
4. The Relational Data Model 4-1

Part 4:
The Relational Model

References:
• Elmasri/Navathe: Fundamentals of Database Systems, 3rd Edition, 1999.

7.1 Relational Model Concepts
7.2 Relational Constraints and Relational Database Schemas
7.3 Update Operations and Dealing with Constraint Violations

• Kemper/Eickler: Datenbanksysteme (in German), 4th Edition, 2001.
Section 3.1, “Definition des relationalen Modells” (“Definition of the Relational Model”)

• Silberschatz/Korth/Sudarshan: Database System Concepts, Third Edition, 1999.
Chap. 3: Relational Model. Section 6.2: “Referential Integrity”.

• Heuer/Saake: Datenbanken, Konzepte und Sprachen (in German), Thomson, 1995.

• Date/Darwen: A Guide to the SQL Standard, Fourth Edition, Addison-Wesley, 1997.

• Lipeck: Skript zur Vorlesung Datenbanksysteme (in German), Univ. Hannover, 1996.

• Codd: A relational model of data for large shared data banks. Communications of the
ACM, 13(6), 377–387, 1970. Reprinted in CACM 26(1), 64–69, 1983.
See also: [http://www1.acm.org:81/classics/nov95/toc.html] (incomplete)

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-2

Objectives

After completing this chapter, you should be able to:

• explain the basic concepts of the relational model.

What is a schema? What is a state for a given schema?

• explain what domains are and why they are useful.

• explain applications and problems of null values.

• explain the meaning of keys and foreign keys.

• read various notations for relational schemas.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-3

Overview

1. Relational Model Concepts: Schema, State

'

&

$

%
2. Null Values

3. Key Constraints

4. Foreign Key Constraints

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-4

Relational Model: Importance

• Relational database management systems currently

dominate the market.
E.g. Oracle, IBM DB2, MS SQL Server, Sybase, Informix, CA Ingres.

• Most new database projects use an RDBMS.
There remain “legacy systems” based on a network or hierarchical
DBMS. E.g. the hierarchical system IMS from IBM is still in use.

• Object-oriented database systems are used mainly

for “non-standard applications” (e.g. CAD data).
OODBMS lost some of the advantages of RDBMS. The current trend
goes to object-relational DBMS. All big vendors claim OR-features.

• XML DBMS are currently being developed.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-5

Example Database (1)

STUDENTS

SID FIRST LAST EMAIL

101 Ann Smith · · ·
102 Michael Jones (null)
103 Richard Turner · · ·
104 Maria Brown · · ·

EXERCISES

CAT ENO TOPIC MAXPT

H 1 Rel. Algeb. 10
H 2 SQL 10
M 1 SQL 14

RESULTS

SID CAT ENO POINTS

101 H 1 10
101 H 2 8
101 M 1 12
102 H 1 9
102 H 2 9
102 M 1 10
103 H 1 5
103 M 1 7

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-6

Example Database (2)

• STUDENTS: one row for each student in the course.

� SID: “Student ID” (unique number).

� FIRST, LAST: First and last name.

� EMAIL: Email address (can be null).

• EXERCISES: one row for each exercise.

� CAT: Exercise category.
E.g. ’H’: homework, ’M’: midterm exam, ’F’: final exam.

� ENO: Exercise number (within category).

� TOPIC: Topic of the exercise.

� MAXPT: Max. no. of points (How many points is it worth?).

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-7

Example Database (3)

• RESULTS: one row for each submitted solution to an

exercise.

� SID: Student who wrote the solution.

This references a row in STUDENTS.

� CAT, ENO: Identification of the exercise.

Together, this uniquely identifies a row in EXERCISES.

� POINTS: Number of points the student got for the

solution.

� A missing row means that the student did not

yet hand in a solution to the exercise.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-8

Data Values (1)

• Table entries are data values taken from some given

selection of data types.

• The possible data types are given by the RDBMS

(or the SQL standard).
DBMS differ in the exact collection of supported data types.

• E.g. strings, numbers (of different lengths and pre-

cisions), date and time, money, binary data.

• The relational model (RM) itself is independent

from any specific selection of data types.
The definition of the RM takes a set of data types as a parameter.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-9

Data Values (2)

• Extensible DBMS allow the user to define new data

types (e.g. multimedia and geometric data types).

There are basically two ways to offer this extensibility: (1) One can link
new procedures (written e.g. in C) to the DBMS. (2) The DBMS has
a programming language built-in (for server-side stored procedures),
and types and operations defined in this language can be used in
table declarations and queries. Real extensibility should also permit to
define new index structures and to extend the query optimizer.

• This extensibility is one important feature of mo-

dern object-relational systems.

“Universal Server/DB”: can store more than numbers and strings (“all
kinds of electronic information”).

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-10

Data Values (3)

• As explained in Chapter 2, the given data types are

specified in form of a signature ΣD = (SD,PD,FD)

and a ΣD-interpretation ID.

• In the following definitions we only need that

� a set SD of data type names is given, and

One often says simply “data type” instead of “data type name”.

� for each D ∈ SD a set val(D) of possible values

of that type (val(D) := ID[D]).

• E.g. the data type “NUMERIC(2)” has values -99..+99.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-11

Domains (1)

• The columns ENO in RESULTS and ENO in EXERCISES

should have the same data type (both are exercise

numbers). The same holds for EXERCISES.MAXPT and

RESULTS.POINTS.

• One can define application-specific “domains” as

names (abbreviations) for the standard data types:

CREATE DOMAIN EX_NUMBER AS NUMERIC(2)

• One could even add the constraint that the number

must be positive.
CREATE DOMAIN EX_NUMBER AS NUMERIC(2) CHECK(VALUE > 0)

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-12

Domains (2)

• Then the column data type is defined indirectly via

a domain:

Column
“EXERCISES.ENO”

PPPPq

Column
“RESULTS.ENO”

����1

Domain
“EX_NUMBER”

-
Data Type

“NUMERIC(2)”

• If it should ever be necessary to extend the set

of possible homework numbers, e.g. to NUMERIC(3),

this structure ensures that no column is forgotten.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-13

Domains (3)

• Domains are also useful in order to document that

the two columns contain the same kind of thing,

so comparisons between them are meaningful.

• E.g. even if the column “POINTS” has the same data

type “NUMERIC(2)”, this query makes little sense:

“Which homework has a number that is
the same as its number of points?”

• However, SQL does not forbid comparisons bet-

ween values of different domains.

E.g. “subdomains” would be needed (which SQL does not have).
Nevertheless, comparisons between different domains are suspicious.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-14

Domains (4)

• The SQL-92 standard contains domain definitions,

but until now few systems support them.

Oracle 8i, IBM DB2 V5, and MS SQL Server 7 all do not sup-
port CREATE DOMAIN. But e.g. user-defined data types in SQL Server
(sp_addtype) are quite similar.

• Domains are at least a useful comment to better

understand the connections between columns.

• Even if the RDBMS does not support domains,

they should be specified during DB design.

Oracle Designer supports domains and replaces them by the defined
types when it produces CREATE TABLE statements.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-15

Domains (5)

• Often, domain names can be directly used as co-

lumn names.

E.g. in an old version of the example DB, the exercise number column
was called “NO” in EXERCISES and “ENO” in RESULTS. The new version
seems clearer. Column names will automatically be more uniform if
one normally uses the domain name as column name.

• In summary, although domains are still a bit exotic

in real systems, they are a useful tool for under-

standing the structure of a database, and ensuring

uniformity and consistency during database design.

Domains are a bit “higher level” than the given system data types.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-16

Atomic Attribute Values (1)

• The relational model treats the single table entries

as atomic.

• I.e. the classical relational model does not permit

to introduce structured and multi-valued column

values.

Each cell in the table can only contain a single number, string, etc.

• In contrast, the NF2 (“Non First Normal Form”)

data model allows table entries to be complete ta-

bles in themselves (example see next page).

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-17

Atomic Attribute Values (2)

• Example for an NF2 table (not part of the classical

relational model, not treated in this course):

HOMEWORKS

NO TOPIC MAXPOINTS SOLVED_BY

STUDENT POINTS

1 Rel. Alg. 10 Ann Smith 10

Michael Jones 9

2 SQL 10 Ann Smith 8

Michael Jones 9

Richard Turner 10

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-18

Atomic Attribute Values (3)

• Support for “complex values” (sets, lists, records,

nested tables) is another typical feature of object-

relational systems.
Oracle8 (with “Objects” option) permits any PL/SQL type for the
columns, including nested tables. PL/SQL is Oracle’s language for
stored procedures. Beginning with Oracle 8i, Java is supported as an
alternative.

• Some systems permit an arbitrary nesting of the

type constructors “set”, “list”, “array”, “multiset”

(set with duplicates) and “record”.
A relation/table is then simply the special case “set (or multiset) of
records”.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-19

Atomic Attribute Values (4)

• Of course, even in a classical system, if e.g. DATE is

one of the given data types, the data type operati-

ons can be used to extract day, month, year.

And also, when data type operations are used, strings are not really
atomic, but instead a sequence of characters.

• However, this happens on the level of the given data

types, not on the level of the data model itself.

E.g. one cannot introduce new structured types, and if one makes
use of strings with an important inner structure, one will soon notice
that there are meaningful queries that cannot be expressed in SQL
with data type functions.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-20

Relational DB Schemas (1)

• A relation schema ρ (schema of a single relation)

defines

� a (finite) sequence A1 . . . An of attribute names,

The names must be distinct, i.e. Ai 6= Aj for i 6= j.

� for each attribute Ai a data type (or domain) Di.

Let dom(Ai) := val(Di) (set of possible values of Ai).

• A relation schema can be written as

ρ = (A1:D1, . . . , An:Dn).

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-21

Relational DB Schemas (2)

• A relational database schema R defines

� a finite set of relation names {R1, . . . , Rm}, and

� for every relation Ri, a relation schema sch(Ri).

� A set C of integrity constraints (defined below).
E.g. keys and foreign keys.

• I.e. R = ({R1, . . . , Rm}, sch, C).
There are many different notations for such schemas, see below.

• Compared to the definitions in Chapter 2, the at-

tribute names are new.

Otherwise, relations are nothing else than predicates.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-22

Relational DB Schemas (3)

Consequences of the Definition:

• Column names must be unique within a table: no

table can have two columns with the same name.

• However, different tables can have columns with

the same name (e.g. ENO in the example).

The two columns can even have different data types (bad style).

• For every column (identified by the combination of

table name and column name) there is a unique

data type.

Of course, different columns can have the same data type.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-23

Relational DB Schemas (4)

• The columns within a table are ordered, i.e. there

is a first, second, etc. column.

This is normally not very important, but e.g. SELECT * FROM R prints
the table with the columns in the given sequence.

• Within a DB schema, table names must be unique:

There cannot be two tables with the same name.

• A DBMS server can normally manage several data-

base schemas.

Then different schemas can contain tables with the same name.
E.g. within an Oracle system (instance), tables are uniquely identified
by the combination of schema (user) name and table name.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-24

Schemas: Notation (1)

• Consider the example table:

EXERCISES

CAT ENO TOPIC MAXPT

H 1 Rel. Algeb. 10
H 2 SQL 10
M 1 SQL 14

• One way to specify the schema precisely is via an

SQL statement (see Chapter 9):

CREATE TABLE EXERCISES(CAT CHAR(1),
ENO NUMERIC(2),
TOPIC VARCHAR(40),
MAXPT NUMERIC(2))

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-25

Schemas: Notation (2)

• Although in the end, a CREATE TABLE statement is

needed for the DBMS, other notations can be used

for communicating schemas between humans.

• When discussing the general database structure,

the column data types are often not important.

• One concise notation is to write the table name

followed by the list of attributes:

EXERCISES(CAT, ENO, TOPIC, MAXPT)

• If necessary, column datatypes can be added:

EXERCISES(CAT: CHAR(1), ...)

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-26

Schemas: Notation (3)

• One can also use the header (sketch) of the table:

EXERCISES

CAT ENO TOPIC MAXPT
... ... ... ...

• Or a table with a column definition per row:

EXERCISES

Column Type

CAT CHAR(1)

ENO NUMERIC(2)

TOPIC VARCHAR(40)

MAXPT NUMERIC(2)

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-27

Exercise

Define a relational database schema for a collection of

recipes for cookies.

• For each recipe a unique number, the name of the

cookie, a short explanation what to do, and the

baking time and temperature must be stored.

• For each recipe, also a set of ingredients must be

stored, and for each ingredient the amount.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-28

Tuples (1)

• An n-tuple is a sequence of n values.

One also says simply “tuple” for n-tuple if the n is not important or
clear from the context. Tuples are used to formalize table rows, then
n is the number of columns.

• E.g. XY-coordinates are pairs (X, Y ) of real num-

bers. Pairs are tuples of length 2 (“2-tuples”).

3-tuples are also called triples, and 4-tuples quadruples.

• The cartesian product × constructs sets of tuples,

e.g.:

IR× IR := {(X, Y ) | X ∈ IR, Y ∈ IR}.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-29

Tuples (2)

• A tuple t with respect to the relation schema

ρ = (A1:D1, . . . , An:Dn)

is a sequence (d1, . . . , dn) of n values such that

di ∈ val(Di). I.e. t ∈ val(D1) × · · · × val(Dn).

• Given such a tuple, we write t.Ai for the value di in

the column Ai.

Alternative notation: t[Ai].

• E.g. one row in the example table “EXERCISES” is

the tuple (’H’, 1, ’Rel. Algeb.’, 10).

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-30

Database States (1)

Let a database schema ({R1, . . . , Rm}, sch, C) be given.

• A database state I for this database schema defi-

nes for every relation Ri a finite set of tuples with

respect to the relation schema sch(Ri).

• I.e. if sch(Ri) = (Ai,1:Di,1, . . . , Ai,ni
:Di,ni

), then

I[Ri] ⊆ val(Di,1) × · · · × val(Di,ni
).

• I.e. a DB state interprets the symbols in the DB

schema: It maps relation names to relations.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-31

Database States (2)

• In mathematics, the term “relation” is defined as

“a subset of a cartesian product”.

• E.g. an order relation such as “<” on the natural

numbers is formally: {(X, Y ) ∈ lN× lN | X < Y }.

• Exercise: What are the differences between relati-

ons in databases and relations like “<”?

1.

2.

3.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-32

Database States (3)

Relations are sets of tuples. Therefore:

• The sequence of the tuples is undefined.

� The tabular representation is a bit misleading,

there is no first, second, etc. row.
The file space management strategy defines where a new row is
inserted (e.g. reuse space freed by deleted rows).

� Relations can be sorted on output.

• There are no duplicate tuples.

� Most current systems allow duplicate tuples as

long as no key is defined (see below).
So a formalization as a bag of tuples would be correct.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-33

Summary (1)

R

Relation Name
PPPPPPPPPq

A1 · · · An

Attribute
PPPPPPPPq

Attribute��������)

d1,1

...

dm,1

· · ·
...

· · ·

d1,n

...

dm,n

Tuple -

Tuple -

�������)

Attribute
Value

Synonyms: Relation and Table.
Tuple, row, and record.
Attribute, column, field.
Attribute value, column value, table entry.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-34

Summary (2)

Database (Schema)
�

���
����

H
HHH

HHHH

Relation Relation Relation
��

����
��

HHH
HHH

HH

Tuple Tuple Tuple
�

���
����

H
HHH

HHHH

Attribute
Value

Attribute
Value

Attribute
Value

(∼ Classes)

(∼ Objects)

(Data)

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-35

Storage Structures

• Obviously, a relation can be stored as a file of re-

cords. But other data structures can offer a rela-

tional interface, too.

The relational model does not require any specific storage structure.
Tables are only the logical view. Other storage structures might allow
one to answer certain queries more efficiently. E.g. the V$* tables in
Oracle are an interface to data structures in the server.

• Exercise: Define a relational interface to

month_names: array[1..12] of string;

What are differences between this array and the

standard “file of records” for the relation?

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-36

Update Operations (1)

• Updates transform a DB state Iold into a DB state

Inew. The basic update operations of the RM are:

� Insertion (of a tuple into a relation):

Inew[R] := Iold[R] ∪ {(d1, . . . , dn)}

� Deletion (of a tuple from a relation):

Inew[R] := Iold[R] − {(d1, . . . , dn)}

� Modification / Update (of a tuple):

Inew[R] := (Iold[R]− {(d1, . . . , di, . . . , dn)})
∪ {(d1, . . . , d′i, . . . , dn)}

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-37

Update Operations (2)

• Modification corresponds to a deletion followed by

an insertion, but without interrupting the existence

of the tuple.

It might be required by constraints that a tuple with certain values
for the key attributes exists.

• SQL has commands for inserting, deleting, and mo-

difying an entire set of tuples (of the same relation).

• Updates can also be combined to a transaction.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-38

Overview

1. Relational Model Concepts: Schema, State

2. Null Values

'

&

$

%
3. Key Constraints

4. Foreign Key Constraints

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-39

Null Values (1)

• The relational model allows missing attribute va-

lues, i.e. table entries can be empty.

• Formally, the set of possible values for an attribute

is extended by a new value “null”.

• If R has the schema (A1:D1, . . . , An:Dn), then

I[R] ⊆ (val(D1)∪{null}) × · · · × (val(Dn)∪{null}).

• “Null” is not the number 0 or the empty string!

It is different from all values of the data type.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-40

Null Values (2)

• Null values are used in a variety of different situa-

tions, e.g.:

� A value exists, but is not known.

Suppose the university administration stores more information
about students. E.g., their STUDENTS table might contain a co-
lumn for the student’s phone number, but they might not know
every student’s phone number, although probably most have one.

� No value exists.

Not every student has a second address for the duration of the
term (distinct from his/her home address). Not every student
has a university computer account. Yet, the STUDENTS table might
contain columns for these data. Or consider a COURSES table: There
might be a column URL, but not every course has a web page.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-41

Null Values (3)

• Applications of null values, continued:

� The attribute is not applicable to this tuple.
E.g., only foreign students are required to take a Toefl test for
measuring their knowledge of English. A column for the Toefl
score in the STUDENTS table is not applicable to U.S. nationals,
although they know English well. Even if they actually should
have taken the test sometime in the past (e.g., because they are
immigrants), the university is not interested in the result.

� A value will be assigned later (“to be announced”).

� Any value will do.

• A comittee once found 13 different meanings for a

null value.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-42

Null Values (4)

Advantages of Null Values:

• Without null values, it would be necessary to split

most relations in many relations (“subclasses”):

� E.g. STUDENT_WITH_EMAIL, STUDENT_WITHOUT_EMAIL.

� Or extra relation: STUD_EMAIL(SID, EMAIL).

� This complicates queries.

One needs joins and unions (see Chapter 6).

• If null values are not allowed, users will invent fake

values to fill the missing columns.

This makes the database structure even more unclear.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-43

Null Values (5)

Problems:

• Since the same null value is used for very different

purposes, there can be no clear semantics.

• SQL uses a three-valued logic (true, false, unknown)

for evaluating conditions with null values.

For those accustomed to two-valued logic (most of us), there can be
surprises — common equivalences do not hold.

• Most programming languages do not have null va-

lues. This complicates application programs.

So when an attribute value is read into a program variable, it must
be checked for a null value (→ indicator variables).

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-44

Excluding Null Values (1)

• Since null values lead to complications, it can be

specified for each attribute whether or not a null

value is allowed.

• It is important to invest careful thought as to where

null values are needed.

• Declaring many attributes “not null” will result in

simpler programs and fewer surprises with queries.

• However, flexibility is lost: Users are forced to enter

values for all “not null” attributes.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-45

Excluding Null Values (2)

• In SQL, one writes NOT NULL after the data type for

an attribute which cannot be null.
This is a kind of “column constraint” (see below). Between the data
type and the “NOT NULL” one could write other column constraints
(e.g. CHECK), but usually “NOT NULL” is specified first. In this way, it
can also be seen as part of the data type.

• E.g. EMAIL in STUDENTS can be null:

CREATE TABLE STUDENTS(

SID NUMERIC(3) NOT NULL,

FIRST VARCHAR(20) NOT NULL,

LAST VARCHAR(20) NOT NULL,

EMAIL VARCHAR(80) )

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-46

Excluding Null Values (3)

• In SQL, null values are allowed by default, and one

must explicitly request “NOT NULL”.

• Often only a few columns can contain null values.

• Therefore, when using simplified schema notations,

it might be better to use the opposite default:

STUDENTS(SID, FIRST, LAST, EMAILo)

• In this notation, attributes which can take a null

value must be explicitly marked with a small “o”

(optional) in the exponent.
This is not part of the column name. Alternative: “EMAIL?”.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-47

Excluding Null Values (4)

• For tabular notation, the possibility of null values

can be indicated in one of these ways:

STUDENTS

Column Type Null

SID NUMERIC(3) N

FIRST VARCHAR(20) N

LAST VARCHAR(20) N

EMAIL VARCHAR(80) Y

STUDENTS SID · · · EMAIL

Type NUMERIC(3) · · · VARCHAR(80)

Null N · · · Y

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-48

Overview

1. Relational Model Concepts: Schema, State

2. Null Values

3. Key Constraints

'

&

$

%
4. Foreign Key Constraints

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-49

Constraints: Overview (1)

• (Integrity) Constraints are conditions that every

(valid) database state must satisfy, see Chapter 3.

• E.g. in the SQL CREATE TABLE statement, the follo-

wing types of constraints can be specified:

� NOT NULL: A column cannot be null.

� Keys: Each key value can appear only once.

� Foreign keys: Values in a column must also ap-

pear as key values in another table.

� CHECK: Column values must satisfy a condition.
The condition can also refer to several columns of the same row.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-50

Constraints: Overview (2)

• The SQL-92 standard contains a general CREATE

ASSERTION statement, which is, however, not imple-

mented in today’s database systems.

• One can formalize general constraints as SQL que-

ries that return the violations or as formulas, or one

can at least document them in natural language.

Of course, the DBMS cannot understand and thus cannot enforce
constraints in natural language. But they can still be an important
documentation for the later development of application programs (the
checks can be programmed). If constraints are formulated as SQL
queries that return violations, one can run them from time to time.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-51

Keys: Unique Identification (1)

• A key of a relation R is an attribute/column A that

uniquely identifies the tuples/rows in R.
The key constraint is satisfied in the DB state I if and only if for all
tuples t, u ∈ I[R] the following holds: if t.A = u.A then t = u.

• E.g. if SID has been declared as key of STUDENTS,

this database state is illegal:

STUDENTS

SID FIRST LAST EMAIL

101 Ann Smith · · ·
101 Michael Jones · · ·
103 Richard Turner (null)
104 Maria Brown · · ·

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-52

Keys: Unique Identification (2)

• If SID has been declared as key of STUDENTS, the

DBMS will refuse the insertion of a second row

with the same value for SID as an existing row.

• Note that keys are constraints: They refer to all

possible DB states, not only the current one.

• Even though in the above database state (with only

four students) the last name (LAST) could serve as

a key, this would be too restrictive: E.g. the future

insertion of “John Smith” would be impossible.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-53

Keys: Unique Identification (3)

• A key can also consist of several attributes.

Such a key is called a “composite key”.

If A and B together form a key, it is forbidden that there are two rows t

and u which agree in both attributes (i.e. t.A = u.A and t.B = u.B).
They may agree in one attribute as long as they differ in the other.

• E.g. this relation satisfies the key FIRST, LAST:

STUDENTS

SID FIRST LAST EMAIL

101 Ann Smith · · ·
102 John Smith · · ·
103 John Miller · · ·

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-54

Keys: Minimality (1)

• Let F be a formula specifying that LAST is a key.

• Let G be a formula that corresponds to the com-

posed key consisting of FIRST and LAST.

• Then F ` G, i.e. every DB state that satisfies the

key LAST also satisfies the key FIRST, LAST.

In general, adding attributes makes keys weaker (statisfied by more
states).

• Therefore, if LAST were declared as a key, it would

be not interesting that FIRST, LAST also has the

unique identification property.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-55

Keys: Minimality (2)

• One will never specify two keys such that one is a

subset of the other.

Only minimal keys (with respect to “⊆”) are interesting. Many authors
even include this minimality condition in the definition of a key.

• However, the key “LAST” is not satisfied by the ex-

ample state on Slide 4-53.

• If the database designer wants to permit this state,

the key constraint “LAST” is too strong.

This is not really a free decison: The database designer must look at
possible situations in the real world to decide this question.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-56

Keys: Minimality (3)

• Once the key “LAST” is excluded, the composed key

“FIRST, LAST” becomes again interesting.

One would also check that the key “FIRST” is not possible for the
same reason.

• The database designer must now find out whether

there could ever be two students in the course with

the same first and last name.

In the example state, there are no such students, but the integrity
constraint must hold for all states.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-57

Keys: Minimality (4)

• Natural keys nearly always could possibly have ex-

ceptions, yet, if exceptions are extremely seldom,

one could still consider declaring the key:

� Disadvantage: If the situation occurs, one will

have to modify the name of one of the students

in the database and to manually edit all official

documents printed from the database.
After I taught about 7 years, it did occur (in a course with
about 150 students).

� Advantage: Students can be identified in appli-

cation programs by first name and last name.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-58

Keys: Minimality (5)

• If the designer decides that the disadvantage of the

key “FIRST, LAST” is greater than the advantage,

i.e. that the key is still too strong, he/she could try

to add further attributes.

• But the combination “SID, FIRST, LAST” is not in-

teresting, because “SID” alone is already a key.

• If, however, the designer should decide that “FIRST,

LAST” is “sufficiently unique”, it would be minimal,

even if “SID” is another key.

The number of attributes in a key is not important for the minimality.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-59

Multiple Keys

• A relation may have more than one key.

• E.g. SID is a key of STUDENTS, and FIRST, LAST might

be another key of STUDENTS.

• One of the keys is designated as the “primary key”.

The primary key should be a key that consists only of a single, short
attribute and is never updated (if available). The primary key is used in
other tables that need to refer to rows in this table. In some systems,
access via the primary key might be especially fast. Otherwise, the
selection of the primary key is more or less arbitrary.

• Other keys are called “alternate/secondary keys”.

SQL uses the keyword UNIQUE for alternate keys.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-60

Keys: Notation (1)

• The primary key attributes are often marked by un-

derlining them in relational schema specifications:

R(A1:D1, . . . , Ak:Dk, Ak+1:Dk+1, . . . , An:Dn).

STUDENTS

SID FIRST LAST EMAIL

101 Ann Smith · · ·
102 Michael Jones (null)

103 Richard Turner · · ·
104 Maria Brown · · ·

• Usually, the attributes of a relation are ordered such

that the primary key consists of the first attributes.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-61

Keys: Notation (2)

• In SQL, keys can be defined as follows:

CREATE TABLE STUDENTS(

SID NUMERIC(3) NOT NULL,

FIRST VARCHAR(20) NOT NULL,

LAST VARCHAR(20) NOT NULL,

EMAIL VARCHAR(80),

PRIMARY KEY(SID),

UNIQUE(FIRST, LAST))

• The exact syntax details are treated in Chapter 9.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-62

Keys and Null Values

• The primary key cannot be null, other keys should

not be null.

In SQL-89 and DB2, NOT NULL must be specified for every attribute
in a PRIMARY KEY or UNIQUE constraint.
In SQL-92 and Oracle, the “PRIMARY KEY” declaration automatically
implies “NOT NULL”, but “UNIQUE” (for alternate keys) does not.
In Oracle, there can be several rows, all with a null value in a UNIQUE

key. In SQL Server, only one row can be null. SQL-92 defines three
different semantics for composite keys which have null values in only
some of their attributes. One should avoid all this mess.

• It is as not acceptable if already the “object iden-

tity” of the tuple is not known.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-63

Keys and Updates

• It is considered poor style if key attribute values are

modified (updated).

This would change the “object identity”. Better: Delete the tuple first
and then insert a tuple with the new values.

• But SQL does not enforce this constraint.

The standard even contains specifications for what to do with foreign
keys if the referenced key value is updated.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-64

The Weakest Possible Key

• A key consisting of all attributes of a relation re-

quires only that there can never exist two different

tuples which agree in all attributes.

Theoretically, relations are sets: Then this is no restriction. However,
in practice, relations are multisets (bags), and this key ensures that
there are no duplicates.

• Style Recommendation: Define at least one key for

every relation in order to exclude duplicate tuples.

If there is no other key, define the key consisting of all attributes of
the relation.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-65

Keys: Summary

• Declaring a set of attributes as a key is a bit more

restrictive than the unique identification property:

� Null values are excluded at least in the primary

key.

� One should avoid updates, at least of the primary

key.

• However, the uniqueness is the main requirement

for a key. Everything else is secondary.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-66

Exercises (1)

• Select a key:

SOLVED

STUDENT HW POINTS

John Smith 1 10
John Smith 2 12
Maria Brown 1 9

• Give an example for an insertion that would violate

the key:

• Could “POINTS” also be declared as key?

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-67

Exercises (2)

• Consider an appointment calendar:

APPOINTMENTS

DATE START END ROOM WHAT

Jan. 19 10:00 11:00 IS 726 Michael

Jan. 19 14:00 15:00 IS 726 Siripun

Jan. 19 18:00 20:50 IS 501 INFSCI 2710

• What would be correct keys?

• Give an example for a non-minimal key (superkey).

• Are additional constraints needed? I.e. can there be

invalid database states, even if the key is satisfied?

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-68

Overview

1. Relational Model Concepts: Schema, State

2. Null Values

3. Key Constraints

4. Foreign Key Constraints

'

&

$

%

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-69

Foreign Keys (1)

• The relational model has no explicit relationships,

links or pointers.

• Values for the key attributes identify a tuple.

They are “logical addresses” of the tuples.

• To refer to tuples of R in a relation S, include the

primary key of R among the attributes of S.

Such attribute values are “logical pointers” to tuples in R.

• E.g. the table RESULTS has the attribute SID, which

contains primary key values of STUDENTS.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-70

Foreign Keys (2)

SID in RESULTS is a foreign key referencing STUDENTS:

STUDENTS

SID FIRST LAST · · ·
101 Ann Smith · · ·
102 Michael Jones · · ·
103 Richard Turner · · ·
104 Maria Brown · · ·

�

PPPPi

Q
Q

Q
Qk

@
@

@
@I

@
@

@
@I

XXXXy?
Error

RESULTS

SID CAT ENO POINTS

101 H 1 10

101 H 2 8

102 H 1 9

102 H 2 9

103 H 1 5

105 H 1 7

The constraint that is needed here is that every SID

value in RESULTS also appears in STUDENTS.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-71

Foreign Keys (3)

• When SID in RESULTS is a foreign key that references

STUDENTS, the DBMS will reject any attempt to in-

sert a solution for a non-existing student.

• Thus, the set of SID-values that appear in STUDENTS

are a kind of “dynamic domain” for the attribute

SID in RESULTS.

• In relational algebra (see Chapter 6), the projecti-

on πSID returns the values of the column SID. Then

the foreign key condition is:

πSID(RESULTS) ⊆ πSID(STUDENTS).

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-72

Foreign Keys (4)

• The foreign key constraint ensures that for every

tuple t in RESULTS there is a tuple u in STUDENTS

such that t.SID = u.SID.
Pairs of such tuples t and u can be brought together by a relational
algebra operation called “Join” (see Chapter 6). This corresponds to
the dereferencing of pointers in other models. Without foreign key
constraint, there could be “dangling pointers” that point to nowhere.
However, an SQL query would not crash in this case: Tuples without
“join partner” are silently eliminated in a query that does a join.

• The key constraint for STUDENTS ensures that there

is at most one such tuple u.
Together, it follows that every tuple t in RESULTS references exactly
one tuple u in STUDENTS.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-73

Foreign Keys (5)

• Enforcing foreign key constraints ensures the “re-

ferential integrity” of the database.

I.e. foreign key constraint and referential integrity constraint are syn-
onyms.

• A foreign key implements a “one-to-many” relati-

onship: One student has solved many exercises.

• The table RESULTS which contains the foreign key is

called the “child table” of the referential integrity

constraint, and the referenced table STUDENTS is the

“parent table”.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-74

Foreign Keys (6)

• The table RESULTS contains another foreign key that

references the solved exercise.

• Exercises are identified by category (e.g. home-

work, midterm, final) and number (CAT and ENO):

RESULTS

SID CAT ENO POINTS

101 H 1 10
101 H 2 8
101 M 1 12
102 H 1 9
... ... ... ...

-

-

-














�

EXERCISES

CAT ENO · · · MAXPT

H 1 · · · 10
H 2 · · · 10
M 1 · · · 14

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-75

Foreign Keys (7)

• A table with a composed key (like EXERCISES) must

be referenced with a composed foreign key that has

the same number of columns.

• Corresponding columns must have the same data

type.

• It is not required that corresponding columns have

the same name.

• In the example, the composed foreign key requi-

res that every combination of CAT and ENO which

appears in RESULTS, must also appear in EXERCISES.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-76

Foreign Keys (8)

• Columns are matched by their position in the de-

claration: E.g. if the key is (FIRST, LAST) and the

foreign key is (LAST, FIRST) insertions will very pro-

bably give an error.
If the data types of FIRST and LAST are sufficiently different, the error
might be detected when the foreign key is declared. But some systems
require only “compatible” data types and that would be satisfied even
if FIRST and LAST are VARCHAR-types with different lengths.

• Only keys can be referenced: One cannot reference

only part of a composite key or a non-key attribute.
Normally, one should reference only the primary key, but SQL permits
referencing alternate keys.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-77

Foreign Keys: Notation (1)

• In the attribute list notation, foreign keys can be

marked by an arrow and the referenced relation.

Composed foreign keys need parentheses:

RESULTS(SID → STUDENTS,

(CAT, ENO) → EXERCISES, POINTS)

STUDENTS(SID, FIRST, LAST, EMAIL)

EXERCISES(CAT, ENO, TOPIC, MAXPT)

• Since normally only the primary key is referenced,

it is not necessary to specify the corresponding at-

tribute in the referenced relation.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-78

Foreign Keys: Notation (2)

• The above example is untypical because all foreign

keys are part of keys. This is not required, e.g.:

COURSE_CATALOG(NO, TITLE, DESCRIPTION)

COURSE_OFFER(CRN, CRSNO → COURSE_CATALOG, TERM,

(INST_FIRST, INST_LAST) → FACULTY)

FACULTY(FIRST, LAST, OFFICE, PHONE)

In this example, also the names of the foreign key attributes and the
referenced key attributes are not the same. That is legal.

• Some people mark foreign keys by dashed under-

lining or by overlining. This is not recommended

because it does not specify the referenced table.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-79

Keys: Notation (3)

• In SQL, foreign keys can be defined as follows:

CREATE TABLE RESULTS(

SID NUMERIC(3) NOT NULL,

CAT CHAR(1) NOT NULL,

ENO NUMERIC(2) NOT NULL,

POINTS NUMERIC(4,1) NOT NULL,

PRIMARY KEY(SID, CAT, ENO),

FOREIGN KEY(SID)

REFERENCES STUDENTS,

FOREIGN KEY(CAT,ENO)

REFERENCES EXERCISES)

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-80

Foreign Keys: Notation (4)

• In the tabular notation, foreign keys can be speci-

fied e.g. as follows:

RESULTS SID CAT ENO POINTS

Type NUMERIC(3) CHAR(1) NUMERIC(2) NUMERIC(2)

Null N N N N

References STUDENTS EXERCISES EXERCISES

• Composed foreign keys pose again a problem.

If the above notation should be unclear or ambiguous specify the
names of the referenced columns and/or distribute the foreign key
information over several lines. In rare circumstances, foreign keys can
also overlap, then certainly several lines are needed.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-81

Foreign Keys: Notation (5)

• In the Oracle DBA Exam, the following “Instance

Chart” is used to describe a relation schema:

Instance Chart for Table MUSIC PIECE

Column Name: PNO PNAME CNO
Key Type: PK FK
Nulls/Unique: NN, U NN
FK Table: COMPOSER
FK Column: CNO
Datatype: NUMBER VARCHAR NUMBER
Length: 4 40 2

• “FK” stands for “foreign key”, “NN” for “not null”,

“PK” for “primary key”, “U” for “unique”.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-82

Foreign Keys: Notation (6)

• MS Access displays foreign keys as “relationships”

(primary key attributes are shown in boldface):

STUDENTS

SID
FIRST
LAST
EMAIL

1 ∞
RESULTS

SID
CAT
ENO
POINTS

• “1”/“∞” symbolize the one-to-many relationship:

“1” marks the side of the key, “∞” the foreign key.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-83

Foreign Keys: Notation (7)

• Of course, also arrows between tables can be used:

RESULTS

SID CAT ENO POINTS

?

STUDENTS

SID FIRST LAST EMAIL

- EXERCISES

CAT ENO

• Some people draw the arrows not in the direction

of the pointer, but in the opposite direction.
E.g. in the Oracle DBA exam. Look carefully at the given database
instance.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-84

More about Foreign Keys (1)

Foreign Keys and Null Values:

• Unless a “not null” constraint is explicitly specified,

foreign keys can be null.

• The foreign key constraint is satisfied even if the

referencing attributes are “null”. This corresponds

to “nil” pointer.

• If a foreign key consists of more than one attribute,

they should either all be null, or none should be null.

But Oracle and SQL-92 allow partially defined foreign keys. In Oracle,
if at least one attribute in the foreign key is null, the constraint counts
as satisfied. The SQL-92 standard defines three different semantics.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-85

More about Foreign Keys (2)

Mutual References:

• It is possible that parent and child are the same

table, e.g.

EMP(EMPNO, ENAME, JOB, MGRo→EMP, DEPTNO→DEPT)

PERSON(NAME, MOTHERo→PERSON, FATHERo→PERSON)

• Two relations can reference each other, e.g.

EMPLOYEES(EMPNO, ..., DEPT→DEPARTMENTS)

DEPARTMENTS(DNO, ..., LEADERo→EMPLOYEES).

• Exercise/Puzzle: How can tuples be inserted?

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-86

Please Remember:

• Foreign keys are not themselves keys!
The attributes which form a foreign key may be part of a key, but this
is an exception, not the rule. The foreign key constraint has nothing
to do with a key constraint.
For some authors, however, a key is any attribute that identifies tuples,
not necessary of the same relation. Then foreign keys would be keys,
but normal keys need some adjective (“unique key/primary key”).

• Only a key of a relation can be referenced, not

arbitrary attributes.

• If the key of the referenced relation consists of two

attributes, the foreign key must also consist of two

attributes of the same data types in the same order.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-87

Foreign Keys and Updates (1)

The following operations can violate a foreign key:

• Insertion into the child table RESULTS without a mat-

ching tuple in the parent table STUDENTS.

• Deletion from the parent table STUDENTS when the

deleted tuple is still referenced.

• Update of the foreign key SID in the child table

RESULTS to a value not in STUDENTS.

This is usually treated like an insertion.

• Update of the key SID of the parent table STUDENTS

when the old value is still referenced.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-88

Foreign Keys and Updates (2)

Note:

• Deletions from RESULTS (child table) and insertions

into STUDENTS (parent table) can never lead to a

violation of the foreign key constraint.

This means that the DBMS does not have to check the constraint
for these operations.

Reactions on Insertions of Dangling References:

• The insertion is rejected. The DB state remains

unchanged.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-89

Foreign Keys and Updates (3)

Reactions on Deletions of Referenced Key Values:

• The deletion is rejected.

• The deletion cascades: All tuples from RESULTS that

reference the deleted STUDENTS tuple are deleted,

too.

• The foreign key is set to null.

Contained in SQL-92, supported in DB2, not in Oracle.

• The foreign key is set to a declared default value.

Contained in SQL-92, but not in Oracle or DB2.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-90

Foreign Keys and Updates (4)

Reactions on Updates of Referenced Key Values:

• The update is rejected. The DB state remains un-

changed.

DB2 and Oracle support only this alternative of the SQL-92 standard.
In any case, changing key attributes is bad style.

• The update cascades.

I.e. the student ID is changed in the table RESULTS in the same way
as it was changed in the table STUDENTS.

• The foreign key is set to null.

• The foreign key is set to a declared default value.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-91

Foreign Keys and Updates (5)

• When specifying a foreign key, decide which reac-

tion is best.

• The default is the first alternative (“No Action”).

• At least for deletions from the parent table, all sy-

stems should support also the cascading deletion.

This is a kind of active integrity enforcement: The system does not
reject the update, but does some other updates in order to repair the
database state.

• Other alternatives exist only in few systems at the

moment.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-92

Exercise (1)

Define a relational DB schema for hotel. It requires:

• Information about guests: First Name, Last Name,

and Home Address.

• Information about rooms: Is it single or double?

What is the official room rate? When was it last

renovated?

• Information about stays: Which room was rented

by which guest from which date to which date?

And at what room rate was he/she charged?

It might be less than the offical rate.

Stefan Brass: Datenbanken I Universität Halle, 2004



4. The Relational Data Model 4-93

Exercise (2)

Please define the following:

• Table names and column names.

• Keys.

• Foreign keys.

• Null constraints.

Furthermore, describe any additional constraints which

might be necessary.

Stefan Brass: Datenbanken I Universität Halle, 2004


