
3. Introduction to the Entity-Relationship Model 3-1

Part 3: Introduction to the
Entity-Relationship Model

References:
• Elmasri/Navathe:Fundamentals of Database Systems, 3rd Edition, 1999.

Chapter 3, “Data Modeling Using the Entity-Relationship Model”

• Silberschatz/Korth/Sudarshan: Database System Concepts, 3rd Ed.,
Ch. 2, “Entity-Relationship Model”.

• Ramakrishnan: Database Management Systems, Mc-Graw Hill, 1998,
Ch. 14, “Conceptual Design and the ER-Model”

• Kemper/Eickler: Datenbanksysteme (in German), Ch. 2, Oldenbourg, 1997.

• Rauh/Stickel: Konzeptuelle Datenmodellierung (in German), Teubner, 1997.

• Teorey: Database Modeling and Design, Third Edition, 1999.

• Barker: CASE*Method, Entity Relationship Modelling, Oracle/Addison-Wesley, 1990.

• Lipeck: Skript zur Vorlesung Datenbanksysteme (in German), Univ. Hannover, 1996.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-2

Objectives

After completing this chapter, you should be able to:

• explain the three phases of database design.

Why multiple phases are useful?

• evaluate the significance of the ER-model for DB

design.

• enumerate the basic constructs of the ER-model.

• develop ER-diagrams (schemas in the ER-model)

for a given (small) application.

• compare and evaluate given ER-diagrams.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-3

Overview

1. Database Design Overview

'

&

$

%
2. Basic ER-Constructs

3. Integrity Constraints: General Remarks

4. Kinds of Relationships (Cardinalities)

5. Keys, Weak Entities

6. Quality of ER-Schemas

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-4

Database Design (1)

• Overall goal: Develop programs to support given

real world tasks.

• These programs need persistently stored data.

• Methods from software engineering should be used

(specialized for such data-intensive programs).

• Database design is the process of developing a da-

tabase schema for a given application.

It is a subtask of the overall software engineering effort.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-5

Database Design (2)

• The specification of programs and data is intertwi-

ned, both depend on each other:

� The schema should contain the data needed by

the programs.

� Programs are often easy to specify once one has

specified the data to be manipulated by them.

• Data is an independent resource:

� Often later additional programs will be develo-

ped based on the collected data.

� Also, ad-hoc queries may be used.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-6

Database Design (3)

• During DB design, a formal model of some aspects

of the real world (“Miniworld”, “Domain of Dis-

course”) must be built.

Questions about the real world should be answered from the database.
A list of such questions can be an important input for database design.

• The real world is the measure of correctness for the

schema: DB states should correspond to states of

the real world.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-7

Database Design (4)

• Database design is not easy:

� The designer must learn about the application

domain.

� Exceptions: The real world is very flexible.

� Size: Database schemas can be very big.

• As any complicated task, DB design is done in se-

veral steps.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-8

Database Design (5)

• There are usually three schema design phases:

� Conceptual Database Design produces the initi-

al model of the miniworld in a conceptual data

model (like the Entity-Relationship-Model).

� Logical Database Design transforms this sche-

ma into the data model supported by the DBMS

to be used (typically the relational model).

� Physical Database Design aims at improving the

performance of the final system.

Indexes and storage parameters are selected during this phase.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-9

Database Design (6)

Why multiple design phases?

• Allows problems to be separated and attacked one

after the other.

• E.g., during conceptual design, there is no need to

worry about performance aspects or limitations of

a specific DBMS.
Focus is on producing a correct model of the real world.

• DBMS features do not influence conceptual design,

and only partially influence the logical design.
Thus, the conceptual design is not invalidated, if a different DBMS
is later used.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-10

Example (1)

ER-Schema in Graphical Notation:

Instructor

�
�

�
�Name

�
�
� �
�

�
�Phone

@
@

@

�
���

����

HH
HHH

HHH

teaches ��
���

���

H
HHH

HHHH

Course

�
�

�
�No

�
�
� �
�

�
�Title

@
@

@

• This miniworld contains instructors and courses.

• Instructors teach courses.

• Instructors have a name and a phone number.

• Courses have a number (like “20727”) and a title.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-11

Example (2)

Possible State:

Instructor

~XXXXXXXXy
Name

’Brass’
��������9

Phone’49404’

teaches

����������������

PPPPPPPPPPPPPPPP

Course

~

~

������:
No ’20727’

XXXXXXz
Title

’DB’

������:
No ’42232’

XXXXXXz
Title

’DS’

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-12

The ER-Model (1)

• The Entity-Relationship-Model is called a “seman-

tic data model”, because it more closely resembles

the real world than e.g. the relational model.

� In the ER-model, persons are modelled. In the

relational model, only their names/numbers.

� In the ER-model, there is a distinction between

entities and relationships. In the relational mo-

del, both are represented by relations/tables.

This expressiveness is not needed to satisfy the information re-
quirements of the applications. But it makes the correspondence
between the schema and the real world clearer (like a comment).

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-13

The ER-Model (2)

• Proposed by Peter Pin-Shan Chen (1976).

• There is a useful graphical notation which helps to

establish a better overview; to “see” the structure

of the data.

It also helps to communicate with the future users.

• There is no commercial entity-relationship DBMS.

A schema transformation into another data model is unavoidable.
However, object-oriented DBMS are quite similar.

• Many variations and extensions of the ER-Model

have been proposed.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-14

The ER-Model (3)

• There are specialized graphical editors and other

design tools.

E.g. Oracle Designer is a CASE tool for DB-applications, and one
component is the ER Diagrammer. (CASE: Computer-Aided Software
Engineering.) Alternatives: Sybase PowerDesigner, CA ERwin, . . .

• The ER-model is a standard tool for conceptual DB

design. However, recently, object-oriented methods

are also used.

Many people believe that UML (unified modelling language) is “the
future”. All design formalisms are based on the ER-model. Knowledge
of the ER-model is an important foundation for any DB design.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-15

Overview

1. Database Design Overview

2. Basic ER-Constructs

'

&

$

%
3. Integrity Constraints: General Remarks

4. Kinds of Relationships (Cardinalities)

5. Keys, Weak Entities

6. Quality of ER-Schemas

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-16

Basic ER-Model Concepts (1)

Entities:

• Objects in the miniworld about which information

has to be stored. E.g. persons, books, courses.
It does not matter whether entities have a physical existence (and
can be touched) or only a conceptual existence.

• At each instant, the miniworld that has to be mo-

delled can contain only a finite number of entities.
E.g. “all numbers” (infinitely many) cannot be entities.

• It must be possible to distinguish entities from each

other, i.e. they must have some identity.
So ants in a heap do not qualify as entities.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-17

Basic ER-Model Concepts (2)

Data Type Elements:

• Values from some possibly infinite set, which can

be stored and printed.

• E.g. strings, numbers, dates, lengths, pictures.

• A person cannot be stored (an entity), but his/her

name can be stored (a data type element).

• Most current DBMS have some predefined set of

data types which they support.

• It is possible to use non-standard types in ER-

schemas (complicates the later logical design).

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-18

Basic ER-Model Concepts (3)

Attribute:

• A property or characteristic of an entity.

Also relationships can have attributes, see below.

• E.g. the title of this course is “Databases I”.

• The value of an attribute is an element of a data

type like string, integer, date: It has a printable

representation.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-19

Basic ER-Model Concepts (4)

Relationship:

• Relation between pairs of entities.

Such relationships are also called “binary relationships” in order to
distinguish them from relationships in which more than two entities
participate. Many authors (but few tools) permit relationships of ar-
bitrary arity (e.g., ternary relationships). My experience shows that
this often leads to errors (students “merge” two binary relationships
into one ternary, this violates normal forms).

• E.g. I (a person) teach “Databases I” (a course).

• The word “Relationship” is also used as an abbre-

viation for “Relationship-Type” (see below).

It should be clear from the context what is meant.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-20

Basic ER-Model Concepts (5)

Entity-Type:

• Set of similar entities (with respect to the informa-

tion that has to be stored about them), i.e. entities

which have the same attributes.

• E.g. all faculty members of this university.

Relationship-Type:

• Set of similar relationships.

• E.g. “X teaches course Y”.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-21

ER-Diagrams (1)

• Entity-Type E:

E

• Attribute A of Entity-Type E:

E
�
�

�
�A

• Relationship R between Entity-Types E1 and E2:

E1
����

HHHH
R HHHH

����

E2

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-22

ER-Diagrams (2)

• Relationships can also exist between entities of the

same type (“recursive relationships”):

Course

requires knowledge of
������������

PPPPPPPPPPPPPrecondition
PPPPPPPPPPPP

������������

is precondition for

• In this case, “role names” must be attached to the

connecting edges.

Roles may be indicated in this way for any relationship.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-23

ER-Diagrams (3)

• Relationships can have attributes, too:

Student ��
���

���

H
HHHH

HHH

solved �
���

����

HH
HHH

HHH

�
�

�
�Points

Exercise

• This means that a number of points is stored for

every pair of student X and exercise Y such that X

submitted a solution to Y.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-24

Graphical Syntax (1)

• An ER-Diagram contains

� boxes,

� diamonds,

� ovals,

plus interconnecting lines.

• Boxes, diamonds, and ovals are each labelled by a

string.

The string is written into the construct.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-25

Graphical Syntax (2)

• Interconnecting lines are only allowed between

� a box and a diamond,

� a box and an oval, and

� a diamond and a oval.

• In addition, these constraints must be satisfied:

� A diamond must have exactly two connecting

lines to boxes. There may be any number to

ovals.

� An oval must have exactly one connecting line.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-26

Graphical Syntax (3)

• The names of boxes (entity types) must be unique

in the entire diagram.
I.e. there cannot be two boxes with the same label.

• The names of ovals (attributes) must only be uni-

que for a single box or diamond.
I.e. there cannot be two ovals with the same name which are linked
to the same box (or the same diamond).

• Diamonds (relationships) must be uniquely identi-

fied by name and their connections to boxes.
I.e. there cannot be two diamonds which are linked to the same two
boxes and have the same name.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-27

Exercise

Which errors does this diagram contain?

E
�
�
�
�A

F

�
�
�
�A

�
�

�

@
@

@

R @
@

@

�
�

�
�
�
�
�B

��
���

����
�

�
�

@
@

@

S @
@

@

�
�

�

HHH
HHH

HHH

E

�
�
�
�A

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-28

Exercise

Define an ER-schema (diagram) for the following ap-

plication:

• Information about researchers in the database field

must be stored.

• For each researcher, his/her last name, first name,

email address, and homepage (URL) is needed.

• Also his/her current affiliation (employer) is needed

(assume that all researchers work at universities).

• For each university, its name, URL, and country

should be stored.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-29

ER-Schemas (1)

• Usually, not all schema information is denoted in

an ER-diagram:

� The attributes have a data type, which must be

specified in a complete ER-schema.

� Sometimes an ER-diagram becomes clearer if

the attributes are not shown.

It is not uncommon that an entity-type has 50 attributes.

� Comments/Explanations are useful, but do not

look good in ER-diagrams.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-30

ER-Schemas (2)

• There should exist a “real schema” (e.g. in textual

form or in a database). The ER-diagrams are then

only excerpts used for illustration purposes.

However, there is no agreement for a textual syntax for writing down
complete schemas, whereas there is some agreement on ER-diagrams.

• The important thing to learn is the graphical syntax

(and the fact that it might not show everything).

• Modern database design tools solve the problem:

E.g. clicking on an entity-type in the diagram shows

further information in dialog boxes.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-31

ER-Schemas: Semantics (1)

A DB state I interprets the symbols in the schema by

defining

• a finite set I[E] for every entity-type E,

• a mapping I[A]: I[E] → val(D) for every attribute A

of an entity-type E, where D is the data-type of A

and val(D) is the domain (value set) of D,

• a relation I[R] ⊆ I[E1] × I[E2] for every relation-

ship R between entity types E1 and E2,

• a mapping I[A]: I[R] → val(D) for every attribute A

of a relationship R (D is the data type of A).

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-32

ER-Schemas: Semantics (2)

• As can be expected, this is a special case of a logical

interpretation as introduced in Chapter 2.
Only relationship attributes are difficult to handle in standard logic.
The interpretation of the data types was separated from the DB state.

• The main restrictions of the ER-Model are:

� Besides the given data types, only new sorts with

finite domains can be introduced (entity types).

� The new functions must be from entity types (or

relationships) to data types (attributes).

� The new predicates must have entity types as

arguments and must have arity 2 (relationships).

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-33

ER-Schemas: Semantics (3)

Example State:

• I[Instructor] = {sb, ms}

• I[Name] = f1, where

f1(sb) = ’Brass’, f1(ms) = ’Spring’.

• I[Phone] = f2, where

f2(sb) = 49404, f2(ms) = 49429.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-34

ER-Schemas: Semantics (4)

• I[Course] = {db, ds, dp}

• I[No] = g1, where

g1(db) = 20727, g1(ds) = 42232, g1(dp) = 40492.

• I[Title] = g2, where

g2(db) = ’Database Management’,

g2(ds) = ’Data Structures’,

g2(dp) = ’Document Processing’.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-35

ER-Schemas: Semantics (5)

• I[teaches] = {(sb, db), (sb, ds), (ms, ds), (ms, dp)}.

• The cartesian product × constructs the set of all

pairs, e.g. IR× IR is the set of all (X, Y)-pairs where

X and Y are real numbers.

• Here: (X, Y)-pairs with instructor X and course Y :

6

Instructors

sb

ms

-Courses
db ds dp

v v
v v

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-36

ER-Schemas: Semantics (6)

Consequences for Attributes:

• There are extensions, but the basic notion of an

attribute requires that

� Attribute values are defined.
No unknown values.

� Attributes are single valued.
No multiple/set values.

� Attribute values are atomic.
No record structures (unless data types have already this struc-
ture, e.g. date values). But the basic ER-model treats all attribute
values as atomic, i.e. it adds no record structures besides those
already given by the data types.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-37

ER-Schemas: Semantics (7)

Consequence for Relationships:

• A relationship is interpreted by a set of entity-pairs.

• A set either contains an element or does not con-

tain it. It cannot be contained “two times”.

• Therefore, a relationship either exists between two

entities or it does not exist between these entities.

There cannot be multiple connections between the same two entities
with respect to the same relationship type.

• So if the relationship has an attribute, its value

must be unique for any pair of entities.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-38

ER-Schemas: Semantics (8)

Example/Exercise:

• Consider this schema:

Cinema ��
����

H
HHH

HH

shows �
���

��

HH
HHHH

�
�

�
�Time

Film

• Suppose a cinema shows the same film at 3pm and

at 6pm.

• Can this information be stored in the given schema?

Yes No

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-39

Optional Attributes

• One can also permit attributes that are only parti-

ally defined (optional attributes, can be null).

• Such attributes can be marked by a small circle on

the line between the entity type (or relationship)

and the attribute:

E f ��
�
�A

• The semantics of this attribute in a state I is a

partial function from I(E) (set of all E-entities) to

val(D) where D is the data type of A.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-40

Overview

1. Database Design Overview

2. Basic ER-Constructs

3. Integrity Constraints: General Remarks

'

&

$

%
4. Kinds of Relationships (Cardinalities)

5. Keys, Weak Entities

6. Quality of ER-Schemas

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-41

Valid Database States (1)

• Goal of DB-Design: The database should be an

image of the relevant subset of the real world.

• But the definition of the basic model structure (en-

tities, attributes, and relationships) allows often too

many (meaningless, illegal) database states:

�

6
C

LRW[__cgl
r

{
�

��

6
C

L
R W [__ c g l r

{
�

�

DB-States for Schema Possible Situations
in the real world

oo //

isomorphic

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-42

Valid Database States (2)

CUSTOMER

Cust No Name Birth Year City · · ·
1 Smith 1936 Pittsburgh · · ·
2 Jones 1965 Philadelphia · · ·
3 Brown 64 New York · · ·
3 Ford 1990 Washington · · ·

• Customer numbers must be unique.

• The year of birth must be greater than 1870.

• Customers must be at least 18 years old.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-43

Valid Database States (3)

• Two kinds of errors must be distinguished:

� Entering wrong data, i.e. the DB state corre-

sponds to a different situation of the real world

than the actual one.
E.g., 8 points given for Homework 1 in the DB vs. 10 in the real
world. Then the DB state is wrong, but not the schema.
Exercise: What can be done to guard against such errors?

� Entering data which do not make sense, or are

illegal.
E.g. -5 points for some homework, or two entries for the same
student and same exercise. If such impossible data can be entered,
the DB schema is wrong (design error).

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-44

Valid Database States (4)

• If the DB contains illegal/meaningless data, it be-

comes inconsistent with our general understanding

of the real world.

• If a programmer assumes that the data fulfills some

condition, but it actually does not, this can have all

kinds of strange effects (including the loss of data).

E.g. the programmer assumes that a certain column cannot contain
null values (a special value that indicates empty table entries, see
Chapter 4). So he/she uses no indicator variable when fetching data.
As long as there are no null values, this works. But if the schema does
not prevents this, after some time, somebody will enter a null value.
Then the program will crash (with a user-unfriedly error message).

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-45

Constraints (1)

• Integrity Constraints (or short “Constraints”) are

conditions which every database state must satisfy.

• This restricts the set of possible database states.

Ideally to images of possible real world situations.

• Integrity constraints can be specified as part of the

database schema.

• The DBMS will refuse any change which would vio-

late such a constraint.

In this way, invalid states are excluded. Current DBMS do not yet
permit arbitrary constraints, only some special cases, see below.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-46

Constraints (2)

• Each data model has special support/notation for

certain common kinds of constraints.

For instance, in the Entity-Relationship-Model, keys, cardinality cons-
traints, and the restrictions related to weak entities have a special
graphical syntax. These types of constraints will be explained below.

• Even if constraints are needed that are not specially

supported by the data model or the DBMS, they

should be documented as part of the DB design.

E.g. as a logical formula or simply in natural language. One can also
write a query that returns the violations of the constraint (i.e. the
condition is then that the result of this query is always empty). Future
systems will probably directly support more general constraints.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-47

Constraints (3)

• Enforcement of general constraints:

� The application programs used for entering the

data check the constraint.

� Changes are only done via stored procedures in

the DBMS, which check the constraint.

� The DBMS automatically executes special pro-

cedures attached to a table (triggers) whenever

the table data is changed. These do the check.

� From time to time, a query is executed that finds

constraint violations.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-48

Constraints (4)
Exercise:

Consider an instructor/professor-course database:

Instructor

�
�

�
�Name

�
�
� �
�

�
�Type

@
@

@

�
���

����

HH
HHH

HHH

teaches ��
���

���

H
HHH

HHHH

Course

�
�

�
�No

�
�
� �
�

�
�Title

@
@

@

Which of the following are constraints?

• It is possible that an instructor teaches no course.

Yes No

• An instructor can teach at most four courses.

Yes No

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-49

Constraints (5)

Exercise, continued:

• The attribute “Type” of “Instructor” can only have

the values 1, 2, 3, 4, 5.

Yes No

• The “Type” value means the following: 1: Teaching

Fellow, 2: Adjunct Faculty, 3: Assistant Professor,

4: Associate Professor, 5: Full Professor.

Yes No

• Course titles should be unique.

Yes No

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-50

Trivial/Implied Constraints

• A trivial constraint is a condition which is always

satisfied (logically equivalent to “true”).

• A constraint A logically implies a constraint B if

whenever A is true, also B is true.

I.e. the states satisfying A are a subset of the states satisfying B.
This is the standard definition of logical implication.

• E.g. A: “Every instructor teaches 1 or 2 courses”.

B: “Instructors can teach at most 4 courses”.

• Trivial/implied constraints should not be specified.

Adds complication, but does not change the set of valid states.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-51

Relation to “Business Rules”

• “Business rules” are similar to constraints: They

are rules that must be followed by employees (to

prevent chaos).

• Constraints are used to implement “business rules”.

Certain rules, e.g. that customers must be 18 years old or that advan-
ced cryptology software is not sold to customers outside the US, can
be enforced by not allowing entry of such an order into the database.
A state violating the business rules is considered invalid.

• However, there are also “business rules” that are

implemented via the basic model structure, access

rights, application programs, etc.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-52

Summary (1)

Why specify constraints?

• Some protection against data input errors.

• Constraints document knowledge about DB states.

• Enforcement of laws / company standards.

• Protection against inconsistency if redundant data

is stored (i.e. the same information is stored twice).

• Queries/programs become simpler if the program-

mer is not required to handle the most general cases

(i.e., cases where the constraint is not satisfied).
E.g., if columns are known to be not null: no indicator variable.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-53

Summary (2)

Constraints and Exceptions:

• Constraints cannot have any exceptions.

Any attempt to enter data that violates a constraint will be rejected.

• One can expect that eventually there will be excep-

tional situations in which the DBS seems unflexible

because of the specified constraints.

• Only conditions that are unquestionable should be

defined as constraints.

“Normally true” conditions might be useful, but not as constraints.
E.g. programs can ask for an additional confirmation if a new custo-
mer is over 100 years old. Also useful information for physical design.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-54

Overview

1. Database Design Overview

2. Basic ER-Constructs

3. Integrity Constraints: General Remarks

4. Kinds of Relationships (Cardinalities)

'

&

$

%
5. Keys, Weak Entities

6. Quality of ER-Schemas

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-55

Cardinalities (1)

General Relationship:

E1

z
z
z
z

R

((((((((((((((((((

hhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhh

E2

z
z
z
z
z
z

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-56

Cardinalities (2)

• In general, there is no restriction on how often an

entity participates in a relationship.

• An entity can be connected to one entity of the

other type, to more than one, or it can have no

partner at all.

• However, often we have some knowledge of how

many E2-entities an E1-entity can be related.

Man ������������

PPPPPPPPPPPP

is married to ������������

PPPPPPPPPPPP

Woman

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-57

Cardinalities (3)

• In the (min,max)-Notation, one specifies an interval

for the number of outgoing edges of every entity:

E1
(m1, n1)

�
�

��

@
@

@@

@
@

@@

�
�

��
R

(m2, n2)
E2

• I.e. an entity of type E1 may be related to bet-

ween m1 and n1 entities of type E2.

• m2 is the minimal number of E1 entities, to which

an E2 entity must be related, and n2 is the maximal

number to which it may be related.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-58

Cardinalities (4)

Formal Semantics:

• For every DB state I and every entity e1 ∈ I(E1):

m1 ≤ | {e2 ∈ I(E2) | (e1, e2) ∈ I(R)} | ≤ n1.

• For every DB state I and every entity e2 ∈ I(E2):

m2 ≤ | {e1 ∈ I(E1) | (e1, e2) ∈ I(R)} | ≤ n2.

Extension:

• “∗” can be used as maximum if there is no limit.

• (0, ∗) means no restriction at all (min: 0, max: ∞).

This cardinality is the default (if no cardinality is specified).

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-59

Cardinalities (5)

Example:

• A man can be married to at most one woman and

vice versa:

Man
(0,1)

������������

PPPPPPPPPPPP

is married to ������������

PPPPPPPPPPPP

(0,1)
Woman

• An airport lies in exactly one country, a country can

have many airports (it might be possible that there

are countries without airport):

Airport
(1,1)

�
���

��

HH
HHHH

lies in ��
����

H
HHH

HH

(0, ∗)
Country

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-60

Cardinalities (6)

Exercise: Define Cardinalities.

• Besides normal customers, the database contains

also “customers” who have not yet ordered any-

thing, but only got the product catalog.

Order ���
���

HHH
HHH

from ���
���

HHH
HHH

Customer

• An order can be about several products:

Order ��
����

H
HHH

HH

for �
���

��

HH
HHHH

Product

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-61

Selecting Cardinalities (1)

• Draw an example of a valid database state: Some

entities of type E1, some of type E2, and edges

between related entities.

• Now count the outgoing edges for all entities of

type E1. (Later do the same with E2.)

• E.g. in the relationship depicted on slide 3-55, there

are E1-entities with 0, 1, and 3 outgoing edges.

• This means that the strongest possible cardinality

restriction is (0,3). This is satisfied by the example

state.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-62

Selecting Cardinalities (2)

• Knowledge of the application might lead to wea-

ker restrictions (i.e. larger intervals), e.g. (0,5) or

even (0, ∗).
(a,b) is weaker than (c,d) if a ≤ c and d ≤ b.

• In general, the cardinalities (0,1), (1,1), and (0, ∗)
are especially common and easy to enforce in a

relational schema.

E.g. instead of (0,30), it might be easier to choose (0, ∗). However,
if 30 is a hard limit (i.e. the database state would be invalid if it is
violated), one should specify the cardinality (0,30) and enforce it via
constraints, triggers, or checks in application programs.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-63

Common Cases (1)

• Normally, the minimum cardinality will be 0 or 1,

and the maximum cardinality will be 1 or ∗.
So only (0,1), (1,1), (0, ∗), (1, ∗) are common in practice. Of these,
(1, ∗) is difficult to enforce in a relational schema.

• In order to understand a relationship, one must

know the cardinality specifications on both sides.

• The maximum cardinalities are used to distinguish

between “many to many”, “one to many”/“many

to one”, and “one to one” relationships.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-64

Common Cases (2)

“Many to Many” Relationships:

• Both maximum cardinalities are “∗”:
The minimum cardinalities can be 0 or 1, see participation below.

Student
(0, ∗)

��
����

H
HHH

HH

takes �
���

��

HH
HHHH

(0, ∗)
Course

• One student can be enrolled in many courses, and

one course can have many students.

• This is the most general case.

• When translated into the relational model, “many

to many” relationships will need an extra table.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-65

Common Cases (3)

“One to Many” Relationships:

• Maximum cardinality 1 on the “many” side and ∗
on the “one” side.

Instructor
(0, ∗)

���
����

HHH
HHHH

HH
HHH

HH

���
����teaches

(0,1)
Course

• E.g. one instructor teaches many courses, but each

course has at most one instructor (“one instructor,

many courses”).

So this is “one to many” from instructor to course.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-66

Common Cases (4)

“One to Many” Relationships, Continued:

• Note that 1/one and ∗/many are inversed!

� “Instructor” is the “one” side, but has maximum

cardinality ∗.
� “Course” is the “many” side, but has maximum

cardinality 1.

• “One to many” relationships do not need an extra

table when translated into the relational model.

They are probably the most common kind of relationship.

• “Many to one”: symmetric (e.g. “taught by”).

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-67

Common Cases (5)

“One to One” Relationships:

• Maximum cardinality 1 on both sides:

Man
(0,1)

������������

PPPPPPPPPPPP

is married to ������������

PPPPPPPPPPPP

(0,1)
Woman

• A man can be married to at most one woman,

a woman can be married to at most one man.

Or: “Is head of” between employee and department: Every depart-
ment has exactly one head (total participation), every employee can
lead at most one department (normal employees lead no department:
partial participation).

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-68

Common Cases (6)

Participation:

• The minimum cardinalities define whether the par-

ticipation of entities in the relationship is

� total (mandatory): Every entity must participate

in the relationship.

� partial (optional): Some entities participate in

the relationship, others do not.

• Minimum cardinalities are not important for the

classification of a relationship as “many to many”,

“one to many”, or “one to one”.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-69

Common Cases (7)

• In the following example,

� the participation of “Course” is mandatory (eve-

ry course must have an instructor),
This might be too restrictive in practice. It will hold when the
term starts, but might not hold during planning.

� the participation of instructor is optional (in-

structors can be on sabbatical).
I.e. there can be faculty members that do not teach courses in
the current term.

Instructor
(0, ∗)

���
����

HHH
HHHH

HHH
HHHH

���
����teaches

(1,1)
Course

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-70

Specification in Logic

• Maximum cardinality 1: Every course is taught by

at most one instructor:

∀ course C, instructor I1, instructor I2:
teaches(I1, C) ∧ teaches(I2, C) → I1 = I2.

• Maximum cardinality ∗: This is no constraint.

• Minimum cardinality 1: Every course is taught by

at least one instructor:

∀ course C: ∃ instructor I: teaches(I, C)

• Minimum cardinality 0: This is no constraint.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-71

Alternative Notations (1)

• There are many variants of the ER-Notation. Car-

dinalities are one point in which they differ quite

significantly.

• E.g. one can use only “many to many” (N:M), “one

to many” (1:N), and “one to one” (1:1).

Instructor
1

�
���

���

HH
HHH

HH

HH
HHH

HH

���
����teaches

N
Course

• Participation is often not specified.

Sometimes a double line is used to indicate mandatory participation.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-72

Alternative Notations (2)

• Oracle Designer uses the “crowsfoot” notation:

INSTRUCTOR

Name
* Phone

'

&

$

%

teaches
���

HHHtaught by

COURSE

No
* Title

'

&

$

%
The “crowsfoot” indicates the “many” side. A dashed line indicates
optional participation, a solid line mandatory participation. Note that
the minimum cardinality is denoted on the same side as in our ap-
proach, whereas the maximum cardinality is denoted on the opposite
side. Relationships have two names, one in each direction (“role na-
mes”). Attributes are written inside the entity boxes. The symbol “#”
indicates a primary key attribute (unique identification, see below),
the symbol “*” a mandatory attribute (“not null”), and the symbol
“◦” an optional attribute (can be null).

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-73

Overview

1. Database Design Overview

2. Basic ER-Constructs

3. Integrity Constraints: General Remarks

4. Kinds of Relationships (Cardinalities)

5. Keys, Weak Entities

'

&

$

%
6. Quality of ER-Schemas

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-74

Keys (1)

• A key of an entity-type E is an attribute which

uniquely identifies the entities of this type.

• There may never be two different entities which

have the same value for the key attribute.

• For example, the social security number is a key

for persons: No two different persons can have the

same SSN.

I have heard that there are very rare cases where two persons have
the same SSN. If this should be true, the SSN is no key.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-75

Keys (2)

• It is possible to declare the combination of two or

more attributes as a key: Then it is only forbidden

that two entities agree in all of these attributes.

Entities must be distinguishable by the value of at least one of the
key attributes.

• E.g. using first name and last name together as

key for faculty members, it is legal to have two

professors with the same last name if their first

names are different.

It is also possible to have two faculty members with the same first
name and different last names.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-76

Keys (3)

Graphical Syntax:

• Keys are marked in ER-diagrams by underlining the

attributes which form a key:

Faculty Member
�

�
�

�

#
"

!First Name

#
"

!Last Name

@
@

@
@

#
"

!Phone

• Only entity types can have key attributes.
Keys cannot be declared for relationships (but cardinality specificati-
ons are something similar to keys for relationships).

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-77

Keys (4)

Specification in Logic:

• Of course, key constraints can be specified as lo-

gical formulas. For instance, the key “First Name,

Last Name” of “Faculty Member” means:

∀ faculty_member X, faculty_member Y:
X.first_name = Y.first_name ∧
X.last_name = Y.last_name → X = Y.

• Equivalent formulation:

¬∃ faculty_member X, faculty_member Y:
X.first_name = Y.first_name ∧
X.last_name = Y.last_name ∧ X 6= Y.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-78

Keys (5)

Implication Between Key Constraints:

• Key constraints become weaker (i.e. less restrictive,

more DB states are valid) if attributes are added.

• E.g. consider a department with professors Stefan

Posch, Nina Brass, Stefan Brass. This state

� violates the key constraint for First Name,

There are two “Stefans”.

� violates the key constraint for Last Name,

� satisfies the key constraint for the combination

of First Name, Last Name.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-79

Keys (6)

Minimality of Keys:

• If one has declared a key, e.g. SSN, then any su-

perset of it (e.g. SSN together with Last Name)

automatically is a unique identification.

If there cannot be two professors with the same SSN, there certainly
cannot be two professors that have the same SSN and the same last
name.

• The usual definition of a key requires that the set

of key attributes {A1, . . . , Ak} is minimal.

Since the unique identification property automatically holds for super-
sets, “nonminimal keys” are indeed not interesting.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-80

Keys (7)

Minimality of Keys, Continued:

• The minimality requirement means that we cannot

leave out any of the key attributes without destroy-

ing the property of unique identification.

• However, in this definition, a key is not only

� a constraint, which excludes invalid DB states,

� but also an assertion about the real world, that

certain states are possible.

• In the literature, a set of attributes that only satis-

fies the unique identification is called a “superkey”.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-81

Multiple Keys (1)

• An entity type may have more than one key, e.g.:

� E.g. SSN is one key.

� The combination of First Name and Last Name

is another key.

• Both keys are minimal, because neither is a subset

of the other. (None of the two implies the other.)

It does not matter that the first key consists of only one attribute,
whereas the second consists of two.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-82

Multiple Keys (2)

• One of the keys is designated as the “primary key”.

• Other keys are called “alternate/secondary keys”.

SQL uses the keyword UNIQUE for alternate keys.

• The primary key should be a key that consists only

of a single, short attribute and is never updated (if

available).

After the translation into the relational model, the primary key is
used in other tables that need to refer to entities of this type. In
some systems, access via the primary key might be especially fast.
Otherwise, the selection of the primary key is more or less arbitrary.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-83

Multiple Keys (3)

• The graphical syntax allows only specification of a

single key for each entity type (the primary key).
In CASE tools, alternative keys can be stored. If the diagrams are
drawn by hand, one should mention the alternative key in prosa.

• For instance, this would mean that there is only a

single key consisting of all three attributes:

Faculty Member
�

�
�

�

#
"

!First Name

#
"

!Last Name

@
@

@
@

#
"

!SSN

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-84

Are Keys Necessary?

• The ER-model does not require declaring a key for

each entity-type (entities have an object identity).

• However, translating an ER-schema into the rela-

tional model requires a key for every entity type.

For “weak entity types” (see below), the “key” contains a relationship
(this is an extension of the notion of a key as defined above).

• If there is no natural key, identifying numbers can

be added (sometimes called “surrogate key”).

• CASE tools like Oracle Designer do this automati-

cally when no key is declared.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-85

Natural vs. Artificial Keys (1)

• Artificial keys are simple, but using only artificial

keys also has disadvantages.

Things like “order number” or “course number” that are already used
in the real world are on the border between natural and artifical.

• The selection of a natural key (not an artificial iden-

tification number) is quite difficult.

One of Murphy’s Laws: There are always exceptions.

• Often, thinking about a key helps to understand

the real meaning of a concept better.

E.g. course offering in a term vs. entry in the course catalog (topic).

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-86

Natural vs. Artificial Keys (2)

• Even if an artificial number is used, think about the

identification mechanisms used in the application

programs.

It is dangerous if different application programs use different identifi-
cation mechanisms for the same thing.

• If the non-presence in the database is used to make

statements about other objects in the real world

(e.g. German “Schufa”: “bad credit” database), all

these objects must be uniquely identified.

The objects about which information is stored might violate the key
although the subset in the database satisfies it.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-87

Natural vs. Artificial Keys (3)

• The purpose of keys is not only the identification

of entities.

• Keys should also help to avoid duplicates in the

database. Artificial keys do not have this function.

• Often, duplicates are not exact copies: For instan-

ce, other shorthands or capitalization is used.

Of course, the pure concept of a key then does not help. Furthermore,
a constraint is not really needed — some warning would suffice.

• Think about possibilities for detecting duplicates

before writing application programs.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-88

Weak Entities (1)

• An entity may describe a kind of “detail” that can-

not exist without a “master” or “owner” entity.

• Then there is a relationship with a (1,1) cardinality

pointing to the owner.

• In addition the key of the owner entity is inherited

and becomes part of the key of the detail entity:

Invoice
(Master)

�
�

�
�Inv No

�
�
� �
�

�
�Date

@
@

@

(1, ∗)
�

�
��

@
@

@@

has �
�

��

@
@

@@ (1,1) Position
(Detail)

�
�

�
�Inv No

�
�
� �
�

�
�Pos

@
@

@

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-89

Weak Entities (2)

• Without a specific construct for this situation, the

following constraint would be required:

� If two entities are connected via “has”,

� then their attribute “Inv No” has the same value.

E.g. invoice 12 cannot have position 2 in invoice 36 as detail.

• Such constraints occur when an entity does not

have a key by itself, but is only unique in the context

of some other entity.

I.e. it must “borrow” a key attribute of a related entity.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-90

Weak Entities (3)

• In such cases there are always composed keys:

� A classroom is identified by a building and a

room number.

� A subexercise is identified by the exercise number

(e.g. 1) and a letter (e.g. a).

� A web page is identified by a web server and a

path on that server.

• There is also an existence dependency: If the buil-

ding is pulled down, the rooms in it automatically

disappear.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-91

Weak Entities (4)

• Weak entities were introduced for this situation.

• They are marked by using double lines for their box,

the connecting line, and the relationship diamond:

Invoice

�
�

�
�Inv No

�
�
� �
�

�
�Date

@
@

@

(1, ∗)
�

�
�

�

@
@

@
@

�
�

��

@
@

@@

has�
�

��

@
@

@@

�
�

�
�

@
@

@
@

(1,1)
Position

�
�

�
�Pos

• Only the extension to the borrowed key is shown.

Since it is only a partial key, it is dashed underlined.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-92

Weak Entities (5)

• So the real key of the weak entity consists of the key

attribute of the “owner” entity type (automatical-

ly inherited, not explicitly shown) plus the dashed-

underlined partial key.

• Another way to look at this is that here the re-

lationship contributes to the identification of the

entity, whereas usually only attributes are used for

this purpose (in a key).

The double line can be understood as an “underlined line”.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-93

Weak Entities (6)

• The cardinality (1,1) is implied by the weak entity

construct. It does not have to be specified explicitly.
Other relationships cannot be used: There would be no unique owner
entity from which the key value can be inherited.

• The (1,1) cardinality does not automatically mean

“weak entity”. The entity can still have a key of its

own:

Invoice

�
�

�
�Inv No

�
�
� �
�

�
�Date

@
@

@

(1,1)
�

�
��

@
@

@@

for �
�

��

@
@

@@ (0, ∗)
Customer

�
�

�
�Cust No

�
�
� �
�

�
�Name

@
@

@

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-94

Weak Entities (7)

• A weak entity is needed only when the key of one

entity contains the key of a related entity.

A weak entity must add further key attributes to the key attributes
inherited from its owner. If the keys of the two entity types would be
the same, a specialization should be used (→ Course on DB Design).

• Sometimes the master/owner entity is called “pa-

rent entity”, and the dependent weak entity is cal-

led “child entity”.

• Entities with their own key (non-weak entities) are

called regular/strong entities.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-95

Weak Entities (8)

• Weak entities are normal entities except that their

key is constructed in a special way.

• Thus, weak entities can have normal relationships

besides the one via which the key is inherited:

Invoice �
�

��

@
@

@@

�
�

�

@
@

@

has�
�

�

@
@

@

�
�

��

@
@

@@

Position �
�

��

@
@

@@

for �
�

��

@
@

@@

Product

• Weak entities can themselves be owner entities for

other weak entities.
There can be an entire hierarchy of parent-child relationships (e.g.
“grandchildren”). But cycles are forbidden.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-96

Weak Entities (9)

Exercise:

• Model a set of online quizzes (multiple-choice tests

e.g. available on a course webpage).

• Each quiz is identified by a title, each question wi-

thin a quiz by a number, and each answer to a given

question by a letter.

For each question and answer the text must be stored, and answers
must be classified into correct and incorrect ones.

• What is the complete key of each of the three entity

types?

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-97

Association Entities (1)

• It is somtimes necessary to turn a relationship into

an entity, e.g. because:

� Ternary relationships are excluded in this course.

� Many CASE-tools do not support relationship-

attributes.

� Some style guides suggest to replace many-to-

many relationships in this way by entities.

� A relationship between a relationship and some

entity type might be needed.

� There is a multiple-valued relationship attribute.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-98

Association Entities (2)

• The relationship is then turned into a weak entity. It

inherits the keys of the entity types that participate

in the original relationship.

• Weak entities can have multiple parents/owners:

Cinema

�
�

�
�Name

�
�

�
��

@
@

@
@@

�
�

�
�

@
@

@
@

does�
�

�
�

@
@

@
@

�
�

�
��

@
@

@
@@

Showing
�
�

�
�Time

�
�

�
��

@
@

@
@@

�
�

�
�

@
@

@
@

of �
�

�
�

@
@

@
@

�
�

�
��

@
@

@
@@

Film

�
�

�
�Title

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-99

Association Entities (3)

• In the above example, the real key of the weak

entity “Showing” consists of

� “Name” (inherited from “Cinema”),

� “Title” (inherited from “Film”), and

� “Time”.

• Weak entities types with several parents/owners are

sometimes called “association entities”.

If two parents have key attributes with the same name, (at least) one
must be implicitly renamed.

• However, “weak entity” is equally ok.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-100

Association Entities (4)

• Relationship:

Student

�
�
�
�ID

(0,∗)
���

���

H
HHH

HH

solved �
���

��

HHH
HHH

�
�

�
�Points

(0,∗)
Exercise

�
�
�
�No

• Association Entity (completely equivalent):

Student

�
�
�
�ID

(0,∗)
�

�
�
�

@
@

@
@

�
�

�

@
@

@

has�
�

�

@
@

@

�
�

�
�

@
@

@
@

Solution
�
�

�
�Points

�
�

�
�

@
@

@
@

�
�

�

@
@

@

for �
�

�

@
@

@

�
�

�
�

@
@

@
@

(0,∗)
Exercise

�
�
�
�No

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-101

Graphical Syntax (1)

• All rules of Slide 3-24 to 3-26 still hold.

• The label of ovals connected to boxes may be

� underlined (if the box has a single border) or

� dash-underlined (if the box has a double border).

These are the only cases where underlining is permitted.

• Lines connecting a box with a diamond may be

labelled with a pair of numbers (n, m), where m

may be “∗”. If m is not ∗, then n ≤ m must hold.

“∗” is not permitted in the first position. “0” makes no sense in the
second position.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-102

Graphical Syntax (2)

• Boxes may get a double border. In this case, at

least one of the lines connecting it with a diamond

must be double.

• Only lines connecting a box with a diamond may be

double. In this case, both the box and the diamond

must have a double border. The line on the other

side of the diamond must be single.

• If a double line is labelled with a pair of numbers,

it must be (1,1).

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-103

Graphical Syntax (3)

• Consider the directed graph with

� all boxes with double border as nodes,

� an edge from E1 to E2 if E1 is connected with a

double line to a diamond that is also connected

to E2:

E2
�

�
�

�

@
@

@
@

�
�

��

@
@

@@

R �
�

��

@
@

@@

�
�

�
�

@
@

@
@

E1

• This graph must not contain cycles.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-104

Overview

1. Database Design Overview

2. Basic ER-Constructs

3. Integrity Constraints: General Remarks

4. Kinds of Relationships (Cardinalities)

5. Keys, Weak Entities

6. Quality of ER-Schemas

'

&

$

%
Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-105

Proper Naming (1)

• Names should be self-documenting.
The correspondence to the real world must be clear. If necessary,
attach comments, explanations, example data.

• Names should not be too long.
Names longer than 15–20 characters become unwieldy.

• Choosing good names needs some thought.

But the invested time will later pay off.
Discussing the names with other people might help.

• Whatever you do, try to be consistent!
Use abbreviations consistently. Use “_” consistently. In a team, all
members should use the same style.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-106

Proper Naming (2)

Entity-Types:

• Usually, nouns are used for entity-types.

• I prefer the singular form (names single entities).

Some authors use plural forms. After the translation into the relational
model, the plural form for tables seems first more approriate. But
when tuple variables are declared in SQL, the singular form is more
intuitive. Oracle Designer uses the singular form for entity types, and
the plurarl form for the corresponding tables. Only be consistent.

• Don’t use names like “Customer Data”: The goal

is to create a model of the real world, not of the

database.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-107

Proper Naming (3)

Relationships:

• Often, verbs are used for relationship-names.

• Relationship-names (e.g. “teaches”) should read

from top to bottom and from left to right.

In many ER-model variants, relationships have two names: One in
each direction. That solves the problem.

• Prepositions like “of” are quite unspecific. Howe-

ver, they can be combined with another word to

make them clearer (e.g. “teacher of”, “lies in”).

• Some people use nouns like “Teaching Assignment”.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-108

Attribute vs. Entity (1)

• Sometimes it is not clear whether a new entity-type

is needed:

Course

�
�

�
�No

�
�
� �
�

�
�Title

@
@

@

Instructor

�
�

�
�Name

�����������

PPPPPPPPPPP

�����������

PPPPPPPPPPP

taught by

• One could add the name of the instructor as an

attribute to the course:

Course

�
�

�
�No HHH

HH

�
�

�
�Title ���

��

�
�

�
�InstName

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-109

Attribute vs. Entity (2)

• Advantages of solution with “Instructor” entity:

� If later more information has to be stored about

instructors (e.g. phone number), only a small

change of the schema is needed.

� Because instructors are explicitly inserted, it is

less likely that the same instructor is represented

with different spellings (typing errors).
Of course, this also depends on the application programs.

• But the solution with the “instructor name” attri-

bute is simpler (also due to the implicit insertion).

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-110

Attribute vs. Entity (3)

• In principle, every attribute can be moved to an

entity-type of its own:

Instructor

�
�

�
�Name

Phone

�
�

�
�Number

�
���

��

HH
HHHH

��
����

H
HHH

HH

has

• This design is only interesting for the phone com-

pany. Otherwise, it is unnecessarily complicated.

• Avoid entities which are only data type values.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-111

Attribute vs. Relationship

• In principle, a relationship can be represented im-

plicitly by attributes with the same value:

Course

�
�

�
�No

�
�
� �
�

�
�Title

@
@

@

�
�

�
�InstName Instructor

�
�

�
�Name

�
�
� �
�

�
�Phone

@
@

@

• This is not right in the ER-model. Relationships

should be explicitly shown.
In the relational model, it would be right. There is no explicit “rela-
tionship” construct in the relational model. But using such “foreign
keys” in Entity-Relationship-schemas is a real mistake.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-112

Redundant Information (1)

• Redundant information in an ER-schema is bad,

because it is an unnecessary complication during

conceptual design.

One must specify at least an integrity constraint which ensures that
both copies of the information are always consistent.

• Redundant information may be introduced during

physical design for performance reasons.

• Furthermore, one can later define views which con-

tain derived information.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-113

Redundant Information (2)

• One should not repeat attributes from other entity

types which can be reached via a relationship:

Course

. . .
�

�
� �
�

�
�InstName

@
@

@

Instructor

�
�

�
�Name

�
�
�

. . .
@

@
@

�����������

PPPPPPPPPPP

�����������

PPPPPPPPPPP

taught by

• Many students who are already trained in relational

database design make this mistake.
There will be such a column when the schema is translated into the
relational model (see below). But there are no relationships in the
relational model. Having a relationship and an attribute pointing to
the other entity is redundant.

Stefan Brass: Datenbanken I Universität Halle, 2004

3. Introduction to the Entity-Relationship Model 3-114

Redundant Information (3)

• It is a mistake to define the composition of two

relationships again as a relationship (“shortcut”):

Student ��
����

H
HHH

HH

takes �
���

��

HH
HHHH

Course ��
���

��

H
HHH

HHH

taught
by

�
���

���

HH
HHH

HH

Instructor

�����������

PPPPPPPPPPP

learns from �����������

PPPPPPPPPPP

• Different paths of relationships between two entity-

types (cycles in the diagram) should be carefully

inspected for possible redundancies.
Of course, cycles are not always redundant or bad, but some depen-
dency often exists (→ integrity constraint).

Stefan Brass: Datenbanken I Universität Halle, 2004

