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Objectives

After completing this chapter, you should be able to:

• explain the basic notions: signature, interpretation,

variable assignment, term, formula, model, consi-

stent, implication.

• use some common equivalences to transform logical

formulas.

• write formulas for given specifications.

• check whether a formula is true in an interpretation,

• find models of a given formula (if consistent).
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Introduction, Motivation (1)

Important goals of mathematical logic are:

• to formalize the notion of a statement about a cer-

tain domain of discourse (logical formula),

• to precisely define the notions of logical implication

and proof,

• to find ways to mechanically check wether a state-

ment is logically implied by given statements.

As far as possible. It turned out that the task is in general undecidable.
Actually, also the notion of decidability was developed by logicians.
There was no computer science at that time (there was no computer).

Stefan Brass: Datenbanken I Universität Halle, 2004



2. Basic Notions of Mathematical Logic 2-5

Introduction, Motivation (2)

Mathematical logic is applied in databases I:

• In general, the purpose of both, mathematical logic

and databases, is to

� formalize knowledge,

� work with this knowledge (process it).

• For instance, in order to talk about a domain of

discourse, symbols are needed.

� In logic, these are defined in a signature.

� In databases, they are defined in a DB schema.
It should be no surprise that an important part of a database
schema specifies a signature.

Stefan Brass: Datenbanken I Universität Halle, 2004



2. Basic Notions of Mathematical Logic 2-6

Introduction, Motivation (3)

Mathematical logic is applied in databases II:

• In order to formalize logical implication, mathema-

tical logic had to study possible interpretations of

the symbols,

• i.e. possible situations in the domain of discourse

about which the logical formulas make statements.

• Database states also describe possible situations in

a certain part of the real world.

• Basically, logical interpretations and DB states are

the same (at least in the “model-theoretic view”).
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Introduction, Motivation (4)

Mathematical logic is applied in databases III:

• SQL queries are quite similar to formulas in ma-

thematical logic, and there are theoretical query

languages that are simply a version of logic.

• The idea is that

� a query is a logical formula with placeholders

(“free variables”),

� the database system then determines values for

these placeholders that make the formula true in

the given database state.
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Introduction, Motivation (5)

Why it makes sense to learn mathematical logic I:

• Logical formulas are simpler than SQL, and can

easily be formally studied.

• Important concepts of database queries can already

be learnt in this simpler, purer environment.

• Experience has shown that students often make

logical errors in SQL queries.

At least, when they are not specifically taught logic. It will be intere-
sting to see whether the situation improves in this term.
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Introduction, Motivation (6)

Why it makes sense to learn mathematical logic II:

• SQL changes, and becomes more and more compli-

cated (standards: 1986, 1989, 1992, 1999, 2003).

At some point in the future, somebody will propose a drastically simp-
ler language that can do the same. Datalog was already such a pro-
posal, but somehow it was not yet successful. But look at Algol 68
and PL/I, then followed by Pascal and C.

• There are new data models (e.g., XML) with new

query languages, and faster changes than SQL.

• At least some part of this course should still be

valid and useful in 30 years.

Stefan Brass: Datenbanken I Universität Halle, 2004



2. Basic Notions of Mathematical Logic 2-10

History of the Field (1)

∼322 BC Syllogisms [Aristoteles]
∼300 BC Axioms of Geometry [Euklid]
∼1700 Plan of Mathematical Logic [Leibniz]

1847 “Algebra of Logic” [Boole]
1879 “Begriffsschrift” (Early Logical Formulas)

[Frege]
∼1900 More natural formula syntax [Peano]

1910/13 Principia Mathematica (Collection of
formal proofs) [Whitehead/Russel]

1930 Completeness Theorem [Gödel/Herbrand]
1936 Undecidability [Church/Turing]
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History of the Field (2)

1960 First Theorem Prover
[Gilmore/Davis/Putnam]

1963 Resolution-Method for Theorem proving
[Robinson]

∼1969 Question Answering Systems [Green et.al.]
1970 Linear Resolution [Loveland/Luckham]
1970 Relational Data Model [Codd]
∼1973 Prolog [Colmerauer, Roussel, et.al.]

(Started as Theorem Prover for Natural Language Understanding)

(Compare with: Fortran 1954, Lisp 1962, Pascal 1970, Ada 1979)

1977 Conference “Logic and Databases”
[Gallaire, Minker]
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Alphabet (1)
Definition:

• Let ALPH be some infinite, but enumerable set,

the elements of which are called symbols.
Formulas will be words over ALPH, i.e. sequences of symbols.

• ALPH must contain at least the logical symbols,

i.e. LOG ⊆ ALPH, where

LOG = {(, ), , , >, ⊥, =, ¬, ∧, ∨, ←, →, ↔, ∀, ∃}.

• In addition, ALPH must contain an infinite subset

VARS ⊆ ALPH, the set of variables. This must be

disjoint to LOG (i.e. VARS ∩ LOG = ∅).
Some authors consider variables as logical symbols.
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Alphabet (2)

• E.g., the alphabet might consist of

� the special logical symbols LOG,

� variables starting with an uppercase letter and

consisting otherwise of letters, digits, and “_”,

� identifiers starting with a lowercase letter and

consisting otherwise of letters, digits, and “_”.

• Note that words like “father” are considered as

symbols (elements of the alphabet).
Compare with: lexical scanner vs. context-free parser in a compiler.

• In theory, the exact symbols are not important.

Stefan Brass: Datenbanken I Universität Halle, 2004



2. Basic Notions of Mathematical Logic 2-15

Alphabet (3)

• If the special logical symbols are not available, use:

Symbol Alternative Alt2 Name

> true T

⊥ false F

¬ not ~ Negation
∧ and & Conjunction
∨ or | Disjunction
← if <-

→ then ->

↔ iff <->

∃ exists E Existential Quantifier
∀ forall A Universal Quantifier
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Signatures (1)

Definition:

• A signature Σ = (S,P,F) consists of:

� A non-empty and finite set S, the elements of

which are called sorts (data type names).

� For each α = s1 . . . sn ∈ S∗, a finite set (of predi-

cate symbols) Pα ⊆ ALPH − (LOG ∪ VARS).

� For each α ∈ S∗ and s ∈ S, a set (of function

symbols) Fα,s ⊆ ALPH − (LOG ∪ VARS).

• For each α ∈ S∗ and s1, s2 ∈ S, s1 6= s2, it must

hold that Fα,s1 ∩ Fα,s2 = ∅.
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Signatures (2)

• A sort is a data type name, e.g. int, string, person.

• A predicate is something that can be true or false

for given input values, e.g. <, substring_of, female.

• If p ∈ Pα, then α = s1, . . . , sn are called the argu-

ment sorts of p.

s1 is the type of the first argument, s2 of the second, and so on.

• For example:

� < ∈ Pint int, also written as <(int, int).

� female ∈ Pperson, also written as female(person).
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Signatures (3)

• The number of argument sorts (length of α) is cal-

led the arity of a predicate symbol, e.g.:

� < is a predicate symbol of arity 2.

� female is a predicate symbol of arity 1.

• There are predicates of arity 0. They are called pro-

positional constants, or simply propositions. E.g.:

� the_sun_is_shining,

� i_am_working.

• The symbol ε is used to denote the empty sequence.

The set Pε contains the propositional constants.
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Signatures (4)

• The same symbol p can be element of several Pα

(overloaded predicate), e.g.

� < ∈ Pint int.

� < ∈ Pstring string

(lexicographic order, alphabetically before).

• This means that there are actually two different

predicates that have the same name.

The possibility of overloaded predicates is not very important, one
could also use two different names, e.g. lt_int and lt_string. Over-
loaded predicates complicate the definitions a bit, therefore some au-
thors exclude them. But they permit more natural formulations.

Stefan Brass: Datenbanken I Universität Halle, 2004



2. Basic Notions of Mathematical Logic 2-20

Signatures (5)

• A function is something that returns a value for

given input values, e.g. +, age, first_name.

It is assumed here that functions are defined for all values of the input
types. This is not always true in reality, e.g. 5/0 is undefined, and
telefax_no(peter) might not exist. SQL uses a three-valued logic to
treat null values (statements are not always true or false, they might
also be undefined). One must always make a compromise between a
modeling reality very exactly and finding a sufficiently simple model.

• A function symbol in Fα,s has argument sorts α and

result sort s, e.g.

� + ∈ Fint int, int, also written as +(int, int): int.

� age ∈ Fperson, int, also written as age(person): int.
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Signatures (6)

• A function with 0 arguments is called a constant.

• Examples of constants:

� 1 ∈ Fε,int, also written as 1: int.

� ’Ann’ ∈ Fε,string, also written as ’Ann’: string.

• For data types (e.g., int, string), it is usual that

every possible value can be denoted by a constant.

But in general, the set of values and the set of constants are diffe-
rent concepts. For instance, it would be possible that there are no
constants of type person.
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Signatures (7)

• In summary, a signature specifies the application-

specific symbols that are used to talk about the

domain of discourse (a part of the real world that

is to be modeled in the database).

• The above definition is for a multi-sorted (typed)

logic. One can also use an unsorted logic.

Unsorted means really one-sorted. Then S is not needed, and P and F
are simply indexed by the arity. E.g. Prolog uses an unsorted logic.
This is also common in textbooks about mathematical logic (the defi-
nitions are a bit simpler). Since one can represent sorts as predicates
of arity 1, this is no real restriction (although a many-sorted logic
treats some formulas as illegal, which are legal in one-sorted logic).

Stefan Brass: Datenbanken I Universität Halle, 2004



2. Basic Notions of Mathematical Logic 2-23

Signatures (8)
Example:

• S = {person, string}.

• F consists of

� constants of sort person, e.g. arno, birgit, chris.

� infinitely many constants of sort string, e.g. ’’,

’a’, ’b’, . . . , ’Arno’, . . .

� function symbols first_name(person): string and

last_name(person): string.

• P consists of

� a predicate married_to(person, person).

� predicates male(person) and female(person).
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Signatures (9)

Exercise:

• Define a signature for talking about

� Books (with authors, title, ISBN)
It suffices to treat authors simply as a string. An advanced exercise
would be to model a list of strings (for books with several authors).

� Book reviews (with reviewer, text, stars).
Every review is for exactly one book.

� “stars” can be none, one, two, three.
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Signatures (10)

Definition:

• A signature Σ′ = (S ′,P ′,F ′) is an extension of a

signature Σ = (S,P,F) iff

� S ⊆ S ′,

� for every α ∈ S∗:
Pα ⊆ P ′α,

� for every α ∈ S∗:
and s ∈ S: Fα,s ⊆ F ′α,s.

• I.e. an extension of Σ adds new symbols to Σ.
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Interpretations (1)

Definition:

• Let a signature Σ = (S,P,F) be given.

• A Σ-interpretation I defines:

� a set I(s) for every s ∈ S (domain),

� a relation I(p, α) ⊆ I(s1) × · · · × I(sn) for every

p ∈ Pα, and α = s1 . . . sn ∈ S∗.
In the following, we will write I(p) instead of I(p, α) if α is clear
from the given signature Σ (i.e. p is not overloaded).

� a function I(f, α): I(s1)× · · · × I(sn)→ I(s) for

every f ∈ Fα,s, s ∈ S, and α = s1 . . . sn ∈ S∗.

• In the following, we write I[. . .] instead of I(. . .).
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Interpretations (2)

Note:

• Empty domains cause certain problems, therefore

it is usual to exclude them.

Some equivalences do not hold if domains can be empty. For instan-
ce, prenex normal form can only be reached under the assumption
that domains are not empty. We will explicitly note where non-empty
domains are needed.

• But in databases, domains can be empty (e.g. a set

of persons when the database was just created).

This even causes problems in SQL when tuple variables are declared
over empty relations.
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Interpretations (3)

• The relation I[p] is also called the extension of p

(in I).

• Formally, predicate and relation are not the same,

but isomorphic notions.
A predicate is a mapping to the set {true, false} of boolean values, a
relation is a subset of a cartesian product ×.

• For instance, married_to(X, Y) is true in I if and only

if (X, Y) ∈ I[married_to].

• Another Example: (3, 5) ∈ I[<] means simply 3 < 5.
In the following, the words “predicate symbol” and “relation symbol”
are used interchangably.
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Interpretations (4)

Example (Interpretation for Signature on Slide 2-23):

• I[person] is the set of Arno, Birgit, and Chris.

• I[string] is the set of all strings, e.g. ’a’.

• I[arno] is Arno.

• For the string constants, I is the identity mapping.

• I[first_name] maps e.g. Arno to ’Arno’.

• I[last_name] maps all three persons to ’Schmidt’.

• I[married_to] = {(Birgit, Chris), (Chris, Birgit)}.

• I[male] = {(Arno), (Chris)}, I[female] = {(Birgit)}.
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Relational Databases (1)

• A DBMS defines a set of data types, such as strings

and numbers, together with constants, data type

functions (e.g. +) and predicates (e.g. <).

• For these, the DBMS defines names (in a signa-

ture Σ) and their meaning (in an interpretation I).

• For every value d ∈ I[s], there is at least one con-

stant c with I[c] = d.

I.e. all data values are named by constants. This is also known as
the domain closure assumption. It is important e.g. for printing data
values that are results of queries. Note that in general there can be
several constants mapped to the same data value, e.g. 0, 00, -0.
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Relational Databases (2)

• The DB schema in the relational model then adds

further predicate symbols (relation symbols).

These are the formal counterpart of the “tables” mentioned in the
introduction.

• The DB state interprets these by finite relations.

Whereas the interpretation of the data types is fixed and built in-
to the DBMS, the interpretation of the additional predicate symbols
(database relations) can be modified by insertions, deletions, and up-
dates. But the database relations must have a finite extension. This is
natural because data type predicates are implemented by procedures
within the DBMS, whereas the predicates from the database schema
are typically implemented as files of records.
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Relational Databases (3)

• Thus, the main restrictions of the relational model

are:

� No new sorts (types),

� No new function symbols and constants,

� New predicate symbols can only be interpreted

by finite relations.

• In addition, formulas are required to be “domain

independent” or “range restricted” (see below).
I.e. not arbitrary formulas are permitted. This is necessary in order
to ensure that formulas can be evaluated in a given interpretation in
finite time (although sorts like int are interpreted as infinite sets).
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Relational Databases (4)

Example:

• In a relational database for storing homework re-

sults, there might be three predicates/relations:

� student(int SID, string FName, string LName)

Argument names were added to explain the meaning of the ar-
guments: The first one is a unique number (“student ID”), the
second is the first name of the student with that ID, the third is
the last name. E.g. student(101, ’Ann’, ’Smith’) might be true.

� exercise(int ENO, int MaxPoints)

E.g. exercise(1, 10) means: exercise number 1 is worth 10 points.

� result(int SID, int ENO, int Points)

E.g. result(101, 1, 9) means that Ann Smith (the student with
number 101) got 9 points for exercise 1.
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Relational Databases (5)

• Here, we treat the “domain calculus” version of the

relational model.

There is also a “tuple calculus” version of the relational model,
which is even more similar to SQL. The differences are not essen-
tial, e.g. queries can automatically be converted in both directions.
However, the definitions of the tuple calculus are a bit more com-
plicated, because variables in tuple calculus range over entire tuples
(table rows). Typically, database text books define both versions in
separate chapters as two different logical formalisms. However, once
one has understood one formalism (such as domain calculus), it is
very easy to learn the other one. Furthermore, the above formalism
can actually treat the part of tuple calculus that is used in SQL (it
is like the entity-relationship model without relationships, see below):
The difficult part are tuple variables that are not directly bound to a
database relation (SQL forbids this and uses UNION instead).
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Entity-Relationship Model (1)

• In the Entity-Relationship-Model, the DB schema

can introduce

� new sorts (“entity types”),

� new functions of arity 1 from entity types to data

types (“attributes”),

� new predicates between entity types, possibly re-

stricted to arity 2 (“relationships”).

� new functions defined on the same entity types

as a relationship, returning a data type (“relati-

onship attributes”).
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Entity-Relationship Model (2)

• The interpretation of the entity types (in the DB

state) must always be finite.

Thus, also attributes and relationships are finite.

• Relationship attribute functions must yield a fixed

dummy value if they are called for a combination

of input values for which the corresponding relati-

onship is false.

Queries should be written in such a way that the exact dummy value
is not important for the query result. E.g. if f is an attribute of the
relationship p, a formula of the form p(X, Y )∧f(X, Y ) = Z would have
this property. For a really clean treatment of relationship attributes,
the logic must be extended, but this seems not worth the effort.
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Entity-Relationship Model (3)

Example (Homework Points):

• Sorts: student and exercise.

• Functions:

� sid(student): int

� first_name(student): string

� last_name(student): string.

� eno(exercise): int

� maxpoints(exercise): int

• Predicate: solved(student, exercise).

Function: points(student, exercise): int
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Variable Declaration (1)

Definition:

• Let a signature Σ = (S,P,F) be given.

• A variable declaration for Σ is a partial mapping

ν: VARS → S (defined only for a finite subset of VARS).

Remark:

• The variable declaration is not part of the signature

because it is locally modified by quantifiers (see

below).

• The signature is fixed for the entire application, the

variable declaration changes even within a formula.
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Variable Declaration (2)

Example:

• A variable declaration simply defines which variables

are available and what are their sorts, e.g.

ν

Variable Sort
SID int

Points int

E exercise

Of course, each variable must have a unique sort.

• Variable declarations are also written in the form

ν = {SID/int, Points/int, E/exercise}.
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Variable Declaration (3)

Definition:

• Let ν be a variable declaration, X ∈ VARS, and

s ∈ S.

• Then we write ν〈X/s〉 for the modified variable de-

claration ν′ with

ν′(V ) :=

 s if V = X
ν(V ) otherwise.

Remark:

• Both is possible: ν might have been defined before

for X or it might be undefined.
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Terms (1)

• Terms are syntactic constructs that can be evalua-

ted to a value (a number, a string, an exercise).

• There are three kinds of terms:

� constants, e.g. 1, ’abc’, arno,

� variables, e.g. X,

� composed terms, consisting of a function symbol

applied to argument terms, e.g. last_name(arno).
This can be nested to arbitrary depth.

• In programming languages, terms are also called

expressions.
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Terms (2)

Definition:

• Let a signature Σ = (S,P,F) and a variable decla-

ration ν for Σ be given.

• The set TEΣ,ν(s) of terms of sort s is recursively

defined as follows: (nothing else is a term):

� Every variable V ∈ VARS with ν(V ) = s is a term

of sort s (this of course requires that ν is defined for V ).

� Every constant c ∈ Fε,s is a term of sort s.

� If t1 is a term of sort s1, . . . , tn is a term of

sort sn, and f ∈ Fα,s with α = s1 . . . sn, n ≥ 1,

then f(t1, . . . , tn) is a term of sort s.
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Terms (3)

Definition, continued:

• Each term can be constructed by a finite number

of applications of the above rules. Nothing else is

a term.

This remark is formally important because the above rules only posi-
tively state what is a term, but they do not state what is not a term.
Therefore, the definition must be closed.

Definition:

• Let TEΣ,ν :=
⋃

s∈S TEΣ,ν(s) be the set of all terms.
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Terms (4)

• Certain functions are also written as infix operators,

e.g. X+1 instead of the official notation +(X, 1).
If one starts with this, one must also talk about precedence rules and
using parentheses as necessary.

• Functions of arity 1 can be written in dot-notation,

e.g. “X.first_name” instead of “first_name(X)”.

• Such “syntactic sugar” is useful in practice, but not

important for the theory of logic.
In programming languages, there is sometimes a distinction between
“concrete syntax” and “abstract syntax” (the syntax tree).

• In the following, the above abbreviations are used.
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Terms (5)

• Terms can be visualized as operator trees (“||” is

in SQL the function for string concatenation):

X

first_name
�

�
�

�

||
��

���
���

||

’ ’
@

@
@

@

X

last_name
HH

HHH
HHH

• Exercise: How could this term be written with “||”

as infix operator and using the dot-notation?
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Terms (6)

Exercise:

• Which of the following are legal terms (given the

signature on slide 2-23 and a variable declaration ν

with ν(X) = string)?

arno

first_name

first_name(X)

firstname(arno, birgit)

married_to(birgit, chris)

X
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Atomic Formulas (1)

• Formulas are syntactic expressions that can be eva-

luated to a truth value (true or false), e.g.

1 ≤ X ∧X ≤ 10.

• Atomic formulas are the basic building blocks of

such formulas (comparisons etc.).

• Atomic formulas can have the following forms:

� A predicate symbol applied to terms, e.g.

married_to(birgit, X).

� An equation, e.g. X = chris.

� The logical constants > (true) and ⊥ (false).
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Atomic Formulas (2)

Definition:

• Let a signature Σ = (S,P,F) and a variable decla-

ration ν for Σ be given.

• An atomic formula is an expression of one of the

following forms:

� p(t1, . . . , tn) with p ∈ Pα, α = s1 . . . sn ∈ S∗, and

ti ∈ TEΣ,ν(si) for i = 1, . . . , n.

� t1 = t2 with t1, t2 ∈ TEΣ,ν(s), s ∈ S.

� > and ⊥.

• Let AT Σ,ν be the set of atomic formulas for Σ, ν.
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Atomic Formulas (3)

Remarks:

• For some predicates, one traditionally uses infix no-

tation, e.g. X > 1 instead of >(X, 1).

Of course, we will use this common notation in the examples.

• For propositional constants, the parentheses can be

skipped, e.g. one can write p instead of p().

• Of course, it would be possible to treat “=” as a

normal predicate, and some authors do that.

However, the above definition ensures that at least the equality is
available for all sorts, and below we will make sure it always has the
standard interpretation.
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Formulas (1)

Definition:

• Let a signature Σ = (S,P,F) and a variable decla-

ration ν for Σ be given.

• The sets FOΣ,ν of (Σ, ν)-formulas are defined re-

cursively as follows:

� Every atomic formula F ∈ AT Σ,ν is a formula.

� If F and G are formulas, so are (¬F ), (F ∧ G),

(F ∨G), (F ← G), (F → G), (F ↔ G).

� (∀ s X: F ) and (∃ s X: F ) are in FOΣ,ν if s ∈ S,

X ∈ VARS, and F is a ( Σ, ν〈X/s〉 )-formula.

� Nothing else is a formula.
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Formulas (2)

• The intuitive meaning of the formulas is as follows:

� ¬F : “Not F” (F is false).

� F ∧G: “F and G” (F and G are both true).

� F ∨G: “F or G” (at least one of F and G is true).

� F ← G: “F if G” (if G is true, F must be true).

� F → G: “if F , then G”

� F ↔ G: “F if and only if G”.

� ∀ s X: F : “for all X (of sort s), F is true”.

� ∃ s X: F : “there is an X (of sort s) such that F”.
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Formulas (3)

• Above, many parentheses are used in order to ensu-

re that formulas have a unique syntactic structure.

For the formal definition, this is a simple solution, but for writing
formulas in practical applications, the syntax becomes clumsy.

• One uses the following rules to save parentheses:

� The outermost parentheses are never needed.

� ¬ binds strongest, then ∧, then ∨, then ←, →,

↔ (same binding strength), and last ∀, ∃.
� Since ∧ and ∨ are associative, no parentheses are

required for e.g. F1 ∧ F2 ∧ F3.
Note that → and ← are not associative.
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Formulas (4)

Formal Treatment of Binding Strengths:

• A level 0 formula is an atomic formula or a level 5

formula enclosed in parentheses.
The level of a formula corresponds to the binding strength of its ou-
termost operator (smallest number means highest binding strength).
However, one can use a level i-formula like a level j-formula with j > i.
In the opposite direction, parentheses are required.

• A level 1 formula is a level 0 formula or a formula

of the form ¬F with a level 1 formula F .

• A level 2 formula is a level 1 formula or a formula

of the form F1∧F2 with a level 2 formula F1 and a

level 1 formula F2.
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Formulas (5)

Formal Treatment of Binding Strengths, Continued:

• A level 3 formula is a level 2 formula or a formula

of the form F1∨F2 with a level 3 formula F1 and a

level 2 formula F2.

• A level 4 formula is a level 3 formula or a formula

of the form F1← F2, F1→ F2, F1↔ F2 with level 3

formulas F1 and F2.

• A level 5 formula is a level 4 formula or a formula of

the form ∀s X: F or ∃ s X: F with a level 5 formula F .

• A formula is a level 5 formula.

Stefan Brass: Datenbanken I Universität Halle, 2004



2. Basic Notions of Mathematical Logic 2-56

Formulas (6)

Abbreviations for Quantifiers:

• When there is only one possible sort of a quanti-

fied variable, one can leave it out, i.e. write ∀X: F

instead of ∀ s X: F (and the same for ∃).

In most cases, there is indeed only one possible sort for a variable.

• If one quantifier immediately follows another quan-

tifier, one can leave out the colon.

E.g. write ∀X ∃Y : F instead of ∀X: ∃Y : F .

• Instead of a sequence of quantifiers of the same ty-

pe, e.g. ∀X1 . . . ∀Xn: F , one can write ∀X1, . . . , Xn: F .
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Formulas (7)

Abbreviation for Inequality:

• t1 6= t2 can be used as an abbreviation for ¬(t1 = t2).

Note:

• Some people say “formulae” instead of “formulas”.

Exercise:

• Given a signature with ≤ ∈ Pint int and 1, 10 ∈ Fε,int,

and a variable declaration with ν(X) = int.

• Is 1 ≤ X ≤ 10 a syntactically correct formula?
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Formulas (8)

Exercise:

• Which of the following are syntactically correct for-

mulas (given the signature on Slide 2-23)?

∀ X, Y: married_to(X, Y)→ married_to(Y, X)

∀ person P: ∨ male(P) ∨ female(P)

∀ person P: arno ∨ birgit ∨ chris

male(chris)

∀ string X: ∃ person X: married_to(birgit, X)

married_to(birgit, chris)
∧ ∨ married_to(chris, birgit)
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Closed Formulas

Definition:

• Let a signature Σ be given.

• A closed formula (for Σ) is a (Σ, ν)-formula for the

empty variable declaration ν.
I.e. the variable declaration that is everywhere undefined.

Exercise:

• Which of the following are closed formulas?

female(X) ∧ ∃ X: married_to(chris, X)

female(birgit) ∧ married_to(chris, birgit)

∃ X: married_to(X, Y)
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Variables in a Term

Definition:

• The function vars computes the set of variables

that occur in a given term t.

� If t is a constant c:

vars(t) := ∅.

� If t is a variable V :

vars(t) := {V }.

� If t has the form f(t1, . . . , tn):

vars(t) :=
n⋃

i=1
vars(ti).
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Free Variables in a Formula
Definition:

• The function free computes the set of free variables

(not bound by a quantifier) in a formula F :

� If F is an atomic formula p(t1, . . . , tn) or t1 = t2:

free(F ) :=
n⋃

i=1
vars(ti).

� If F is > or ⊥: free(F ) := ∅.
� If F has the form (¬G): free(F ) := free(G).

� If F has the form (G1 ∧G2), (G1 ∨G2), etc.:

free(F ) := free(G1) ∪ free(G2).

� If F has the form (∀ s X: G) or (∃ s X: G):

free(F ) := free(G)− {X}.
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Variable Assignment (1)

Definition:

• A variable assignment A for I and ν is a partial

mapping from VARS to
⋃

s∈S I[s].

• It maps every variable V , for which ν is defined, to

a value from I[s], where s := ν(V ).

I.e. a variable assignment for I and ν defines values from I for the
variables that are declared in ν.

Remark:

• I.e. a variable assignment for I and ν defines values

from I for the variables that are declared in ν.
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Variable Assignment (2)

Example:

• Consider the following variable declaration ν:

ν

Variable Sort
X string

Y person

• One possible variable assignment is

A
Variable Value
X abc
Y Chris
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Variable Assignment (3)

Definition:

• A〈X/d〉 denotes a variable assignment A′ that agrees

with A except that A′(X) = d.

Example:

• Given the variable declaration on the last slide,

A〈Y/Birgit〉 is:

A′

Variable Value
X abc
Y Birgit
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Value of a Term

Definition:

• Let a signature Σ, a variable declaration ν for Σ,

a Σ-interpretation I, and a variable assignment A
for (I, ν) be given.

• The value 〈I,A〉[t] of a term t ∈ TEΣ,ν is defined as

follows (recursion over the structure of the term):

� If t is a constant c, then 〈I,A〉[t] := I[c].

� If t is a variable V , then 〈I,A〉[t] := A(V ).

� If t has the form f(t1, . . . , tn), with ti of sort si:

〈I,A〉[t] := I[f, s1 . . . sn](〈I,A〉[t1], . . . , 〈I,A〉[tn]).
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Truth of a Formula (1)

Definition:

• The truth value 〈I,A〉[F ] ∈ {0, 1} of a formula F in

(I,A) is defined as follows (0 means false, 1 true):

� If F is an atomic formula p(t1, . . . , tn) with terms

ti of sort si:

〈I,A〉[F ] :=


1 if (〈I,A〉[t1], . . . , 〈I,A〉[tn])

∈ I[p, s1 . . . sn]

0 else.

� (continued on next three slides . . . )
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Truth of a Formula (2)

Definition, continued:

• Truth value of a formula, continued:

� If F is an atomic formula t1 = t2:

〈I,A〉[F ] :=

 1 if 〈I,A〉[t1] = 〈I,A〉[t2]

0 else.

� If F is >: 〈I,A〉[F ] := 1.

� If F is ⊥: 〈I,A〉[F ] := 0.

� If F is of the from (¬G):

〈I,A〉[F ] :=

 1 if 〈I,A〉[G] = 0

0 else.
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Truth of a Formula (3)

Definition, continued:

• Truth value of a formula, continued:

� If F is of the from (G1 ∧G2), (G1 ∨G2), etc.:

G1 G2 ∧ ∨ ← → ↔
0 0 0 0 1 1 1
0 1 0 1 0 1 0
1 0 0 1 1 0 0
1 1 1 1 1 1 1

E.g. if 〈I,A〉[G1] = 1 and 〈I,A〉[G2] = 0 then 〈I,A〉[(G1 ∧G2)] = 0.
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Truth of a Formula (4)

Definition, continued:

• Truth value of a formula, continued:

� If F has the form (∀ s X: G):

〈I,A〉[F ] :=


1 if 〈I,A〈X/d〉〉[G] = 1

for all d ∈ I[s]
0 else.

� If F has the form (∃ s X: G):

〈I,A〉[F ] :=


1 if 〈I,A〈X/d〉〉[G] = 1

for at least one d ∈ I[s]
0 else.
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Model (1)

Definition:

• If 〈I,A〉[F ] = 1, one also writes 〈I,A〉 |= F .

• Let F be a (Σ, ν)-formula. A Σ-interpretation I
is a model of the formula F (written I |= F ) iff

〈I,A〉[F ] = 1 for all variable declarations A.
I.e. free variables are treated as ∀-quantified. Of course, if F is a
closed formula, the variable declaration is not important.

• If I |= F , one says that I satisfies F .
Or that F is true in I. The same for 〈I,A〉 |= F .

• A Σ-interpretation I is a model of a set Φ of Σ-

formulas, written I |= Φ, iff I |= F for all F ∈ Φ.
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Model (2)

Definition:

• A formula F or set of formulas Φ is called consistent

iff it has a model.

• A formula F is called satisfiable iff there is an inter-

pretation I and a variable declaration A such that

(I,A) |= F . Otherwise it is called unsatisfiable.

Sometimes I will say inconsistent when I really mean unsatisfiable.

• A (Σ, ν)-formula F is called a tautology iff for all Σ-

interpretations I and (Σ, ν)-variable assignments A:

(I,A) |= F .
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Model (3)
Exercise:

• Consider the interpretation on Slide 2-29:

� I[person] = {Arno, Birgit, Chris}.
� I[married_to] = {(Birgit, Chris), (Chris, Birgit)}.
� I[male] = {(Arno), (Chris)},
I[female] = {(Birgit)}.

• Which of the following formulas are true in I?

∀ person X: male(X)↔ ¬female(X)

∀ person X: male(X) ∨ ¬male(X)

∃ person X: female(X)∧¬∃ personY: married_to(X,Y)

∃ person X, person Y, person Z: X=Y ∧ Y=Z ∧ X 6=Z
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Overview

1. Introduction, Motivation, History

2. Signatures, Interpretations

3. Formulas, Models

4. Formulas in Databases

'

&

$

%
5. Implication, Equivalence
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Formulas in Databases (1)

• As explained above, the DBMS defines a signa-

ture ΣD and an interpretation ID for the built-in

data types (string, int, . . . ).

• Then the database schema extends ΣD to the si-

gnature Σ of all symbols that can be used in, e.g.,

queries.

Every data model imposes certain restrictions for the kinds of new
symbols that can be introduced. For instance, in the classical re-
lational model, the database schema can only define new predicate
symbols (relation symbols).
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Formulas in Databases (2)

• A database state is then an interpretation I for the

extended signature Σ.
Of course, the system would explicitly store only the interpretation of
the symbols of “Σ−ΣD”, because the interpretation of the symbols in
ΣD is already built into the DBMS and cannot be changed. Further-
more, not arbitrary interpretations can be used as database states.
The exact restrictions depend on the data model, but typically the
new symbols must have a finite interpretation.

• Formulas are used in databases as:

� Integrity constraints

� Queries

� Definitions of derived symbols (views).
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Integrity Constraints (1)

• Not all interpretations are reasonable DB states.

The purpose of the database is to model a certain part of the real
world. In the real world, certain restrictions exist. Therefore, interpre-
tations that violate these restrictions should be excluded.

• For instance, in the real world, a person can only

be male or female, but not both. Therefore, the

following two formulas must be satisfied:

� ∀ person X: male(X) ∨ female(X)

� ∀ person X: ¬ male(X) ∨ ¬ female(X)

• These are examples of integrity constraints.
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Integrity Constraints (2)

• An integrity constraint is a closed formula.

The data model might not permit arbitrary formulas. Furthermore,
the formulas must be domain independent (see below).

• A set of integrity constraints is specified as part of

the database schema.

• A database state (an interpretation) is called valid

iff it satisfies all integrity constraints.

In the following, we consider only valid database states. Therefore,
we again speak only of “database state”.
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Integrity Constraints (3)

Keys I:

• Objects are often identified by unique data values

(numbers, names).

• For example, consider the signature on Slide 2-37.

There should never be two different objects of type

student with the same sid:

∀ student X, student Y: sid(X) = sid(Y) → X = Y

• Alternative, equivalent formulation:

¬∃ student X, student Y: sid(X) = sid(Y) ∧ X 6= Y
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Integrity Constraints (4)

Keys II:

• In the relational schema (Slide 2-33) a predicate of

arity 3 is used to store the student data.

• The first argument (SID) uniquely identifies the va-

lues of the other arguments (first name, last name):

∀ int ID, string F1, string F2, string L1, string L2:
student(ID, F1, L1) ∧ student(ID, F2, L2) →

F1 = F2 ∧ L1 = L2

• Since keys are so common, each data model has

a special notation for them (one does not actually

have to write such formulas).
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Integrity Constraints (5)

Exercise:

• Consider the schema on Slide 2-33:

� student(int SID, string FName, string LName)

� exercise(int ENO, int MaxPoints)

� result(int SID, int ENO, int Points)

• Please write the following constraints:

� The Points in result are always non-negative.

� Each exercise number ENO in result appears also

in exercise (“no broken links”).

This is an example of a “foreign key constraint”.
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Queries (1)

• A query (Form A) is an expression of the form

{s1 X1, . . . , sn Xn | F},
where F is a formula for the given DB signature Σ

and the variable declaration {X1/s1, . . . , Xn/sn}.
Again, there might be restrictions for the possible formulas F , espe-
cially the domain independence (see below).

• The query asks for all variable assignments A for

the result variables X1, . . . , Xn that make the for-

mula F true in the given database state I.
In order to ensure that the variable assignment is printable, the sorts si

of the result variables typically must be data types.
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Queries (2)

Examples I:

• Consider the schema on Slide 2-33:

� student(int SID, string FName, string LName)

� exercise(int ENO, int MaxPoints)

� result(int SID, int ENO, int Points)

• Who got at least 8 points for Homework 1?

{string FName, string LName | ∃ int SID, int P:
student(SID, FName, LName) ∧
result(SID, 1, P) ∧ P ≥ 8}
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Queries (3)
Examples II:

• Print all results for Ann Smith:

{int ENO, int Points | ∃ int SID:
student(SID, ’Ann’, ’Smith’) ∧
result(SID, ENO, Points)}

• Who has not yet submitted Exercise 2?

{string FName, string LName |
∃ int SID: student(SID, FName, LName) ∧

¬ ∃ int P: result(SID, 2, P)}
Exercise:

• Print students who have 10 points in Exercise 1

and 10 points in Exercise 2.
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Queries (4)

• A query (Form B) is an expression of the form

{t1, . . . , tk [s1 X1, . . . , sn Xn] | F},

where F is a formula and the ti are terms for the

given DB signature Σ and the variable declaration

{X1/s1, . . . , Xn/sn}.

• In this case, the DBMS will print the values 〈I,A〉[ti]
of the terms ti for every variable assignments A for

the result variables X1, . . . , Xn such that 〈I,A〉 |= F .

This is especially convenient when the variables Xi range over sorts
that are otherwise not printable.
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Queries (5)

Example:

• Consider the schema on Slide 2-37:

� Sorts student, exercise.

� Functions first_name(student): string, . . .

� Predicate: solved(student, exercise).

Function: points(student, exercise): int

• Who got at least 8 points for Homework 1?

{S.first_name, S.last_name [student S] |
∃ exercise E:

E.eno = 1 ∧ solved(S, E) ∧ points(S, E) ≥ 8}
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Queries (6)

• A query (Form C) is a closed formula F .

• The system prints “yes” if I |= F and “no” other-

wise.

Exercise:

• Suppose Form C is not available. Is it possible to

simulate it with Form A or Form B?

• Obviously, Form A is a special case of Form B:

{X1, . . . , Xn [s1 X1, . . . , sn Xn] | F}. Is it conversely

possible to simulate Form B with Form A?
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Domain Independence (1)

• One cannot use arbitrary formulas as queries. Some

formulas would generate an infinite answer:

{int SID | ¬student(SID, ’Ann’, ’Smith’}

• Other formulas would require that infinitely many

values are tried for quantified variables:

∃ int X, int Y, int Z: X ∗ X + Y ∗ Y = Z ∗ Z

• When a formula is domain-independent, it suffices

to consider only finitely many values for each va-

riable. Then the above problems do not occur.
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Domain Independence (2)

• A formula is domain independent iff for all possible

DB states (interpretations), it suffices to replace

variables that range over possibly infinite domains

by values that appear in any argument of the DB

relations, or as function value of a DB function, or

as variable-free term in the query.
For a given interpretation I and formula F , the “active domain” is
the set of values that appear in database relations in I, as value in
the database sorts, as value of database functions, or as variable-free
term (e.g. constant) in F . Domain independence means that (1) F

must be false if a value outside this set is inserted for a free variable.
(2) For all subformulas ∃X: G, the formula G must be false if X has
a value outside the active domain. (3) For all subformulas ∀X: G, the
formula G must be true if X has a value outside the active domain.
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Domain Independence (3)

• Since all database sorts, database relations, and da-

tabase functions are finite, queries can be evaluated

in finite time.

• For instance, the formula

∃ intX: X 6= 1

is not domain independent: The truth value de-

pends on other integers besides 1, but at least in

the empty database state there are no such values.
The exact set of possible values (domain) is sometimes not known,
only the set of values that appear in the database is known. Then it is
good if the truth value of a formula does not depend on the domain.
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Domain Independence (4)

• “Range restriction” is a syntactic constraint on for-

mulas that implies domain independence.

For every formula, one defines the set of restricted variables in posi-
tive context and in negative context.

E.g. if F is an atomic formula p(t1, . . . , tn) with database relation p,
then posres(F ) := {X ∈ VARS | ti is the variable X}, negres(F ) := ∅.
For other atomic formulas, both sets are empty, except when F has
the form X = t where t is variable-free or has a database function as
outermost function. Then posres(F ) := {X}.
If F is ¬G, then posres(F ) := negres(G) and negres(F ) := posres(G).
If F has the form G1 ∧G2, then posres(F ) := posres(G1) ∪ posres(G2)
and negres(F ) := negres(G1) ∩ negres(G2). Etc.

A formula F is range restricted if free(F ) = posres(F ) and for every
subformula ∀X: G, it holds that X ∈ negres(G), and for every subfor-
mula ∃X: G, it holds that X ∈ posres(G).
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Domain Independence (5)

• Basically, range striction requires that every varia-

ble is bound to a finite set of values.

E.g. by occurring in a database relation in positive context (unless it
is universally quantified, then it must appear in negative context).

• Range restriction is decidable, whereas domain in-

dependence is in general undecidable.

E.g. ∃X: X 6= 1∧F would be domain independent if F is always false.
The consistency of formulas (even range-restricted formulas) is un-
decidable.

Nevertheless, range-restriction is sufficiently general: For instance,
all relational algebra queries can be naturally translated into range-
restricted formulas.
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Overview

1. Introduction, Motivation, History

2. Signatures, Interpretations

3. Formulas, Models

4. Formulas in Databases

5. Implication, Equivalence
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Implication

Definition/Notation:

• A formula or set of formulas Φ (logically) implies a

formula or set of formulas G iff every model of Φ

is also a model of G. In this case we write Φ ` G.

• Many authors write Φ |= G.
The difference is important if one talks also about axioms and deduc-
tion rules. Then Φ ` G is used for syntactic deduction, and Φ |= G for
the implication defined above via models. Correctness and comple-
teness of the deduction system then mean that both relations agree.

Lemma:

• Φ ` G if and only if Φ ∪ {¬∀(G)} is inconsistent.
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Equivalence (1)

Definition/Lemma:

• Two Σ-formulas or sets of Σ-formulas F1 and F2

are equivalent iff they have the same models, i.e. for

every Σ-interpretation I:

I |= F1 ⇐⇒ I |= F2.

• F1 and F2 are equivalent iff F1 ` F2 and F2 ` F1.

Lemma:

• “Equivalence” of formulas is an equivalence relati-

on, i.e. it is reflexive, symmetric, and transitive.
This also holds for strong equivalence defined on the next page.
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Equivalence (2)

Definition/Lemma:

• Two (Σ, ν)-formulas F1 and F2 are strongly equiva-

lent iff for every Σ-interpretation I and every (I, ν)-

variable declaration A:

(I,A) |= F1 ⇐⇒ (I,A) |= F2.

• Strong equivalence of F1 and F2 is written: F1 ≡ F2.

• Suppose that G1 results from G2 by replacing a

subformula F1 by F2 and let F1 and F2 be strongly

equivalent. Then G1 and G2 are strongly equivalent.
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Some Equivalences (1)

• Commutativity (for and, or, iff):

� F ∧G ≡ G ∧ F

� F ∨G ≡ G ∨ F

� F ↔ G ≡ G↔ F

• Associativity (for and, or, iff):

� F1 ∧ (F2 ∧ F3) ≡ (F1 ∧ F2) ∧ F3

� F1 ∨ (F2 ∨ F3) ≡ (F1 ∨ F2) ∨ F3

� F1↔ (F2↔ F3) ≡ (F1↔ F2)↔ F3
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Some Equivalences (2)

• Distribution Law:

� F ∧ (G1 ∨G2) ≡ (F ∧G1) ∨ (F ∧G2)

� F ∨ (G1 ∧G2) ≡ (F ∨G1) ∧ (F ∨G2)

• Double Negation:

� ¬(¬F ) ≡ F

• De Morgan’s Law:

� ¬(F ∧G) ≡ (¬F ) ∨ (¬G).

� ¬(F ∨G) ≡ (¬F ) ∧ (¬G).
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Some Equivalences (3)

• Replacements of Implication Operators:

� F ↔ G ≡ (F → G) ∧ (F ← G)

� F ← G ≡ G→ F

� F → G ≡ ¬F ∨G

� F ← G ≡ F ∨ ¬G

• Together with De Morgan’s Law this means that

e.g. {¬,∨} are sufficient, all other logical junctors

{∧,←,→,↔} can be expressed with them.

As we will see, also only one of the quantifiers is needed.
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Some Equivalences (4)

• Replacements for Quantifiers:

� ∀ s X: F ≡ ¬(∃ s X: (¬F ))

� ∃ s X: F ≡ ¬(∀ s X: (¬F ))

• Moving logical junctors over quantifiers:

� ¬(∀ s X: F ) ≡ ∃ s X: (¬F )

� ¬(∃ s X: F ) ≡ ∀ s X: (¬F )

� ∀ s X: (F ∧G) ≡ (∀ s X: F ) ∧ (∀ s X: G)

� ∃ s X: (F ∨G) ≡ (∃ s X: F ) ∨ (∃ s X: G)
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Some Equivalences (5)

• Moving quantifiers: If X 6∈ free(F ):

� ∀ s X: (F ∨G) ≡ F ∨ (∀ s X: G)

� ∃ s X: (F ∧G) ≡ F ∧ (∃ s X: G)

If in addition I[s] cannot be empty:

� ∀ s X: (F ∧G) ≡ F ∧ (∀ s X: G)

� ∃ s X: (F ∨G) ≡ F ∨ (∃ s X: G)

• Removing unnecessary quantifiers:

If X 6∈ free(F ) and I[s] cannot be empty:

� ∀ s X: F ≡ F

� ∃ s X: F ≡ F
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Some Equivalences (6)

• Exchanging quantifiers: If X 6= Y :

� ∀ s1 X: (∀ s2 Y : F ) ≡ ∀ s2 Y : (∀ s1 X: F )

� ∃ s1 X: (∃ s2 Y : F ) ≡ ∃ s2 Y : (∃ s1 X: F )

Note that quantifiers of different type (∀ and ∃) cannot be ex-
changed.

• Renaming bound variables: If Y 6∈ free(F ) and F ′

results from F by replacing every free occurrence

of X in F by Y :

� ∀ s X: F ≡ ∀ s Y : F ′

� ∃ s X: F ≡ ∃ s Y : F ′
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Normal Forms (1)

Definition:

• A formula F is in Prenex Normal Form iff it is closed

and has the form

Θ1 s1 X1 . . . Θn sn Xn: G

where Θ1, . . . , Θn ∈ {∀, ∃} and G is quantifier-free.

• A formula F is in Disjunctive Normal Form iff it is

in Prenex Normal Form, and G has the form

(G1,1 ∧ · · · ∧G1,k1
) ∨ · · · ∨ (Gn,1 ∧ · · · ∧Gn,kn),

where each Gi,j is an atomic formula or a negated

atomic formula.
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Normal Forms (2)

Remark:

• Conjunctive Normal Form is like disjunctive normal

form, but G must have the form

(G1,1 ∨ · · · ∨G1,k1
) ∧ · · · ∧ (Gn,1 ∨ · · · ∨Gn,kn).

Theorem:

• Under the assumption of non-empty domains, every

formula can be equivalently translated into prenex

normal form, disjunctive normal form, and conjunc-

tive normal form.
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