
1. Introduction 1-1

Part 1: Introduction
References:

• Elmasri/Navathe:Fundamentals of Database Systems, 3rd Edition, 1999.
Chapter 1, “Databases and Database Users”
Chapter 2, “Database System Concepts and Architecture”

• Kemper/Eickler: Datenbanksysteme (in German), 3rd Edition, 1999.
Chapter 1: “Einleitung und Übersicht” (“Introduction and Overview”)

• Heuer/Saake: Datenbanken, Konzepte und Sprachen (in German), Thomson, 1995.

• Lipeck: Skript zur Vorlesung Datenbanksysteme (in German), Univ. Hannover, 1996.

• Silberschatz/Korth/Sudarshan: Database System Concepts, 3rd Edition.
Chapter 1: “Introduction”.

• Fry/Sibley: Evolution of data-base management systems. ACM Computing Surveys 8(1),
7–42, 1976.

• Steel: Interim report of the ANSI-SPARC study group. In ACM SIGMOD Conf. on the
Management of Data, 1975.

• Codd: Relational database: a practical foundation for productivity. Communications of
the ACM, Vol. 25, Issue 2, (Feb. 1982), 109–117.

• Silberschatz/Stonebraker/Ullman (Ed.): Database systems: achivements and opportuni-
ties. Communications of the ACM, Vol. 34, Issue 10, (Oct. 1991), 110–120.

• Silberschatz/Stonebraker/Ullman: Database research: achivements and opportunities in-
to the 21st century. ACM SIGMOD Record, Vol. 25, Issue 1, (March 1996), 52–63.

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-2

Objectives

After completing this chapter, you should be able to:

• explain basic notions: Database State, Schema,

Query, Update, Data Model, DDL, DML.

• explain the role of the DBMS.

• explain data independence, declarativity, and the

three schema architecture.

• name some DBMS vendors.

• name different classes of users of a database app-

lication system.

• name some DBMS tools.

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-3

Overview

1. Basic Database Notions

'

&

$

%
2. Database Management Systems (DBMS)

3. Programmer’s View, Data Independence

4. DBMS Vendors

5. Database Users and Database Tools

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-4

Task of a Database (1)

• What is a database? Difficult question. There is no

precise and generally accepted definition.

• Naive approach: The main task of a database

system (DBS) is to answer certain questions about

a subset of the real world, e.g.

Which homeworks
has Ann Smith
completed?

-
Database
System

-
1
2

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-5

Task of a Database (2)

• The DBS acts only as storage for information.

The information must first be entered

and then kept current.

Ann Smith has
done Homework 3
and received
10 points for it.

-
Database
System

- ok.

• A database system is a computerized version of a

card-index box/filing cabinet (but more powerful).

• A spreadsheet can be considered a small DBS.

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-6

Task of a Database (3)

• Normal database systems do not perform very com-

plicated computations on the stored data in order

to answer questions.

But there are e.g. knowledge bases and data mining tools.

• However, they can find/retrieve the requested data

quickly in/from a large set of data (Gigabytes or

Terrabytes — larger than main memory).

• They can also aggregate/combine several pieces

of stored data for one answer, e.g. compute the

average points for Homework 3.

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-7

Task of a Database (4)

• Above, the question “Which homeworks has Ann

Smith completed?” was shown in natural language.

• Making computers understand natural language is

not easy (large potential for misunderstandings).

• Therefore, questions (“queries”) are normally writ-

ten in a formal language, today typically in SQL.

One can view SQL as a programming language designed especially
for data retrieval tasks. However, in contrast to languages like Pascal,
C, or Java, one cannot write arbitrary programs in SQL.

• But there are natural language interfaces for DBS.

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-8

State, Query, Update

• The set of stored data is called the database state:

Current
State

//SSjj

Query

SELECT HOMEWORK FROM SOLVED

WHERE STUDENT = ’Ann Smith’

Answer
1
2

• Entering, modifying, or deleting information

changes the state:

Old
State

//SSjj

Update

INSERT INTO SOLVED

VALUES (’Ann Smith’, 3, 10)

New
State

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-9

Structured Information (1)

• Each database can store only information of a pre-

declared structure (a limited domain of discourse):

Today’s special
in the cafeteria
is pizza.

-
Homeworks

DBS
- Error.

• Because the data are structured, not simply text,

more complex evaluations are possible, e.g.:

How many homeworks has each student done?

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-10

Structured Information (2)

• Actually, a database system stores only data

(character strings, numbers), and not information.

• Data become information by interpretation.

• Therefore, concepts like students and exercises

must be defined/declared before the database can

be used.

Of course, it is possible to create a databases in which arbitrary texts
can be stored. But then the DBS can only search for substrings, not
answer more advanced queries. The more the DBMS “knows” about
the structure of the data, the better it can support the user.

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-11

State vs. Schema (1)

Database Schema:

• Formal definition of the structure of the database

contents.

• Determines the possible database states.

• Defined only once (when the DB is created).
In practice, it might sometimes be necessary to modify the schema.
However, this happens seldom and causes some difficulties.

• Corresponds to variable declaration

(type information).
E.g. if a variable i is declared as short int, the possible states of i

are normally -32768 .. +32767.

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-12

State vs. Schema (2)

Database State (Instance of the Schema):

• Contains the actual data,

structured according to the schema.

• Changes often

(whenever database-information is updated).

• Corresponds to current contents/value

of a variable.

E.g. in the current state s, i might have value 5. An update, e.g.
i := i + 1, changes the state to s′, where i has value 6.

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-13

State vs. Schema (3)

• In the relational data model, the data is

structured in form of tables (relations).

• Each table has a name, sequence of named

columns (attributes) and a set of rows (tuples).

SOLVED

STUDENT HOMEWORK POINTS

 DB Schema

Ann Smith 1 10
Ann Smith 2 8
Michael Jones 1 9
Michael Jones 2 9


DB State
(Instance)

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-14

Exercise

• Suppose the professor wants to store more infor-

mation about his students.

• In particular, he wants to write a program that

sends each student an email like this one:

Dear Ms. Smith,

the following grades are stored for you:

- Exercise 1: 10 points

- Exercise 2: 8 points

Please contact me if there is a mistake.

With kind regards, ...

• How can he store the necessary data in tables?

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-15

Data Model (1)

• A data model defines

� a set SCH of possible database schemas,

� for each database schema S ∈ SCH a set ST (S)

of possible database states.

• Often (but not always), a data model is paramete-

rized in a set of basic data types.

• E.g., for the relational model, it is not important

whether the table cells can contain only strings, or

also numbers, date and time values, and so on.

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-16

Data Model (2)

• Thus, data models typically define the type con-

structors that can be used to create complex data

structures from elementary values.

As will be explained in Chapter 2, a set of type names with their
operations is defined by a signature Σ. These symbols are interpreted
(mapped to values and functions on these values) by an interpretati-
on I. Thus, the data model really consists of a set SCHΣ of schemas
for each data type signature Σ, which are mapped to database states
by ST I for a given interpretation I of Σ.

• It is also very common that database schemas in-

troduce certian symbols (such as table names) that

the database state maps to values or functions.

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-17

Data Model (3)

• There is no generally accepted formal definition of

the term “data model”.

The above is my own proposal. One could be more detailed, but this
ends up in defining something like Oracle 8.1.3 as a data model. Most
textbooks leave the term very fuzzy.

• Especially, one could debate whether the query lan-

guage belongs to the data model.

E.g., at the beginning, there were small PC DBMS which structured
data in tables, but did not permit queries that combined data from
different tables. These systems were considered as not fully relational.
However, in order to compare the expressiveness of different query
languages for a data model, one must separate the two. Furthermore,
the ER-Model is usually presented without a query language.

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-18

Data Model (4)

• Data Definition Language (DDL): Language that

is used to define DB schemas (write them down).

• Data Manipulation Language (DML): Language

that is used to write queries and updates.

SQL, the standard language for the relational model, combines both,
DDL and DML. The query part of the DML is called Query Language
(QL). It is usually more interesting/complicated than the update part.
But updates usually can contain queries to compute new values.

• Some people use the term “Data Model”

for “Database Schema”.

E.g. Enterprise Data Model: Schema for all information of a company.

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-19

Data Model (5)

Examples of data models:

• Relational Model

• Entity-Relationship-Model (various extensions)

• Object-Oriented Data Models (e.g., ODMG)

• Object-Relational Data Models

• XML (DTDs, XML Schemas)

• Network Model (historical)

• Hierarchical Model (historical)

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-20

Overview

1. Basic Database Notions

2. Database Management Systems (DBMS)

'

&

$

%
3. Programmer’s View, Data Independence

4. DBMS Vendors

5. Database Users and Database Tools

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-21

DBMS (1)

A Database Management System (DBMS) is an

application-independent software that implements

a data model, i.e. allows

• definition of a DB schema for some concrete

application,
Since the DBMS itself is application-independent, it stores the schema
typically on the disk, often together with the database state in special
“system tables”.

• storage of an instance of this schema on e.g. a disk,

• querying the current instance (database state),

• changing the database state.

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-22

DBMS (2)

• Of course, normal users do not need to use SQL

for their daily tasks of data entry or lookup.

• They use application programs that have been de-

veloped especially for this task and offer a nicer

user interface.

E.g. a form, in which fields can be filled out, and then the user clicks
on the “Submit” button.

• However, internally, the application program con-

tains SQL statements (queries, updates) in order

to communicate with the DBMS.

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-23

DBMS (3)

• Often, several different application programs are

used to access the same centralized database.

• E.g. the homeworks DB might have:

� A web interface for students.

� A program used by the GSA (graduate student

assistant) to load homework and exam points.

� A program that prints a report for the professor

used to assign grades.

• The interactive SQL interface that comes with the

DBMS is simply another way to access the DB.

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-24

DBMS (4)

DB Schema

��

OO

DB State

��

OO

Database Management System (DBMS)

Application Program

��

OO

DBMS Tool (e.g. SQL Int.)

��

OO

User A

��

OO
User B

��

OO

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-25

DB Application Systems (1)

• Often, different users access the same database

concurrently (i.e. at the same time).

• The DBMS is usually a background server process

(or set of such processes) that is accessed over the

network by application programs (clients).

Very similar to a web server. For some small PC DBMS, there is
only a single program that acts as DBMS and as interpreter for the
application programs.

• One can also view the DBMS as an extension of

the operating system (more powerful file system).

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-26

DB Application Systems (2)

Client-Server Architecture:

Client

�
�

�

�
��

��
�

�

@
@

��

User A
Application
Program

Client

�
�

�

�
��

��
�

�

@
@

��

User B
Application
Program

Server
�����

����

�
�

��

�� @@�
�

�
��

DBMS

Network

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-27

DB Application Systems (3)

Three-Tier Architecture:

Thin
Client

�
�

�

�
��

��
�

�

@
@

��

User A
Web Browser

Thin
Client

�
�

�

�
��

��
�

�

@
@

��

User B
Web Browser

Application
Server

�����
����

�
�

��

�� @@�
�

�
��

Application
Program

Web Server

Database
Server

�����
����

�
�

��

�� @@�
�

�
��

DBMS

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-28

DB Application Systems (4)

Exercise:

• Consider a database used by a bank for managing

checking accounts.

• Which tasks might be supported by different app-

lication programs that access this database?

�

�

�

�

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-29

DB Application Systems (5)

Some Database Vocabulary:

• A database consists of DB schema and DB state.
E.g. one says “The homeworks database”. It depends on the context
whether one means the current state, or basically only the schema
and the storage space or location on the net, i.e. a place where one
can always look for the current state. It is wrong to call a single table
or a single file a database unless that contains all data of the schema.

• A database system (DBS) consists of a DBMS and

a database.
But database systems is also often used as an abbreviation for DBMS.

• A database application system consists of a DBS

and a set of application programs.

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-30

Overview

1. Basic Database Notions

2. Database Management Systems (DBMS)

3. Programmer’s View, Data Independence

'

&

$

%
4. DBMS Vendors

5. Database Users and Database Tools

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-31

Persistent Storage (1)

Today:

5 - factorial - 120

Tomorrow:

5 - factorial - 120

⇒ No persistent storage necessary.
The output is a function of the input only.

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-32

Persistent Storage (2)

Today:

Ann - Homework Points - 20

Tomorrow:

Ann - Homework Points - 30

⇒ Output is a function of the input
and a persistent state.

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-33

Persistent Storage (3)

Persistent State

Ann
Input:

// Homework Points // 30
Output:

Persistent Information:

• Information that lives longer than a single process

(program execution). Survives power outage and a

reboot of the operating system.

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-34

Persistent Storage (4)

Exercise:

• Which of the following programs need persistent

storage? Why?

� Pocket Calculator (non programmable)

� Web Browser

� Screen Saver

• How persistent is the memory of your video recorder

for channels?

• Is information in the Windows Registry persistent?

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-35

Typed Persistent Data (1)

Classical Way to Implement Persistence:

• Information needed in other program invocations is

saved in a file.

• The operating system (OS) stores the file on a

disk.

• Disk is persistent memory: The contents is not lost

if the computer is switched off or the operating

system is rebooted.

• File systems are predecessors of modern database

management systems.

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-36

Typed Persistent Data (2)

Implementing Persistence with Files:

• OS files are usually only sequences of bytes.

• A record structure must be defined as in Assembler

languages.
0:

A n n S m i t h . . .

40:

0 3
42:

1 0
44:

• File structure information is contained only in the

programmers’ heads.

• The system cannot prevent errors because it does

not know the file structure.

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-37

Typed Persistent Data (3)

Implementing Persistence with a DBMS:

• The structure of the information to be stored must

be defined in a way the system understands:

CREATE TABLE SOLVED(STUDENT VARCHAR(40),

HOMEWORK NUMERIC(2),

POINTS NUMERIC(2))

• Thus, the file structure is formally documented.

• The system can detect type errors in application

programs.

• Simplified programming (higher abstraction level).

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-38

A Subprogram Library (1)

• Most DBMS use OS files to store the data.

Some use direct disk access for performance reasons.

• One can view a DBMS as a subprogram library that

can be used for file accesses.

• Compared with the direct OS calls for file accesses,

the DBMS offers higher level operations.

• I.e. it contains already many algorithms that one

would otherwise have to program.

Reusing well-debugged code in the DBMS can save a lot of program-
ming efforts!

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-39

A Subprogram Library (2)

• For instance, a DBMS contains routines for

� Sorting (Mergesort)

� Searching (B-Trees)

� File Space Management, Buffer Management

� Aggregation, Statistical Evaluation

• Optimized for large data sets (that do not fit into

main memory).

• It also has multi-user support (automatic locking)

and safety measures to protect the data in case of

system crashes (see below).

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-40

Data Independence (1)

• The DBMS is a layer of software above the OS

files. The files can be accessed only via the DBMS.

• Indirection gives the possibility of hiding internal

changes.

• Idea of abstract data types:

Change the implementation, but keep the interface.

• Here the implementation is the file structure, which

has to be changed for performance reasons.

The application program interface is kept stable.

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-41

Data Independence (2)

Typical Example:

• At the beginning, a professor used the homeworks

database only for his courses in the current term.

For simplicity, the table “SOLVED” shown above permits only one cour-
se. But there might be an additional column to distinguish courses.

• Since the database was small, and there were re-

latively few accesses, it was sufficient to store the

data as a “heap file”.

I.e. the rows of the table (records) are stored without any particular
order. In order to evaluate queries, the DBMS must then do a “full
table scan”, i.e. read every row of the table and check whether it
satisfies the query condition. For small tables, this is no problem.

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-42

Data Independence (3)

• Later the entire university used the database, and

information of previous courses had to be kept for

some time.

• Thus, the DB became much bigger and was also

accessed more frequently.

The “system workload” has changed.

• An index (e.g. B-tree) is needed for faster access.

An index in a book is an ordered list of keywords together with refe-
rences to page numbers where these keywords occur. A B-tree basical-
ly contains an ordered list of column values together with references
to rows that contain these values (see chapter on physical design).

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-43

Data Independence (4)

Without DBMS (or with a Pre-Relational DBMS):

• Using the index to access the file must be explicitly

mentioned in the query command.

• Thus, application programs must be changed if the

file structure is changed.

• If one forgets to change a seldom used application

program, and it does not update the index when the

table is changed, the DB becomes inconsistent.
This can happen only if one works directly with OS files. Already
e.g. DBMS for the network data model did update indexes automati-
cally. However, query commands had to refer explicitly to the index.

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-44

Data Independence (5)

With Relational DBMS:

• The system hides the existence of indexes at the

interface.

• Queries and updates do not have to (and cannot)

refer to the index.

• The system automatically

� modifies the index in case of updates,

� uses the index to evaluate queries when advan-

tageous.

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-45

Data Independence (6)

Conceptual Schema (“Interface”):

• Only logical information content of the database

• Simplified View: Storage details hidden.

Internal/Physical Schema (“Implementation”):

• Indexes

• Division of tables among disks

• Storage management if tables grow or shrink

• Physical placement of new rows in a table.
E.g. store rows with the same column value in the same disk block.

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-46

Data Independence (7)

1. The user enters a query (e.g. in SQL) that refers

to the conceptual schema.

2. The DBMS translates this into a query/program

(“execution plan”) which refers to the internal

schema (this is done by the “query optimizer”).

3. The DBMS executes the translated query on the

stored instance of the internal schema.

4. The DBMS translates the result back to the con-

ceptual level.

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-47

Data Independence (8)

Conceptual Schema

Old Internal Schema
(no index)

-
New Internal Schema

(with index)

HHH
H

HH
HHH

HHH
HHH

HHH
H

HH
HHH

-
New Translation

Same Conceptual Schema

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-48

Declarative Languages (1)

• Physical data independence requires that the query

language cannot refer to indexes.

• Declarative query languages go one step further:

� Queries should describe only what information is

sought,

� but should not prescribe any particular method

how to compute this information.

• Algorithm = Logic + Control (Kowalski)
Imperative/Procedural Language: Explicit Control, Implicit Logic.
Declarative/Descriptive Language: Explicit Logic, Implicit Control.

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-49

Declarative Languages (2)

• SQL is a declarative query language. The user spe-

cifies only conditions for the requested data:

SELECT X.POINTS

FROM SOLVED X

WHERE X.STUDENT = ’Ann Smith’

AND X.HOMEWORK = 3

• Often simpler formulations: The user does not have

to think about efficient execution.

• Much shorter than imperative programming: Less

expensive program development/maintainance.

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-50

Declarative Languages (3)

• Declarative query languages

� allow powerful optimizers

because they do not prescribe a query evaluation method.

� need powerful optimizers

because the naive evaluation algorithm would be too inefficient.

• Larger independence of current hardware/software

technology:

� Simpler Parallelization

� Today’s queries will use tomorrow’s algorithms

when a new version of the DBMS is released.

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-51

“Data Independence”

• Decoupling between programs and data.

• Data is an independent resource by itself.

Earlier it had meaning only in the context of the application programs
for which it was originally collected.

• Physical data independence:

� Programs should not depend on data storage

methods.

� Vice versa, the file structures are not determined

by the programs.

⇒ Protects investments in programs and data.

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-52

Logical Data Independence (1)

• Logical data independence allows changes to the

logical information content of the database.

• Of course, information can only be added, e.g. add

a column “SUBMISSION_DATE” to the table SOLVED.

Or represent information differently, e.g. use 24h-notation instead of
AM/PM, inch instead of cm, combined first and last name instead of
separate columns.

• This may be required for new applications.

• It should not be necessary to change old applicati-

ons, although the records are now longer.

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-53

Logical Data Independence (2)

• Logical data independence is only important when

there are application programs with distinct, but

overlapping information needs.

• Logical data independence also helps to integrate

previously distinct databases.

� In earlier times, every department of a company

had its own database / data files.

� Now, businesses generally aim at one central DB.

It may be distributed, but this is another issue.

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-54

Logical Data Independence (3)

• If a company has more than one DB, the informati-

on in these databases will normally overlap, i.e. so-

me pieces of information are stored several times.

• Data is called redundant if it can be derived from

other data and knowledge about the application.

• Problems:

� Duplicates data entry and update efforts.

� Sooner or later one will forget to modify one

copy (data becomes inconsistent).

� Wastes storage space, also on backup tapes.

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-55

Logical Data Independence (4)

External Schemas/Views:

• Logical data independence requires a third level of

database schemas, the external schemas/views.

• Each user can have an individual view of the data.

• An external view contains a subset of the informa-

tion in the database, maybe slightly restructured.

External views are also important for security reasons: They describe
the subset of the information a user (group) can access.

• In contrast, the conceptual schema describes the

complete information content of the database.

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-56

Three-Schema Architecture

Internal SchemaStored
Data

Conceptual Schema

SSSSSSSSSSSSSSSSSSSSSSSSSS

External Schema 1 · · ·

ooooooooooooooooooooo

External Schema n

44
44

4

TTTT jjjj

User

44
44

4

TTTT jjjj

User

[ANSI/SPARC 1978]

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-57

More DBMS Functions (1)

Transactions:

• Sequence of DB commands that are executed as

an atomic unit (“all or nothing”).
If the system should crash in the middle of a transaction, all changes
are undone (“rolled back”) when the DBMS starts the next time. If the
system should crash after a transaction is completed (“committed”),
all changes are guaranteed to be stored in the DB state.

• Support for Backup and Recovery
Data of completed transactions should survive single disk failures.

• Support of concurrent users
Users/Programmers should not have to think about concurrent ac-
cesses by other users (DBMS does e.g. automatic locking).

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-58

More DBMS Functions (2)

Security:

• Access rights: Who may do what on which table.

Actually, it is even possible to permit accesses only to part of a table
or only to aggregated data.

• Auditing: The DBMS may remember who did what.

Integrity:

• It is possible to let the DBMS check that the en-

tered data are plausible.

• The DBMS can also reject updates that would vio-

late defined business rules.

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-59

More DBMS Functions (3)

Data Dictionary:

• Information about the data (e.g. schema, user list,

access rights) is available in system tables, e.g.:

SYS_TABLES

TABLE_NAME OWNER

SOLVED BRASS
SYS_TABLES SYS
SYS_COLUMNS SYS

SYS_COLUMNS

TABLE_NAME SEQ COL_NAME

SOLVED 1 STUDENT
SOLVED 2 HOMEWORK
SOLVED 3 POINTS
SYS_TABLES 1 TABLE_NAME
SYS_TABLES 2 OWNER
SYS_COLUMNS 1 TABLE_NAME
SYS_COLUMNS 2 SEQ
SYS_COLUMNS 3 COL_NAME

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-60

Overview

1. Basic Database Notions

2. Database Management Systems (DBMS)

3. Programmer’s View, Data Independence

4. DBMS Vendors

'

&

$

%
5. Database Users and Database Tools

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-61

DBMS Vendors (1)

• Oracle: Oracle 10g

Enterprise Edition, Standard Edition, Standard Edition One, Personal
Edition, Lite Edition. [http://www.oracle.com/database/index.html]

• IBM: DB2 Universal Database V8.2 (plus e.g. IMS)

[http://www.ibm.com/software/data/db2/]

• Microsoft: SQL Server 2000 (plus Access, FoxPro)

SQL Server started 1988 as a port of Sybase to OS/2. Later, Micro-
soft developed it further on its own (1994: formal end of partnership).
120-day trail: [http://www.microsoft.com/sql/evaluation/trial/]

• Sybase: Adaptive Server Enterprise 12.5 (plus . . .)

Free Express Edition for Linux: [http://www.sybase.com/linux/ase/].

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-62

DBMS Vendors (2)

• Informix: e.g. Informix Dynamic Server 9.4

Informix was bought in 2001 by IBM (for $ 1000 Mio).
[http://www-306.ibm.com/software/data/informix/]

• Transaction Software: Transbase

[http://www.transaction.de/products/tb/overview/?lang=en]

• Gupta SQLBase [http://www.guptaworldwide.com/]

• Borland InterBase [http://www.borland.com/interbase/]

• Pervasive SQL [http://www.pervasive.com/psql/]

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-63

DBMS Vendors (3)

DBMS Market 1998 [Dataquest Study]

Vendor Market Share Change to 1997

IBM 32.3% +3.4%
Oracle 29.3% −0.1%
Microsoft 10.2% +0.3%
Informix 4.4% −0.4%
Sybase 3.5% −1.0%
Others 20.5% −2.2%

Market Size (1998): 7100 Mio. US-Dollar (+15%).

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-64

DBMS Vendors (4)

RDBMS Market Share (1998) [Dataquest]

Vendor RDBMS UNIX NT
Oracle 38.5% 60.9% 46.1%
IBM 30.8% 7.3% 10%
Microsoft 7% — 29.7%
Informix 6% 13% —
Sybase 5% 7% 3%
Others 14% 11.8% 12%

Market Size: $5400 Mio. $2200 Mio $1200 Mio.
Growth Rate: +18% +10% +46%

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-65

DBMS Vendors (5)

Database Market Share 2001 [in %, New License Sales]:

Vendor DBMS RDBMS UNIX Windows

Oracle 32.0 −4.9 39.8 −4.9 63.3 −5.7 34.0 −1.0

IBM 34.6 +4.3 34.1 +6.2 24.7 +15.4 20.7 +15.8

old IBM 31.7 +5.7 30.7 +5.9 17.5 +19.4 20.0 +15.0

Informix 3.0 −9.4 3.3 +8.8 7.2 +6.8 0.8 +39.6

Microsoft 16.3 +17.8 14.4 +25.3 — 39.9 +25.3

Sybase 2.6 −16.1 3.3 −16.1 4.6 −14.3 1.6 −11.9

Others 14.4 −2.8 8.5 −7.5 7.4 −2.0 3.7 −10.7

Total 8844 Mio $ 7108 Mio $ 3014 Mio $ 2555 Mio $

Growth 1.4% 1.6% -1.4% 11.0%
Source: Gartner Dataquest (May 2002) [UNIX, Windows: only RDBMS]

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-66

DBMS Vendors (6)

Database Market Share 2002 [in %, New License Sales]:

Vendor DBMS RDBMS

Oracle 26.9 33.9
IBM 36.9 36.2

of this Informix 2.3
Microsoft 18.8 18.0
Sybase 2.2
NCR 2.7
Others 15.2 9.2

Total 8363 Mio $ 6629 Mio $

Source: Gartner Dataquest (May 2003)

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-67

DBMS Vendors (7)

• Oracle cites an IDC study about database market

share (published 2003):

Oracle 39.4%
IBM 33.6%
Microsoft SQL Server 11.1%

• However, this study also states how the revenue of

the companies developed from 2001 to 2002:

Oracle -5%
IBM +9%
Microsoft +15%

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-68

DBMS Vendors (8)

• Oracle also cites a survey of Fortune 100 companies

(by the FactPoint Group) in which 400 IT mana-

gers were asked for their primary database choice:

� Oracle: 51%

� IBM DB2: 22% (19% on mainframe, 3% on UNIX/NT)

� Microsoft SQL Server: 8%

� Combinations of Vendors: 15%

� Other: 4%

• Oracle is used by 93% of these companies.

• 76% of their SAP installations run on top of Oracle.

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-69

Open Source DBMS

• MySQL [http://dev.mysql.com]

• PostgreSQL [http://www.postgresql.org]

• MaxDB [http://www.mysql.com/products/maxdb/]

This was previously called SAP DB, and before that it was Adabas.

• IBM Cloudscape

[http://publib.boulder.ibm.com/infocenter/cldscp10/index.jsp]

• Firebird [http://firebird.sourceforge.net/]

This was Borland InterBase. Borland still develops commercial version.

• CA Ingres [http://opensource.ca.com/projects/ingres/]

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-70

Selection Criteria (1)

• Price, Licence conditions.

One should also consider the price for support and later updates.
There are also “Total Cost of Ownership” calculations.

• Availability for different hardware platforms.

• Performance [http://www.tpc.org], scalability.

• Availability of tools.

For developing application programs.

• Knowledge of employees, cost of training.

• Amount of time needed for administration.

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-71

Selection Criteria (2)

• Reliability, support for 7× 24 operation.
How good is the support for backup and recovery? How quick is the
recovery if it should be needed? Is a failover system supported?

• Support for security.
And how likely are bugs that permit hackers to break in? How fast
are security problems solved? How well is the DBA informed about
security problems? How easy is it to apply patches?

• SQL is more or less standard.
Every modern relational DBMS (RDBMS) supports at least the SQL-
86 standard or the entry level of the SQL-92 standard. But switching
from one DBMS to another one can nevertheless be costly. Every
vendor has certain extensions to the SQL standard. Also many pro-
gramming tools exist only for a specific vendor.

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-72

Disadvantages of DBMS

• Expensive

• Dependence on the DBMS supplier

There are standards for SQL, but every system has extensions and
special tools. DBMS software is also often tightly coupled with the OS
because they perform in part similar tasks. When the OS is updated,
it might be necessary to get an update of the DBMS, too.

• Requires quite a lot of time to learn.

Oracle 8 had ≥95 volumes (=1.70m) of documentation.

• Overhead: A hand-optimized C-routine is faster

than the general purpose code in the DBMS.

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-73

When Not to Use a DBMS

• The data will be processed by a single program.

No other applications on the same data are planned.

• A DBMS seems unusable for various reasons, e.g.:

� Response time must be very short (realtime),

� non-standard locking needed.

• The redevelopment is not too expensive:

� The structure of the data is simple.

� All data fits into main memory.

� A simple backup strategy is sufficient.

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-74

Overview

1. Basic Database Notions

2. Database Management Systems (DBMS)

3. Programmer’s View, Data Independence

4. DBMS Vendors

5. Database Users and Database Tools

'

&

$

%

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-75

Database Users (1)

Database Administrator (DBA):

• Should know the complete database schema.

Changes the DB schema if needed, documents such changes.

• Gives access rights to users. Ensures security.

• Monitors system performance.

Does performance tuning.

• Monitors available disk space and installs new disks.

• Ensures that backup copies of the data are made.

Does the recovery after disk failures etc.

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-76

Database Users (2)

Database Administrator, Continued:

• Installs new versions of the DBMS software.

• Tries to ensure data correctness.

• Responsible for licence agreement.

• Contact for support / DBMS vendor.

• Expert on the DBMS software.

• Can damage everything.

Sometimes needs powerful privileges for the operating system.

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-77

Database Users (3)

Application Programmer:

• Writes programs for standard tasks.

“Application programs” to be used by the “naive users” (see below).
Today, this might also include a web interface.

• Knows SQL well, plus some programming langua-

ges and development tools.

• Usually supervised by the database administrator.

Or outside consultant who leaves after the project is finished.

• Might do DB design (i.e. develop the DB schema).

But there are specialists for this task (analysts, data modelers).

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-78

Database Users (4)

Sophisticated User (one kind of “End User”):

• Knows SQL and/or some query tools.

• Does non-standard evaluations of the data without

help from application programmers.

E.g. some kind middle manager who needs some new statistics for
decision support.

Naive User (the other kind of “End User”):

• Uses the database only via application programs.

• Does the real work of entering data.

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-79

Database Tools

• Interactive SQL interpreter

• Graphical/Menu-based query tools

• Interface for DB access from standard program-

ming languages (C, Pascal, Java, . . .)

• Tools for form-based DB applications (4GL)

• Report generator

• WWW interface

• Tools for import/export of data, backup&recovery,

performance monitoring, . . .

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-80

Knowing Oracle (1)

Core:

• Relational Model, Fundamentals of DB Design

• SQL: SQL-92 (standard) plus Oracle deviations

• Data Types and Data Type Functions

• Data Dictionary (system tables)

• PL/SQL for server-side stored procedures, triggers.
PL/SQL is Oracle’s own programming language (similar to Ada),
tightly coupled with SQL. Now Java can be used as an alternative.

• SQL*Plus: Output Formatting, Scripts

• Where to look in the Oracle Documentation.

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-81

Knowing Oracle (2)

Database Administration:

• SQL: Oracle Extensions, e.g. for physical storage

parameters, user management.

• Oracle Process Structure, Installation Parameters,

Tuning, Internal Data Structures.

• Administration Tools: Starting and Stopping the

DB Server, Adding Disk Space, etc.

• Backup & Recovery in Oracle

• Import/Export-Utilities, SQL*Loader

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-82

Knowing Oracle (3)

Application Programming:

• Oracle Pro*C (SQL embedded in C), ODBC

• Java-Interfaces: JDBC, JSQL

• Oracle Developer (iDS): Visual programming tools

for creating end-user application programs.
E.g. Form Builder: Creates programs which are something like specia-
lized editors for specific relations, e.g. showing one record at a time
in a screen mask. Oracle Developer contains also Report Builder,
Graphics Builder, etc.

• Oracle Application Server (iAS): for web interfaces

• Some knowledge about security, e.g. for web interfaces.

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-83

Summary (1)

Functions of Database Systems:

• Persistence

• Integration / No Redundancy (duplicate storage)

• Data Independence

• Less programming effort: Many algorithms built-in,

especially for external memory (disks)

• Ad-hoc Queries

I.e. when somebody gets an idea for a new query, he/she can imme-
diately pose it. In earlier times, he/she had to ask the programming
department for a new program.

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-84

Summary (2)

Functions of Database Systems, continued:

• High data security (Backup&Recovery)

• Combinition of updates into atomic transactions

Transactions are completely executed or not at all

• Multi-User: synchronization of concurrent accesses

• Integrity Enforcement

• Views for different users (user groups)

• Data Access Control

• System Catalog (Data Dictionary)

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-85

Summary (3)

• The main goal of the DBMS is to give the user

a simplified view on the persistant storage, i.e. to

make complications “transparent”.

• The user does not have to worry about:

� Physical storage details

� Different information needs of different users

� Efficient query formulation

� Possibility of system crashes / disk failures

� Possibility of concurrent access by other users

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-86

Exercises (1)

• Take the task of developing a system where stu-

dents can vote about the quality of lectures.

There is a form in the world wide web, where students can enter their
data, and when they press the “submit” button, these data are stored
on the web server. Later evaluation is performed on the collected data,
e.g. computing average values.

• I have proposed writing C programs for this task,

and storing the data in UNIX files.

• What arguments can you make as to why using a

database system might be better?

Stefan Brass: Datenbanken I Universität Halle, 2004

1. Introduction 1-87

Exercises (2)

• Suppose the homework points are stored in a text

file with the format

Student Name:Homework Number:Points

(i.e. one row of the table SOLVED per line).

• Suppose you have to write a C program that prints

the total number of points per student (students

ordered alphabetically).

• How many lines and how much programming time

do you need?

• In SQL, this needs 4 lines and 2 minutes work.

Stefan Brass: Datenbanken I Universität Halle, 2004

