LAST (STUDENTS).

� Columns can be created with constant values:

πSID, FIRST, LAST, GRADE← ’A’(STUDENTS).

Stefan Brass: Datenbanken I Universität Halle, 2004
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Projection (6)

• The projection is a mapping, which is applied to

every input tuple.

• Each input tuple is mapped locally to an output

tuple. Only functions which are defined based on

single input tuples are allowed.

Values from different input tuples cannot be combined into one output
tuple (but see the cartesian product below). Otherwise, quite general
tuple-to-tuple mappings are possible.

Stefan Brass: Datenbanken I Universität Halle, 2004
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Projection (7)

• πA1,...,An(R) corresponds to the SQL query:

SELECT DISTINCT A1, ..., An

FROM R

• The keyword DISTINCT is not always necessary.
The query will run faster without it. DISTINCT is unnecessary when
A1, . . . , An contain a key. Sometimes one also wants duplicates.

• πB1←A1,...,Bn←An(R) is written in SQL as follows:

SELECT DISTINCT A1 AS B1, ..., An AS Bn

FROM R

• The keyword AS can be left out (“syntactic sugar”).

Stefan Brass: Datenbanken I Universität Halle, 2004
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Summary

Selection σ

(Filters some rows)

A1 A2 A3 A4 A5
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Projection π

(Maps each row)

A1 A2 A3 A4 A5
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Combining Operations (1)

• Since the result of a relational algebra operation

is also a relation, it can act as input to another

algebra operation.

• For instance, to compute the exercises solved by

student 102:

πCAT, ENO(σSID=102(RESULTS))

• An intermediate result can be stored in a temporary

relation (can also be seen as macro definition):

S102 := σSID=102(RESULTS);

πCAT, ENO(S102)

Stefan Brass: Datenbanken I Universität Halle, 2004
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Combining Operations (2)

• Expressions of relational algebra may become clea-

rer if depicted as operator tree:

RESULTS

6

σSID= 102

6

πCAT, ENO

x
�

�
��

2
@

@
@I

+
�

�
��

y
@

@
@I

∗

• For comparison, an operator tree for the arithmetic

expression (x + 2) ∗ y is shown on the right.

Intermediate results flow along the lines from bottom to top.

Stefan Brass: Datenbanken I Universität Halle, 2004
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Combining Operations (3)

• In SQL-92, one can also use the result of an SQL

query as input to another SQL query:
SELECT CAT, ENO

FROM (SELECT *

FROM RESULTS

WHERE SID = 102) AS S102

• However, this is untypical in SQL, and was not con-

tained in the first SQL standard (SQL-86).

• It is not good programming style to simulate rela-

tional algebra in SQL 1:1.

Stefan Brass: Datenbanken I Universität Halle, 2004
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Combining Operations (4)

• In SQL, σ and π (and ×, see below) can be com-

bined in a single SELECT-expression:
SELECT CAT, ENO

FROM RESULTS

WHERE SID = 102

• Complex queries can be constructed step by step:
CREATE VIEW S102

AS SELECT *

FROM RESULTS

WHERE SID = 102

• Then S102 can be used like a stored table.

Stefan Brass: Datenbanken I Universität Halle, 2004
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Basic Operands

• The leaves of the operator tree are

� the names of database relations

� constant relations (explicitly enumerated tuples).

• A relation name R is a legal expression of relational

algebra. Its value is the entire relation stored under

that name. It corresponds to the SQL query:

SELECT *

FROM R

• It is not necessary to write a projection on all at-

tributes.

Stefan Brass: Datenbanken I Universität Halle, 2004



6. Relational Algebra 6-37

Exercises (1)

Write the following query in relational algebra:

• Print the email address of Ann Smith.

Write the query as a tree and nested with parentheses.

This refers to the schema on Slide 6-4:

• STUDENTS(SID, FIRST, LAST, EMAILo)

• EXERCISES(CAT, ENO, TOPIC, MAXPT)

• RESULTS(SID→STUDENTS, (CAT, ENO)→EXERCISES,

POINTS)

Stefan Brass: Datenbanken I Universität Halle, 2004
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Exercises (2)

• Which of the following relational algebra expressi-

ons are syntactically correct? What do they mean?

STUDENTS.

σMAXPT 6= 10(EXERCISES).

πFIRST(πLAST(STUDENTS)).

σPOINTS≤ 5(σPOINTS≥ 1(RESULTS)).

σPOINTS(πPOINTS= 10(RESULTS)).

Stefan Brass: Datenbanken I Universität Halle, 2004
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Overview

1. Introduction, Selection, Projection

2. Cartesian Product, Join

'

&

$

%
3. Set Operations

4. Outer Join

5. Formal Definitions, A Bit of Theory

Stefan Brass: Datenbanken I Universität Halle, 2004
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Cartesian Product (1)

• Often, answer tuples must be computed that are

derived from two (or more) input tuples.
For σ and π, it holds that each output tuple is derived from a single
input tuple. Since π eliminates duplicates, it is possible that the same
output tuple is derived from two different input tuples, but then one
of the two would already be sufficient.

• This is done by the “cartesian product” ×.
Remember “cartesian coordinates”. It is also called “cross product”.

• R × S concatenates (“glues together”) each tuple

from R with each tuple from S.
In ASCII, write “R PRODUCT S” or “R x S” for R × S. If necessary, use
(. . . ) around the input relations.
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Cartesian Product (2)

• Example:

A B

1 2
3 4

×
C D

6 7
8 9

=

A B C D

1 2 6 7
1 2 8 9
3 4 6 7
3 4 8 9

• Since attribute names must be unique within a tu-

ple, the cartesian product may only be applied when

R and S have no attribute in common.

• This is no real restriction, since we may rename the

attributes first (with π) and then apply ×.
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Cartesian Product (3)

• Some authors define × such that it automatically

renames double attributes:

� E.g. for relations R(A, B) and S(B, C) the pro-

duct R× S has attributes (R.A, R.B, S.B, S.C).

� As in SQL, one can also use the names A and

C, because they uniquely identify the attributes.

• In this course, this is not permitted!
The formal definition is simpler: What happens e.g. with (R∪S)×T )
and with R×R? Usually, authors that permit such names do not give
a formal definition. In this course, one can use the renaming operator
(see below) to introduce attribute names of the form R.A, but then
A alone cannot be used: Every attribute has exactly one name.
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Cartesian Product (4)

• If t = (A1: a1, . . . , An: an), u = (B1: b1, . . . , Bm: bm),

let t ◦ u = (A1: a1, . . . , An: an, B1: b1, . . . , Bm: bm).

• The cartesian product R × S can be computed by

two nested loops:

(1) Create new temporary relation T ;
(2) foreach tuple t in R do
(3) foreach tuple u in S do
(4) insert t ◦ u into T ;
(5) od;
(6) od;
(7) return T ;
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Cartesian Product (5)

• If the relation R contains n tuples, and the re-

lation S contains m tuples, then R × S contains

n ∗m tuples.

• The cartesian product is in itself seldom useful, be-

cause it leads to a “blowup” in relation size.

• The problem is that R × S combines each tuple

from R with each tuple from S. Usually, the goal is

to combine only selected pairs of tuples.

• Thus, the cartesian product is useful only as input

for a following selection.
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Cartesian Product (6)

• R× S is written in SQL as
SELECT *

FROM R, S

• In SQL it is no error if the two relations have com-

mon attribute names, since one can reference at-

tributes also in the form “R.A” or “S.A”.
If the query is executed as above, and R and S both have an attribute
called “A”, then the result relation will have two different columns
with the same name “A”. This is forbidden for stored relations, but it
can happen for query results (as in this example). One can use nested
queries as input relations under FROM, but then any try to access the
double attribute A in the query gives an error (“column ambiguously
defined”).
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Renaming

• An operator ρR(S) that prepends “R.” to all attri-

bute names is sometimes useful:

ρR


A B

1 2
3 4

 =
R.A R.B

1 2
3 4

• This is only an abbreviation for an application of

the projection: πR.A←A, R.B←B(S).

• Otherwise, attribute names in relational algebra do

not automatically contain the relation name.

Some authors define it that way, but the formal definition is not easy.
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Join (1)

• Since this combination of cartesian product and se-

lection is so common, a special symbol has been

introduced for it:

R ��@@

A=B
S is an abbreviation for σA=B(R× S).

• This operation is called “join”: It is used to join

two tables (i.e. combine their tuples).
In ASCII write “R JOIN[A=B] S”.

• The join is one of the most important and useful

operations of the relational algebra.
Immediately after the selection.
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Join (2)

STUDENTS ��@@ RESULTS

SID FIRST LAST EMAIL CAT ENO POINTS

101 Ann Smith · · · H 1 10
101 Ann Smith · · · H 2 8
101 Ann Smith · · · M 1 12
102 Michael Jones (null) H 1 9
102 Michael Jones (null) H 2 9
102 Michael Jones (null) M 1 10
103 Richard Turner · · · H 1 5
103 Richard Turner · · · M 1 7

• Student Maria Brown does not appear, because she has not submitted
any homework and did not participate in the exam.

• What is shown above, is the natural join of the two tables. However, in
the following first the standard join is explained.
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Join (3)

• R ��@@

A=B
S can be evaluated similarly to σA=B(R×S):

(1) Create new temporary relation T ;
(2) foreach tuple t in R do
(3) foreach tuple u in S do
(4) if t.A = u.B then
(5) insert t ◦ u into T ;
(6) fi;
(7) od;
(8) od;
(9) return T ;
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Join (4)

• The above procedure is called “nested loop join”.

• Note that the intermediate result of R × S is not

materialized (explicitly stored).

Of course, a real DBMS anyway does not materialize intermediate
results unless necessary. Every algebra operator computes tuples only
on demand (“pipelined evaluation”). Then the nested loop join is
actually the same as a cartesian product followed by a selection.

• Quite a lot of different algorithms have been deve-

loped for computing the join.

E.g. “merge join”, “index join”, “hash join”. The nested loop join is
efficient only if one of the two relations is small. Thus, the combined
operation can often be executed more efficiently than × followed by σ.
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Join (5)

• The join condition does not have to take the form

A = B (although this is most common). It can be

an arbitrary condition, for instance also A < B.

A join with condition of the form A = B (or A1 = B1 ∧ · · · ∧An = Bn)
is called an “equijoin”.

• A typical application of a join is to combine tuples

based on a foreign key, e.g.

RESULTS ��@@

SID=SID′
πSID′←SID,FIRST,LAST,EMAIL(STUDENTS)

The renaming of “SID” is necessary, because the cartesian product
requires disjoint attribute names. But see the natural join below.
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Join (6)

• The join not only combines tuples, but also acts

as a filter: It eliminates tuples without join partner.

(Note: Foreign key ensures that join partner exists.)

A B

1 2
3 4

��@@

B=C

C D

4 5
6 7

=
A B C D

3 4 4 5

• A “semijoin” ( ��@@ , ��@@ ) works only as a filter.
It first does the join, but then projects the result tuples on the attribu-
tes of the left relation (left semijoin) or right relation (right semijoin).

• An “outer join” (see end of this part) does not work

as a filter: It preserves all input tuples.
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Natural Join (1)

• Another useful abbreviation is the “natural join” ��@@ .
If you don’t have the fancy symbol, you can use “*”.

• It combines tuples which have equal values in at-

tributes with the same name.
Whereas the cartesian product as well as the general join require that
the attributes of both relations have distinct names, the natural join
uses the equal names to derive a join condition.

A B

1 2
3 4

��@@

B C

4 5
4 8
6 7

=
A B C

3 4 5
3 4 8
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Natural Join (2)

• The natural join of two relations

� R(A1, . . . , An, B1, . . . , Bk) and

� S(B1, . . . , Bk, C1, . . . , Cm)

produces in database state I all tuples of the form

(a1, . . . , an, b1, . . . , bk, c1, . . . , cm)

such that

� (a1, . . . , an, b1, . . . , bk) ∈ I(R) and

� (b1, . . . , bk, c1, . . . , cm) ∈ I(S).
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Natural Join (3)

• The natural join not only corresponds to a cartesian

product followed by a selection, but also

� automatically renames one copy of each com-

mon attribute before the cartesian product, and

� uses a projection to eliminate these double attri-

butes at the end.

• E.g., given R(A, B), and S(B, C), then R ��@@ S is an

abbreviation for

πA,B,C(σB=B′(R× πB′←B, C(S))).
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Natural Join (4)

A Note on Relational Database Design:

• In order to support the natural join, it is beneficial

to give attributes from different relations, which are

typically joined together, the same name.

• Even if the utilized query language does not have

a natural join, this provides good documentation.

• If domain names are used as attribute names, this

will happen automatically.

• Try to avoid giving the same name to attributes

which will probably not be joined.
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Joins in SQL (1)

• R ��@@

A=B
S is normally written in SQL like σA=B(R×S):

SELECT *

FROM R, S
WHERE A = B

• Attributes can also referenced with explicit relation

name (required if the attribute name appears in

both relations):

SELECT *

FROM R, S
WHERE R.A = S.B
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Joins in SQL (2)

• In SQL-92, one can also write:
SELECT *

FROM R JOIN S ON R.A = S.B

• This shows the influence of relational algebra, but

it is not really in the spirit of SQL.
The classical form of the join in SQL (see previous slide) is used for
years, and many people think that it is easier to read. Although SQL
always had the operation UNION from relational algebra, it is otherwise
more based on a logical formalism called “tuple relational calculus”.
The new syntax was probably introduced only because the “outer
join” (see below) is more difficult to formulate in the classical way.

• E.g. in Oracle 8i, the new alternative syntax for the

join is not supported.
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Algebraic Laws (1)

• The join satisfies the associativity condition:

(R ��@@ S) ��@@ T = R ��@@ (S ��@@ T ).

• Therefore, the parentheses are not needed:

R ��@@ S ��@@ T .

• The join is not quite commutative: The sequence

of columns (from left to right) will be different.

• However, if a projection follows later, this does not

matter (one can also introduce π for this purpose):

π...(R ��@@ S) = π...(S ��@@ R).
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Algebraic Laws (2)

• Further algebraic laws hold, which are utilized in

the query optimizer of a relational DBMS.

• E.g., if the condition ϕ refers only to S, then

σϕ(R ��@@ S) = R ��@@ σϕ(S).

The right hand side can often be evaluated more

efficiently (depending on relation sizes, indexes).

• But for this course, efficiency is not important.
The query optimizer transforms a given query automatically into a
more efficient variant, so the user does not have to think about this.
Full points will be given for any correct solution, except that points
will be taken off for unnecessary complications (e.g. π on all columns).
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A Common Query Pattern (1)

• The following query structure is very common:

πA1,...,Ak
(σϕ(R1 ��@@ · · · ��@@ Rn)).

� First join all tables which are needed to answer

the query.

� Second, select the relevant tuples.

Since the first step is to join the tables, the selection condition
may refer to attributes from all of these relations.

� Third, project on the attributes which should ap-

pear in the output.
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A Common Query Pattern (2)

• Patterns are often useful conventions of thought.

• But relational algebra operations can be combined

in any way. It is not necessary to adhere to this

pattern.

E.g. if no projection or selection is needed, it is wrong to complicate
the query by using a projection on all attributes or a selection with
an always true condition (which are simply the identity mapping).

• In contrast, in SQL the keywords SELECT and FROM

are required, and the sequence must always be

SELECT ... FROM ... WHERE ...
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A Common Query Pattern (3)

• πA1,...,Ak
(σϕ(R1 ��@@ · · · ��@@ Rn)) is written in SQL as:

SELECT DISTINCT A1, ..., Ak
FROM R1, ..., Rn

WHERE ϕ AND 〈Join Conditions〉
• It is a common mistake to forget a join condition.

Then one gets a cartesian product, which will give wrong answers and
often the query result will be very large.

• Usually, every two relations are linked (directly or

indirectly) by equations, e.g. R1.B1 = R2.B2.

• “DISTINCT” is not always necessary (see above).
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A Common Query Pattern (4)

• To formulate a query, think first about the relations

needed:

� Usually, the natural language version of the query

names certain attributes.

It is also possible that data values are mentioned that correspond
to certain attributes (e.g. student names).

� Each such attribute requires at least one relation

which contains this attribute.

So that the attribute can be used in the selection condition or the
projection list.
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A Common Query Pattern (5)

• Query Formulation, continued:

� Finally, sometimes intermediate relations are re-

quired in order to make the join meaningful.

� E.g., suppose that relations R(A, B), S(B, C),

T (C, D) are given and attributes A and D are

needed. Then R ��@@ T would not be correct. Why?

� Instead, the join must be R ��@@ S ��@@ T .

� It often helps to have a graphical representation

of the foreign key links between the tables (which

correspond to typical joins).
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Exercise

Write the following queries in relational algebra:

• Print all homework results for Ann Smith (exercise

number and points).

• Who has got the full points for a homework? Print

first name, last name, and homework number.

This refers to the schema on Slide 6-4:

• STUDENTS(SID, FIRST, LAST, EMAILo)

• EXERCISES(CAT, ENO, TOPIC, MAXPT)

• RESULTS(SID→STUDENTS, (CAT, ENO)→EXERCISES,

POINTS)
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Self Joins (1)

• Sometimes, it is necessary to refer to more than

one tuple from one relation at the same time.

• E.g. who got more points than student 101 for any

exercise?

• In this case, two tuples of the relation RESULTS are

needed in order to compute one result tuple:

� One tuple for the student 101.

� One tuple for the same exercise, in which POINTS

is greater than in the first tuple.
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Self Joins (2)

• This requires a generalization of the above query

pattern, where two copies of a relation are joined

(at least one must be renamed first).

S := ρX(RESULTS) ��@@

X.CAT = Y.CAT

∧ X.ENO = Y.ENO

ρY(RESULTS);

πX.SID(σX.POINTS>Y.POINTS ∧ Y.SID=101(S))

• Such joins of a table with itself are sometimes called

“self joins”.
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Overview

1. Introduction, Selection, Projection

2. Cartesian Product, Join

3. Set Operations

'

&

$

%
4. Outer Join

5. Formal Definitions, A Bit of Theory
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Set Operations (1)

• Since relations are sets (of tuples), the usual set

operations ∪, ∩, − can also be applied to relations.

• However, both input relations must have the same

schema.

For instance, it is not possible to take the union of two relations R(A)
and S(B, C), because there is no common schema for the output
relation.

• R ∪ S contains all tuples which are contained in R,

in S, or in both relations (Union).
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Set Operations (2)

• R− S contains all tuples which are contained in R,

but not in S (Set Difference).

• R ∩ S contains all tuples which are contained in

both, R and S (Intersection).

• Intersection is (like the join) a derived operation: It

can be expressed in terms of −:

R ∩ S = R− (R− S).

• Exercise: Prove this equation.

E.g. draw a Venn diagram.

Stefan Brass: Datenbanken I Universität Halle, 2004



6. Relational Algebra 6-72

Set Operations (3)
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Set Operations (4)

• R ∪ S can be implemented as:

(1) Create new temporary relation T ;
(2) foreach tuple t in R do
(3) insert t into T ;
(4) od;
(5) foreach tuple t in S do
(6) insert t into T ;
(7) od;
(8) return T ;

• insert might have to do duplicate elimination.

In SQL, there are UNION (with duplicate elimination) and UNION ALL

(without duplicate elimination, runs faster).
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Set Operations (5)

• R− S can be implemented as:

(1) Create new temporary relation T ;
(2) foreach tuple t in R do
(3) Remove := false;
(4) foreach tuple u in S do
(5) if u = t then
(6) Remove := true;
(7) od;
(8) if not Remove then
(9) insert t into T ;

(10) od;
(11) return T ;
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Union (1)

• Without ∪, every result column can contain only

values from a single column of the stored tables.

Or a single constant. If datatype operations are allowed in the pro-
jection, the result value can be computed with a single formula from
several input columns, but still this does not give a “Union” behaviour.

• E.g. suppose that besides the registered students,

who submit homeworks and write exams, there are

also guests that attend the course:

GUESTS(FIRST, LAST, EMAILo).

• The task is to produce a list of email addresses of

registered students and guests in one query.
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Union (2)

• With ∪, this is simple:

πEMAIL(STUDENTS) ∪ πEMAIL(GUESTS).

• This query cannot be formulated without ∪.

• Another typical application of ∪ is a case analysis:

MPOINTS := πSID,POINTS(σCAT=’M’ ∧ ENO=1(RESULTS));

πSID, GRADE←’A’(σPOINTS≥ 12(MPOINTS))
∪ πSID, GRADE←’B’(σPOINTS≥ 10 ∧ POINTS< 12(MPOINTS))
∪ πSID, GRADE←’C’(σPOINTS≥ 7 ∧ POINTS< 10(MPOINTS))
∪ πSID, GRADE←’F’(σPOINTS< 7 (MPOINTS))
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Union (3)

• In SQL, UNION can be written between two SELECT-

expressions:

SELECT SID, ’A’ AS GRADE

FROM RESULTS

WHERE CAT = ’M’ AND ENO = 1 AND POINTS >= 12

UNION

SELECT SID, ’B’ AS GRADE

FROM RESULTS

WHERE CAT = ’M’ AND ENO = 1

AND POINTS >= 10 AND POINTS < 12

UNION
...
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Union (4)

• UNION was already contained in the first SQL stan-

dard (SQL-86) and is supported in all DBMS.

• There is no other way to formulate a union in SQL.

In contrast, the SQL-92 join operators are not required.

• UNION, an algebra operator, is a bit strange in SQL.

In the theoretical “Tuple Relational Calculus” on which SQL is based,
it is possible to declare “tuple variables” that are not bound to a
specific relation. Then one can e.g. use a disjunction to talk about
tuples that are contained in one of two or more relations. But this also
permits “unsafe” queries that are a bit difficult to exclude. Therefore,
this possibility was removed in SQL. The price that had to be paid
was that the somewhat “foreign” UNION operator had to be added.
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Set Difference (1)

• The operators σ, π, ×, ��@@ , ∪ have a monotonic

behaviour, e.g.

R ⊆ S =⇒ σϕ(R) ⊆ σϕ(S)

• Then it follows that also every query Q that uses

only the above operators behaves monotonically:

� Let I1 be a database state, and let I2 result

from I1 by the insertion of one or more tuples.

� Then every tuple t contained in the answer to Q

in I1 is also contained in the answer to Q in I2.
I.e. correct answers are never invalidated by an insertion.
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Set Difference (2)

• If the query must behave nonmonotonically, it is

clear that the previous operations are not sufficient,

and one must use set difference “−”. E.g.

� Which student has not solved any exercise?

� Who got the most points in Homework 1?

� Who has solved all exercises in the database?

• Exercise: Give for each of these questions an answer

tuple in the example state (repeated on next slide)

and give for each such answer a tuple that can be

inserted into a table to invalidate that answer.
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Set Difference (3)

STUDENTS

SID FIRST LAST EMAIL

101 Ann Smith · · ·
102 Michael Jones (null)
103 Richard Turner · · ·
104 Maria Brown · · ·

EXERCISES

CAT ENO TOPIC MAXPT

H 1 Rel. Algeb. 10
H 2 SQL 10
M 1 SQL 14

RESULTS

SID CAT ENO POINTS

101 H 1 10
101 H 2 8
101 M 1 12
102 H 1 9
102 H 2 9
102 M 1 10
103 H 1 5
103 M 1 7
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Set Difference (4)

• E.g. which student has not solved any exercise?

NO_SOL := πSID(STUDENTS)− πSID(RESULTS);

πFIRST, LAST(STUDENTS ��@@ NO_SOL)

• Exercise: What is the error in this query?

πSID, FIRST, LAST(STUDENTS)− πSID(RESULTS)

• Is this a correct solution?

πFIRST, LAST(STUDENTS ��@@

SID6=SID2
πSID2←SID(RESULTS))
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Set Difference (5)

• When using −, a typical pattern is the anti-join.

• E.g. given R(A, B) and S(B, C), the tuples from R

that do not have a join partner in S can be com-

puted as follows:

R ��@@ (πB(R)− πB(S)).

• The following is equivalent: R− πA,B(R ��@@ S).
In both cases, the problem is that the set difference requires the same
schema on both sides. Therefore, one needs also projection and join.

• A symbol for the anti-join is not common, but one

could use R ��@@ S (a complemented semi-join).
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Set Difference (6)

• Note that in order for the set difference R − S to

be applicable, it is not (!) required that S ⊆ R.

In one exam, quite a lot of the solutions contained unnecessary com-
plications that could be attributed to this misunderstanding.

• E.g. this query computes the SIDs of students that

have solved Homework 2, but not Homework 1:

πSID(σCAT=’H’∧ ENO=2(RESULTS))
− πSID(σCAT=’H’∧ ENO=1(RESULTS))

• It is no problem that there might also be students

that have solved Homework 1, but not Homework 2.
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Set Difference (7)

• Suppose that R and S are represented in SQL as

� SELECT A1, ..., An FROM R1, ..., Rm WHERE ϕ1

� SELECT B1, ..., Bn FROM S1, ..., Sk WHERE ϕ2

• Then R− S can be represented as

SELECT A1, ..., An

FROM R1, ..., Rm

WHERE ϕ1 AND NOT EXISTS

(SELECT * FROM S1, ..., Sk
WHERE ϕ2
AND B1 = A1 AND ... AND Bn = An)
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Set Difference (8)

• The NOT EXISTS-condition is true if the subquery

returns 0 answers.

Subqueries are explained in much more detail in Chapter 8 (SQL II).
The subquery is evaluated once for each tuple A1, . . . , An computed
in the main query. The subquery gives then a non-empty result only
if the second query can compute the same tuple.

• If one uses “NOT EXISTS” in SQL, one has automa-

tically the “anti-join”: It is not necessary to project

attributes away and restore them later with a join.

• SQL-92 also has “EXCEPT” that can be used like

UNION. E.g. not in Oracle 8 (there “MINUS”).
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Exercises

Write the following queries in relational algebra:

• Who got the most points in Homework 1?

Hint: Compute first students who did not get the most points, i.e. for
which there is a student with more points. Then use set difference.

• Which students solved all exercises in the database?

This refers to the schema on Slide 6-4:

• STUDENTS(SID, FIRST, LAST, EMAILo)

• EXERCISES(CAT, ENO, TOPIC, MAXPT)

• RESULTS(SID→STUDENTS, (CAT, ENO)→EXERCISES,

POINTS)

Stefan Brass: Datenbanken I Universität Halle, 2004



6. Relational Algebra 6-88

Union vs. Join

• Two alternative representations of the homework,

midterm, and final totals of the students are:

Results_1

STUDENT H M F

Jim Ford 95 60 75
Ann Lloyd 80 90 95

Results_2

STUDENT CAT PCT

Jim Ford H 95
Jim Ford M 60
Jim Ford F 75
Ann Lloyd H 80
Ann Lloyd M 90
Ann Lloyd F 95

• Give algebra expressions to translate between them.
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Summary

The five basic operations of relational algebra are:

• σϕ: Selection

• πA1,...,Ak
: Projection

• ×: Cartesian Product

• ∪: Union

• −: Set Difference

Derived operations: The general join ��@@
ϕ

, the natural

join ��@@ , the renaming operator ρ, the intersection ∩.
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Overview

1. Introduction, Selection, Projection

2. Cartesian Product, Join

3. Set Operations

4. Outer Join

'

&

$

%
5. Formal Definitions, A Bit of Theory
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Outer Join (1)

• The usual join eliminates tuples without partner:

A B
a1 b1
a2 b2

��@@

B C
b2 c2
b3 c3

=
A B C
a2 b2 c2

• The left outer join guarantees that tuples from the

left table will appear in the result:

A B
a1 b1
a2 b2

��@@

B C
b2 c2
b3 c3

=
A B C
a1 b1
a2 b2 c2

Rows from the left table are filled with “null” if necessary.
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Outer Join (2)

• The right outer join preserves tuples from the right

table:
A B
a1 b1
a2 b2

��@@

B C
b2 c2
b3 c3

=
A B C
a2 b2 c2

b3 c3

• The full outer join does not eliminate any tuples:

A B
a1 b1
a2 b2

��@@

B C
b2 c2
b3 c3

=

A B C
a1 b1
a2 b2 c2

b3 c3
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Outer Join (3)
R ��@@

A=B
S:

(1) Create new temporary relation T ;
(2) foreach tuple t in R do
(3) HasJoinPartner := false;
(4) foreach tuple u in S do
(5) if t.A = u.B then
(6) insert t ◦ u into T ;
(7) HasJoinPartner := true;
(8) fi;
(9) od;

(10) if not HasJoinPartner then
(11) insert t ◦ (null, . . . ,null) into T ;
(12) od;
(13) return T ;
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Outer Join (4)

• E.g. students with their homework results, students

without homework result are listed with null values:

STUDENTS ��@@ πSID,ENO,POINTS(σCAT=’H’(RESULTS))

SID FIRST LAST EMAIL ENO POINTS

101 Ann Smith · · · 1 10
101 Ann Smith · · · 2 8
102 Michael Jones (null) 1 9
102 Michael Jones (null) 2 9
103 Richard Turner · · · 1 5
104 Maria Brown · · · (null) (null)
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Outer Join (5)

• Exercise: Is there any difference between

� STUDENTS ��@@ RESULTS and

� STUDENTS ��@@ RESULTS?

• The outer join is especially useful together with

aggregation functions (e.g. count, sum), see below.

Aggregation functions are only introduced for SQL in this course.

• With a selection on the outer join result, one can

use it like a set difference: But questionable style.

Necessary in MySQL (has no subqueries).
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Outer Join (6)

• The outer join is a derived operation (like ��@@ , ∩),
i.e. it can be simulated with the five basic relational

algebra operations.

• E.g. consider relations R(A, B) and S(B, C).

• The left outer join R ��@@ S is an abbreviation for

R ��@@ S ∪ (R− πA,B(R ��@@ S))× {(C:null)}

(where ��@@ can be further replaced by ×, σ, π).

I.e. the outer join adds to the normal join result those tuples from R

that do not have a join partner (filled with C:null to get the same
schema, because otherwise the union would not be applicable).
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Outer Join (7)

• The SQL-86 standard had no explicit joins. Since

joins including the outer join can be simulated with

other constructs, this is no real problem.

• However, it turned out that some queries become

much shorter if the outer join can be used.

• Therefore, the outer join was added in SQL-92:

SELECT R.A, R.B, S.C

FROM R LEFT OUTER JOIN S ON R.B = S.B

• But in this way, SQL became a quite complex mix-

ture of relational algebra and tuple calculus.
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Overview

1. Introduction, Selection, Projection

2. Cartesian Product, Join

3. Set Operations

4. Outer Join

5. Formal Definitions, A Bit of Theory

'

&

$

%
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Definitions: Syntax (1)

Let the following be given:

• A set SD of data type names, and for each D ∈ SD
a set val(D) of values.

As mentioned before, for simplicity we do not distinguish between
constants/literals and the values they denote.

• A set A of possible attribute names (identifiers).

• A relational database schema S that consists of

� a finite set of relation names R, and

� for every R ∈ R, a relation schema sch(R).

(Constraints are not important here.)
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Definitions: Syntax (2)

• One recursively defines the set of relational algebra

(RA) expressions (queries) together with the rela-

tion schema of each RA expression. Base Cases:

� R : For every R ∈ R, the relation name R is an

RA expression with schema sch(R).

� {(A1: d1, . . . , An: dn)} (“relation constant”) is an

RA expression if A1, . . . , An ∈ A, and di ∈ val(Di)

for 1 ≤ i ≤ n with D1, . . . , Dn ∈ SD. The schema

of this RA expression is (A1:D1, . . . , An:Dn).
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Definitions: Syntax (3)

• Recursive cases, Part 1: Let Q be an RA expression

with schema ρ = (A1:D1, . . . , An:Dn). Then also

the following are RA expressions:

� σAi=Aj
(Q) for i, j ∈ {1, . . . , n}. It has schema ρ.

� σAi=d (Q) for i ∈ {1, . . . , n} and d ∈ val(Di). It

has schema ρ.

� πB1←Ai1
,...,Bm←Aim

(Q) for i1, . . . , ik ∈ {1, . . . , n}

and B1, . . . , Bm ∈ A such that Bj 6= Bk for j 6= k.

It has schema (B1:Di1, . . . , Bm:Dim).
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Definitions: Syntax (4)

• Recursive cases, continued: Let Q1 and Q2 be RA

expressions with the same schema ρ. Then also the

following are RA expressions with schema ρ:

� (Q1) ∪ (Q2) and � (Q1)− (Q2)

• Let Q1 and Q2 be RA expressions with the schemas

(A1:D1, . . . , An:Dn) and (B1:E1, . . . , Bn:Em), resp.

If {A1, . . . , An} ∩ {B1, . . . , Bm} = ∅, then also the

following is an RA expression:

� (Q1)× (Q2)

Schema: (A1:D1, . . . , An:Dn, B1:E1, . . . , Bm:Em).

Stefan Brass: Datenbanken I Universität Halle, 2004



6. Relational Algebra 6-103

Definitions: Syntax (5)

• Nothing else is a relational algebra expression.

This is formally necessary to complete the definition. The definiti-
on consists otherwise only of conditions of the form “If R is an RA
expression, then S is an RA expression.” This would permit that eve-
rything is an RA expression (the conclusion of the rules is then always
true, thus the rules are satisfied). This is of course not meant by the
definition. Therefore, it is necessary to state that something is an
RA expression only if can really be constructed by a finite number
of applications of the above rules, because “nothing else is an RA
expression”.

• Exercise: Define a context free grammar for rela-

tional algebra expressions (without the restrictions

about declared attribute names).
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Abbreviations

• Parentheses can be left out if the structure is clear

(or the possible structures are equivalent).
The definition above requires a lot of parentheses in order to make
sure with simple rules that the structure is always uniquely determi-
ned. With more complex rules, it is possible to reduce the number
of parentheses. One can also define binding strengths (operator pre-
cedences), e.g. × binds stronger than ∪. However, for a theoretical
investigation, this is not really important.

• As explained above, additional algebra operations

(like the join) can be introduced as abbreviations.
Again, for the practical usage of the query language, this is important,
but not for theoretical results, since the abbreviations can always be
expanded to their full form.
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Definitions: Semantics (1)

• A database state I defines a finite relation I(R) for

every relation name R in the database schema.

If sch(R) = (A1:D1, . . . , An:Dn), then I(R) ⊆ val(D1)× · · · × val(Dn).

• The result of a query Q, i.e. an RA expression, in a

database state I is a relation. The query result is

written I[Q] and defined recursively corresponding

to the structure of Q:

� If Q is a relation name R, then I[Q] := I(R).

� If Q is a constant relation {(A1: d1, . . . , An: dn)},
then I[Q] := {(d1, . . . , dn)}.
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Definitions: Semantics (2)

• Definition of the result I[Q] of an RA expression Q

in state I, continued:

� If Q has the form σAi=Aj
(Q1), then

I[Q] := {(d1, . . . , dn) ∈ I[Q1] | di = dj}.

� If Q has the form σAi=d (Q1), then

I[Q] := {(d1, . . . , dn) ∈ I[Q1] | di = d}.

� If Q has the form πB1←Ai1
,...,Bm←Aim

(Q1), then

I[Q] := {(di1, . . . , dim) | (d1, . . . , dn) ∈ I[Q1]}.
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Definitions: Semantics (3)

• Definition of I[Q], continued:

� If Q has the form (Q1) ∪ (Q2) then

I[Q] := I[Q1] ∪ I[Q2].

� If Q has the form (Q1)− (Q2) then

I[Q] := I[Q1]− I[Q2].

� If Q has the form (Q1)× (Q2), then
I[Q] := {(d1, . . . , dn, e1, . . . , em) |

(d1, . . . , dn) ∈ I[Q1],
(e1, . . . , em) ∈ I[Q2]}.
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Monotonicity

• Definition: A database state I1 is smaller than (or

equal to) a database state I2, written I1 ⊆ I2, if

and only if I1(R) ⊆ I2(R) for all relation names R

in the schema.

• Theorem: If an RA expression Q does not contain

the − (set difference) operator, then the following

holds for all database states I1, I2:
I1 ⊆ I2 =⇒ I1[Q] ⊆ I2[Q].

• Exercise: Prove this by induction on the structure

of Q (“structural induction”).
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Equivalence (1)

• Definition: Two RA expressions Q1 and Q2 are equi-

valent if and only if they have the same schema and

for all database states I the following holds:

I[Q1] = I[Q2].

• There are two notions of equivalence, depending

on whether one considers all structurally possible

states or only states that satisfy the constraints.

The first alternative is a stricter requirement. The second alternati-
ve gives more pairs of equivalent queries. In the following, it is not
important which version is chosen.
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Equivalence (2)

• Examples for equivalences:

� σϕ1(σϕ2(Q)) is equivalent to σϕ2(σϕ1(Q)).

� (Q1 ×Q2)×Q3 is equivalent to Q1 × (Q2 ×Q3).

� If A is an attribute in the schema of Q1:

σA=d (Q1×Q2) is equivalent to (σA=d (Q1))×Q2

• Theorem: The equivalence of relational algebra ex-

pressions is undecidable.

I.e. one cannot write a program that reads two arbitrary RA expressi-
ons Q1 and Q2 and outputs “yes” or “no” depending on whether Q1

and Q2 are equivalent and is guaranteed to stop after a finite amount
of computation time.
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Limitations of RA (1)

• Let R be a relation name with schema (A:D, B:D)

and let val(D) be infinite.

• The transitive closure of I(R) is the set of all

(d, e) ∈ val(D) × val(D) such that there are n ∈ lN

(n ≥ 1) and d0, . . . , dn ∈ val(D) with d = d0, e = dn

and (di−1, di) ∈ I(R) for i = 1, . . . , n.

• E.g. R could be the relation “PARENT”, then the

transitive closure are all ancestor-relationships

(parents, grandparents, great-grandparents, . . . ).
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Limitations of RA (2)

• Theorem: There is no RA expression Q such that

I[Q] is the transitive closure of I(R) for all database

states I.

• E.g. in the ancestor example, one would need an

additional join for every additional generation.

• Therefore, if one does not know, how many gene-

rations the database contains, one cannot write a

query that works for all possible database states.

Of course, one can write a query that works up to e.g. the great-
grandparents. But then it does not work correctly if the database
should contain great-great-grandparents.
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Limitations of RA (3)

• This of course implies that relational algebra is not

computationally complete:

� Not every function from database states to re-

lations for which a C program exists can be for-

mulated in relational algebra.

� However, this can also not be expected, since one

wants to be sure that query evaluation always

terminates. This is guaranteed for RA.
It is undecidable whether general programs terminate (“halting
problem”). Therefore any computationally complete language ne-
cessarily permits to formulate queries/programs that sometimes
do not terminate and there is no way to check this beforehand.
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Limitations of RA (4)

• All RA queries can be computed in time that is

polynomically in the size of the database.

• Thus, also very complex functions cannot be for-

mulated in relational algebra.
E.g. if you should find a way to formulate the Travelling Salesman
Problem in relational algebra, you had solved the famous P=NP pro-
blem (with a solution that nobody expects). Since that is extremely
unlikely, you should not try it, but instead write a C program.

• As the transitive closure shows, not all problems of

polynomial complexity can be formulated in RA.
With a fixpoint operator and a linear order on the domain, this is
possible (→ Deductive DB).
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Expressive Power (1)

• A query language L for the relational model is cal-

led strong relationally complete if for every databa-

se schema S and for every RA expression Q1 with

respect to S there is a query Q2 ∈ LS such that

for all database states I with respect to S the two

queries produce the same result: I[Q1] = I[Q2].

• I.e. the requirement is that every relational alge-

bra expression can be translated into an equivalent

query in that language.
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Expressive Power (2)

• E.g. SQL is strong relationally complete.

• If the translation of queries is possible in both di-

rections, the two query languages have the same

expressive power.

E.g. SQL contains aggregations that cannot be simulated in relational
algebra. Thus, SQL is more powerful than relational algebra. But one
can of course extend relational algebra with aggregation operations.

• “Relationally complete” (without “strong”) per-

mits to use a sequence of queries and to store in-

termediate results in temporary relations.
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Expressive Power (3)

• The following languages have the same expressive

power (queries can be translated between them):

� Relational algebra

� SQL without aggregations and with mandatory

duplicate elimination.

� Tuple relational calculus (first order logic with

variables for tuples, see below), Domain RC

� Datalog (a Prolog variant) without recursion

• Thus, the set of functions that can be expressed in

RA is at least not arbitrary.
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